
UNIVERSITY OF OSLO
Department of Informatics

User Space Socket
Migration for
Mobile Applications

Master Thesis

Håvard Stigen Andersen

13th May 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30891549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

User Space Socket Migration for Mobile

Applications

Håvard Stigen Andersen

13th May 2012

2

Acknowledgement

First of all, I would like to thank my supervisors, Vera Goebel, Hans Vatne

Hansen And Francisco Velázquez for their excellent guidance. Clear and

concise feedback has made it possible for me to complete this thesis. Great

supervision on the structure of the thesis and guidance on the proper

writing style have helped a lot.

I would also like to thank my family and friends for their support. Espe-

cially a thanks to you those of who have helped me proofreading the thesis.

Håvard Stigen Andersen

University of Oslo

May 2012

3

4

Abstract

Nowadays, individuals are surrounded by several personal multimedia

capable devices. This can leverage ubiquitous computing. Yet, in

recent years, multimedia applications have increased their popularity and

demand. These two factors have been the main motivation forces to retake

process migration research. We focus on process migration to enable

ubiquitous computing with multimedia application requirements, such as

bandwidth and time constrains. We call applications designed for process

migration mobile applications. This thesis addresses the connection

mobility challenges in process migration between networked devices, while

fulfilling multimedia applications requirements.

We present the design, implementation and evaluation of a user-space

socketmigration solution called SOCKMAND. SOCKMAND enablesmobile

applications to resume their connections on other remote nodes after a

migration. The work is motivated by research on process migration for

regular consumers within their own Migration Community, an overlay of

personal devices. SOCKMAND supports legacy corresponding hosts, hosts

which do not include any logic concerning the socket migration. This is

achieved by introducing a Migration Community Access Point (MCAP).

An MCAP acts as a proxy server between the two endpoints of a socket.

SOCKMAND uses IP in UDP tunnels to transfer packets between the node

with the mobile application and the MCAP. We utilize libpcap and raw

sockets to achieve a user-space implementation. Libpcap and raw sockets

can capture and send raw IP packets from user-space. TCP and UDP

are implemented in user-space. UNIX domain sockets provide the inter-

process communication between mobile applications and SOCKMAND.

We do our evaluation of SOCKMAND both by using analytical modeling

as well as measurements on our implementation. The measurements

are done on heterogeneous devices to determine if these devices are

capable of running SOCKMAND with multimedia applications, like video

conferencing.

Our evaluation shows that SOCKMAND is capable of utilizing the

full bandwidth of various devices given a large enough packet size. We

show that CPU load in MCAP and endpoints correlate to the number of

packets per second, and not the bandwidth. This shows that application

programmers should use larger packet sizes, when possible, to reduce CPU

load. The round-trip time overhead introduced by Migration Community

Access Points is negligible. SOCKMAND is able to support multimedia

applications based on our requirements.

5

6

Contents

1 Introduction 17

1.1 Background and Motivation . 17

1.2 Problem Statement . 18

1.3 Outline . 18

2 Background 19

2.1 Mobile Applications . 19

2.2 The TRAMP Project . 20

2.2.1 TRAMP Real-time Application Mobility Platform . . . 20

2.2.2 Migration Communities 21

2.2.3 Real-Time Multimedia Applications 21

2.3 Operating System Abstractions 22

2.4 User Datagram Protocol . 24

2.5 Transmission Control Protocol 24

2.6 IP Fragmentation . 25

2.7 Connection Handover . 26

2.8 Requirement Analysis of Background Knowledge 26

3 Related Work 29

3.1 Socket Migration . 29

3.1.1 MIGSOCK . 29

3.1.2 SockMi . 29

3.1.3 Migratory TCP . 30

3.1.4 Reliable Sockets . 30

3.1.5 Socketless TCP . 30

3.2 Transport Layer Mobility . 31

3.2.1 UPMT . 31

3.2.2 TCP-R . 31

3.3 Emerald . 32

3.4 Analysis of Related Work . 32

4 Design 35

4.1 Requirements . 35

4.2 SOCKMAND . 36

4.2.1 Migration Community Access Point 36

4.2.2 IP in UDP Tunnels . 37

4.2.3 SOCKMAND Architecture 37

7

4.2.4 Different Packet Flows Through SOCKMAND 39

4.3 UUID of a Socket . 39

4.4 Migrating a Socket . 40

4.5 Message Passing During Migration 41

4.6 IP Fragmentation and SOCKMAND 42

4.7 Detailed Design . 43

4.7.1 SOCKMAND API . 44

4.7.2 SOCKMAND Library . 45

4.7.3 UDP Controller . 47

4.7.4 TCP Controller . 47

4.7.5 IP Controller . 47

4.7.6 SOCKMAND Core . 48

4.7.7 Libpcap Handler . 48

4.7.8 Rawsocket Handler . 48

4.7.9 Tunnel Handler . 49

4.7.10 Signal Handler . 49

4.7.11 Migrator API . 49

5 Implementation 51

5.1 Environment . 51

5.2 Overview . 51

5.3 SOCKMAND components . 51

5.3.1 Event Handler . 52

5.3.2 SOCKMAND Core . 53

5.3.3 SOCKMAND API . 58

5.3.4 Libsockmand . 58

5.3.5 UDP Controller . 61

5.3.6 TCP Controller . 65

5.3.7 Libpcap Handler . 67

5.3.8 Migrator API . 68

6 Evaluation 69

6.1 Evaluation Goals . 69

6.2 Analysis Approach . 70

6.3 Evaluation Metrics . 71

6.3.1 CPU Load . 71

6.3.2 Round-Trip Time . 72

6.3.3 Socket Migration Time 72

6.3.4 Packet Loss in the MCAP 72

6.4 Evaluation Factors . 72

6.4.1 Packet Sizes . 72

6.4.2 Packets per Second . 73

6.4.3 Node Specifications . 73

6.4.4 Packet Direction Through the MCAP 73

6.5 Evaluation Setups . 74

6.5.1 CPU Load of SOCKMAND and Mobile Application . . 74

6.5.2 CPU Load and Packet Loss on MCAP 76

6.5.3 Socket Migration Time 77

8

6.5.4 Round-Trip Time . 80

6.6 Results . 80

6.6.1 CPU Load of SOCKMAND and Mobile Application . . 80

6.6.2 CPU Load and Packet Loss on MCAP 82

6.6.3 Socket Migration Time 85

6.6.4 Round-Trip Time . 87

6.7 Discussion . 89

7 Conclusion 93

7.1 Contributions . 93

7.2 Critical Assessment . 94

7.3 Future Work . 94

7.3.1 Short-term Goals . 94

7.3.2 Long-term Goals . 95

REFERENCES 95

APPENDIX 100

A Abbreviations 101

B Performance Evaluation Results 103

C Measurement Applications 107

C.1 RTT Test Applications . 107

C.2 Packetloss Test From Tunnel to Rawsocket 110

C.3 Packetloss Test From Libpcap to Tunnel 116

C.4 SOCKMAND and Mobile Application Test Applications 121

D Source Code 127

9

10

List of Figures

2.1 TCP/IP encapsulation . 23

2.2 UDP Header [32] . 24

2.3 TCP Header [34] . 25

2.4 IPv4 Header [33] . 26

4.1 Contents of a tunnel packet . 37

4.2 System Architecture . 38

4.3 SOCKMAND Architecture . 38

4.4 Different packet flows through SOCKMAND 40

4.5 Order of calls when an application is migrated 41

4.6 Message passing when the source node is also the MCAP . . . 42

4.7 Message passing when the destination node is also the MCAP 43

4.8 Message passing when the MCAP is neither the source nor

destination node . 44

6.1 Node setup CPU load by SOCKMAND and Mobile Application 75

6.2 Node setup CPU load and Packet loss on MCAP 76

6.3 Measuring Socket Migration Time 1 77

6.4 Measuring Socket Migration Time 2 78

6.5 Measuring Socket Migration Time 3 79

6.6 Ping results . 80

6.7 CPU load by SOCKMAND and Mobile Application on Desk-

top Computer with 100B payload 81

6.8 Desktop Computer Packet loss on MCAP from tunnel to

rawsock . 82

6.9 Desktop Computer CPULoad onMCAP from tunnel to rawsock 83

6.10 Netbook Packet loss on MCAP from tunnel to rawsock 84

6.11 Netbook CPU Load on MCAP from tunnel to rawsock 84

6.12 Factors of RTT shown in Table 6.5 88

6.13 UPMT anchor node packet loss comparison [6] 90

6.14 UPMT anchor node CPU load comparison [6] 91

B.1 Desktop CPU Load on MCAP from libpcap to tunnel 103

B.2 Desktop Packet loss on MCAP from libpcap to tunnel 104

B.3 Netbook CPU Load on MCAP from libpcap to tunnel 104

B.4 Netbook Packet loss on MCAP from libpcap to tunnel 105

B.5 CPU load by SOCKMANDandmobile application on desktop

computer with 1400B payload 105

11

B.6 CPU load by SOCKMAND and mobile application on net-

book with 100B payload . 106

B.7 CPU load by SOCKMAND and mobile application on net-

book with 1400B payload . 106

12

List of Tables

2.1 Bandwidth requirements for Skype [35] 22

2.2 Bandwidth requirements for Google Hangout [11] 22

3.1 Comparison of Socket Migration Systems 32

6.1 Maximum packets per second based on packet size and

bandwidth . 73

6.2 Node Specifications . 74

6.3 RTT between node A and B with the MCAP at node A 87

6.4 RTT between node A and B without SOCKMAND 87

6.5 RTT between node A and B with the MCAP at node C 88

13

14

Listings

5.1 Event Handling . 52

5.2 Handle IP Controller Packet . 53

5.3 Handle Tunneled Packet . 54

5.4 Handle Tunneled Packet . 54

5.5 Exporting Socket State . 55

5.6 Importing Socket State . 55

5.7 Migrate Socket . 57

5.8 Sockets table . 58

5.9 sm_socket() . 59

5.10 sm_rebuildsocket() . 60

5.11 sm_recvfrom() . 61

5.12 UDP Control Block . 62

5.13 UDP binding . 62

5.14 UDP Sending . 63

5.15 UDP Receiving . 64

5.16 Delivering Buffered Packets . 64

5.17 TCP Control Block . 65

5.18 TCP Timeout Structure . 66

5.19 TCP importing timeouts . 66

5.20 Initializing libpcap . 67

5.21 Dropping reset packets . 68

C.1 Round-trip Time Client . 107

C.2 Round-trip Time Server . 109

C.3 Packetloss Test From Tunnel to Rawsocket Client 110

C.4 Packetloss Test From Tunnel to Rawsocket Server 114

C.5 Packetloss Test From Libpcap to Tunnel Client 116

C.6 Packetloss Test From Libpcap to Tunnel Server 119

C.7 SOCKMAND load client . 121

C.8 SOCKMAND load server . 124

15

16

Chapter 1

Introduction

1.1 Background and Motivation

Today, individuals are surrounded by several heterogeneous personal

multimedia capable devices. This can make the ubiquitous computing

paradigm shift possible. Recently, multimedia applications have increased

their popularity and demand. These two factors have been our main moti-

vation forces to focus our research on process migration. Process migration

involves transferring a running process from one computer to another. We

call applications designed for process migration mobile applications. We

focus on process migration to enable ubiquitous computing with multime-

dia application requirements, such as bandwidth and time constraints. The

field of process migration has been extensively studied over the last decades

and several different approaches exist. However, process migration in a

consumer setting has never been widely adopted [30].

There exist several scenarios where process migration is useful, such

as accessing more processing power, exploitation of resource locality,

resource sharing, fault resilience, system administration and mobile

computing [30]. The scenario that is discussed in this thesis is mobile

computing. This is user initiated process migration that enables users to

migrate applications between their own heterogeneous personal devices.

We claim that by enabling users to migrate their favorite multimedia

application between their many personal devices will enhance the overall

user experience.

There are several user centric scenarios that can benefit from process

migration. A user may want to bring an application containing an ongoing

video call from her desktop computer to her cellphone when leaving home.

A real-time online game may be played on a cellphone and migrated to

a desktop computer when arriving back home. Applications could be

migrated to a technical support officer if there is a problem.

Although some applications increase its usability from process migra-

tion, other applications such as text-editors and graphical editors do not

benefit as much from process migration. The main issue that applications

benefits from process migration from a user perspective have in common

is that they often are multimedia applications such as IP-telephony, video

17

conferencing and video and music streaming applications. Such applica-

tions are increasing in popularity and demand, we claim that enabling sup-

port for process migration in such applications will further increase their

popularity, and build public awareness of process migration. Milojicic [30]

claim that a killer application is needed for process migration to become

popular in the marketplace and we claim that a multimedia mobile appli-

cation is that killer application.

A process on one node may use several resources bound to that

particular node. Such resources may be a file system, peripheral devices,

sockets and inter-process communication. When migrating a process,

these resources must be accessible on the destination node in order for

the process to have the same functionality as on the source node. Some

resources, such as peripheral devices, are physically bound to the source

node. Other resources, such as sockets, are logically bound to the source

node due to the protocol they use. This thesis will focus on making sockets

available on the destination node after a process migration.

1.2 Problem Statement

Applications, also mobile applications, can communicate with other appli-

cations over the Internet. Maintaining such connections after a process

migration must be dealt with in a proper way. An endpoint of a transport

layer connection is defined by an IP address and a port, together they are

known as a socket. Migrating this socket along with the process is crucial

for the process to maintain its connections after a migration. This is known

as socket migration. The Internet does not natively provide any solutions

to this problem, since it assumes that the two communicating applications

never move to a new host.

This is a problem because mobile applications must be able to resume

their connections to the remote applications they are connected to after

they have migrated to a new node. If they are not able to do so, many of

todays Internet centric multimedia applications will not be able to benefit

from process migration.

1.3 Outline

The following parts of the thesis are organized as follows: Necessary

background material and terminology are described in Chapter 2. Chapter

3 gives an overview of related work on the subject. Chapter 4 presents our

requirements and design while Chapter 5 describes the implementation of

our design. The implementation is evaluated against our requirements in

Chapter 6 and finally our conclusions are drawn in Chapter 7.

Appendix A contains an abbreviations list. Appendix B shows additional

performance evaluation results which supplement the results presented

in Chapter 6. The source code of our meassurement applications are

presented in Appendix C. Instructions on getting the source code of

SOCKMAND and our measurement tools are presented in Appendix D.

18

Chapter 2

Background

In this chapter, we look at terminology and related technologies necessary

as a basis to understand the rest of the thesis. Mobile applications in

general are described in Section 2.1. The TRAMP project, which sets the

context for our work is described in Section 2.2. Operating Systems and

their abstractions are described in Section 2.3. Section 2.4 and 2.5 give a

brief description of the two most common transport layer protocols. Useful

terminology about handovers is described in Section 2.7. We summarize

the requirements from this Chapter in Section 2.8.

2.1 Mobile Applications

A mobile application, not to be confused with an application designed for

a cellphone, is in our context an application capable of migrating between

nodes during execution.

The lifetime of a mobile application can be summarized as follows.

1. The application is started on a node 1.

2. The process is executed for some time

3. The running process is migrated from node 1, called source node, to

another node 2, called destination node.

4. The two previous steps may be repeated infinitely until the applica-

tion is terminated.

A process has a state that changes over time. This state includes

dynamic data, the current state of the user interface, open file-descriptors

and active network connections. When a process migrates, the state and

the compiled code of the application must be transferred to the destination

node. This state can be transferred in several different ways. It can be

transferred directly from the old instance of the application to the new

instance of the application through a TCP/ IP socket. Another alternative is

to let the operating system extract the state of the application and send it to

the operating system on the new nodewhere it is inserted in the application.

The last alternative is to send the state from the application through a

19

supporting migrator system, elaborated later, which forwards it to the new

node.

Regular operating systems and conventional programming languages

do not support application mobility out of the box. To support mobile

applications, the operating system needs to be changed, as in MOSIX,

the programming language needs to be changed as in Emerald [14] or a

combined solution where the application is designed to support mobility

supported by a third application called a migrator system.

A migrator system organizes the migration of mobile applications.

A migrator System is responsible for transferring the state and code,

terminating the old instance of the process and starting the new process

with the correct state on the destination node. If the migrator system

runs in user-space, the state of the mobile application can only be accessed

through inter-process communication (IPC) with the mobile application.

The mobile application must expose an interface towards the migrator

system where the state can be exported.

Mobility through a programming language provides programmers to

migrate their application or parts of their application. Parts of the process,

such as objects, may be moved within an overlay network of connected

nodes. Although programming languages such as Emerald were primarily

designed to provide fine grained mobility, it can also be utilized to migrate

the entire process. Emerald provides fine grained mobility, which means

that single objects can be migrated to another node. Emerald introduces a

set of mobility related primitives which gives the programmer control over

the location of objects. Examples of such primitives are move, fix, locate

and attach.

Operating systems can be created or modified to support process

migration. Since operating systems have full overview of processes and

their data, implementing process migration in the operating system level

decouples the logic of process migration from the application. A notable

example of an operating system supporting process migration is MOSIX

[3].

2.2 The TRAMP Project

TRAMP (TRAMP Real-time Application Mobility Platform) is a research

project at the DMMS group at the Department of informatics at the

University of Oslo. The project focuses on migration of real-time, user

centric applications within a trusted migration community, described in

Section 2.2.2.

2.2.1 TRAMP Real-time Application Mobility Platform

Unlike most of the previous systems designed for process migration, our

platform TRAMP Real-time ApplicationMobility Platform, is implemented

in user-space. The main reason for this is that the migration platform

should support heterogeneous operating systems and devices. A user-

20

space implementation also eases the installation of TRAMP. The platform

organizes the migration of applications between trusted nodes.

Since the platform is not located in the kernel and the applications

are running in user-space, the platform has no overview of the process

stack, register values and address space. In traditional process migration,

both the code and all the previous mentioned data are transferred during

migration. The data needed to restart the process after migration is

exported from the process to the migrator platform and transferred to the

new node. This forces the applications to be migration-aware. The mobile

applications are therefore designed to support thismigration platform [30].

Even though the applications are designed to support the platform, they

should also be able to run without a supporting migration platform.

Since we want our platform to be able to run in a regular consumer’s

home network, no special hardware equipment should be needed.

2.2.2 Migration Communities

TRAMP lets users migrate applications between nodes in their private

migration community. The migration community can be organized in a

peer-to-peer overlay network or in any other suitable fashion. For any

migration to take place, the migration community must have at least two

members. How the migration community is organized is out of scope for

this thesis.

An instance of a migration community can include all of one user’s

devices, such as laptops, cellphones, tablets and desktop computers. The

user is then able to migrate applications between all of these devices since

they are members of the given migration community.

2.2.3 Real-Time Multimedia Applications

TRAMP is designed to support real-time multimedia applications. Such

applications have specific requirements in terms of delay. Our use case is

based on video conferencing. When using video conferencing, the highest

acceptable end to end delay when using video conferencing is 100 ms [2].

If the end to end delay exceeds 100 ms, it will become noticeable for users.

In addition to strict requirements for delay, video conferencing also

has bandwidth requirements. The bandwidth requirements depend on

many factors such as audio codec, video codec and desired resolution.

Although Skype is a closed protocol, they provide us with some minimum

and required bandwidths for different scenarios. Table 2.1 showsminimum

and recommended bandwidth for different scenarios when using Skype.

From the table we see that the minimum download and upload speed for

high quality video calling is 400 kbit/s while the recommended download

and upload speed for an HD video call is 1.5 Mbit/s. We use this

as our minimum and recommended bandwidth requirement. Table 2.2

shows minimum and recommended bandwidth for Google Hangouts. The

bandwidth requirements for Google Hangouts are approximately the same

as the bandwidth requirements for Skype.

21

Call type
Minimum download
/ upload speed

Recommended download
/ upload speed

Calling 30 kbit/s / 30 kbit/s 100 kbit/s / 100 kbit/s

Video calling / Screen sharing 128 kbit/s / 128 kbit/s 300 kbit/s / 300 kbit/s

Video calling (high-quality) 400 kbit/s / 400 kbit/s 500 kbit/s / 500 kbit/s

Video calling (HD) 1.2 Mbit/s / 1.2 Mbit/s 1.5 Mbit/s / 1.5 Mbit/s

Group video (3 people) 512 kbit/s / 128 kbit/s 2 Mbit/s / 512 kbit/s

Group video (5 people) 2 Mbit/s / 128 kbit/s 4 Mbit/s / 512 kbit/s

Group video (7+ people) 4 Mbit/s / 128 kbit/s 8 Mbit/s / 512 kbit/s

Table 2.1: Bandwidth requirements for Skype [35]

Minimum bandwidth
required

Ideal bandwidth for
the best experience

Outbound from the participant 230 kbit/s 900 kbit/s

Inbound to the participant 380-500 kbit/s 1.2 Mbit/s

Table 2.2: Bandwidth requirements for Google Hangout [11]

2.3 Operating System Abstractions

An operating system (OS) provides applications with a set of APIs to

underlying hardware and operating system services. The OS acts as an

abstraction layer between software and hardware. These abstractions ease

the use of hardware and OS services for application developers. Examples

of such abstractions are file system management, memory access, inter-

process communication (IPC) and sockets.

Applications access the file system through the OS. This simplifies the

file access as it is not necessary for the applications to seek directly for the

data on the hard-drive, but just ask the OS for a specific file. Memory

is provided to applications through virtual memory. The OS provides a

set of primitives for memory usage such as malloc(), bzero(), memcpy()

and free(). IPC is provided to applications through pipes, signals, shared

memory and sockets. The logic of communicating with other processes is

hidden by the OS. The applications only use a set of simple primitives.

An operating system provides applications with the possibility of

communicating with other remote or local applications using sockets.

