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Abstract

Over the past decades, the volume of email exchange has increased dramati-
cally and it has become one of the world’s most important means of commu-
nication. Due to the rapid increase in email message communication, the ser-
vice infrastructure has also evolved in general to provide optimum service to
customers and end users. Among the many technologies invented as compo-
nents of email service infrastructure, the Internet Message Access Protocol has
played a great role by introducing a better and improved means of electronic
message manipulation within mailboxes. To fulfill the IMAP protocol imple-
mentation, different email clients have been developed since the birth of IMAP,
and there are a large number of open source and proprietary clients available
for use, all implemented somewhat to drastically differently especially in their
default behavior. This thesis will research whether the differences in their im-
plementation have effects on server side resource usage.
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Chapter 1

Introduction

Electronic mail is one of the world’s most important communication tools [40].
Although it seems other technologies might surpass its popularity, electronic
mail is still an easy to use efficient and formal communication service. As
email usage increases, the infrastructure used to provide the service must also
improve. The old techniques of email usage are changing as new communi-
cation devices have been invented. For example, advanced communication
technologies like cellular phones, Personal Digital Assistants (PDAs), iPhones
and other smart phones and iPods all come with email client software. This
contributes to the rapid increase in Internet resource usage related to electronic
mail and requires improvement in email service infrastructure to provide op-
timum service for users.

Desktop email clients are an important component of the email infrastructure
as users prefer to manage their messages on personal computers and laptops
in addition to the new communication devices mentioned above. A new study
from the Radicati Group, Inc. revealed key statistical figures and forecasts in
email. According to its “Email Statistics Report, 2009-2013” [46] report, the
number of email users will increase from over 1.4 billion in 2009 to 1.9 billion
by 2013. The report showed that 74 percent of email accounts will be used by
consumers and the rest will be used by corporate users. The same report finds
that there were 247 billion messages per day in 2009, and it is estimated that
the usage will increase to 507 billion messages per day in 2014.

One can easily see from the preceding statistics how much the email service in-
frastructure will affect corporate industry in particular and the Internet in gen-
eral. With an estimated average 75 Kbytes email message size [47] and billions
of messages delivered per day, the importance of optimizing the resource us-
age by the email service infrastructure components like email servers, clients,
protocols, and so on should be studied in order to locate potential areas of
improvement.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

The IMAP1 protocol is an important component of the email service infras-
tructure and allows users to manipulate emails messages through email clients.
Some of management functions provided by email clients are creating multi-
ple mailboxes, deleting mail, flagging mail, searching message contents and
moving messages between mailboxes [17]. Therefore, the IMAP protocol is
designed to manage email message after it has reached at its “final delivery”
point.

Thus, it is necessary to study performance related issues of an IMAP server as
a “final delivery” point because 1) If something goes wrong with the email
message before it is read, there is no way for the sender to know the message
was not read by the other party; 2) A message can be stored in mailbox for
long time, and no one can be sure how long it can remain there; 3) It is difficult
to estimate how much disk volume will be needed to store mailboxes; and 4)
It is also difficult to estimate the network traffic required for email messages.
The IMAP server stores a lot of important information about an organization
when it is one of the main media of formal communication between employ-
ees and/with the outside world. Thus, scientific evidence about IMAP clients’
effect on server resource usage would be very useful and important.

1.2 Problem Statement and Objectives

The choice of an email client to access mailboxes on mail servers is often left to
end users. In some cases, this choice is influenced by organizational decision
makers for several reasons. For example, a lack of required functionality pro-
vided by email clients and/or some server-unfriendly behavior of email clients
could influence available or acceptable choices. However, server side perfor-
mance is seldom a consideration for email client choices. This could be due
to an assumption that there is no significant difference between email clients’
impact on the server even though different client software is implemented dif-
ferently.

Nevertheless, some organizations have seen critical performance issues in re-
lation to email clients. Problems are typically temporarily solved through al-
location of additional resources, so email clients in relation to server perfor-
mance may not be perceived as a serious issue. However, if optimizing email
service is a goal for the email service infrastructure, the individual email client
effect on server performance must be evaluated and compared through scien-
tific study.

