

UNIVERSITY OF OSLO

Department of informatics

Generating gameplay scenarios

through faction conflict

modeling.

Master thesis

Marius Brendmoe

1. August 2012

1

 Abstract

A gameplay scenario can be defined as a series of events that emerge from a given context.

These events can potentially be influenced by the player through gameplay, which results in

meaningful interaction with the simulation. Creating gameplay scenarios in computer games

and training simulators is an immensely expensive and time consuming undertaking. A

common trait for most scenarios created is that they tend to be static. Once a player has

completed the scenario once, he knows exactly how it will behave the next time, reducing or

removing the replay value of the gameplay scenario. This thesis investigates how artificial

intelligence techniques can be used to define virtual worlds and interaction between entities,

such as virtual humans, to dynamically generate gameplay scenarios by simulating the

conflict between entities as they clash over conflicting interests in the world.

The first part of this thesis introduces the vast field of artificial intelligence, how it is usually

applied in games, and how new concepts are slowly trickling into the field of game artificial

intelligence. Topics introduced include crowd simulation techniques, agent simulation and

how one can describe arbitrary virtual worlds through the use of semantics, smart objects and

fuzzy logic.

The second part describes the practicalities of the implementation. Here, the game engine

used to develop the prototype game world is presented and compared to other alternatives.

Next, the design and implementation details of the proof of concept implementation, called

the “Faction Interaction Framework”, are described in detail. The design allows for quickly

defining the important resources, actions, and potential interactions between entities in a

virtual world. Finally, the implementation can be run as an add-on to a virtual world, which

can be used to drive scenario generation through conflict simulation.

The work presented in this thesis provides a proof of concept solution for dynamically

generating gameplay scenarios. By providing game developers with a pattern for defining the

elements of their virtual world that is the source of conflict, the “Faction interaction

framework” provides an approach to have the virtual world autonomously generate myriads of

gameplay scenarios depending on user input. This has potential application especially to

large, open world games, massively multiplayer online games and training simulators, where

the generation of novel gameplay scenarios is challenging due to the large amount required.

2

 Table of contents

Abstract .. 1

Chapter 1 Introduction .. 5

1.1 Background and Motivation .. 5

1.2 Problem Statement ... 8

1.3 Limitations ... 9

1.4 Research Method ... 10

1.5 Contributions .. 11

1.6 Example Scenario: Hunger Conflict .. 12

1.7 Outline .. 13

Chapter 2 Background ... 15

2.1 Game engine overview... 15

2.2 Artificial Intelligence ... 19

2.3 Spatial partitioning ... 23

2.4 Summary .. 24

Chapter 3 Topics in artificial intelligence ... 25

3.1 Agent reasoning: finite state machines .. 25

3.2 Agent reasoning: behavior trees ... 26

3.3 Crowd simulation ... 28

3.4 Factions and groups ... 30

3.5 Smart objects .. 31

3.6 Fuzzy logic ... 33

3.7 Semantics for game worlds .. 37

3.8 Neural networks ... 39

3.9 Navigation .. 40

3

3.10 Scaling simulations to larger populations .. 41

3.11 Summary .. 42

Chapter 4 Technologies and frameworks .. 43

4.1 Evaluating game engines and frameworks... 43

4.2 Unity in depth .. 47

4.3 Summary .. 54

Chapter 5 Core design ... 55

5.1 World description ... 57

5.2 Behavior model .. 63

5.3 World model .. 65

5.4 Actors ... 67

5.5 Agents .. 68

5.6 Actor reasoning engine .. 70

5.7 Summary .. 74

Chapter 6 Framework implementation .. 76

6.1 C# features ... 76

6.2 Implementing semantic attributes and smart objects ... 78

6.3 Implementing the world representation ... 79

6.4 Actors ... 80

6.5 Faction relations ... 83

6.6 Defining a world .. 85

6.7 Summary .. 85

Chapter 7 Game scenario implementation .. 87

7.1 Food sources .. 88

7.2 Villages .. 89

7.3 Actors and agents ... 89

4

7.4 Observing faction interaction ... 92

7.5 Investigating performance.. 96

7.6 Discussion .. 99

7.7 Summary .. 102

Chapter 8 Conclusion .. 104

8.1 Summary .. 104

8.2 Contributions .. 105

8.3 Future work .. 105

References .. 107

5

Chapter 1 Introduction

This chapter provides an overview of all the work presented in this thesis. Section 1.1 argues

for the importance of the field of study presented here, and provides an introduction to the

field of game and simulation research. Section 1.2 contains the problem statement, defining

the main questions that this thesis attempts to answer. Section 1.3 describes the limitations

applied to the problem for the sake of maintaining a surmountable scope. Next, section 1.4

introduces the research methodology used throughout this thesis, which is followed by

contributions through this work, which is presented in section 1.5. Section 1.6 then presents

an example scenario which is used throughout the thesis as a point of reference for the

examples used throughout the theoretical discussion. Finally section 1.7 provides an outline of

the content of each chapter.

1.1 Background and Motivation

Since the arcade games from the 70’s and 80’s, the face of the game industry has changed

drastically. At the time, games were built on dedicated hardware that used jagged lines and

boxes to create the virtual world for players to immerse themselves in. Since then, the income

and number of people employed in the games industry has skyrocketed [2]. The same is true

for the cost of developing a single game.

Since the arcades of the 80s, there has been astounding advances in computational hardware,

allowing computer scientists to create breathtaking worlds that sometimes look so realistic

that they are mistaken for photographs. With this added realism comes an immense increase

in cost. Since Pack-Man was released for the first time in 1980, the cost of developing games

has gone through the roof [3]. According to BBC World News, Namco produced Pacman for

100,000 USD in 1982. Halo 3, which was released 2007 cost 15,000,000 USD to create [4]. In

2009, Double Fine released their console title “Brütal Legend” which had a reported budget of

24,000,000 USD [5].

As realism in graphics increase, so do the expectations of realism in interaction. Physics

engine technology, artificial intelligence (AI) capable of navigating the complex worlds and

reacting appropriately to situations, sound effects and music created by expert composers and

graphical content created by a cohort of artists all add up to a very expensive end product.

One could go on for a long time about all the features required for a high-end title today, but

6

we need only to look at the size of today’s studios to get an impression of the immense

amount of work required.

Because of the daunting number of man-hours invested in these productions, the need for

cutting development costs is more apparent now than ever. This need has spawned many

companies focused on bringing powerful third-party solutions to the hands of game

development studios. These new tools allow developers to focus on creating games instead of

spending most of the time creating the underlying technology.

In the last few years, there has been an increased focus on AI in games. This is most apparent

in the new middleware solutions being developed and licensed for use in the most prestigious

game projects. The Euphoria system [6] by Natural Motion has become widely used in games

such as “Grand Theft Auto 4” and “Star Wars: The Force Unleashed”. Havok [7], one of the

most widely used physics libraries, has also expanded functionality with an advanced AI

module to stay competitive.

While digital games manufacturers are the most prominent users of new middleware, medical

and military industries are also investing heavily in simulation research and technology [8].

These technologies are often similar or even the same as the ones used in modern games. The

United States MOVES institute is a postgraduate institute dedicated to such research, and in

July 2002, they launched the Americas Army computer game for recruitment and training.

Kongsberg Defense was in 2010 awarded a contract worth 100 million SEK to develop a

ground-air combat simulator for the Swedish Army [9]. In 2008, Pope et al. published a paper

describing the challenges and needs for creating realistic agent populations on a large scale

[10]. The paper brought attention to the need for more believable background populations in

simulations used to prepare soldiers for combat zones. The current conflict in the Middle East

requires a whole new skillset as soldiers must be able to gauge the level of animosity in a

population and make use of their interpersonal skills to disarm potentially dangerous

situations before they escalate into armed conflicts. The generation of such training scenarios

are very expensive and are usually scripted to the smallest detail [11, 12]. While this attention

to detail is surely necessary to create a realistic simulation, it stands to reason that one static

training mission loses its impact once the dialogue options have been explored by the user.

Drawing from Pope et al.’s paper on realistic background populations, it would be reasonable

to argue that the scenario would become much more flexible if the bystanders could change

the outcome of the scenario through the current friction between factions and their current

animosity towards the user.

7

The huge interest for virtual world applications has increased the demand for such simulations

to respond in novel and realistic ways. In the real world, the environment and other creatures

respond to actions performed by other entities in the system. For such realism to be possible

in a game or simulation setting today, designers usually have to handcraft each action and

reaction that agents perform. In the games industry, there are examples of this being solved in

more novel ways. One approach is demonstrated in the Left 4 Dead series by Valve corp [13].

This series is most noteworthy for their innovative piece of technology called “The Director”

which directs the focus of all virtual agents in the simulation, to fine tune pacing and

challenge to the skill of the players [14]. Another example is No One Lives Forever 2, where

all virtual agents act autonomously, interacting with different objects in the game, creating an

illusion that agents were operating with purpose. Russell et al. describe an agent in AI to be

“anything that can be viewed as perceiving its environment through sensors and acting upon

that environment through actuators” [15] In AI, the real world and a virtual world can both

be classified as an environment, the only difference is the model-complexity the agent

operates in.

As computer games become more and more realistic, the gap between game developers and

engineers developing “serious” simulations is narrowing. As their fields begin to overlap

more and more, they find themselves required to address the same challenges. As mentioned

in the previous paragraph, one of these challenges is found in creating realistic and immersive

conflict scenarios. As it stands now, a large amount of work must be done for each possible

scenario that developers wish to present to their users.

Generating these scenarios through “brute force” methods such as scripting, each possible

scenario and outcome are becoming more and more problematic as cost of development goes

up. In addition to cost, development time is also a factor that leaves current methods

inadequate. Soldiers training for missions in the Middle East will soon find themselves

repeating the same training missions over and over again without much variation, arguably

reducing the effectiveness of the exercise. In the games industry, there are games that rely on

AI almost exclusively to provide gameplay experiences, such as “Mount & Blade”. However

there are very few games that have the budget to implement such complex features as well as

the more common scripted narrative. The game “Elder Srolls: Skyrim” is an example of such

a game [16]. For the next generation of consoles, both Microsoft and Ubisoft have made

comments regarding their focus on dynamic AI solutions [17, 18].

8

Systems for creating dynamic interaction on an agent level have come a long way, as is

evident in the Euphoria software suite [6], among others. Complex solutions that combine

physics simulations and character AI to create highly believable world interactions and crowd

simulations allow for the creation of scenarios that appear highly realistic. According to Pope

et al. [10], this is not enough to generate a believable training environment, and thus, it can be

argued that a new approach should be taken. By simulating the interactions between larger

groups of agents with varying faction and group allegiances, and allowing them to resolve

conflicts in ways determined by the designer, it could be possible to have agents generate a

myriad of varied scenarios that would make both computer games and combat simulations

more challenging and interesting.

1.2 Problem Statement

In this thesis, we address the challenge of automatically generating virtual world scenarios

through faction-interaction modeling. This includes seeking solutions to questions like: How

can one generate gameplay scenarios by simulating the interactions between the agents that

populate a game world, while still allowing for scripted events to drive narrative?

Scripted scenarios in games tend to offer a higher quality of linear narrative and gameplay

than can be generated through procedural systems [19]. A scenario in a virtual world can be

described as the context in which the game takes place, the development of the game over

time, and some events that take place during game play [20]. Creating scenarios is a laborious

process, and the creation of such content in large quantities is immensely expensive. Despite

the cost of scripted content, it offers little to no replay value. While this might be fine for

entertainment products with a one-time fee, it is less beneficial for subscription based games

and training simulations where new and different challenges are essential [10]. An additional

issue is also posed in that such systems are usually larger in scope than one-time fee games

which require considerations to be made in regards to scalability.

This thesis explores ways of assisting game and simulator designers in generating emergent

gameplay scenarios [21], while still making it possible to have scripted gameplay sections.

Further, by exploring the field of AI, we seek answers for the following: “What approaches

exist? How can these approaches be applied to solve the stated problem? What steps must be

made to apply these principles to solutions of massive scale?”

9

The goal of this thesis is to further describe the design and development of a software solution

that attempts to solve the problem stated above. This framework, called the “Faction

Interaction Framework” (FIF), will attempt to use modern game development and AI

techniques that allow game designers to describe their world and agents to the framework,

which in turn, will drive the agents into conflicts which results in novel gameplay scenarios.

To accomplish this, the FIF is based on two concepts within AI research: The first concept is

the study and modeling of groups and conflict, commonly described as “Crowd Simulation”.

While several key concepts will be discussed and drawn upon to create a simulation of group

conflict, the most essential piece will be the work of Medler et al. [22] which suggests using

models from the field of conflict theory. The second concept which will be at the center of

this thesis is the concept of semantic modeling to create a more detailed world for AI-driven

systems to use for reasoning.

The FIF will be evaluated by investigating its potential for describing and simulating virtual

worlds. This will be accomplished by observing several factors: Does the system actually

generate conflict scenarios dynamically? How complex is the framework to use? Given the

real-time requirements of training and game worlds, does the framework have a practical

application? The scope of these questions is daunting. Due to this, it is essential to focus on

viability of the implementation. Therefore, some topics, discussed in the theoretical

foundation of this thesis, are excluded from the implementation.

1.3 Limitations

The topics essential for this thesis are focused most intently on creating the scaffolding

required to demonstrate the viability of the approach presented. Due to limitations in scope,

this causes the exclusion of several extensive topics. The most interesting of these are:

1. Advanced actor hierarchies: Actor hierarchies describe the interdependency of

factions and their ability to manipulate and order sub-factions to perform different

tasks. While the simulation of conflict within factions is a great source of conflict

scenarios, this part of the simulation is removed from the scope due to its complexity.

2. Massive world simulations: The main reason for this thesis is to investigate a potential

approach to generating original gameplay content through simulating conflict. There

are few types of software more in need of this than modern massively multiplayer

10

online games. While this is a very important topic, it is also put outside the scope of

this thesis. This thesis focuses on creating a proof of concept for the basic ideas to the

approach, and therefore, the work on scalability and creating viable test scenarios

would be too large.

3. Learning AI: The core reasoning system of the approach proposed in this thesis relies

on what can be described as a neural network (if one uses a broad definition of the

term). As neural networks can be trained using training sets [15], it would make sense

to apply the same techniques to create worlds that followed a specific evolution

pattern through training of the actors in the world. This again, is far outside the scope

of demonstrating viability, and is therefore excluded completely. However, this topic

is discussed briefly in section 8.3 on future work.

1.4 Research Method

The research approach for this thesis is rooted in the methodology specified by the ACM Task

Force [23]. This methodology advocates three different paradigms of the computing

discipline. Each paradigm is an iterative approach that includes four steps. Each paradigm is

applied to a different part of the work, and is iterated as required.

1.4.1 Theory

The theory paradigm consists of four steps followed in the development of valid theory:

1. Characterize objects of study (definition).

2. Hypothesize possible relationships among them (theorem).

3. Determine whether the relationships are true (proof).

4. Interpret the results.

1.4.2 Abstraction

The abstraction paradigm is applied to problems where the model does not agree with

experimental evidence. The steps are rooted in the experimental scientific method:

1. Form a hypothesis.

2. Construct the model and make a prediction.

3. Design an experiment and collect data.

11

4. Analyze the results.

1.4.3 Design

The design paradigm deals with engineering of a solution, and follows the following steps:

1. State requirements.

2. State specifications.

3. Design and implement the system.

4. Test the system.

1.4.4 Summary

The theory and abstraction paradigms are used mostly when dealing with strict computer

science problems with roots in applied mathematics and natural science [23]. This thesis is

heavily engineering focused, and thus, the design paradigm is used as the foundation for the

work presented. Even so, the theory and abstraction paradigms are essential when evaluating

a solution. Abstraction is used to analyze and improve upon performance and theory is

essential for formulating algorithms for the different elements in the specification proposed in

the second step of the design paradigm.

1.5 Contributions

This thesis has provided an introduction to, and explored the complexities of creating virtual

world simulations for games, military and emergency applications. By describing a set of the

most used AI techniques for such applications, the reader has been given insight into how

different game and training scenarios are built today, as well as the cutting edge solutions that

potentially changes this paradigm. Further, these techniques have been used to create a

proposal for a framework for simulating conflicts between faction groups. Further, this thesis

describes how the proposed framework can be used to describe virtual worlds and assist game

developers in creating dynamically changing worlds.

In addition to the theoretical details of game AI and crowd simulation techniques, this thesis

describes several game engines and comment on their suitability for use in AI research. Next,

a proof of concept implementation of the faction interaction framework is shown in the engine

deemed most viable. This implementation is discussed in terms of viability, resource

12

requirements, scalability and ease of use, should it be used in game or simulation projects.

Finally, this thesis discusses the viability of generic AI solutions in regards to game

development and discusses potential future improvements for the FIF.

By providing game developers with a pattern for defining the elements of their virtual world

that is the source of conflict, the FIF provides an approach to have the virtual world

autonomously generate myriads of gameplay scenarios depending on user input. This has

potential application especially to large, open world games, massively multiplayer online

games and training simulators, where the generation of novel gameplay scenarios is

challenging due to the large amount required.

1.6 Example Scenario: Hunger Conflict

In this virtual world scenario, two tribal villages are being given humanitarian aid in the form

of food drops from an air-drop program. Every week, a large batch of food is dropped in a

field situated halfway between the villages. While the humanitarian organization responsible

for delivering the aid has calculated that the food provided should be sufficient to last until the

next drop is delivered, tensions have grown as the two villages hoard the food in fear of the

food program being discontinued without notice. Each village is led by an elder, who is calm

and diplomatic individual, trying their best to mend the strained relations between the two

factions.

This scenario is, arguably, a good example of where to apply the FIF framework, as it could

potentially be of note in all the different types of virtual world simulations described in

section 1.2 (games, military, emergency). One could easily introduce firearms to this scenario,

to angle it towards military training, or in the case of games, have two different fantasy races

inhabit the villages.

In each village there are various fractions that pursue their own agendas as well as doing their

best to aid their village in getting the upper hand. These sub-groups are:

 Thieves: Will always run away from a conflict initiated by other groups.

 Warriors: Has the battle ready trait, causing them to train for violent conflict, and

more easily make use of this means to resolve conflicts between factions.

13

 Farmers: In the extended example, these are capable of producing their own food,

however they will prefer to access the more easily accessible food source if it is

uncontested.

 Villagers: No specific traits.

In addition, there are villagers with no extended agenda, who’s only concern is survival. The

warriors of each tribe are advocating the use of violence to gain control of the area where the

food supplies are dropped, while the thieves care little either way, and are only concerned

with getting as much of the food as they can, no matter what the rest of their village should

decide to do.

Each village has its own training area where the warriors of the tribe train to prepare

themselves for the conflict they think is coming. The villagers are not worldly folk, and

greatly prefer staying within the village boundaries. They especially do not enjoy being in the

opposing village.

1.7 Outline

This thesis investigates methods for enriching the knowledge of agents in virtual worlds,

generating conflict scenarios and explaining how these contributions can be beneficial to the

design and creation of virtual worlds for various purposes. It is divided into several parts,

where Chapter 2 and 3 compose the theoretical part which introduces key topics in AI. The

next part discusses the technicalities required for implementation of framework and prototype,

this information is presented in chapter 4-6. Finally, an in-depth discussion of the results is

presented in chapter 7 and 8.