Applications are provided with a set of primitives that enables them to

interact with the socket. These primitives are socket(), bind(), accept(),

listen(), write(), read() and close(). Applications specify which transport

protocol it wishes to use, and thereafter the OS kernel handles the details

of this specific transport protocol, such as filling out necessary headers. In

addition to handling the transport protocol, the OS, in cooperation with

network hardware, handles the layers below the transport layer. Making

changes to a transport protocol is therefore only possible if the OS kernel on

both endpoints of a connection has been altered with the relevant changes

to the protocol.

Applications only receive the payload of the transport layer protocol

when receiving data from a socket, see Figure 2.1. The application is

unaware of how the header of this protocol looks like, as well as how the

headers of underlying protocols such as IP and Ethernet looks like. There

are however solutions to receive the entire packet including the headers of

22

 Frame data

IP data

TCP data

Data

TCP

Header

IP

Header

Frame

Header

Frame

Footer

ApplicationOSHW HW

Link

Network

Transport

Application

Figure 2.1: TCP/IP encapsulation

the different protocols. Libpcap is an OS independent library that enables

packet capture to user-space applications.

Similarly, applications only write the payload of the transport layer

packet to the OS. The OS is in charge of adding the correct headers to this

packet before it is sent out on the network. There are solutions for user level

applications to create their own custom network packets including their

own headers on various operating systems, this is known as raw sockets.

This is trivial on LINUX systems. Some Windows versions have however

blocked this functionality due to media criticism that claim that raw sockets

are a security hazard for the Internet [8][12].

OS Abstractions and Mobile Applications

The abstractions described above are designed to be used by conventional,

non-mobile applications. Linux based operating systems, and other, are not

designed with mobile applications in mind. Enabling mobile applications

to utilize these abstractions on the destination host with the same expected

behavior as on the source host is essential. If this is not possible, the state

of the mobile application will not be the same on the destination host after

a migration. If the application state is not the same, the migration must be

seen as incomplete.

To support usage of the abstractions described above to mobile applica-

tions, the OS needs to be modified, or additional supporting software must

be introduced. The abstractions are different by nature, and therefore must

be solved in different ways.

Motivated by our previous work of creating a mobile Java application

which handled the reconnecting of sockets in the application itself, we

decide to work further with socket migration in an attempt to decouple this

23

functionality from the application itself. The rest of this thesis will focus on

how to enable mobile applications to use sockets.

2.4 User Datagram Protocol

User Datagram Protocol (UDP) is a connectionless transport layer protocol

defined in RFC768[32]. The protocol enables applications to send

datagrams to an IP address and a port. UDP is unreliable in the sense

that the protocol itself does not guarantee that packets will arrive at the

destination. UDP packets may also arrive in different order than they were

sent.

0 7 8 15 16 23 24 31

+--------+--------+--------+--------+

| Source | Destination |

| Port | Port |

+--------+--------+--------+--------+

| | |

| Length | Checksum |

+--------+--------+--------+--------+

|

| data octets ...

+---------------- ...

Figure 2.2: UDP Header [32]

UDP packets include a simple header of 8 bytes. Figure 2.2 shows the

UDP header. The header includes source port, destination port, packet

length and a checksum field.

UDP is typically used for real time services such as video conferencing,

IP telephony, streaming and online gaming.

2.5 Transmission Control Protocol

Transmission Control Protocol (TCP) is a transport layer protocol defined

in RFC793 [34]. Unlike UDP, TCP is a connection oriented protocol.

With a TCP connection, data packets may be sent to an IP address and

a port. The packets that are sent are guaranteed to be delivered to the

application in the same order as they were sent. To ensure this reliability,

packets must be acknowledged by the receiver. An acknowledgement may

be sent in a packet containingno data. However, if it is a data packetwaiting

to be sent, the acknowledgement is piggybacked on that packet. Any packet

that has not been acknowledged within a time calculated on the basis of

the round trip time will be resent by the sender. The resend algorithm is

defined by RFC6298 [31].

Figure 2.3 shows the TCP header. The TCP header is 20 bytes long if

no options are used. Like the UDP header, it includes fields for source

port, destination port and checksum. The TCP header however lacks

the length field that is present in the UDP header. The length of the

24

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Source Port | Destination Port |

+-+

| Sequence Number |

+-+

| Acknowledgment Number |

+-+

| Data | |U|A|P|R|S|F| |

| Offset| Reserved |R|C|S|S|Y|I| Window |

| | |G|K|H|T|N|N| |

+-+

| Checksum | Urgent Pointer |

+-+

| Options | Padding |

+-+

| data |

+-+

Figure 2.3: TCP Header [34]

payload can however be computed by using the length field in the IP header

and subtracting the TCP header length. The sequence number identifies

which byte number in the stream that is sent in a given packet. The

acknowledgement number specifies which byte number in the stream the

sender expects to receive next. Several flag bits can be set. The most

commonly used are ACK, SYN and FIN.

TCP connections are established using a 3-way handshake. If A want

to connect to B, a packet with the SYN flag is set. B replies with SYN/ACK

and finally A replies with ACK. In addition to the flags, the initial sequence

numbers are exchanged.

Tearing down a connection can be done in several ways. The most

common way is that A sends FIN/ACK to B which replies with an ACK.

B then sends a FIN/ACK to A which then replies with an ACK.

TCP is typically used for web browsing, email, instant messaging and

file transferring.

2.6 IP Fragmentation

IP fragmentation occurs when the size of an IP packet is larger than the

Maximum Transmission Size (MTU) of the link layer protocol. The payload

of the IP packet are split into several IP packets, called fragments, which

are less or equal to the MTU of the link layer protocol. IP fragmentation

can occur both at the source node and at any intermediate nodes where the

outgoing link has a smaller MTU than the ingoing link.

Figure 2.4 shows the IPv4 header. IP fragments are identified by the

more fragments flag or that the fragment offset field is not zero. Different

fragments are linked together using the Identification field.

If the do not fragment flag is set in the IPv4 header, the packet cannot

be fragmented. If the packet size exceeds anyMTU in the path with this flag

25

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Version| IHL |Type of Service| Total Length |

+-+

| Identification |Flags| Fragment Offset |

+-+

| Time to Live | Protocol | Header Checksum |

+-+

| Source Address |

+-+

| Destination Address |

+-+

| Options | Padding |

+-+

Figure 2.4: IPv4 Header [33]

set, it is then simply dropped.

2.7 Connection Handover

When a node changes its access network it is known as a handover. A

handover can occur when the node itself is mobile and moves between

different access points.

A horizontal handover is a handover within a homogeneous network,

such as a handover between two cells in a GSM network. Horizontal

handovers are handled in layer 3 and below [28]. In contrast, a vertical

handover is a handover between two heterogeneous networks. A vertical

handover needs to be handled in layer 3 or above [28].

A soft handover is a handover where the new connection is established

before the old connection is disconnected. In contrast, a hard handover

is when the old connection is disconnected before the new connection is

established. These terms are also known as make before break and break

before make [28]. Some handover techniques are described in Section 3.2.

2.8 Requirement Analysis of BackgroundKnowl-

edge

A requirement from TRAMP is to implement the socket migration system

in user space. This requirement enables the system to be easily deployable

across different platforms. The socket migration system should also have a

well-defined interface towards any migrator system.

Since applications should be able to run without TRAMP installed, they

should also be able to run without the socket migrator system installed. No

special network equipment or computer equipment should be needed to

support TRAMP.

To support video calling a system should at a minimum be able to

support a 400 kbit/s bidirectional data stream and ideally a 1.5 Mbit/s

26

bidirectional data stream. The maximum acceptable delay is 100 ms.

A requirement from theMigration Community is that at least two nodes

must be present in the community for any migration to take place.

27

28

Chapter 3

RelatedWork

There have been research efforts on socket migration techniques and the

closely related field of transport layer mobility. In this Chapter, we look at

previous work within these fields. In Section 3.1 we look at related work

within the field of socket migration. In Section 3.2 some related transport

layer mobility work is described. We describe the mobility concepts of

Emerald in Section 3.3. Finally the chapter is summarized in section 3.4.

3.1 Socket Migration

Socket migration is the process of moving an endpoint of a live socket from

one node to another. Several different approaches to this has been done,

some of which are described here.

3.1.1 MIGSOCK

MIGSOCK enables applications to transfer an endpoint of a live socket from

one host to another [15]. The system is implemented in Kernel space and

therefore needs modifications to the hosts. New signals are added to the

TCP protocol that signals that a socket migration will occur. MIGSOCK

sockets demands that both endpoints of the socket are implemented using

MIGSOCK. Migrating endpoints that are communicating with a legacy host

is therefore not possible. The solution is fully distributed without the need

of any additional hosts.

3.1.2 SockMi

SockMi is another solution for transferring an endpoint of a live socket from

one host to another [5]. The solution depends on a Linux Kernel Module

(LKM) and a daemon, a background process. The LKM translates and

forwards incoming IP packets from any legacy Corresponding Host on the

exporting host using Destination NAT to the importing host. Packets sent

from the importing host to the Corresponding Host and translated using

Source NAT. After amigration of a socket has occurred, all the packets from

the corresponding host are sent in a triangular fashion. The source and

29

destination node of the socket endpoint that is migrated needs the SockMi

module and daemon installed. The Corresponding Host does not need any

modifications or additional modules.

Sending IP packets using Source NAT may cause firewalls to drop these

packets due to a source IP address originating outside its network. The

firewall may therefore see this as an attempt of IP spoofing and therefore

regard it as a security risk. SockMi may therefore become nonfunctional in

certain scenarios [9].

3.1.3 Migratory TCP

Migratory TCP (M-TCP) is an extension to the TCP/IP stack which aim to

provide Service Continuity for end users [36]. The authors claim that TCP’s

error recovery scheme is insufficient for users that are more interested

in continuous service than being connected to a particular server. The

extension aims to let the server endpoint of the TCP connection to be

migrated to another server which provides the same service to the end user.

M-TCP enables server endpoints tomigrate by request of the client. When a

connection is established, the server sends a migration certificate and a list

of cooperating servers to the client. This certificate can then be used by the

client to migrate the connection to one of the other cooperating servers.

If such a migration is initiated by the client, the original server exports

a state snapshot to the new server. Unlike the other socket migration

techniques described in this chapter, M-TCP allows one endpoint to initiate

the migration of the other endpoint.

3.1.4 Reliable Sockets

Reliable Sockets (rocks) enable sockets to be reestablished after a discon-

nection. Sockets may be reestablished after a migration, change of IP ad-

dress or host crashes [38]. Rocks is implemented in user space and lie be-

tween applications and the kernel. Reestablishment of connections is trans-

parent to applications. A Diffie-Hellmann key exchange happens when the

sockets are established. This key is then used to reestablish the connection

if a disconnection occurs.

The rocks API must be present on all of the involved hosts during a

migration to work. Rocks works with legacy applications allowing them

to resume connections due to change of IP address or an host crash. If a

change of IP address or a host crash occurs on both endpoints of the socket,

rocks will not be able to resume the connection.

3.1.5 Socketless TCP

Socketless TCP decouples the sockets from a TCP connection by identifying

the connection using a Connection Identifier instead of the traditional IP

address and port pair [4]. The TCP connection no longer rely on the

network layer to identify a connection, therefore changes in the network

30

layer due to network changes or a migration no longer limit the lifetime of

the connection.

3.2 Transport Layer Mobility

Transport layer mobility differs slightly from socket migration. The

endpoint of the socket is never moved from one node to another. Transport

layer mobility enables applications to resume their connections if the node

has received a new IP address due to a change of access network, known as

a vertical handover.

Transport Layer Mobility is similar to socket migration when we view

themigration or handover from the viewpoint of the corresponding host. In

both cases, the corresponding host must deal with that the other endpoint

changes its IP address.

3.2.1 UPMT

Bonola and Salano has created a system the allows applications to change

access network on a node on a per-application basis [7]. Their universal

per-application mobility management solution using tunnels (UPMT) is

targeted towards handover management on a per application basis when

multiple heterogeneous networks are available. The solution allows differ-

ent applications on one host to use different access networks depending on

a given policy. UPMT is completely transparent to corresponding hosts due

to a tunnel to an Anchor Node. The Anchor Node is a dedicated server act-

ing as a proxy between the application and the corresponding host. When

changing the access network, UPMT still tunnels the traffic through the

same Anchor Node, thus the handover is not seen by the corresponding

host and is fully transparent. However this solution does not cover mobile

applications moving from one node to another, but the principles applied

to the handover management are useful for our work. A similar concept is

shown in [16].

UPMT provides both a daemon adapter and an UPMT socket interface.

The daemon adapter emulates a network interface so that legacy applica-

tions can utilize the UPMT solution without altering the source code.

"The UPMT socket interface extends the traditional socket in-

terface by adding the means to explicitly control the mobility.

It fully supports the traditional socket interface, without chang-

ing the signature of the methods or of the functions implement-

ing the interface. Existing application [sic] could be modified at

the source code level to use the new interface, becoming UPMT

aware application." [7]

3.2.2 TCP-R

TCP-R is a TCP redirection mechanism that enables host mobility support

in the transport layer [10]. The goal is to maintain active TCP connections

31

even though the IP address changes due to a change in the access network.

During the initial handshake, authentication keys are exchanged. These

keys are used for authentication if a later handover needs to be handled.

TCP-R adds a set of redirect operations to standard TCP protocol. The

standard TCP characteristics are maintained. To provide continuous

operation due to a change of IP address, both endpoints need to be TCP-

R enabled.

3.3 Emerald

In the Emerald programming language, mobile objects move freely be-

tween nodes in an overlay network [14]. This creates situations that are

fairly similar to a handover, for example when an object on node A invokes

an object that recently moved from node B to node C, node A will send the

invocation message to node B. Node B will then have stored a forwarding

address for that object. The message is therefore forwarded to node C and

node C replies to node A directly.

This obviously does not work if node B has crashed. In that case a

cascading search algorithm is initiated throughout the overlay network to

find the lost object.

When trying to locate objects while the objects are moving from host to

host and so on, the locate packet will "chase" the object until it catches it.

The solution is designed for fine grained mobility. It is not an option if

all of the corresponding hosts do not share an overlay network.

3.4 Analysis of Related Work

Even though the systems wish to accomplish the same goal, namely

migrating one or possibly both endpoints of a connection from one node

to another, they differ in several ways: Where is the system implemented?

Does the system need to be present on the corresponding host? Can both

endpoints be migrated? Kuntz and Rajan [15] describes three general

categories of socket migration, namely Proxy Based Forwarding (PBF),

Packet Spoofing (PS) and Host-to-Host Migration Support (HHMS). Table

3.1 compares the different socket migration systems previously mentioned

based on these criteria.

System Implementation Legacy CH Symmetric Category

MIGSOCK Kernel space No Yes HHMS

SockMi Kernel module Yes No PS

Reliable sockets User space No Yes HHMS

Migratory TCP Kernel space No No HHMS

Socketless TCP Kernel space No Yes HHMS

Table 3.1: Comparison of Socket Migration Systems

A performance evaluation of UPMT [6] shows that such a solution

benefits, with respect to processing power, by being implemented in kernel

32

space. One problem is larger package losses in the Anchor Node in the

user-space implementation.

Only SockMI supports a legacy corresponding host and is the only one

using a packet spoofing solution. All the other systems use a form of Host-

to-Host Migration Support forcing both endpoints to be migration aware

and thereby excluding legacy corresponding hosts.

UPMT introduces us to a tunneling solution with Anchor Nodes. By

introducing an Anchor Node in addition to the Connection Manager,

complete transparency for the corresponding host can be achieved. This

must however be weighed against a centralized or decentralized solution.

UPMT is designed specifically to support Legacy Corresponding Hosts.

Providing a daemon adapter, as in UPMT, to mobile applications is not

necessary since the applications anyway need to be migration aware and

therefore may as well utilize the proposed language specific framework.

Legacy applications do not support mobility out of the box and therefore

needs modification.

33

34

Chapter 4

Design

In this chapter, we present the design of our socket migration system called

SOCKMAND. We start by summarizing our requirements from Chapter

3 and Chapter 2 in Section 4.1. The overall design and architecture of

SOCKMAND are described in Section 4.2. Section 4.7 goes into details of

the different components of SOCKMAND.

4.1 Requirements

This section describes the requirements for our socket migration system

called SOCKMAND. The requirements originate from our findings in

Chapter 3 and Chapter 2. The following requirements must be fulfilled in

SOCKMAND:

SOCKMANDmust not need altering of the OS Kernel By altering

the OS kernel, adaptation of the system will be harder for regular users.

When altering the OS kernel, the system will be less portable to other

operating systems. The system must therefore be implemented in user-

space.

The network must not be altered No special network equipment

must be needed. The system must be able to run on regular devices.

It must be possible to communicate with legacy applications on

legacy hosts Applications must be able to communicate with legacy

servers that are not migration aware. By enabling mobile applications to

communicate with Skype etc, we can enhance the usability of the client

software of these systems without needing to modify the server endpoint.

The solution must be fully distributed No central entity must

control the system. The systemmust only rely on the nodes that are already

present for the migration of an application to take place.

35

Socket Migrations must be transparent to the corresponding

host Applications on Corresponding Hosts must not know if an appli-

cation migrates. This provides privacy of application location.

The API provided to the mobile application must resemble

regular sockets If APIs are known to programmers, it will be easier

to adopt. Similarity to regular sockets also simplifies the modification of

already existing applications to support socketmigration. Without software

supporting the system, the system will not be adopted.

Migration Community The Migration Community must consist of at

least two nodes for any migration to take place. There is no upper limit on

how many nodes there may be in the migration community. The limitation

will lie in the implementation of the migration community.

Delay Themaximum acceptable end to end delay during video calls delay

is 100 ms. This means that the maximum acceptable round trip time is 200

ms.

Bandwidth To support video calling, the system should at minimum be

able to support a 400 kbit/s or ideally a 1.5 Mbit/s data stream in both

directions simultaneously.

4.2 SOCKMAND

This section describes the design of our Socket Migration system called

SOCKMAND (SOCKet MANager Daemon). A daemon is a user-space

background process. The system is a user space proxy based forwarding

socket migration system.

4.2.1 Migration Community Access Point

Using an Anchor Node is necessary when communicating with a legacy

application on a legacy node or for transparency reasons. However the

use of a single centralized anchor node is not an optimal solution when

we want a fully distributed solution. We want the system to select one of

the members in the Migration Community as the Anchor Node. We call the

node in the Migration Community acting as an Anchor Node the Migration

Community Access Point (MCAP).

In cases when it is only one node in theMigration Community, this node

will always act as theMCAP. If a mobile application is running on this node,

called source node, it will use this node as the MCAP. At a later point, a new

node can enter the community and the application is migrated there. In

this case, we will leave residual dependencies on the source node. If the

user decides to turn the source node off, the connection will break.

36

Selecting the best possible Migration Community Access Point for the

given situation is important. The system may learn that if someone starts

a call on their laptop at a certain time of day, they will most likely migrate

the application to their cellphone. In such a case, selecting the cellphone

as the MCAP is a convenient choice. If it is not likely that the application

will migrate, it is beneficial to use the original node of the application as

the Anchor Node. The decision making for selecting the best Migration

Community Access Point is out of scope in this thesis.

4.2.2 IP in UDP Tunnels

If a mobile application is located on another node than its Migration

Community Access Point, tunnels are used to tunnel packets between the

two nodes. These tunnels use UDP as its transport protocol. UDP tunnel

packets are exchanged directly between two instances of SOCKMAND.

These packets contain the IP packets the application has sent through TCP

or UDP. Since UDP is unreliable, packets sent over the tunnel may be

dropped. If the packet contains a TCP packet and then gets dropped, the

TCP protocol will handle this itself.

DataTCP headerUDP header

Created by

the OS

Created by the

TCP controller

Created by the

Mobile Application

Figure 4.1: Contents of a tunnel packet

Figure 4.1 shows the content of a IP packet sent between two nodes

using SOCKMAND. The data is created by the mobile application and sent

to SOCKMAND. The TCP controller then creates a TCP header and the

IP Controller an IP header. When SOCKMAND sends the packet to the

Operating System through a regular UDP socket, the UDP header is added.

4.2.3 SOCKMAND Architecture

SOCKMAND is a daemon responsible for handling socket migration if

a process with active sockets migrates. The main task of the daemon

is to add a layer of abstraction between the migratable applications and

the logic involved in the socket migration. SOCKMAND consists of a

daemon and language dependent libraries that will act as a framework in

different languages. These frameworks must resemble the languages own

implementation sockets.

Figure 4.2 shows the interaction of our SOCKMAND system in inter-

action with other applications and systems. The figure shows three nodes.

Node A includes a mobile application, TRAMP and SOCKMAND. The mo-

bile application is communicating with a Legacy Application on Node C.

Node B is in this scenario acting as an Migration Community Access Point

37

SOCKMAND

Mobile Application
Legacy Application

TRAMP SOCKMAND TRAMP

IP/UDP Tunnel

TCP/IP
IPC IPC

Node B

Node A Node C

Figure 4.2: System Architecture

(MCAP), described in Section 4.2.1. IP packets are tunneled over UDP from

Node A to Node B. Node B then write the contents of the tunneled packet

out on raw sockets to Node C. In the opposite direction, Node C is writing

regular TCP/IP packets to Node B which captures the entire packet, includ-

ing IP and TCP headers. Node B then tunnels this packet over UDP to Node

A where the data is delivered to the mobile application.

SOCKMAND

CORE

Libpcap

Handler

IP Controller

UDP Controller TCP Controller

Tunnel Handler

Singal Handler

Migrator API

SOCKMAND API

Raw Socket

Handler

Figure 4.3: SOCKMAND Architecture

Figure 4.3 shows the different components in SOCKMAND. The main

component in SOCKMAND is SOCKMAND core. This component is

responsible for the routing between applications, the Rawsocket Handler,

38

the Libpcap Handler and the tunnels.