Accordingly, this thesis will consider the following research questions:

1Internet Message Access Protocol. This thesis refers to the current version of IMAP, Version
4 Revision 1 (IMAP4rev1).
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1.2. PROBLEM STATEMENT AND OBJECTIVES

1. What are the effects of different IMAP clients on IMAP server perfor-
mance and resource usage?

2. How do different IMAP clients implement the IMAP protocol?

For the purpose of this thesis, we study the following popular IMAP clients:
Microsoft Outlook, Mozilla Thunderbird, Opera, Sylpheed and Mulberry. The
Dovecote IMAP server will be used as the server side application. The main
parameters to be measured and compared with respect to server performance
will be disk I/O and network bandwidth. In order to do so, a controlled experi-
mental lab will be set up, appropriate experimental software will be developed
and tested, experiments will be designed and carried out, and the results will
be analyzed and interpreted.

3
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Chapter 2

Background

2.1 Terms and Protocols

Electronic mail, typically abbreviated as email or e-mail, is the primary method
of sending and receiving digital messages. It is based on a “store-and-forward”
technique in which information is sent to and received from an intermediate
station. This intermediate node in email infrastructure is called a mail server
[29, 16].

A digital message can be communicated using a client/server architecture,
as displayed in Figure 2.1. A message is created by a user using an email
client program, and the program sends the message to a server. Then the
server transports the message to the recipient’s mail server where the recipi-
ent’s mailbox is located. Finally, the recipient reads the message again using an
email client. The whole procedure is complicated since it potentially involves
several standard protocols, computer machines potentially running different
operating systems and a variety of email client programs [22]. This process is
discussed below in detail.

We can define a mail server as a particular machine that is responsible for
sending and receiving email messages. A mail server functions in the email
infrastructure as a Mail Transfer Agent (MTA) (for a general understanding
about email infrastructure see [22]). A mail server can receive, deliver, forward
and store messages on behalf of end users. What is expected from users is that
they will connect to the mail server and submit or retrieve electronic messages
through the aid of different client applications and protocols (which will be
explained shortly). Besides the various components and programs that the
mail server consists of, the presence of other mail servers in the infrastructure
is also necessary to fulfill the email service.

A Mail User Agent (MUA), usually called email client application, is a software
program that is used to read and compose email messages. These programs
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Figure 2.1: Client/Server Mail Architecture

may vary from simple text based email clients like Mutt to modern GUI appli-
cations like Thunderbird and Microsoft Outlook. The major purpose of email
clients is to access messages in a mailstore located on remote server remotely
via access protocols like POP1 and IMAP. Clients are also able to set up mail-
boxes to store messages, and manipulate messages in mailboxes, where the
precise capabilities depend on the mailstore access protocol that they are con-
figured to use. Email clients can also act like an MTA and send outbound
messages directly to a mail server [3].

When we say an email client may act as an MTA to send email, this function
must not be confused with the real MTA’s role. The main reason that email
clients provide this feature is that the machine where a client resides might
not have its own MTA in some operating systems. However, it must be clear
that these email client programs act as MTA only when sending outbound
messages to another MTA. However, they cannot directly deliver messages to
mailstores or mailboxes [3].

Software programs like Sendmail and Postfix are used to safely transfer mes-
sages between mail servers using the Simple Mail Transport Protocol (SMTP).
SMTP is used by mail servers to communicate with other mail servers and to
transport messages, but not for receiving them. When a user sends electronic
messages via clients such as Microsoft Outlook and Thunderbird, SMTP trans-
ports the message until it reaches to its final destination server. Two or more
SMTP servers may be required to transport the message, depending on the
email service infrastructure.