We start by providing an overview of the terminology used when discussing game engines in

section 2.1. There are several core elements that come into play when designing AI for games

[24]: movement, decision making, strategy and agent reasoning. All these elements are

discussed in section 2.2. Further background information is provided in a discussion on the

effects of spatial partitioning and its potential effects on real time simulations in Spatial

partitioning

Once the most essential terminology has been introduced, we move on to the more detailed

introduction to advanced techniques in the field of Game AI. As discussed in section 1.4, we

14

will investigate methods for describing the world in any detail. World representation

techniques and how they apply to the FIF are discussed in sections 3.5 and 3.7. The other core

concept of the FIF is that of conflict modeling and crowd simulation. These topics are

discussed in, sections 3.3 and 3.7. In addition to this, we introduce concepts essential to the

construction of a game scenario, such as agent reasoning systems in sections 3.1 and 3.2 as

well as advanced navigation topics described in section 3.9.

Given this solid introduction to AI concepts, the next chapter investigates potential game

engines for use in AI research and game prototyping. Section 4.1 provides an overview of

several game engines, while section 4.2 presents a more thorough discussion of the Unity3D

engine. This investigation of potential game engines is very important for keeping within a

reasonable time schedule. The engine will be used in conjunction with the FIF to produce a

game scenario as a proof of concept. The design proposal for the FIF is described in Chapter

5. Here, all aspects of the core framework implementation are discussed. The world

representation implementation is described in sections 5.1, 5.2 and 5.3. Faction and conflict

systems are laid out in section 5.4, 5.5 and 5.6.

Chapter 6 provides further details into the practicalities of implementing the FIF prototype.

First a short overview is provided of the language used in section 6.1 before the details of

each FIF feature is described in the remaining sections. This chapter leads directly into

Chapter 7, which describes the implementation of the test scenario in Unity3D, and how this

was integrated with the FIF.

Chapter 8 concludes the thesis. Here, a quick summary is provided in section 8.1. Next, a

brief mention of contributions to the field is listed in section 8.2. Finally, a discussion

regarding future work is presented in section 8.3. Here, some concepts that were left out of the

prototype for the sake of simplicity are discussed in detail, alongside concepts for parallelism,

scalability and applicability to large scale multiuser environments.

15

Chapter 2 Background

This chapter introduces terminology and concepts that form the basis for discussion of real

time simulation and game development research. Section 2.1 provides a brief description of

how a game engine functions and describes terms commonly used in the field. Understanding

of this terminology is essential for understanding the more complex topics covered in later

sections. Section 2.2 introduces the fundamental terminology and concepts in the field of AI.

The topics presented, are essential for understanding the complexities of the more advanced

methods introduced in Chapter 3. Finally, section 2.3 describes spatial partitioning as a

general principle for optimizing allocation of computational resources.

2.1 Game engine overview

Game engines are highly complex systems constructed from many different modules to

Figure 1 - A simple game engine loop

16

provide a wide range of services to game designers. Game engines are real time systems that

usually run on an update frequency of 30 or 60 frames per second. Sometimes different

components run at different update frequencies or in parallel [25]. Figure 1 shows a simplified

game engine loop, where a single frame can be seen below the element “enter game loop”. It

should be noted that game engines and training simulators more often than not, share the same

requirements and solve many problems in the same fashion. Therefore, arguments that are

made from a game development perspective can often be directly applied to training

simulators. These systems are usually organized into modules, or components [26]. A typical

set of such modules is listed in the following subsections.

2.1.1 Scene Management

The scene manager is responsible for organizing the world in which the simulation takes

place. Scenes are usually arranged in trees, with the scene itself as the root. Most game

engines rely heavily on hierarchies to organize the game play logic [26]. It is common to

utilize polymorphism to construct advanced combinations of features that form complete

simulated objects. Figure 22 shows what such a hierarchy might look like: here you can see

the basic game object and dynamic game object classes containing the essential information

Figure 2 - Simple Object Hierarchy

17

required to exist in the virtual world. Inheriting these features are then the agent and particle

emitter classes. The particle emitter is used in rendering to enhance visual fidelity, while the

agent is a simulated entity in the game. The agent contains a physics body which allows it to

be affected by the physics system, an AI component that evaluates the world and attempts to

manipulate it, and finally a mesh which is used for rendering the object. The third entity

inheriting from the dynamic game object class is the player character. This class contains

most of the same logic as the agent, but instead of an AI component that controls the other

systems, the player character has a controller that takes input from keyboard or other physical

devices. Objects designed in this fashion are then put in a tree-structure that can be traversed

to relay messages to child objects, gain information about objects’ relation to each other,

relative position, etc. An example of how this works is shown in Figure 33, which describes

the process of creating a 3D model of a man in Carnegie-Mellon’s Panda3D engine [27].

Figure 3 - Scene Graph Example [1]

18

2.1.2 Logging and Error handling

As game engines are highly complex software systems, it is imperative to have access to

detailed information about runtime interaction between entities. A logging component usually

contains some or all of the following features [25, 28]:

 Write message to console

 Write message to file

 Perform dump of stack trace to file on crash

 Performance monitoring

2.1.3 Content Management

Content in games refer to all types of files that impact the game in any way. Large parts of

modern game engines are concerned with importing and converting different file types and

formats into workable internal data types that can be used by other components [26]. Typical

file types handled by a content component are:

 Text files

 Fonts

 Sound/Music files

 3D models

 Texture files

 Game scripts

2.1.4 Physics

Physics simulation is an integral part of many modern games. This component usually

performs all work that deals with collisions and applies physics to all game objects defined in

the scene manager. Physics is commonly a third party middleware solution shipped with the

engine such as Havok or PhysX. Because of this, it is common for physics components to be

designed as a black box. Physics components often require higher update frequencies than

other components, running at 60 to 120 frames per second.

19

2.1.5 Rendering

Rendering components deal with combining spatial game information and graphics resources

into images on the screen. These components can deal with either 2D or 3D assets. Rendering

is not covered in any great detail in this thesis, but is listed here for the sake of completeness.

2.2 Artificial Intelligence

In their book Artificial Intelligence a modern approach, Stuart Russel and Peter Norvig

explain that there are two definitions of AI [15]. The first definition states that AI is the study

of how to make computers act and think like humans, or as stated in the book “The art of

creating machines that perform functions that require intelligence when performed by

people”. The second definition states that AI is the study of how to create machines that

behave rationally, again quoted from the book by Russel and Norvig; “AI … is concerned

with intelligent behavior in artifacts”. These two approaches can again be split into two

concepts: acting and thinking. This section gives a brief introduction to AI and how it applies

to games. Advanced AI topics are discussed in Chapter 3.

2.2.1 Acting Humanly

The Turing test was proposed by Alan Turing in his paper “Computing Machinery and

Intelligence” from 1950 [15]. The test states that a computer can be said to be intelligent if a

human interrogator, after posing some written questions, cannot tell whether the written

responses come from a person or a computer. Natural Language processing, knowledge

representation, automated reasoning and machine learning all fall into this category. Building

artificial intelligence with this focus is referred to as the “Turing test approach” by Russel and

Norvig [15].

2.2.2 Thinking Humanly

This approach attempts to replicate the way the human brain works on a more basic level and

is closely related to cognitive science. General problem solvers and neutral networks fall into

this category.

20

2.2.3 Thinking Rationally

Referred to by Russel and Norvig as “the laws of thought approach”, this field of study

attempts to build on logic formalism to create a program that can solve any problem through

logical induction.

2.2.4 Acting Rationally

“The rational agent approach” attempts to construct agents capable of modify their world to

fulfill some goal in a way that “makes sense”. Russel and Norvig argue that this approach has

the most direct application as rational agents are capable of completing goals that can be

easily defined in a language that computers can understand today (e.g., “Temperature is below

20 centigrade, turn on heating”). While the skills required by rational agents are useful for

completing the Turing test, the goal of such agents is not to complete said test.

2.2.5 Game and Simulation AI

AI used in computer games and simulations can be classified as either Agents or Virtual

Humans. Agents belong in Russel and Norvig’s rational agent approach. The goal of agents in

games and simulations is to perform a special function that will challenge or assist the user in

some way. In the game Gears of War, by Epic Games, the “Covenant” warriors are not

supposed to give the impression of humanity, instead they are targets for the player to shoot.

In a simulator for missile defense systems, the enemy planes are also agents, as it might be

more valuable for soldiers to practice against perfect targets than humanlike behavior.

Virtual Humans attempt to exhibit humanlike behavior. In games, these might be virtual

players competing against you, e.g., in the game of Unreal Tournament [29] or an opponent in

a strategy game. In simulators for low intensity conflicts and firefight scenarios for ground

troops, all opponents and representation of inhabitants need to behave as close to human as

possible to give a realistic training scenario [10].

In addition to the challenge already posed by attempting to resemble human behavior, game

and simulation AI also has tight time constraints to have any chance of delivering a believable

performance to the spectator. A virtual human that takes a minute to react to gunfire would do

little to increase the realism of the scenario. Because of this constraint, games and simulations

tend to lean heavily towards the rational agent approach, and it is this that will be the main

focus of this thesis. However, ideas from the Turing based approach will also be considered.

21

2.2.6 Sensors

Sensors can be anything from cameras, light sensors and antennas in robotics, to ray cast

functions and path finding queries in a game engine. The data gathered by these sensors are

first analyzed in the sensing stage, before any useful information is used to inform the world

model. It should be noted that the sensing stage can run asynchronously from the rest of the

simulation, and different sensors can gather data at varied rates. For instance, an agent could

have sensors constantly probing the virtual world for objects that it needs to avoid for

collision avoidance purposes, while it might seldom query the sound engine for any sound

events that could be of interest.

2.2.7 The world model

The world model is the basis of all decisions performed by the agent. This model varies

greatly in complexity even inside the same simulation. Using “Hunger Game” one could

imagine that a normal villager has a very simple understanding of the world and how to

traverse it, while a thief has a more complex model of shadows and trenches to hide in. A

warrior might have additional information in its world model, describing where to find

weapons, which agents to fight and avoid, patrol routes around his village and information

about dangerous areas where his alert state should be increased. This world model is used by

some reasoning engine to decide what actions will be taken next.

2.2.8 Actuators

Actuators are the means by which the reasoning engine affects the world around it in the

hopes of changing its world model to one that the agent finds more agreeable. This can be a

messaging system for which to communicate with the world, the movement part of a path

graph or manifestations of limbs that allow the agent to manipulate objects.

2.2.9 Reflex-agents

22

Reflex-agents are the basis of many modern virtual worlds, robots and simulations. Reflex-

agents are composed of sensors that allow them to perceive the world around them, actuators

that enable the agent to interact and modify the world, and finally, the internal world model

which describes the world in the “mind” of the agent [15]. Figure 4 describes how sensors,

world model and actuators together form a reflex agent.

The environment in Figure 4 represents the totality of all values in the virtual world, or in the

case of robotics, the real world. Percepts are collected by sensors, which updates the world

model, represented in the figure as the process “What is the world like now”. Some sort of

reasoning engine decides upon what action should be done, which results in actuators being

activated to perform said action. This will (hopefully) change the state of the world, which

will again be fed back as percepts into the sensors, completing the cycle.

2.2.10 Summary

AI is a very broad definition for a large set of techniques that can be applied to solve a myriad

of problems. When building AI for games and simulations, it is fairly common to rely on a

small subset of all the tools in the AI toolbox. While acting humanly certainly comes into play

for virtual humans and agents in games and simulations, they usually have so little screen

time that this AI challenge is reduced greatly compared to a real Turing test. The main focus

is therefore often on building agents that can act rationally as is the case with the simple reflex

agent. In this thesis, there will also be some focus on the concept of thinking humanly, as

arguments will be made for how this can be utilized to create interesting forms of gameplay

and simulations.

Figure 4 - A simple reflex agent

23

2.3 Spatial partitioning

A spatial data structure is one that organizes geometry in some n-dimensional space. These

structures are very useful in optimizing queries on datasets in games and simulations as most

of the objects in a game world are spatially persistent or semi-persistent. As most game and

simulated objects that persist over longer periods of time also tend to move at a relatively

slow velocity, even these objects require fairly little computation time to maintain. The data

structures used for spatial partitioning are most commonly hierarchical, because of the reasons

stated above. This means in turn that localized queries get significantly faster, typically

improving from O(n) to O(log n). [30]

The most common types of spatial data structures are bounding volume hierarchies (BVHs),

quadtrees and octrees. BVHs work by putting complicated objects, such as a triangle mesh,

inside a simplified representation such as a bounding sphere. This bounding sphere is then

used as base for the initial query, should the query fail (as it does on most objects) the more

complex data does not have to be considered. Quadtrees and octrees are very similar data

structures that create a tree representation of the virtual world by creating recursively smaller

axis aligned bounding boxes (or rectangles in the case of quadtrees). These bounding boxes

are created by taking the root box and splitting at the center into additional four (or eight) new

boxes. Once created, it is populated by all the game objects in their respective child nodes

and as the simulation progresses they are moved from one node to another. Localized queries

to such a solution are highly effective as one can query only the leaf nodes of adjacent boxes.

While it is common to populate these data structures by only having objects occupy leaf

nodes, and duplicating objects that span more than one leaf, there are other approaches

possible as well. To avoid duplication of data it is possible to move objects that span several

leaves up the tree to the first branch capable of holding the object in its entirety. This has been

known to cause performance hits when dynamic objects are positioned at the center of the

octree, propagating them to the root node. This problem can be trivialized by carefully

considering the layout of the static objects in the scene [30].

Spatial partitioning will most likely be required to control the simulation scaling. As the

groups of agents in conflict grow larger, the resource constraints of the system will begin to

show. To conform to the real time requirements stated earlier, it will then be required to scale

back the level of detail (LOD) of the simulation in areas not under scrutiny by the users.

Spatial partitioning strategies are reliable and well established for such use.

24

2.4 Summary

This chapter has introduced the most fundamental concepts required to follow the remainder

of this thesis. A basic grasp of how a game engine works “under the hood” was introduced in

section 2.1. The concepts and terms discussed there will often be mentioned when discussing

implementation details and challenges. This chapter has also provided quick look at the most

basic concepts within the field of AI. These concepts are fundamental to the understanding of

Chapter 3, which introduces more complex AI paradigms that require the basics discussed

here. Finally, a brief introduction to spatial partitioning and its impact on computational

resource management has been provided, as a basis for further discussion on scalability in

future chapters.

Chapter 3 will make use of the concepts discussed in this chapter to introduce more complex

AI methodologies for crowd simulation, world representation and reasoning. Combined, these

two chapters provide the foundation for the design and practical implementation discussed in

chapter 4-6.

25

Chapter 3 Topics in artificial intelligence

This chapter describes different topics in artificial intelligence and how these topics apply to

games. The field of AI is vast and theories are borrowed heavily from psychology and social

sciences. This chapter will explain the various topics that must be considered when attempting

to model interaction between factions and single entities, which is used to inform the design

of the FIF.

Section 3.1 and 3.2 introduce two common methods of structuring agent reasoning systems to

handle different world scenarios. These principles will be applied to build agents for the proof

of concept scenario. Section 3.3 introduces concepts for crowd simulation, which in turn is

extended for simulating distributed entities in the form of factions and groups in section 3.4.

These sections are used to facilitate the “internals” of agents in the system, or in other words;

the systems responsible for simulating needs, desires and prioritization of actions.

While the first part of this chapter deals with simulating the internal processes of an agent, the

next step is to introduce techniques for creating a detailed virtual world that can have

reasoning applied to it. The way world information is structured is described in sections 3.5,

3.6 and 3.7. Next, some attention is given to introducing neural networks and how they

inspired the core reasoning system of the FIF in section 3.8. We then discuss navigation in

section 3.9 as this is always a requirement of real time simulations involving autonomous

agents. Finally, we present some techniques for scalability in AI and game design in section

3.10, which adds to the completeness of the discussion in regards to modeling large factions.

3.1 Agent reasoning: finite state machines

The finite state machine approach to agent reasoning is one of the easiest to implement on a

smaller scale. A finite state machine (FSM) is a system of states representing the internal

direction of an agent at a given time. At any given time, one state is active, and the code

contained within is executed. Each state is capable of directing all actions for the agent for a

period of time, organizing tasks such as animation, path finding and target acquisition. During

each update of the state, it will run through its list of possible state transitions. Should a state

transition be triggered, the current state will suspend itself and set the triggered state as

current. A state can also be triggered from outside the state machine, by a scripted event or

similar.

26

It is common to arrange several smaller state machines into a hierarchical state machine. This

ordering is used to avoid state duplication. Going back to the “hunger conflict” example, a

villager from the southern village might be heading home with food, when confronted by an

angry villager from the northern village. When confronted by this individual, the southern

villager would have to postpone the current state of bringing food to respond properly to the

confrontation. For a “normal” state machine, there would be no way for the employee to

resume its old state of bringing food to the village. With a hierarchical state machine, the

“argue” state would be attached as a child state of the bring food state, and would allow the

state machine to propagate back up the tree to the “bring food” state once the argument was

resolved [24].

Hierarchical state machines have become one of the most widely used approaches to creating

complex behavior in computer games [31]. The ability to transition into and away from

hierarchies of state machines depending on the current game context is a powerful tool for

designers to tailor game behavior. This is also a highly useful property in regards to modeling

conflict systems, as it would allow for a varied set of conflict resolution strategies to be

combined into a larger state machine hierarchy. This way, the state machine could be created

through a combination of framework modules and state machine specifically tailored for

certain scenarios.

A known problem with state machine approaches is that managing the state transitions

becomes increasingly difficult as the number of states and state machines increase [31]. This

could prove to be a challenging obstacle to overcome in a framework that is to support

scalability. Because of this issue, it might be more feasible to implement agent level

controllers using behavior trees. However, for showing how the thesis framework can be

applied to gameplay, the limited example system might not be subject to these complexities

and thus, FSMs might be a reasonable solution to the problem.

3.2 Agent reasoning: behavior trees

Behavior trees have become a highly popular approach for game developers to create

reasoning systems that cope well with the changing needs of an organically growing system.

Behavior trees attempt to provide a synthesis of the best features from other approaches such

as state machines, schedulers and planners [24].

27

On the surface, a behavior tree looks very much like a hierarchical finite state machine. While

states are self-contained action patterns that can stand by themselves, behavior trees attempt

to use a finer granularity to specify building blocks from which to create said patterns.

Because of this finer granularity, it is easier to get a minimum of behavior active in the

simulation. All building blocks used to construct a behavior tree are called tasks. The most

basic tasks in a behavior tree are conditions, actions and composites.

Conditions are tasks that perform some kind of data comparison, such as “is there food left on

the pallet” or simply “am I in range of that object”. Actions are tasks that alter the game

world, such as playing an animation or sound. Finally, composites are combinations of the

two previous task types. Composites can be sequences of tasks, running each one in order, or

a selector that picks what child task to run. Actions and conditions both represent leaves in

the tree, while composites define branches.

All tasks derive from the same interface, allowing each one to be an isolated feature that can

be combined freely through the use of composites. All tasks report failure or success

depending on the result of their runtime. Composites will then decide what to do with that

information, either to attempt resolving the failure inside its given behavior-space or

propagate it up the behavior tree.

In addition to these basic tasks, there are decorators and parallels. Decorators are inspired by

the “decorator” software design pattern, which suggests wrapping a class around another class

to improve or change its functionality. This idea is taken into the behavior tree, by creating a

branch node with only one child. The decorator will then modify the behavior of its child

node in some way, for example monitoring its use and disabling it when it can no longer be

run. The parallel is a composite that allows its child tasks to be run at the same time. It keeps

track of all the children running and has an internal understanding of how to react when one

of the children return while the others are running [32].

