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 Abstract 

A gameplay scenario can be defined as a series of events that emerge from a given context. 

These events can potentially be influenced by the player through gameplay, which results in 

meaningful interaction with the simulation. Creating gameplay scenarios in computer games 

and training simulators is an immensely expensive and time consuming undertaking. A 

common trait for most scenarios created is that they tend to be static. Once a player has 

completed the scenario once, he knows exactly how it will behave the next time, reducing or 

removing the replay value of the gameplay scenario. This thesis investigates how artificial 

intelligence techniques can be used to define virtual worlds and interaction between entities, 

such as virtual humans, to dynamically generate gameplay scenarios by simulating the 

conflict between entities as they clash over conflicting interests in the world.  

The first part of this thesis introduces the vast field of artificial intelligence, how it is usually 

applied in games, and how new concepts are slowly trickling into the field of game artificial 

intelligence. Topics introduced include crowd simulation techniques, agent simulation and 

how one can describe arbitrary virtual worlds through the use of semantics, smart objects and 

fuzzy logic.  

The second part describes the practicalities of the implementation. Here, the game engine 

used to develop the prototype game world is presented and compared to other alternatives. 

Next, the design and implementation details of the proof of concept implementation, called 

the “Faction Interaction Framework”, are described in detail. The design allows for quickly 

defining the important resources, actions, and potential interactions between entities in a 

virtual world. Finally, the implementation can be run as an add-on to a virtual world, which 

can be used to drive scenario generation through conflict simulation.  

The work presented in this thesis provides a proof of concept solution for dynamically 

generating gameplay scenarios. By providing game developers with a pattern for defining the 

elements of their virtual world that is the source of conflict, the “Faction interaction 

framework” provides an approach to have the virtual world autonomously generate myriads of 

gameplay scenarios depending on user input. This has potential application especially to 

large, open world games, massively multiplayer online games and training simulators, where 

the generation of novel gameplay scenarios is challenging due to the large amount required. 
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Chapter 1 Introduction 

This chapter provides an overview of all the work presented in this thesis. Section 1.1 argues 

for the importance of the field of study presented here, and provides an introduction to the 

field of game and simulation research. Section 1.2 contains the problem statement, defining 

the main questions that this thesis attempts to answer. Section 1.3 describes the limitations 

applied to the problem for the sake of maintaining a surmountable scope. Next, section 1.4 

introduces the research methodology used throughout this thesis, which is followed by 

contributions through this work, which is presented in section 1.5. Section 1.6 then presents 

an example scenario which is used throughout the thesis as a point of reference for the 

examples used throughout the theoretical discussion. Finally section 1.7 provides an outline of 

the content of each chapter. 

1.1 Background and Motivation 

Since the arcade games from the 70’s and 80’s, the face of the game industry has changed 

drastically. At the time, games were built on dedicated hardware that used jagged lines and 

boxes to create the virtual world for players to immerse themselves in. Since then, the income 

and number of people employed in the games industry has skyrocketed [2]. The same is true 

for the cost of developing a single game.  

Since the arcades of the 80s, there has been astounding advances in computational hardware, 

allowing computer scientists to create breathtaking worlds that sometimes look so realistic 

that they are mistaken for photographs. With this added realism comes an immense increase 

in cost. Since Pack-Man was released for the first time in 1980, the cost of developing games 

has gone through the roof [3]. According to BBC World News, Namco produced Pacman for 

100,000 USD in 1982. Halo 3, which was released 2007 cost 15,000,000 USD to create [4]. In 

2009, Double Fine released their console title “Brütal Legend” which had a reported budget of 

24,000,000 USD [5].  

As realism in graphics increase, so do the expectations of realism in interaction. Physics 

engine technology, artificial intelligence (AI) capable of navigating the complex worlds and 

reacting appropriately to situations, sound effects and music created by expert composers and 

graphical content created by a cohort of artists all add up to a very expensive end product. 

One could go on for a long time about all the features required for a high-end title today, but 
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we need only to look at the size of today’s studios to get an impression of the immense 

amount of work required. 

Because of the daunting number of man-hours invested in these productions, the need for 

cutting development costs is more apparent now than ever. This need has spawned many 

companies focused on bringing powerful third-party solutions to the hands of game 

development studios. These new tools allow developers to focus on creating games instead of 

spending most of the time creating the underlying technology.  

In the last few years, there has been an increased focus on AI in games. This is most apparent 

in the new middleware solutions being developed and licensed for use in the most prestigious 

game projects. The Euphoria system [6] by Natural Motion has become widely used in games 

such as “Grand Theft Auto 4” and “Star Wars: The Force Unleashed”. Havok [7], one of the 

most widely used physics libraries, has also expanded functionality with an advanced AI 

module to stay competitive.    

While digital games manufacturers are the most prominent users of new middleware, medical 

and military industries are also investing heavily in simulation research and technology [8]. 

These technologies are often similar or even the same as the ones used in modern games. The 

United States MOVES institute is a postgraduate institute dedicated to such research, and in 

July 2002, they launched the Americas Army computer game for recruitment and training. 

Kongsberg Defense was in 2010 awarded a contract worth 100 million SEK to develop a 

ground-air combat simulator for the Swedish Army [9]. In 2008, Pope et al. published a paper 

describing the challenges and needs for creating realistic agent  populations on a large scale 

[10]. The paper brought attention to the need for more believable background populations in 

simulations used to prepare soldiers for combat zones. The current conflict in the Middle East 

requires a whole new skillset as soldiers must be able to gauge the level of animosity in a 

population and make use of their interpersonal skills to disarm potentially dangerous 

situations before they escalate into armed conflicts. The generation of such training scenarios 

are very expensive and are usually scripted to the smallest detail [11, 12]. While this attention 

to detail is surely necessary to create a realistic simulation, it stands to reason that one static 

training mission loses its impact once the dialogue options have been explored by the user. 

Drawing from Pope et al.’s paper on realistic background populations, it would be reasonable 

to argue that the scenario would become much more flexible if the bystanders could change 

the outcome of the scenario through the current friction between factions and their current 

animosity towards the user.  
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The huge interest for virtual world applications has increased the demand for such simulations 

to respond in novel and realistic ways. In the real world, the environment and other creatures 

respond to actions performed by other entities in the system. For such realism to be possible 

in a game or simulation setting today, designers usually have to handcraft each action and 

reaction that agents perform. In the games industry, there are examples of this being solved in 

more novel ways. One approach is demonstrated in the Left 4 Dead series by Valve corp [13]. 

This series is most noteworthy for their innovative piece of technology called “The Director” 

which directs the focus of all virtual agents in the simulation, to fine tune pacing and 

challenge to the skill of the players [14]. Another example is No One Lives Forever 2, where 

all virtual agents act autonomously, interacting with different objects in the game, creating an 

illusion that agents were operating with purpose. Russell et al. describe an agent in AI to be 

“anything that can be viewed as perceiving its environment through sensors and acting upon 

that environment through actuators” [15] In AI, the real world and a virtual world can both 

be classified as an environment, the only difference is the model-complexity the agent 

operates in.  

As computer games become more and more realistic, the gap between game developers and 

engineers developing “serious” simulations is narrowing. As their fields begin to overlap 

more and more, they find themselves required to address the same challenges. As mentioned 

in the previous paragraph, one of these challenges is found in creating realistic and immersive 

conflict scenarios. As it stands now, a large amount of work must be done for each possible 

scenario that developers wish to present to their users.   

Generating these scenarios through “brute force” methods such as scripting, each possible 

scenario and outcome are becoming more and more problematic as cost of development goes 

up. In addition to cost, development time is also a factor that leaves current methods 

inadequate. Soldiers training for missions in the Middle East will soon find themselves 

repeating the same training missions over and over again without much variation, arguably 

reducing the effectiveness of the exercise. In the games industry, there are games that rely on 

AI almost exclusively to provide gameplay experiences, such as “Mount & Blade”. However 

there are very few games that have the budget to implement such complex features as well as 

the more common scripted narrative. The game “Elder Srolls: Skyrim” is an example of such 

a game [16]. For the next generation of consoles, both Microsoft and Ubisoft have made 

comments regarding their focus on dynamic AI solutions [17, 18].   
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Systems for creating dynamic interaction on an agent level have come a long way, as is 

evident in the Euphoria software suite [6], among others. Complex solutions that combine 

physics simulations and character AI to create highly believable world interactions and crowd 

simulations allow for the creation of scenarios that appear highly realistic. According to Pope 

et al. [10], this is not enough to generate a believable training environment, and thus, it can be 

argued that a new approach should be taken. By simulating the interactions between larger 

groups of agents with varying faction and group allegiances, and allowing them to resolve 

conflicts in ways determined by the designer, it could be possible to have agents generate a 

myriad of varied scenarios that would make both computer games and combat simulations 

more challenging and interesting.   

1.2 Problem Statement 

In this thesis, we address the challenge of automatically generating virtual world scenarios 

through faction-interaction modeling. This includes seeking solutions to questions like: How 

can one generate gameplay scenarios by simulating the interactions between the agents that 

populate a game world, while still allowing for scripted events to drive narrative? 

Scripted scenarios in games tend to offer a higher quality of linear narrative and gameplay 

than can be generated through procedural systems [19]. A scenario in a virtual world can be 

described as the context in which the game takes place, the development of the game over 

time, and some events that take place during game play [20]. Creating scenarios is a laborious 

process, and the creation of such content in large quantities is immensely expensive. Despite 

the cost of scripted content, it offers little to no replay value. While this might be fine for 

entertainment products with a one-time fee, it is less beneficial for subscription based games 

and training simulations where new and different challenges are essential [10]. An additional 

issue is also posed in that such systems are usually larger in scope than one-time fee games 

which require considerations to be made in regards to scalability.  

This thesis explores ways of assisting game and simulator designers in generating emergent 

gameplay scenarios [21], while still making it possible to have scripted gameplay sections. 

Further, by exploring the field of AI, we seek answers for the following: “What approaches 

exist? How can these approaches be applied to solve the stated problem? What steps must be 

made to apply these principles to solutions of massive scale?” 
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The goal of this thesis is to further describe the design and development of a software solution 

that attempts to solve the problem stated above. This framework, called the “Faction 

Interaction Framework” (FIF), will attempt to use modern game development and AI 

techniques that allow game designers to describe their world and agents to the framework, 

which in turn, will drive the agents into conflicts which results in novel gameplay scenarios.  

To accomplish this, the FIF is based on two concepts within AI research: The first concept is 

the study and modeling of groups and conflict, commonly described as “Crowd Simulation”. 

While several key concepts will be discussed and drawn upon to create a simulation of group 

conflict, the most essential piece will be the work of Medler et al. [22] which suggests using 

models from the field of conflict theory. The second concept which will be at the center of 

this thesis is the concept of semantic modeling to create a more detailed world for AI-driven 

systems to use for reasoning.  

The FIF will be evaluated by investigating its potential for describing and simulating virtual 

worlds. This will be accomplished by observing several factors: Does the system actually 

generate conflict scenarios dynamically? How complex is the framework to use? Given the 

real-time requirements of training and game worlds, does the framework have a practical 

application?  The scope of these questions is daunting. Due to this, it is essential to focus on 

viability of the implementation. Therefore, some topics, discussed in the theoretical 

foundation of this thesis, are excluded from the implementation.  

1.3 Limitations 

The topics essential for this thesis are focused most intently on creating the scaffolding 

required to demonstrate the viability of the approach presented. Due to limitations in scope, 

this causes the exclusion of several extensive topics. The most interesting of these are:  

1. Advanced actor hierarchies: Actor hierarchies describe the interdependency of 

factions and their ability to manipulate and order sub-factions to perform different 

tasks. While the simulation of conflict within factions is a great source of conflict 

scenarios, this part of the simulation is removed from the scope due to its complexity. 

2. Massive world simulations: The main reason for this thesis is to investigate a potential 

approach to generating original gameplay content through simulating conflict. There 

are few types of software more in need of this than modern massively multiplayer 
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online games. While this is a very important topic, it is also put outside the scope of 

this thesis. This thesis focuses on creating a proof of concept for the basic ideas to the 

approach, and therefore, the work on scalability and creating viable test scenarios 

would be too large.  

3. Learning AI: The core reasoning system of the approach proposed in this thesis relies 

on what can be described as a neural network (if one uses a broad definition of the 

term). As neural networks can be trained using training sets [15], it would make sense 

to apply the same techniques to create worlds that followed a specific evolution 

pattern through training of the actors in the world. This again, is far outside the scope 

of demonstrating viability, and is therefore excluded completely. However, this topic 

is discussed briefly in section 8.3 on future work.  

1.4 Research Method 

The research approach for this thesis is rooted in the methodology specified by the ACM Task 

Force [23]. This methodology advocates three different paradigms of the computing 

discipline.  Each paradigm is an iterative approach that includes four steps. Each paradigm is 

applied to a different part of the work, and is iterated as required. 

1.4.1 Theory 

The theory paradigm consists of four steps followed in the development of valid theory: 

1. Characterize objects of study (definition). 

2. Hypothesize possible relationships among them (theorem). 

3. Determine whether the relationships are true (proof). 

4. Interpret the results. 

1.4.2 Abstraction 

The abstraction paradigm is applied to problems where the model does not agree with 

experimental evidence. The steps are rooted in the experimental scientific method: 

1. Form a hypothesis. 

2. Construct the model and make a prediction. 

3. Design an experiment and collect data. 
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4. Analyze the results.  

1.4.3 Design 

The design paradigm deals with engineering of a solution, and follows the following steps: 

1. State requirements. 

2. State specifications. 

3. Design and implement the system. 

4. Test the system. 

1.4.4 Summary 

The theory and abstraction paradigms are used mostly when dealing with strict computer 

science problems with roots in applied mathematics and natural science [23]. This thesis is 

heavily engineering focused, and thus, the design paradigm is used as the foundation for the 

work presented. Even so, the theory and abstraction paradigms are essential when evaluating 

a solution. Abstraction is used to analyze and improve upon performance and theory is 

essential for formulating algorithms for the different elements in the specification proposed in 

the second step of the design paradigm. 

1.5 Contributions 

This thesis has provided an introduction to, and explored the complexities of creating virtual 

world simulations for games, military and emergency applications. By describing a set of the 

most used AI techniques for such applications, the reader has been given insight into how 

different game and training scenarios are built today, as well as the cutting edge solutions that 

potentially changes this paradigm. Further, these techniques have been used to create a 

proposal for a framework for simulating conflicts between faction groups. Further, this thesis 

describes how the proposed framework can be used to describe virtual worlds and assist game 

developers in creating dynamically changing worlds. 

In addition to the theoretical details of game AI and crowd simulation techniques, this thesis 

describes several game engines and comment on their suitability for use in AI research. Next, 

a proof of concept implementation of the faction interaction framework is shown in the engine 

deemed most viable. This implementation is discussed in terms of viability, resource 
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requirements, scalability and ease of use, should it be used in game or simulation projects. 

Finally, this thesis discusses the viability of generic AI solutions in regards to game 

development and discusses potential future improvements for the FIF. 

By providing game developers with a pattern for defining the elements of their virtual world 

that is the source of conflict, the FIF provides an approach to have the virtual world 

autonomously generate myriads of gameplay scenarios depending on user input. This has 

potential application especially to large, open world games, massively multiplayer online 

games and training simulators, where the generation of novel gameplay scenarios is 

challenging due to the large amount required. 

1.6 Example Scenario: Hunger Conflict 

In this virtual world scenario, two tribal villages are being given humanitarian aid in the form 

of food drops from an air-drop program. Every week, a large batch of food is dropped in a 

field situated halfway between the villages. While the humanitarian organization responsible 

for delivering the aid has calculated that the food provided should be sufficient to last until the 

next drop is delivered, tensions have grown as the two villages hoard the food in fear of the 

food program being discontinued without notice. Each village is led by an elder, who is calm 

and diplomatic individual, trying their best to mend the strained relations between the two 

factions.  

This scenario is, arguably, a good example of where to apply the FIF framework, as it could 

potentially be of note in all the different types of virtual world simulations described in 

section 1.2 (games, military, emergency). One could easily introduce firearms to this scenario, 

to angle it towards military training, or in the case of games, have two different fantasy races 

inhabit the villages.  

In each village there are various fractions that pursue their own agendas as well as doing their 

best to aid their village in getting the upper hand. These sub-groups are: 

 Thieves: Will always run away from a conflict initiated by other groups.  

 Warriors: Has the battle ready trait, causing them to train for violent conflict, and 

more easily make use of this means to resolve conflicts between factions.  
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 Farmers: In the extended example, these are capable of producing their own food, 

however they will prefer to access the more easily accessible food source if it is 

uncontested. 

 Villagers: No specific traits.  

In addition, there are villagers with no extended agenda, who’s only concern is survival. The 

warriors of each tribe are advocating the use of violence to gain control of the area where the 

food supplies are dropped, while the thieves care little either way, and are only concerned 

with getting as much of the food as they can, no matter what the rest of their village should 

decide to do.  

Each village has its own training area where the warriors of the tribe train to prepare 

themselves for the conflict they think is coming. The villagers are not worldly folk, and 

greatly prefer staying within the village boundaries. They especially do not enjoy being in the 

opposing village.  

1.7 Outline 

This thesis investigates methods for enriching the knowledge of agents in virtual worlds, 

generating conflict scenarios and explaining how these contributions can be beneficial to the 

design and creation of virtual worlds for various purposes. It is divided into several parts, 

where Chapter 2 and 3 compose the theoretical part which introduces key topics in AI. The 

next part discusses the technicalities required for implementation of framework and prototype, 

this information is presented in chapter 4-6. Finally, an in-depth discussion of the results is 

presented in chapter 7 and 8. 