1Post Office Protocol. This thesis refers to the current version of POP, Version 3 (POP3).
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Figure 2.1, which represents a simple email service infrastructure, employs
only one SMTP server which resides on the same mail server as IMAP/POP
daemon. In this case, if both sender and receiver are from same organiza-
tion and domain, there is no need for sending the messages to another SMTP
server. Rather, messages are put in mailboxes of the same mail server. In a
more typical case, where the receiver and sender are located in different do-
mains, multiple SMTP servers are involved in routing the message to its final
destination [26].

A Mail Delivery Agent (MDA) (e.g., Procmail and mail) is used to filter and move
email messages from the MTA’s spool file to recipient’s mailbox. The MDA
plays an important role in the infrastructure by delivering the message into
the mailbox to be accessed by the email client program since SMTP can not do
this by itself.

On the mail server side, IMAP and POP servers, such as Cyrus and Dovecote,
enable email clients to access their messages. While the IMAP protocol allows
general access to mailboxes, the POP protocol typically automatically down-
loads the full messages to email clients’ local systems. These protocols will be
discussed in detail below.

2.2 Mailstore Access Protocols

Remote Mailstore Access protocols are important components of an Internet
mail infrastructure because they are used to access a mailbox [42]. RFC-1733
defined three types of distributed client/server electronic mail models: offline,
online and disconnected [16, 25].

The offline model is implemented by downloading pending messages to the
client machine and then deleting them from mail server. The intelligence part
of the mail processing task is accomplished locally on client side. This method
is called “store-and-forward” since the mail server acts as temporary storage
for messages for specific period of time. POP is the main protocol that imple-
ments this model(RFC-1225) [16, 25, 17].

In the online model, a client can manipulates messages in a mailbox on mail
server without downloading them. This requires a persistent connection to
the server. This model also allows one or more clients to manipulate messages
remotely at the same time [16, 25, 17].

The disconnected model allows a client to connect to the mail server, cache
selected messages, and then disconnect. The client reconnects and resynchro-
nizes with the server whenever it is needed. The major difference from the
offline model is that this model leaves the original message on the server
for resynchronization purposes whenever the client reconnects to the server.
Some people describe this model as a kind of “hybrid” of offline and online

7



CHAPTER 2. BACKGROUND

models [16], and others see it as a complement to the online model and as
incompatible with offline [25, 17].

2.2.1 Post Office Protocol

POP was defined in 1984 by RFC-918. It is an application-layer Internet stan-
dard protocol which is used as a method of delivering email messages to of-
fline clients. The main emphasis was to provide a “simple” method to filter
email messages into appropriate user folders so that users could retrieve their
mails when they connect to the mail server. Once users are connected to POP
server, most email clients by default download the messages permanently to
the user’s hard disk and delete them from the server. Unlike IMAP, POP was
not intended to provide manipulation operations of mailboxes on the server
[36]. POP was revised several times, but its developers have remained consis-
tent to the idea of “simplicity” for quick and efficient email retrieval. RFC-1081
was published in 1988 and defines POP3. The POP protocol remains useful for
the simple purpose of downloading email from a server, and it is still the pref-
erence of many Internet Service Providers [23].

The “download and delete” attribute of POP protocol leads to inconvenience
for users when a user tries to access the same mailbox from different client
machines, for example from home and office. In this case, a user is obligated
to store downloaded messages at different locations. This lack of functionality
was resolved through additional settings that provide an option for the user to
leave a copy of each message on the server. The leave mail on server option was
implemented by UIDL2 command [23].

Currently POP4 is under development, and it is designed to provide some
IMAP functionality on server side message manipulation (see below). The ad-
ditions are new commands like Create, List, Select and Delete Folders, Set and
Get Flags on a message, and commands for partial message retrieval and to
enable persistent server connections. The More over, Move and Copy com-
mands are also added to move and copy messages from one folder to another
[2].

2.2.2 Internet Message Access Protocol

IMAP was first formulated in 1986 by Mark Crispin at Stanford University
[19, 34]. Following the invention of the protocol, the first IMAP RFC, RFC
1064, was published by Cripsin in 1988. At that time IMAP was called the
Interactive Mail Access Protocol, and the first RFC focused on C-client allow-
ing workstations or similar machines to access electronic mail from a mailbox
server [15, 25, 17].