This fine granularity approach to building behaviors allows for AI to be built “bottom up”,

creating simple modular tasks for functionality that is required by all systems, such as path

finding, range checks, walk animations and similar. Once these important building blocks are

in place, more advanced behaviors can be built as they are required. By defining the structure

of the behavior tree in an online language such as LUA [33] or through XML, one could even

change the behavior of an agent while the game is running, allowing for simulations to be

modified in real time.

28

By creating a set of baseline functionalities for high level decision making and reasoning, that

utilize abstract conflict resolution strategies, behavior trees can be created in such a fashion

that they allow content developers to implement all their own behavior on an agent level,

while still conforming to the design patterns imposed by the framework in order to generate

valid conflict scenarios.

3.3 Crowd simulation

Modeling of crowds and the interactions between individuals therein, are essential topics of

the modern world as they allow for studying the behavior of crowds under varying

circumstances. The field comprises objectives such as modeling interaction between

individuals of different emotional states such as simulating psychosocial behavior in non-

player characters [34], to simulating crowd behavior in crisis situations such as escaping a

building on fire [35]. These solutions are usually focused on maintaining realism down to the

individual level at all times and is thus constrained to small numbers of virtual agents unless

the demand for real time simulation is dropped.

Zhou et al. provide an overview of different crowd modeling technologies [36]. The

information used to classify the different simulation technologies are crowd sizes and time

scale. The authors argue that there are three different approaches to crowd modeling.

3.3.1 Flow based modeling

Flow based modeling focuses on the movement of thousands of people and makes use of fluid

simulation techniques to create the wanted effect. This approach provides nothing in terms of

advanced behavior for individual ages, and therefore was not considered as a viable option for

the problems investigated by this thesis.

3.3.2 Entity based methods

Making use of ideas from particles physics, each individual is treated as a “particle” in the

system. Each particle is subject to a series of “social and physical forces” from a combination

of local and global generators. As mentioned earlier, simulating groups in emergency

situations such as a burning building is a typical use of crowd simulators. Braun et al. tackle

this exact problem in [35], where they create repelling fields to represent areas on fire and

attach attracting forces to more sophisticated agents that represent leaders capable of directing

crowds to safety. In addition, they add force generators to represent influence inflicted by

29

panicking individuals and repelling fields keeping entities at a certain distance from each

other. This method has also been used to replicate emerging phenomena such as jamming and

flocking. According to Zhou et al. in [36], this method falls somewhere between flow based

and agent based approaches to crowd modeling, both in terms of time span and crowd size.

3.3.3 Agent based simulation

Agent based methods model each individual as a complex system with internal emotions,

needs, wants and utilizes advanced forms of interaction with other agents. From these

interactions, new relationships and changes in the attitudes of the whole group emerge. Bailey

et al. used this approach to model the effect of introducing a negative or hostile individual into

a group [34]. Their implementation defines internal states such as emotions and personality,

as well as social information for each character, such as ties between individuals, group

memberships and social influence modifiers. In addition to these psychological and social

constructs, is the notion of current situation or context; to create believable simulations, all

agents must have an understanding of their current situation. In his article [37], on agents that

can relate to physical spaces, Adam Russell draws attention to the lack of context in digital

games today, and how this is of critical importance to the progress of believable agents. A

typical problem related to situational awareness is to determine the change in behavior when a

physical space transitions from a safe area to a danger zone. Using the example of “hunger

conflict” as a basis, assume that the conflict has escalated to a state where armed aggression

has been initiated by one side of the conflict. The unarmed population present in the field

would naturally respond by fleeing the area upon recognizing the armed agents of the

opposing village. In a setting where an area has potential for transitioning from one theatre to

another, it is extremely important for the agents in the theatre to respond correctly. If agents

simulating the general population fail to grasp their situational transition, they would continue

with their daily order of business while the tension between fighters escalated to a violent

struggle. Zhou et al. propose that agent based approaches should be used for most long term

simulations due to the requirements listed, and notes this approach as the most common for

digital entertainment products [36].

3.3.4 Summary

When it comes to modeling agents and the social interaction between them, the main

roadblock is the amount of computational resources required; especially when the system has

real-time requirements, such as digital games or training simulators. Consequently, one must

30

consider what level of detail each agent can utilize without diminishing the realism of the

system while still operating under real-time constraints. It will arguably be beneficial to

implement more than one of the aforementioned crowd simulation techniques, in some sort of

level of detail (LOD) system, depending on the current requirements of the simulation and

load on the system. The implementation proposed in Chapter 5, relies solely on agent based

simulation, as the most important features deal with detailed world representation and conflict

generation. These features require more advanced simulations from the agents than can be

provided using any of the other models. However, it can be argued that if one was to scale the

implementation to massive proportions, for instance to simulate entire countries, one could

utilize entity based methods to simulate individuals in the population while agents were

responsible for the actions of fractions within the nation.

3.4 Factions and groups

While crowd simulators usually are concerned with the behavior of individuals in a spatially

localized group, there is also need for a way to model the less concrete bonds between

individuals. Groupings of different kinds can have an effect on an individual’s beliefs,

behaviors and their interpretation of what situation they are in. Going back to the example of

the “hunger conflict”, the armed agitators would be in a completely different situational

context than the unarmed villagers. In addition, some of the unarmed villagers might also

have affiliations with the armed agitators and thus choose to join this group instead of

responding in the same way as the other unarmed villagers. In other words, some agents may

change their situational context depending on the other agents present in the area.

Medler et al. propose a generalized Conflict Theory as a basis framework to model these

interactions [22]. In their paper, they define three types of resources: wealth, power and

prestige. Conflicts arise when individuals with incompatible goals interact with each other.

Examples of such interaction are: deprivation of a resource type, illegitimate power, role

incompatibility and belligerent actions.

Role incompatibilities occur between individuals of equal power or when one individual

attempts to leverage power over another. An example of equal power conflict, or horizontal

conflict, is a group of students arguing over how to design their project. Vertical conflict

could occur when a soldier is commanded by his officer to do something morally

questionable.

31

Medler et al. further propose a model for group interaction that consists of three “layers” [22]:

Agents are individuals with their own needs and desires, groups are sets of individuals and

actors are sets of groups with aligned goals. An actor can consist of one or more groups, and a

group can consist of one or more individual agents. Note that an individual can be a member

of several groups, and groups can also be part of several actors.

As an example of this organizational idea, consider the “hunger conflict”, where one could

define the entire village as a single actor with each part of society (farmers, thieves, general

population) as groups within the actor, and the warriors as its conflict organization.

The framework described in Chapter 5 also includes a world model and a conflict behavior

model. The world model describes the relations between actors as well as the needs and

desires of these. The conflict behavior model describes all available actions the actor can take

to further their goals. In other words, the world model describes how conflict can occur, while

the behavior model describes how conflicts can be resolved.

The concepts introduced by Medler et al. [22] provide a good basis for the data and systems

required to model an advanced conflict model. By using their definition of resources, actors,

groups and agents, the core data model for the framework is established.

3.5 Smart objects

As virtual worlds become increasingly dynamic and the need for post-launch modifications

increase, it is essential to find good ways to organize an AI framework so that the content

base of the simulation running it can be expanded without the need for a significant rewrite.

The basic approach for driving AI decision making and world interaction is to root this firmly

within the virtual bounds of the agent. With smart objects, the object itself contains much of

the information required to drive action and planning for the exchange between agent and

object [38].

The main concept of smart objects is that each object is in itself a supplier of one or more

services [39]. For example; a field might register itself as providing the provide food service,

as well as “landing site” while a torch would register itself as a provider of light and

potentially heat. An agent trying to find a way to become less hungry would query some

central system, (or internal memory map, depending on the implementation) where it would

be directed to one of the closest sources of this service. One of the best known uses of smart

objects is the critically acclaimed game series “The Sims” [40].

32

“The Sims” [41] is a life simulator, which allows the player to create their own family of

“sims”. If left unattended, these sims will lead their own life, attempting as best they can to

fulfill their desires. The player can then attempt to manipulate the life of their sims, by finding

jobs for them, buying new things for their houses and introducing them to other sims in the

neighborhood. “The Sims” uses smart objects for all game objects that can fulfill one of the

desires of a sim. By using this technique, the game developers (and the highly creative mod

community) could easily add new objects that sims could interact with, without having to

change the game code.

In addition to broadcasting their services, smart objects can contain a myriad of additional

information that allow for very powerful problem resolution approaches [42]. Once the object

responsible for supplying some service is contacted by the agent, it can initiate a negotiation

cycle to find if it is possible for the object to indeed supply the resource to this specific agent.

In a virtual world that allows for extensive refactoring and expansion of content base, there

might be several prerequisites that the object could require to make sure that no odd behaviors

occur. Smart objects often list a set of valid animations for interacting with the object, as well

as where the agent must be located before it may begin playing these animations in the first

place. More advanced objects are embedded with whole action plans for their use, which they

pass on to agents contacting them about their services [43].

The plans provided by objects could be as simple as hinted to above, listing simply a position

for the agent to be in as well as what animation to play. A plan could also be more advanced,

giving the agent a set of goals that must be completed before the service can be utilized. In the

morbid case of the stray dog as a source of food from the previous section, the dog as a smart

object could provide a plan that would require the agent to slay skin and cook it before

becoming less hungry. These plans also allows the agent to weight the potential gain against

the cost of completing the steps of the plan provided, allowing the reasoning engine to choose

a service supplier with an acceptable effort cost.

As a more detailed example, consider the “hunger conflict” example once again. One could

imagine a field that lists itself as a supplier of “food”. The field would respond to an agent’s

request by initially checking its internal state to see if it is “sown”, if not, it would look

through available “sowing” objects nearby and add this to the agent’s plan. The agent would

then attempt to calculate the cost/gain relationship for sowing the field before being provided

with food. Additionally, the field would also add “water” and “harvest” to the agent’s plan.

Each step would have a cost associated with it, which would form a total cost for which the

33

agent would use to compute the total potential gain. Having computed the complete cost of

accessing the service, the agent could potentially investigate other objects offering the “food”

service to see if the cost versus gain analysis would yield a better result given their internal

state

Smart objects allow for new objects to be added as they are completed in development,

without having to make any modifications to the underlying AI engine. The smart object

keeps track of what animations the agent must have available to it to interact, as well as what

services the agent can utilize by interacting with the object. This way the object simply has to

register with the service provider interface used by other objects and the agent will

automatically be able to interact with this new addition to the simulation.

The smart object design approach is essential for development of a scalable framework, as it

allows for defining interfaces that content creators can use as guidelines for meshing their

new features with the framework functionality. Using smart objects to define resource objects

as well as conflict resolution areas will allow for quick expansion of the feature set in a given

implementation.

3.6 Fuzzy logic

Fuzzy logic extends the traditional principles of logic by allowing for varying degrees of

truths to be defined. A predicate in logic is either true or false. For instance, a player could be

hurt or not. In fuzzy logic, a predicate is instead defined with a corresponding value

representing to what extent the predicate holds true. A predicate set is the entire range of

which a predicate can be defined. The value an agent has describing its relation to a predicate

is most commonly referred to as degree of membership [24]. It is common to use a floating

point value ranging from 0.0 to 1.0, including any representable number within this range.

This does not mean that these values should be treated as percentages however [24].

Fuzzy logic operates on the premise that all values representing degrees of membership are

normalized. Usually, this is not the case for data collected from outside the reasoning engine,

and therefore a method known as fuzzification is used to bring all variables into the same

range. In essence, this is accomplished by membership functions, which bring the input

variables into the range used by internal operations. These functions can take any shape

required to bring the data into the range required by the reasoning engine. An example can be

seen in Example 1. Defuzzification is the process of turning the internal data back into a useful

34

format for whatever system is making use of fuzzy logic inference. Depending on the

expected outcomes from using fuzzy logic, there are a set of different solutions to choose

from. The simplest form of defuzzification is simply to take the highest membership relevant

to the output function.

An agent’s movement speed is affected by the game values [encumbrance, health, speed]. The

fuzzy logic engine used by the game has membership functions designed to translate these

values into values representing degrees of membership to each part of the predicate set

[crawl , walk , run]. The membership functions are arbitrary, however they must yield a

result corresponding to the range defined by the fuzzy logic engine. Assume that these

functions yield the following result for an arbitrary agent [crawl = 0.2, walk = 0.4, run =

0.7]. Highest membership defuzzification concludes that the agent should be moving at

running speed.

Example 1 – Example for highest membership in fuzzy logic

The downside of using highest membership as is shown in Example 1 is that this method only

considers the highest value and thusly fails to consider the effects that might be incurred from

the other predicate sets.

A common approach in computer game AI is to use a blending based on membership

approach. This is simply to calculate the sum of the normalized degree of membership values

multiplied each by the corresponding max output value. Using the crawl, walk, run example

in Example 1, we would have the corresponding max output values [crawl = 0.5 km/h, walk =

3. Km/h run = 6 km/h]. Firstly, one would normalize the degrees of membership from before,

then sum the new values for the degrees of membership and multiply them by the maximum

output values. Example 2 provides an example of the simple computation required.

Given the degrees of membership in the predicate set [crawl = 0.2, walk = 0.4, run = 0.7]

and the corresponding velocity values for complete membership to the predicates [crawl =

0.5 km/h, walk = 3.0 km/h, run = 6.0 km/h]. A normalization factor ϝ computed by taking the

sum of each degree of membership, is used to bring the degrees of membership into the range

0.0 to 1.0. The normalized degree of membership is then multiplied by the speed values for the

given predicate, yielding a blended velocity v that takes into account contributions from every

predicate.

 ()

35

Example 2 - blending based on membership example

Both highest membership and blending based on membership are valid approaches to

compute the defuzzified values, when to use the various approaches are domain specific.

Fuzzy Logic implements the same binary operators as traditional logic. Table 1 contains the

most important logical expressions and their equivalent Fuzzy Equations. Here, m

corresponds to the degree of membership to the predicate denoted by its subscript.

Table 1 - Logic expressions in fuzzy logic

A methodology for creating systems for decision making using fuzzy logic is called fuzzy

control [15]. The decision system is constructed by combining predicates using logical

expressions to form rules such as:

It is important to note that even though the set of variables might entail X, one cannot infer

that X is true. Fuzzy logic is used to represent vagueness and thus, one can only know that X

is true to some degree from the sentence above. What makes this way of quantifying the

world so powerful is that it allows a system to apply a degree of change to its operation

depending on the priorities of rules and the outcome of the entire rule set. By querying all

rules of the system, the controller can make adequate modifications to all its operations

Logical

Expression

Description Fuzzy Equation.

¬A Negate A 1-

A ∧ B A and B min ()

A ∨ B A or B max()

A ⊕ B A XOR B min ()

36

depending on the current world state. Listing 3 provides an example of how such a rule set

could be structured in practice. The rule set could potentially be used to describe the

reasoning process of a villager as he is approaching a food supply.

Given the following degrees of membership [full = 0.9, starving = 0.1,

surroundedByStrangers = 0.4, surroundedByFriends = 0.6], the output values of the above

rules will be the following:

 ()

 ()

 ()

Taking the maximum for each output value, one is left with the following.

 ()

 ()

Listing 3 - Fuzzy rule set example

It should be mentioned that fuzzy logic is not truly a method for uncertain reasoning, but a

tool for interpolating a set of crisp input variables in such a way that a set of output variables

can partially satisfy fuzzy expressions explaining the expected behavior of a system given

said input [15].

When attempting to reason about conflict it is important to have a formal language that allows

for degrees of truth such as fuzzy logic. Agents may sometimes be affected in various degrees

by different faction memberships, which in turn may not be entirely devoted to some causes.

As an example, a faction of teenagers might be opposed to the police, but only to the extent

that they would tend to avoid them, but not engage them in direct conflict. Degrees of

membership allows for a system where factions interact in a much more complex manner than

what would be supported by a “true/false” system.

37

While certainly useful for games in general, fuzzy logic lends itself well to creating more

descriptive worlds, as it is capable of representing degrees of truth much more efficiently than

formal logic. It can thus be said that fuzzy logic allows for higher fidelity for representing

knowledge of the world as seen by the agent, without introducing complex computational

overhead. As this thesis seeks to explore ways to build agents with more detailed knowledge

of the world around them, fuzzy logic is a valuable part of the toolbox.

3.7 Semantics for game worlds

Russell mentions in [37] how the “umwelt” of a virtual agent is impoverished. This “umwelt”

is the environment that the agent exists in and uses to weight its choices. Russell goes on to

discuss how AI researchers through the last decades have refined a narrow skillset, consisting

of locomotion and path finding algorithms. An agent observes the world it exists in through

navigation nodes and object references. It is rare that two different agents would have a varied

understanding of the surrounding world. Russell argues that this narrow understanding of the

virtual world makes it much harder for agents to act with authenticity. By embedding more

information about the virtual world, and possibly equipping each agent with their own world

model, agents will be better prepared to make choices reflecting their personality.

To add more meaning to the environment of a virtual world, objects are given semantics.

These pieces of metadata are organized in a graph, allowing them to be traversed by agents

searching for meaning. In the “hunger conflict” example, an agent could access the semantics

of the area storing food in his village, finding that the semantic attribute “edible” is no longer

applicable to the food available within (having gone bad). The agent would then access the

semantic graph to find other objects in the world that subscribe to the attribute “edible”. If the

agent was equipped with an inference engine, it would then be capable of determining what

object might be the ideal candidate for acquisition to satisfy its “hunger” attribute.

The role of semantics in games is an underexplored topic, but that is coming into its own right

in the latest generations of computer games such as “Left 4 Dead” [44]. Semantics in games

should also provide information necessary for an agent to determine its current context. If a

region had its own semantic set that agents could subscribe to, it could “pull up” information

from objects in the region to create a context itself [45]. For instance, if several larger objects

have flagged themselves as “dangerous”, the area could pull itself up and flag itself as

dangerous, allowing civilian agents to reason that it should flee the area while combat trained

agents would enter their “escalated conflict state” [22].

38

While it is important to understand the importance of semantic data for agent reasoning, there

are several problems when such information is to be generalized. The amount of semantic

information that can be embedded into the world is limitless. Information that might be

crucial for one simulator might be irrelevant for another. For example, a farming simulator

might have a lot of semantic data concerning soil fertility and composition, while this

information might make no sense in a flight simulator. Simply put, this solution would not be

feasible both due to the amount of storage space required for this information and the

immense performance hit any real time system would take from having to traverse this huge

web of information. A solution to this would be to create a system allowing a designer to

disable the parts of the semantic system not required by the simulation, as well as adding new

relations and descriptors as needed [45].

Semantic modeling allows for an interesting approach to world design. By allowing virtual

objects to contain and publish semantics describing services they provide, agents are able to

search their world model for providers of the service that satisfy their need. A hungry agent

could for example find that two vendors satisfy their requirement. Depending on the current

state of the agent, it could also choose a garbage can or stray dog as the service provider.

The idea of using semantics to define objects as service providers is very powerful as it allows

for a more flexible design methodology. Instead of having to rewrite parts of the AI reasoning

engine, a designer could simply add new methods to the simulation and attach semantics

describing the services the object provides. Agents operating within the environment would

without modification be able to add these new objects to their reasoning patterns and utilize

their services in the same manner as objects created when they were initially designed.