We start by providing an overview of the terminology used when discussing game engines in 

section 2.1. There are several core elements that come into play when designing AI for games 

[24]: movement, decision making, strategy and agent reasoning. All these elements are 

discussed in section 2.2. Further background information is provided in a discussion on the 

effects of spatial partitioning and its potential effects on real time simulations in Spatial 

partitioning  

Once the most essential terminology has been introduced, we move on to the more detailed 

introduction to advanced techniques in the field of Game AI. As discussed in section 1.4, we 
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will investigate methods for describing the world in any detail. World representation 

techniques and how they apply to the FIF are discussed in sections 3.5 and 3.7. The other core 

concept of the FIF is that of conflict modeling and crowd simulation. These topics are 

discussed in, sections 3.3 and 3.7. In addition to this, we introduce concepts essential to the 

construction of a game scenario, such as agent reasoning systems in sections 3.1 and 3.2 as 

well as advanced navigation topics described in section 3.9. 

Given this solid introduction to AI concepts, the next chapter investigates potential game 

engines for use in AI research and game prototyping. Section 4.1 provides an overview of 

several game engines, while section 4.2 presents a more thorough discussion of the Unity3D 

engine. This investigation of potential game engines is very important for keeping within a 

reasonable time schedule. The engine will be used in conjunction with the FIF to produce a 

game scenario as a proof of concept.  The design proposal for the FIF is described in Chapter 

5. Here, all aspects of the core framework implementation are discussed. The world 

representation implementation is described in sections 5.1, 5.2 and 5.3. Faction and conflict 

systems are laid out in section 5.4, 5.5 and 5.6. 

Chapter 6 provides further details into the practicalities of implementing the FIF prototype.  

First a short overview is provided of the language used in section 6.1 before the details of 

each FIF feature is described in the remaining sections. This chapter leads directly into 

Chapter 7, which describes the implementation of the test scenario in Unity3D, and how this 

was integrated with the FIF.  

Chapter 8 concludes the thesis. Here, a quick summary is provided in section 8.1. Next, a 

brief mention of contributions to the field is listed in section 8.2. Finally, a discussion 

regarding future work is presented in section 8.3. Here, some concepts that were left out of the 

prototype for the sake of simplicity are discussed in detail, alongside concepts for parallelism, 

scalability and applicability to large scale multiuser environments.  
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Chapter 2 Background 

This chapter introduces terminology and concepts that form the basis for discussion of real 

time simulation and game development research. Section 2.1 provides a brief description of 

how a game engine functions and describes terms commonly used in the field. Understanding 

of this terminology is essential for understanding the more complex topics covered in later 

sections. Section 2.2 introduces the fundamental terminology and concepts in the field of AI. 

The topics presented, are essential for understanding the complexities of the more advanced 

methods introduced in Chapter 3. Finally, section 2.3 describes spatial partitioning as a 

general principle for optimizing allocation of computational resources. 

2.1 Game engine overview 

Game engines are highly complex systems constructed from many different modules to 

Figure 1 - A simple game engine loop 
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provide a wide range of services to game designers. Game engines are real time systems that 

usually run on an update frequency of 30 or 60 frames per second. Sometimes different 

components run at different update frequencies or in parallel [25]. Figure 1 shows a simplified 

game engine loop, where a single frame can be seen below the element “enter game loop”. It 

should be noted that game engines and training simulators more often than not, share the same 

requirements and solve many problems in the same fashion. Therefore, arguments that are 

made from a game development perspective can often be directly applied to training 

simulators. These systems are usually organized into modules, or components [26]. A typical 

set of such modules is listed in the following subsections.  

2.1.1 Scene Management 

The scene manager is responsible for organizing the world in which the simulation takes 

place. Scenes are usually arranged in trees, with the scene itself as the root. Most game 

engines rely heavily on hierarchies to organize the game play logic [26]. It is common to 

utilize polymorphism to construct advanced combinations of features that form complete 

simulated objects. Figure 22 shows what such a hierarchy might look like: here you can see 

the basic game object and dynamic game object classes containing the essential information 

Figure 2 - Simple Object Hierarchy 
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required to exist in the virtual world. Inheriting these features are then the agent and particle 

emitter classes. The particle emitter is used in rendering to enhance visual fidelity, while the 

agent is a simulated entity in the game. The agent contains a physics body which allows it to 

be affected by the physics system, an AI component that evaluates the world and attempts to 

manipulate it, and finally a mesh which is used for rendering the object. The third entity 

inheriting from the dynamic game object class is the player character. This class contains 

most of the same logic as the agent, but instead of an AI component that controls the other 

systems, the player character has a controller that takes input from keyboard or other physical 

devices. Objects designed in this fashion are then put in a tree-structure that can be traversed 

to relay messages to child objects, gain information about objects’ relation to each other, 

relative position, etc.  An example of how this works is shown in Figure 33, which describes 

the process of creating a 3D model of a man in Carnegie-Mellon’s Panda3D engine [27].

 

Figure 3 - Scene Graph Example [1] 
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2.1.2 Logging and Error handling 

As game engines are highly complex software systems, it is imperative to have access to 

detailed information about runtime interaction between entities. A logging component usually 

contains some or all of the following features [25, 28]:  

 Write message to console 

 Write message to file 

 Perform dump of stack trace to file on crash 

 Performance monitoring 

2.1.3 Content Management 

Content in games refer to all types of files that impact the game in any way. Large parts of 

modern game engines are concerned with importing and converting different file types and 

formats into workable internal data types that can be used by other components [26]. Typical 

file types handled by a content component are:  

 Text files 

 Fonts 

 Sound/Music files 

 3D models 

 Texture files 

 Game scripts 

2.1.4 Physics 

Physics simulation is an integral part of many modern games. This component usually 

performs all work that deals with collisions and applies physics to all game objects defined in 

the scene manager. Physics is commonly a third party middleware solution shipped with the 

engine such as Havok or PhysX. Because of this, it is common for physics components to be 

designed as a black box. Physics components often require higher update frequencies than 

other components, running at 60 to 120 frames per second.  
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2.1.5 Rendering 

Rendering components deal with combining spatial game information and graphics resources 

into images on the screen. These components can deal with either 2D or 3D assets. Rendering 

is not covered in any great detail in this thesis, but is listed here for the sake of completeness.  

2.2 Artificial Intelligence 

In their book Artificial Intelligence a modern approach, Stuart Russel and Peter Norvig 

explain that there are two definitions of AI [15]. The first definition states that AI is the study 

of how to make computers act and think like humans, or as stated in the book “The art of 

creating machines that perform functions that require intelligence when performed by 

people”. The second definition states that AI is the study of how to create machines that 

behave rationally, again quoted from the book by Russel and Norvig; “AI … is concerned 

with intelligent behavior in artifacts”.  These two approaches can again be split into two 

concepts: acting and thinking. This section gives a brief introduction to AI and how it applies 

to games. Advanced AI topics are discussed in Chapter 3. 

2.2.1 Acting Humanly 

The Turing test was proposed by Alan Turing in his paper “Computing Machinery and 

Intelligence” from 1950 [15]. The test states that a computer can be said to be intelligent if a 

human interrogator, after posing some written questions, cannot tell whether the written 

responses come from a person or a computer. Natural Language processing, knowledge 

representation, automated reasoning and machine learning all fall into this category.  Building 

artificial intelligence with this focus is referred to as the “Turing test approach” by Russel and 

Norvig [15].  

2.2.2 Thinking Humanly 

This approach attempts to replicate the way the human brain works on a more basic level and 

is closely related to cognitive science. General problem solvers and neutral networks fall into 

this category.  
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2.2.3 Thinking Rationally 

Referred to by Russel and Norvig as “the laws of thought approach”, this field of study 

attempts to build on logic formalism to create a program that can solve any problem through 

logical induction.  

2.2.4 Acting Rationally 

“The rational agent approach” attempts to construct agents capable of modify their world to 

fulfill some goal in a way that “makes sense”. Russel and Norvig argue that this approach has 

the most direct application as rational agents are capable of completing goals that can be 

easily defined in a language that computers can understand today (e.g., “Temperature is below 

20 centigrade, turn on heating”). While the skills required by rational agents are useful for 

completing the Turing test, the goal of such agents is not to complete said test. 

2.2.5 Game and Simulation AI 

AI used in computer games and simulations can be classified as either Agents or Virtual 

Humans. Agents belong in Russel and Norvig’s rational agent approach. The goal of agents in 

games and simulations is to perform a special function that will challenge or assist the user in 

some way.  In the game Gears of War, by Epic Games, the “Covenant” warriors are not 

supposed to give the impression of humanity, instead they are targets for the player to shoot. 

In a simulator for missile defense systems, the enemy planes are also agents, as it might be 

more valuable for soldiers to practice against perfect targets than humanlike behavior.  

Virtual Humans attempt to exhibit humanlike behavior. In games, these might be virtual 

players competing against you, e.g., in the game of Unreal Tournament [29] or an opponent in 

a strategy game. In simulators for low intensity conflicts and firefight scenarios for ground 

troops, all opponents and representation of inhabitants need to behave as close to human as 

possible to give a realistic training scenario [10].    

In addition to the challenge already posed by attempting to resemble human behavior, game 

and simulation AI also has tight time constraints to have any chance of delivering a believable 

performance to the spectator. A virtual human that takes a minute to react to gunfire would do 

little to increase the realism of the scenario. Because of this constraint, games and simulations 

tend to lean heavily towards the rational agent approach, and it is this that will be the main 

focus of this thesis. However, ideas from the Turing based approach will also be considered.  
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2.2.6 Sensors  

Sensors can be anything from cameras, light sensors and antennas in robotics, to ray cast 

functions and path finding queries in a game engine. The data gathered by these sensors are 

first analyzed in the sensing stage, before any useful information is used to inform the world 

model. It should be noted that the sensing stage can run asynchronously from the rest of the 

simulation, and different sensors can gather data at varied rates. For instance, an agent could 

have sensors constantly probing the virtual world for objects that it needs to avoid for 

collision avoidance purposes, while it might seldom query the sound engine for any sound 

events that could be of interest.   

2.2.7 The world model  

The world model is the basis of all decisions performed by the agent. This model varies 

greatly in complexity even inside the same simulation. Using “Hunger Game” one could 

imagine that a normal villager has a very simple understanding of the world and how to 

traverse it, while a thief has a more complex model of shadows and trenches to hide in. A 

warrior might have additional information in its world model, describing where to find 

weapons, which agents to fight and avoid, patrol routes around his village and information 

about dangerous areas where his alert state should be increased. This world model is used by 

some reasoning engine to decide what actions will be taken next.  

2.2.8 Actuators 

Actuators are the means by which the reasoning engine affects the world around it in the 

hopes of changing its world model to one that the agent finds more agreeable. This can be a 

messaging system for which to communicate with the world, the movement part of a path 

graph or manifestations of limbs that allow the agent to manipulate objects.  

2.2.9 Reflex-agents  
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Reflex-agents are the basis of many modern virtual worlds, robots and simulations. Reflex-

agents are composed of sensors that allow them to perceive the world around them, actuators 

that enable the agent to interact and modify the world, and finally, the internal world model 

which describes the world in the “mind” of the agent [15]. Figure 4 describes how sensors, 

world model and actuators together form a reflex agent. 

The environment in Figure 4 represents the totality of all values in the virtual world, or in the 

case of robotics, the real world. Percepts are collected by sensors, which updates the world 

model, represented in the figure as the process “What is the world like now”. Some sort of 

reasoning engine decides upon what action should be done, which results in actuators being 

activated to perform said action. This will (hopefully) change the state of the world, which 

will again be fed back as percepts into the sensors, completing the cycle.  

2.2.10 Summary 

AI is a very broad definition for a large set of techniques that can be applied to solve a myriad 

of problems. When building AI for games and simulations, it is fairly common to rely on a 

small subset of all the tools in the AI toolbox. While acting humanly certainly comes into play 

for virtual humans and agents in games and simulations, they usually have so little screen 

time that this AI challenge is reduced greatly compared to a real Turing test. The main focus 

is therefore often on building agents that can act rationally as is the case with the simple reflex 

agent. In this thesis, there will also be some focus on the concept of thinking humanly, as 

arguments will be made for how this can be utilized to create interesting forms of gameplay 

and simulations.  

Figure 4 - A simple reflex agent 
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2.3 Spatial partitioning 

A spatial data structure is one that organizes geometry in some n-dimensional space. These 

structures are very useful in optimizing queries on datasets in games and simulations as most 

of the objects in a game world are spatially persistent or semi-persistent. As most game and 

simulated objects that persist over longer periods of time also tend to move at a relatively 

slow velocity, even these objects require fairly little computation time to maintain. The data 

structures used for spatial partitioning are most commonly hierarchical, because of the reasons 

stated above. This means in turn that localized queries get significantly faster, typically 

improving from O(n) to O(log n). [30] 

The most common types of spatial data structures are bounding volume hierarchies (BVHs), 

quadtrees and octrees. BVHs work by putting complicated objects, such as a triangle mesh, 

inside a simplified representation such as a bounding sphere. This bounding sphere is then 

used as base for the initial query, should the query fail (as it does on most objects) the more 

complex data does not have to be considered. Quadtrees and octrees are very similar data 

structures that create a tree representation of the virtual world by creating recursively smaller 

axis aligned bounding boxes (or rectangles in the case of quadtrees). These bounding boxes 

are created by taking the root box and splitting at the center into additional four (or eight) new 

boxes.  Once created, it is populated by all the game objects in their respective child nodes 

and as the simulation progresses they are moved from one node to another. Localized queries 

to such a solution are highly effective as one can query only the leaf nodes of adjacent boxes.  

While it is common to populate these data structures by only having objects occupy leaf 

nodes, and duplicating objects that span more than one leaf, there are other approaches 

possible as well. To avoid duplication of data it is possible to move objects that span several 

leaves up the tree to the first branch capable of holding the object in its entirety. This has been 

known to cause performance hits when dynamic objects are positioned at the center of the 

octree, propagating them to the root node. This problem can be trivialized by carefully 

considering the layout of the static objects in the scene [30]. 

Spatial partitioning will most likely be required to control the simulation scaling. As the 

groups of agents in conflict grow larger, the resource constraints of the system will begin to 

show. To conform to the real time requirements stated earlier, it will then be required to scale 

back the level of detail (LOD) of the simulation in areas not under scrutiny by the users. 

Spatial partitioning strategies are reliable and well established for such use.  
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2.4 Summary 

This chapter has introduced the most fundamental concepts required to follow the remainder 

of this thesis. A basic grasp of how a game engine works “under the hood” was introduced in 

section 2.1. The concepts and terms discussed there will often be mentioned when discussing 

implementation details and challenges. This chapter has also provided quick look at the most 

basic concepts within the field of AI. These concepts are fundamental to the understanding of 

Chapter 3, which introduces more complex AI paradigms that require the basics discussed 

here. Finally, a brief introduction to spatial partitioning and its impact on computational 

resource management has been provided, as a basis for further discussion on scalability in 

future chapters. 

Chapter 3 will make use of the concepts discussed in this chapter to introduce more complex 

AI methodologies for crowd simulation, world representation and reasoning. Combined, these 

two chapters provide the foundation for the design and practical implementation discussed in 

chapter 4-6. 
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Chapter 3 Topics in artificial intelligence 

This chapter describes different topics in artificial intelligence and how these topics apply to 

games. The field of AI is vast and theories are borrowed heavily from psychology and social 

sciences. This chapter will explain the various topics that must be considered when attempting 

to model interaction between factions and single entities, which is used to inform the design 

of the FIF.  

Section 3.1 and 3.2 introduce two common methods of structuring agent reasoning systems to 

handle different world scenarios. These principles will be applied to build agents for the proof 

of concept scenario. Section 3.3 introduces concepts for crowd simulation, which in turn is 

extended for simulating distributed entities in the form of factions and groups in section 3.4. 

These sections are used to facilitate the “internals” of agents in the system, or in other words; 

the systems responsible for simulating needs, desires and prioritization of actions.  

While the first part of this chapter deals with simulating the internal processes of an agent, the 

next step is to introduce techniques for creating a detailed virtual world that can have 

reasoning applied to it. The way world information is structured is described in sections 3.5, 

3.6 and 3.7. Next, some attention is given to introducing neural networks and how they 

inspired the core reasoning system of the FIF in section 3.8. We then discuss navigation in 

section 3.9 as this is always a requirement of real time simulations involving autonomous 

agents.  Finally, we present some techniques for scalability in AI and game design in section 

3.10, which adds to the completeness of the discussion in regards to modeling large factions.  

3.1 Agent reasoning: finite state machines 

The finite state machine approach to agent reasoning is one of the easiest to implement on a 

smaller scale. A finite state machine (FSM) is a system of states representing the internal 

direction of an agent at a given time. At any given time, one state is active, and the code 

contained within is executed. Each state is capable of directing all actions for the agent for a 

period of time, organizing tasks such as animation, path finding and target acquisition. During 

each update of the state, it will run through its list of possible state transitions. Should a state 

transition be triggered, the current state will suspend itself and set the triggered state as 

current. A state can also be triggered from outside the state machine, by a scripted event or 

similar.  
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It is common to arrange several smaller state machines into a hierarchical state machine. This 

ordering is used to avoid state duplication. Going back to the “hunger conflict” example, a 

villager from the southern village might be heading home with food, when confronted by an 

angry villager from the northern village. When confronted by this individual, the southern 

villager would have to postpone the current state of bringing food to respond properly to the 

confrontation. For a “normal” state machine, there would be no way for the employee to 

resume its old state of bringing food to the village. With a hierarchical state machine, the 

“argue” state would be attached as a child state of the bring food state, and would allow the 

state machine to propagate back up the tree to the “bring food” state once the argument was 

resolved [24]. 

Hierarchical state machines have become one of the most widely used approaches to creating 

complex behavior in computer games [31]. The ability to transition into and away from 

hierarchies of state machines depending on the current game context is a powerful tool for 

designers to tailor game behavior. This is also a highly useful property in regards to modeling 

conflict systems, as it would allow for a varied set of conflict resolution strategies to be 

combined into a larger state machine hierarchy. This way, the state machine could be created 

through a combination of framework modules and state machine specifically tailored for 

certain scenarios.  