2Unique IDentification Listing
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The first real IMAP client, called MM-D,3 was written for Xerox Lisp machines
at SUMEX-AIM4. It was based on the slightly earlier C-client software written
for the Macintosh client foundation. Later on, when Mark Cripsin moved to
University of Washington, he continued the improvement of the protocol, and
his C-client software were merged with their PINE email client. The blending
of the two clients was useful to the PINE email client because it adapted the
most important functionalities of the C-client like MIME5 parsing, decoding
and SMTP. In 1990, University of Washington deployed an IMAP server and
released PINE version 2.0 with IMAP support [15, 25, 17].

After the release of a series of RFCs (1730-33) for IMAP4 in 1994, the protocol
was approved as an Internet standard. RFC 1730 described the major pro-
tocols, and it was followed by RFC 1731 for authentication mechanisms. Sub-
stantial development of the protocol continued when Carnegie Mellon Univer-
sity released another IMAP4 server in 1995. During the same year, University
of Washington released an improved C-client. In 1996, IMAP, the current ver-
sion name as of the writing of this thesis, was released via RFC 2060 [25, 17].

Thereafter, IMAP development accelerated, and most important RFCs for IMAP
were developed since 1996. So far, as of the completion of this thesis, 53 RFCs
have been published on IMAP. The latest major IMAP RFC is RFC 3501 writ-
ten by Mark Cripsin and titled “INTERNET MESSAGE ACCESS PROTOCOL
– VERSION 4rev1”; most people call it simply “IMAP4.” RFC 3501 has been
subsequently updated by several RFCs. A comprehensive list of RFCs in rela-
tion to IMAP and their status is included in Appendix A.

The following chart is derived from the Appendix A table to point out which
individuals and organizations have contributed most to the IMAP protocol de-
velopment. As the chart indicates, M. Crispin and A. Melnikov are the most
active individual contributers to IMAP RFC publications. Since these individ-
uals are currently with Isode Ltd. and University of Washington (respectively),
the organizational contribution chart reflects this [39]. Most importantly, it is
worth mentioning that the major IMAP protocol technology was contributed
by M. Crispin while at the University of Washington.

2.2.3 Comparing the IMAP and POP Protocols

In general, POP’s usefulness greatly relies on its simplicity. Historically, it
has left mailbox access capabilities to IMAP [23]. In addition to its online
message access service, remote manipulation of mailbox functionality distin-
guishes IMAP from the POP protocol. Nonetheless, despite some lack of func-
tionality, many mail servers are still using the POP mail protocol because of
its simplicity and suitability for users who access their mailbox solely from a

3MM-Distributed
4Stanford University Medical Experimental Computer for Artificial Intelligence in Medicine
5Multipurpose Internet Mail Extensions
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Figure 2.2: Individual RFC Contributions to IMAP

Figure 2.3: Organizational RFC Contributions to IMAP

single machine. Moreover, the offline message access method minimizes disk
requirement and server connection time [25, 17].

IMAP has specific advantages over POP in remote folder manipulation, mul-
tiple folder support, and online performance optimization. Each of these are
implemented by different commands with IMAP protocol (they are discussed
in another section of this thesis).

The IMAP protocol allows multiple clients to connect to the same mailbox si-
multaneously, whereas POP allows only the current connected client to access
the mailbox.

IMAP also allows clients to keep track of message state, such as whether a mes-
sage has been read or replied to, while POP does not implement such function-
ality. The presence of this functionality allows different clients that access the
mailbox to easily detect the state change made by another client and facilitates
synchronization.
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IMAP allows clients to implement searching for messages meeting specific cri-
teria on the server side, without downloading all messages on client machine.

POP clients do not require MIME formated messages whereas IMAP is de-
signed to work with MIME formated email messages. However, since all In-
ternet email messages come with MIME formatting, POP clients must under-
stand this type of electronic messages. The main difference in this area is that
IMAP allows clients to access and fetch only a part of MIME messages. For
example, this allows clients to download only the text part of the messages
without the attached files [21].