As understanding the situation context is so important for reasoning systems, it makes sense

that to create believable scenarios, a great deal of world detail must be made available to the

internal AI engine. By creating a system for object semantics, the context of a given situation

can be made clearer to the agents attempting to decide their next state transition. By creating a

system capable of accepting any semantic set, for then to perform reasoning and formulate

plans from these given semantics, one can facilitate the creation of any variation of scenarios.

Such a system can arguably provide great enhancement to the levels of reasoning performed

by agents in games.

39

3.8 Neural networks

Neural networks were developed as part of the early work in attempting to create true

artificial intelligence. Neural networks were designed to mimic the way our brain is

constructed [15], by creating artificial neurons that are combined to form different structures.

While neural networks so far has failed to produce a true working artificial intelligence, they

have proved very useful for creating systems capable of learning, as well as producing huge

variations in resulting output from small changes to input and weighting of functions inside

the network [15]. While this instability has proved a challenge for researches making use of

neural networks in learning systems, it could arguably be put to use to generate large

variations of gameplay scenarios.

An artificial neuron consists of a set of weighted inputs that are summed together to form the

complete input to a threshold function, which returns an activation value [24]. While it is most

common for the threshold function to return either 0 or 1 as activation values, it is also

possible to have other types of functions. Figure 5 shows the basic layout of a neuron, where

weighted input values are summed together before it is sent to the threshold function that

computes the activation value that is sent off to the next stage.

Artificial neurons can be structured into different kinds of graphs, which are all referred to as

neural networks. It is typical to place neurons in layers, so that one layer computes the

weighted values fed into the next stage. The easiest form of neural networks are referred to as

perceptrons [15]. Perceptrons are single-layer feed-forward neural networks, which means

that the network is composed of a single set of neurons, taking a range of weighted input

values and outputting one activation value each, which is interpreted outside the network.

More complex solutions can be formed by adding layers of neurons that use the outgoing

activation functions on lower layers as input. To complicate things even further, one can form

Figure 5 – example of an artificial neuron

40

cyclic graphs of neurons that exist in adjacent layers to form feedback loops [15]. Such

networks are chaotic and almost impossible to predict. However, they can also create some

very novel behaviors and effects.

While neural networks will not be used directly in our proposed framework, their potential for

creating large variations in output from small variations in input and weighting makes for a

good foundation to expand upon.

3.9 Navigation

Finding the best suitable solution to navigating a complex static or dynamic environment is a

research field that has been very active for quite some time. In recent years, there has been an

increasing focus on fast navigation algorithms that can handle dynamic environments and

multiple active agents, such as [46] and [47].

In computer games, it is common to use a graph consisting of waypoints, grid-cells or triangle

meshes [48]. These navigation graphs are often made by hand, but recently there have been

several successful attempts of automatically generating navigation meshes offline, notably the

virtual agents in Valve’s source engine [49] and Havok’s AI module [7]. The graph is then

traversed using a path finding algorithm. In game AI, some variation of the A* algorithm is

commonly preferred. Many enhancements and pruning techniques have been proposed for

varied scenarios such as the ones listed in [50] and [51].

Most modern game engines offer some form of navigation solutions. However, games of

various genres tend to face different challenges. Real time strategy games often seek to render

a much larger number of entities on screen at the same time, and thus, the number of queries

to the path finding algorithm becomes a bottleneck. Action games and combat simulators

render the world in much greater detail and therefore demand that each individual agent

navigates the world without showing signs of clipping or colliding with other agents in the

scene.

As the framework proposed in this thesis is intended for use in action games, RTS engines are

less than optimal. Most commercial game engines like Unreal [52] and CryEngine [53], as

well as some open source engines like Panda3D out of Carnegie Mellon come with path

finding solutions that work reasonably well for finding paths. However, they tend to require a

lot of work to create the navigation graphs. The optimal solution would be to have a

framework that works independently of any navigation system; however this could prove

41

difficult should one consider spatial information as a part of the reasoning process. Therefore,

some different path finding solutions should be considered.

3.10 Scaling simulations to larger populations

When developing simulators or games that require real time interactivity, time is always of

the essence. While it might be viable to simulate the interaction between a few individuals

using a sophisticated mental model [36], doing so for a small city at the same time would not

be feasible using hardware available to the average consumer. By using spatial partitioning,

this problem can be somewhat circumvented by delegating resources to simulation of agents

in the vicinity of the player.

By creating a pool of resources suited to the computational resources available at any given

time, resources can be delegated mainly to the agents operating close to the player, leaving

agents further away largely inactive. This way the player will enjoy the full extent of the

experience created by agents active in the area.

By creating a data structure for storing the mental model of inactive agents, it is possible to

take this optimization strategy even further. Kharkar et al. proposes a model where all agents

have an internal context that describes their complete mental model and further plan of action

[54]. Once the agent that owns the context is no longer in use, all other assets used by the

agent is removed, either delegated to another agent closer to the player or removed completely

from memory to allow for other resources to be loaded.

A different approach is to only generate the agents that occupy the space around the player.

This has often been found to generate less believable results due to the agents’ lack of

consistency. By generating more advanced plans for the agents as they approach the area of

the player, it has proven to be possible to get a more acceptable result however [55]. While

the idea of generating extensive plans for agents as they enter the area has merit, it breaks

down if one requires agents to be capable of performing tasks and affecting areas outside the

player’s sphere of influence. It is however a very cost effective approach for simulating

“background populations” which is a very important part of realistic simulations [10].

As this thesis explores aspects of simulating crowds in conflict, it is logical that scaling issues

must be addressed as one of the core issues. The ideas discussed here will therefore be

essential to designing the framework implementation.

42

3.11 Summary

The purpose of this chapter has been to provide the reader with an understanding of the

techniques and principles required to follow the arguments presented throughout this thesis.

Thus, the topics presented in the chapter will be essential in the proposed design of the FIF,

detailed in Chapter 5. In addition, the reader has been given an overview of normal design

techniques for structuring agent reasoning systems, and how navigation is implemented in

most games, which has been used to inform the creation of the prototype, discussed in

Chapter 7. Finally, a discussion concerning scalability of crowd simulation techniques in

games has been provided, for a more complete understanding of the subject matter.

The following chapter will digress from the discussion of AI principles, to present an

investigation into available game engines. Chapter 4 presents an overview of several popular

game engines and argues for which of the presented engines are best suited for AI research.

43

Chapter 4 Technologies and frameworks

While Chapter 3 introduced the theoretical foundation required to approach the challenges

presented in this thesis, this chapter will address the practical challenges of working with

games research. Creating modern games is immensely expensive and time consuming, and it

is therefore challenging to create reasonable test scenarios without spending too much time on

this alone. A modern game engine provides many tools for quickly implementing common

features, which makes it much faster to get a basic prototype working. The different features

vary greatly between solutions. This means that one must carefully consider the different

options to find one that gives the most benefit for the problem in question. The evaluations

prior to building the FIF test scenario is presented here.

To test a high level framework for game AI, one requires some sort of virtual environment. In

academic research directed towards AI, the game StarCraft by Blizzard Entertainment (now

Activision/Blizzard) has been hugely popular. The RTS AI Research group out of University

of Alberta hosts an annual competition where teams from universities across the world

compete in creating the best competitive AI [56]. Because of the popularity of RTS games in

academic circles, there are many open source solutions such as the SpringRTS engine[57] and

the Broodwar API for scripting Star Craft bots [58]. These implementations function out of

the box and allow users to quickly implement features within the bounds of the engine.

For action games, however, the author has been unable to find recent games where the AI

module is available as open source. Never Winter Nights (NWN) with its Aurora engine has

been used for many research projects. While certainly capable of functioning as a

development environment, NWN was released in 2002, which makes much of the provided

functionality outdated. Another feasible approach is to create a simple game scenario using a

game engine or framework. There exists a large amount of proprietary and free to use

engines, however the implementation quality and feature set varies greatly from engine to

engine.

4.1 Evaluating game engines and frameworks

When evaluating solutions to use as foundation for further work, it was necessary to define a

set of evaluation criteria to lead the selection process. As the main goal of this thesis is to

investigate the viability of high level AI for use in simulation and games, it stands to reason

44

that lower level functionality must be available before it can be tested in a reasonable

environment. To successfully apply a system for orchestrating agent behavior, the following

functionality should be available in the engine:

Path finding is required to make it possible to build any large world. Without a path finding

system in the engine, it would either require a lot of effort to implement a reasonably fast

pathfinder, or the virtual world would not support any form of complex geometry.

Physics includes locomotion functionality and other actuators for the agents to utilize, as well

as collision and so forth. For there to be any kind of gameplay or movement, a physics system

is required. This is another component that would require immense work to implement.

An AI module including a behavior tree or FSM builder, as well as basic crowd behavior

algorithms would make it easier to implement gameplay of the type well suited for the FIF.

Such a module would also involve some sort of scripting system or tool for defining behavior

models.

Rendering modules are almost always included in game engines and frameworks for game

development. As this is one of the most time consuming features to implement properly. For

the project in this thesis, no advanced rendering is required, but both GUI and 3D rendering

capability is essential.

A logging system that provides run time debug functionality without slowing down the game

by any major extent is essential for any engine. However, given an engine that provides

source code or allows for most game content to be written in a native language, there are

plenty of third party solutions to implement this.

Real time editing is a modern feature of many “high end” engines, which basically allows the

developer to change the code while the game is running. This allows for quick changes to be

applied to game and AI behavior for quick prototyping and testing.

The engine should be either come with source code, or support some form of high level

language, which allows for the FIF to be integrated with the engine.

Selecting a platform for development is then a matter of finding the one that best supports the

listed features. There are several hundred game engines on the market today [59], which

makes evaluating all of these an insurmountable task indeed. Instead, a small set of well-

established engines with various degrees of conformance to the attributes described above

was chosen for evaluation. The main engines and frameworks that were evaluated were

45

Panda3D, Unreal 3, XNA Framework, Torque, the Havok Framework suite and Unity3D.

Table 2 provides an overview of the features available in the different implementations that

were evaluated.

4.1.1 Torque 3D

Torque 3D by Garage Games [60] is a game engine that supports full 3D and 2D rendering,

with a fully working editor and real time editing functionality. Torque also features a physics

engine and has the logging functionality required for development, however there are no AI

features available, which means a lot of fundamental work would have to be done before the

framework in this thesis could be tested. Torque additionally requires developers to make use

of their proprietary scripting language Torque Script, which would lead to any solution

developed with it bound to the engine.

4.1.2 Unreal 3

Unreal engine by Epic Games [52] is a high end game engine that supports all of the above

features, except Behavior Trees and live changes. Unreal can be used by everyone, free of

charge. However, the engine is manipulated using Kismet or Unreal Script. The languages

mentioned are both proprietary, which leads to this engine having to be excluded as a

potential platform as well.

4.1.3 XNA framework

The XNA Framework by Microsoft [61] provides basic functionality required for interactive

media software development. Unlike the engines mentioned earlier, the XNA Framework

does not come with a complete rendering engine or editor. However, it does make available

all the features required to rapidly create the basic tools required. XNA is written in C#,

which makes it possible to integrate third party solutions to satisfy other requirements. While

XNA makes it easy to develop the functionality needed, the amount of work required to create

a fully functional testing environment makes XNA a relatively risky choice given the time

constraint.

4.1.4 Panda3D

Panda3D by the Entertainment Technology Center at Carnegie Mellon University [27] comes

with many of the features listed above. It is open source, comes with performance monitoring

tools, 3D and 2D rendering and uses Python as its scripting language. On the other hand,

file:///D:/Dropbox/,%23_ENREF_60

46

Panda3D does not have a physics and collision package, nor does it directly implement any

AI functionality. AI is available in Panda3D using PandAI which is another open source

project out of Carnegie Mellon. PandAI offers basic AI functionality such as path finding

using Waypoints, obstacle avoidance and basic agent behaviors such as flock, seek and

wander. Sadly, Panda3D does not offer physics solution to tie in with their renderer, which

would result in additional work to find and implement a viable physics solution for the

project.

4.1.5 Havok framework suite

The Havok framework suite developed by Havok.inc [62] contains all the features required

for the project. The total set of software solutions include: rendering, navigation, physics,

animation, behaviors and LUA script virtual machine support. The suite would probably

function as a highly suitable software platform for the faction interaction framework;

However, Havok only offers academic licenses on their physics and animation solutions. As

Havok does not offer evaluation periods for their software, and the pricing is decided on an

individual basis, it was deemed to not be economically viable.

4.1.6 Unity 3D

Unity3D [63] (from this point referred to as Unity) is a modern game engine that focuses on

providing game engine functionality to small and midsized development studios. The 26
th

 of

December 2011, they released Unity 3.5 which comes with a flexible and optimized

navigation suite which includes automatic navigation mesh generation, path finding that

supports large groups of NPCs with built in crowd management as well as locomotion

systems that tie directly into the physics engine also provided by Unity. To interface with

Unity, the developer writes JavaScript (Unity script) or C# with the Mono Framework, an

open source implementation of the Microsoft .Net framework. C# with Mono makes it

possible to develop and distribute the solution as a stand-alone framework that has no hard

dependencies on game engines of frameworks.

4.1.7 Summary

Panda3D (with PandAI), Havok (full suite with component assembly) and Unity both cover

most aspects required by the software platform, as can be seen from Table 2. However,

Panda3D does not support a physics system out of the box, which Unity does. Unity also

supports dynamically linked libraries (DLL) files written using mono or .Net to be utilized

47

directly with engine components. This allows the faction interaction framework to be

developed separately and deployed as a plugin to the test game, which is in accordance with

the problem statement. For these reasons, Unity was chosen as the software platform to

support development of the Faction Framework.

Table 2 – Features present in the different platforms

Platform Path

finding

Physics AI

Module

Rendering Logging

System

Real-

Time

Editing

High Level

Language /

Non

Proprietary

Panda3D X - X X X X X

Unreal 3 X X X X X - -

XNA

Framework

- X - X - - X

Torque - X - X X X -

Havok

Framework

Suite

X X X X X - -

Unity3D X X X X X X X

4.2 Unity in depth

Having completed the initial feature analysis, Unity was chosen as the engine to use as a

platform for further development. While Unity supports most features required, it was

important to ensure that the engine would remain stable when simulating larger groups of

agents. Unity performance monitoring utilities make it possible to quickly determine the

current bottleneck of the target application down to the function call. Using these tools, a

48

basic 3D world was created and tested with 100, 200 and 400 agents, respectively. These

initial tests were run on a MacBook Pro laptop with the hardware specifications listed in

Table 3.

Table 3 - Test machine hardware specifications

Component Model Details

GPU NVIDIA GeForce GT330M Adapter RAM 256 MB

CPU Intel Core i5 M 520 2 Logical Cores @ 2.40 GHz

3 MB Cache

RAM Intel i5 Compatible DDR3 4 GB @ 1333 MHz

The main goal for this simulation was to gather data concerning path finding, physics and

Figure 6 - The scene created for benchmarking Unity for larger groups of virtual agents

49

rendering performance. As can be seen in Figure 6, the 3D scenario contains an obstacle

course with six locations where agents are generated and placed in the world, marked by the

large circles in red, green and blue. An agent is represented by the very small cylinders,

bearing the same color as the circle they were generated in. Each agent is given a target when

it is generated and randomly picks a new target location (marked by the yellow spheres) once

a specified time has elapsed. The time between each target acquisition is randomly set for

each agent in a span between 3.0 and 12.0 seconds. This is done to simulate a believable game

or simulation scenario, as there are few instances when all agents in a simulation will require

a new path at the same time.

The initial tests proved satisfactory, but it was discovered that Unity makes little use of

multithreaded processing. This suggests that it should be feasible to simulate a similar number

of agents as shown in these tests even with more complex behavior by making use of

additional logical cores. Figure 7 contains a graph describing the increase in update time as

number of agents increase. As can be seen from the graph, Unity supports more than a

hundred agents at a time, while still leaving time for other computations and gameplay. The

detailed test data and interpretation can be found in each respective chapter on specific Unity

0,51
0,98

1,91
2,35

2,90
3,78

5,85
6,80

7,29
7,93

9,33
10,30

13,10
13,94

14,92

16,16

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

10 20 30 40 70 100 120 140 160 180 200 220 240 260 280 300

U
p

d
at

e
 t

im
e

 in
 m

ill
is

e
co

n
d

s

Number of agents in simulation

Update time as number of agents increase

Update time

Figure 7 - Changes in update time as number of agents increase

50

features. This next section will discuss the information shown in figure 7 in more depth, and

provide screen captures of the profiling tool used to produce the data.

4.2.1 Unity navigation framework

The unity navigation framework is based on Recast/Detour which is an open source C++

solution for dynamically generating navigation meshes and traversing said meshes [64].

Upon starting the simulation, it would spawn an initial 100 agents. The simulation was

confirmed stable, and then, the performance data was recorded before the next batch of agents

were spawned and the process repeated. Figures 8-10 are screen captures of the performance

tool while monitoring the three different agent numbers. Figure 10 describes the increase in

time spent computing crowd avoidance and path finding as the number of agents approach

400.

Figures 8-10 provide a large amount of information which is interpreted as follows; the

legend describing the different colors in the graph can be read in the upper left corner of each

Figure 8 - Performance results for benchmarking scene stabilized at 100 agents

51

screen capture, under the title “CPU Usage”. Each color represents a specific subsystem

taking up computation cycles. As the path finding and crowd manager sub systems are new as

of Unity3D 3.5 [63], these are listed as a part of “Others” in the legend. In the upper part of

the figures, left of the legend can be seen compact graphs containing the current frame rate of

the application as well as what subsystems are contributing to said frame rate. It is important

to note that the benchmark application is running with a cap of 60 frames per second, which

means the graph has little information in regards to the highest potential frame rate. On the

other hand, it makes it easy to identify what subsystems are demanding the most computation

time. The vertical axis of the graph describes the current frame time, which means that a

lower value entails higher performance. The horizontal axis describes linear time. The exact

point in time has little significance as the simulation was fully stabilized as these graphs were

generated, meaning that the patterns depicted were repetitive.

Figure 9 - Performance results for benchmarking scene stabilized at 200 agents

52

For Figure 8 this is mostly “VSync” which is the system responsible for keeping the

application at 60 frames per second. In other words: The application spends most of its time

idle. More detailed information concerning the computation time of each sub system can be

found in the lower part of each figure. In the lower left is the name of the function or sub

system. To the right is the “Total” which describes the percentage of one frame that is spent

performing the listed task. “Time ms” provides the same information, but in milliseconds.

The important information to be gleaned from these values is that the CrowdManager sub

system, which is responsible for managing groupings of virtual agents, is the only system that

seems to be heavily affected by the increase in agent population.

With 100 active agents in the scene, the Unity Crowd Manager, which handles agents

navigating the scene and avoiding other agents, takes approximately 4 milliseconds (ms) per

frame to run, which can be seen in Figure 8. With 200 agents it averages at .8 ms, as shown

in Figure 9. 400 agents have the crowd manager running at 20.83 ms when stabilized, as can

be seen in Figure 10. Figure 11 provides a summary of the key data from figures 8-10. This

figure shows the time spent updating the crowd manager and physics subsystems of unity,

Figure 10 - Performance results for benchmarking scene stabilized at 400 agents

53

with 100, 200 and 400 agents respectively. The time is listed in milliseconds. It should be

mentioned that an acceptable frame update time can vary greatly, depending on the simulation

type, however most game engines default to 30 or 60 iterations per second [28, 65], for the

entire frame, which includes rendering the scene. This translates to an average time per frame

of 33,333 or 16,666 milliseconds respectively.