SOCKMAND core exchanges data with the mobile applications via the

SOCKMAND API. Packets from the SOCKMAND API are sent to the UDP

or TCP controller which handles the transport layer headers and are then

sent to the IP controller which handles the IP headers. Packets from the

IP controller are sent to the Core and then either to the Tunnel or the

Raw Socket Handler depending on where theMigration Community Access

Point is located.

If a mobile application migrates to a new host, the Migrator API

is responsible for exporting the state of the connections of the Mobile

Application to the migrator. It also receives the state of newly arrived

applications. This information is used to rebuild sockets of the mobile

application.

The Signal Handler is responsible for the signaling between different

SOCKMANDs within a Migration Community. The different signals are

described in Section 4.7.10.

4.2.4 Different Packet Flows Through SOCKMAND

There are three different routes a packet may take through SOCKMAND.

Which route a packet takes depends on the location of the mobile

application and the Migration Community Access Point of the specific

socket of that mobile application. The flows are illustrated in Figure 4.4

1. Between the mobile application and the Libpcap Handler or Raw-

socket Handler

2. Between the mobile application and the Tunnel Handler

3. Between the Libpcap Handler or Rawsocket Handler and the Tunnel

Handler

Packets are routed between the mobile application and the Libpcap

Handler or Rawsocket Handler when the application is located on the same

node as the MCAP is for a given socket.

If the MCAP of a socket is located on another node than the mobile

application, packets on the node where the mobile application is located

are routed between the mobile application and the Tunnel Handler.

The last scenario is if a node acts as an MCAP for an application located

on another node. Packets on this node will then be routed between the

Libpcap Handler or Rawsocket Handler and the tunnel handler.

4.3 UUID of a Socket

To simplify implementation, we decide to introduce a unique identifier for

each socket. This identifier follows the socket when it is migrated to new

nodes. The identifier is created when a socket is created. The identifier

consists of a 32 bit random integer value. It is a small possibility that two

39

SOCKMAND

CORE

Libpcap

Handler

IP Controller

UDP Controller TCP Controller

Tunnel Handler

Signal Handler

Migrator API

SOCKMAND API

Raw Socket

Handler

1

1

2

2

3

3

Figure 4.4: Different packet flows through SOCKMAND

similar UUIDs will be created. This is however highly unlikely, and error

detection can be introduced to prevent this.

4.4 Migrating a Socket

When the migrator migrates a mobile application, it kills the instance of

the application on the source node. SOCKMAND cannot see the difference

between this action and when the mobile application actually exits. The

migrator must therefore inform SOCKMAND about a migration before it

kills the application. To migrate a socket using SOCKMAND, the migrator

system must interact with both the mobile application and SOCKMAND

in a specific order. Figure 4.5 shows the order of these calls as they are

executed.

1. The migrator retrieves the UUID of the sockets used in the Mobile

Application

40

2. The migrator asks SOCKMAND to migrate these sockets to the

destination node

3. The migrator kills the mobile application on the source node

Any other tasks the migrator must perform with the mobile application

during this process can happen in any order, and do not affect the socket

migration.

Two alternative solutions exist. SOCKMAND can use a timer when it

notices that an application has exited. If the migrator calls SOCKMAND

before the timer goes out, SOCKMAND will know it is a migration. If the

timer goes out, SOCKMAND will consider the application exited and then

close TCP connections.

Another solution is to catch SIGTERM signals in the SOCKMAND

library used in the application. When these signals are caught, the

library notifies SOCKMAND through the UNIX domain sockets described

in Section 4.7.1. This way, SOCKMAND will know that the application are

migrating and not exiting.

Mobile Application

SOCKMANDMigrator

Figure 4.5: Order of calls when an application is migrated

4.5 Message Passing During Migration

There are three different migration scenarios in our design. The scenarios

differ on where the MCAP is located during migration.

Figure 4.6 shows the messages that are passed if the source node is the

MCAP during a migration. Note that data is sent using regular TCP to Node

1 prior to migration. Data sent during the migration phase is tunneled

from node 1 to node 2. This data does not get acknowledged until the

socket has been reconnected with the application on node 2. Note that this

acknowledgement is tunneled to node 1 which then sends the content of the

tunneled packed to the legacy corresponding host.

41

Node 1 with

MCAP

2.2.2.21.1.1.1 1.1.2.2

MIGRATE APP

Node 2 Legacy CH

DATA 2

ACK 2

SOCKET STATE

DATA 1

ACK 1

Application

DATA 3

ACK 3

Raw TCP

Tunneled TCP

Other

Figure 4.6: Message passing when the source node is also the MCAP

Figure 4.7 shows the messages that are passed if the destination node is

the MCAP during a migration. Note that data sent prior to the migration is

sent to Node 1 which tunnels it to Node 2 where the application is located.

The acknowledgement of this packet is tunneled from Node 2 to Node 1

and then sent to the legacy corresponding host. Packets sent during the

migration phase are buffered on Node 1 and not acknowledged until the

application is done migrating.

The last scenario is when the MCAP is located on a node that does not

participate in the migration. The message flow of this scenario is shown in

figure 4.8.

4.6 IP Fragmentation and SOCKMAND

When IP packets are fragmented, the transport layer header is only

included in the first IP fragment. This causes problems when we are

inspecting the transport layer header of each packet at an intermediate

node since the transport layer header is missing from all the packets except

from the first.

Two solutions to this exist. We can buffer IP fragments until we have all

fragments in the MCAP. When all the fragments have arrived, we forward

all of them based on the transport layer header. A problem with this

solution is that it introduces an additional delay for the IP fragments. If

a fragment gets dropped, the fragment will not be resent by the sender.

Because of this, it must be a timer in the MCAP that flushes the buffer if not

all of the IP fragments have arrived within a given time.

The other solution is to store the identification field, source and

42

Node 1 with

MCAP

2.2.2.21.1.1.1 1.1.2.2

Node 2 Legacy CH

DATA 1

ACK 1

Migrating_to(1.1.1.1)

MIGRATE_APP

DATA 2

ACK 2

Application

Raw TCP

Tunneled TCP

Other

SOCKET STATE

DATA 3

ACK 3

Figure 4.7: Message passing when the destination node is also the MCAP

destination address of the first packet with the routing information based

on the transport layer header in a dedicated IP fragment routing table. This

will however only work if the first fragment actually arrives first. IP does

not guarantee ordering of packets so the first fragment may arrive last. A

solution to this is to buffer fragments that we do not currently have routing

information about.

Due to time limitations we will not implement support for IP fragmen-

tation. Instead we make sure that none of our IP packets exceeds the Eth-

ernet MTU of 1500 Bytes. This does not affect TCP since a TCP packet size

has no meaning for the application layer. UDP packet sizes will however be

limited. The maximum payload of a UDP packet sent through SOCKMAND

is limited by the Ethernet MTU and the two IP headers and UDP headers

that are included when a UDP packet is tunneled from SOCKMAND to an

MCAP. The UDP header size is 8 Bytes and the IP header size is 20 Bytes

The maximum UDP payload size is:

1500B −2∗ (20B −8B) = 1444B y t es

4.7 Detailed Design

This section goes into the details of the different components of SOCK-

MAND. Sincemany of the components in our design are dependent on each

other, there is no linear order in which the components can be described.

The components will be described in the order of which they are used in the

43

2.2.2.21.1.1.1 1.1.2.2

DATA 1

ACK 1

Migrating_to(3.1.2.2)

MIGRATE_APP

DATA 2

Application

3.1.2.2

ACK 2

Node 1 with MCAP Node 2 Node 3 Legacy CH

SOCKET STATE

Raw TCP

Tunneled TCP

Other

DATA 3

ACK 3

Figure 4.8: Message passing when the MCAP is neither the source nor

destination node

first described scenario in Section 4.2.4.

4.7.1 SOCKMAND API

The SOCKMAND API is the component where applications connect to

SOCKMAND. In addition to the API component, a library is provided to

applications wishing to connect to the SOCKMAND. This library manages

the IPC between the SOCKMAND API and the application.

We use UNIX domain sockets as the form of IPC between applications

and the Socket Manager. This is convenient since they provide a file

descriptor which can be used as a regular file-descriptor by the application.

The API provided to the mobile applications therefore resembles regular

sockets since they both use file-descriptors which are selectable.

If UNIX domain sockets are unavailable on a given system, local sockets

can be used. UNIX domain sockets are however faster than local sockets

since they bypass the network stack [37].

The SOCKMAND API receives calls over a UNIX domain socket from

the SOCKMAND library, executes the specific operation by calling a

function in the UDP or TCP controller and sends a return value to the

application.

44

4.7.2 SOCKMAND Library

The SOCKMAND Library consists of the several functions. Most of these

functions are designed to behave exactly as their POSIX equivalent.

sm_socket

The sm_socket function should work as described in [26]. The function

returns a file descriptor which can be used by the writing and reading

function described later in this chapter. However we introduce a fourth

argument: mcappolicy. This argument is used to determine where the

Migration Community Access Point will be located. If the mcappolicy

argument is 0, the MCAP will be located on the same node as the

application currently resides.

sm_bind

The sm_bind function is similar to the POSIX bind function described in

[17]. Calling sm_bind will bind a socket to a port number. The POSIX bind

function will only bind a socket to a port on the local node, but the sm_bind

function will bind a socket to a port number on the MCAP that was selected

by the mcappolicy argument in the sm_socket function.

sm_listen

The sm_listen function is similar to the POSIX listen function described in

[20]. It marks the socket as a passive socket that will wait for an incoming

connection. The POSIX function allows the application to provide a backlog

integer argument which states how many unaccepted connections that can

be queued on the file descriptor. Due to time limitations and that this is not

vital for the key concepts presented in this thesis, we do not implement the

queuing functionality. Notice that the port the socket is bound to may be

located on another node where the MCAP is located.

sm_accept

The sm_accept function is similar to the POSIX bind function described

in [22]. The function will block until another node connects to the port

number the socket is bound to. On success, the function returns the

file-descriptor of the accepted socket. On error, the function returns -1.

After the function has returned successfully, we can use the sm_write an

sm_read functions on the socket.

sm_connect

The sm_connect function is similar to the POSIX connect function de-

scribed in [19]. The function can only be used with TCP connections. It

45

initiates a three way handshake with a corresponding host set in the param-

eters. The three way handshake is done by sending a SYN packet to the cor-

responding host. The corresponding host replies with a SYN/ACK packet

which is replied with an ACK. During this three way handshake, sequence

numbers are initiated. When the sm_connect is successfully executed, the

TCP connection will be in a connected state. If the sm_bind function has

not been called yet, SOCKMAND will bind the socket to a random port.

sm_close

The sm_close function is similar to the POSIX connect function described

in [18]. It can be used on both UDP and TCP sockets. If the socket is using

TCP, it will initiate a tear down sequence of FIN/ACK and ACK packets

that will set the socket in a closed state. If the socket is UDP, it will simply

unbind the socket so that no further packets can be sent or received on the

socket.

sm_read

The sm_read function is similar to the POSIX connect function described

in [21]. It can be used on both UDP and TCP sockets. If the socket is using

TCP, it will try to read at most count bytes from the data stream into buf.

It will return the number of bytes that actually were read. If the socket is

using UDP, it will do a call to sm_recvfrom with the src_addr and addrlen

arguments set to 0. This means that it will receive the next datagram and

discard the metadata of the datagram.

sm_write

The sm_write function is similar to the POSIX connect function described

in [27]. It can only be used on connected TCP sockets. If the socket is using

TCP, it will try to write at most count bytes from the data stream from buf.

It will return the number of bytes that were written.

sm_sendto

The sm_sendto function is similar to the POSIX connect function described

in [25]. It can only be used on UDP sockets. It will send a datagram to the

destination set in the dest_addr structure. If the sm_bind function has not

been called yet, SOCKMAND will bind the socket to a random port.

sm_recvfrom

The sm_recvfrom function is similar to the POSIX connect function

described in [23]. It can only be used onUDP sockets that have been bound.

It will read a datagram from a socket into buf. If src_addr and addrlen is

not equal to 0, it will read the metadata of the datagram into the src_addr

structure.

46

sm_getuuid

The sm_getuuid function is intended to be used when the mobile applica-

tion exports its state to a migrator. The function returns the UUID of a

socket, described in Section 4.3. The uuid that is returned must be used

to rebuild the socket on the destination node using the sm_rebuildsocket

function.

sm_rebuildsocket

The sm_rebuildsocket function is intended to be used when the mobile

application rebuilds a socket after arriving at the destination node. the

function must be called on the destination node after the socket has been

migrated there. On success, the function will return a file descriptor which

can be used by the writing and reading function described later in this

chapter. If the socket has not been migrated to the destination node, the

function will return -1.

4.7.3 UDP Controller

The UDP Controller contains an UDP implementation in user space. Data

are received from the SOCKMAND API and then packed into a UDP packet

and sent to the IP Controller, described in Section 4.7.5. WhenUDPpackets

enter SOCKMAND via either the tunnel or the MCAP, UDP packets are

received from the IP Controller and the payload is sent to the SOCKMAND

API for delivering to the mobile applications. The state of UDP ports are

maintained in this component. A port can either be bound to an application

or unused. When an application migrates away from a host, the state of its

UDP ports are exported from this component.

4.7.4 TCP Controller

The component contains a full TCP implementation in user space. This

involves handshaking, acknowledging and tearing down connections. The

TCP controller is responsible for handling the state of TCP connections.

Data are received from the SOCKMANDAPI and then packed into a TCP

packet and sent to the IP Controller. When TCP packets enter SOCKMAND

via either the tunnel or the MCAP, TCP packets are received from the IP

Controller and the payload is sent to the SOCKMAND API for delivering to

the mobile applications. The states of the TCP connections are maintained

in this component. When an application migrates, the state of its TCP

connections are exported from this component.

4.7.5 IP Controller

The IP controller receives IP packets from the UDP and TCP controller

and adds the correct checksum. The packets are then forwarded to the

SOCKMAND Core described in Section 4.7.6.

47

The IP controller receives IP packets from the SOCKMAND Core. The

IP packets are sent either to the TCP or the UDP Controller depending on

the protocol of the packet.

4.7.6 SOCKMAND Core

The SOCKMAND Core is the main component that routes IP packets

between the IP Controller, the Tunnel Handler, the Libpcap Handler and

the Rawsocket Handler. Packets are routed depending on where theMobile

Application is located. SOCKMAND Core also handles signals received

through the Signal Handler.

The component is responsible for the exporting of socket states to other

nodes. States can be exported to another node in two cases; when the socket

is migrated and when a new socket is created and the MCAP is located on

another node. The node with the MCAP must know where to route the

packets it captures.

4.7.7 Libpcap Handler

The Libpcap Handler component is responsible for receiving raw IP

packets. Raw IP packets are received using the cross platform pcap library.

When connections are established to a corresponding host, a pcap filter

captures all incoming packets on this connection and delivers them to the

MCAP component. The packets are then sent to the SOCKMAND core for

further routing and processing.

Packets captured by the pcap library also enter the kernel. The packet

we receive is a duplicate of the packet that enters the kernel. When UDP

packets enter a kernel which has no application bound to the destination

port of that packet, they are just dropped by the kernel. However,

TCP packets that enters a kernel which has no application bound to the

destination port of that packet are replied with an TCP packet with the

RESET flag set. Since we handle the TCP packet in user space, we must

stop the kernel from sending these RESET packets. This is done by calling

the iptables for Linux or ipfw for OSX through the system() call and adding

a filter that drops outgoing RESET packets on the ports we are using from

SOCKMAND. Instead of calling iptables, we can use the libiptc library

which enables us to modify the firewall table directly from the source code.

This library can however change without notice and will only work on Linux

and not on OSX.

4.7.8 Rawsocket Handler

The Rawsocket Handler component is responsible for sending raw IP

packets. The component receives IP packets from the SOCKMAND

Core. These packets may originate from a tunnel or from a local mobile

application. The packets include both the IP header and the transport layer

header. These packets should now be sent to their destination. The packets

48

are sent through raw sockets since they already include transport layer and

IP headers.

4.7.9 Tunnel Handler

The Tunnel Handler is responsible for sending and receiving packets on

the IP/UDP tunnel described in Section 4.2.2. The Tunnel Manager listens

on a single UDP port, and all incoming packets are received on this port.

Packages received on the tunnel are delivered to the Socket Manager Core

which routes the packet either to the IP Controller or the MCAP.

4.7.10 Signal Handler

The signal handler is responsible of send signals and socket states between

nodes. The component connects to SOCKMAND instances on other nodes

using a regular TCP/IP socket. The two different signals can be sent are

described in the following subsections.

migrating_to signal

The migrating_to signal is sent from the node where the endpoint of a

socket is located. The signal is sent to the MCAP of that particular node

when the endpoint of the socket will migrate to a new node which is not

the MCAP. The signal must be sent so that the MCAP can update the

current location of the endpoint of that particular socket. The signal is

synchronous, so the sender blocks until the receiver has processed the

signal. The parameters are the UUID of the socket that will migrate and

the new address of the endpoint of the socket.

socketstate signal

The socketstate signal is sent from the node where the endpoint of a socket

is located. The signal includes the state of a socket. It can be sent in two

cases. The first case is when a socket is established and the MCAP needs

to be informed about the socket and the current endpoint of the socket.

The other is when the socket is migrated to a new node. The destination

node must then be informed about the state of the socket. The signal

is synchronous, so the sender blocks until the receiver has processed the

signal.

4.7.11 Migrator API

The Migrator API is responsible for the interaction between a migrator

and SOCKMAND. Like the SOCKMAND API, the migrator API can use

UNIX domain sockets to provide inter process communication between

the migrator and SOCKMAND. Since we do not have any implementation

of a migrator yet, we simulate the migrator API by user interaction in

SOCKMAND using the keyboard.

49

migrate_socket function

The migrator can call the migrate_socket function in SOCKMAND. The

parameters used are int UUID and unsigned int address. The call is

synchronous, so the migrator blocks until SOCKMAND is done migrating

the socket. The function returns 0 on success and -1 if there is an error.

get_anchoraddress function

SOCKMAND can call the get_anchoraddress function in the migrator. The

parameter used is int mcap_policy. The parameter describes a given policy

themigrator should base the selection of anMCAP on. The function returns

the address of the node in the overlay network that best matches the policy.

The implementation of this function in a migrator is out of scope of this

thesis.

50

Chapter 5

Implementation

In this chapter we describe the implementation of SOCKMAND. Section

5.1 describes the implementation environment. In Section 5.2 we present

an overview of the implementation and Section 5.3 presents the implemen-

tation details of the various components in SOCKMAND.

5.1 Environment

We have implemented SOCKMAND for Linux. SOCKMAND is imple-

mented in the C programming language. It is portable to Mac OSX with

minor modifications. As mentioned in Section 2.3, Windows does not sup-

port raw sockets which prevent us from adding support for Windows.

5.2 Overview

Our implementation closely follows the architecture presented in Figure

4.3. Each of the components in the architecture has a corresponding C

source file and header file. In addition, the event handling and a utility

file is implemented in their own C source and header files.

The most important data-structures are the appsocket structure de-

scribed in Section 5.3.3 and the transport layer control blocks described

in Sections 5.3.5 and 5.3.6. The most important functions are in the SOCK-

MANDCore described in Section 5.3.2. There we describe the routing func-

tions and the functions concerning the actual migration of a socket. The

other components mostly contain functionality necessary for the user space

transport layer implementations.

5.3 SOCKMAND components

In this section we go through some implementation details of SOCKMAND.

The implementation of some components is trivial and is not necessary to

present in this chapter in order to understand the thesis. They are therefore

not described in detail.

51

5.3.1 Event Handler

Events in SOCKMAND are handled using the POSIX select function. The

select function is described in [24]. We build a set of all the file descriptors

where new data can arrive. These file descriptors include the tunnel,

the libpcap socket, signal sockets and UNIX domain sockets connected to

applications and the migrator. In addition it handles timeouts in the TCP

controller. Listing 5.1 shows the main event loop in SOCKMAND.

Listing 5.1: Event Handling

1 void handle_events() {
2 // optimizat ion : use l i beven t
3 fprintf(stderr,"Starting main event loop\n") ;
4 while(running) {
5 build_select_list() ;
6 struct timeval timeout;
7

8 timeout.tv_sec = 0;
9 timeout.tv_usec = CLOCKGRANULARITY * 1000;
10

11 int retval = select(max_fd + 1 , &read_set, 0 , 0 , ←-

&timeout) ;
12

13 switch(retval) {
14 case −1 :
15 break;
16 case 0 :
17 checktcptimeout() ;
18 break;
19 default :
20 //Check i f tunnel packets has arrived
21 if(FD_ISSET(tunnel_sockfd, &read_set)) {
22 read_tunneled_packet() ;
23 }
24 //Check i f packets have been captured
25 if(FD_ISSET(pcap_fd, &read_set)) {
26 read_raw_packet() ;
27 }
28 //Check timeouts
29 checktcptimeout() ;
30

31 //Check i f a new signal connect ion i s here
32 if(FD_ISSET(listenfd, &read_set)) {
33 handlesignalconnection() ;
34 }
35

36 //Check for keyboard
37 if(daemonized == 0) {
38 if(FD_ISSET(STDIN_FILENO, &read_set)) {
39 handle_keyboard() ;
40 }
41 }

52

42

43 //Check for l o ca l IPC
44 if(FD_ISSET(app_sockfd, &read_set)) {
45 handleappconnection() ;
46 }
47 int i;
48 //Check for new data from apps
49 for(i = 0; i < napps; i++){
50 if(appsockets[i] .active)
51 if(FD_ISSET(appsockets[i] .unixfd, ←-

&read_set)) {
52 handleapp(appsockets[i] .unixfd←-

) ;
53 }
54 }
55

56 //Check for any new s igna l s
57 for(i = 0; i < nsignals; i++){
58 if(signalsockets[i] .active)
59 if(FD_ISSET(signalsockets[i] .fd, &←-

read_set)) {
60 handlesignal(signalsockets[i] .←-

fd) ;
61 }
62 }
63 break;
64 }
65 }
66 }

Using select is satisfactorily for a small set of file descriptors. If the set is

very large, we can benefit from using libevent instead [29].