IMAP’s complexity in implementation both in the server and client sides is its
disadvantage as compared to POP. Although the added complexity has been
solved by “server-side workarounds” like backed database and maildir, it still
requires more resources, including network bandwidth, disk I/O and disk
space usage, as compared to POP, due to the fact that it implements the on-
line mode of client/server communication. These inherently smaller resource
requirements could be one reason that POP is popular with many Internet Ser-
vice Providers. Moreover, if the implementation of searching and other mail-
store functionality with an IMAP-enabled client is not accomplished carefully
and efficiently, unnecessary server side resource utilization could increase.

Another disadvantage of IMAP is that clients need to stay connected to the
server to be notified of the arrival of new messages. Although there is a solu-
tion for this called “push IMAP,” which sends the whole message instead of
a notification, the method has not been accepted by IETF. A Lemonade pro-
file, which is a product of IETF, avoids this problem via the “forward without
download” technology. However, this solution relies on IMAP capability and
support for the IDLE command. This command will be discussed in detail
later. [32]

To minimize the offline access model disadvantages of POP, an online model
is integrated into POP, allowing the POP server to be configured to “leave mail
on server” rather than deleting messages permanently. However, it is difficult
to say whether it provides true online model functionality, and some call it is
“pseudo online” because it does not implement a remote file system for online
operations. For example, as it has been explained earlier, the state information
for each message (e.g.., marking a message as replied or not) is not stored with
the message itself in POP. [25, 17].

When a POP client retrieves new messages, it must fetch the entire UIDL map.
In contrast, IMAP allows a client to fetch only messages that have a UID higher
than all previously retrieved ones. This can lead to a significant difference
between the two protocols for large mailboxes because the POP approach re-
quires significant processing time and other resources.

Despite the disadvantages mentioned above, POP is still convenient for users
who use only one client system and lack a persistent Internet connection to
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their mailbox [3]. While many email clients support both the POP and IMAP
protocols, not all Internet Service Providers (ISP) support IMAP for several
reasons. First, some ISPs serve as storing messages “in transit” for specific
period of time and they do not provide “final delivery” service to manipulate
electronic messages. Secondly, since IMAP allows every customer to use po-
tentially increasing storage, ISPs do not support it due to the volume issue.
Thus, POP suits the ISP’s objectives [42].

Although the two protocols were invented for different purposes, they have
developed common characteristics that make them quite similar today. For
example, both rely on SMTP for sending messages and a continuously avail-
able mail server to access mailboxes. They provide client applications mail
access from anywhere in a network. Both support the offline access model and
include built-in extension mechanisms to extend the base protocol [17] [23].

2.3 IMAP clients

There are two types of IMAP clients, caching and non-caching. Caching IMAP
clients (for example Thunderbird and Outlook) fetch new messages once and
depend on the message’s flags (meta-data) to synchronize messages. In con-
trast, non-caching IMAP clients, also known as web mails, fetch the same mes-
sage again and again. This difference between IMAP clients could easily affect
the performance of the IMAP server [3].

There are many web-based email services and desktop email clients devel-
oped to implement this protocol. However, few are popular and frequently
used. Statistical reports from an email clients usage survey showed that [6, 4]
Microsoft Outlook (including Outlook Express) is the most popular desktop
email software followed by web-based email services provided from Hotmail
and Yahoo! Mail, while Thunderbird and Windows Live have only about 2
percent of the total market share each.

The following section will review some of the most popular email clients.

2.3.1 Web mail or Web-based email clients

As the name itself implies, web mail is a fully web-based email service. That
means it is accessible via a web browser and does not need standalone desktop
software. Using web mail, users can access their mailbox from anywhere and
any machine as long as there is an Internet connection. This is the major benefit
of web mail clients. Security, backup and software management issues are
taken out of users’ hands, and users are thereby free from many irritations.
The drawback is that if there is no Internet connection, then a user is not able
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Figure 2.4: Email Clients Usage Distribution [source: litmusapp.com, February
2010]

to do anything offline. Moreover, mail box access usually costs money, and the
price increases with mailbox size [10].