A known problem with state machine approaches is that managing the state transitions 

becomes increasingly difficult as the number of states and state machines increase [31]. This 

could prove to be a challenging obstacle to overcome in a framework that is to support 

scalability. Because of this issue, it might be more feasible to implement agent level 

controllers using behavior trees. However, for showing how the thesis framework can be 

applied to gameplay, the limited example system might not be subject to these complexities 

and thus, FSMs might be a reasonable solution to the problem.    

3.2 Agent reasoning: behavior trees 

Behavior trees have become a highly popular approach for game developers to create 

reasoning systems that cope well with the changing needs of an organically growing system. 

Behavior trees attempt to provide a synthesis of the best features from other approaches such 

as state machines, schedulers and planners [24]. 
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On the surface, a behavior tree looks very much like a hierarchical finite state machine. While 

states are self-contained action patterns that can stand by themselves, behavior trees attempt 

to use a finer granularity to specify building blocks from which to create said patterns. 

Because of this finer granularity, it is easier to get a minimum of behavior active in the 

simulation. All building blocks used to construct a behavior tree are called tasks. The most 

basic tasks in a behavior tree are conditions, actions and composites.  

Conditions are tasks that perform some kind of data comparison, such as “is there food left on 

the pallet” or simply “am I in range of that object”. Actions are tasks that alter the game 

world, such as playing an animation or sound. Finally, composites are combinations of the 

two previous task types. Composites can be sequences of tasks, running each one in order, or 

a selector that picks what child task to run.  Actions and conditions both represent leaves in 

the tree, while composites define branches.  

All tasks derive from the same interface, allowing each one to be an isolated feature that can 

be combined freely through the use of composites. All tasks report failure or success 

depending on the result of their runtime. Composites will then decide what to do with that 

information, either to attempt resolving the failure inside its given behavior-space or 

propagate it up the behavior tree.  

In addition to these basic tasks, there are decorators and parallels. Decorators are inspired by 

the “decorator” software design pattern, which suggests wrapping a class around another class 

to improve or change its functionality. This idea is taken into the behavior tree, by creating a 

branch node with only one child. The decorator will then modify the behavior of its child 

node in some way, for example monitoring its use and disabling it when it can no longer be 

run. The parallel is a composite that allows its child tasks to be run at the same time. It keeps 

track of all the children running and has an internal understanding of how to react when one 

of the children return while the others are running [32]. 

This fine granularity approach to building behaviors allows for AI to be built “bottom up”, 

creating simple modular tasks for functionality that is required by all systems, such as path 

finding, range checks, walk animations and similar. Once these important building blocks are 

in place, more advanced behaviors can be built as they are required. By defining the structure 

of the behavior tree in an online language such as LUA [33] or through XML, one could even 

change the behavior of an agent while the game is running, allowing for simulations to be 

modified in real time.  
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By creating a set of baseline functionalities for high level decision making and reasoning, that 

utilize abstract conflict resolution strategies, behavior trees can be created in such a fashion 

that they allow content developers to implement all their own behavior on an agent level, 

while still conforming to the design patterns imposed by the framework in order to generate 

valid conflict scenarios.  

3.3 Crowd simulation 

Modeling of crowds and the interactions between individuals therein, are essential topics of 

the modern world as they allow for studying the behavior of crowds under varying 

circumstances. The field comprises objectives such as modeling interaction between 

individuals of different emotional states such as simulating psychosocial behavior in non-

player characters [34], to simulating crowd behavior in crisis situations such as escaping a 

building on fire [35]. These solutions are usually focused on maintaining realism down to the 

individual level at all times and is thus constrained to small numbers of virtual agents unless 

the demand for real time simulation is dropped.    

Zhou et al. provide an overview of different crowd modeling technologies [36]. The 

information used to classify the different simulation technologies are crowd sizes and time 

scale. The authors argue that there are three different approaches to crowd modeling.  

3.3.1 Flow based modeling  

Flow based modeling focuses on the movement of thousands of people and makes use of fluid 

simulation techniques to create the wanted effect. This approach provides nothing in terms of 

advanced behavior for individual ages, and therefore was not considered as a viable option for 

the problems investigated by this thesis.  

3.3.2 Entity based methods  

Making use of ideas from particles physics, each individual is treated as a “particle” in the 

system. Each particle is subject to a series of “social and physical forces” from a combination 

of local and global generators. As mentioned earlier, simulating groups in emergency 

situations such as a burning building is a typical use of crowd simulators. Braun et al. tackle 

this exact problem in [35], where they create repelling fields to represent areas on fire and 

attach attracting forces to more sophisticated agents that represent leaders capable of directing 

crowds to safety. In addition, they add force generators to represent influence inflicted by 
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panicking individuals and repelling fields keeping entities at a certain distance from each 

other. This method has also been used to replicate emerging phenomena such as jamming and 

flocking. According to Zhou et al. in [36], this method falls somewhere between flow based 

and agent based approaches to crowd modeling, both in terms of time span and crowd size.  

3.3.3 Agent based simulation  

Agent based methods model each individual as a complex system with internal emotions, 

needs, wants and utilizes advanced forms of interaction with other agents. From these 

interactions, new relationships and changes in the attitudes of the whole group emerge. Bailey 

et al. used this approach to model the effect of introducing a negative or hostile individual into 

a group [34]. Their implementation defines internal states such as emotions and personality, 

as well as social information for each character, such as ties between individuals, group 

memberships and social influence modifiers. In addition to these psychological and social 

constructs, is the notion of current situation or context; to create believable simulations, all 

agents must have an understanding of their current situation. In his article [37], on agents that 

can relate to physical spaces, Adam Russell draws attention to the lack of context in digital 

games today, and how this is of critical importance to the progress of believable agents. A 

typical problem related to situational awareness is to determine the change in behavior when a 

physical space transitions from a safe area to a danger zone.  Using the example of “hunger 

conflict” as a basis, assume that the conflict has escalated to a state where armed aggression 

has been initiated by one side of the conflict. The unarmed population present in the field 

would naturally respond by fleeing the area upon recognizing the armed agents of the 

opposing village. In a setting where an area has potential for transitioning from one theatre to 

another, it is extremely important for the agents in the theatre to respond correctly. If agents 

simulating the general population fail to grasp their situational transition, they would continue 

with their daily order of business while the tension between fighters escalated to a violent 

struggle. Zhou et al. propose that agent based approaches should be used for most long term 

simulations due to the requirements listed, and notes this approach as the most common for 

digital entertainment products [36].  

3.3.4 Summary 

When it comes to modeling agents and the social interaction between them, the main 

roadblock is the amount of computational resources required; especially when the system has 

real-time requirements, such as digital games or training simulators. Consequently, one must 
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consider what level of detail each agent can utilize without diminishing the realism of the 

system while still operating under real-time constraints. It will arguably be beneficial to 

implement more than one of the aforementioned crowd simulation techniques, in some sort of 

level of detail (LOD) system, depending on the current requirements of the simulation and 

load on the system.  The implementation proposed in Chapter 5, relies solely on agent based 

simulation, as the most important features deal with detailed world representation and conflict 

generation. These features require more advanced simulations from the agents than can be 

provided using any of the other models. However, it can be argued that if one was to scale the 

implementation to massive proportions, for instance to simulate entire countries, one could 

utilize entity based methods to simulate individuals in the population while agents were 

responsible for the actions of fractions within the nation.  

3.4 Factions and groups  

While crowd simulators usually are concerned with the behavior of individuals in a spatially 

localized group, there is also need for a way to model the less concrete bonds between 

individuals. Groupings of different kinds can have an effect on an individual’s beliefs, 

behaviors and their interpretation of what situation they are in. Going back to the example of 

the “hunger conflict”, the armed agitators would be in a completely different situational 

context than the unarmed villagers. In addition, some of the unarmed villagers might also 

have affiliations with the armed agitators and thus choose to join this group instead of 

responding in the same way as the other unarmed villagers. In other words, some agents may 

change their situational context depending on the other agents present in the area.  

Medler et al. propose a generalized Conflict Theory as a basis framework to model these 

interactions [22]. In their paper, they define three types of resources: wealth, power and 

prestige. Conflicts arise when individuals with incompatible goals interact with each other. 

Examples of such interaction are: deprivation of a resource type, illegitimate power, role 

incompatibility and belligerent actions.  

Role incompatibilities occur between individuals of equal power or when one individual 

attempts to leverage power over another. An example of equal power conflict, or horizontal 

conflict, is a group of students arguing over how to design their project. Vertical conflict 

could occur when a soldier is commanded by his officer to do something morally 

questionable.  
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Medler et al. further propose a model for group interaction that consists of three “layers” [22]: 

Agents are individuals with their own needs and desires, groups are sets of individuals and 

actors are sets of groups with aligned goals. An actor can consist of one or more groups, and a 

group can consist of one or more individual agents.  Note that an individual can be a member 

of several groups, and groups can also be part of several actors.  

As an example of this organizational idea, consider the “hunger conflict”, where one could 

define the entire village as a single actor with each part of society (farmers, thieves, general 

population) as groups within the actor, and the warriors as its conflict organization.  

The framework described in Chapter 5 also includes a world model and a conflict behavior 

model. The world model describes the relations between actors as well as the needs and 

desires of these. The conflict behavior model describes all available actions the actor can take 

to further their goals. In other words, the world model describes how conflict can occur, while 

the behavior model describes how conflicts can be resolved.  

The concepts introduced by Medler et al. [22] provide a good basis for the data and systems 

required to model an advanced conflict model. By using their definition of resources, actors, 

groups and agents, the core data model for the framework is established.    

3.5 Smart objects 

As virtual worlds become increasingly dynamic and the need for post-launch modifications 

increase, it is essential to find good ways to organize an AI framework so that the content 

base of the simulation running it can be expanded without the need for a significant rewrite. 

The basic approach for driving AI decision making and world interaction is to root this firmly 

within the virtual bounds of the agent. With smart objects, the object itself contains much of 

the information required to drive action and planning for the exchange between agent and 

object [38]. 

The main concept of smart objects is that each object is in itself a supplier of one or more 

services [39]. For example; a field might register itself as providing the provide food service, 

as well as “landing site” while a torch would register itself as a provider of light and 

potentially heat. An agent trying to find a way to become less hungry would query some 

central system, (or internal memory map, depending on the implementation) where it would 

be directed to one of the closest sources of this service. One of the best known uses of smart 

objects is the critically acclaimed game series “The Sims” [40]. 
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“The Sims” [41] is a life simulator, which allows the player to create their own family of 

“sims”. If left unattended, these sims will lead their own life, attempting as best they can to 

fulfill their desires. The player can then attempt to manipulate the life of their sims, by finding 

jobs for them, buying new things for their houses and introducing them to other sims in the 

neighborhood. “The Sims” uses smart objects for all game objects that can fulfill one of the 

desires of a sim. By using this technique, the game developers (and the highly creative mod 

community) could easily add new objects that sims could interact with, without having to 

change the game code. 

In addition to broadcasting their services, smart objects can contain a myriad of additional 

information that allow for very powerful problem resolution approaches [42]. Once the object 

responsible for supplying some service is contacted by the agent, it can initiate a negotiation 

cycle to find if it is possible for the object to indeed supply the resource to this specific agent. 

In a virtual world that allows for extensive refactoring and expansion of content base, there 

might be several prerequisites that the object could require to make sure that no odd behaviors 

occur. Smart objects often list a set of valid animations for interacting with the object, as well 

as where the agent must be located before it may begin playing these animations in the first 

place. More advanced objects are embedded with whole action plans for their use, which they 

pass on to agents contacting them about their services [43].   

The plans provided by objects could be as simple as hinted to above, listing simply a position 

for the agent to be in as well as what animation to play. A plan could also be more advanced, 

giving the agent a set of goals that must be completed before the service can be utilized. In the 

morbid case of the stray dog as a source of food from the previous section, the dog as a smart 

object could provide a plan that would require the agent to slay skin and cook it before 

becoming less hungry. These plans also allows the agent to weight the potential gain against 

the cost of completing the steps of the plan provided, allowing the reasoning engine to choose 

a service supplier with an acceptable effort cost.  

As a more detailed example, consider the “hunger conflict” example once again. One could 

imagine a field that lists itself as a supplier of “food”. The field would respond to an agent’s 

request by initially checking its internal state to see if it is “sown”, if not, it would look 

through available “sowing” objects nearby and add this to the agent’s plan. The agent would 

then attempt to calculate the cost/gain relationship for sowing the field before being provided 

with food. Additionally, the field would also add “water” and “harvest” to the agent’s plan. 

Each step would have a cost associated with it, which would form a total cost for which the 
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agent would use to compute the total potential gain. Having computed the complete cost of 

accessing the service, the agent could potentially investigate other objects offering the “food” 

service to see if the cost versus gain analysis would yield a better result given their internal 

state 

Smart objects allow for new objects to be added as they are completed in development, 

without having to make any modifications to the underlying AI engine. The smart object 

keeps track of what animations the agent must have available to it to interact, as well as what 

services the agent can utilize by interacting with the object. This way the object simply has to 

register with the service provider interface used by other objects and the agent will 

automatically be able to interact with this new addition to the simulation. 

The smart object design approach is essential for development of a scalable framework, as it 

allows for defining interfaces that content creators can use as guidelines for meshing their 

new features with the framework functionality. Using smart objects to define resource objects 

as well as conflict resolution areas will allow for quick expansion of the feature set in a given 

implementation.  

3.6 Fuzzy logic 

Fuzzy logic extends the traditional principles of logic by allowing for varying degrees of 

truths to be defined. A predicate in logic is either true or false. For instance, a player could be 

hurt or not. In fuzzy logic, a predicate is instead defined with a corresponding value 

representing to what extent the predicate holds true. A predicate set is the entire range of 

which a predicate can be defined. The value an agent has describing its relation to a predicate 

is most commonly referred to as degree of membership [24]. It is common to use a floating 

point value ranging from 0.0 to 1.0, including any representable number within this range. 

This does not mean that these values should be treated as percentages however [24].  

Fuzzy logic operates on the premise that all values representing degrees of membership are 

normalized. Usually, this is not the case for data collected from outside the reasoning engine, 

and therefore a method known as fuzzification is used to bring all variables into the same 

range. In essence, this is accomplished by membership functions, which bring the input 

variables into the range used by internal operations. These functions can take any shape 

required to bring the data into the range required by the reasoning engine. An example can be 

seen in Example 1. Defuzzification is the process of turning the internal data back into a useful 
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format for whatever system is making use of fuzzy logic inference. Depending on the 

expected outcomes from using fuzzy logic, there are a set of different solutions to choose 

from. The simplest form of defuzzification is simply to take the highest membership relevant 

to the output function. 

An agent’s movement speed is affected by the game values [encumbrance, health, speed]. The 

fuzzy logic engine used by the game has membership functions designed to translate these 

values into values representing degrees of membership to each part of the predicate set 

[crawl , walk , run ]. The membership functions are arbitrary, however they must yield a 

result corresponding to the range defined by the fuzzy logic engine. Assume that these 

functions yield the following result for an arbitrary agent [crawl = 0.2, walk = 0.4, run = 

0.7]. Highest membership defuzzification concludes that the agent should be moving at 

running speed.  

Example 1 – Example for highest membership in fuzzy logic 

The downside of using highest membership as is shown in Example 1 is that this method only 

considers the highest value and thusly fails to consider the effects that might be incurred from 

the other predicate sets.  

A common approach in computer game AI is to use a blending based on membership 

approach. This is simply to calculate the sum of the normalized degree of membership values 

multiplied each by the corresponding max output value.  Using the crawl, walk, run example 

in Example 1, we would have the corresponding max output values [crawl = 0.5 km/h, walk = 

3. Km/h run = 6 km/h]. Firstly, one would normalize the degrees of membership from before, 

then sum the new values for the degrees of membership and multiply them by the maximum 

output values. Example 2 provides an example of the simple computation required.  

Given the degrees of membership in the predicate set [crawl = 0.2, walk = 0.4, run = 0.7] 

and the corresponding velocity values for complete membership to the predicates [crawl = 

0.5 km/h, walk = 3.0 km/h, run = 6.0 km/h]. A normalization factor ϝ computed by taking the 

sum of each degree of membership, is used to bring the degrees of membership into the range 

0.0 to 1.0. The normalized degree of membership is then multiplied by the speed values for the 

given predicate, yielding a blended velocity v that takes into account contributions from every 

predicate.  

  (           )      
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Example 2 - blending based on membership example 

Both highest membership and blending based on membership are valid approaches to 

compute the defuzzified values, when to use the various approaches are domain specific.  

Fuzzy Logic implements the same binary operators as traditional logic. Table 1 contains the 

most important logical expressions and their equivalent Fuzzy Equations. Here, m 

corresponds to the degree of membership to the predicate denoted by its subscript.  

Table 1 - Logic expressions in fuzzy logic 

A methodology for creating systems for decision making using fuzzy logic is called fuzzy 

control [15]. The decision system is constructed by combining predicates using logical 

expressions to form rules such as: 

           

It is important to note that even though the set of variables might entail X, one cannot infer 

that X is true. Fuzzy logic is used to represent vagueness and thus, one can only know that X 

is true to some degree from the sentence above. What makes this way of quantifying the 

world so powerful is that it allows a system to apply a degree of change to its operation 

depending on the priorities of rules and the outcome of the entire rule set.  By querying all 

rules of the system, the controller can make adequate modifications to all its operations 

Logical 

Expression 

Description Fuzzy Equation.  

¬A Negate A 1-   

A ∧ B A and B min (     ) 

A ∨ B A or B max(     ) 

A ⊕ B A XOR B min (        ) 
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depending on the current world state. Listing 3 provides an example of how such a rule set 

could be structured in practice. The rule set could potentially be used to describe the 

reasoning process of a villager as he is approaching a food supply. 