5.3.2 SOCKMAND Core

SOCKMAND Cores main responsibility is managing the routing between

the IP Controller, the Tunnel Handler, the Libpcap Handler and the

Rawsocket Handler.

Listing 5.2: Handle IP Controller Packet

1 int handle_ip_packet(struct ipheader *ippacket) {
2 if(is_my_address(ippacket−>ip_src)) {
3 return write_ip_packet(ippacket) ;
4 }
5 else{
6 return write_tunneled_packet(ippacket, ippacket−>←-

ip_src) ;
7 }
8 }

Listing 5.2 shows how packets that are received from the IP Controller

are handled. They are sent either to the RawsocketHandler or to the Tunnel

53

Handler based on the location of the MCAP. The address of the MCAP is

located in the ip_src field of the IP packet. If the ip_src field contains the

IP address of the local node, the local node is the MCAP and the packet

is sent using raw sockets. If the ip_src field contains the IP address of a

remote node, the packet is tunneled to the remote node which is acting as

the MCAP.

Listing 5.3: Handle Tunneled Packet

1 void handle_tunneled_packet(struct ipheader *ippacket) {
2 if(is_app_present(ippacket)) {
3 read_ip_packet(ippacket) ;
4 }
5 else{
6 if(is_my_address(ippacket−>ip_src)) {
7 write_ip_packet(ippacket) ;
8 }
9 else{
10 //Major error , should not be poss ib l e
11 printf("Unexpected packet in handle tunneled ←-

packet\n") ;
12 }
13 }
14 }

Listing 5.3 shows how packets that are received from the Tunnel

Handler are handled. If the endpoint of the socket is located at the current

node, the packet is delivered to the IP controller. The packet was in this

case tunneled to the current node from the MCAP. Otherwise, the packet is

sent to its final destination using raw sockets. In the last case, this node is

acting as an MCAP of the socket.

Listing 5.4: Handle Tunneled Packet

1 void handle_captured_packet(struct ipheader *ippacket) {
2 if(is_app_present(ippacket)) {
3 read_ip_packet(ippacket) ;
4 }
5 else{ //App somewhere e l s e
6 write_tunneled_packet(ippacket, get_app_location(←-

ippacket)) ;
7 }
8 }

Listing 5.4 shows how packets that are received from the Libpcap

Handler are handled. If the endpoint of the socket is located at the current

node, the packet is delivered to the IP controller. Otherwise, the packet is

tunneled to its final destination. In both cases, this node is acting as an

MCAP of the socket.

In addition to routing packets between components, SOCKMAND core

also contains logic for exporting socket states, importing socket states and

54

migrating sockets. Listing 5.5 shows how a socket state is exported. Socket

state can be exported either when binding a socket to a port and the MCAP

remote or when a socket is being migrated to a new node. Notice that the

size of the socket state depends on the transport protocol.

Listing 5.5: Exporting Socket State

1 void send_socket_state(struct connectioninfo *c , unsigned ←-

int address) {
2 int cblen = 0;
3 if(c−>protocol == IPPROTO_TCP)
4 cblen = sizeof(struct tcp_cb) ;
5 else if(c−>protocol == IPPROTO_UDP)
6 cblen = sizeof(struct udp_cb) ;
7

8 int unackedpacketslength = 0;
9 if(c−>protocol == IPPROTO_TCP && address == c−>←-

current_address) {
10 unackedpacketslength = ←-

get_serialized_timeout_length((struct tcp_cb*)←-

c) ;
11 }
12

13 int length = sizeof(struct socketstate) + cblen + ←-

unackedpacketslength ;
14

15 struct socketstate* ss = malloc(length) ;
16 ss−>signaltype = SOCKETSTATE;
17 memcpy(ss+1 , c , cblen) ;
18 ss−>protocol = c−>protocol;
19 ss−>length = length;
20

21 if(unackedpacketslength != 0) {
22 char* timeouts = ((char*)ss) + cblen;
23 serialize_timeouts(timeouts, get_cb_by_pointer(c))←-

;
24 }
25

26 sendsignal((char*)ss, length, address) ;
27 free(ss) ;
28 }

Listing 5.6: Importing Socket State

1 void import_socket_state(struct socketstate* ss) {
2 struct connectioninfo *c = (struct connectioninfo *) (←-

ss+1) ;
3

4 c−>sockmandapi_id = −1; //No app has connected here ←-

yet
5

6 if(c−>current_address != get_my_addr()) {

55

7 c−>status = MIGRATEDAWAY; // This node wi l l be the ←-

anchornode
8 fprintf(stderr,"Acting as MCAP for socket %d\n" , c←-

−>uuid) ;
9 }
10 else{
11 fprintf(stderr,"Socket %d migrated here\n" , c−>←-

uuid) ;
12 }
13

14

15 int cblen = 0;
16 if(c−>protocol == IPPROTO_TCP)
17 cblen = sizeof(struct tcp_cb) ;
18 else if(c−>protocol == IPPROTO_UDP)
19 cblen = sizeof(struct udp_cb) ;
20

21

22 struct connectioninfo *oldinfo = ←-

get_connection_info_by_uuid(c−>uuid) ;
23 if(oldinfo!=0) {
24 //The socket has e i t h e r use t h i s node as an MCAP ←-

or has been here before
25 memcpy(oldinfo, c , cblen) ;
26 if(c−>protocol == IPPROTO_TCP) {
27 int timeoutslen = ss−>length − sizeof(struct ←-

tcp_cb) − sizeof(struct socketstate) ;
28 if(timeoutslen>0) {
29

30 char* timeouts = (char*)ss + sizeof(←-

struct tcp_cb) ;
31 deserialize_timeouts(timeouts, ←-

get_cb_by_pointer(oldinfo)) ;
32 }
33 }
34 }
35 else{
36 if(c−>protocol == IPPROTO_TCP) {
37 int cb = tcp_importstate((struct tcp_cb*)c) ;
38 int timeoutslen = ss−>length − sizeof(struct ←-

tcp_cb) − sizeof(struct socketstate) ;
39 if(timeoutslen>0) {
40 char* timeouts = (char*)ss + sizeof(←-

struct tcp_cb) ;
41 deserialize_timeouts(timeouts, cb) ;
42 }
43

44 }
45 else if(c−>protocol == IPPROTO_UDP)
46 udp_importstate((struct udp_cb*)c) ;
47 }
48 }

56

Listing 5.6 shows how a socket state is imported. It may be cases where

we import the Socket State of one socket several times. Therefore we copy

over the old socket state if it exists to prevent duplicate information. If the

socket state has not been present on the node before, the UDP controller or

the TCP controller imports the state into a new control block.

Listing 5.7: Migrate Socket

1 int migrate_socket(int uuid, unsigned int newaddr) {
2 if(newaddr == get_my_addr()) {
3 printf("Migrating to here, not possible\n") ;
4 return −1;
5 }
6

7 struct connectioninfo *c = get_connection_info_by_uuid←-

(uuid) ;
8 if(c==0){
9 printf("Unknown uuid\n") ;
10 return −1;
11 }
12

13 c−>current_address = newaddr;
14

15 if(c−>mcap_address != get_my_addr() && c−>mcap_address←-

!= newaddr) {
16 //Send s ignal to the MCAP
17 struct signalheader s;
18 s .signaltype = MIGRATING_TO;
19 s .newaddress = newaddr;
20 s .uuid = uuid;
21 sendsignal((char*)&s , sizeof(struct signalheader) ,←-

c−>mcap_address) ;
22 }
23

24 send_socket_state(c , newaddr) ;
25 c−>status = MIGRATEDAWAY;
26 c−>sockmandapi_id = −1;
27 return 0;
28 }

Listing 5.7 shows how a socket is migrated. First we update the control

block with the new location of the application. The state of the socket is

then sent to the destination node. If the MCAP is neither the source nor the

destination node, the MCAP is notified of the new address of the socket.

57

5.3.3 SOCKMAND API

Listing 5.8: Sockets table

1 struct appsocket{
2 int unixfd;
3 int controlblock; // Id in e i t h e r tcp or udp cont
4 int uuid; //random number
5 short active;
6 short protocol;
7 unsigned int mcappolicy;
8 } ;

The SOCKMAND API component contains a data structure that has

information about all the sockets that are connected to mobile applications.

A new element is added to the structure either when the sm_socket function

is called or the sm_rebuildsocket function is called. The data structure

is shown in Listing 5.8 The unixfd field contains the file descriptor of the

UNIX domain socket that is used to transfer data between SOCKMAND

and a mobile application. This file descriptor is added to the file descriptor

set mentioned in Section 5.3.1. The control block field contains the id of

either a UDP control block or a TCP control block. It is used when data is

sent to either the TCP controller or the UDP controller. If it is -1, the socket

has not yet been bound. The mcappolicy field contains the mcappolicy that

is sent as an argument through the sm_socket function.

The event handler checks for new UNIX domain socket connections

by listening to the path defined in SOCK_PATH and for new data on the

existing UNIX domain sockets. If new data arrives, the handleapp function

reads the message and determines which function that has been called in

libsockmand by checking a message header which contains the information

about the call. The SOCKMAND API then executes the call by calling

functions in either the TCP controller or the UDP controller. The details

of the implementation of the different calls are found in the source code.

5.3.4 Libsockmand

Libsockmand is the library that must be included in mobile applications to

connect to the SOCKMAND API. We have written libsockmand in C, but

it is easily implemented in other languages such as Java to support mobile

applications written in Java. All the functions except from sm_read write

the arguments to the SOCKMAND API using a UNIX domain socket and

read a data structure from the SOCKMAND API. This means that the calls

between libsockmand and the SOCKMAND API are synchronous.

sm_socket

Listing 5.9 shows how the sm_socket function is implemented in libsock-

mand. The sm_socket function creates the connection between libsock-

mand and the SOCKMAND API. It connects to the SOCKMAND API using

58

the path defined in SOCK_PATH. The protocol and mcappolicy arguments

are then sent to the SOCKMAND API and the SOCKMAND API returns a

UUID of the socket. The function returns the actual UNIX domain socket

file descriptor which is used later when calling the other functions in lib-

sockmand. Since we return an actual file descriptor, we are able to use the

select function on the migratable socket.

Listing 5.9: sm_socket()

1 int sm_socket(int domain, int type, int protocol, int ←-

mcappolicy) {
2 if(domain != AF_INET)
3 return −1;
4 if(type == SOCK_STREAM) {
5 if(! (protocol == 0 | | protocol == IPPROTO_TCP))
6 return −1;
7 if(protocol == 0)
8 protocol = IPPROTO_TCP;
9 }
10 else if(type == SOCK_DGRAM) {
11 if(! (protocol == 0 | | protocol == IPPROTO_UDP))
12 return −1;
13 if(protocol == 0)
14 protocol = IPPROTO_UDP;
15 }
16 else{
17 return −1;
18 }
19

20 int s , len;
21 struct sockaddr_un remote;
22

23 if((s = socket(AF_UNIX, SOCK_STREAM, 0)) == −1) {
24 perror("socket") ;
25 return −1;
26 }
27

28 remote.sun_family = AF_UNIX;
29 strcpy(remote.sun_path, SOCK_PATH) ;
30 len = strlen(remote.sun_path) + sizeof(remote.←-

sun_family) ;
31 if(connect(s , (struct sockaddr *)&remote, len) == −1) {
32 perror("connect") ;
33 return −1;
34 }
35

36 struct socketmsg msg;
37 msg .msgtype = SOCKET;
38 msg .protocol = protocol;
39 msg .mcappolicy = mcappolicy;
40

41 write(s , &msg, sizeof(struct socketmsg)) ;
42

59

43 socketprotocol[s] = protocol;
44 uuid_of_fd[s] = readint(s) ;
45 return s;
46 }

sm_rebuildsocket

Listing 5.10 shows how the sm_rebuild function is implemented in

libsockmand. It is fairly similar to the sm_socket function, but instead of

sending the mcappolicy and protocol to the SOCKMAND API, we send a

message with the UUID of the socket we want to rebuild. The SOCKMAND

API will on a successful rebuild return the protocol of the socket and on

error return -1. Notice that we in this function also return the UNIX file

descriptor to the mobile application.

Listing 5.10: sm_rebuildsocket()

1 int sm_rebuildsocket(int uuid) {
2 int s , len;
3 struct sockaddr_un remote;
4

5 if((s = socket(AF_UNIX, SOCK_STREAM, 0)) == −1) {
6 perror("socket") ;
7 return −1;
8 }
9

10 remote.sun_family = AF_UNIX;
11 strcpy(remote .sun_path, SOCK_PATH) ;
12 len = strlen(remote .sun_path) + sizeof(remote .←-

sun_family) ;
13 if(connect(s , (struct sockaddr *)&remote, len) == −1) {
14 perror("connect") ;
15 return −1;
16 }
17

18 struct rebuildmsg msg;
19 msg .msgtype = REBUILD;
20 msg .uuid = uuid;
21

22 write(s , &msg, sizeof(struct rebuildmsg)) ;
23

24 int ret = readint(s) ;
25 if(ret == −1) {
26 close(s) ;
27 return ret;
28 }
29 uuid_of_fd[s] = uuid;
30 socketprotocol[s] = ret;
31 return s;
32 }

60

sm_recvfrom

Listing 5.11 shows how the sm_recvfrom function is implemented in

libsockmand. It first reads a message containing the metadata of a UDP

datagram. If the application programmer requests it, the metadata is

copied into the structure pointed to by src_addr. The actual payload of the

datagram is then read and finally the number of bytes read is returned. The

other functions in libsockmand are implemented using the same technique,

we will therefore not go into further details about the other functions.

Listing 5.11: sm_recvfrom()

1 int sm_recvfrom(int sockfd, void *buf, size_t len, int ←-

flags, struct sockaddr *src_addr, socklen_t *addrlen) {
2 struct recvfrommsg m;
3 read(sockfd, &m , sizeof(struct recvfrommsg)) ;
4

5 if(flags!=0) {
6 fprintf(stderr, "Flags not yet suppported, use 0\n←-

") ;
7 return −1;
8 }
9

10 // f i l l in the src addr s t ru c t i f pos s ib l e
11 if(src_addr != 0 && addrlen !=0 && *addrlen >= sizeof(←-

struct sockaddr_in)) {
12 struct sockaddr_in *servaddr = (struct ←-

sockaddr_in*) src_addr;
13 bzero(servaddr,sizeof(struct sockaddr_in)) ;
14 servaddr−>sin_family = AF_INET;
15 servaddr−>sin_addr.s_addr = m .sourceaddr;
16 servaddr−>sin_port = m .sourceport;
17 }
18

19 // I f we ask for more or equal to what was avai lab le
20 if(m .len <= len) {
21 return read(sockfd, buf, m .len) ;
22 }
23

24 // I f we ask for l e s s than what was avai lab le
25 else{
26 int ret = read(sockfd, buf, len) ;
27 read(sockfd, buf, m .len−len) ; //Discard the unread←-

part , t h i s i s standard POSIX
28 return ret;
29 }
30 }

5.3.5 UDP Controller

The UDP Controller component contains a UDP implementation in user

space. UDP is a simple transport layer protocol and is also simple to

61

implement. Most of the functions are implemented as they would have been

implemented with no migration support.

Listing 5.12 shows the UDP Control Block structure. The sockman-

dapi_id field refers to the id of the socket in the data structure in the SOCK-

MAND API component. If the sockmandapi_id field is set to -1, the appli-

cation has not yet called the sm_rebuildsocket function and connected to

the endpoint of the socket. The current_address field contains the actual

location of the endpoint of the socket and is used to forward packets from

an MCAP to the actual location of the application. The mcap_address field

contains the location of the MCAP of the socket. The bufferedpacketsfirst

points to the first buffered packet that has arrived at the endpoint before an

application has called sm_rebuildsocket. The bufferedpacketslast points to

the last buffered packet that have arrived at the endpoint before an appli-

cation has called sm_rebuildsocket. When sm_rebuildsocket is called, the

packets pointed to by the bufferedpackets pointer are delivered to the ap-

plication.

Listing 5.12: UDP Control Block

1 struct udp_cb{
2 int uuid;
3 int sockmandapi_id ;
4 int protocol;
5 short status;
6 unsigned short sourceport;
7 unsigned int current_address ;
8 unsigned int mcap_address;
9 struct bufferedpacket* bufferedpacketsfirst ;
10 struct bufferedpacket* bufferedpacketslast ;
11 } ;

Listing 5.13 shows how UDP sockets are bound. Notice that we check if

the mcap_address is on the current node. If it is not on the current node,

the information about the socket must be exported to the MCAP so that

the MCAP is able to tunnel the packets to the correct node. If the MCAP

is located on the current node, we start capturing packets with the source

port in the destination field of the UDP header.

Listing 5.13: UDP binding

1 int udpbind(int sockmandapi_id, int uuid, short sourceport←-

, unsigned int mcap_address) {
2 int i;
3 for(i = 0; i < next_udpcb; i++){
4 if(udp_cbs[i] .status == UDPACTIVE && udp_cbs[i] .←-

sourceport == sourceport && udp_cbs[i] .←-

mcap_address == mcap_address) {
5 return −1;
6 }
7 }
8

62

9 udp_cbs[next_udpcb] .sockmandapi_id = sockmandapi_id ;
10 udp_cbs[next_udpcb] .uuid = uuid;
11 udp_cbs[next_udpcb] .mcap_address = mcap_address;
12 udp_cbs[next_udpcb] .current_address = get_my_addr() ;
13 udp_cbs[next_udpcb] .sourceport = sourceport;
14 udp_cbs[next_udpcb] .status = UDPACTIVE;
15 udp_cbs[next_udpcb] .protocol = IPPROTO_UDP;
16 udp_cbs[next_udpcb] .bufferedpacketsfirst = 0;
17 udp_cbs[next_udpcb] .bufferedpacketslast = 0;
18

19 if(is_my_address(mcap_address))
20 register_udp_capture(sourceport) ;
21 else
22 send_socket_state((struct connectioninfo *)&←-

udp_cbs[next_udpcb] , mcap_address) ;
23

24 return next_udpcb++;
25 }

Listing 5.14 shows how UDP packets are sent. The function is called

from the SOCKMAND API. The function creates an IP packet and creates

the IP header and UDP header. The data that should be sent are copied into

the packet and then the packet is sent to the IP controller.

Listing 5.14: UDP Sending

1 int udpwrite(int cb, const void *buf, int len, unsigned ←-

int destaddr, short destport) {
2 if(len> MAXUDPPAYLOAD) {
3 printf("Major error, to large udp packet\n") ;
4 return −1;
5 }
6

7 char buffer[ETHERNETMTU] ;
8 bzero(&buffer, ETHERNETMTU) ;
9 struct ipheader *ip = (struct ipheader *) buffer;
10 struct udpheader *udp = (struct udpheader *) (ip + 1) ;
11 char *data = (char*) (udp + 1) ;
12

13 build_ip_packet(ip,
14 IPPROTO_UDP,
15 udp_cbs[cb] .mcap_address,
16 destaddr,
17 sizeof(struct udpheader) + len) ;
18

19 build_udp_header(udp, udp_cbs[cb] .sourceport, destport←-

, len) ;
20

21 memcpy(data, buf, len) ;
22 send_ip_packet(ip) ;
23 return len;
24 }

63

Listing 5.15 shows how UDP packets are received. Notice that if the

sockmandapi_id field is equal to -1, the packet is buffered for later delivery.

The buffered packets are stored in a singly linked list, but we maintain

the pointer to the last entry in the list to avoid looping through the entire

structure when we want to add one element.

Listing 5.15: UDP Receiving

1 void udpread(struct ipheader *ip) {
2 struct udpheader *udp = (struct udpheader *) (ip + 1) ;
3 int cb = get_udp_cb(ip) ;
4 int payloadlen = ntohs(udp−>uh_len) − sizeof(struct ←-

udpheader) ;
5 if(udp_cbs[cb] .sockmandapi_id != −1) {
6 deliver_udp_data(udp_cbs[cb] .sockmandapi_id,
7 (char*) (udp + 1) ,
8 payloadlen,
9 udp−>uh_sport,
10 ip−>ip_src) ;
11 }
12 else{
13 struct bufferedpacket *t = malloc(sizeof(struct ←-

bufferedpacket)) ;
14 t−>next = 0;
15 t−>ip = malloc(ip−>ip_len) ;
16 memcpy(t−>ip, ip, ip−>ip_len) ;
17

18 if(udp_cbs[cb] .bufferedpacketsfirst == 0) {
19 udp_cbs[cb] .bufferedpacketsfirst = t;
20 udp_cbs[cb] .bufferedpacketslast = t;
21 }
22

23 else{
24 udp_cbs[cb] .bufferedpacketslast−>next = t;
25 udp_cbs[cb] .bufferedpacketslast = t;
26 }
27 }
28 }

Listing 5.16 shows how buffered packets are delivered to an application

when it has called sm_rebuildsocket after arriving on the destination node.

Listing 5.16: Delivering Buffered Packets

1 void udp_deliverbufferdpackets(int cb) {
2 struct bufferedpacket* t = udp_cbs[cb] .←-

bufferedpacketsfirst ;
3 if(t==0)
4 return;
5

6 while(t!=0) {
7 struct ipheader* ip = t−>ip;

64

8 struct udpheader *udp = (struct udpheader *) (ip +←-

1) ;
9 int payloadlen = ntohs(udp−>uh_len) − sizeof(←-

struct udpheader) ;
10

11 deliver_udp_data(udp_cbs[cb] .sockmandapi_id,
12 (char*) (udp + 1) ,
13 payloadlen,
14 udp−>uh_sport,
15 ip−>ip_src) ;
16

17 struct bufferedpacket* tmp = t−>next;
18 free(ip) ;
19 free(t) ;
20 t=tmp;
21 }
22 }

5.3.6 TCP Controller

The TCP Controller component contains a TCP implementation in user-

space. The implementation follows RFC 791 [33], RFC 5681 [1] and RFC

6298 [31]. These RFCs define the minimum functionality to fulfill the

protocols requirements. TCP is a well-defined standard, but we claim that

it is hard to implement due to many low level details. Although the TCP

implementation is not a key element in this thesis, most of the time spent

on the implementation was spent implementing TCP in user space.