The first popular web-based mail clients, Hotmail and Yahoo!, were intro-
duced in 1994 and 1997 (respectively), followed by Gmail in 2004. Web mail
clients are widely used [9]. According to sa tatistical survey, Yahoo!, Hotmail
(now called Windows Live Hotmail) and Gmail are the top ranked web mail
service providers [4] [10]. Currently the AJAX-powered6 technology helps
web mail clients mimic the desktop clients’ look and feel [7].

2.3.2 Desktop clients

Microsoft Outlook 2007

Outlook 2007 is part of the Microsoft Office 2007 suite. In addition to email, it
provides many personal information management features, including an ad-
dress book, a calender, reminders, fax, instant messaging, task lists, journals,
personal notes and news feeds. These features make Outlook 2007 more than
an email client. Outlook 2007 supports most protocols and standards related
to e-mail, including both POP and IMAP. It does not support the PLAIN au-
thentication method. Outlook’s main window is illustrated in Figure 2.5.

6Asynchronous Java Script and XML: a group of interrelated development techniques used
in client side applications
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Figure 2.5: Outlook 2007 Front View

Mozilla Thunderbird Version 3.0.5

Mozilla Thunderbird is a free, Open Source email client from the Mozilla Foun-
dation, and it is available for the Unix, Linux and Windows environments.
The developers claim that the email client has superlative security and pro-
vides sophisticated customization capabilities. It includes SSL/TLS support
for communication with IMAP and SMTP servers and S/MIME. Among the
many features that the client provides are search functions, multiple account
support, message grouping, and extensive filtering and labeling options. Fig-
ure 2.6 shows Thunderbird’s front view.

Thunderbird allows programmers to create add-on programs (called exten-
sions) which incorporate new features like spam suppression, removing du-
plicate messages, enhanced address books, and the like. Thunderbird can also
import email from other email clients. It incorporates a built in RSS reader,
for example, to notify users about updates to monitored web sites. Since it is
an Open Source application, new features are integrated frequently into Thun-
derbird as new extensions are released [43].

Mulberry Version 4.0.8

The Mulberry email client was originally a proprietary software package and
started as a pure IMAP client. It was developed in 1995-96 by Cyrus Daboon.
Its owning company went bankrupt in 2005, and Mulberry has been Open
Source software since 2007. The developers state that the client implemen-
tation adheres to the IETF standards[1]. Mulberry runs on both Linux and
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Figure 2.6: Thunderbird Front View as New Message Arrive

Windows systems. Figure 2.7 shows Mulberry’s front view.

Sylpheed Version 3.0.0

Sylpheed is a Windows email client. Its developers describe their email client
as providing quick response, having a graceful yet sophisticated interface, in-
tuitive to use and easy to configure, and including abundant features. Sylpheed
is also news reader based on GTK+. The client’s front fiew is shown in Figure
2.8.

Opera Version 10.54

Opera mail an integrated email client with Opera browser. Its developers de-
scribe it as designed for low bandwidth mode that helps for users with slow
Internet connection and it searchs with speed. Moreover, it is equiped with
smart spam filter, auto-sort, and attachments filter. The developers also de-
scribes Opera Mail that it can organize, indexe, and sort messages. Opera mail
is young and the first in its kind to be integrated with web browser. Figure 2.9.
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Figure 2.7: Mulberry Front View
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Figure 2.8: Sylpheed Front View

Figure 2.9: Opera Mail Front View
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2.4 IMAP Client Implementation

This discussion summarizes the IMAP client capabilities and commands.