Simulating 400 agents in real time is more than adequate to create the test case as it is

described in the introduction, and it can thus be concluded that Unity is a good choice for

testing the faction interaction framework.

4.2.2 Unity editor and script development

The unity editor is an all-inclusive world editor that makes it fairly easy to create complex

worlds that can be navigated by virtual agents. The editor allows for defining component

based game objects in a drag and drop fashion, as well as full scale code solutions to be

deployed and run on top of the game. By using Unity together with the Faction Interaction

framework one will have a development scenario that is arguably very similar to that of an

average game development studio. Figure 12 contains a screen capture of the Unity3D editor.

The drag and drop functionality that is automatically available for all scripts created in Unity

can be seen on the right hand side. The two scripts attached to the “GreenWarrior ” agent are

“Nav Mesh Agent” and “Hunger Games Agent”, responsible for interacting with Unity

navigation and the FIF respectively. In the upper left is the game scene, the two villages used

in this simulation are represented by the 6 black boxes that represent different houses. Below

0,00

5,00

10,00

15,00

20,00

25,00

100 200 400

Fr
am

e
 U

p
d

at
e

 T
im

e
 (

m
s)

Number of agents

AI simulation performance

Total

Crowd Manager

Physics Simulate

Figure 11 - Profiler Summary

54

this is an overview of all assets in the scene, under “Hierarchy” and all the content available,

which is listed under the “Project” tab.

4.3 Summary

This chapter has presented an evaluation of the feature set available in a small subset of the

game engines and frameworks available on the market today. Concluding that Unity3D

appeared to be the best choice for use in prototyping the FIF, the performance characteristics

of the engine was evaluated.

Several of the essential features of Unity were discussed in depth, and a test of the AI, path

finding and physics systems was performed with 100, 200 and 400 entities. The results led to

the conclusion that Unity was capable of meeting the needs for the FIF integration and

Scenario prototype. Chapter 3 presented the advanced theory of AI, while this chapter

described the practical tools required to create a prototype scenario, providing the foundation

required for the theoretical design of the FIF, which is presented in Chapter 5.

Figure 12 - Unity3D editor

55

Chapter 5 Core design

Based on the knowledge and selected components from Chapter 3 and 4, we describe and

discuss, in this chapter, the core feature design for the FIF. The faction interaction framework

is a framework for allowing complex interaction between agents in a virtual world to create

gameplay through emergent conflict. The FIF allows game programmers and designers to

define the parameters for their virtual world, and then leave some of the gameplay generation

to the FIF, potentially reducing cost or increasing replayability.

The concept of the FIF is to allow for a more dynamic approach to game and simulation

development. Instead of creating strict rules for how each scenario occurs in a given

succession, the developers define the parameters for their world, and let the FIF do the rest. In

other words: developers define the creatures that inhabit the world they wish to create. They

then define the relationship between the creatures and in what ways they can interact with

each other. Finally, they define the world in terms of desire values; “what do the creatures in

this world want? How do they get it?” Given these parameters, the FIF will then attempt to

simulate the interaction between the various entities in the world, and suggest new actions for

the agents as parameters change over time.

To accomplish this, the FIF must have a system for representing the world in the terms stated

above, as well as a reasoning engine to drive the simulation forward. An abstract

representation of actions applied to objects, and actions applied to other agents, must exist, for

these to be suggested to the agents in the world. These ideas and concepts form the

requirements of the core FIF feature set.

The core features of the FIF deal with concepts required to generate gameplay through

conflict generation. Figure 13 provides an overview of the design discussed in this chapter.

Note how the faction interaction framework is mostly isolated. The only direct relations

required between the FIF and the game world is smart object information in objects worthy of

conflict, as well as ties between actors and agents. The arrows in Figure 13 describe

dependencies between elements.

56

The core design description is split up into several parts, as is evident from Figure 13. Section

5.1 describes how the game world is made accessible to the FIF through embedding game

objects with semantic information and attaching smart object structures. Section 5.2 provides

an overview of the behavior model design. The behavior model is the “end result” of the

framework, as this is where conflict resolution strategies are selected and suggested to the

game engine. Section 5.3 then explains the world model. Unlike the world description, which

deals with describing the game world to the FIF, the world model is the generic world

representation internal to the FIF. Actors and how they choose when to initiate conflicts and

when to request services is described in section 5.4Actors, while 5.5 introduces an interface

for how agents in a game receives action suggestions from the actors. Finally, the internal

details of the actor reasoning engine are laid out in section 5.6.

Figure 13 - Design overview

57

5.1 World description

This part of the core feature set deals with designing how a game world already created can be

represented in the FIF. Going back to Figure 13, the following section, and its subsections,

deal with the part of the FIF design that is integrated with the virtual world. Sections 5.1.1 and

5.1.2 deal with how one describes the “look and feel” of the game world, with smart objects

and semantic information. In Figure 13, this is the part contained within game objects of the

virtual world. Sections 5.1.3 and 5.1.4 deal with designing how the FIF can represent possible

interactions that the game world allows through actions and services. These are also contained

within the smart object structure, and complete the integration between virtual world and the

FIF. This is described further in section 5.1.5. Combined, these sections form the basis for the

FIF to understand what part of the game world is to be taken into account when conflict is to

be generated.

5.1.1 Smart objects and semantic information

As mentioned in section 3.7, if one was to implement all possible semantics about all objects

in the virtual world, the resulting dataset would be too large. Because of this problem, a more

viable approach is to create a system that allows designers to define semantics and how they

relate to their game world instead of forcing them to choose from a predefined set. Kessing et

al. combine smart objects and semantics in [66] to demonstrate a game world where all

artifacts in the world are described through a combination of classes of objects, physical

attributes, services the objects offer and actions that affect them. This level of abstraction

lends itself well to the FIF implementation as it will allow for any kind of world to be defined.

Classes are quite simply definitions of objects, such as a “vehicle” or “person”. Classes can be

part of an inheritance hierarchy, for instance, the “car” class can be a child of a “vehicle”

class. While this classification solution might be important for an agent that uses an inference

engine to reach conclusions about the world, it is not necessary. Kessing et al. describe classes

as “a collection of entities based on their essential common attributes”. For simplicity,

defining hierarchies of classes will not be implemented in the framework. Classes are simply

the definition of a collection of attributes that describe some entity in the game world.

58

5.1.2 Attributes

Attributes characterize an entity in the virtual world. A typical attribute for an apple would be

“edible” or “dangerous” and have some descriptive value assigned to it. Kessing et al.

describe how simply having this “tag” is not sufficient, and that each attribute must have a

corresponding value to make it possible to use them for reasoning. Each entity subscribing to

an attribute will create a new entry in the attribute map containing one floating point value

that describes the entity’s membership to that attribute. Using fuzzy logic, it is up to the user

of the framework to define the defuzzification algorithm that makes sense of the value. For

example, “edible” may use a Boolean function to describe its membership, while a “weight”

attribute would use a linear or exponential function, depending on the context of the game.

When an agent seeks to reason about the world, it can query the semantic data structure for a

list of all objects that have a specific attribute. While it can be argued that the storage and

querying of the semantic data should offer more advanced functionality such as those offered

by query languages, these features are beyond the scope of this thesis.

Through the use of custom defuzzifers, designers making use of the framework can use

attributes to describe virtually any type of information about their world that is required to

inform the agents that inhabit it. Combining this with the attribute accessor, one can create a

web of information that any agent (or player) can make use of to further reason about the

world around them.

Attributes are complimented by an attribute accessor system. By forcing all attribute

assignment to go through the accessor before they can be assigned to an object, a web of

information is defined in the accessor. The basic functionality that is used for demonstrating

the use of this design is simply to allow the user to query the accessor for any object that has

this attribute. This way, any agent interested in knowing more about the world around it, can

query the attribute accessor to find objects with this type. As an example of this functionality,

a pickaxe has the attribute “weapon” attached to it. Should an actor decide it wishes to

optimize its “battle ready” attribute, it could then use the accessor to find any objects in the

world that has this attribute attached to it.

This implementation allows the designer to describe the virtual world with as many details as

is deemed appropriate for the implementation. Attributes and the accessor system can also be

used without the world model, to simply provide a means for the designer to describe the

world they are working with. The way attributes are stored within the FIF and their relation

59

to the game world is shown in Figure 13. Here one can see how the different attribute

groupings stored within the FIF, and how the game objects are described to the FIF using said

attributes, through the use of smart objects.

5.1.3 Actions

Actions describe the process performed by an entity, yielding some attribute change or

through generating new entities of some kind. Actions can be performed by an agent in the

system, or as the end result of a service. A typical example of an action could be “open” and

“reduce hunger”. While “open” could be part of some service activation requirement, “reduce

hunger” would be the action applied to an agent or other smart object as an end result once all

the specifications in the smart object has been fulfilled.

An action contains a list of attribute modifiers which defines the changes activating the action

will have on the agent and the world around it. It contains temporal information that describes

how much time it takes before the action is activated. The temporal information is not acted

upon by the implementation itself, as the implementation should be able to handle any

scenario, with arbitrary time representations. It should be noted, however, that it is assumed

that all temporal information is of the same timescale, as the number is used in raw form for

calculations regarding yield over time as described section 5.6 which describes the actor

reasoning engine.

Actions can be used both as a way to explain the outcome of some triggered event, but also as

a descriptor for the game to understand what simulations to trigger in the virtual world. To

facilitate this behavior, all actions have an “activated event” that can be listened to. This event

is fired when the access begins. This way, some simulation manager can initiate animation

cycles, sound effects, particle effects or other actuator functions. For instance, an agent

performing the “open” action on a box of aid food would trigger an animation on its avatar,

playing an interaction animation, while the box would also trigger an animation to open.

5.1.4 Services

Services are more complex in that they describe an approach of how to obtain whatever the

artifact offers. A service is described as “an entity’s capacity to perform an action, possibly

subject to some requirement”. A service thus describes how an attribute can be modified by

the use of it, for instance “buy chocolate” is a service that perform the “satisfy hunger” action

which in turn reduces the value of the “hunger” attribute of the agent that chooses to interact

60

with it. While Goncalves et al. [43] describe a more sophisticated approach on how to

describe the interaction process to such an extent as to what animations to play and how to

modify them to model grasping behaviors, such an implementation would be too complex for

this proof of concept. Instead, a service will be defined in a simplified version of the one

presented by Kessing et al.

A service can have attribute constraints, for instance, the service “provide food” offered by a

cornfield might have the attribute constraint of “ripe>0.9” which would entail that the field

would have to be more than 0.9 ripe to be usable. How this information is interpreted is

arbitrary and left to the designer making use of the system. A service can also have action

constraints which specify certain actions that must be performed by the agent for the service

to activate. In the case of the food provided by the cornfield, an action constraint could be

“harvest”. Third, a service has a temporal property, which specifies how long the service will

take to complete. Finally, a service has a spatial property which describes the area affected by

the activation of the agents that will be affected by the service. Kessing et al. also suggest

having an interaction requirement prioritization that specifies in what order the requirements

must be filled for the service to function as intended, this can simply be represented by a list

structure, allowing designers to choose if they wish to honor the ordering or ignore it.

5.1.5 World description integration

The following design is proposed as a result of the features described above: A smart object is

defined by a collection of attributes with corresponding floating point values that are stored

for each instance of the attribute. These values describe the degree of membership to an

arbitrary predicate set for each attribute, depending on a user defined membership function. In

addition, these objects may define a set of actions they may perform through invocation from

the AI system, as well as services said object can provide. Smart objects are embedded as

parts of the game object and used exclusively by the AI system to reason about the world. As

actions are not explicitly defined, they can be defined by the designer and utilized to

manipulate both the AI and the virtual world in all ways required to move the game world in

the correct direction. The basic design layout of the smart objects implementing semantic

attributes can be seen in Figure 14. The figure also shows how this relates to a typical game

object using a composition based object structuring. Here, the smart object is composed of an

arbitrary amount of semantic attributes that describe the object itself. These attributes are not

used by the FIF, but can be used by the game designers to allow for special considerations to

61

be taken regarding objects with specific attributes. A smart object is also composed of an

arbitrary set of services, which contain actions in the form of constraints and one result action.

These are again described by the modifiers they apply to the world around them.

This implementation is highly abstract, allowing for practically any world to be described,

using these basic building blocks. In addition, as expanding the “umwelt” of the AI is simply

a matter of adding another attribute to objects in the world, the level of detail (LOD) can

easily be adapted to the current need of the solution. As the current design proposes that all

attributes, and where they are attached, should be registered in the attribute accessor, it is

easy to see that storage requirements and graph traversal time will increase rapidly as

additional detail is added. This problem can be handled by implementing a data management

system such as a relational database or similar [67].

It is important to note that not all artifacts that exist in the virtual world need necessarily be

“smart”. Objects in the game that have no value to actors do not benefit from attribute data,

instead these objects are simply interpreted by the AI system as collision obstacles through

the pathfinder and ignored in other respects. Only objects that possess some form of resource

property or that the AI system should be able to use for planning are embedded with smart

object features. While this might initially appear as limiting the interactivity of the solution, it

is important to consider the combinatory explosion that could result from embedding too

many semantic attributes in all objects in the world. A novel approach to enhancing this

implementation would be to support large quantities of possible attributes in the engine and

allow designers to disable or enable hierarchies of classes and attributes as they are deemed

useful for the simulation as proposed by Tutenel et al. [45].

62

-AttributeName : string
-AttributeValue : float

«struct»
SemanticAttribute

+ActionActivatedEvent() : void

-AttributeModifiers : AttributeModifier
+OnActivated : ActionActivatedEvent

«implementation class»
Action

+Apply(in attributeToModify : SemanticAttribute) : void

-Attribute : SemanticAttribute
-TotalModification : float

«implementation class»
AttributeModifier

+Invoke(in source : object, in EventArgs : sbyte) : void

«delegate»
ActionActivatedEvent

1

*

1

1

1

1

-RemainingEntityRequirements
-RemainingActionRequirements
-ActionRequirements : Action
-EntityRequirements
-ActionResult

«implementation class»
Service

+HasAttribute(in attributeName : string) : bool
+GetAttribute() : SemanticAttribute

-SemanticAttributes : SemanticAttribute
-Actions : Action
-Services : Service

SmartObject

1

0..*

1

0..*

1

0..*

-PhysicsComponent
-RenderingComponent
-AIComponent

GameObject

-SmartObject : SmartObject

AIComponent

1

0..1

1
0..1

Figure 14 - Smart object design

63

5.2 Behavior model

The Behavior model defines a set of conflict resolution strategies available to actors in the

simulation. The realization of a behavior is defined by the developer making use of the

framework. In other words, the FIF will trigger a behavior to resolve a conflict between

factions. However, the way this conflict resolution is carried out is left to the developer. A

behavior instance consists of a value describing the faction relation space required for the

behavior to be valid, the wealth, power and prestige space required to execute the behavior, as

well as a list of custom attributes that are required to activate said behavior. The behavior to

activate is selected through evaluating all possible behaviors and selecting the one that has the

smallest total difference when compared to the state of the actor, multiplied by the current

hostility towards the contesting actor. In addition, custom attributes are used as filters, which

mean that a behavior containing custom attributes can only be activated by an actor that

possesses all the custom attributes listed in the behavior. Once the behaviors have been

filtered out, custom attributes are used as part of the difference sum. The process is described

in the pseudo code in Listing 4, with function descriptors listed in Table 4.

currentBestFitBehavior = null;
bestTotalDifference = float.MaxValue;
for each behavior in behaviorModel.Behaviors

if actor does not have custom attributes required by behavior

continue;

endif

calculatedTotalDifference = actor.CalculateTotalDifference(behavior);

calculatedTotalDifference *= GetRelation(actor, contestingActor);

if calculatedTotalDifference < bestTotalDifference

 OR currentBestFitBehavior is null

currentBestFitBehavior= behavior;

bestTotalDifference = calculatedTotalDifference;

endif

endfor

Listing 4 – Behavior evaluation pseduo code

64

Function Name Function Description

GetRelation

in:

actor : Actor, contestingActor : actor

out: relationRating : float

Looks up the relation matrix for the two actors

and returns the relation the querying actor has to

the contesting actor. This value ranged from 0 to

1.

CalculateTotalDifference

in: behavior : Behavior

out: totalDifference : float

Calculates the difference between each element in

the behavior and the corresponding state variable

in the actor. The variables made a part of the

result are: wealth, prestige, power, and any

custom attributes required by the behavior.

Table 4 - Behavior evaluation function descriptors

Once the actor has selected what behavior to activate, a behavior mobilization object is

instantiated. The behavior mobilization object contains a reference to the behavior that was

instantiated, the smart object at the center of the conflict, the instigator and its target, as well

as the current conflict state. The conflict state is a single precision floating point variable

ranging from 0 to 1, where 0 signals complete failure for the actor and 1 signals success. The

behavior mobilization instance is kept in the mobilizations list as long as the variable is not

set to 0. An actor will only attempt to utilize services on smart objects that have a behavior

state value of 1 attached to it, or that does not have contestants. This way, a conflict is

automatically generated each time more than one faction attempts to make use of the same

smart object. However depending on the factions’ affiliations with each other, there will be

different conflict strategies employed to share these resources. It is up to the developer

making use of the framework to modify the conflict state of each mobilization instance.

However, the faction interaction framework monitors the variable and makes changes

65

according to the new value. Actors that are members of the same faction may choose to join

the same mobilization, if they also find that said mobilization is the correct approach. An

actor of the same faction may also activate a new mobilization of a different type should its

reasoning engine conclude that another approach is more viable in accordance to its internal

state.

The act of initiating, joining and resolving conflicts is the main goal of the FIF. All other parts

of the framework are designed to allow for this behavior to take place. It is through conflict

that interesting gameplay is generated. As all other components of this design, no gameplay is

actually created by the FIF. The FIF simply recommends possible ways to stage a new

gameplay scenario, which can be ignored or made use of, by the game that implements the

framework.

5.3 World model

The world model is based closely on the implementation proposed by Medler et al [22]. In

the FIF, the model is a global set of metadata that is accessible to all agents and actors

operating within the world. The world model is divided into several data sets, describing

different aspects of the world.

5.3.1 Desires

Desires are set of semantic attributes that describe how they are relevant in the world. These

attributes are defined by the user and put into three different categories: Wealth, power and

prestige. Each attribute is defined by a data structure containing the attribute name as

described in section Smart objects and semantic information, as well as a weight function,

ranging from 0 to 1, that describe how important this attribute is in comparison to other

attributes of the same category as the membership value changes over time. These values are

then used by factions to decide what attribute to improve on next.

5.3.2 Organization

Organization contains faction meta-data that describes the different factions of the world and

their relation to each other. Once all factions have been added to the organization model, a

matrix containing the entirety of relations between factions is generated. The default state of

all factions is neutral relations; this can be changed by the user once the matrix has been

generated. The matrix is dynamically updated by the faction controllers as their relation to

66

other factions change. These interactions are described in section Behavior model. There are

additional features to the organization aspect of the world model described by Medler et al.

[22]. In their paper, organization also describes internal structures for a faction and rules that

define how an agent may leave its faction. In the FIF, these features are not implemented for

the sake of simplicity, but are discussed further in the section on further work.

5.3.3 Mobilization

Mobilization contains data on possible areas that can be used for staging escalated conflict

scenarios and what form of interaction is required by the other faction for the conflict

resolution strategy to define an outcome. In other words, the mobilization data structure can

be visualized as a “notice board” used by factions to decide when and where to meet to

resolve their conflict.