Listing 5.17 shows the TCP Control Block structure. Notice that the

fields that are similar to those in the UDP Control Block shown in Listing

5.12 is located at the same place in the structure. This is to simplify

importing and exporting of socket states regardless of the transport layer

protocol. In addition to the fields similar to those in the UDP control block,

several fields needed tomaintain the state of a TCP connection are included.

Since the TCP protocol itself is not a key element in this thesis, we will

not dig in to the details of the standard implementation, but focus on the

additional functionality added to support socket migration.

Listing 5.17: TCP Control Block

1 struct tcp_cb{
2 int uuid;
3 int sockmandapi_id;
4 int protocol;
5 short status;
6 unsigned short sourceport;
7 unsigned int current_address ;
8 unsigned int mcap_address;
9

10 unsigned int dest_address;
11 unsigned short dest_port;

65

12 unsigned int nextseq; //Next seqnum
13 unsigned int lastack; //That we sent
14 unsigned int lastremoteseq; //That we rece ived
15 unsigned int lastremoteack; //That we rece ived
16 unsigned short remote_windowsize ;
17 unsigned short congestion_window ;
18 int dupacks;
19 unsigned short sstresh;
20

21 int rtt; //Round t r i p time
22 long int tmp; //Used to ca l cu la t e r t t
23 int RTO; // Retransmission timeout in mi l l i s econds
24 struct timeouts* packets;
25 struct bufferedpacket* bufferedpackets ;
26 } ;

Unlike the fixed UDP socket state size, the TCP socket state size is

arbitrary due to possible unacknowledged packets that need to be migrated

along with the socket. Listing 5.18 shows the data structure which holds

information about unacknowledged packets. The elements are organized

as a singly linked list. This linked list must be migrated with the

unacknowledged packets since it contains important information such as

when the resend timer times out and how many times we have tried to

resend the packet. When exporting the data structure we serialize the

linked list and the unacknowledged packets. The structure is deserialized

and imported on the destination node.

Listing 5.18: TCP Timeout Structure

1 struct timeouts{
2 long int timesout;
3 short resent_times; //Number of times i t has been ←-

resent
4 short packettype;
5 struct ipheader* ip; // Pointer to the packet
6 struct timeouts* next; //0 i f l a s t
7 } ;

When importing the data structure a problem occurs. The machine

clock on the source node and destination node are most likely not

synchronized. Therefore, the value in the timesout field in the TCP timeout

structure has lost all meaning. We therefore chose to update all the

timesout fields in the data structure on the destination node with the

current time on the destination node plus the retransmission timeout value

located in the TCP control block. This is shown in Listing 5.19.

Listing 5.19: TCP importing timeouts

1 void deserialize_timeouts(char* buf, int cb) {
2 struct timeouts* t = (struct timeouts*)buf;
3 struct timeouts* prev = 0;
4 while(1) {

66

5 int last = 0;
6 if(t−>next==0)
7 last = 1 ;
8

9 struct timeouts* tmp = malloc(sizeof(struct ←-

timeouts)) ;
10 tmp−>next = 0;
11 int iplen = t−>ip−>ip_len;
12 tmp−>ip = malloc(iplen) ;
13 memcpy(tmp, t, sizeof(struct timeouts)) ;
14 t += sizeof(struct timeouts) ;
15 memcpy(tmp−>ip, t , iplen) ;
16 t += iplen;
17

18 // Set a new timeout value
19 tmp−>timesout = getmillis() + tcp_cbs[cb] .RTO;
20

21 if(prev == 0)
22 tcp_cbs[cb] .packets = tmp;
23 else
24 prev−>next = tmp;
25

26 prev = tmp;
27 if(last)
28 break;
29 }
30 }

Alternative and possibly better approaches for determining the new

value of the timesout field should be investigated, but due to the scope of

this thesis, we leave that for future work.

5.3.7 Libpcap Handler

Listing 5.20 shows how we initialize the Libpcap Handler. pcap_fd is the

file descriptor where new captured packets will arrive. Notice that we

initialize the library with a dummy filter to prevent all packets on the node

from being captured. When new sockets are created, we append a new filter

argument to the filter character array and call the set_filter function again.

Listing 5.20: Initializing libpcap

1 int libpcaphandler_init() {
2 char *dev;
3

4 dev = pcap_lookupdev(errbuf) ;
5 if(dev == NULL) {
6 fprintf(stderr,"%s\n" ,errbuf) ;
7 return(−1) ;
8 }
9

10 pcap_lookupnet(dev,&netp,&maskp,errbuf) ;
11

67

12 descr = pcap_open_live(dev,BUFSIZ,0 , −1 ,errbuf) ;
13 if(descr == NULL) {
14 printf("pcap_open_live(): %s\n" ,errbuf) ;
15 return(−1) ;
16 }
17

18 pcap_fd = pcap_get_selectable_fd(descr) ;
19 if(pcap_fd < 0) {
20 fprintf(stderr,"Error getting pcap selectable\n") ;
21 return(−1) ;
22 }
23

24 bzero(filter,MAX_FILTERSIZE) ;
25 memcpy(filter, "tcp dst port 1" , 15) ;
26 // Se t t ing a dummy f i l t e r to stop a l l packets from ←-

arriving
27 set_filter() ;
28

29 printf("pcap init done\n") ;
30 return 0;
31 }

As mentioned in Section 4.7.7, we need to drop TCP reset packets sent

from the OS kernel when we are implementing TCP in user space. Listing

5.21 shows how a filter is added that drops TCP reset packets from a given

source port.

Listing 5.21: Dropping reset packets

1 void droprstpackets(short sport) {
2 int port = ntohs(sport) ;
3 char comm[1000];
4 snprintf(comm, sizeof(comm) , "iptables -A OUTPUT -p ←-

tcp --sport %d --tcp-flags rst rst -j DROP" , port)←-

;
5 if(system(comm) <0){
6 perror("System() ") ;
7 exit(−1) ;
8 }
9 }

5.3.8 Migrator API

As mentioned in Section 4.7.11, this component is only simulated in our

implementation. We let users define their preferred MCAP in as an

argument when starting SOCKMAND. To migrate a socket, users can use

the keyboard interface to simulate a call to the migrate_to function.

68

Chapter 6

Evaluation

In this chapter we present the evaluation of SOCKMAND described in

Chapters 4 and 5. Section 6.1 describes the goals of our evaluation. We

present the common performance evaluation approaches in Section 6.2.

The different performance metrics we use are described in Section 6.3. In

Section 6.4 we present the different factors we vary. Our evaluation setups

are presented in Section 6.5 and the results of them are presented in Section

6.6. Finally, in Section 6.7 we discuss the results presented in Section 6.6.

6.1 Evaluation Goals

The main goals of our evaluation are to determine if SOCKMAND can be

used for real-time applications and to evaluate the load of SOCKMAND in

various scenarios. We present four specific goals for our evaluation:

• Goal 1: To determine if SOCKMAND can be used for real-time ap-

plications, see Section 2.2.3, we need to analyze bandwidth restric-

tions and additional delay introduced by SOCKMAND and verify that

SOCKMAND fulfills the metric requirements presented in Section

4.1. SOCKMAND should at least support a 400 kbit/s and ideally a

1.5 Mbit/s data stream in both directions simultaneously. An MCAP

must therefore be able to process the double of these numbers, mini-

mum 800 kbit/s and ideally 3.0Mbit/s. SOCKMANDmust not intro-

duce an additional delay which causes the round-trip time to exceed

200 ms. We therefore look at the impact SOCKMAND has on round

trip latency, both the delay during regular operation and the delay

introduced during a socket migration and if SOCKMAND limits the

bandwidth.

• Goal 2: We evaluate the CPU load of SOCKMAND and packet loss

in MCAPs on various heterogeneous devices. We us the results to

determine which devices that can fulfill the requirements presented

in Section 4.1.

• Goal 3: Bonola and Salsano [6] show that packet loss is closely

related to the CPU load, we therefore investigate the relationship

69

between CPU load and packet loss in SOCKMAND. We compare our

results with the results presented in the performance evaluation of

the UPMT solution [6] which has a similar architecture.

• Goal 4: We investigate the difference in terms of CPU load when

using the Rawsocket Handler and the Libpcap Handler. When a

node is acting as an MCAP between a mobile application and a legacy

application, packets flow through the MCAP in two directions. In one

direction the Rawsocket Handler is used, in the other direction the

Libpcap Handler is used. If there are differences in the CPU load,

packet loss may occur faster in one direction than in the other, and

the MCAP will become asymmetric.

• Goal 5: We investigate if there is any difference in CPU load when

using SOCKMAND and when using regular sockets.

6.2 Analysis Approach

When doing performance evaluation on a solution to a problem, there

are three different approaches that must be considered, namely modeling,

simulation and measurement [13].

Modeling is the theoretical approach used in performance evaluation.

We present a mathematical model of the performance of the solution and

apply mathematical methods to evaluate the performance. Modeling is

good for simple solutions, but if the solution is complex, the model also

becomes more complex.

Simulation is testing a solution in a controlled simulated environment.

This is suitable if a simulation environment exists for the domain of the

solution. When doing a simulation, we have control over all the factors in

the environment. This means that if we are doing two simulations with the

same parameters, we will get the same result. Simulations are good if the

solution is easy to implement in a simulator environment. For solutions

depending on many factors, such as hardware and operating systems,

accurate simulations are difficult to achieve.

When simulations are difficult due to many dependencies on uncon-

trollable factors, our third choice is to do measurements. A measurement

is done on a real implementation of the solution in a real life environ-

ment. Due to the real life environment, uncontrollable factors can affect

our measurements. To minimize this, we should terminate unnecessary

background processes which affect CPU load and available network band-

width. Unlike simulations, measurements are hard to reproduce, especially

when it is not run on the same equipment. Other side effects that are com-

ing from the OS, other applications and network load can alter the results.

Our analysis of SOCKMAND uses both analytical modeling and mea-

surements. Which approach we are using depends on the characteristics of

the metric we analyze. Modeling or simulating CPU load is difficult due to

many factors which is hard to model or simulate. We therefore choose to

70

measure the CPU load using our implementation of SOCKMAND running

on the different environments described in Section 6.4.3

We present a simple model of the round-trip latency since the round-

trip latency consists of easily definable steps. We also do measurements on

the implementation of SOCKMAND which we compare with the model. By

comparing the measurement with the model, we can quantify the factors

presented in the model.

We choose to model the socket migration time since it consists of

a few easily definable steps, namely sending the socket state to the

destination node and in one case sending a message to the MCAP. Doing

a measurement of the socket migration time will only produce results valid

for a particular scenario, a model will however explain the socket migration

time in details valid for all scenarios.

Modeling or simulating packet loss is difficult due tomany factors which

are hard to model or simulate. We therefore choose to measure the packet

loss using our implementation of SOCKMAND.

6.3 Evaluation Metrics

We evaluate SOCKMAND against a set of different performance metrics,

The performance metrics are CPU load, round-trip time, socket migration

time and packet loss in the MCAP. Each of the metrics and its analysis

approach are described in the following subsections

6.3.1 CPU Load

CPU load is measured using the top command on UNIX. Top measures

CPU load in percentage of available CPU time. Using top, we can measure

both the mobile application and SOCKMAND at once. Notice that when

topmeasures the CPU load of an application, it reports the percentage used

of one CPU. Single-threaded applications can therefore only achieve 100%

CPU load although there is still available CPU time in other processors.

Multi-threaded applications can however achieve more than 100% CPU

load; for instance in a dual core environment top can report that an

application uses up to 200% CPU load.

When measuring the CPU load using top, we need to make sure that

we get the correct average CPU load. This is done by starting the task we

want to measure and the top tool at the same time. We run the task for 90

seconds and then stop top immediately. The beginning and the end of the

measurement will include measurements which reports the standby CPU

load and up to the average CPU load. These numbers do not reflect the

actual average CPU load and we consider them to be outliers. We therefore

ignore the first and last 10 seconds from the output before we calculate the

average CPU load. By doing so, we remove the impact that the beginning

and the end of the measurements have on the average CPU load.

The applications we use to introduce CPU load are presented in Sections

C.2, C.3 and C.4 in Appendix C.

71

6.3.2 Round-Trip Time

We define round-trip latency as the time it takes for one packet to be sent

from a mobile application to a legacy application, the packet is then replied

instantly by the legacy application and when the reply packet arrives at the

mobile application, we have calculated the round-trip latency. Unlike the

ping tool, which operates on the network layer, our measurement includes

transport layer overhead and context switches into a user space application.

Our measurement application designed to measure the round-trip latency

is shown in Section C.1 in Appendix C.

6.3.3 Socket Migration Time

Socket migration time is the time it takes from the migrator asks SOCK-

MAND to migrate a socket from node A to node B until SOCKMAND on

node B is ready to accept a rebuildsocket() call from a mobile application.

We define the socket migration time as the time it takes to execute the mi-

gratesocket() function on node A. Note that this time excludes any time

spent migrating the mobile application itself.

6.3.4 Packet Loss in the MCAP

When a node receives more packets than it can process, packet loss occur.

We visualize the packet loss by plotting a line with the number of packets

sent per second on the x axis and the number of packets received at the

destination on the y axis. If the rates are the same, there is no packet loss

and the line is linear. If the sending rate is larger than the receiving rate,

packet loss has occurred.

We create an application which sends UDP packets at a given rate to

a destination via SOCKMAND acting as an MCAP. Another application

receives these packets and reports the number of packets it receives

per second. To get an average result, we run the applications for 90

seconds and report the average number of packets received per second.

Our measurement applications designed to measure the packet loss are

presented in Sections C.2 and C.3 in Appendix C.

6.4 Evaluation Factors

When evaluating SOCKMAND we vary some factors to see what effect

changing the factor have on the results. The factors are packet size,

packets per second, node specifications and the packet direction through

the MCAP. Each of the factors are described in the following subsections.

6.4.1 Packet Sizes

We vary between a small packet size and a large packet size to see if

the packet size has any impact on the CPU load. Since we have not

implemented support for IP fragmentation, the packet size is limited by the

72

Ethernet Maximum Transmission Unit (MTU). As mentioned in Section

4.6, the maximum UDP payload size we can send is 1444 Bytes.

6.4.2 Packets per Second

We vary the number of packets per second that are sent through SOCK-

MAND to see what effect the number of packets per second has on the CPU

load and packet loss. The number of packets we can send per second is lim-

ited by the bandwidth and the packet size. Our test environment has a 1000

Mbit/s bandwidth which limits the packets we can send per second. This

formula gives us the number of packets per second (µ) based on a band-

width (β) in Mbit/s and a packet size (γ) in bytes.

µ=
106β

8γ

100 Mbit/s 1000 Mbit/s

128 Bytes 97656 976563

156 Bytes 80128 801282

1428 Bytes 8754 87535

1456 Bytes 8585 85852

Table 6.1: Maximum packets per second based on packet size and

bandwidth

Table 6.1 shows some calculated numbers that are necessary to under-

stand the results described later in this chapter.

6.4.3 Node Specifications

We vary the node specifications between a high-end desktop computer, a

netbook and a high performance computer connected with a 1000 Mbit/s

line. We vary the node specifications to get a view of the CPU load

of SOCKMAND on different computers with different processing powers.

The high performing computer is used to count packets that arrive, reply

packets that are used for round-trip time measuring and to send packets

at a given rate. No measurements of CPU load are done on the high

performing computer. The specifications of the different nodes are shown

in Table 6.2.

The netbook has significantly lower specifications than the desktop

computer. The netbook’s specifications are in the range of high-end mobile

devices such as cellphones and tablets.

6.4.4 Packet Direction Through theMCAP

When a node is acting as an MCAP between a mobile application and a

legacy application, packets flow through theMCAP in two directions. When

packets are sent from a mobile application to a legacy application through

an MCAP, packets first arrive at the Tunnel Handler in the MCAP. The

packets are then forwarded to the SOCKMAND Core which forwards the

73

Desktop Com-

puter

Netbook High Perform-

ing Computer

Model HP Compaq

8100 Elite

MSI Wind U-

100

Operating System Ubuntu 11.04

64 bit

Ubuntu 11.11

32 bit

Linux 2.6.1

x86_64

CPU Intel Core i7

CPU 870 @

2.93GHz

Intel Atom

CPU N270 @

1.60GHz

64 x Intel Xeon

CPU L7555 @

1.87GHz

Cores 4 1 8

Threads 8 2

Memory 4 GiB 2 GiB 123 GiB

Ethernet interface 82578DM

Gigabit

RTL8101E

Ethernet capacity 1 Gbit/s 100 Mbit/s

Table 6.2: Node Specifications

packet to the Rawsocket Handler. The packets are then sent to the legacy

application using raw sockets.

In the other direction when packets are sent from a legacy application to

a mobile application through an MCAP, packets first arrive at the Libpcap

Handler. The packets are then forwarded to the SOCKMAND Core which

forwards the packets to the Tunnel Handler. The packets are then sent to

the SOCKMAND on the node of the mobile application using UDP tunnels.

As we can see from the description above and from Figure 4.4, we are

using different components and technologies depending on the direction a

packet is sent through an MCAP. We therefore investigate if there are any

differences in terms of CPU load for the different directions.

6.5 Evaluation Setups

We use different evaluation setups and scenarios to analyze the different

performance metrics. The evaluation setups are CPU load of SOCKMAND

and mobile application, CPU load and packet loss on MCAP, three socket

migration time scenarios and round-trip time. The different setups are

described in the following subsections.

6.5.1 CPU Load of SOCKMAND and Mobile Application

The first scenario is where a mobile application MA on node A communi-

cates with a legacy application LA on node B with the MCAP located on

node A. This scenario is shown in Figure 6.1.

We measure the following metrics.

• CPU Load on SOCKMAND on node A

• CPU Load on the mobile application on node A

74

SOCKMAND

Mobile Application

Legacy Application

Node A

Node B

Figure 6.1: Node setup CPU load by SOCKMAND and Mobile Application

We vary these factors to see what effect they have on the CPU load of

SOCKMAND and the mobile application.

• Node specifications of node A

• Packet size

• Packets per second

When running this experiment, the legacy application on node B sends

UDP packets to node A. The legacy application sends packets with the given

packet size at a specific rate. The packets are sent using regular POSIX

sockets. When packets arrive at node A, they are captured by the Libpcap

Handler. The packets are then sent to the SOCKMAND Core which sees

that they are intended for a local mobile application. The packets are then

sent to the IP controller which sends the packets to the UDP Controller

which delivers them to the SOCKMAND API. The SOCKMAND API sends

the packets to the mobile application using UNIX Domain sockets. The

mobile application then reads the packet using the sm_recvfrom function.

No further processing is done in the mobile application which only calls

sm_recvfrom in an infinite loop.

We vary the payload of the packets between 100B and 1400B. Note

that only a UDP header and a IP header are added, so the total packet

size is 128B and 1428B. The number of packets per second varies between

1000 and the maximum packets number of packets we are able to send per

second on a given link or the maximum number of packets we are able to

send before the CPU load reaches 100%.

In addition we measure the CPU load of a legacy application that does

the same as the mobile application, namely receiving packets in an infinite

loop. This measurement provides a basis for comparison between a user

space socket implementation and a kernel socket implementation.

75

6.5.2 CPU Load and Packet Loss on MCAP

We measure the packet loss on a node used only as an MCAP. The

MCAP will receive tunneled packets and forward them through the MCAP

component. The incoming number of packets per second is varied. The

number of packets that arrive at the destination is measured. We assume

that the packets that do not arrive at the destination were dropped in the

MCAP. In addition the CPU load is measured. The packet size is varied to

see if this has any impact on the CPU load and packet loss. The scenario is

shown in Figure 6.2.

SOCKMAND

Mobile Application

Legacy Application

SOCKMAND

Node B

Node A

Node C

Figure 6.2: Node setup CPU load and Packet loss on MCAP

We measure the following metrics. The incoming and outgoing packets

are measured so we can calculate the packet loss.

• CPU Load on SOCKMAND on node B

• Incoming packets on node B

• Outgoing packets from node B

We vary these factors to see what effect they have on the CPU load of

SOCKMAND and the packet loss.

• Node specifications of node B

• Packet size

• Packets per second

• Packet direction through the MCAP

We run this experiment with two different payload sizes, 100B and

1400B. When packets are between node A and node B, there are two IP

and UDP-headers in the packet. The total packet size is therefore 156B

and 1456B. When packets are sent between node B and node C, no matter

of the direction, the packets include one IP header and UDP header. The

76

total packet size is then 128B and 1428B. The number of packets per second

varies between 1000 and the maximum number of packets we are able to

send per second on a given link or the maximum number of packets we are

able to send before the CPU load reaches 100%.

6.5.3 Socket Migration Time

We chose to model the socket migration time because it consists of a few

simple actions. We do a measurement to verify our model. When modeling

the socket migration time, there are three different scenarios to consider.

These scenarios are the same as described in Section 4.5.

Scenario 1

The first scenario is when the socket is migrated from node A to node B

where node A is the MCAP of that socket. The socket is communicating

with a legacy host on node C. The scenario is shown in Figure 6.3. After the

migration, one endpoint of the socket is located on node B with the MCAP

of that socket on node A. The other endpoint of the socket is still located on

node C.