 

                                             

                                            

                                              

 

Given the following degrees of membership [full = 0.9, starving = 0.1, 

surroundedByStrangers = 0.4, surroundedByFriends = 0.6], the output values of the above 

rules will be the following:  

            (       )      

         (       )      

         (       )      

Taking the maximum for each output value, one is left with the following.  

            (   )      

         (       )      

Listing 3 - Fuzzy rule set example 

It should be mentioned that fuzzy logic is not truly a method for uncertain reasoning, but a 

tool for interpolating a set of crisp input variables in such a way that a set of output variables 

can partially satisfy fuzzy expressions explaining the expected behavior of a system given 

said input [15].  

When attempting to reason about conflict it is important to have a formal language that allows 

for degrees of truth such as fuzzy logic. Agents may sometimes be affected in various degrees 

by different faction memberships, which in turn may not be entirely devoted to some causes. 

As an example, a faction of teenagers might be opposed to the police, but only to the extent 

that they would tend to avoid them, but not engage them in direct conflict. Degrees of 

membership allows for a system where factions interact in a much more complex manner than 

what would be supported by a “true/false” system.  
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While certainly useful for games in general, fuzzy logic lends itself well to creating more 

descriptive worlds, as it is capable of representing degrees of truth much more efficiently than 

formal logic. It can thus be said that fuzzy logic allows for higher fidelity for representing 

knowledge of the world as seen by the agent, without introducing complex computational 

overhead. As this thesis seeks to explore ways to build agents with more detailed knowledge 

of the world around them, fuzzy logic is a valuable part of the toolbox.  

3.7 Semantics for game worlds 

Russell mentions in [37] how the “umwelt” of a virtual agent is impoverished.  This “umwelt” 

is the environment that the agent exists in and uses to weight its choices. Russell goes on to 

discuss how AI researchers through the last decades have refined a narrow skillset, consisting 

of locomotion and path finding algorithms.  An agent observes the world it exists in through 

navigation nodes and object references. It is rare that two different agents would have a varied 

understanding of the surrounding world. Russell argues that this narrow understanding of the 

virtual world makes it much harder for agents to act with authenticity. By embedding more 

information about the virtual world, and possibly equipping each agent with their own world 

model, agents will be better prepared to make choices reflecting their personality.  

To add more meaning to the environment of a virtual world, objects are given semantics. 

These pieces of metadata are organized in a graph, allowing them to be traversed by agents 

searching for meaning. In the “hunger conflict” example, an agent could access the semantics 

of the area storing food in his village, finding that the semantic attribute “edible” is no longer 

applicable to the food available within (having gone bad). The agent would then access the 

semantic graph to find other objects in the world that subscribe to the attribute “edible”. If the 

agent was equipped with an inference engine, it would then be capable of determining what 

object might be the ideal candidate for acquisition to satisfy its “hunger” attribute.  

The role of semantics in games is an underexplored topic, but that is coming into its own right 

in the latest generations of computer games such as “Left 4 Dead” [44]. Semantics in games 

should also provide information necessary for an agent to determine its current context. If a 

region had its own semantic set that agents could subscribe to, it could “pull up” information 

from objects in the region to create a context itself [45]. For instance, if several larger objects 

have flagged themselves as “dangerous”, the area could pull itself up and flag itself as 

dangerous, allowing civilian agents to reason that it should flee the area while combat trained 

agents would enter their “escalated conflict state” [22]. 
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While it is important to understand the importance of semantic data for agent reasoning, there 

are several problems when such information is to be generalized. The amount of semantic 

information that can be embedded into the world is limitless. Information that might be 

crucial for one simulator might be irrelevant for another. For example, a farming simulator 

might have a lot of semantic data concerning soil fertility and composition, while this 

information might make no sense in a flight simulator. Simply put, this solution would not be 

feasible both due to the amount of storage space required for this information and the 

immense performance hit any real time system would take from having to traverse this huge 

web of information. A solution to this would be to create a system allowing a designer to 

disable the parts of the semantic system not required by the simulation, as well as adding new 

relations and descriptors as needed [45]. 

Semantic modeling allows for an interesting approach to world design. By allowing virtual 

objects to contain and publish semantics describing services they provide, agents are able to 

search their world model for providers of the service that satisfy their need. A hungry agent 

could for example find that two vendors satisfy their requirement. Depending on the current 

state of the agent, it could also choose a garbage can or stray dog as the service provider.  

The idea of using semantics to define objects as service providers is very powerful as it allows 

for a more flexible design methodology. Instead of having to rewrite parts of the AI reasoning 

engine, a designer could simply add new methods to the simulation and attach semantics 

describing the services the object provides. Agents operating within the environment would 

without modification be able to add these new objects to their reasoning patterns and utilize 

their services in the same manner as objects created when they were initially designed.  

As understanding the situation context is so important for reasoning systems, it makes sense 

that to create believable scenarios, a great deal of world detail must be made available to the 

internal AI engine. By creating a system for object semantics, the context of a given situation 

can be made clearer to the agents attempting to decide their next state transition. By creating a 

system capable of accepting any semantic set, for then to perform reasoning and formulate 

plans from these given semantics, one can facilitate the creation of any variation of scenarios. 

Such a system can arguably provide great enhancement to the levels of reasoning performed 

by agents in games.  
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3.8 Neural networks 

Neural networks were developed as part of the early work in attempting to create true 

artificial intelligence. Neural networks were designed to mimic the way our brain is 

constructed [15], by creating artificial neurons that are combined to form different structures.  

While neural networks so far has failed to produce a true working artificial intelligence, they 

have proved very useful for creating systems capable of learning, as well as producing huge 

variations in resulting output from small changes to input and weighting of functions inside 

the network [15]. While this instability has proved a challenge for researches making use of 

neural networks in learning systems, it could arguably be put to use to generate large 

variations of gameplay scenarios.  

An artificial neuron consists of a set of weighted inputs that are summed together to form the 

complete input to a threshold function, which returns an activation value [24]. While it is most 

common for the threshold function to return either 0 or 1 as activation values, it is also 

possible to have other types of functions. Figure 5 shows the basic layout of a neuron, where 

weighted input values are summed together before it is sent to the threshold function that 

computes the activation value that is sent off to the next stage.   

Artificial neurons can be structured into different kinds of graphs, which are all referred to as 

neural networks. It is typical to place neurons in layers, so that one layer computes the 

weighted values fed into the next stage. The easiest form of neural networks are referred to as 

perceptrons [15]. Perceptrons are single-layer feed-forward neural networks, which means 

that the network is composed of a single set of neurons, taking a range of weighted input 

values and outputting one activation value each, which is interpreted outside the network.  

More complex solutions can be formed by adding layers of neurons that use the outgoing 

activation functions on lower layers as input. To complicate things even further, one can form 

Figure 5 – example of an artificial neuron 
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cyclic graphs of neurons that exist in adjacent layers to form feedback loops [15]. Such 

networks are chaotic and almost impossible to predict. However, they can also create some 

very novel behaviors and effects.  

While neural networks will not be used directly in our proposed framework, their potential for 

creating large variations in output from small variations in input and weighting makes for a 

good foundation to expand upon. 

3.9 Navigation  

Finding the best suitable solution to navigating a complex static or dynamic environment is a 

research field that has been very active for quite some time. In recent years, there has been an 

increasing focus on fast navigation algorithms that can handle dynamic environments and 

multiple active agents, such as [46] and [47].  

In computer games, it is common to use a graph consisting of waypoints, grid-cells or triangle 

meshes [48]. These navigation graphs are often made by hand, but recently there have been 

several successful attempts of automatically generating navigation meshes offline, notably the 

virtual agents in Valve’s source engine [49] and Havok’s AI module [7]. The graph is then 

traversed using a path finding algorithm. In game AI, some variation of the A* algorithm is 

commonly preferred. Many enhancements and pruning techniques have been proposed for 

varied scenarios such as the ones listed in [50] and [51].  

Most modern game engines offer some form of navigation solutions. However, games of 

various genres tend to face different challenges. Real time strategy games often seek to render 

a much larger number of entities on screen at the same time, and thus, the number of queries 

to the path finding algorithm becomes a bottleneck. Action games and combat simulators 

render the world in much greater detail and therefore demand that each individual agent 

navigates the world without showing signs of clipping or colliding with other agents in the 

scene.  

As the framework proposed in this thesis is intended for use in action games, RTS engines are 

less than optimal. Most commercial game engines like Unreal [52] and CryEngine [53], as 

well as some open source engines like Panda3D out of Carnegie Mellon come with path 

finding solutions that work reasonably well for finding paths. However, they tend to require a 

lot of work to create the navigation graphs. The optimal solution would be to have a 

framework that works independently of any navigation system; however this could prove 
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difficult should one consider spatial information as a part of the reasoning process. Therefore, 

some different path finding solutions should be considered.   

3.10 Scaling simulations to larger populations 

When developing simulators or games that require real time interactivity, time is always of 

the essence. While it might be viable to simulate the interaction between a few individuals 

using a sophisticated mental model [36], doing so for a small city at the same time would not 

be feasible using hardware available to the average consumer. By using spatial partitioning, 

this problem can be somewhat circumvented by delegating resources to simulation of agents 

in the vicinity of the player.  

By creating a pool of resources suited to the computational resources available at any given 

time, resources can be delegated mainly to the agents operating close to the player, leaving 

agents further away largely inactive. This way the player will enjoy the full extent of the 

experience created by agents active in the area.  

By creating a data structure for storing the mental model of inactive agents, it is possible to 

take this optimization strategy even further.  Kharkar et al. proposes a model where all agents 

have an internal context that describes their complete mental model and further plan of action  

[54]. Once the agent that owns the context is no longer in use, all other assets used by the 

agent is removed, either delegated to another agent closer to the player or removed completely 

from memory to allow for other resources to be loaded.  

A different approach is to only generate the agents that occupy the space around the player. 

This has often been found to generate less believable results due to the agents’ lack of 

consistency.  By generating more advanced plans for the agents as they approach the area of 

the player, it has proven to be possible to get a more acceptable result however [55]. While 

the idea of generating extensive plans for agents as they enter the area has merit, it breaks 

down if one requires agents to be capable of performing tasks and affecting areas outside the 

player’s sphere of influence. It is however a very cost effective approach for simulating 

“background populations” which is a very important part of realistic simulations [10]. 

As this thesis explores aspects of simulating crowds in conflict, it is logical that scaling issues 

must be addressed as one of the core issues. The ideas discussed here will therefore be 

essential to designing the framework implementation.  
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3.11 Summary 

The purpose of this chapter has been to provide the reader with an understanding of the 

techniques and principles required to follow the arguments presented throughout this thesis. 

Thus, the topics presented in the chapter will be essential in the proposed design of the FIF, 

detailed in Chapter 5. In addition, the reader has been given an overview of normal design 

techniques for structuring agent reasoning systems, and how navigation is implemented in 

most games, which has been used to inform the creation of the prototype, discussed in 

Chapter 7. Finally, a discussion concerning scalability of crowd simulation techniques in 

games has been provided, for a more complete understanding of the subject matter.  

The following chapter will digress from the discussion of AI principles, to present an 

investigation into available game engines. Chapter 4 presents an overview of several popular 

game engines and argues for which of the presented engines are best suited for AI research.  
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Chapter 4  Technologies and frameworks 

While Chapter 3 introduced the theoretical foundation required to approach the challenges 

presented in this thesis, this chapter will address the practical challenges of working with 

games research. Creating modern games is immensely expensive and time consuming, and it 

is therefore challenging to create reasonable test scenarios without spending too much time on 

this alone. A modern game engine provides many tools for quickly implementing common 

features, which makes it much faster to get a basic prototype working. The different features 

vary greatly between solutions. This means that one must carefully consider the different 

options to find one that gives the most benefit for the problem in question. The evaluations 

prior to building the FIF test scenario is presented here. 

To test a high level framework for game AI, one requires some sort of virtual environment. In 

academic research directed towards AI, the game StarCraft by Blizzard Entertainment (now 

Activision/Blizzard) has been hugely popular. The RTS AI Research group out of University 

of Alberta hosts an annual competition where teams from universities across the world 

compete in creating the best competitive AI [56]. Because of the popularity of RTS games in 

academic circles, there are many open source solutions such as the SpringRTS engine[57] and 

the Broodwar API for scripting Star Craft bots [58]. These implementations function out of 

the box and allow users to quickly implement features within the bounds of the engine.   

For action games, however, the author has been unable to find recent games where the AI 

module is available as open source. Never Winter Nights (NWN) with its Aurora engine has 

been used for many research projects. While certainly capable of functioning as a 

development environment, NWN was released in 2002, which makes much of the provided 

functionality outdated. Another feasible approach is to create a simple game scenario using a 

game engine or framework.  There exists a large amount of proprietary and free to use 

engines, however the implementation quality and feature set varies greatly from engine to 

engine.  

4.1 Evaluating game engines and frameworks 

When evaluating solutions to use as foundation for further work, it was necessary to define a 

set of evaluation criteria to lead the selection process. As the main goal of this thesis is to 

investigate the viability of high level AI for use in simulation and games, it stands to reason 
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that lower level functionality must be available before it can be tested in a reasonable 

environment. To successfully apply a system for orchestrating agent behavior, the following 

functionality should be available in the engine: 

Path finding is required to make it possible to build any large world. Without a path finding 

system in the engine, it would either require a lot of effort to implement a reasonably fast 

pathfinder, or the virtual world would not support any form of complex geometry.  

Physics includes locomotion functionality and other actuators for the agents to utilize, as well 

as collision and so forth. For there to be any kind of gameplay or movement, a physics system 

is required. This is another component that would require immense work to implement.  

An AI module including a behavior tree or FSM builder, as well as basic crowd behavior 

algorithms would make it easier to implement gameplay of the type well suited for the FIF. 

Such a module would also involve some sort of scripting system or tool for defining behavior 

models.  

Rendering modules are almost always included in game engines and frameworks for game 

development. As this is one of the most time consuming features to implement properly. For 

the project in this thesis, no advanced rendering is required, but both GUI and 3D rendering 

capability is essential.   

A logging system that provides run time debug functionality without slowing down the game 

by any major extent is essential for any engine. However, given an engine that provides 

source code or allows for most game content to be written in a native language, there are 

plenty of third party solutions to implement this.  

Real time editing is a modern feature of many “high end” engines, which basically allows the 

developer to change the code while the game is running. This allows for quick changes to be 

applied to game and AI behavior for quick prototyping and testing.  

The engine should be either come with source code, or support some form of high level 

language, which allows for the FIF to be integrated with the engine.  

Selecting a platform for development is then a matter of finding the one that best supports the 

listed features. There are several hundred game engines on the market today [59], which 

makes evaluating all of these an insurmountable task indeed. Instead, a small set of well-

established engines with various degrees of conformance to the attributes described above 

was chosen for evaluation. The main engines and frameworks that were evaluated were 
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Panda3D, Unreal 3, XNA Framework, Torque, the Havok Framework suite and Unity3D. 

Table 2 provides an overview of the features available in the different implementations that 

were evaluated.  

4.1.1 Torque 3D 

Torque 3D by Garage Games [60] is a game engine that supports full 3D and 2D rendering, 

with a fully working editor and real time editing functionality. Torque also features a physics 

engine and has the logging functionality required for development, however there are no AI 

features available, which means a lot of fundamental work would have to be done before the 

framework in this thesis could be tested. Torque additionally requires developers to make use 

of their proprietary scripting language Torque Script, which would lead to any solution 

developed with it bound to the engine.  

4.1.2 Unreal 3 

Unreal engine by Epic Games [52] is a high end game engine that supports all of the above 

features, except Behavior Trees and live changes. Unreal can be used by everyone, free of 

charge. However, the engine is manipulated using Kismet or Unreal Script. The languages 

mentioned are both proprietary, which leads to this engine having to be excluded as a 

potential platform as well.  

4.1.3 XNA framework 

The XNA Framework by Microsoft [61] provides basic functionality required for interactive 

media software development. Unlike the engines mentioned earlier, the XNA Framework 

does not come with a complete rendering engine or editor. However, it does make available 

all the features required to rapidly create the basic tools required. XNA is written in C#, 

which makes it possible to integrate third party solutions to satisfy other requirements. While 

XNA makes it easy to develop the functionality needed, the amount of work required to create 

a fully functional testing environment makes XNA a relatively risky choice given the time 

constraint. 

4.1.4 Panda3D 

Panda3D by the Entertainment Technology Center at Carnegie Mellon University [27] comes 

with many of the features listed above. It is open source, comes with performance monitoring 

tools, 3D and 2D rendering and uses Python as its scripting language. On the other hand, 

file:///D:/Dropbox/,%23_ENREF_60
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Panda3D does not have a physics and collision package, nor does it directly implement any 

AI functionality. AI is available in Panda3D using PandAI which is another open source 

project out of Carnegie Mellon. PandAI offers basic AI functionality such as path finding 

using Waypoints, obstacle avoidance and basic agent behaviors such as flock, seek and 

wander. Sadly, Panda3D does not offer physics solution to tie in with their renderer, which 

would result in additional work to find and implement a viable physics solution for the 

project. 

4.1.5 Havok framework suite 

The Havok framework suite developed by Havok.inc [62] contains all the features required 

for the project. The total set of software solutions include: rendering, navigation, physics, 

animation, behaviors and LUA script virtual machine support. The suite would probably 

function as a highly suitable software platform for the faction interaction framework; 

However, Havok only offers academic licenses on their physics and animation solutions. As 

Havok does not offer evaluation periods for their software, and the pricing is decided on an 

individual basis, it was deemed to not be economically viable. 

4.1.6 Unity 3D 

Unity3D [63] (from this point referred to as Unity) is a modern game engine that focuses on 

providing game engine functionality to small and midsized development studios. The 26
th

 of 

December 2011, they released Unity 3.5 which comes with a flexible and optimized 

navigation suite which includes automatic navigation mesh generation, path finding that 

supports large groups of NPCs with built in crowd management as well as locomotion 

systems that tie directly into the physics engine also provided by Unity. To interface with 

Unity, the developer writes JavaScript (Unity script) or C# with the Mono Framework, an 

open source implementation of the Microsoft .Net framework.  C# with Mono makes it 

possible to develop and distribute the solution as a stand-alone framework that has no hard 

dependencies on game engines of frameworks.  