In addition to the features described above, there is a final world model aspect in the system

proposed by Medler et al. Solidarity defines rules for how and when an agent may break with

its parent actor, be that a group, faction, or a belief system the agent subscribes to. Breaking

with the parent actor can be to simply refuse to participate in some conflict resolution strategy

employed by the parent actor, or to leave the actor outright. While this aspect of the world

model offers many novel applications, especially for simulations where interaction with

agitated populations is the main focus, it was not implemented in the faction framework to

avoid further complicating use of the framework when applying it to a game design. The

further work section describes how the solidarity aspect would affect both the implementation

in itself and potential benefits that could be gleaned from the feature.

The World model is the core of our framework, and is used by all systems to decide what

attributes to improve upon and how to affect the world to further the agendas of the actors in

the system. Because of this, the entire framework is designed around the concept of a world.

The world object is created through incrementally adding all desires, factions and

mobilization areas that should be present in the world on startup. Only objects that have been

registered with the world object are available to the reasoning engines used by Actors and

agents.

67

5.4 Actors

The system responsible for parsing and treating the data provided by the faction framework is

called the actor. An actor is an entity that attempts to exert its will upon other entities and the

world to maximize its total desire satisfaction. An actor can be a single agent acting on its

own, or a large organization with many sub actors attached to it.

Each actor has its own set of desires, derived from the world model, in addition to any other

desires attached to it by a designer. Unless otherwise specified, an actor will perform

autonomously utilize behaviors, to maximize its desires satisfaction. An actor that has other

actors attached to it may request that behaviors are performed by one of the attached actors

instead. Attached actors will immediately cancel the behavior they were currently executing

and attempt to accomplish the behavior defined by the parent actor.

Each actor contains a smart object structure, as described earlier. This structure, while

initially empty, can be initialized to allow other actors to reason about the actor. By using the

smart object structure to define an actor with services, actions and attributes, actors can form

strategies surrounding individuals as well as artifacts. As an example, consider a world model

where global enterprises use any means necessary to get ahead. A faction, faction “blue”, is

currently at a high level of conflict with faction “red”. Because of the high conflict rating,

“blue” faction infers that its highest relative increase in utility when compared to red is by

reducing “red” faction’s knowledge value. It searches through all actors in the system with the

“red” attribute that also offer the generate knowledge service, and attempts to apply a conflict

resolution strategy that apply to the knowledge value.

All actors are embedded with a behavior model that contains all the conflict resolution

strategies the actor may employ. These are, as all conflict resolvers, defined by the designer

for the specific game and contain meta-data describing the potential output of the function.

As described earlier, the actor will employ any behavior as requested by the faction system.

While Medler et al. [22] suggests that actors should also reason on whether to accept these

orders or to disregard them, it can be argued that this would greatly increase the work required

to implement specialized behavior at the faction level, as well as introduce unwanted

complexity to the framework. Actors may also use the behavior model to resolve conflicts

between them and other actors, groups and factions. However, it will automatically end

whatever it was doing to perform a task assigned to it by the faction to which it is a member

of. It is important to note that while the actor chooses what behavior model to employ, the

68

choice of executing the behavior is passed on to a sub actor and finally to the agents attached

to the actor. It is, in the end, up to the agents of the world to exert the will of the actors, and

because the faction interaction framework seeks to define an abstract approach applicable to a

multitude of scenarios, the way these behaviors are executed in the world must be left to those

making use of the framework.

The actor holds a reference to the world model as described earlier. The world model is a

global data set that uses semantic data to define the attributes relevant to the world in which

the simulation takes place. In other words, the world model contains attribute tags relevant to

wealth, power and prestige. In addition, each actor can be equipped with a local data set that

describes attributes relevant to the specific actor. These attributes also require a

defuzzification function that describes how the attributes affect the actor’s wealth, power and

prestige values.

Finally, the actor contains a reasoning engine which decides what attributes should be

attended to next and queries the smart object system for information on how to obtain these

resources. It should be noted that the actor in itself has no effect on the world around it, it may

only request that the game performs the actions it suggests, it is up to the designer if the actor

is indulged through manipulating actuators in the game object or not. The way the actor

knows that the action has been performed is by monitoring the value it attempted to change

and seeing if it changes for the better. If nothing changes, the reasoning engine will continue

to improve upon this value until something else takes priority.

5.5 Agents

Agents in FIF are simply a term used to generally describe any entity that is interested in

listening to events related to conflict resolution. While the FIF in itself only considers the

information present within the framework, the agent is the system that is to be determined

specifically by the designer. The agent is an abstract definition of functionality that is required

by the framework to interact with the world. The main functionality required by the

framework is that the agent is able to respond to behavior requests as well as capability of

spatial translation.

How these capabilities are implemented is left to the designer making use of the framework.

In truth, a system without any agents, simply relaying attribute changes to the actor model

69

would work just as well for the FIF, but it would make little sense to create a system that has

no forms of output.

5.5.1 Behavior requests

A behavior request is the main way the framework resolves conflicts with other actors in the

world. The actor, which is responsible for the behavior of the agent, chooses a behavior it

wishes to see executed. This behavior request is then sent to the abstract function of the agent

in question, which in turn chooses to execute or disregard this request. How the execution of

the behavior request is implemented is left to the user of the framework, as it is inherently

scenario specific. The actor responsible will assume that the behavior is being executed and

only send a new request once the desire states of the actor changes enough for there to be

another, more important desire to consider. A behavior request is issued through passing a

pointer to the behavior to be executed and a list of actors affected by the behavior.

5.5.2 Action requests

Action requests are used to interact with the world in a way that will modify the behavior

values of the actor. Through these requests, the actor can issue an order for an agent to

perform an action on a specific entity capable of accepting the given action. Like behavior

requests, action requests are assumed to be performed by the agent in the best way possible

given the current conditions of the world. The action request is invoked by an actor by passing

a smart object reference, an action reference and an object pointer containing the entity that

the smart object data is attached to.

As with all other output from the FIF, requests do not directly impact the game world.

Requests are recommendations relayed to any listening agents, regarding how best to optimize

the world for the actor the agents are subscribed to.

5.5.3 Summary

All simulations that seek to utilize the FIF must have their virtual agents implement the

behavior and action requests for the framework to function to its full extent. It is through these

interfaces actors seek to interact with the world they are put in. As the faction interaction

framework has no prior knowledge of the scenario designers seek to create, this

implementation must be left to those making use of the framework. The only assumption

70

made by the framework, as mentioned earlier, is that the world inhabited has an understanding

of time, and therefore make requests based in the time as it passes inside the framework.

5.6 Actor reasoning engine

The actor reasoning engine is used to make decisions regarding how to interact with the world

the actor is situated in. The actor reasoning engine has a single iteration function that serves as

the basis for its operation. This function can will evaluate the current world state of the actor

and make recommendations depending on the results. It is expected that this evaluation will

grow exponentially in computational intensity as additional world information is added to the

world model used by the actors. Therefore, the reasoning engine will only make a new

recommendation if the world has changed sufficiently from the previous state. The way this

is done is by storing the sum of desire values in the actor state and calculating how much this

deviates from the last time a selection was made. This deviation is called the threshold value,

and is set by the designer to indicate how big the change in actor state must be to warrant a

new action recommendation to the agents subscribing to the actors notifications.

If it is decided that the actor state has not changed sufficiently, the actor is referred to as being

in a waiting state. This simply means that for this iteration, the reasoning engine will do

nothing, and will most likely continue to do nothing if the world does not change in any

meaningful way. If the reasoning engine decides that the world has change sufficiently from

the previous iterations, it will perform a series of steps to make a recommendation. First, a

desire group is selected; which is described further in section 5.6.1. Once a desire group is

chosen, the reasoning engine attempts to identify the smart object that can provide the highest

possible utility at this moment, this is explained in detail in 5.6.2. Once a service is found, it

could be contested by other actors. If so, a conflict will be initiated against one of these actors.

Should a smart object not be contested, a notification is sent to all agents subscribing to

activation requests, informing them of the recommendation from the reasoning engine.

Section 5.6.3 describes how a conflict is initiated. Figure 15 provides a flowchart describing

the operations described in the previous paragraphs.

71

5.6.1 Selecting desire group to optimize

The reasoning process for choosing what desire group to optimize draws inspiration from

neural network activation values. Each activation group can be thought of as a single neuron,

where each attribute’s activation value is a weighted input value. The reasoning process

computes the activation level of each desire grouping (wealth, power and prestige). The

grouping that has the highest rated activation function will be chosen for improvement. The

rating for each desire type is calculated as follows:

Figure 15- Single reasoning engine iteration

72

Given n contributing attributes where n is the number of attributes in the given desire

grouping. The activation rating for a given desire type is the sum of all n attributes where the

activation value generated by each individual trait is calculated by the remaining value of a

given satisfaction function f for each attribute, multiplied by a given weighting function ω.

The total activation rating is then normalized by n to account for the variation in attributes

for any given desire group.

∑ ()

Note the differences between neurons and this activation function. Firstly, the value of each

input function (assumed to be between 0.0 and 1.0) is used as a negative value in this

implementation. This means that the higher the satisfaction level returned from the function

that produces the input value, the less chance it is for this desire group to activate. Second, to

reduce the impact the amount of input values has on the overall activation value, the

activation value is divided by the number of input values. This will cause desire groups with

few but heavily weighted attributes to have a higher chance of being activated than an

attribute set of many weakly weighted attributes. Once a desire type has been chosen, the

actor queries the world model for smart objects offering services that can improve the

attributes that affect the given desire.

5.6.2 Finding highest expected utility

Once the list of objects supplying services that affect the desire grouping has been identified,

objects are tested to see if they can in fact be used by the actor by comparing attribute values

as described earlier. The final step of selecting a service provider is to calculate the expected

utility for each provider and selecting the highest value.

To find the highest expected utility, each smart object offering a service s has its potential

gain ϕ, multiplied with the actor’s weight function ω. The expected utility is then computed by

multiplying the potential gain by the product of the n contestants’ relation value ψ.

 ∏

Once the process of selecting the service to utilize has been completed successfully, the

reasoning engine will fire off an event to all listening agents, informing what service will be

accessed. The selection process can fail in two ways: If there are no services that match the

73

selection criteria decided upon by the desire selection, or if the services available are

contested by other actors. In the case of the former, the reasoning engine will simply stop

running for the time being, doing nothing for this iteration of the selection process. It will

behave as if in a waiting state until update is called again. In the case of the latter, the

reasoning engine will initiate contention for the smart object offering the service.

5.6.3 Initiating contention

Contention is initiated when one or more actors, that are not a part of the reasoning engine’s

actor hierarchy, are listed as actively making use of, or attempting to make use of the same

smart object (any service of the object will do) as the actor has itself selected for use. The

reasoning engine will then use the same algorithm as used to select highest utility service, to

select the best possible conflict resolution strategy, based on relation and attributes stored as

part of the conflict behavior. Once a behavior has been selected, the world model will be

queried to see if any other actors in the hierarchy of the reasoning engine are engaged with the

same conflict resolution strategy, on the same smart object. If this is the case, the reasoning

engine will send a notification to all subscribing agents that it recommends joining the

conflict. If no agents in the same hierarchy are involved in conflict of the object, a new

conflict behavior is created, and notifications are sent to all subscribing agents that a new

conflict has been initiated. Once this has been done, the new change threshold is calculated

and the reasoning engine enters waiting state.

5.6.4 Waiting state and action requests.

Unless the reasoning engine was unable to make a choice at all, some form of event will have

been sent to all listening agents, informing them of a possible way to change the virtual world

in a fashion that suits the actor they are tied to. If so, the reasoning engine will store the

current total utility and enter a waiting state.

When the reasoning engine enters the waiting state, it will initialize a threshold variable that

will slowly be reduced as time passes. This threshold defines the total change required to take

place in the desire values of the agent before a new plan is formulated. As time passes, the

total change required for a new plan to be formulated approaches zero. The actual desire

values of an actor is calculated as often as possible, however this task automatically yields to

higher priority tasks in the system. Also, actors higher up in the hierarchy are calculated first,

leading to faction level decisions always being able to respond to changes in the world, while

74

actors with less importance calculate their desires more seldom if computational resources are

tight. In addition to responding to the threshold being exceeded, the reasoning engine may

also respond to having an action applied to it. This occurs at any point where the designer

activates an action on an entity which has been added to the actor event list, not to be

confused with the notifications described previously in this section. When an action is applied

to an actor, the desire values of the actor is recalculated immediately and checked against the

current plan threshold.

An actor may be given an action request from a parent actor. If so, both the parent and the

actor which has been given the request store the expected action in their reasoning engine. As

with other relationships, the actor is only expected to do the best possible job to fulfill the

request. Because of this, the result of each request is undefined by nature. There is no way to

demand that a request is fulfilled with absolute certainty. This once again ties in with the

concept of solidarity. While this implementation allows independence in actors to some

degree, it does not allow for actors to reevaluate their relationships with other actors as

suggested by Medler et al. [22].

5.7 Summary

This chapter has provided a detailed description of the FIF design. The entirety of the

framework architecture was shown in Figure 13, which in turn was described in detail

throughout the chapter. It was shown how one would tie together the FIF and the virtual world

it is to inform, through use of composition, as well as how these enhanced game objects

would benefit the game through additional world data for their agents to utilize.

The internal world model for the FIF was described, which further informs the actor reasoning

engine. The actor reasoning engine at the heart of the FIF is then allowed to evaluate the

world as understood by the FIF, and provide recommendations in the form of service requests

of behavior mobilizations. This process, which lies at the heart of the FIF, was shown in

Figure 15. The behavior mobilizations and service requests are the final product of the FIF, as

they can be easily translated into gameplay scenarios in a virtual world.

The FIF provides dynamic gameplay generation to game worlds through the enhanced world

detail and simulation of factions. While game developers are still required to build the rules

and representations of their virtual world, the FIF offers a way to create scenarios for these

75

rules and representations to be utilized, without having to script each scenario by hand. Actors

with the same interests that are not allied, will automatically escalate and deescalate the

tensions between each other and utilize different behavior strategies to attempt to get ahead in

the virtual world. By tying game mechanics to behavior strategies, game developers will get

autonomously generated conflict scenarios. These gameplay scenarios will also have the

benefit of being different every time, given that the player or players are able to manipulate

the attributes desired by actors in the world. Chapter 6 will describe how the design provided

in this chapter was used to implement a prototype version of the FIF in C#.

76

Chapter 6 Framework implementation

In this chapter, we describe a proof of concept implementation of the FIF, which was

developed using Visual studio and C#. C# was chosen for its native implementation of

delegates and events, making it simple to create the notifications described in Chapter 5. This

chapter will describe how the features of the design were implemented in practice, and

provide a brief overview of the architecture.

Section 6.1 provides a short description of C# features that were essential to the

implementation. Next is an overview of the different features, provided with class diagrams

generated by visual studio from the complete solution. This provides an exact overview of the

implementation. Section 6.2 describes the implementation of semantics and smart objects.

Together with section 6.3, these two sections describe the functionality used to describe the

virtual world to the FIF as described in section 5.1.

Section 6.4 describes how actors were implemented in the prototype, while section 6.5 shows

how actor relations are defined. Next, section 6.6 describes in detail, how one uses the

prototype to describe a virtual world to the FIF. Finally, a discussion of the result is provided

in 6.7.

6.1 C# features

C# is a high level language developed and maintained by Microsoft. Thanks to the Mono

project, the language has become one of the most widely used and platform independent

solutions available [68]. In addition to this, C# is also one of the scripting languages usable

directly in Unity3D, making it trivial to merge FIF with the test scenario. It should be noted

that the C# features described in the following subsections are not exclusive to the language.

C++ and other languages also provide extensions or native support for these.

6.1.1 Delegates and events

Delegates in C# provide the same functionality as function pointers in C#, but they hide the

inherent complexity that rise when trying to use function pointers with member functions [69,

70]. Delegates are defined in the same way as any data structure. Figure 16 shows how a

delegate is declared in visual studio 2010.

77

Events are in essence syntactic sugar for delegates. By declaring an event instance of a

delegate type, one essentially gets a list of function pointers that can be subscribed to by any

function that has the same signature as the delegate. Should a game developer wish to

subscribe to an FIF event, she has simply to create a function with the signature described by

the delegate. Once created, the signature can be added to the event instance, and invoked by

the framework as can be seen in Figure 17.

6.1.2 Internal keyword

The internal keyword is an accessibility keyword specific to the C# language. This keyword

attempts to replace the C++ keyword “friend” which allows one class to access protected

variables from the class that has friended it. The internal keyword is less restrictive, allowing

all components of the same assembly to benefit from this extended privilege [71]. While this

keyword breaks with strict object oriented principles, it allows for special behavior patterns to

be enforced. For instance, by making the semantic attribute class internal and making the

constructor protected, one can make sure that only the accessor system (explained in section

5.1.2) is able to attach attributes to objects.

Thanks to the internal keyword, it is simple to enforce policies that make it less likely that the

framework will be used incorrectly. In addition, it allows for designs where one can do

separation of concerns without having to duplicate the data set being worked on, which is

useful when attempting to keep the memory footprint of the application at a minimum.

Figure 16 - Delegate declaration in visual studio 2010

Figure 17 - Invoking a service activation event

78

6.1.3 Properties

A property is syntactical sugar for implementing get and set functions in C#. Both advanced

get and set functions, with bodies supporting all types of programming logic, as well as

automatically implemented get and set functions are supported [72].

6.2 Implementing semantic attributes and smart objects

Smart objects and semantic attributes are closely interconnected in the core design described

in Chapter 5. Therefore, these two features of the framework implementation are described as

one feature set. Figure 19 describes in detail how smart objects, services and semantic

attributes are implemented, as well as the relationship between them. Note that this class

diagram is generated by visual studio 2010 directly from the code. Because of this, some

descriptors are not UML compliant; hash symbols marks the entry as internal, as described in

section 6.1.2. Where a list or other container is followed by the new keyword and a

constructor, the container uses automatic initialization.

Figure 19 shows the containers for services, attributes and interested actors are all marked as

internal. This allows the rest of the faction interaction system to directly manipulate these data

structures should it be necessary. For instance, when the actor reasoning engine is searching

for a smart object that is capable of optimizing its selected attribute, it will access both the

services list to evaluate the potential return, as well as the interested actor list to calculate the

potential contestants for the smart object in question.

Semantic attributes are very simple constructs, as can be seen from Figure 19. They contain a

name, the current internal value, as well as a defuzzifier. The defuzzifier is where the designer

can make modifications to create any kind of membership function as described in section 3.6.

The defuzzifier interface is the only requirements for how these functions are implemented,

allowing the designer to take any game state into account when computing the defuzzified

value. An example of this is provided in section 7.3.

79

Thanks to the internal keyword, and protected constructors, the only way to attach an attribute

to a smart object is through the attribute accessor class, as can be seen in Figure 18. This is the

tool used by game designers and developers when attempting to describe smart objects. The

attributeMap in the accessor contains a hashmap of lists. The hashmap uses attribute names as

an index, which in turn returns a list of all objects in the world that contains the attribute. This

allows both the FIF and the game to quickly leverage the semantic information to find objects

of interest.

6.3 Implementing the world representation

The world model implementation was combined with the behavior model to contain all

information that was required to describe the world. The different containers seen in Figure 20

contain all semantic attributes that are used to describe conflict in the system (added by

designers). The “behaviors” container contains all possible conflict resolution strategies that

can be applied. Note that these behaviors are not instances active, but the abstract

representation referenced by all instances of the conflict.