SOCKMAND

Mobile Application

Legacy Application

Node A MCAP

Node C

SOCKMAND

Mobile Application

Node B

Figure 6.3: Measuring Socket Migration Time 1

Scenario 2

The second scenario is when the socket is migrated from node A to node

B where node B is the MCAP of that socket. The socket is communicating

77

with a legacy host on node C. The scenario is shown in Figure 6.4. After the

migration, one endpoint of the socket is located on node B with the MCAP

of that socket on node B. The other endpoint of the socket is still located on

node C.

SOCKMAND

Mobile Application

Legacy Application

Node A

Node C

SOCKMAND

Mobile Application

Node B MCAP

Figure 6.4: Measuring Socket Migration Time 2

Scenario 3

The third scenario is when the socket is migrated from node A to node B

where node C is the MCAP of that socket. The socket is communicating

with a legacy host on node D. The scenario is shown in Figure 6.5. After the

migration, one endpoint of the socket is located on node B with the MCAP

of that socket on node C. The other endpoint of the socket is still located on

node D.

78

SOCKMAND

Mobile Application

Legacy Application

Node A

Node D

SOCKMAND

Mobile Application

Node B

SOCKMAND

Node C MCAP

Figure 6.5: Measuring Socket Migration Time 3

79

6.5.4 Round-Trip Time

In this scenario we measure the round-trip time between two nodes A and

B. Several factors are varied to see what effect they have on the round-trip

time:

• Node specifications of node A

• Whether the MCAP is on node A or node C

• Node specifications of MCAP node C

• Whether SOCKMAND is used or not

Figure 6.6 shows the RTT reported by the ping tool between the nodes

used in our test environment. The RTT is the average of 100 ping requests.

The results shown in Section 6.6.4 are the average of 100 measurements.

High

Performing

Computer

Desktop

Computer 1

Desktop

Computer 2

Netbook

0.241ms0.246ms

0.242ms

0.299ms

0.319ms

Figure 6.6: Ping results

6.6 Results

This section presents the results of the evaluations described in Section 6.5.

6.6.1 CPU Load of SOCKMAND and Mobile Application

Figure 6.7 shows the CPU load by SOCKMAND and a mobile application

based on the number of packets per second with 100B payload size. The

80

Figure 6.7: CPU load by SOCKMAND and Mobile Application on Desktop

Computer with 100B payload

CPU load by a legacy application that uses regular sockets is also included

in the graph for comparison. From Figure 6.7 we can see that there is

little difference between the CPU load of a mobile application and a legacy

application doing the same task.

When a legacy application is using regular sockets, all the CPU load is

by the legacy application. When amobile application is using SOCKMAND,

the total CPU load is the sum of the CPU load of SOCKMAND and the

mobile application.

For each packet arriving at the node when we are running the mobile

application and SOCKMAND, the packet must be transferred from the

kernel to SOCKMAND, from SOCKMAND to the kernel and from the kernel

to the mobile application. This is a total of three copies of the packet. When

packets are delivered directly to a legacy application, it only needs to be

copied once from kernel to the legacy application. This means that when a

mobile application is using SOCKMAND, each packet must be copied three

times more than when a legacy application uses regular sockets.

This pattern is visible in the results. The combined load of SOCKMAND

and the mobile application for a given packet rate is slightly above three

times as large as the CPU load of a legacy application doing the same

task. We see that the CPU load of the mobile application and the legacy

application is approximately the same. We observe that the CPU load of the

mobile application fluctuates while the CPU load of the legacy application

is more linear, we do not have a clear explanation for the fluctuation, it

81

may be related to the UNIX domain sockets. However the CPU load of

SOCKMAND is slightly above twice the CPU load of the mobile application.

When calling the sm_recvfrom function, there are two reads of the

UNIX domain socket. As mentioned in Section 5.3.4, the mobile applica-

tion first reads the metadata of the packet, and then the payload itself. This

may explain why the CPU load is slightly larger than three times as larger.

The same pattern as in Figure 6.7 is visible in Figure B.5, Figure

B.6 and Figure B.7 in Appendix B with different packet sizes and node

specifications.

6.6.2 CPU Load and Packet Loss on MCAP

Figure 6.8 shows the packet loss on node B. In this experiment the packets

on node B are received using the Tunnel handler and sent using the raw

socket handler. Node B is a desktop computer. The measurement of 1400B

packets stops at 85852 packets per second since the bandwidth is fully

loaded. Figure 6.9 shows the CPU load of SOCKMAND on node B in the

same experiment. Each measurement is running for 90 seconds with the

first and last 10 seconds removed from the result.

Figure 6.8: Desktop Computer Packet loss on MCAP from tunnel to

rawsock

In Figure 6.9 we observe that the packet size does not affect the CPU

load. For a given number of packets per second, the CPU load is the same

for packets with different payload sizes. We are unable to reach a CPU load

of 100% when we are using packet sizes of 1456B. This is because we are

not able to send the number of packets needed since we are limited by our

82

Figure 6.9: Desktop Computer CPU Load onMCAP from tunnel to rawsock

1000Mbit/s line. We see from Table 6.1 that the total number of packets we

are able to send with this packet size is 85851.

When we compare the two graphs, we see that packet loss for 100b

payload packets starts when the CPU load reaches 100%. No packet loss

occur when we use 1400B payload packets since we are not able to reach

100% load with these packet sizes due to our bandwidth limit.

Figure 6.10 shows the packet loss on node B. In this experiment the

packets on node B are received using the Tunnel handler and sent using

the raw socket handler. Node B is a netbook computer. The line which

represents 1400B payload sizes flattens out at 8585 packets per second

since the bandwidth is fully loaded. Figure 6.11 shows the CPU load of

SOCKMAND on node B in the same experiment. Each measurement is

running for 90 seconds with the first and last 10 seconds removed from

the result.

When comparing the CPU load on the netbook versus the CPU load on

the desktop computer, we see that the CPU load for 100B payload packets

reaches 100 much earlier than on the desktop computer due to the slower

CPU. Note that the Ethernet card of the netbook only supports 100 Mbit/s.

We see from Table 6.1 that the total number of packets the netbook is able

to receive per second with a payload size of 100B is 80128. From the same

table we see that the total number of packets the netbook is able to receive

per second with a payload size of 1400B is 8585.

The netbook is not able to process packets of 100B payload size when

the Ethernet card is receiving on full capacity, but the netbook is able to

83

Figure 6.10: Netbook Packet loss on MCAP from tunnel to rawsock

Figure 6.11: Netbook CPU Load on MCAP from tunnel to rawsock

process packets of 1400B payload size when the Ethernet card is receiving

on full capacity. This is because sending packets with a 100B payload at

84

100 Mbit/s creates 80128 packets per second. On the other hand, sending

packets with a 1400B payload at 100 Mbit/s creates 8585 packets per

second. The CPU load is dependent on the number of packets per second,

not the amount of data per second, so although the same amount of data

is sent, we can only process this amount of data if the packets are large

enough.

Figure B.2 shows the packet loss on node B. In this experiment the

packets on node B are received using the Libpcap Handler and sent using

the Tunnel Handler Node B is a Desktop computer. Figure B.1 shows the

CPU load of SOCKMAND on node B in the same experiment.

Figure B.4 shows the packet loss on node B. In this experiment the

packets on node B are received using the Libpcap Handler and sent using

the Tunnel Handler Node B is a netbook computer. Figure B.3 shows the

CPU load of SOCKMAND on node B in the same experiment.

The results from the experiments where packets on node B are received

using the Libpcap Handler and sent using the Tunnel Handler do not differ

from the results that we see when packets on node B are received using

the Tunnel handler and sent using the Rawsocket Handler. It shows us

that the direction of a packet through an MCAP does not affect the CPU

load or packet loss. This means that the performance of receiving packets

with libpcap is equal to the performance of sending using raw sockets. This

ensures that the performance of the MCAP is symmetric, meaning that

the direction of packets through an MCAP does not have an impact on

performance.

6.6.3 Socket Migration Time

To migrate a socket, the MCAP must be notified and the destination node

must receive the state of the socket. Information is passed between the

source node, the MCAP and the destination node using a regular TCP/IP

socket. We assume that the TCP/IP sockets are already connected between

all the nodes in the Migration Community. Because of this, no three way

handshakes must be done when migrating a socket.

For TCP connections through SOCKMAND, any unsent packets or

unacknowledged packets must be sent along with the socket state to

the destination node. The size of this data will vary depending on the

characteristics of that particular TCP connection.

We will only need to notify the MCAP about the new location of the

socket endpoint when the MCAP is neither source nor destination. The

size of the message that is sent to the MCAP is 12 bytes. This will always

fit within one TCP packet. In addition a reply is sent from the MCAP that

acknowledges that the message was received.

When sending the socket state to the destination node, the size of the

socket state will vary depending on whether it is a TCP or UDP socket. The

size of a UDP socket state is 32 bytes and the size of a TCP socket state is 96

bytes.

Modeling the time used to send a given number of bytes over a TCP

connection is difficult without analyzing that specific TCP implementation.

85

In addition to the time spent transferring data, we also need to consider

the time spent importing the socket state and the context switches when

sending and receiving messages. These times will be so small that they are

negligible.

Scenario 1

The first scenario is when the socket is migrated from node A to node B

where node B is the MCAP of that socket. The socket is communicating

with a legacy host on node C. In this scenario it is not necessary to send any

message to the MCAP since the MCAP is the destination node. The total

time spent migrating the socket can be described as:

c +d +e + f

Where c is the time spent exporting the state on the source node, d is

the time spent sending the state to the destination node, e is the time spent

importing the state on the destination node and f is the time spent sending

an acknowledgement back from the destination node to the source node.

If the state does not have many unacknowledged packets that must be

sent along with the state, a good approximation of the socket migration

time will be the round-trip time between node A and B.

Scenario 2

The second scenario is when the socket is migrated from node A to node

B where node A is the MCAP of that socket. The socket is communicating

with a legacy host on node C. In this scenario it is not necessary to send any

message to the MCAP since the MCAP is the source node. Because of this,

the model is the exact same as in Scenario 1.

Scenario 3

The third scenario is when the socket is migrated from node A to node B

where node C is theMCAP of that socket. The socket is communicating with

a legacy host on node D. Since the MCAP is neither source nor destination

node, the MCAP must be notified of the migration.

The total time spent migrating the socket can be described as:

a +b +c +d +e + f

Where a is the time spent sending a migrating to message from

the source node to the MCAP, b is the time spent sending sending an

acknowledgement back from the MCAP to the source node. c is the time

spent exporting the state on the source node, d is the time spent sending

the state to the destination node, e is the time spent importing the state on

the destination node and f is the time spent sending an acknowledgement

back from the destination node to the source node.

If the state does not have many unacknowledged packets that must be

sent along with the state, a good approximation of the socket migration

time will be the sum of the round-trip time between node A and B and the

sum of the round-trip time between node A and C.

86

6.6.4 Round-Trip Time

The measurements are divided into three scenarios. RTT between node A

and B with the MCAP at node A is shown in Table 6.3, RTT between node

A and B without SOCKMAND is shown in Table 6.4 and RTT between node

A and B with the MCAP at node C is shown in Table 6.5.

Node A Node B Average RTT Standard Deviation

DC 1 HPC 0.395ms 0.045ms

Netbook HPC 0.667ms 0.044ms

Table 6.3: RTT between node A and B with the MCAP at node A

Node A Node B Average RTT Standard Deviation

DC 1 HPC 0.280 ms 0.040 ms

Netbook HPC 0.347 ms 0.054 ms

Table 6.4: RTT between node A and B without SOCKMAND

When we compare the results in Table 6.3 with Table 6.4 we see that the

RTT increases when using SOCKMAND on node A with the MCAP at node

A. This increase comes from the additional copies of packets as mentioned

in Section 6.6.1. We can calculate the difference in RTT when SOCKMAND

is used and when regular sockets are used by subtracting the average RTT

in Table 6.4 from the average RTT in Table 6.3. The difference in RTT for a

desktop computer is:

0.395ms −0.280ms = 0.115ms

The difference in RTT for a netbook is:

0.667ms −0.347ms = 0.320ms

We see that the overhead is almost three times as large in the netbook

as in the desktop computer. This difference is explained by the slower CPU

in the netbook. The overhead time is however small when compared to

RTT experienced even when pinging nodes in other regions of Norway. The

RTT reported by ping between the University of Oslo and the Norwegian

University of Science and Technology in Trondheim 500 km away on April

24th was on average 8.165 ms with a standard deviation of 0.123 ms.

By comparing the results in Table 6.4 with the RTT reported by the ping

tool shown in Figure 6.6 we see the difference in RTT reported by our UDP

RTT tool and the RTT reported by the ping tool which operates at the IP

layer. We calculate this difference by subtracting the average RTT reported

by the ping tool shown in Figure 6.6 from the average RTT reported by

our UDP RTT measurement tool in Table 6.4. We use the difference in

reported RTT by the twomeasurement tools later in this section to calculate

the overhead introduced by the MCAPs.

The difference in reported RTT where node A is a desktop computer is:

0.280ms −0.241ms = 0.039ms

The difference in reported RTT where node A is a netbook is:

0.347ms −0.299ms = 0.048ms

87

Overhead Node A Ping Node A to Node C Overhead Node C Ping Node C to Node B Overhead Node B

Reported RTT from Node A to Node B with MCAP at Node C

Figure 6.12: Factors of RTT shown in Table 6.5

Node A Node B Node C (MCAP) Avg RTT Std dev

DC 1 HPC DC 2 0.671 ms 0.069 ms

DC 1 HPC Netbook 0.774 ms 0.055 ms

Netbook HPC DC 1 0.859 ms 0.052 ms

Table 6.5: RTT between node A and B with the MCAP at node C

The round-trip times presented in Table 6.5 are the sum of the factors

presented in Figure 6.12 The sum of the overhead in node A and node B is

calculated in the previous paragraph. The ping times between the nodes are

shown in Figure 6.6. We can calculate the overhead in Node C, the MCAP,

for different nodes using this formula:

Overhead in MCAP = (RTT from node A to Node B) -
(overhead in node A) - (ping from node A to node C) -
(ping from node C to node B) - (overhead in node B)

Using the formula we can calculate the overhead in desktop computer 2

when it is acting as an MCAP. The RTT from node A to node B is located in

the first row of Table 6.5. The sum of overhead in node A which is a desktop

computer and the overhead in node B is calculated above and is 0.039 ms.

The ping between desktop computer 1 and desktop computer 2 is shown

in Figure 6.6 and is 0.246 ms. The ping between desktop computer 2 and

the high performing computer is shown in Figure 6.6 and is 0.242 ms. The

overhead in desktop computer 2 when it is acting as an MCAP is:

Overhead in desktop computer 2 =
0.671 ms - 0.039 ms - 0.246 ms - 0.242 ms =
0.144 ms

We calculate overhead in the netbook when it is acting as MCAP in the

same way. The numbers are from Table 6.5 and Figure 6.6. The overhead

in the netbook when it is acting as an MCAP is:

Overhead in netbook =
0.774 ms - 0.039 ms - 0.241 ms - 0.319 ms =
0.175 ms

We calculate overhead in desktop computer 1 when it is acting as MCAP

in the same way. The numbers are from Table 6.5 and Figure 6.6. Unlike

in the previous calculations, node A is in this case the netbook. The sum

of overhead in node A which is a netbook and the overhead in node B is

calculated above and is 0.048 ms. The overhead in desktop computer 1

when it is acting as an MCAP is:

88

Overhead in desktop computer 1 =
0.859 ms - 0.048 ms - 0.299 ms - 0.241 ms =
0.271 ms

Since desktop computer 1 and desktop computer 2 are both similar

desktop computers we would expect to see the same results. They are

however not the same. It is also unexpected that the overhead in desktop

computer 2 is larger than in the lower performing netbook. This may be

because there have been some external factors affecting the results when

desktop computer 2 was the MCAP. However since the result is in such a

small timescale, we claim that the difference is negligible.

Using an MCAP does increase the RTT. The increase of RTT that comes

from processing in theMCAP is small, less than 0.271ms. Themost notable

difference is that the MCAP introduces an additional hop on the path from

node A to node B. If the MCAP is located close to one of the nodes in terms

of RTT, the increase in RTT from node A to node B is small. If the MCAP

is located far away from both nodes in terms of RTT, the increase in RTT

from node A to node B is significant.

6.7 Discussion

In this section we verify that the results presented in Section 6.6 fulfill our

evaluation goals presented in Section 6.1. We look at each of our evaluation

goals and verify that we have fulfilled it.

Our first goal is to verify that SOCKMAND can be used for real-time

applications. Section 6.6.2 shows that with 1400B packet sizes the desktop

computer can transfer data at a rate of 1000 Mbit/s with a CPU load of

around 80% and the netbook can transfer data at a rate of 100 Mbit/s

with a CPU load of around 64%. Note that this is not the percentage of

total available CPU load since the measurements are done on multi-core

and multi-threaded architectures. The results mean that our architecture

is able to utilize the full network capacity of these nodes if the packet

size is sufficiently large. These results show that our implementation

supports large enough bandwidth to support real-time applications such as

video streaming. Our recommended bandwidth requirement for real-time

applications is 1.5 Mbit/s, this requirement is fulfilled.

Our round trip time requirement for real-time applications is 200

ms. Section 6.6.4 shows that the round trip time overhead introduced by

processing packets in an MCAP is negligible. However, by using an MCAP,

the latency will be increased since the packets must be routed by theMCAP.

This means that it is important to have an algorithm that selects an MCAP

close, in terms of RTT, to one of the end points. If the MCAP is close to

one of the end points, the additional cost of routing packets through the

MCAP will be lower than if the MCAP is located far away from both of the

endpoints.

The socket migration time will, as mentioned in Section 6.6.3 depend

on a fixed set of factors. It is impossible to present a number for these

factors since they will vary based on the environment and in the TCP case,

89

the characteristics of the TCP socket. We claim however that the socket

migration time is low enough to support real-time applications because of

the small size of the messages that must be sent between nodes. The major

factor of the socket migration time is the time it takes to send the state

and any messages to other nodes. In the worst case scenario, data must be

sent to two other nodes from the source node. As long as the sum of the

round trip time to both of the nodes from the source node is lower than

200 ms, the socket migration time will not exceed 200 ms. Note that when

migrating a socket, other states related to the mobile application are also

transferred from the source node to the destination node. By migrating the

socket in parallel with the mobile application, we minimize the effect the

socket migration has on the total process migration time.

Goal 2 is to verify what devices that are able to fulfill the requirements

presented in Section 4.1. Section 6.6.2 shows that both the desktop

computer and the netbook is able to fulfill the bandwidth requirement of

1.5 Mbit/s. Section 6.6.4 shows that there is no noticeable difference in the

round-trip time overhead by the different devices. This shows us that a low

end device such as the netbook is able to fulfill our requirements.

Goal 3 is to look at the relationship between packet loss and CPU load.

Section 6.6.2 clearly shows the correlation between CPU load and packet

loss in the MCAP. When the CPU load of the MCAP comes near 100%,

packet loss occurs. The results also show that the payload size does not

affect the CPU load of the MCAP. There is no notable difference in CPU

load of payload sizes of 100B and 1400B. The data rate is the product of

the packet size and the number of packets per second. The smaller the

packet sizes the faster the CPU load will reach 100% and packet loss will

occur. This suggests that application programmers should send fewer and

larger packages, and not many small packages. Whether the application

programmer can do that, completely depends on the domain of that specific

application.

Figure 6.13: UPMT anchor node packet loss comparison [6]

Figure 6.13 and Figure 6.14 show packet loss and CPU load in an anchor

90

Figure 6.14: UPMT anchor node CPU load comparison [6]

node for various tunneling solutions presented in [6]. The specifications

of the anchor node in that experiment are PC VIA C7-D Processor 1.5

GHz, 2 NICs Ethernet 100 Mb/s [6]. In terms of processing power it is

slightly slower than the netbook used in our experiments. We must be

careful when comparing our results with the results shown in [6] due to

the difference in equipment and test environment, OpenVPN, which is a

user space tunneling solution, reaches 100% CPU load when the incoming

packets arrive at a rate of approximately 21000 packets per second. Figure

B.3 shows that SOCKMAND reaches 100% CPU load at the same packet

rate. This shows that SOCKMAND performs as good as the Open VPN user

space tunneling solutions.

Our fourth goal is to investigate the difference in terms of CPU load

when using the Rawsocket Handler and the Libpcap Handler. The results

presented in Section 6.6.2 show us that the direction of a packet through an

MCAP does not affect the CPU load or packet loss. The amount of CPU time

used for receiving a packet with the Tunnel Handler and sending it with the

Rawsocket Handler is equal to the CPU time used for capturing a packet

with the Libpcap and sending it with the Tunnel Handler, this means that

the MCAP performs symmetrically. The direction of the data through an

MCAP does not affect the CPU load or packet loss.

Our last goal is to compare the CPU load when using SOCKMAND

and when using regular sockets. From Section 6.6.1 we learn that using

SOCKMAND in user space creates a significant overhead versus using the

OS implementation of sockets. Our evaluation shows that the CPU load is

at least three times as large when SOCKMAND is used due to additional

copying of packets between kernel space and user space. This knowledge

shows us that the performance of SOCKMANDwill increase if SOCKMAND

is implemented in kernel space. However this will limit the portability of

SOCKMAND.

91

92

Chapter 7

Conclusion

In this chapter we conclude our work and the findings from this master

thesis. In Section 7.1 we present our contributions. We do a critical

assessment of our work in Section 7.2. Finally, we present some topics that

can be looked at in the future in Section 7.3.

7.1 Contributions

We have developed a design and implemented a socket migration system

which satisfies our requirements from Chapter 2 and Chapter 3. The main

requirements are that the system must not need altering of the OS Kernel,

the network must not be altered, it must be possible to communicate with

legacy applications on legacy hosts, socket migrations must be transparent

to the corresponding host and a set of metric requirements regarding the

support of multimedia applications, like video conferencing.