4.1.7 Summary 

Panda3D (with PandAI), Havok (full suite with component assembly) and Unity both cover 

most aspects required by the software platform, as can be seen from Table 2. However, 

Panda3D does not support a physics system out of the box, which Unity does. Unity also 

supports dynamically linked libraries (DLL) files written using mono or .Net to be utilized 
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directly with engine components. This allows the faction interaction framework to be 

developed separately and deployed as a plugin to the test game, which is in accordance with 

the problem statement. For these reasons, Unity was chosen as the software platform to 

support development of the Faction Framework.  

Table 2 – Features present in the different platforms 

Platform Path 

finding 

Physics  AI 

Module 

Rendering Logging 

System 

Real-

Time 

Editing 

High Level 

Language / 

Non 

Proprietary 

Panda3D X - X X X X X 

Unreal 3 X X X X X - - 

XNA 

Framework 

- X - X - - X 

Torque - X - X X X - 

Havok 

Framework 

Suite 

X X X X X - - 

Unity3D X X X X X X X 

 

4.2 Unity in depth 

Having completed the initial feature analysis, Unity was chosen as the engine to use as a 

platform for further development. While Unity supports most features required, it was 

important to ensure that the engine would remain stable when simulating larger groups of 

agents. Unity performance monitoring utilities make it possible to quickly determine the 

current bottleneck of the target application down to the function call. Using these tools, a 
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basic 3D world was created and tested with 100, 200 and 400 agents, respectively. These 

initial tests were run on a MacBook Pro laptop with the hardware specifications listed in 

Table 3.  

Table 3 - Test machine hardware specifications 

Component Model Details 

GPU NVIDIA GeForce GT330M Adapter RAM 256 MB 

CPU Intel Core i5 M 520 2 Logical Cores @ 2.40 GHz 

3 MB Cache 

RAM Intel i5 Compatible DDR3  4 GB @ 1333 MHz 

 

The main goal for this simulation was to gather data concerning path finding, physics and 

Figure 6 - The scene created for benchmarking Unity for larger groups of virtual agents 
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rendering performance. As can be seen in Figure 6, the 3D scenario contains an obstacle 

course with six locations where agents are generated and placed in the world, marked by the 

large circles in red, green and blue. An agent is represented by the very small cylinders, 

bearing the same color as the circle they were generated in. Each agent is given a target when 

it is generated and randomly picks a new target location (marked by the yellow spheres) once 

a specified time has elapsed. The time between each target acquisition is randomly set for 

each agent in a span between 3.0 and 12.0 seconds. This is done to simulate a believable game 

or simulation scenario, as there are few instances when all agents in a simulation will require 

a new path at the same time.  

The initial tests proved satisfactory, but it was discovered that Unity makes little use of 

multithreaded processing. This suggests that it should be feasible to simulate a similar number 

of agents as shown in these tests even with more complex behavior by making use of 

additional logical cores. Figure 7 contains a graph describing the increase in update time as 

number of agents increase. As can be seen from the graph, Unity supports more than a 

hundred agents at a time, while still leaving time for other computations and gameplay. The 

detailed test data and interpretation can be found in each respective chapter on specific Unity 
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features.  This next section will discuss the information shown in figure 7 in more depth, and 

provide screen captures of the profiling tool used to produce the data.  

4.2.1 Unity navigation framework 

The unity navigation framework is based on Recast/Detour which is an open source C++ 

solution for dynamically generating navigation meshes and traversing said meshes [64].  

Upon starting the simulation, it would spawn an initial 100 agents. The simulation was 

confirmed stable, and then, the performance data was recorded before the next batch of agents 

were spawned and the process repeated. Figures 8-10 are screen captures of the performance 

tool while monitoring the three different agent numbers. Figure 10 describes the increase in 

time spent computing crowd avoidance and path finding as the number of agents approach 

400. 

 

Figures 8-10 provide a large amount of information which is interpreted as follows; the 

legend describing the different colors in the graph can be read in the upper left corner of each 

Figure 8 - Performance results for benchmarking scene stabilized at 100 agents 
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screen capture, under the title “CPU Usage”. Each color represents a specific subsystem 

taking up computation cycles. As the path finding and crowd manager sub systems are new as 

of Unity3D 3.5 [63], these are listed as a part of “Others” in the legend. In the upper part of 

the figures, left of the legend can be seen compact graphs containing the current frame rate of 

the application as well as what subsystems are contributing to said frame rate. It is important 

to note that the benchmark application is running with a cap of 60 frames per second, which 

means the graph has little information in regards to the highest potential frame rate. On the 

other hand, it makes it easy to identify what subsystems are demanding the most computation 

time.  The vertical axis of the graph describes the current frame time, which means that a 

lower value entails higher performance. The horizontal axis describes linear time. The exact 

point in time has little significance as the simulation was fully stabilized as these graphs were 

generated, meaning that the patterns depicted were repetitive.   

 

Figure 9 - Performance results for benchmarking scene stabilized at 200 agents 
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For Figure 8 this is mostly “VSync” which is the system responsible for keeping the 

application at 60 frames per second. In other words: The application spends most of its time 

idle. More detailed information concerning the computation time of each sub system can be 

found in the lower part of each figure. In the lower left is the name of the function or sub 

system. To the right is the “Total” which describes the percentage of one frame that is spent 

performing the listed task.  “Time ms” provides the same information, but in milliseconds. 

The important information to be gleaned from these values is that the CrowdManager sub 

system, which is responsible for managing groupings of virtual agents, is the only system that 

seems to be heavily affected by the increase in agent population.

With 100 active agents in the scene, the Unity Crowd Manager, which handles agents 

navigating the scene and avoiding other agents, takes approximately 4 milliseconds (ms) per 

frame to run, which can be seen in Figure 8. With 200 agents it averages at   .8  ms, as shown 

in Figure 9. 400 agents have the crowd manager running at 20.83 ms when stabilized, as can 

be seen in Figure 10. Figure 11 provides a summary of the key data from figures 8-10. This 

figure shows the time spent updating the crowd manager and physics subsystems of unity, 

Figure 10 - Performance results for benchmarking scene stabilized at 400 agents 
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with 100, 200 and 400 agents respectively.  The time is listed in milliseconds. It should be 

mentioned that an acceptable frame update time can vary greatly, depending on the simulation 

type, however most game engines default to 30 or 60 iterations per second [28, 65], for the 

entire frame, which includes rendering the scene. This translates to an average time per frame 

of 33,333 or 16,666 milliseconds respectively. 

 

Simulating 400 agents in real time is more than adequate to create the test case as it is 

described in the introduction, and it can thus be concluded that Unity is a good choice for 

testing the faction interaction framework.  

4.2.2 Unity editor and script development 

The unity editor is an all-inclusive world editor that makes it fairly easy to create complex 

worlds that can be navigated by virtual agents. The editor allows for defining component 

based game objects in a drag and drop fashion, as well as full scale code solutions to be 

deployed and run on top of the game. By using Unity together with the Faction Interaction 

framework one will have a development scenario that is arguably very similar to that of an 

average game development studio. Figure 12 contains a screen capture of the Unity3D editor. 

The drag and drop functionality that is automatically available for all scripts created in Unity 

can be seen on the right hand side. The two scripts attached to the “GreenWarrior ” agent are 

“Nav Mesh Agent” and “Hunger Games Agent”, responsible for interacting with Unity 

navigation and the FIF respectively. In the upper left is the game scene, the two villages used 

in this simulation are represented by the 6 black boxes that represent different houses. Below 
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this is an overview of all assets in the scene, under “Hierarchy” and all the content available, 

which is listed under the “Project” tab. 

4.3 Summary 

This chapter has presented an evaluation of the feature set available in a small subset of the 

game engines and frameworks available on the market today. Concluding that Unity3D 

appeared to be the best choice for use in prototyping the FIF, the performance characteristics 

of the engine was evaluated.  

Several of the essential features of Unity were discussed in depth, and a test of the AI, path 

finding and physics systems was performed with 100, 200 and 400 entities. The results led to 

the conclusion that Unity was capable of meeting the needs for the FIF integration and 

Scenario prototype. Chapter 3 presented the advanced theory of AI, while this chapter 

described the practical tools required to create a prototype scenario, providing the foundation 

required for the theoretical design of the FIF, which is presented in Chapter 5. 

    

Figure 12 - Unity3D editor 
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Chapter 5 Core design 

Based on the knowledge and selected components from Chapter 3 and 4, we describe and 

discuss, in this chapter, the core feature design for the FIF. The faction interaction framework 

is a framework for allowing complex interaction between agents in a virtual world to create 

gameplay through emergent conflict. The FIF allows game programmers and designers to 

define the parameters for their virtual world, and then leave some of the gameplay generation 

to the FIF, potentially reducing cost or increasing replayability.  

The concept of the FIF is to allow for a more dynamic approach to game and simulation 

development. Instead of creating strict rules for how each scenario occurs in a given 

succession, the developers define the parameters for their world, and let the FIF do the rest. In 

other words: developers define the creatures that inhabit the world they wish to create. They 

then define the relationship between the creatures and in what ways they can interact with 

each other. Finally, they define the world in terms of desire values; “what do the creatures in 

this world want? How do they get it?” Given these parameters, the FIF will then attempt to 

simulate the interaction between the various entities in the world, and suggest new actions for 

the agents as parameters change over time.   

To accomplish this, the FIF must have a system for representing the world in the terms stated 

above, as well as a reasoning engine to drive the simulation forward. An abstract 

representation of actions applied to objects, and actions applied to other agents, must exist, for 

these to be suggested to the agents in the world. These ideas and concepts form the 

requirements of the core FIF feature set.  

The core features of the FIF deal with concepts required to generate gameplay through 

conflict generation. Figure 13 provides an overview of the design discussed in this chapter. 

Note how the faction interaction framework is mostly isolated. The only direct relations 

required between the FIF and the game world is smart object information in objects worthy of 

conflict, as well as ties between actors and agents. The arrows in Figure 13 describe 

dependencies between elements.  
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The core design description is split up into several parts, as is evident from Figure 13. Section 

5.1 describes how the game world is made accessible to the FIF through embedding game 

objects with semantic information and attaching smart object structures. Section 5.2 provides 

an overview of the behavior model design. The behavior model is the “end result” of the 

framework, as this is where conflict resolution strategies are selected and suggested to the 

game engine. Section 5.3 then explains the world model. Unlike the world description, which 

deals with describing the game world to the FIF, the world model is the generic world 

representation internal to the FIF. Actors and how they choose when to initiate conflicts and 

when to request services is described in section 5.4Actors, while 5.5 introduces an interface 

for how agents in a game receives action suggestions from the actors. Finally, the internal 

details of the actor reasoning engine are laid out in section 5.6. 

Figure 13 - Design overview 
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5.1 World description 

This part of the core feature set deals with designing how a game world already created can be 

represented in the FIF. Going back to Figure 13, the following section, and its subsections, 

deal with the part of the FIF design that is integrated with the virtual world. Sections 5.1.1 and 

5.1.2 deal with how one describes the “look and feel” of the game world, with smart objects 

and semantic information. In Figure 13, this is the part contained within game objects of the 

virtual world. Sections 5.1.3 and 5.1.4 deal with designing how the FIF can represent possible 

interactions that the game world allows through actions and services. These are also contained 

within the smart object structure, and complete the integration between virtual world and the 

FIF. This is described further in section 5.1.5. Combined, these sections form the basis for the 

FIF to understand what part of the game world is to be taken into account when conflict is to 

be generated.  

5.1.1 Smart objects and semantic information 

As mentioned in section 3.7, if one was to implement all possible semantics about all objects 

in the virtual world, the resulting dataset would be too large. Because of this problem, a more 

viable approach is to create a system that allows designers to define semantics and how they 

relate to their game world instead of forcing them to choose from a predefined set. Kessing et 

al. combine smart objects and semantics in [66] to demonstrate a game world where all 

artifacts in the world are described through a combination of classes of objects, physical 

attributes, services the objects offer and actions that affect them. This level of abstraction 

lends itself well to the FIF implementation as it will allow for any kind of world to be defined.  

Classes are quite simply definitions of objects, such as a “vehicle” or “person”. Classes can be 

part of an inheritance hierarchy, for instance, the “car” class can be a child of a “vehicle” 

class. While this classification solution might be important for an agent that uses an inference 

engine to reach conclusions about the world, it is not necessary. Kessing et al. describe classes 

as “a collection of entities based on their essential common attributes”. For simplicity, 

defining hierarchies of classes will not be implemented in the framework. Classes are simply 

the definition of a collection of attributes that describe some entity in the game world.  
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5.1.2 Attributes 

Attributes characterize an entity in the virtual world. A typical attribute for an apple would be 

“edible” or “dangerous” and have some descriptive value assigned to it. Kessing et al. 

describe how simply having this “tag” is not sufficient, and that each attribute must have a 

corresponding value to make it possible to use them for reasoning. Each entity subscribing to 

an attribute will create a new entry in the attribute map containing one floating point value 

that describes the entity’s membership to that attribute. Using fuzzy logic, it is up to the user 

of the framework to define the defuzzification algorithm that makes sense of the value. For 

example, “edible” may use a Boolean function to describe its membership, while a “weight” 

attribute would use a linear or exponential function, depending on the context of the game. 

When an agent seeks to reason about the world, it can query the semantic data structure for a 

list of all objects that have a specific attribute. While it can be argued that the storage and 

querying of the semantic data should offer more advanced functionality such as those offered 

by query languages, these features are beyond the scope of this thesis.  

Through the use of custom defuzzifers, designers making use of the framework can use 

attributes to describe virtually any type of information about their world that is required to 

inform the agents that inhabit it. Combining this with the attribute accessor, one can create a 

web of information that any agent (or player) can make use of to further reason about the 

world around them.  

Attributes are complimented by an attribute accessor system. By forcing all attribute 

assignment to go through the accessor before they can be assigned to an object, a web of 

information is defined in the accessor. The basic functionality that is used for demonstrating 

the use of this design is simply to allow the user to query the accessor for any object that has 

this attribute. This way, any agent interested in knowing more about the world around it, can 

query the attribute accessor to find objects with this type. As an example of this functionality, 

a pickaxe has the attribute “weapon” attached to it. Should an actor decide it wishes to 

optimize its “battle ready” attribute, it could then use the accessor to find any objects in the 

world that has this attribute attached to it.  

This implementation allows the designer to describe the virtual world with as many details as 

is deemed appropriate for the implementation. Attributes and the accessor system can also be 

used without the world model, to simply provide a means for the designer to describe the 

world they are working with.  The way attributes are stored within the FIF and their relation 
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to the game world is shown in Figure 13. Here one can see how the different attribute 

groupings stored within the FIF, and how the game objects are described to the FIF using said 

attributes, through the use of smart objects.  

5.1.3 Actions 

Actions describe the process performed by an entity, yielding some attribute change or 

through generating new entities of some kind.  Actions can be performed by an agent in the 

system, or as the end result of a service. A typical example of an action could be “open” and 

“reduce hunger”. While “open” could be part of some service activation requirement, “reduce 

hunger” would be the action applied to an agent or other smart object as an end result once all 

the specifications in the smart object has been fulfilled.  

An action contains a list of attribute modifiers which defines the changes activating the action 

will have on the agent and the world around it. It contains temporal information that describes 

how much time it takes before the action is activated. The temporal information is not acted 

upon by the implementation itself, as the implementation should be able to handle any 

scenario, with arbitrary time representations. It should be noted, however, that it is assumed 

that all temporal information is of the same timescale, as the number is used in raw form for 

calculations regarding yield over time as described section 5.6 which describes the actor 

reasoning engine. 

Actions can be used both as a way to explain the outcome of some triggered event, but also as 

a descriptor for the game to understand what simulations to trigger in the virtual world. To 

facilitate this behavior, all actions have an “activated event” that can be listened to. This event 

is fired when the access begins. This way, some simulation manager can initiate animation 

cycles, sound effects, particle effects or other actuator functions. For instance, an agent 

performing the “open” action on a box of aid food would trigger an animation on its avatar, 

playing an interaction animation, while the box would also trigger an animation to open.  

5.1.4 Services 

Services are more complex in that they describe an approach of how to obtain whatever the 

artifact offers. A service is described as “an entity’s capacity to perform an action, possibly 

subject to some requirement”. A service thus describes how an attribute can be modified by 

the use of it, for instance “buy chocolate” is a service that perform the “satisfy hunger” action 

which in turn reduces the value of the “hunger” attribute of the agent that chooses to interact 
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with it. While Goncalves et al. [43] describe a more sophisticated approach on how to 

describe the interaction process to such an extent as to what animations to play and how to 

modify them to model grasping behaviors, such an implementation would be too complex for 

this proof of concept. Instead, a service will be defined in a simplified version of the one 

presented by Kessing et al.  

A service can have attribute constraints, for instance, the service “provide food” offered by a 

cornfield might have the attribute constraint of “ripe>0.9” which would entail that the field 

would have to be more than 0.9 ripe to be usable. How this information is interpreted is 

arbitrary and left to the designer making use of the system. A service can also have action 

constraints which specify certain actions that must be performed by the agent for the service 

to activate. In the case of the food provided by the cornfield, an action constraint could be 

“harvest”. Third, a service has a temporal property, which specifies how long the service will 

take to complete. Finally, a service has a spatial property which describes the area affected by 

the activation of the agents that will be affected by the service.  Kessing et al. also suggest 

having an interaction requirement prioritization that specifies in what order the requirements 

must be filled for the service to function as intended, this can simply be represented by a list 

structure, allowing designers to choose if they wish to honor the ordering or ignore it. 