Functionality was also added to assist in selecting the best possible behavior strategy, through

the “GetBestFitMobilization” function, which returns either a new instance or one already

being applied by other actors in the actor hierarchy. When starting to use the FIF

implementation, one first sets a new world model in the “FactionInteractionSystem”. Figure

21 shows how this class is implemented. As can be seen, it implements the singleton pattern,

and contains an instance of the world model, a list of all actors in the scene and all active

mobilizations. The “FactionInteractionSystem” is responsible for running the entirety of the

implementation through its update function. When this function is called, it will iterate

through all actors in the world and allow them to perform reasoning.

Figure 18 - Semantic attribute accesor implementation

80

6.4 Actors

In Figure 22 one can see an overview of the actor and actor reasoning engine implementation.

These are split in two parts, where a reasoning engine is informed of the actor state through its

update function. It should be noted that this implementation does not include the ability to

propagate requests down the actor hierarchy, as described in section 5.1.3. This feature is

closely tied to the solidarity functionality discussed in section 5.6. This functionality can still

be implemented by one making use of the framework, should she wish to do so. This can be

accomplished by adding event listeners to the “commander” actors and having these relay

requests to agents subscribing to actors further down the hierarchy.

81

 Figure 19 - Smart object implementation

82

There are several features of note in Figure 22. There are many functions that allow a designer

to directly modify the attribute values in the actor state, such as the “GetAttribute” and

“ModifyAttribute” functions. Designers can also directly modify relationship values and get

Figure 20 - World model

Figure 21 - Faction interaction system

83

the current desire values. The actor reasoning engine requires advanced functionality for

querying the state of other actors. For instance, the reasoning engine must be able to find the

relation of all other actors interested in a smart object when attempting to decide what object

to recommend accessing. This is accomplished by storing a static list of all actors inside the

actor itself. The actor reasoning engine is a complex system that changes behavior by minute

variations to the world around it. The update function takes into account large amounts of the

world information, as described in section 5.6.2. This implementation has potential for

causing performance issues, which is discussed in section 7.4.

6.5 Faction relations

Relationships between actors are rather problematic to set up when the amount of actors

increases quickly. Assuming that one would have to set up relationship values for all actors in

the scene the amount of values to set would be N*(N-1). This would quickly become

problematic for designers to cope with, so a different solution was required. For this

implementation, two measures were taken to reduce the required work.

First, a data structure to hold a full relation table was created, allowing for the same relation

table to be copied between several actors that should hold the same relations. Second, the

actor will send a request up its hierarchy (if it has one), querying any actors further up if they

have a relationship value to the actor. Should a relationship value be found further up the

hierarchy, this value will be adapted; if not the standard initialization value of 0.5 (neutral)

will be used. This way, actors can be added to the game while it is running, with the actors

being related to, depending on their ties to other actors.

84

Figure 22 - Actor implementation overview

85

6.6 Defining a world

This prototype implementation of the FIF allows the user to define all the features described

in Chapter 5. This section describes how the prototype implementation can be initialized to

perform the operations discussed in the design.

1. Create a new world instance and set it in the faction interaction system

definition.

2. Define the attributes relevant to the world representation and register them

with world instance.

3. Define the behaviors applicable to the world and add them to the faction

interaction system.

4. Create all actors that will participate in the world and register them in

hierarchies as appropriate.

5. Define the faction relations between all actors in the scene.

6. Add actors to the world.

7. FIF is now ready for use.

Once these steps have been accomplished, the FIF can be updated in its entirety by simply

calling the update function on the faction interaction system. This will cause all actors to be

updated and post recommendations to the game system.

The recommendations generated by the FIF are the final product of the system. These are

either service activation requests or behavior mobilization requests, sent to any agents that

subscribe to the actors’ events. It is through these requests that gameplay is dynamically

generated, as agents respond (or ignore, depending on the implementation made by the game

developer) to the requests. As requests are fulfilled, the attributes requested change, and new

requests are posted, resulting in an endless succession of scenarios emerging from the system.

6.7 Summary

The faction interaction framework prototype was implemented as a standalone library of

functionality that can be leveraged by any game capable of utilizing .NET/CIL libraries. By

defining a world with FIF, and tying agents and smart objects to the framework, the FIF is

capable of adding an additional layer of interaction with the world it is implemented in.

86

Chapter 7 utilizes the work presented in this chapter to build a small virtual world for testing

the feasibility of the prototype. Here, the hunger example presented in section 1.6 is

implemented on a small scale, to create a world where two villages are fighting for access to

the only food source available.

87

Chapter 7 Game scenario implementation

The prototype described in chapter 6 fulfills the requirements presented in Chapter 5. In this

chapter, we evaluate FIF using a virtual world based on the “hunger conflict” example

described in section 1.6. This chapter describes the different features of the example and how

they are implemented using a combination of functionality provided by Unity3D and the

faction interaction framework. Figure 23 shows the game scene from the perspective of the

green faction. To the right, marked by the widget, is a green warrior agent that has decided to

optimize the battle ready attribute. Off in the horizon can be seen the main food source

representation, as well as a large group of faction members in conflict concerning the object.

There are several key features of the “hunger conflict” example. These are described in the

following way; Section 7.1 describes the implementation of food sources, the main conflict

area of the game scenario. Next, section 7.2 covers how the villages are set up and defined for

FIF. Section 7.3 describes the implementation of actors and agents to create a world with

active participants. Once the world has been created, the simulation is run for 2 minutes, in

which the FIF can be observed to be generating behavior and service activation requests.

The functioning of the framework is discussed in section 7.4, which points to the service and

behavior activation requests that are posted by the framework during a single run. Section 7.5

Figure 23 - Unity3D scene view of the world

88

then deals with the performance side of the framework, looking into whether the FIF can be

said to be applicable to real time systems like games and simulations. Finally, section 7.6

briefly discusses the prototype in regards to the problem statement presented in section 1.4,

before a chapter summary is provided in section 7.7.

7.1 Food sources

Implementing food sources in the game scenario was done by creating a geometric primitive

using the unity world editor. Once the primitive was placed, a smart object (from the FIF

implementation) and an AI module was attached to it. When the game starts, the AI module

uses attribute and service accessors to add a service that provides hunger satisfaction, making

it known that this entity can satisfy the particular need.

By attaching an activation function in the AI module to the smart object, the food source

became capable of reacting to actors attempting to activate it. Figure 24 describes the

structure of the AI component. This component is part of the game logic as is commonly used

in Unity3D, while also interacting with the FIF. Should an agent activate the food source, the

AI component would apply the action result of the service being activated, resulting in the

hunger satisfaction value of the actor, connected to the agent, to be increased.

Two variations of the game scenario were made. The version displayed in Figure 23 contains

a single, major, food source, as provided by food drops. The second version of the solution

 Figure 24 - Food source ai component

89

also had two food sources representing fields belonging to each village. The difference

between the two implementations will be discussed in the summary of this chapter.

7.2 Villages

Villages were created by combining small sets of primitives into houses, and then creating a

small collection of these new entities. The entirety of the village had a smart object attached

to it with a faction attribute, describing what faction it belonged to. This allowed agents to

easily find their way home. In addition, this allowed for a complex “bravery” attribute to be

created. The bravery defuzzifer created for this attribute takes into account the surroundings

of each agent currently subscribing to the actor. The more enemies in the area, the lower the

attribute would become, finally causing the actor to request the optimization of bravery,

causing the agents to run home to their village.

One of the village structures had an additional smart object attached to it; listing the service

“provide battle readiness” this service was only interesting to warriors of the group in

question. This service was added mainly to increase the detail of the world, as well as

allowing changes in priorities to be observed as warriors grew hungry.

7.3 Actors and agents

The game scenario was implemented with only two faction hierarchies. Each actor in the

hierarchy was assigned one or more agents that subscribed to their request events. In each of

these hierarchies, the following actors are implemented:

 Faction parent actor

 Elders

 Warriors

 Thieves

Agents were implemented in the game world using physics primitives, rendering primitives

and the path finding library of Unity3D. To bring the agents to life, a small, general purpose

FSM was built to handle conflict resolution and service utilization requests created by the

actors. This FSM contained generalized behavior for FIF events, as well as specialized states

for handling bravery and idleness (no recommendation from the actor). Figure 25 describes

90

how the FSM functions in each agent. Implementing this functionality was fairly simple,

thanks to the fact that all reasoning on when to activate each state was handled by the faction

interaction framework through actors posting requests to the agent FSMs.

91

Figure 25 - FSM overview

92

7.4 Observing faction interaction

While possible to simply observe the agents as they interacted with the world in accordance to

the recommendations of the FIF, it was easier to see the effects of actors on the world through

tracking change in FSM state and events sent to them. By using the built in unity GUI library,

a simple overlay was created to report all events posted by actors, and all FSM changes made

by agents.

Figure 26 shows the game scenario approximately 60 seconds after the simulation was started.

The left overlay shows the current desire values for all actors in the scenario. Note how

prestige values are set to 0. The reason for this value is that the current scenario does not have

any desire attributes for prestige. The result of this is simply that the actor will never attempt

to optimize prestige.

The right hand side of the figure shows the last recommendation made by the different actors

in the scene. Each time an actor makes a new recommendation, this overlay is updated. As

can be seen from the overlay, the different factions are opting out of conflict in favor of

slightly less optimal choices, in this particular configuration of the virtual world. Figure 27

shows the same game scenario. In this set, one can see the FSM view, which describes the

current state active in every agent’s state machine. Here one can see the different agents going

about their activities, some attempting to access the middle food source, while the other

faction racing to enter conflict with them over the precious resource.

Finally, in Figure 28, more time has passed, and the priorities of the actors have changed. As

the degree of hunger has been set to increase over time in this simulation, the actors without

access to the main food supply will become more and more interested in this resource.

Looking at the center of Figure 28, one can see a sole green villager, being engaged in a

heated argument by the warriors of the red village. While the other red villagers were content

with waiting for the green villagers to get their food, the red warriors chose to engage the

nearest green villager in conflict, due to their increased aggressiveness. This shows that small

changes to the simulation will create completely different gameplay scenarios. Players

affecting the simulation through game mechanics would therefore make sufficient impact on

the simulation state to drive the generation of new scenarios forward.

93

Figure 26 - Actor view in a single food source game scenario

94

Figure 27 - FSM view in a single food source game scenario

95

Figure 28 - Conflict between green and red

96

7.5 Investigating performance

In such a small scenario as the one provided, there were no hints of the implementation

having any performance issues. Performance is measured using the internal unity3D profiler.

The unity profiler uses several metrics to describe the performance of a solution [73], these

can be seen in figure 27, and are as follows:

1. “Overview” lists function taking a measurable amount of time to compute in the

setting. Note that the function “WaitForTargetFPS” is an idle function that will fill the

remaining time of a frame to remain within the bounds of the locked frame rate of 60.

2. “Time ms” describes the update time taken to update the function, and all sub

functions. As an example, observe the (FIFInitiator.Update) function in figure 27.

Here one can see that the function itself takes too little time for the profiler to measure,

however counting all sub functions, it takes a total of 0.04 ms.

3. “Self ms” is a measurement of how long the listed function took to execute, excluding

any sub functions.

4. GCalloc describes the amount of memory allocated by the garbage collector for the

given function. This metric is ignored for the purpose of this discussion.

5. The metrics “Total” and “Self” are the percentage representations of the total time

taken for the given frame. In other words, they are the percentage versions of the

“Time ms” and “Self ms” columns.

In Figure 29 one can see that the time spent updating the FIF (FIFInitiator.update) only takes

0.04 milliseconds (ms), where most of the time used is taken by the debug functionality.

While this shows that there are no obvious flaws in the implementation, especially with such a

small test scenario, this does not say much for the performance when attempting to scale the

solution.

97

Once the initial implementation had proven to run effortlessly, several attempts were made to

increase load on the system. The initial attempt was to add a third village, with all the same

features as the two other villages present in the game scenario. This would bring the total

number of actors active in the scene to 15, and the number of agents to 21. This addition to

the game scenario had miniscule effects in regards to performance, as can be seen in Figure

30. The time in milliseconds to update the FIF is listed as 0.03 ms, while the agent FSM logic

is taking 0.37 ms. These numbers are very small in comparison to the

“CrowdManager.Update” (0.77 ms) which is responsible for path finding and collision

avoidance for all the agents in the world. This makes sense when one considers that the

reasoning engine mainly concerns itself with evaluating smart objects, as is explained in

section 5.6. To quickly repeat the process of the actor reasoning engine, each actor must first

select an attribute to optimize, and then find all potential smart objects that can supply the

Figure 29 - Profile overview in single food source game scenario

Figure 30 - Performance when adding a third village to the game scenario

98

given attribute, needing to consider the other actors in the scene, meaning that unless there are

many objects to evaluate, the amount of actors will have little effect.

With this in mind, the next attempt of provoking performance issues added the following:

1. Two additional food sources added

2. Added attribute “X” to the game scenario, with five smart objects providing

the service and a timed negative modifier. To increase conflict generation, the

main food source is also made the strongest provider of this attribute.

3. Added attribute “Y” to the game scenario, with ten smart objects providing the

service. No timed modifier was added to this attribute.

4. Disabled debug logging from the FIFInitiator system to get a better impression

of release performance.

The result of these changes to the scenario was that the FIFInitator update dropped even

further down the list in the profiler (due to debug writes being disabled). Figure 31 shows how

the FIFInitiator update no longer has measurable computation time. While this scenario is still

very small in comparison to open world games, it still provides insight into the performance

of the solution. Figure 30 shows another screen capture from the Unity3D profiler, this one

Figure 31 - Extended scenario performance overview

99

showing a graph of the last 300 frames of a simulation. “WaitForTargetFPS” was highlighted

in yellow to show the amount of time the game engine spent idle during the simulation. The

chart is interpreted by looking at the highest point of the colored area. This section shows how

many frames per second is currently possible, offset to always be 60 by the

“WaitForTargetFPS” function. Subtracting the yellow part of the graph would therefore give

the indication of highest possible FPS, which is easily higher than 200, as is evident from the

white lines marked with 100 and 200 fps respectively. The small yellow number to the left is

the current amount of time spent idle, on the leftmost frame (the one marked with a white

line).

From the performance tests described here, it can be argued that the performance of the

prototype implementation is clearly sufficient to prove its applicability to real time

applications, which is essential for any simulation or video game. It can be argued that more

advanced test scenarios should be devised, the fact that conflict was generated from an even

smaller scenario than this one, it can be said to be sufficient.

7.6 Discussion

The prototype presented in this chapter was made to show the potential of FIF to address the

problem statement presented in section 1.2. The most prevalent question that this thesis seeks

to address is the possibility of creating dynamic gameplay scenarios, with the added

requirement of allowing scripted scenarios to drive narrative while still having the FIF

produce the “filler content”.

As to the most essential question, it must be said that the FIF is well capable of being the

engine for dynamic gameplay generation through simulation of conflict between agents. This

Figure 32 - 300 frames of profiling, WaitForTargetFPS highlighted in yellow.

100

is well supported by the simple example provided in this chapter. The additional problem of

blending the dynamic system with more heavily scripted content is a different matter

altogether. While the prototype does not utilize scripted content to any degree, it should be

noted that we found it reasonably easy to manipulate the choices of agents by simply

adjusting the weighting of attributes in the reasoning engine. This is arguably a poor argument

for a more complex solution, as it would be increasingly complex to manage the relationship

between the different values and the desire groups chosen by actors. The implication of this

fact is that the FIF can be said to lend itself poorly, in its current incarnation, to seamless

blending between scripted events and dynamic generation of gameplay.

In regards to the issue of scalability, the data presented in section 7.5 speaks for itself. The

computational intensity of FIF in small scenarios is miniscule. However, as mentioned earlier,

the possibility of combinatory explosions when presented with large game worlds is a real

one. As the current version of the FIF will evaluate every single smart object in the entire

world, capable of providing the desire value selected, as well as all attributes in the desire set,

it is clear that this will quickly increase the computational requirements. There are however,

several ways of addressing these issues. These are discussed in section 7.6.1.

As explained in section 1.2.1, there were several limitations imposed on the FIF design, to

maintain the focus on proving viability, rather than implementing all the topics covered by

Medler et al. [22]. These features are discussed further in 7.6.2 and 7.6.3.

7.6.1 Parallelism

The current implementation of the FIF was designed to run on a single thread, at the same

pace as the game engine. This turned out to work well with the very small prototype used to

test the FIF implementation, as described in chapter 7. However, the FIF was made for

simulating much larger virtual worlds than the small system made to prove its viability. A

very interesting direction for further research would be to investigate potential for parallelism

in the system. There are several ways this could be accomplished; the most straight forward

solution would simply be to run the entire FIF in a separate thread from the game engine. This

should not be a problem as it is quite common for AI systems to run asynchronous from the

remaining game engine [74].

101

A more interesting approach, would be to investigate the viability of running each actor in a

separate thread, or as a part of a task based threading system. A task based system could even

run with a finer granularity, running all attribute evaluations of an actor at the same time, and

then evaluating potential services as the next step. This would allow a single actor to be

distributed over an amount of threads equal to the smallest value of available threads an

available attributes to evaluate.

As a final approach to parallelism, one could potentially move the entire FIF to a separate

platform altogether. As the FIF runs as a separate layer, only loosely integrated with the game

engine, it could be possible to have the FIF running on a separate platform, communicating

with the rest of the simulation over some kind of network. This could be very interesting, for

instance in building massively online multiplayer games (MMOGs) or large simulations of

populations, for instance entire nations.

7.6.2 Advanced actor hierarchies

In their paper, Medler et al. [22] proposes an actor hierarchy where actors are arranged in

hierarchies and form “groups”. These groups can have different interests, and enable different

behavior capabilities due to their focus. For instance, an actor could form a group with focus

on getting access to more behavior strategies, for instance by training the members of the

group in use of weaponry and acquiring this resource. Also, actors would have their desire

values modified by their sub actors, causing actions of sub actors to propagate up the

hierarchies.

These complexities in the actor implementation were left out to allow for the FIF prototype to

be more easily constructed. Implementing these features would allow for highly complex

interactions between actors, which in turn could potentially lead to a wider range of dynamic

game scenarios being generated.

7.6.3 Solidarity

Solidarity is another concept presented in the paper by Medler et al [22]. This concept

describes how actors would change their attitude towards parent actors, and their willingness

to perform requests delegated to them. Actors would gain instability as the prestige attributes

of their parent actor different greatly from their own, as well as the power of their parent no

102

longer affecting them in any meaningful way. This would cause actors to leave the hierarchy

they were a part of, potentially joining other factions within the virtual world. Again this

would allow for more complex faction interactions and a broader spectrum of potential

gameplay scenarios; however it would also present a new challenge in regards to balancing

the attributes of actors in such a way that the system did not drift apart.

Solidarity as a dynamic representation of the loyalty shown to parent actors would make for a

very interesting addition to the FIF, however it would have to be a feature that could be turned

on or off, as it is highly unlikely that all simulations would be improved by having factions

break apart without the designers specifically intending for them to do so. Solidarity was not

implemented in the prototype of FIF both due to the added complexity, and the potential for

instability that such a feature would present. Even so, it would be worthwhile investigating

the potential of such a feature for creating novel gameplay scenarios.

7.7 Summary

It turned out to be surprisingly easy to create a scenario, when making use of the FIF, where

conflict is dynamically generated. Given only slightly different input parameters, the different

actors make varied recommendations, causing each conflict to be slightly different. Given a

more complex scenario, there is no doubt that even more varied scenarios would be generated.