Ourwork is aimed tomake the ubiquitous computing paradigmpossible

by supporting process migration of real-time multimedia applications

between heterogeneous devices. The contribution to the scenario from

this thesis is our user-space socket migration system which will support

the migration of the sockets used by the mobile real-time multimedia

application.

Our main contribution is a user-space socket migration system, called

SOCKMAND. Our design enables sockets to be migrated from one node

to another while maintaining the connection to a legacy corresponding

host. This is achieved by introducing Migration Community Access Points.

SOCKMAND uses IP in UDP tunnels to transfer packets between the nodes

with the mobile application and the MCAP.

Since SOCKMAND is implemented in user-space, it does not need any

altering of the kernel and is therefore portable. The architecture is designed

as a building brick in a process migration system. SOCKMAND should be

used with a process migration system which takes care of the migration of

the process, while SOCKMAND is the part which takes care of themigration

of the sockets.

We have implemented this design and evaluated it in Chapter 6. The

evaluation shows that SOCKMAND satisfies our requirements for real-

93

time multimedia applications. This means that SOCKMAND can be used

to migrate sockets that have high requirements in terms of delay and

bandwidth.

We have shown that the difference in CPU load between a user-space

and a kernel-space socket implementation is approximately three times

as high in the user-space implementation. This is due to the additional

transfers of the packet between kernel-space and user-space.

The evaluation shows that the CPU load depends on the number of

packets per second and not on the data rate. This means that two data

streams of 50 Mbit/s, can create different CPU loads if the packet sizes are

different.

7.2 Critical Assessment

In the beginning of the thesis work, we focused on process migration in

general. It took some time before we decided to look at socket migration

in particular. The process of selecting the specific subtopic of process

migration should have been done faster.

When we initially started searching for related work, we were not able

to locate most of the work mentioned in Chapter 3. This was because

we were unfamiliar with the term socket migration. We first found this

term and work related to it well into our design process. Although we

found the related work well into the design process, our design differs from

the already existing work that we have found. Our work supplements the

existing knowledge with a new socket migration solution.

As mentioned in Section 5.3.6, the implementation of TCP in user space

proved to be harder than expected. This estimation error forced us to use

more time implementing than originally planned, and therefore a bit less

time on evaluation and writing.

7.3 Future Work

Our implementation of SOCKMAND only includes the core functionality

needed to support socket migration. There are extensions and improve-

ments to SOCKMAND that can provide further functionality, increased per-

formance and new fields of research. We categorize the future work in

short-term and long-term goals, where short term is anything shorter than

a couple of months.

7.3.1 Short-term Goals

If increased performance is desirable, we will benefit from an implemen-

tation of SOCKMAND in kernel space. Most of the functionality that is

present in SOCKMAND is already present in the kernel. Since sockets are

already a part of the kernel, only the functionality needed for the actual

migration of the socket is needed. A positive side effect of implementing

94

SOCKMAND in kernel space is that the TCP implementation in the ker-

nel already includes TCP options which we have not yet implemented in

SOCKMAND due to time constraints. Such TCP options are selective ac-

knowledgments, window scaling and TCP timestamps. Although a kernel

space implementation is desirable in terms of performance, the portability

of the system will decrease.

Network Address Translation (NAT) support is missing from our

design. SOCKMAND may fail if some nodes are behind a NAT device.

Support for nodes hidden behind a NAT must be added to enable

SOCKMAND to be used in these cases.

When socket migration fails due to unexpected errors, this must

be handled in the proper way. SOCKMAND should notify the process

migration system and the system should, if possible, decide on whether or

not to abort the process migration.

We use the break before make strategy when migrating sockets using

SOCKMAND. It may be better in some cases to usemake before break. We

should investigate the possibility to usemake before break in SOCKMAND.

Whether or not this is possible may depend on how the actual process is

migrated.

7.3.2 Long-term Goals

Due to time constraints, we have left the selection of MCAP for future work.

An algorithm that chooses a good MCAP within a Migration Community is

essential for performance and low round trip delay. The algorithm should

take a policy as input. The policy can for instance state whether up time

should be preferred over delay. Since a Migration Community is a generic

overlay that can be implemented in several ways, there may be need for an

algorithm for each of the different overlay implementations.

TCP is designed as an end-to-end transport layer protocol. The protocol

reacts when changes in the route between the two endpoints occur. This can

be changes in round-trip time, increased packet loss and lower bandwidth.

After a migration of one of the endpoints, the characteristics of the route

between the endpoints will change. A possible future research topic is to

look at how we can reconfigure the state variables of the TCP connection

after amigration to ensure that the TCP connection is functioning optimally

on the new route.

We have not looked at security issues in our design. Security features

must be added to prevent unauthorized socket hijacking. Whether this

should be done by adding keys or encryption functionality to SOCKMAND,

if it should be a feature of the Migration Community overlay or by other

solutions is open for future research.

95

96

Bibliography

[1] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC

5681 (Draft Standard), September 2009.

[2] Mario Baldi and Yoram Ofek. End-to-end delay analysis of videocon-

ferencing over packet-switched networks. IEEE/ACM Trans. Netw.,

8(4):479–492, August 2000.

[3] Amnon Barak, Shai Guday, and Richard G. Wheeler. The MOSIX

Distributed Operating System: Load Balancing for UNIX. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 1993.

[4] E. Beda and N. Ventura. Socketless tcp - an end to end handover

solution. In Networks, 2005. Jointly held with the 2005 IEEE 7th

Malaysia International Conference on Communication., 2005 13th

IEEE International Conference on, volume 2, page 6 pp., nov. 2005.

[5] Massimo Bernaschi, Francesco Casadei, and Paolo Tassotti. Sockmi:

a solution for migrating tcp/ip connections. In Parallel, Distributed

and Network-Based Processing, 2007. PDP ’07. 15th EUROMICRO

International Conference on, pages 221 –228, feb. 2007.

[6] M. Bonola and S. Salsano. Per-applicationmobilitymanagement: Per-

formance evaluation of the upmt solution. In Wireless Communica-

tions andMobile Computing Conference (IWCMC), 2011 7th Interna-

tional, pages 2249 –2255, july 2011.

[7] M. Bonola, S. Salsano, and A. Polidoro. Upmt: Universal per-

application mobility management using tunnels. In Global Telecom-

munications Conference, 2009. GLOBECOM 2009. IEEE, pages 1 –8,

30 2009-dec. 4 2009.

[8] Seth Fogie Cyrus Peikari. Raw sockets revisited: The day the

internet died. http://www.airscanner.com/pubs/rawsockets.pdf, 2003.

Accessed online Feb 27 2012.

[9] P. Ferguson andD. Senie. Network Ingress Filtering: DefeatingDenial

of Service Attacks which employ IP Source Address Spoofing. RFC

2827 (Best Current Practice), May 2000. Updated by RFC 3704.

[10] D. Funato, K. Yasuda, and H. Tokuda. Tcp-r: Tcp mobility support

for continuous operation. In Network Protocols, 1997. Proceedings.,

1997 International Conference on, pages 229 –236, oct 1997.

97

[11] Google. System requirements for hangouts. http://http://support.

google.com/plus/bin/answer.py?hl=en&answer=1216376, 2012. Ac-

cessed online Apr 24 2012.

[12] Ian Griffiths. Raw sockets gone in xp sp2. http://www.interact-sw.co.

uk/iangblog/2004/08/12/norawsockets, August 2004. Accessed online

Feb 27 2012.

[13] Raj. Jain. The art of computer systems performance analysis :

techniques for experimental design, measurement, simulation, and

modeling / Raj Jain. Wiley, New York :, 1991.

[14] E. Jul. Object Mobility in a Distributed Object-Oriented System. PhD

thesis, University of Washington, 1988.

[15] Bryan Kuntz and Karthik Rajan. Migsock migratable tcp socket in

linux. Master’s thesis, Carnegie Mellon University, 2002.

[16] D.A. Maltz and P. Bhagwat. Msocks: an architecture for transport

layer mobility. In INFOCOM ’98. Seventeenth Annual Joint Confer-

ence of the IEEE Computer and Communications Societies. Proceed-

ings. IEEE, volume 3, pages 1037 –1045 vol.3, mar-2 apr 1998.

[17] The Linux man-pages project. BIND(2) man page, December 2007.

[18] The Linux man-pages project. CLOSE(2) man page, December 2007.

[19] The Linux man-pages project. CONNECT(2) man page, December

2008.

[20] The Linux man-pages project. LISTEN(2) man page, November

2008.

[21] The Linux man-pages project. READ(2) man page, February 2009.

[22] The Linux man-pages project. ACCEPT(2) man page, September

2010.

[23] The Linux man-pages project. RECV(2) man page, August 2010.

[24] The Linux man-pages project. SELECT(2) man page, August 2010.

[25] The Linux man-pages project. SEND(2) man page, August 2010.

[26] The Linux man-pages project. SOCKET(7) man page, June 2010.

[27] The Linux man-pages project. WRITE(2) man page, August 2010.

[28] J. Manner and M. Kojo. Mobility Related Terminology. RFC 3753

(Informational), June 2004.

[29] Nick Mathewson and Niels Provos. libevent - an event notification

library. http://libevent.org/, February 2012.

98

[30] Dejan S. Milojičić, Fred Douglis, Yves Paindaveine, Richard Wheeler,

and Songnian Zhou. Process migration. ACM Comput. Surv., 32:241–

299, September 2000.

[31] V. Paxson, M. Allman, J. Chu, and M. Sargent. Computing TCP’s

Retransmission Timer. RFC 6298 (Proposed Standard), June 2011.

[32] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.

[33] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981.

Updated by RFC 1349.

[34] J. Postel. Transmission Control Protocol. RFC 793 (Standard),

September 1981. Updated by RFCs 1122, 3168, 6093, 6528.

[35] Skype. Howmuch bandwidth does skype need? https://support.skype.

com/en-us/faq/FA1417/How-much-bandwidth-does-Skype-need,

February 2012. Accessed online Apr 17 2012.

[36] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migratory tcp: con-

nectionmigration for service continuity in the internet. InDistributed

Computing Systems, 2002. Proceedings. 22nd International Confer-

ence on, pages 469 – 470, 2002.

[37] KwameWright, Kartik Gopalan, and Hui Kang. Performance analysis

of various mechanisms for inter-process communication. Technical

report, Department of Computer Science, Binghamton University,

2007.

[38] Victor C. Zandy and Barton P. Miller. Reliable network connections.

In Proceedings of the 8th annual international conference on Mobile

computing and networking, MobiCom ’02, pages 95–106, New York,

NY, USA, 2002. ACM.

99

100

Appendix A

Abbreviations

ACK Acknowledgement

AN Anchor Node

B Bytes

CH Corresponding Host

CPU Central Processing Unit

DN Destination Node

DC Desktop Computer

IP Internet Protocol

IPC Inter Process Communication

LA Legacy Application

MA Mobile Application

MCAP Migration Community Access Point

MH Mobile Host

NAT Network Address Translation

P2P Peer-To-Peer

RTT Round-Trip Time

SN Source Node

TCP Transmission Control Protocol

TRAMP TRAMP Real-time Application Mobility Platform

UDP User Datagram Protocol

101

102

Appendix B

Performance Evaluation
Results

This appendix includes additional results which supports performance

evaluation results in Chapter 6. All the results shown in this appendix are

referenced in Chapter 6.

Figure B.1: Desktop CPU Load on MCAP from libpcap to tunnel

103

Figure B.2: Desktop Packet loss on MCAP from libpcap to tunnel

Figure B.3: Netbook CPU Load on MCAP from libpcap to tunnel

104

Figure B.4: Netbook Packet loss on MCAP from libpcap to tunnel

Figure B.5: CPU load by SOCKMAND and mobile application on desktop

computer with 1400B payload

105

Figure B.6: CPU load by SOCKMAND and mobile application on netbook

with 100B payload

Figure B.7: CPU load by SOCKMAND and mobile application on netbook

with 1400B payload

106

Appendix C

Measurement Applications

In this appendix we present our measurement applications used in Chapter

6. We describe what the applications do and how to execute them.

Instructions on how to get the source code files are presented in Appendix

D.

C.1 RTT Test Applications

These applications are used measure the round-trip time between our

mobile application and a legacy application. The client sends a given

number of packets and measures the time it takes to get a reply from the

server.

1. Compile the server.c with gcc and start it on a node A.

2. Make the client using make and run it on a node B with SOCKMAND

running.

The client will send the given number of packets to node A. The packet

are replied instantly. The time is measured and printed, the time is given

in microseconds.

To modify the client to send the packets through an MCAP, change

the fourth argument to sm_socket from 0 to 1. Make sure you have

SOCKMAND running on another node and that you give the address of that

node as a parameter to SOCKMAND on node B.

Listing C.1 shows the client application and Listing C.2 shows the server

application.

Listing C.1: Round-trip Time Client

1 #include <s td io . h>
2 #include <s t d l i b . h>
3 #include <unistd . h>
4 #include <s t r ing . h>
5 #include <arpa/ ine t . h>
6 #include <net ine t / in . h>

107

7 #include <sys / types . h>
8 #include <sys / socket . h>
9 #include <sys / time . h>
10

11 #define BUFLEN 1400
12 #include "libsockmand.h"
13

14 int main(int argc, char **argv)
15 {
16 struct timeval start, end;
17 long elapsed_utime; /* elapsed time in microseconds←-

*/
18 long elapsed_seconds ; /* d i f f between seconds counter←-

*/
19 long elapsed_useconds ; /* d i f f between microseconds ←-

counter */
20

21 if(argc<4){
22 fprintf(stderr, "Usage: %s <destination IP address←-

> <destport> <count>\n" , argv[0]) ;
23 exit(EXIT_FAILURE) ;
24 }
25 unsigned int dst = inet_addr(argv[1]) ;
26 short port = htons(atoi(argv[2])) ;
27 int count = atoi(argv[3]) ;
28 char buf[BUFLEN] = "Ping message\0";
29 int sd = sm_socket(AF_INET,SOCK_DGRAM,0 ,0) ;
30

31 int i;
32 long sum = 0;
33

34 struct sockaddr_in servaddr;
35 bzero(&servaddr,sizeof(servaddr)) ;
36 servaddr.sin_family = AF_INET;
37 servaddr.sin_addr.s_addr = dst;
38 servaddr.sin_port = port;
39 socklen_t slen = sizeof(servaddr) ;
40

41

42 struct sockaddr_in s;
43 socklen_t s2 = sizeof(s) ;
44

45 sm_sendto(sd, buf, BUFLEN, 0 , (struct sockaddr *)&←-

servaddr,slen) ; // v i r t ua l bind
46 sm_recvfrom(sd, buf, BUFLEN, 0 , (struct sockaddr *)&s←-

,&s2) ;
47

48 sleep(1) ;
49 for(i=0; i < count; i++){
50

51 gettimeofday(&start, NULL) ;
52 sm_sendto(sd, buf, BUFLEN, 0 , (struct sockaddr *)&←-

servaddr,slen) ;

108

53 sm_recvfrom(sd, buf, BUFLEN, 0 , (struct sockaddr ←-

*)&s,&s2) ;
54 gettimeofday(&end, NULL) ;
55

56

57 elapsed_seconds = end .tv_sec − start .tv_sec;
58 elapsed_useconds = end .tv_usec − start .tv_usec;
59 elapsed_utime = (elapsed_seconds) * 1000000 + ←-

elapsed_useconds ;
60

61 printf("%ld\n" , elapsed_utime) ;
62 sum += elapsed_utime;
63 sleep(1) ;
64 }
65 printf("\nDone doing tests\n") ;
66 double average = (double)sum/(double)count;
67 printf("Average RTT: %f microseconds\n" ,average) ;
68 close(sd) ;
69 return 0;
70 }

Listing C.2: Round-trip Time Server

1 #include <s td io . h>
2 #include <s t d l i b . h>
3 #include <unistd . h>
4 #include <s t r ing . h>
5 #include <arpa/ ine t . h>
6 #include <net ine t / in . h>
7 #include <sys / types . h>
8 #include <sys / socket . h>
9

10 #define BUFLEN 1400
11

12 int main(int argc, char **argv)
13 {
14 struct sockaddr_in si_local, si_remote;
15 int port;
16 socklen_t slen;
17 char buf[BUFLEN] ;
18 slen = sizeof(si_remote) ;
19

20 if(argc!=2) {
21 fprintf(stderr, "Usage: %s <port number>\n" , argv←-

[0]) ;
22 return 0;
23 }
24

25 port=atoi(argv[1]) ;
26 if(port<0) {
27 fprintf(stderr, "Could not parse port\n" , argv[0])←-

;
28 return 0;

109

29 }
30

31 int s=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP) ;
32

33 memset((char *) &si_local, 0 , sizeof(si_local)) ;
34 si_local.sin_family = AF_INET;
35 si_local.sin_port = htons(port) ;
36 si_local.sin_addr.s_addr = htonl(INADDR_ANY) ;
37 if (bind(s , (const struct sockaddr *)&si_local, sizeof←-

(si_local))==−1) {
38 perror("bind") ;
39 exit(EXIT_FAILURE) ;
40 }
41

42 while(1==1) {
43 int read = recvfrom(s, buf, BUFLEN, 0 , (struct ←-

sockaddr *)&si_remote, &slen) ;
44 sendto(s , buf, read, 0 , (struct sockaddr *)&←-

si_remote, slen) ;
45 }
46 close(s) ;
47 return 0;
48 }

C.2 Packetloss Test From Tunnel to Rawsocket

These applications are used measure the CPU load of SOCKMAND and

packet losses when packets are routed through an MCAP from the Tunnel

Handler to the Rawsocket Handler. The client will send a given number of

packets per second with a given packet size to the server on node A through

SOCKMAND on node B. The arguments should be varied to look at their

affect on the CPU load and packetloss. When the client is done sending,

interrupt the server using CTRL + C to view the test results. Top can also

be used to monitor the CPU load of SOCKMAND on node B.

1. Compile server.c with gcc and run it on a node A.

2. Start SOCKMAND a node B.

3. Compile client.c with gcc and run it on a node C.

Listing C.3 shows the client application and Listing C.4 shows the server

application.

Listing C.3: Packetloss Test From Tunnel to Rawsocket Client

1 #include <s td io . h>
2 #include <s t d l i b . h>
3 #include <unistd . h>
4 #include <s t r ing . h>
5 #include <arpa/ ine t . h>

110

6 #include <net ine t / in . h>
7 #include <sys / types . h>
8 #include <sys / socket . h>
9 #include <sys / time . h>
10

11 struct ipheader {
12 unsigned char ip_hl: 4 , ip_v: 4 ;
13 unsigned char ip_tos;
14 unsigned short int ip_len;
15 unsigned short int ip_id;
16 unsigned short int ip_off;
17 unsigned char ip_ttl;
18 unsigned char ip_p;
19 unsigned short int ip_sum;
20 unsigned int ip_src;
21 unsigned int ip_dst;
22 } ;
23

24

25 struct udpheader {
26 unsigned short int uh_sport;
27 unsigned short int uh_dport;
28 unsigned short int uh_len;
29 unsigned short int uh_check;
30 } ;
31

32

33 void build_ip_packet(struct ipheader *ip, int protocol, ←-

unsigned int srcaddr, unsigned int destaddr, int ←-

buflen) {
34 ip−>ip_hl = 5;
35 ip−>ip_v = 4;
36 ip−>ip_tos = 16;
37 ip−>ip_len = buflen;
38 ip−>ip_id = 0;
39 ip−>ip_ttl = 64;
40 ip−>ip_p = protocol;
41 ip−>ip_src = srcaddr;
42 ip−>ip_dst = destaddr;
43 }
44

45 void build_udp_header(struct udpheader *udp, unsigned ←-

short srcprt, unsigned short destport, int buflen) {
46 udp−>uh_sport = srcprt;
47 udp−>uh_dport = destport;
48 udp−>uh_len = htons(buflen−(sizeof(struct ipheader))) ;
49 }
50

51 int main(int argc, char **argv) {
52 struct timeval start, prev, now, end;
53 long elapsed_utime;
54 long elapsed_seconds ;
55 long elapsed_useconds ;
56

111

57 if(argc != 7) {
58 fprintf(stderr, "Usage: %s <MCAP IP address> <←-

destination IP address> <dest port number> <←-

number of seconds> <packets per seconds> <←-

packetsize>\n" , argv[0]) ;
59 return 0;
60 }
61

62 unsigned int mcapaddr = inet_addr(argv[1]) ;
63 if(mcapaddr==−1){
64 printf("Could not parse <MCAP IP address>\n") ;
65 return 0;
66 }
67 unsigned int toaddr = inet_addr(argv[2]) ;
68 if(toaddr==−1){
69 printf("Could not parse <destination IP address>\n←-

") ;
70 return 0;
71 }
72

73 int destport=atoi(argv[3]) ;
74

75 if(destport==−1){
76 printf("Could not parse <dest port number>\n") ;
77 return 0;
78 }
79

80 int srcport=9999;
81

82 int seconds = atoi(argv[4]) ;
83 if(seconds==−1) {
84 printf("Could not parse <number of seconds>\n") ;
85 return 0;
86 }
87 int packetrate = atoi(argv[5]) ;
88

89 if(packetrate==−1){
90 printf("Could not parse <packets per seconds>\n") ;
91 return 0;
92 }
93

94 int buflen = atoi(argv[6]) ;
95

96 if(buflen==−1) {
97 printf("Could not parse <packetsize>\n") ;
98 return 0;
99 }
100

101 int totalpackets = packetrate*seconds;
102 char buf[buflen] ;
103 long utimebetweensend = 1000000/packetrate;
104

105 printf("Sending %d packets\n" , totalpackets) ;
106 printf("%d packets / second\n" , packetrate) ;

112

107 printf("Sending for a total of %d seconds\n" , seconds)←-

;
108 printf("Microseconds between each packet %ld\n" , ←-

utimebetweensend) ;
109

110 struct ipheader *ip = (struct ipheader *) buf;
111 struct udpheader *udp = (struct udpheader *) (ip + 1) ;
112