2.4.1 Message Attributes

When a message is stored in IMAP mailbox, a sequence number and a UID
are assigned to it. These numbers are used to access and identify the mes-
sage on a remote IMAP server for various manipulation purposes. The UID
value MUST NOT7 refer to any other messages, either in the same mailbox or
any subsequent mailbox. Thus, when a message is stored in a mailbox, the
next largest UID number will be assigned to it. The protocol strictly forbids
changing of UID values during a session and between sessions. Should such
a change ever happen, it MUST be detected using the UIDVALIDITY attribute.
Whenever there is a change in the UIDVALIDITY message attribute, a client is
required to remove any cached information about the messages, and the UID
assignment starts again. During the lifetime of a message, UIDVALIDITY and
UID refer to a single message on that server. This provides the immutability
behavior 8 of the message during its existence. [17]

In contrast, the sequence number can be changed dynamically when a message
in the mailbox is deleted, which makes a particular message possess multiple
sequence numbers. A sequence number starts with one when the first message
arrives in a mailbox [17].

A flag attribute is a list of zero or more named tokens associated with the mes-
sage, and each is set and cleared for its addition or removal to the list. There
are two kinds of flags in flag attributes: permanent and session-only. While a
permanent flag allows client to add or remove from the message flags perma-
nently, session flags changes are effective only in that session [17].

The Internal Date Message attribute records the internal date and time of the
message on the server, which is different from the date and time which is
found on messages when messages are received. The Internal Date Message
reflects the timestamps when a message is delivered to the IMAP server [17].

The Envelope and Body Structure Message attributes represents RFC-2822 header
of the message and MIME body structure information of a message, respec-
tively. The Envelope structure is different from SMTP envelope [17].

7This IMAP protocol specification phrase means that the action described will be almost
certain to hurt interoperability. The recommendation should not be ignored.

8Meaning that the actual content of message and header cannot ever be changed
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2.4.2 IMAP Security

Since IMAP is a client/server protocol, an email client which resides on remote
machine runs a process on IMAP server to access a mailbox. Accordingly,
IMAP requires the email client to authenticate before it starts to access the
mailbox.

IMAP security is conceptually divided in to two categories: authentication
and encryption. RFC-1731 and RFC-2595 define IMAP authentication mech-
anisms and encryption, respectively. Like POP, IMAP allows basic authenti-
cation mechanism through userID and clear text passwords over the network.
However, this is often undesirable due to security risks.

By using the cryptography-based challenge/response SASL9 mechanism, the
clear text authentication problem was solved [35] [37] (although this method
does not encrypt the message content).

The SSL/TLS10 implementation is the next higher level security solution for
IMAP client/server connection. Currently, many IMAP servers can be con-
figured to provide SSL/TLS connections to securely encrypt both authentica-
tion and communication between server and client. Most IMAP clients also
support this method of connection, and the security risk of IMAP protocol is
thereby minimized [35] [37].

STARTTLS, as defined in RFC-2595 for IMAP and POP, solves a number of
problems. The major one is that it avoids requiring separate IMAP and POP
ports for use with SSL [37].

2.4.3 States of IMAP Connections

An IMAP connection can be in one of the following four well-defined machine
states at a given time: Not Authenticated, Authenticated, Selected and Logout.
The four states are explained in Figure 2.10 [17].

9Simple Authentication and Security Layer
10Secure Sockets Layer/Transport Layer Security
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Figure 2.10: IMAP States and State Transitions
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The Internet Assigned Numbers Authority (IANA) has assigned TCP port 143
for IMAP use, and the “Connection Established” state in Figure 2.10 indicates
the completion of the TCP connection. The Not Authenticated state, the first
state after a machine starts, is entered immediately after a connection is suc-
cessfully established between a client and the server (unless the connection
previously has been authenticated). Before the client can send any commands
to the server, it must send authentication credentials. This, the Not Authen-
ticated state does not allow clients to issue most IMAP commands. In this
state, the server responds with the “OK” command to notify the client that it is
ready, and this is the only command option that is available within this state.
[17].