In this regard, there is no doubt that the FIF can be said to be performing admirably.

The small prototype presented in this chapter proves the viability of the implementation both

in terms of real time performance and its ability to generate conflict scenarios as proposed in

the design, this is supported by the analysis of the implementation as is described in section

7.4. Developers making use of the framework can define their world in terms of possible

actions and attributes that are of interest to the actors of the world. By doing so, they can

simply set the FIF to generate new events without having to script any sort of static gameplay.

While the prototype produced here only uses a small set of attributes, actors and smart

objects, it is still a reasonable indicator of the framework’s potential benefit to developers

looking for a way to cheaply add more content to their open world games or simulations. It

should of course be mentioned that the small prototype created here does not truly represent

the complex game scenarios that one can find in modern games, such as the ones discussed in

section 3.7. However, creating the game mechanics of such a virtual world is still as complex

103

as ever, even though the generation of gameplay scenarios has been automated by the FIF.

This makes it impractical to build any large scale tests for a single research project. The

implication of this is discussed further in chapter 8.

104

Chapter 8 Conclusion

This thesis has proposed a framework for how dynamic gameplay can be generated through

the simulation of the interaction between factions. By providing scaffolding for the reader in

both game development terminology and design principles, as well as introducing game

engines that assist in this endeavor. In this chapter, a brief summary of all topics covered in

this thesis is given in section 8.1 Section 8.2 describes, in more detail, the contributions made

by this work. Finally, some thoughts are given in regards to future work in relation to the

research presented here.

8.1 Summary

In this thesis, a possible approach to creating dynamic gameplay content through the

simulation of faction interaction has been presented. This concept was spurned by the interest

in answering the question “How can one create additional gameplay content by simulating the

interactions between the agents that populate a game world, while still allowing for scripted

events to drive narrative?”, which was presented in section 1.2.

By investigating potential solutions in the field of game AI, a strategy was devised to build a

generic framework capable of directing the flow of a virtual world through suggested

applications of game mechanics. This framework, named the “Faction Interaction

Framework” or FIF, made use of concepts from game and academic AI such as crowd

simulation techniques, agent models, neural networks, fuzzy logic and smart objects. The core

design of the FIF was presented as a whole in chapter 5.

To test the FIF in a reasonably realistic setting, an investigation was made into potential game

engines that would allow for rapid integration of the FIF, as well as facilitating the creation of

a small prototype. The evaluation of game engines was presented in chapter 4. The

development language of choice and the implementation details of the FIF were presented in

chapter 6. Finally, a prototype was presented in chapter 7.

In this prototype, it was shown how the FIF successfully generated dynamic gameplay

scenarios, depending on the desire values, actions and behaviors available to the system. In

addition, chapter 7 presented a discussion on the viability of the FIF and its potential for

105

solving the problem statement presented in section 1.2. Section 7.4 provided an analysis of the

gameplay scenario created from the example presented in section 1.6; here it was shown that

through simple manipulation of the desires of actors, new gameplay scenarios naturally

emerge from faction interaction. Finally, an argument for the applicability to more complex

virtual worlds was presented. Section 8.3.4 and 8.3.5 expand on this discussion with ideas for

future work in regards to scalability.

8.2 Contributions

The FIF presents a viable design approach for creating emergent gameplay through modeling

of factions and group interaction as a basis for conflict generation. By introducing this

“additional layer” of reasoning to the virtual world, game developers can focus on creating

interesting game mechanics while the gameplay is driven by the FIF recommendations.

As a side benefit, this thesis presents a set of game engines that can be used for quickly

prototyping game mechanics and testing AI concepts. These engines are rated in regards of

the functionality they provide, in addition to a performance test of the path finding and crowd

simulation API of Unity3D.

Finally, this thesis provides an introduction to several advanced AI concepts. Some of these

concepts are already being used in games, while others are mostly in the realm of academic

AI as it stands. Hopefully, the game context of this thesis will allow others to see the

advantages of these AI concepts in regards to game development.

8.3 Future work

Trying to create solutions for game development is immensely time consuming, as evident by

the huge development costs of high end games, as discussed in section 1.2. The FIF appears to

have great potential for alleviating this problem somewhat, by allowing for dynamic

generation of content. Future work with dynamic content generation would entail

investigating good implementations for more dynamic actor structures and actor solidarity, as

discussed in section 7.6. In addition, as the reasoning engine used by actors in the FIF are

based on neural networks, it would be interesting to investigate the potential for making use

of other aspects of learning AI.

106

Learning systems has been the focus of many research and development projects in games

studios the later years [74], but has proven to be mostly unsuccessful. Even so, learning

systems is a widely researched topic in academic AI, and has been proven to work very well

in various applied fields, such as translation, speech recognition and more [15]. Given the

close connection between the actor reasoning engine core and neural networks (which can

benefit from learning), investigating the potential for creating training sets that adjust attribute

weights could prove beneficial. By doing this, one could potentially manipulate actors into

following a distinct pattern of recommendations that would allow the world to evolve in a

predictable fashion, when this is desirable.

107

References

[1] D. Ingie, "How a man is created," man.png, ed., Carnegie-Mellon’s Entertainment Technology
Center., 2009.

[2] ESRB. "Video Game Industry Statistics," 30. June, 2012; http://www.esrb.org/about/video-
game-industry-statistics.jsp.

[3] M. Sharkey. "Report: Game Development Costs Have Skyrocketed," 30. June, 2012;
http://www.gamespy.com/articles/108/1082176p1.html.

[4] Y. Takatsuki. "Cost headache for game developers " 2011;
http://news.bbc.co.uk/2/hi/business/7151961.stm.

[5] C. Esmurdoc, “Postmorten: Double Fine's Brutal Legend,” Game Developer Magazine, no. 12,
December, 2009.

[6] N. Motion. "Euphoria," 7. October, 2011; http://www.naturalmotion.com/euphoria.

[7] Havok, "Havok AI Efficient Pathfinding for Dynamic Game Environments," www.havok.com,
H. Inc, ed., Havok Inc, 2011.

[8] R. D. Smith, “Essential techniques for military modeling and simulation,” in Proceedings of
the 30th conference on Winter simulation, Washington, D.C., United States, 1998, pp. 805-
812.

[9] Kongsberg-Group. "Simulator-kontrakt med den svenske hæren," 24. August, 2011;
http://www.kongsberg.com/nb-no/kog/news/2010/november/1811_ctc-gbad_contract/.

[10] A. Pope, P. Selfridge, and J. R. Surdu, “Realistic agent populations for large-scale virtual
training environments,” in Proceedings of the 2008 Spring simulation multiconference,
Ottawa, Canada, 2008, pp. 745-751.

[11] J. Gratch, and S. Marsella, “Tears and fears: modeling emotions and emotional behaviors in
synthetic agents,” in Proceedings of the fifth international conference on Autonomous
agents, Montreal, Quebec, Canada, 2001, pp. 278-285.

[12] R. Casais, "Challenges with distributed systems at Funcom," University of Oslo

Funcom, 2011.

[13] V. Corp. "Left 4 Dead," 30. June, 2012; http://www.valvesoftware.com/games/l4d.html.

[14] M. Booth, “AI systems of L4D,” in Artificial Intelligence and Interactive Digital Entertainment
Conference, Stanford, 2009, pp. 95.

[15] A. Russel, and P. Norvig, Artificial Intelligence a Modern Approach, 3 ed.: Pearson Education,
2010.

[16] Bethesda. "The Elder Scrolls: Skyrim," 30. June, 2012; http://www.elderscrolls.com/skyrim/.

[17] E. Gilbert. "For PS4 And Xbox 720, It’s Better AI, Not Graphics, Ubisoft Wants," 1. July, 2012;
http://www.gamesthirst.com/2011/07/06/for-ps4-and-xbox-720-its-better-ai-not-graphics-
ubisoft-wants/.

[18] K. Baldwin. "So you’re “not ready” for next-gen consoles? Here’s why you should be," 1. July,
2012; http://www.gamejudgment.com/so-youre-not-ready-for-next-gen-consoles-heres-
why-you-should-be.

http://www.esrb.org/about/video-game-industry-statistics.jsp
http://www.esrb.org/about/video-game-industry-statistics.jsp
http://www.gamespy.com/articles/108/1082176p1.html
http://news.bbc.co.uk/2/hi/business/7151961.stm
http://www.naturalmotion.com/euphoria
http://www.havok.com/
http://www.kongsberg.com/nb-no/kog/news/2010/november/1811_ctc-gbad_contract/
http://www.valvesoftware.com/games/l4d.html
http://www.elderscrolls.com/skyrim/
http://www.gamesthirst.com/2011/07/06/for-ps4-and-xbox-720-its-better-ai-not-graphics-ubisoft-wants/
http://www.gamesthirst.com/2011/07/06/for-ps4-and-xbox-720-its-better-ai-not-graphics-ubisoft-wants/
http://www.gamejudgment.com/so-youre-not-ready-for-next-gen-consoles-heres-why-you-should-be
http://www.gamejudgment.com/so-youre-not-ready-for-next-gen-consoles-heres-why-you-should-be

108

[19] G. N. Yannakakis, “Game AI revisited,” in Proceedings of the 9th conference on Computing
Frontiers, Cagliari, Italy, 2012, pp. 285-292.

[20] S.-P. v. Houten, and A. Verbraeck, “Controlling simulation games through rule-based
scenarios,” in Proceedings of the 38th conference on Winter simulation, Monterey,
California, 2006, pp. 2261-2269.

[21] R. Abbott, “Emergence explained: Abstractions: Getting epiphenomena to do real work:
Essays and Commentaries,” Complex., vol. 12, no. 1, pp. 13-26, 2006.

[22] B. Medler, J. Fitzgerald, and B. Magerko, “Using conflict theory to model complex societal
interactions,” in Proceedings of the 2008 Conference on Future Play: Research, Play, Share,
Toronto, Ontario, Canada, 2008, pp. 65-72.

[23] D. E. Comer, D. Gries, M. C. Mulder et al., “Computing as a discipline,” Commun. ACM, vol.
32, no. 1, pp. 9-23, 1989.

[24] I. Millington, and J. Funge, Artificial Intelligence for games, 2 ed.: Morgan Kaufmann, 2009.

[25] J. Gregory, Game Engine Architecture, Natick: A K Peters, 2009.

[26] A. Thorn, Game Engine Design and Implementation, London: Jones and Bartlett Learning,
2011.

[27] Carnegie-Mellon, "Panda3D," Carnegie Mellon Entertainment Technology Center, 2010, p.
Game Engine.

[28] UnityTechnologies. "Unity3D Manual," 01.06.2012, 2012;
http://unity3d.com/support/documentation/Manual/index.html.

[29] D. Livingstone, “Turing's test and believable AI in games,” Comput. Entertain., vol. 4, no. 1,
pp. 6, 2006.

[30] T. Akenine-Möller, E. Haines, and N. Hoffman, Realtime Rendering, 3 ed.: A K Peters, 2008.

[31] D. Fu, and R. Houlette, "The Ultimate Guide to FSMs in Games," AI Game Programming
Wisdom 2, AI Game Programming Wisdom S. Rabin, ed., p. 38, 2004.

[32] A. J. Champandard. "Behavior Trees for Next-Gen Game AI," 2011;
https://aigamedev.com/insider/presentations/behavior-trees/.

[33] M. Buckland, "Programming game AI by example," p. 44, Sudbury, MA: Wordware Publishing,
2005.

[34] C. Bailey, and M. Katchabaw, “An emergent framework for realistic psychosocial behaviour in
non player characters,” in Proceedings of the 2008 Conference on Future Play: Research,
Play, Share, Toronto, Ontario, Canada, 2008, pp. 17-24.

[35] A. Braun, B. E. J. Bodmann, and S. R. Musse, “Simulating virtual crowds in emergency
situations,” in Proceedings of the ACM symposium on Virtual reality software and
technology, Monterey, CA, USA, 2005, pp. 244-252.

[36] S. Zhou, D. Chen, W. Cai et al., “Crowd modeling and simulation technologies,” ACM Trans.
Model. Comput. Simul., vol. 20, no. 4, pp. 1-35, 2010.

[37] A. Russell, "Turning spaces into places," AI game programming wisdom 4, Ai game
programming wisdom S. Rabin, ed.: Course Technology, 2008.

[38] T. Abaci, J. Ciger, and D. Thalmann, “Planning with Smart Objects,” in WSCG Plzen, Czech
Republic, 2005, pp. 4.

http://unity3d.com/support/documentation/Manual/index.html

109

[39] M. Kallmann, and D. Thalmann, “A Behavioral Interface to Simulate Agent-Object
Interactions in Real Time,” in Proceedings of the Computer Animation, 1999, pp. 138.

[40] A. J. Champandard. "Living with the sims' ai: 21 tricks to adopt for your game," 24.07.2011,
2011; http://aigamedev.com/open/highlights/the-sims-ai/.

[41] Maxis, "The Sims," Electronic Arts, 2000.

[42] P. Sequeira, M. Vala, and A. Paiva, “What can i do with this?: finding possible interactions
between characters and objects,” in Proceedings of the 6th international joint conference on
Autonomous agents and multiagent systems, Honolulu, Hawaii, 2007, pp. 1-7.

[43] L. M. G. Goncalves, M. Kallmann, and D. Thalmann, “Programming Behaviors with Local
Perception and Smart Objects: An Approach to Solve Autonomous Agents Tasks,” in
Proceedings of the XIV Brazilian Symposium on Computer Graphics and Image Processing,
2001, pp. 184.

[44] L. Dicken, "HCSM: A Framework for Behavior and Scenario Control in Virtual Environments,"
http://aigamedev.com/open/review/hcsm-concurrent-state-machine/, [10. October, 2009].

[45] T. Tutenel, R. Bidarra, R. M. Smelik et al., “The role of semantics in games and simulations,”
Comput. Entertain., vol. 6, no. 4, pp. 1-35, 2008.

[46] A. Sud, E. Andersen, S. Curtis et al., “Real-time path planning for virtual agents in dynamic
environments,” in ACM SIGGRAPH 2008 classes, Los Angeles, California, 2008, pp. 1-9.

[47] M. Kallmann, “Navigation queries from triangular meshes,” in Proceedings of the Third
international conference on Motion in games, Utrecht, The Netherlands, 2010, pp. 230-241.

[48] P. Marden, F. Smith, C. Mcanlis et al., "Movement and Pathfinding," AI Game Programming
Wisdom, 4, S. Rabin, ed., p. 144, Boston: Course Technology, Cengage LEarning, 2008.

[49] M. Booth. "Source Engine Navigation meshes," 10.01, 2012;
https://developer.valvesoftware.com/wiki/Navigation_Meshes.

[50] T. C. H. John, E. C. Prakash, and N. S. Chaudhari, “Strategic team AI path plans: probabilistic
pathfinding,” Int. J. Comput. Games Technol., vol. 2008, pp. 1-6, 2008.

[51] D. Harabor, and A. Grastien, “Online Graph Pruning for Pathfinding on Grid Maps,” in AAAI
Conference on Artificial Intelligence (AAAI), San Fransisco, USA, 2011.

[52] E. Games. "Unreal Technology," 3. July, 2012.

[53] Crytek. "CryEngine 3," 11. October, 2011; http://www.crytek.com/cryengine.

[54] S. V.Kharkar, "AI Waterfall: Populating Large Worlds Using Limited Resources," AI Game
Programming Wisdom, S. Rabin, ed., p. 9: Thomson Delmar Learning, 2006.

[55] B. Sunshine-Hill, and N. I. Badler, “Perceptually Realistic Behavior through Alibi Generation,”
in Conference on Artificial Intelligence and Interactive Digital Entertainment, Stanford,
California, USA, 2010.

[56] M. Buro. "The 2nd Annual AIIDE Starcraft AI Competition," 09.01.2012, 2012;
http://StarcraftAICompetition.com.

[57] springrts. "Spring Engine," http://springrts.com/.

[58] A. Heinermann, and "Kovarex". "BWAPI," 09.01, 2012; http://code.google.com/p/bwapi/.

[59] GameMiddleware.org. "Middleware," 7. October, 2011;
http://www.gamemiddleware.org/middleware.

[60] G. Games", "Torque3D," GarageGames, 2011.

http://aigamedev.com/open/highlights/the-sims-ai/
http://aigamedev.com/open/review/hcsm-concurrent-state-machine/
http://www.crytek.com/cryengine
http://starcraftaicompetition.com/
http://springrts.com/
http://code.google.com/p/bwapi/
http://www.gamemiddleware.org/middleware

110

[61] Microsoft, "XNA Game Studio," Microsoft, 2010.

[62] Havok. "Solutions for Engineers," 07. October, 2011;
http://www.havok.com/solutions/game-engineers.

[63] UnityTechnologies. "3.5 Developer Preview Public Beta Release Notes," 13.02, 2012.

[64] M. Mononen. "recastnavigation," 01.09, 2012; http://code.google.com/p/recastnavigation/.

[65] Microsoft. "Game.TargetELapsedTime property," 29. July, 2012;
http://msdn.microsoft.com/en-
us/library/microsoft.xna.framework.game.targetelapsedtime.aspx.

[66] J. Kessing, T. Tutenel, and R. Bidarra, “Services in Game Worlds: A Semantic Approach to
Improve Object Interaction,” in Proceedings of the 8th International Conference on
Entertainment Computing, Paris, France, 2009, pp. 276-281.

[67] F. Lamarche, and S. Donikian, “Automatic orchestration of behaviours through the
management of resources and priority levels,” in Proceedings of the first international joint
conference on Autonomous agents and multiagent systems: part 3, Bologna, Italy, 2002, pp.
1309-1316.

[68] Xamarin. "About Mono," 14.11, 2011; http://www.mono-project.com/About.

[69] S. Ryazanov. "The Impossibly Fast C++ Delegates," 09.06, 2012;
http://www.codeproject.com/Articles/11015/The-Impossibly-Fast-C-Delegates.

[70] Microsoft. "Events and Delegates," http://msdn.microsoft.com/en-
us/library/17sde2xt(v=vs.90).aspx.

[71] Microsoft. "internal (C# Reference)," 09.06, 2012; http://msdn.microsoft.com/en-
us/library/7c5ka91b.aspx.

[72] Microsoft. "Properties (C# Programming Guide)," http://msdn.microsoft.com/en-
us/library/x9fsa0sw.aspx.

[73] UnityTechnologies. "Profiler (Pro only)," 8. July, 2012;
http://docs.unity3d.com/Documentation/Manual/Profiler.html.

[74] S. Rabin, AI Game Programming Wisdom 4: Course Technology, Cengage Learning, 2008.

http://www.havok.com/solutions/game-engineers
http://code.google.com/p/recastnavigation/
http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.game.targetelapsedtime.aspx
http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.game.targetelapsedtime.aspx
http://www.mono-project.com/About
http://www.codeproject.com/Articles/11015/The-Impossibly-Fast-C-Delegates
http://msdn.microsoft.com/en-us/library/17sde2xt(v=vs.90).aspx
http://msdn.microsoft.com/en-us/library/17sde2xt(v=vs.90).aspx
http://msdn.microsoft.com/en-us/library/7c5ka91b.aspx
http://msdn.microsoft.com/en-us/library/7c5ka91b.aspx
http://msdn.microsoft.com/en-us/library/x9fsa0sw.aspx
http://msdn.microsoft.com/en-us/library/x9fsa0sw.aspx
http://docs.unity3d.com/Documentation/Manual/Profiler.html