113 build_ip_packet(ip,
114 IPPROTO_UDP,
115 mcapaddr,
116 toaddr,
117 buflen) ;
118

119 build_udp_header(udp, htons(srcport) , htons(destport) ,←-

buflen) ;
120

121 int tunnel_sockfd = socket(AF_INET,SOCK_DGRAM,0) ;
122

123 struct sockaddr_in servaddr;
124 bzero(&servaddr,sizeof(servaddr)) ;
125 servaddr.sin_family = AF_INET;
126 servaddr.sin_addr.s_addr = htonl(INADDR_ANY) ;
127 servaddr.sin_port = htons(5000) ;
128

129 bind(tunnel_sockfd, (struct sockaddr *)&servaddr,sizeof←-

(servaddr)) ;
130

131 bzero(&servaddr,sizeof(servaddr)) ;
132 servaddr.sin_family = AF_INET;
133

134 servaddr.sin_addr.s_addr = mcapaddr;
135 servaddr.sin_port = htons(5000) ;
136

137 long left = 0;
138 int sendtosize = sizeof(servaddr) ;
139

140 int i;
141 gettimeofday(&start, NULL) ;
142 sendto(tunnel_sockfd, buf, buflen, 0 , (struct sockaddr←-

*)&servaddr,sendtosize) ;
143

144 gettimeofday(&prev, NULL) ;
145

146

147 for(i=0;i<totalpackets−1;i++)
148 {
149 while(1) {
150 gettimeofday(&now, NULL) ;
151 elapsed_seconds = now .tv_sec − prev.tv_sec;
152 elapsed_useconds = now .tv_usec − prev.tv_usec;
153 elapsed_utime = (elapsed_seconds) * 1000000 + ←-

elapsed_useconds ;
154 left = elapsed_utime − utimebetweensend ;

113

155 if(left > 0)
156 break;
157 }
158 sendto(tunnel_sockfd, buf, buflen, 0 , (struct ←-

sockaddr *)&servaddr,sendtosize) ;
159 memcpy(&prev,&now,sizeof(struct timeval)) ;
160 prev.tv_usec −= left;
161 }
162

163 gettimeofday(&end, NULL) ;
164

165 elapsed_seconds = end .tv_sec − start .tv_sec;
166 elapsed_useconds = end .tv_usec − start .tv_usec;
167 elapsed_utime = (elapsed_seconds) * 1000000 + ←-

elapsed_useconds ;
168

169 double secs = elapsed_utime/1000000.0;
170

171 printf("Sent %d packets\n" , totalpackets) ;
172 double actualrate = (double)totalpackets/secs;
173 printf("Actual packets / second %f\n" ,actualrate) ;
174 printf("Elapsed time = %ld microseconds\n" , ←-

elapsed_utime) ;
175 printf("Elapsed time = %f seconds\n" , secs) ;
176 close(tunnel_sockfd) ;
177 return 0;
178 }

Listing C.4: Packetloss Test From Tunnel to Rawsocket Server

1 #include <s td io . h>
2 #include <s t d l i b . h>
3 #include <unistd . h>
4 #include <s t r ing . h>
5 #include <arpa/ ine t . h>
6 #include <net ine t / in . h>
7 #include <sys / types . h>
8 #include <sys / socket . h>
9 #include <s i gna l . h>
10

11 #define BUFLEN 1500
12

13 int npacksreceived ;
14

15 struct timeval start, end;
16

17 void signal_handler(int sig) {
18 printf("Receieved %d packets\n" , npacksreceived) ;
19

20 long elapsed_utime; /* elapsed time in microseconds←-

*/
21 long elapsed_seconds ; /* d i f f between seconds counter←-

*/

114

22 long elapsed_useconds ; /* d i f f between microseconds ←-

counter */
23

24 elapsed_seconds = end .tv_sec − start .tv_sec;
25 elapsed_useconds = end .tv_usec − start .tv_usec;
26 elapsed_utime = (elapsed_seconds) * 1000000 + ←-

elapsed_useconds ;
27

28 double secs = elapsed_utime/1000000.0;
29

30 double actualrate = (double)npacksreceived/secs;
31 printf("Actual packets / second %f\n" ,actualrate) ;
32 printf("Elapsed time = %ld microseconds\n" , ←-

elapsed_utime) ;
33 printf("Elapsed time = %f seconds\n" , secs) ;
34 exit(EXIT_SUCCESS) ;
35 }
36

37 int main(int argc, char **argv) {
38 npacksreceived = 0;
39 signal(SIGINT, &signal_handler) ;
40 struct sockaddr_in si_local;
41 int sd;
42 int port;
43 char buf[BUFLEN] ;
44

45 if(argc!=2) {
46 fprintf(stderr, "Usage: %s <port number>\n" , argv←-

[0]) ;
47 exit(EXIT_FAILURE) ;
48 }
49

50 port=atoi(argv[1]) ;
51

52 if ((sd=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) ==−1)←-

{
53 perror("socket") ;
54 exit(EXIT_FAILURE) ;
55 }
56

57 memset((char *) &si_local, 0 , sizeof(si_local)) ;
58 si_local.sin_family = AF_INET;
59 si_local.sin_port = htons(port) ;
60 si_local.sin_addr.s_addr = htonl(INADDR_ANY) ;
61 if (bind(sd, (const struct sockaddr *)&si_local, ←-

sizeof(si_local)) ==−1)
62 {
63 perror("bind") ;
64 exit(EXIT_FAILURE) ;
65 }
66 int first = 1 ;
67 while(1)
68 {
69 if (recvfrom(sd, buf, BUFLEN, 0 , 0 , 0)==−1)

115

70 {
71 perror("recvfrom()") ;
72 exit(EXIT_FAILURE) ;
73 }
74 else
75 {
76 npacksreceived++;
77 if(first==1) {
78 first=0;
79 gettimeofday(&start, NULL) ;
80 }
81 else{
82 gettimeofday(&end, NULL) ;
83 }
84 }
85 }
86 }

C.3 Packetloss Test From Libpcap to Tunnel

These applications are used measure the CPU load of SOCKMAND and

packet losses when packets are routed through an MCAP from the Libpcap

Handler to the Tunnel Handler. The client will send a given number

of packets per second to node B through SOCKMAND on node C. The

arguments should be varied to look at their affect on the CPU load and

packetloss. When the client is done sending, interrupt the server using

CTRL + C to view the test results. Top can also be used to monitor the

CPU load of SOCKMAND on node A.

1. Start SOCKMAND a node A.

2. Start SOCKMAND on node B with node A as the MCAP address.

3. Compile server.c with gcc and run it on a node B with a port P as

argument.

4. Interrupt SOCKMAND on node B using CTRL + C and press enter in

the server.

5. Compile client.c with gcc and run it on a node C. Use the address of

node A and the port P as arguments.

SOCKMAND on node B is killed because the packets are sent directly to

the server application and not through SOCKMAND. Listing C.5 shows the

client application and Listing C.6 shows the server application.

Listing C.5: Packetloss Test From Libpcap to Tunnel Client

1 #include <s td io . h>
2 #include <s t d l i b . h>

116

3 #include <unistd . h>
4 #include <s t r ing . h>
5 #include <arpa/ ine t . h>
6 #include <net ine t / in . h>
7 #include <sys / types . h>
8 #include <sys / socket . h>
9 #include <sys / time . h>
10

11

12

13 int main(int argc, char **argv) {
14 struct timeval start, prev, now, end;
15 long elapsed_utime; /* elapsed time in microseconds←-

*/
16 long elapsed_seconds ; /* d i f f between seconds counter←-

*/
17 long elapsed_useconds ; /* d i f f between microseconds ←-

counter */
18

19 if(argc != 6) {
20 fprintf(stderr, "Usage: %s <MCAP IP address> <dest←-

port number> <number of seconds> <packets per←-

seconds> <packetsize>\n" , argv[0]) ;
21 return 0;
22 }
23

24 unsigned int toaddr = inet_addr(argv[1]) ;
25 if(toaddr==−1){
26 printf("Could not parse <MCAP IP address>\n") ;
27 return 0;
28 }
29

30 int destport=atoi(argv[2]) ;
31

32 if(destport==−1){
33 printf("Could not parse <dest port number>\n") ;
34 return 0;
35 }
36

37 int srcport = 9999;
38

39 int seconds = atoi(argv[3]) ;
40 if(seconds==−1){
41 printf("Could not parse <number of seconds>\n") ;
42 return 0;
43 }
44 int packetrate = atoi(argv[4]) ;
45

46 if(packetrate==−1) {
47 printf("Could not parse <packets per seconds>\n") ;
48 return 0;
49 }
50

51 int buflen = atoi(argv[5]) ;

117

52

53 if(buflen==−1){
54 printf("Could not parse <packetsize>\n") ;
55 return 0;
56 }
57

58 int totalpackets = packetrate*seconds;
59 char buf[buflen] ;
60 long utimebetweensend = 1000000/packetrate;
61

62

63 printf("Sending %d packets\n" , totalpackets) ;
64 printf("%d packets / second\n" , packetrate) ;
65 printf("Sending for a total of %d seconds\n" , seconds)←-

;
66 printf("Microseconds between each packet %ld\n" , ←-

utimebetweensend) ;
67

68

69 int s = socket(AF_INET,SOCK_DGRAM,0) ;
70

71 struct sockaddr_in servaddr;
72 bzero(&servaddr,sizeof(servaddr)) ;
73 servaddr.sin_family = AF_INET;
74

75 servaddr.sin_addr.s_addr = toaddr;
76 servaddr.sin_port = htons(destport) ;
77

78 long left = 0;
79 int sendtosize = sizeof(servaddr) ;
80

81 int i;
82 gettimeofday(&start, NULL) ;
83 sendto(s , buf, buflen, 0 , (struct sockaddr *)&servaddr←-

,sendtosize) ;
84 gettimeofday(&prev, NULL) ;
85

86

87 for(i=0;i<totalpackets−1;i++)
88 {
89

90 while(1) {
91 gettimeofday(&now, NULL) ;
92 elapsed_seconds = now .tv_sec − prev.tv_sec;
93 elapsed_useconds = now .tv_usec − prev.tv_usec;
94 elapsed_utime = (elapsed_seconds) * 1000000 + ←-

elapsed_useconds ;
95 left = elapsed_utime − utimebetweensend ;
96 if(left > 0)
97 break;
98 }
99 sendto(s , buf, buflen, 0 , (struct sockaddr *)&←-

servaddr,sendtosize) ;
100 memcpy(&prev,&now,sizeof(struct timeval)) ;

118

101 prev.tv_usec −= left;
102 }
103

104 gettimeofday(&end, NULL) ;
105

106 printf("\nDONE\n\n") ;
107

108 elapsed_seconds = end .tv_sec − start .tv_sec;
109 elapsed_useconds = end .tv_usec − start .tv_usec;
110 elapsed_utime = (elapsed_seconds) * 1000000 + ←-

elapsed_useconds ;
111

112 double secs = elapsed_utime/1000000.0;
113

114 printf("Sent %d packets\n" , totalpackets) ;
115 double actualrate = (double)totalpackets/secs;
116 printf("Actual packets / second %f\n" ,actualrate) ;
117 printf("Elapsed time = %ld microseconds\n" , ←-

elapsed_utime) ;
118 printf("Elapsed time = %f seconds\n" , secs) ;
119 close(s) ;
120 return 0;
121 }

Listing C.6: Packetloss Test From Libpcap to Tunnel Server

1 #include <s td io . h>
2 #include <s t d l i b . h>
3 #include <unistd . h>
4 #include <s t r ing . h>
5 #include <arpa/ ine t . h>
6 #include <net ine t / in . h>
7 #include <sys / types . h>
8 #include <sys / socket . h>
9 #include <s i gna l . h>
10 #include <sys / time . h>
11

12 #include "libsockmand.h"
13

14 #define BUFLEN 512
15

16 int npacksreceived ;
17

18 struct timeval start, end;
19

20 void signal_handler(int sig)
21 {
22 printf("Received %d packets\n" , npacksreceived) ;
23

24 long elapsed_utime; /* elapsed time in microseconds←-

*/
25 long elapsed_seconds ; /* d i f f between seconds counter←-

*/

119

26 long elapsed_useconds ; /* d i f f between microseconds ←-

counter */
27

28 elapsed_seconds = end .tv_sec − start .tv_sec;
29 elapsed_useconds = end .tv_usec − start .tv_usec;
30 elapsed_utime = (elapsed_seconds) * 1000000 + ←-

elapsed_useconds ;
31

32 double secs = elapsed_utime/1000000.0;
33

34 double actualrate = (double)npacksreceived/secs;
35 printf("Actual packets / second %f\n" ,actualrate) ;
36 printf("Elapsed time = %ld microseconds\n" , ←-

elapsed_utime) ;
37 printf("Elapsed time = %f seconds\n" , secs) ;
38 exit(EXIT_SUCCESS) ;
39 }
40

41 int main(int argc, char **argv)
42 {
43 npacksreceived = 0;
44 signal(SIGINT, &signal_handler) ;
45 struct sockaddr_in si_local, si_tmp;
46 int s;
47 char buf[BUFLEN] ;
48

49 if(argc!=2)
50 {
51 fprintf(stderr, "Usage: %s <destport>\n" , argv[0])←-

;
52 return 0;
53 }
54

55 int destport = atoi(argv[1]) ;
56 if(destport == −1) {
57 printf("Could not parse <destport>\n") ;
58 return 0;
59 }
60

61 int tunnel_sockfd = sm_socket(AF_INET,SOCK_DGRAM, 0 , 1) ;
62

63 memset((char *) &si_tmp, 0 , sizeof(si_tmp)) ;
64 si_tmp.sin_family = AF_INET;
65 si_tmp.sin_port = htons(destport) ;
66 si_tmp.sin_addr.s_addr = htonl(INADDR_ANY) ;
67 sm_bind(tunnel_sockfd, (const struct sockaddr *)&←-

si_tmp, sizeof(si_tmp)) ;
68 printf("Kill local SOCKMAND and press enter\n") ;
69 getchar() ;
70

71 s=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP) ;
72

73 memset((char *) &si_local, 0 , sizeof(si_local)) ;
74 si_local.sin_family = AF_INET;

120

75 si_local.sin_port = htons(5000) ;
76 si_local.sin_addr.s_addr = htonl(INADDR_ANY) ;
77 bind(s, (const struct sockaddr *)&si_local, sizeof(←-

si_local)) ;
78

79 int first = 1 ;
80 while(1)
81 {
82 recvfrom(s , buf, BUFLEN, 0 , 0 , 0) ;
83

84 npacksreceived++;
85 if(first==1) {
86 first=0;
87 gettimeofday(&start, NULL) ;
88 }
89 else{
90 gettimeofday(&end, NULL) ;
91 }
92 }
93 }

C.4 SOCKMAND and Mobile Application Test

Applications

These applications are used to measure the CPU load of SOCKMAND and a

mobile application when they are receiving packets at a given rate and with

a given packet size. The client will send the a given number of packets per

second to node A. The arguments should be varied to look at its affect on

the CPU load. The server and SOCKMAND on node A should be monitored

with top.

1. Make the server using make and run it on a node A with SOCKMAND

running.

2. Compile client.c with gcc and run it on another node.

Listing C.7 shows the client application and Listing C.8 shows the server

application.

Listing C.7: SOCKMAND load client

1 #include <s td io . h>
2 #include <s t d l i b . h>
3 #include <unistd . h>
4 #include <s t r ing . h>
5 #include <arpa/ ine t . h>
6 #include <net ine t / in . h>
7 #include <sys / types . h>
8 #include <sys / socket . h>
9 #include <sys / time . h>

121

10

11

12 int main(int argc, char **argv) {
13 struct timeval start, prev, now, end;
14 long elapsed_utime; /* elapsed time in microseconds←-

*/
15 long elapsed_seconds ; /* d i f f between seconds counter←-

*/
16 long elapsed_useconds ; /* d i f f between microseconds ←-

counter */
17

18 if(argc!=6) {
19 fprintf(stderr, "Usage: %s <ipaddress> <dest port ←-

number> <number of seconds> <packets per ←-

seconds> <packetsize>\n" , argv[0]) ;
20 exit(EXIT_FAILURE) ;
21 }
22

23 int destport = atoi(argv[2]) ;
24 if(destport==−1){
25 printf("Could not parse <dest port number>\n") ;
26 return 0;
27 }
28 int seconds = atoi(argv[3]) ;
29 if(seconds==−1) {
30 printf("Could not parse <number of seconds>\n") ;
31 return 0;
32 }
33 int packetrate = atoi(argv[4]) ;
34 if(packetrate==−1){
35 printf("Could not parse <packets per seconds>\n") ;
36 return 0;
37 }
38 int buflen = atoi(argv[5]) ;
39 if(buflen==−1){
40 printf("Could not parse <packetsize>\n") ;
41 return 0;
42 }
43

44 int totalpackets = packetrate*seconds;
45 char buf[buflen] ;
46 long utimebetweensend = 1000000/packetrate;
47

48

49 printf("Sending %d packets\n" , totalpackets) ;
50 printf("%d packets / second\n" , packetrate) ;
51 printf("Sending for a total of %d seconds\n" , seconds)←-

;
52 printf("Microseconds between each packet %ld\n" , ←-

utimebetweensend) ;
53

54

55 int s = socket(AF_INET,SOCK_DGRAM,0) ;
56

122

57 struct sockaddr_in servaddr;
58 bzero(&servaddr,sizeof(servaddr)) ;
59 servaddr.sin_family = AF_INET;
60

61 servaddr.sin_addr.s_addr = inet_addr(argv[1]) ;
62 servaddr.sin_port = htons(destport) ;
63

64 long left = 0;
65 int sendtosize = sizeof(servaddr) ;
66

67 int i;
68 gettimeofday(&start, NULL) ;
69 if (sendto(s , buf, buflen, 0 , (struct sockaddr *)&←-

servaddr,sendtosize)==−1){
70 perror("sendto()") ;
71 exit(EXIT_FAILURE) ;
72 }
73 gettimeofday(&prev, NULL) ;
74

75

76 for(i=0;i<totalpackets−1;i++)
77 {
78

79 while(1) {
80 gettimeofday(&now, NULL) ;
81 elapsed_seconds = now .tv_sec − prev.tv_sec;
82 elapsed_useconds = now .tv_usec − prev.tv_usec;
83 elapsed_utime = (elapsed_seconds) * 1000000 + ←-

elapsed_useconds ;
84 left = elapsed_utime − utimebetweensend ;
85 if(left > 0)
86 break;
87 }
88 if (sendto(s , buf, buflen, 0 , (struct sockaddr←-

*)&servaddr,sendtosize)==−1){
89 perror("sendto()") ;
90 exit(EXIT_FAILURE) ;
91 }
92 memcpy(&prev,&now,sizeof(struct timeval)) ;
93 prev.tv_usec −= left;
94 }
95

96 gettimeofday(&end, NULL) ;
97

98 printf("\nDONE\n\n") ;
99

100 elapsed_seconds = end .tv_sec − start .tv_sec;
101 elapsed_useconds = end .tv_usec − start .tv_usec;
102 elapsed_utime = (elapsed_seconds) * 1000000 + ←-

elapsed_useconds ;
103

104 double secs = elapsed_utime/1000000.0;
105

106 printf("Sent %d packets\n" , totalpackets) ;

123

107 double actualrate = (double)totalpackets/secs;
108 printf("Actual packets / second %f\n" ,actualrate) ;
109 printf("Elapsed time = %ld microseconds\n" , ←-

elapsed_utime) ;
110 printf("Elapsed time = %f seconds\n" , secs) ;
111 close(s) ;
112 return 0;
113 }

Listing C.8: SOCKMAND load server

1 #include <s td io . h>
2 #include <s t d l i b . h>
3 #include <net ine t / in . h>
4 #include <s t r ing . h>
5

6 #include "libsockmand.h"
7

8 int main(int argc, char **argv) {
9 struct sockaddr_in si_local;
10 int sd;
11 char buf[1500] ;
12

13 if(argc!=2) {
14 fprintf(stderr, "Usage: %s <port number>\n" , argv←-

[0]) ;
15 return 0;
16 }
17

18 int port=atoi(argv[1]) ;
19 if(port==−1){
20 fprintf(stderr, "Usage: %s <port number>\n" , argv←-

[0]) ;
21 return 0;
22 }
23

24

25 if ((sd = sm_socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP, ←-

0))==−1){
26 printf("Error in sm_socket()") ;
27 return 0;
28 }
29

30 memset((char *) &si_local, 0 , sizeof(si_local)) ;
31 si_local.sin_family = AF_INET;
32 si_local.sin_port = htons(port) ;
33 si_local.sin_addr.s_addr = htonl(INADDR_ANY) ;
34 if (sm_bind(sd, (const struct sockaddr *)&si_local, ←-

sizeof(si_local)) == −1) {
35 printf("Error in sm_bind()") ;
36 return 0;
37 }
38

124

39 while(1) {
40 if (sm_recvfrom(sd, buf, 1500 , 0 , 0 , 0)==−1){
41 printf("Error in sm_recvfrom()") ;
42 return 0;
43 }
44 }
45 return 0;
46 }

125

126

Appendix D

Source Code

The source code of SOCKMAND can be downloaded at http://tramp-

project.org/downloads/sockmand.tgz . The archive includes the source

code of SOCKMAND, measurement applications and test applications. The

source code is released under the GNU General Public License 3.

The source codes of the measurement tools are included so other

measurements of the samemetrics can be run in the sameway. By using the

same tools for measurements, it will be possible to compare other results

with the results presented in this thesis.

The archive includes README files which gives instructions on compil-

ing and running.

The MD5 checksum of the archive is:

efdce6f9b99a7e5a816fbfd82851304b

127