5.1.5 World description integration 

The following design is proposed as a result of the features described above: A smart object is 

defined by a collection of attributes with corresponding floating point values that are stored 

for each instance of the attribute. These values describe the degree of membership to an 

arbitrary predicate set for each attribute, depending on a user defined membership function. In 

addition, these objects may define a set of actions they may perform through invocation from 

the AI system, as well as services said object can provide. Smart objects are embedded as 

parts of the game object and used exclusively by the AI system to reason about the world. As 

actions are not explicitly defined, they can be defined by the designer and utilized to 

manipulate both the AI and the virtual world in all ways required to move the game world in 

the correct direction.  The basic design layout of the smart objects implementing semantic 

attributes can be seen in Figure 14. The figure also shows how this relates to a typical game 

object using a composition based object structuring. Here, the smart object is composed of an 

arbitrary amount of semantic attributes that describe the object itself. These attributes are not 

used by the FIF, but can be used by the game designers to allow for special considerations to 



61 

 

be taken regarding objects with specific attributes. A smart object is also composed of an 

arbitrary set of services, which contain actions in the form of constraints and one result action. 

These are again described by the modifiers they apply to the world around them.  

This implementation is highly abstract, allowing for practically any world to be described, 

using these basic building blocks. In addition, as expanding the “umwelt” of the AI is simply 

a matter of adding another attribute to objects in the world, the level of detail (LOD) can 

easily be adapted to the current need of the solution. As the current design proposes that all 

attributes, and where they are attached, should be registered in the attribute accessor, it is 

easy to see that storage requirements and graph traversal time will increase rapidly as 

additional detail is added. This problem can be handled by implementing a data management 

system such as a relational database or similar [67]. 

It is important to note that not all artifacts that exist in the virtual world need necessarily be 

“smart”. Objects in the game that have no value to actors do not benefit from attribute data, 

instead these objects are simply interpreted by the AI system as collision obstacles through 

the pathfinder and ignored in other respects. Only objects that possess some form of resource 

property or that the AI system should be able to use for planning are embedded with smart 

object features. While this might initially appear as limiting the interactivity of the solution, it 

is important to consider the combinatory explosion that could result from embedding too 

many semantic attributes in all objects in the world. A novel approach to enhancing this 

implementation would be to support large quantities of possible attributes in the engine and 

allow designers to disable or enable hierarchies of classes and attributes as they are deemed 

useful for the simulation as proposed by Tutenel et al. [45].  
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-AttributeName : string
-AttributeValue : float
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+ActionActivatedEvent() : void

-AttributeModifiers : AttributeModifier
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Figure 14 - Smart object design 
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5.2 Behavior model  

The Behavior model defines a set of conflict resolution strategies available to actors in the 

simulation. The realization of a behavior is defined by the developer making use of the 

framework. In other words, the FIF will trigger a behavior to resolve a conflict between 

factions. However, the way this conflict resolution is carried out is left to the developer. A 

behavior instance consists of a value describing the faction relation space required for the 

behavior to be valid, the wealth, power and prestige space required to execute the behavior, as 

well as a list of custom attributes that are required to activate said behavior. The behavior to 

activate is selected through evaluating all possible behaviors and selecting the one that has the 

smallest total difference when compared to the state of the actor, multiplied by the current 

hostility towards the contesting actor. In addition, custom attributes are used as filters, which 

mean that a behavior containing custom attributes can only be activated by an actor that 

possesses all the custom attributes listed in the behavior. Once the behaviors have been 

filtered out, custom attributes are used as part of the difference sum. The process is described 

in the pseudo code in Listing 4, with function descriptors listed in Table 4. 

currentBestFitBehavior = null; 
bestTotalDifference = float.MaxValue; 
for each behavior in behaviorModel.Behaviors 

if actor does not have custom attributes required by behavior 

continue; 

endif 

calculatedTotalDifference = actor.CalculateTotalDifference(behavior);  

calculatedTotalDifference *= GetRelation(actor, contestingActor); 

if  calculatedTotalDifference < bestTotalDifference  

 OR  currentBestFitBehavior is null 

currentBestFitBehavior= behavior; 

bestTotalDifference = calculatedTotalDifference; 

endif 

endfor 

Listing 4 – Behavior evaluation pseduo code 
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Function Name Function Description 

GetRelation  

in:  

actor : Actor, contestingActor : actor 

out: relationRating : float 

 

Looks up the relation matrix for the two actors 

and returns the relation the querying actor has to 

the contesting actor. This value ranged from 0 to 

1. 

CalculateTotalDifference 

in: behavior : Behavior 

out: totalDifference : float 

Calculates the difference between each element in 

the behavior and the corresponding state variable 

in the actor. The variables made a part of the 

result are: wealth, prestige, power, and any 

custom attributes required by the behavior.  

Table 4 - Behavior evaluation function descriptors 

Once the actor has selected what behavior to activate, a behavior mobilization object is 

instantiated. The behavior mobilization object contains a reference to the behavior that was 

instantiated, the smart object at the center of the conflict, the instigator and its target, as well 

as the current conflict state. The conflict state is a single precision floating point variable 

ranging from 0 to 1, where 0 signals complete failure for the actor and 1 signals success. The 

behavior mobilization instance is kept in the mobilizations list as long as the variable is not 

set to 0. An actor will only attempt to utilize services on smart objects that have a behavior 

state value of 1 attached to it, or that does not have contestants. This way, a conflict is 

automatically generated each time more than one faction attempts to make use of the same 

smart object. However depending on the factions’ affiliations with each other, there will be 

different conflict strategies employed to share these resources. It is up to the developer 

making use of the framework to modify the conflict state of each mobilization instance. 

However, the faction interaction framework monitors the variable and makes changes 
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according to the new value. Actors that are members of the same faction may choose to join 

the same mobilization, if they also find that said mobilization is the correct approach. An 

actor of the same faction may also activate a new mobilization of a different type should its 

reasoning engine conclude that another approach is more viable in accordance to its internal 

state. 

The act of initiating, joining and resolving conflicts is the main goal of the FIF. All other parts 

of the framework are designed to allow for this behavior to take place. It is through conflict 

that interesting gameplay is generated. As all other components of this design, no gameplay is 

actually created by the FIF. The FIF simply recommends possible ways to stage a new 

gameplay scenario, which can be ignored or made use of, by the game that implements the 

framework.  

5.3 World model 

The world model  is based closely on the implementation proposed by Medler et al [22]. In 

the FIF, the model is a global set of metadata that is accessible to all agents and actors 

operating within the world. The world model is divided into several data sets, describing 

different aspects of the world.  

5.3.1 Desires 

Desires are set of semantic attributes that describe how they are relevant in the world. These 

attributes are defined by the user and put into three different categories: Wealth, power and 

prestige. Each attribute is defined by a data structure containing the attribute name as 

described in section Smart objects and semantic information, as well as a weight function, 

ranging from 0 to 1, that describe how important this attribute is in comparison to other 

attributes of the same category as the membership value changes over time. These values are 

then used by factions to decide what attribute to improve on next.  

5.3.2 Organization 

Organization contains faction meta-data that describes the different factions of the world and 

their relation to each other. Once all factions have been added to the organization model, a 

matrix containing the entirety of relations between factions is generated. The default state of 

all factions is neutral relations; this can be changed by the user once the matrix has been 

generated. The matrix is dynamically updated by the faction controllers as their relation to 
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other factions change. These interactions are described in section Behavior model. There are 

additional features to the organization aspect of the world model described by Medler et al. 

[22]. In their paper, organization also describes internal structures for a faction and rules that 

define how an agent may leave its faction. In the FIF, these features are not implemented for 

the sake of simplicity, but are discussed further in the section on further work.  

5.3.3 Mobilization 

Mobilization contains data on possible areas that can be used for staging escalated conflict 

scenarios and what form of interaction is required by the other faction for the conflict 

resolution strategy to define an outcome. In other words, the mobilization data structure can 

be visualized as a “notice board” used by factions to decide when and where to meet to 

resolve their conflict.  

In addition to the features described above, there is a final world model aspect in the system 

proposed by Medler et al. Solidarity defines rules for how and when an agent may break with 

its parent actor, be that a group, faction, or a belief system the agent subscribes to. Breaking 

with the parent actor can be to simply refuse to participate in some conflict resolution strategy 

employed by the parent actor, or to leave the actor outright. While this aspect of the world 

model offers many novel applications, especially for simulations where interaction with 

agitated populations is the main focus, it was not implemented in the faction framework to 

avoid further complicating use of the framework when applying it to a game design. The 

further work section describes how the solidarity aspect would affect both the implementation 

in itself and potential benefits that could be gleaned from the feature.  

The World model is the core of our framework, and is used by all systems to decide what 

attributes to improve upon and how to affect the world to further the agendas of the actors in 

the system. Because of this, the entire framework is designed around the concept of a world. 

The world object is created through incrementally adding all desires, factions and 

mobilization areas that should be present in the world on startup. Only objects that have been 

registered with the world object are available to the reasoning engines used by Actors and 

agents.  

 



67 

 

5.4 Actors 

The system responsible for parsing and treating the data provided by the faction framework is 

called the actor. An actor is an entity that attempts to exert its will upon other entities and the 

world to maximize its total desire satisfaction. An actor can be a single agent acting on its 

own, or a large organization with many sub actors attached to it.   

Each actor has its own set of desires, derived from the world model, in addition to any other 

desires attached to it by a designer. Unless otherwise specified, an actor will perform 

autonomously utilize behaviors, to maximize its desires satisfaction. An actor that has other 

actors attached to it may request that behaviors are performed by one of the attached actors 

instead. Attached actors will immediately cancel the behavior they were currently executing 

and attempt to accomplish the behavior defined by the parent actor.  

Each actor contains a smart object structure, as described earlier. This structure, while 

initially empty, can be initialized to allow other actors to reason about the actor. By using the 

smart object structure to define an actor with services, actions and attributes, actors can form 

strategies surrounding individuals as well as artifacts. As an example, consider a world model 

where global enterprises use any means necessary to get ahead. A faction, faction “blue”, is 

currently at a high level of conflict with faction “red”.  Because of the high conflict rating, 

“blue” faction infers that its highest relative increase in utility when compared to red is by 

reducing “red” faction’s knowledge value. It searches through all actors in the system with the 

“red” attribute that also offer the generate knowledge service, and attempts to apply a conflict 

resolution strategy that apply to the knowledge value.  

All actors are embedded with a behavior model that contains all the conflict resolution 

strategies the actor may employ. These are, as all conflict resolvers, defined by the designer 

for the specific game and contain meta-data describing the potential output of the function.  

As described earlier, the actor will employ any behavior as requested by the faction system. 

While Medler et al. [22] suggests that actors should also reason on whether to accept these 

orders or to disregard them, it can be argued that this would greatly increase the work required 

to implement specialized behavior at the faction level, as well as introduce unwanted 

complexity to the framework.  Actors may also use the behavior model to resolve conflicts 

between them and other actors, groups and factions. However, it will automatically end 

whatever it was doing to perform a task assigned to it by the faction to which it is a member 

of. It is important to note that while the actor chooses what behavior model to employ, the 
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choice of executing the behavior is passed on to a sub actor and finally to the agents attached 

to the actor. It is, in the end, up to the agents of the world to exert the will of the actors, and 

because the faction interaction framework seeks to define an abstract approach applicable to a 

multitude of scenarios, the way these behaviors are executed in the world must be left to those 

making use of the framework.  

The actor holds a reference to the world model as described earlier. The world model is a 

global data set that uses semantic data to define the attributes relevant to the world in which 

the simulation takes place. In other words, the world model contains attribute tags relevant to 

wealth, power and prestige.  In addition, each actor can be equipped with a local data set that 

describes attributes relevant to the specific actor. These attributes also require a 

defuzzification function that describes how the attributes affect the actor’s wealth, power and 

prestige values.  

Finally, the actor contains a reasoning engine which decides what attributes should be 

attended to next and queries the smart object system for information on how to obtain these 

resources. It should be noted that the actor in itself has no effect on the world around it, it may 

only request that the game performs the actions it suggests, it is up to the designer if the actor 

is indulged through manipulating actuators in the game object or not. The way the actor 

knows that the action has been performed is by monitoring the value it attempted to change 

and seeing if it changes for the better. If nothing changes, the reasoning engine will continue 

to improve upon this value until something else takes priority.  

5.5 Agents 

Agents in FIF are simply a term used to generally describe any entity that is interested in 

listening to events related to conflict resolution. While the FIF in itself only considers the 

information present within the framework, the agent is the system that is to be determined 

specifically by the designer. The agent is an abstract definition of functionality that is required 

by the framework to interact with the world. The main functionality required by the 

framework is that the agent is able to respond to behavior requests as well as capability of 

spatial translation.  

How these capabilities are implemented is left to the designer making use of the framework. 

In truth, a system without any agents, simply relaying attribute changes to the actor model 
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would work just as well for the FIF, but it would make little sense to create a system that has 

no forms of output.  

5.5.1 Behavior requests 

A behavior request is the main way the framework resolves conflicts with other actors in the 

world. The actor, which is responsible for the behavior of the agent, chooses a behavior it 

wishes to see executed. This behavior request is then sent to the abstract function of the agent 

in question, which in turn chooses to execute or disregard this request. How the execution of 

the behavior request is implemented is left to the user of the framework, as it is inherently 

scenario specific. The actor responsible will assume that the behavior is being executed and 

only send a new request once the desire states of the actor changes enough for there to be 

another, more important desire to consider. A behavior request is issued through passing a 

pointer to the behavior to be executed and a list of actors affected by the behavior.  

5.5.2 Action requests 

Action requests are used to interact with the world in a way that will modify the behavior 

values of the actor. Through these requests, the actor can issue an order for an agent to 

perform an action on a specific entity capable of accepting the given action. Like behavior 

requests, action requests are assumed to be performed by the agent in the best way possible 

given the current conditions of the world. The action request is invoked by an actor by passing 

a smart object reference, an action reference and an object pointer containing the entity that 

the smart object data is attached to.  

As with all other output from the FIF, requests do not directly impact the game world. 

Requests are recommendations relayed to any listening agents, regarding how best to optimize 

the world for the actor the agents are subscribed to.  

5.5.3 Summary 

All simulations that seek to utilize the FIF must have their virtual agents implement the 

behavior and action requests for the framework to function to its full extent. It is through these 

interfaces actors seek to interact with the world they are put in. As the faction interaction 

framework has no prior knowledge of the scenario designers seek to create, this 

implementation must be left to those making use of the framework. The only assumption 
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made by the framework, as mentioned earlier, is that the world inhabited has an understanding 

of time, and therefore make requests based in the time as it passes inside the framework.  

5.6 Actor reasoning engine 

The actor reasoning engine is used to make decisions regarding how to interact with the world 

the actor is situated in. The actor reasoning engine has a single iteration function that serves as 

the basis for its operation. This function can will evaluate the current world state of the actor 

and make recommendations depending on the results. It is expected that this evaluation will 

grow exponentially in computational intensity as additional world information is added to the 

world model used by the actors. Therefore, the reasoning engine will only make a new 

recommendation if the world has changed sufficiently from the previous state.  The way this 

is done is by storing the sum of desire values in the actor state and calculating how much this 

deviates from the last time a selection was made. This deviation is called the threshold value, 

and is set by the designer to indicate how big the change in actor state must be to warrant a 

new action recommendation to the agents subscribing to the actors notifications. 

If it is decided that the actor state has not changed sufficiently, the actor is referred to as being 

in a waiting state. This simply means that for this iteration, the reasoning engine will do 

nothing, and will most likely continue to do nothing if the world does not change in any 

meaningful way. If the reasoning engine decides that the world has change sufficiently from 

the previous iterations, it will perform a series of steps to make a recommendation. First, a 

desire group is selected; which is described further in section 5.6.1. Once a desire group is 

chosen, the reasoning engine attempts to identify the smart object that can provide the highest 

possible utility at this moment, this is explained in detail in 5.6.2. Once a service is found, it 

could be contested by other actors. If so, a conflict will be initiated against one of these actors. 

Should a smart object not be contested, a notification is sent to all agents subscribing to 

activation requests, informing them of the recommendation from the reasoning engine. 

Section 5.6.3 describes how a conflict is initiated. Figure 15 provides a flowchart describing 

the operations described in the previous paragraphs.  



71 

 

5.6.1 Selecting desire group to optimize 

The reasoning process for choosing what desire group to optimize draws inspiration from 

neural network activation values. Each activation group can be thought of as a single neuron, 

where each attribute’s activation value is a weighted input value. The reasoning process 

computes the activation level of each desire grouping (wealth, power and prestige). The 

grouping that has the highest rated activation function will be chosen for improvement.  The 

rating for each desire type is calculated as follows: 

Figure 15- Single reasoning engine iteration 
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Given n contributing attributes where n is the number of attributes in the given desire 

grouping. The activation rating for a given desire type is the sum of all n attributes where the 

activation value generated by each individual trait is calculated by the remaining value of a 

given satisfaction function f for each attribute, multiplied by a given weighting function ω.  

The total activation rating is then normalized by n to account for the variation in attributes 

for any given desire group.  

 

 
∑ (    )    

 

      
 

Note the differences between neurons and this activation function. Firstly, the value of each 

input function (assumed to be between 0.0 and 1.0) is used as a negative value in this 

implementation. This means that the higher the satisfaction level returned from the function 

that produces the input value, the less chance it is for this desire group to activate. Second, to 

reduce the impact the amount of input values has on the overall activation value, the 

activation value is divided by the number of input values. This will cause desire groups with 

few but heavily weighted attributes to have a higher chance of being activated than an 

attribute set of many weakly weighted attributes. Once a desire type has been chosen, the 

actor queries the world model for smart objects offering services that can improve the 

attributes that affect the given desire. 

5.6.2 Finding highest expected utility 

Once the list of objects supplying services that affect the desire grouping has been identified, 

objects are tested to see if they can in fact be used by the actor by comparing attribute values 

as described earlier. The final step of selecting a service provider is to calculate the expected 

utility for each provider and selecting the highest value.  

To find the highest expected utility, each smart object offering a service s has its potential 

gain ϕ, multiplied with the actor’s weight function ω. The expected utility is then computed by 

multiplying the potential gain by the product of the n contestants’ relation value ψ.  

     ∏   
 

      
 

Once the process of selecting the service to utilize has been completed successfully, the 

reasoning engine will fire off an event to all listening agents, informing what service will be 

accessed. The selection process can fail in two ways: If there are no services that match the 
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selection criteria decided upon by the desire selection, or if the services available are 

contested by other actors. In the case of the former, the reasoning engine will simply stop 

running for the time being, doing nothing for this iteration of the selection process. It will 

behave as if in a waiting state until update is called again. In the case of the latter, the 

reasoning engine will initiate contention for the smart object offering the service. 

5.6.3 Initiating contention 

Contention is initiated when one or more actors, that are not a part of the reasoning engine’s 

actor hierarchy, are listed as actively making use of, or attempting to make use of the same 

smart object (any service of the object will do) as the actor has itself selected for use. The 

reasoning engine will then use the same algorithm as used to select highest utility service, to 

select the best possible conflict resolution strategy, based on relation and attributes stored as 

part of the conflict behavior. Once a behavior has been selected, the world model will be 

queried to see if any other actors in the hierarchy of the reasoning engine are engaged with the 

same conflict resolution strategy, on the same smart object. If this is the case, the reasoning 

engine will send a notification to all subscribing agents that it recommends joining the 

conflict. If no agents in the same hierarchy are involved in conflict of the object, a new 

conflict behavior is created, and notifications are sent to all subscribing agents that a new 

conflict has been initiated. Once this has been done, the new change threshold is calculated 

and the reasoning engine enters waiting state.  

5.6.4 Waiting state and action requests. 

Unless the reasoning engine was unable to make a choice at all, some form of event will have 

been sent to all listening agents, informing them of a possible way to change the virtual world 

in a fashion that suits the actor they are tied to. If so, the reasoning engine will store the 

current total utility and enter a waiting state.  

When the reasoning engine enters the waiting state, it will initialize a threshold variable that 

will slowly be reduced as time passes. This threshold defines the total change required to take 

place in the desire values of the agent before a new plan is formulated. As time passes, the 

total change required for a new plan to be formulated approaches zero. The actual desire 

values of an actor is calculated as often as possible, however this task automatically yields to 

higher priority tasks in the system. Also, actors higher up in the hierarchy are calculated first, 

leading to faction level decisions always being able to respond to changes in the world, while 
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actors with less importance calculate their desires more seldom if computational resources are 

tight. In addition to responding to the threshold being exceeded, the reasoning engine may 

also respond to having an action applied to it. This occurs at any point where the designer 

activates an action on an entity which has been added to the actor event list, not to be 

confused with the notifications described previously in this section. When an action is applied 

to an actor, the desire values of the actor is recalculated immediately and checked against the 

current plan threshold.  

An actor may be given an action request from a parent actor. If so, both the parent and the 

actor which has been given the request store the expected action in their reasoning engine. As 

with other relationships, the actor is only expected to do the best possible job to fulfill the 

request. Because of this, the result of each request is undefined by nature. There is no way to 

demand that a request is fulfilled with absolute certainty. This once again ties in with the 

concept of solidarity. While this implementation allows independence in actors to some 

degree, it does not allow for actors to reevaluate their relationships with other actors as 

suggested by Medler et al. [22].  

5.7 Summary 

This chapter has provided a detailed description of the FIF design. The entirety of the 

framework architecture was shown in Figure 13, which in turn was described in detail 

throughout the chapter. It was shown how one would tie together the FIF and the virtual world 

it is to inform, through use of composition, as well as how these enhanced game objects 

would benefit the game through additional world data for their agents to utilize.  

The internal world model for the FIF was described, which further informs the actor reasoning 

engine. The actor reasoning engine at the heart of the FIF is then allowed to evaluate the 

world as understood by the FIF, and provide recommendations in the form of service requests 

of behavior mobilizations. This process, which lies at the heart of the FIF, was shown in 

Figure 15. The behavior mobilizations and service requests are the final product of the FIF, as 

they can be easily translated into gameplay scenarios in a virtual world.  

The FIF provides dynamic gameplay generation to game worlds through the enhanced world 

detail and simulation of factions. While game developers are still required to build the rules 

and representations of their virtual world, the FIF offers a way to create scenarios for these 
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rules and representations to be utilized, without having to script each scenario by hand. Actors 

with the same interests that are not allied, will automatically escalate and deescalate the 

tensions between each other and utilize different behavior strategies to attempt to get ahead in 

the virtual world. By tying game mechanics to behavior strategies, game developers will get 

autonomously generated conflict scenarios. These gameplay scenarios will also have the 

benefit of being different every time, given that the player or players are able to manipulate 

the attributes desired by actors in the world. Chapter 6 will describe how the design provided 

in this chapter was used to implement a prototype version of the FIF in C#.  
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Chapter 6 Framework implementation 

In this chapter, we describe a proof of concept implementation of the FIF, which was 

developed using Visual studio and C#. C# was chosen for its native implementation of 

delegates and events, making it simple to create the notifications described in Chapter 5. This 

chapter will describe how the features of the design were implemented in practice, and 

provide a brief overview of the architecture.  

Section 6.1 provides a short description of C# features that were essential to the 

implementation.  Next is an overview of the different features, provided with class diagrams 

generated by visual studio from the complete solution. This provides an exact overview of the 

implementation. Section 6.2 describes the implementation of semantics and smart objects. 

Together with section 6.3, these two sections describe the functionality used to describe the 

virtual world to the FIF as described in section 5.1. 

Section 6.4 describes how actors were implemented in the prototype, while section 6.5 shows 

how actor relations are defined. Next, section 6.6 describes in detail, how one uses the 

prototype to describe a virtual world to the FIF. Finally, a discussion of the result is provided 

in 6.7. 

6.1 C# features 

C# is a high level language developed and maintained by Microsoft. Thanks to the Mono 

project, the language has become one of the most widely used and platform independent 

solutions available [68]. In addition to this, C# is also one of the scripting languages usable 

directly in Unity3D, making it trivial to merge FIF with the test scenario. It should be noted 

that the C# features described in the following subsections are not exclusive to the language. 

C++ and other languages also provide extensions or native support for these.  

6.1.1 Delegates and events 

Delegates in C# provide the same functionality as function pointers in C#, but they hide the 

inherent complexity that rise when trying to use function pointers with member functions [69, 

70]. Delegates are defined in the same way as any data structure. Figure 16 shows how a 

delegate is declared in visual studio 2010.  
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Events are in essence syntactic sugar for delegates. By declaring an event instance of a 

delegate type, one essentially gets a list of function pointers that can be subscribed to by any 

function that has the same signature as the delegate. Should a game developer wish to 

subscribe to an FIF event, she has simply to create a function with the signature described by 

the delegate. Once created, the signature can be added to the event instance, and invoked by 

the framework as can be seen in Figure 17. 

6.1.2 Internal keyword 

The internal keyword is an accessibility keyword specific to the C# language. This keyword 

attempts to replace the C++ keyword “friend” which allows one class to access protected 

variables from the class that has friended it. The internal keyword is less restrictive, allowing 

all components of the same assembly to benefit from this extended privilege [71]. While this 

keyword breaks with strict object oriented principles, it allows for special behavior patterns to 

be enforced. For instance, by making the semantic attribute class internal and making the 

constructor protected, one can make sure that only the accessor system (explained in section 

5.1.2) is able to attach attributes to objects.  

Thanks to the internal keyword, it is simple to enforce policies that make it less likely that the 

framework will be used incorrectly. In addition, it allows for designs where one can do 

separation of concerns without having to duplicate the data set being worked on, which is 

useful when attempting to keep the memory footprint of the application at a minimum.  

Figure 16 - Delegate declaration in visual studio 2010 

Figure 17 - Invoking a service activation event 



78 

 

6.1.3 Properties 

A property is syntactical sugar for implementing get and set functions in C#. Both advanced 

get and set functions, with bodies supporting all types of programming logic, as well as 

automatically implemented get and set functions are supported [72].  

6.2 Implementing semantic attributes and smart objects 

Smart objects and semantic attributes are closely interconnected in the core design described 

in Chapter 5. Therefore, these two features of the framework implementation are described as 

one feature set. Figure 19 describes in detail how smart objects, services and semantic 

attributes are implemented, as well as the relationship between them. Note that this class 

diagram is generated by visual studio 2010 directly from the code. Because of this, some 

descriptors are not UML compliant; hash symbols marks the entry as internal, as described in 

section 6.1.2. Where a list or other container is followed by the new keyword and a 

constructor, the container uses automatic initialization. 

Figure 19 shows the containers for services, attributes and interested actors are all marked as 

internal. This allows the rest of the faction interaction system to directly manipulate these data 

structures should it be necessary. For instance, when the actor reasoning engine is searching 

for a smart object that is capable of optimizing its selected attribute, it will access both the 

services list to evaluate the potential return, as well as the interested actor list to calculate the 

potential contestants for the smart object in question.  

Semantic attributes are very simple constructs, as can be seen from Figure 19. They contain a 

name, the current internal value, as well as a defuzzifier. The defuzzifier is where the designer 

can make modifications to create any kind of membership function as described in section 3.6. 

The defuzzifier interface is the only requirements for how these functions are implemented, 

allowing the designer to take any game state into account when computing the defuzzified 

value. An example of this is provided in section 7.3. 
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Thanks to the internal keyword, and protected constructors, the only way to attach an attribute 

to a smart object is through the attribute accessor class, as can be seen in Figure 18. This is the 

tool used by game designers and developers when attempting to describe smart objects. The 

attributeMap in the accessor contains a hashmap of lists. The hashmap uses attribute names as 

an index, which in turn returns a list of all objects in the world that contains the attribute. This 

allows both the FIF and the game to quickly leverage the semantic information to find objects 

of interest.  

6.3 Implementing the world representation 

The world model implementation was combined with the behavior model to contain all 

information that was required to describe the world. The different containers seen in Figure 20 

contain all semantic attributes that are used to describe conflict in the system (added by 

designers). The “behaviors” container contains all possible conflict resolution strategies that 

can be applied. Note that these behaviors are not instances active, but the abstract 

representation referenced by all instances of the conflict.  

Functionality was also added to assist in selecting the best possible behavior strategy, through 

the “GetBestFitMobilization” function, which returns either a new instance or one already 

being applied by other actors in the actor hierarchy. When starting to use the FIF 

implementation, one first sets a new world model in the “FactionInteractionSystem”. Figure 

21 shows how this class is implemented. As can be seen, it implements the singleton pattern, 

and contains an instance of the world model, a list of all actors in the scene and all active 

mobilizations. The “FactionInteractionSystem” is responsible for running the entirety of the 

implementation through its update function. When this function is called, it will iterate 

through all actors in the world and allow them to perform reasoning.  

Figure 18 - Semantic attribute accesor implementation 
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6.4 Actors 

In Figure 22 one can see an overview of the actor and actor reasoning engine implementation. 

These are split in two parts, where a reasoning engine is informed of the actor state through its 

update function. It should be noted that this implementation does not include the ability to 

propagate requests down the actor hierarchy, as described in section 5.1.3. This feature is 

closely tied to the solidarity functionality discussed in section 5.6. This functionality can still 

be implemented by one making use of the framework, should she wish to do so. This can be 

accomplished by adding event listeners to the “commander” actors and having these relay 

requests to agents subscribing to actors further down the hierarchy.  
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 Figure 19 - Smart object implementation 
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There are several features of note in Figure 22. There are many functions that allow a designer 

to directly modify the attribute values in the actor state, such as the “GetAttribute” and 

“ModifyAttribute” functions. Designers can also directly modify relationship values and get 

Figure 20 - World model 

Figure 21 - Faction interaction system 
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the current desire values. The actor reasoning engine requires advanced functionality for 

querying the state of other actors. For instance, the reasoning engine must be able to find the 

relation of all other actors interested in a smart object when attempting to decide what object 

to recommend accessing. This is accomplished by storing a static list of all actors inside the 

actor itself. The actor reasoning engine is a complex system that changes behavior by minute 

variations to the world around it. The update function takes into account large amounts of the 

world information, as described in section 5.6.2. This implementation has potential for 

causing performance issues, which is discussed in section 7.4. 

6.5 Faction relations 

Relationships between actors are rather problematic to set up when the amount of actors 

increases quickly. Assuming that one would have to set up relationship values for all actors in 

the scene the amount of values to set would be N*(N-1). This would quickly become 

problematic for designers to cope with, so a different solution was required. For this 

implementation, two measures were taken to reduce the required work. 

First, a data structure to hold a full relation table was created, allowing for the same relation 

table to be copied between several actors that should hold the same relations. Second, the 

actor will send a request up its hierarchy (if it has one), querying any actors further up if they 

have a relationship value to the actor. Should a relationship value be found further up the 

hierarchy, this value will be adapted; if not the standard initialization value of 0.5 (neutral) 

will be used. This way, actors can be added to the game while it is running, with the actors 

being related to, depending on their ties to other actors.   
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Figure 22 - Actor implementation overview 
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6.6 Defining a world 

This prototype implementation of the FIF allows the user to define all the features described 

in Chapter 5. This section describes how the prototype implementation can be initialized to 

perform the operations discussed in the design. 

1. Create a new world instance and set it in the faction interaction system 

definition.  

2. Define the attributes relevant to the world representation and register them 

with world instance.  

3. Define the behaviors applicable to the world and add them to the faction 

interaction system.  

4. Create all actors that will participate in the world and register them in 

hierarchies as appropriate.  

5. Define the faction relations between all actors in the scene. 

6. Add actors to the world. 

7. FIF is now ready for use.  

Once these steps have been accomplished, the FIF can be updated in its entirety by simply 

calling the update function on the faction interaction system. This will cause all actors to be 

updated and post recommendations to the game system.  

The recommendations generated by the FIF are the final product of the system. These are 

either service activation requests or behavior mobilization requests, sent to any agents that 

subscribe to the actors’ events. It is through these requests that gameplay is dynamically 

generated, as agents respond (or ignore, depending on the implementation made by the game 

developer) to the requests. As requests are fulfilled, the attributes requested change, and new 

requests are posted, resulting in an endless succession of scenarios emerging from the system.  

6.7 Summary 

The faction interaction framework prototype was implemented as a standalone library of 

functionality that can be leveraged by any game capable of utilizing .NET/CIL libraries. By 

defining a world with FIF, and tying agents and smart objects to the framework, the FIF is 

capable of adding an additional layer of interaction with the world it is implemented in.  
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Chapter 7 utilizes the work presented in this chapter to build a small virtual world for testing 

the feasibility of the prototype. Here, the hunger example presented in section 1.6 is 

implemented on a small scale, to create a world where two villages are fighting for access to 

the only food source available.  
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Chapter 7 Game scenario implementation 

The prototype described in chapter 6 fulfills the requirements presented in Chapter 5. In this 

chapter, we evaluate FIF using a virtual world based on the “hunger conflict” example 

described in section 1.6. This chapter describes the different features of the example and how 

they are implemented using a combination of functionality provided by Unity3D and the 

faction interaction framework. Figure 23 shows the game scene from the perspective of the 

green faction. To the right, marked by the widget, is a green warrior agent that has decided to 

optimize the battle ready attribute. Off in the horizon can be seen the main food source 

representation, as well as a large group of faction members in conflict concerning the object.  

There are several key features of the “hunger conflict” example. These are described in the 

following way; Section 7.1 describes the implementation of food sources, the main conflict 

area of the game scenario. Next, section 7.2 covers how the villages are set up and defined for 

FIF. Section 7.3 describes the implementation of actors and agents to create a world with 

active participants. Once the world has been created, the simulation is run for 2 minutes, in 

which the FIF can be observed to be generating behavior and service activation requests.  

The functioning of the framework is discussed in section 7.4, which points to the service and 

behavior activation requests that are posted by the framework during a single run. Section 7.5 

Figure 23 - Unity3D scene view of the world 
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then deals with the performance side of the framework, looking into whether the FIF can be 

said to be applicable to real time systems like games and simulations. Finally, section 7.6 

briefly discusses the prototype in regards to the problem statement presented in section 1.4, 

before a chapter summary is provided in section 7.7. 

7.1 Food sources 

Implementing food sources in the game scenario was done by creating a geometric primitive 

using the unity world editor. Once the primitive was placed, a smart object (from the FIF 

implementation) and an AI module was attached to it. When the game starts, the AI module 

uses attribute and service accessors to add a service that provides hunger satisfaction, making 

it known that this entity can satisfy the particular need. 

By attaching an activation function in the AI module to the smart object, the food source 

became capable of reacting to actors attempting to activate it.          Figure 24 describes the 

structure of the AI component. This component is part of the game logic as is commonly used 

in Unity3D, while also interacting with the FIF. Should an agent activate the food source, the 

AI component would apply the action result of the service being activated, resulting in the 

hunger satisfaction value of the actor, connected to the agent, to be increased. 

 

Two variations of the game scenario were made. The version displayed in Figure 23 contains 

a single, major, food source, as provided by food drops. The second version of the solution 

          Figure 24 - Food source ai component 
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also had two food sources representing fields belonging to each village. The difference 

between the two implementations will be discussed in the summary of this chapter.  

7.2 Villages 

Villages were created by combining small sets of primitives into houses, and then creating a 

small collection of these new entities. The entirety of the village had a smart object attached 

to it with a faction attribute, describing what faction it belonged to. This allowed agents to 

easily find their way home. In addition, this allowed for a complex “bravery” attribute to be 

created. The bravery defuzzifer created for this attribute takes into account the surroundings 

of each agent currently subscribing to the actor. The more enemies in the area, the lower the 

attribute would become, finally causing the actor to request the optimization of bravery, 

causing the agents to run home to their village. 

One of the village structures had an additional smart object attached to it; listing the service 

“provide battle readiness” this service was only interesting to warriors of the group in 

question. This service was added mainly to increase the detail of the world, as well as 

allowing changes in priorities to be observed as warriors grew hungry.  

7.3 Actors and agents 

The game scenario was implemented with only two faction hierarchies. Each actor in the 

hierarchy was assigned one or more agents that subscribed to their request events. In each of 

these hierarchies, the following actors are implemented:  

 Faction parent actor 

 Elders 

 Warriors 

 Thieves 

 

Agents were implemented in the game world using physics primitives, rendering primitives 

and the path finding library of Unity3D. To bring the agents to life, a small, general purpose 

FSM was built to handle conflict resolution and service utilization requests created by the 

actors. This FSM contained generalized behavior for FIF events, as well as specialized states 

for handling bravery and idleness (no recommendation from the actor). Figure 25 describes 
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how the FSM functions in each agent. Implementing this functionality was fairly simple, 

thanks to the fact that all reasoning on when to activate each state was handled by the faction 

interaction framework through actors posting requests to the agent FSMs.   
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Figure 25 - FSM overview 
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7.4 Observing faction interaction 

While possible to simply observe the agents as they interacted with the world in accordance to 

the recommendations of the FIF, it was easier to see the effects of actors on the world through 

tracking change in FSM state and events sent to them. By using the built in unity GUI library, 

a simple overlay was created to report all events posted by actors, and all FSM changes made 

by agents.  

Figure 26 shows the game scenario approximately 60 seconds after the simulation was started. 

The left overlay shows the current desire values for all actors in the scenario. Note how 

prestige values are set to 0. The reason for this value is that the current scenario does not have 

any desire attributes for prestige. The result of this is simply that the actor will never attempt 

to optimize prestige.  

The right hand side of the figure shows the last recommendation made by the different actors 

in the scene. Each time an actor makes a new recommendation, this overlay is updated. As 

can be seen from the overlay, the different factions are opting out of conflict in favor of 

slightly less optimal choices, in this particular configuration of the virtual world. Figure 27 

shows the same game scenario. In this set, one can see the FSM view, which describes the 

current state active in every agent’s state machine. Here one can see the different agents going 

about their activities, some attempting to access the middle food source, while the other 

faction racing to enter conflict with them over the precious resource.  

Finally, in Figure 28, more time has passed, and the priorities of the actors have changed. As 

the degree of hunger has been set to increase over time in this simulation, the actors without 

access to the main food supply will become more and more interested in this resource. 

Looking at the center of Figure 28, one can see a sole green villager, being engaged in a 

heated argument by the warriors of the red village. While the other red villagers were content 

with waiting for the green villagers to get their food, the red warriors chose to engage the 

nearest green villager in conflict, due to their increased aggressiveness. This shows that small 

changes to the simulation will create completely different gameplay scenarios. Players 

affecting the simulation through game mechanics would therefore make sufficient impact on 

the simulation state to drive the generation of new scenarios forward. 
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Figure 26 - Actor view in a single food source game scenario 
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Figure 27 - FSM view in a single food source game scenario 



95 

 

 

Figure 28 - Conflict between green and red 
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7.5 Investigating performance 

In such a small scenario as the one provided, there were no hints of the implementation 

having any performance issues. Performance is measured using the internal unity3D profiler. 

The unity profiler uses several metrics to describe the performance of a solution [73], these 

can be seen in figure 27, and are as follows:  

1. “Overview” lists function taking a measurable amount of time to compute in the 

setting. Note that the function “WaitForTargetFPS” is an idle function that will fill the 

remaining time of a frame to remain within the bounds of the locked frame rate of 60.  

 

2. “Time ms” describes the update time taken to update the function, and all sub 

functions. As an example, observe the (FIFInitiator.Update) function in figure 27. 

Here one can see that the function itself takes too little time for the profiler to measure, 

however counting all sub functions, it takes a total of 0.04 ms. 

 

3. “Self ms” is a measurement of how long the listed function took to execute, excluding 

any sub functions.  

 

4. GCalloc describes the amount of memory allocated by the garbage collector for the 

given function. This metric is ignored for the purpose of this discussion.  

 

5. The metrics “Total” and “Self” are the percentage representations of the total time 

taken for the given frame. In other words, they are the percentage versions of the 

“Time ms” and “Self ms” columns. 

 

In Figure 29 one can see that the time spent updating the FIF (FIFInitiator.update) only takes 

0.04 milliseconds (ms), where most of the time used is taken by the debug functionality. 

While this shows that there are no obvious flaws in the implementation, especially with such a 

small test scenario, this does not say much for the performance when attempting to scale the 

solution.  
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Once the initial implementation had proven to run effortlessly, several attempts were made to 

increase load on the system. The initial attempt was to add a third village, with all the same 

features as the two other villages present in the game scenario. This would bring the total 

number of actors active in the scene to 15, and the number of agents to 21. This addition to 

the game scenario had miniscule effects in regards to performance, as can be seen in Figure 

30. The time in milliseconds to update the FIF is listed as 0.03 ms, while the agent FSM logic 

is taking 0.37 ms. These numbers are very small in comparison to the 

“CrowdManager.Update” (0.77 ms) which is responsible for path finding and collision 

avoidance for all the agents in the world. This makes sense when one considers that the 

reasoning engine mainly concerns itself with evaluating smart objects, as is explained in 

section 5.6. To quickly repeat the process of the actor reasoning engine, each actor must first 

select an attribute to optimize, and then find all potential smart objects that can supply the 

Figure 29 - Profile overview in single food source game scenario 

Figure 30 - Performance when adding a third village to the game scenario 
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given attribute, needing to consider the other actors in the scene, meaning that unless there are 

many objects to evaluate, the amount of actors will have little effect.  

With this in mind, the next attempt of provoking performance issues added the following: 

1. Two additional food sources added 

2. Added attribute “X” to the game scenario, with five smart objects providing 

the service and a timed negative modifier. To increase conflict generation, the 

main food source is also made the strongest provider of this attribute. 

3. Added attribute “Y” to the game scenario, with ten smart objects providing the 

service. No timed modifier was added to this attribute. 

4. Disabled debug logging from the FIFInitiator system to get a better impression 

of release performance. 

The result of these changes to the scenario was that the FIFInitator update dropped even 

further down the list in the profiler (due to debug writes being disabled). Figure 31 shows how 

the FIFInitiator update no longer has measurable computation time. While this scenario is still 

very small in comparison to open world games, it still provides insight into the performance 

of the solution.  Figure 30 shows another screen capture from the Unity3D profiler, this one 

Figure 31 - Extended scenario performance overview 
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showing a graph of the last 300 frames of a simulation. “WaitForTargetFPS” was highlighted 

in yellow to show the amount of time the game engine spent idle during the simulation. The 

chart is interpreted by looking at the highest point of the colored area. This section shows how 

many frames per second is currently possible, offset to always be 60 by the 

“WaitForTargetFPS” function. Subtracting the yellow part of the graph would therefore give 

the indication of highest possible FPS, which is easily higher than 200, as is evident from the 

white lines marked with 100 and 200 fps respectively. The small yellow number to the left is 

the current amount of time spent idle, on the leftmost frame (the one marked with a white 

line).  

 

From the performance tests described here, it can be argued that the performance of the 

prototype implementation is clearly sufficient to prove its applicability to real time 

applications, which is essential for any simulation or video game. It can be argued that more 

advanced test scenarios should be devised, the fact that conflict was generated from an even 

smaller scenario than this one, it can be said to be sufficient.  

7.6 Discussion 

The prototype presented in this chapter was made to show the potential of FIF to address the 

problem statement presented in section 1.2. The most prevalent question that this thesis seeks 

to address is the possibility of creating dynamic gameplay scenarios, with the added 

requirement of allowing scripted scenarios to drive narrative while still having the FIF 

produce the “filler content”.  

As to the most essential question, it must be said that the FIF is well capable of being the 

engine for dynamic gameplay generation through simulation of conflict between agents. This 

Figure 32 - 300 frames of profiling, WaitForTargetFPS highlighted in yellow. 
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is well supported by the simple example provided in this chapter. The additional problem of 

blending the dynamic system with more heavily scripted content is a different matter 

altogether. While the prototype does not utilize scripted content to any degree, it should be 

noted that we found it reasonably easy to manipulate the choices of agents by simply 

adjusting the weighting of attributes in the reasoning engine. This is arguably a poor argument 

for a more complex solution, as it would be increasingly complex to manage the relationship 

between the different values and the desire groups chosen by actors. The implication of this 

fact is that the FIF can be said to lend itself poorly, in its current incarnation, to seamless 

blending between scripted events and dynamic generation of gameplay. 

In regards to the issue of scalability, the data presented in section 7.5 speaks for itself. The 

computational intensity of FIF in small scenarios is miniscule. However, as mentioned earlier, 

the possibility of combinatory explosions when presented with large game worlds is a real 

one. As the current version of the FIF will evaluate every single smart object in the entire 

world, capable of providing the desire value selected, as well as all attributes in the desire set, 

it is clear that this will quickly increase the computational requirements. There are however, 

several ways of addressing these issues. These are discussed in section 7.6.1.  

As explained in section 1.2.1, there were several limitations imposed on the FIF design, to 

maintain the focus on proving viability, rather than implementing all the topics covered by 

Medler et al. [22]. These features are discussed further in 7.6.2 and 7.6.3.  

7.6.1 Parallelism 

The current implementation of the FIF was designed to run on a single thread, at the same 

pace as the game engine. This turned out to work well with the very small prototype used to 

test the FIF implementation, as described in chapter 7. However, the FIF was made for 

simulating much larger virtual worlds than the small system made to prove its viability. A 

very interesting direction for further research would be to investigate potential for parallelism 

in the system. There are several ways this could be accomplished; the most straight forward 

solution would simply be to run the entire FIF in a separate thread from the game engine. This 

should not be a problem as it is quite common for AI systems to run asynchronous from the 

remaining game engine [74].  
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A more interesting approach, would be to investigate the viability of running each actor in a 

separate thread, or as a part of a task based threading system. A task based system could even 

run with a finer granularity, running all attribute evaluations of an actor at the same time, and 

then evaluating potential services as the next step. This would allow a single actor to be 

distributed over an amount of threads equal to the smallest value of available threads an 

available attributes to evaluate.  

As a final approach to parallelism, one could potentially move the entire FIF to a separate 

platform altogether. As the FIF runs as a separate layer, only loosely integrated with the game 

engine, it could be possible to have the FIF running on a separate platform, communicating 

with the rest of the simulation over some kind of network. This could be very interesting, for 

instance in building massively online multiplayer games (MMOGs) or large simulations of 

populations, for instance entire nations.  

7.6.2 Advanced actor hierarchies 

In their paper, Medler et al. [22] proposes an actor hierarchy where actors are arranged in 

hierarchies and form “groups”. These groups can have different interests, and enable different 

behavior capabilities due to their focus. For instance, an actor could form a group with focus 

on getting access to more behavior strategies, for instance by training the members of the 

group in use of weaponry and acquiring this resource. Also, actors would have their desire 

values modified by their sub actors, causing actions of sub actors to propagate up the 

hierarchies.  

These complexities in the actor implementation were left out to allow for the FIF prototype to 

be more easily constructed. Implementing these features would allow for highly complex 

interactions between actors, which in turn could potentially lead to a wider range of dynamic 

game scenarios being generated. 

7.6.3 Solidarity 

Solidarity is another concept presented in the paper by Medler et al [22]. This concept 

describes how actors would change their attitude towards parent actors, and their willingness 

to perform requests delegated to them. Actors would gain instability as the prestige attributes 

of their parent actor different greatly from their own, as well as the power of their parent no 
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longer affecting them in any meaningful way. This would cause actors to leave the hierarchy 

they were a part of, potentially joining other factions within the virtual world. Again this 

would allow for more complex faction interactions and a broader spectrum of potential 

gameplay scenarios; however it would also present a new challenge in regards to balancing 

the attributes of actors in such a way that the system did not drift apart. 

Solidarity as a dynamic representation of the loyalty shown to parent actors would make for a 

very interesting addition to the FIF, however it would have to be a feature that could be turned 

on or off, as it is highly unlikely that all simulations would be improved by having factions 

break apart without the designers specifically intending for them to do so. Solidarity was not 

implemented in the prototype of FIF both due to the added complexity, and the potential for 

instability that such a feature would present. Even so, it would be worthwhile investigating 

the potential of such a feature for creating novel gameplay scenarios.  

7.7 Summary 

It turned out to be surprisingly easy to create a scenario, when making use of the FIF, where 

conflict is dynamically generated. Given only slightly different input parameters, the different 

actors make varied recommendations, causing each conflict to be slightly different. Given a 

more complex scenario, there is no doubt that even more varied scenarios would be generated. 

In this regard, there is no doubt that the FIF can be said to be performing admirably.  

The small prototype presented in this chapter proves the viability of the implementation both 

in terms of real time performance and its ability to generate conflict scenarios as proposed in 

the design, this is supported by the analysis of the implementation as is described in section 

7.4. Developers making use of the framework can define their world in terms of possible 

actions and attributes that are of interest to the actors of the world. By doing so, they can 

simply set the FIF to generate new events without having to script any sort of static gameplay.  

While the prototype produced here only uses a small set of attributes, actors and smart 

objects, it is still a reasonable indicator of the framework’s potential benefit to developers 

looking for a way to cheaply add more content to their open world games or simulations. It 

should of course be mentioned that the small prototype created here does not truly represent 

the complex game scenarios that one can find in modern games, such as the ones discussed in 

section 3.7. However, creating the game mechanics of such a virtual world is still as complex 
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as ever, even though the generation of gameplay scenarios has been automated by the FIF. 

This makes it impractical to build any large scale tests for a single research project. The 

implication of this is discussed further in chapter 8.  
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Chapter 8 Conclusion 

This thesis has proposed a framework for how dynamic gameplay can be generated through 

the simulation of the interaction between factions. By providing scaffolding for the reader in 

both game development terminology and design principles, as well as introducing game 

engines that assist in this endeavor. In this chapter, a brief summary of all topics covered in 

this thesis is given in section 8.1 Section 8.2 describes, in more detail, the contributions made 

by this work. Finally, some thoughts are given in regards to future work in relation to the 

research presented here. 

8.1 Summary  

In this thesis, a possible approach to creating dynamic gameplay content through the 

simulation of faction interaction has been presented. This concept was spurned by the interest 

in answering the question “How can one create additional gameplay content by simulating the 

interactions between the agents that populate a game world, while still allowing for scripted 

events to drive narrative?”, which was presented in section 1.2. 

By investigating potential solutions in the field of game AI, a strategy was devised to build a 

generic framework capable of directing the flow of a virtual world through suggested 

applications of game mechanics. This framework, named the “Faction Interaction 

Framework” or FIF, made use of concepts from game and academic AI such as crowd 

simulation techniques, agent models, neural networks, fuzzy logic and smart objects. The core 

design of the FIF was presented as a whole in chapter 5.  

To test the FIF in a reasonably realistic setting, an investigation was made into potential game 

engines that would allow for rapid integration of the FIF, as well as facilitating the creation of 

a small prototype. The evaluation of game engines was presented in chapter 4. The 

development language of choice and the implementation details of the FIF were presented in 

chapter 6. Finally, a prototype was presented in chapter 7. 

In this prototype, it was shown how the FIF successfully generated dynamic gameplay 

scenarios, depending on the desire values, actions and behaviors available to the system. In 

addition, chapter 7 presented a discussion on the viability of the FIF and its potential for 
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solving the problem statement presented in section 1.2. Section 7.4 provided an analysis of the 

gameplay scenario created from the example presented in section 1.6; here it was shown that 

through simple manipulation of the desires of actors, new gameplay scenarios naturally 

emerge from faction interaction. Finally, an argument for the applicability to more complex 

virtual worlds was presented. Section 8.3.4 and 8.3.5 expand on this discussion with ideas for 

future work in regards to scalability.  

8.2 Contributions 

The FIF presents a viable design approach for creating emergent gameplay through modeling 

of factions and group interaction as a basis for conflict generation. By introducing this 

“additional layer” of reasoning to the virtual world, game developers can focus on creating 

interesting game mechanics while the gameplay is driven by the FIF recommendations.  

As a side benefit, this thesis presents a set of game engines that can be used for quickly 

prototyping game mechanics and testing AI concepts. These engines are rated in regards of 

the functionality they provide, in addition to a performance test of the path finding and crowd 

simulation API of Unity3D. 

Finally, this thesis provides an introduction to several advanced AI concepts. Some of these 

concepts are already being used in games, while others are mostly in the realm of academic 

AI as it stands. Hopefully, the game context of this thesis will allow others to see the 

advantages of these AI concepts in regards to game development.  

8.3 Future work 

Trying to create solutions for game development is immensely time consuming, as evident by 

the huge development costs of high end games, as discussed in section 1.2. The FIF appears to 

have great potential for alleviating this problem somewhat, by allowing for dynamic 

generation of content. Future work with dynamic content generation would entail 

investigating good implementations for more dynamic actor structures and actor solidarity, as 

discussed in section 7.6. In addition, as the reasoning engine used by actors in the FIF are 

based on neural networks, it would be interesting to investigate the potential for making use 

of other aspects of learning AI. 
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Learning systems has been the focus of many research and development projects in games 

studios the later years [74], but has proven to be mostly unsuccessful. Even so, learning 

systems is a widely researched topic in academic AI, and has been proven to work very well 

in various applied fields, such as translation, speech recognition and more [15]. Given the 

close connection between the actor reasoning engine core and neural networks (which can 

benefit from learning), investigating the potential for creating training sets that adjust attribute 

weights could prove beneficial. By doing this, one could potentially manipulate actors into 

following a distinct pattern of recommendations that would allow the world to evolve in a 

predictable fashion, when this is desirable. 
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