The second state, the Authenticated state, is entered when either i) a pre-
authenticated connection is started (as indicated in Figure 2.10 by arrow 2); ii)
valid authentication credentials are provided by the client (indicated in Figure
2.10 by arrow 4); iii) after an error occurred during mailbox selection attempt
or after a successful CLOSE command is issued (indicated in Figure 2.10 by
arrow 6) [52].

When a client is authenticated, it MUST select a mailbox to access messages.
When a mailbox is successfully selected for message access, then the Selected
state is entered [52]. This state can be entered from only one direction, indi-
cated by arrow number 5 in Figure 2.10.

A connection can be terminated in a logout state. A client request to logout
or a unilateral action from the client or server can cause an IMAP connection
to be in the Logout state [17]. The Logout state can also be entered when a
connection is interrupted [52]. Figure 2.10 shows that this state can be entered
from any of the four states.

2.4.4 Commands and Responses

A server/client interaction in IMAP connection consist of a client command,
server data, and a server completion result response. A client issues the com-
mands that are appropriate for a specific state (discussed below). This means
that most commands for specific state cannot operate in another state.

The server/client interaction is line oriented, using strings that end with CR/LF11.
Therefore, during server/client interaction, the client and server are either
reading in a line or a sequence of octets.

The client starts the interaction by sending a command or commands. Each
command generated by client identified by a tag followed by the actual com-
mand identifier. The client is responsible for generating the tag for each com-
mand. When a client sends a command, an IMAP server reads the command

11Carriage Return/Linefeed
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line, parses the command and its arguments, and replies back by transmitting
the server data and finally a response to indicate the command completion
result [17]. Figure 2.11 illustrates this process when a client is logging to an
IMAP server. “001” is the tag that the client issued, and the server replied
back referring to that tag.

Figure 2.11: IMAP Use of Tags

When data is transmitted by an IMAP server to client, one of the following
procedures will happen. If a command is not completed, an untagged sta-
tus response prefixed with the “*” token will be sent to client. For example,
as Figure 2.12 indicates, the server uses this token until has issued the final
completion response. If a command is completed, a server completion result
response is given which indicates a success or failure of the operation by one
of the following four possible server completion responses: 1) OK to indicate
success (Figure 2.12); 2) NO to indicate failure (Figure 2.13); 3) BAD to indicate
a protocol error (Figure 2.14); or 4) BYE to indicate a server is going to close
the connection (as shown in Figure 2.15). The last BAD response can happen
for several reasons, but an unrecognized command or a command syntax error
are the main ones. For example, Figure 2.14 showed the BAD response due to
the unrecognized command “READ.”

Figure 2.12: Server Completion Response with “OK” and Use of “*”

Figure 2.13: Server Completion Response with “NO”

The IMAP client reads a server response line and takes action, and it then
shows human readable information to the end user. RFC3501 clearly states
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Figure 2.14: Server Completion Response with “BAD”

Figure 2.15: Server Completion Response with “BYE”

that the IMAP client MUST be prepared at all times to accept any response
from server side, even including any server data that was not requested. The
protocol also enforces that a client SHOULD record any received data so that
it can be referenced when the data is needed. In this case, the client will not
need to send any command for same data.

An IMAP client may issue multiple commands to an IMAP server simultane-
ously. The command tags are used to determine which command a server re-
sponse applies to. The following section explains the different states in IMAP
protocol, followed by the most common commands and server responses.

IMAP Commands Valid in Multiple States

The CAPABILITY command returns a list of capabilities supported by the
IMAP server. This command is available in both the authorization and trans-
action phases of the IMAP protocol. This command is not dependent on user
or connection state in a session. Thus, it is enough for a client to send a CAPA-
BILITY command once in a session. Some IMAP servers advertise CAPABIL-
ITY during OK greeting. Currently, IMAP supports IMAP4, IMAP, LOGIN-
REFERRALS and ACL. Figure 2.16 is a good example.

Figure 2.16: The CAPABILITY Command

The NOOP command (NOOP means “no operation”) does nothing, but it is

23



CHAPTER 2. BACKGROUND

useful to maintain a connection by preventing inactivity timeouts on server
side.

When a client needs to finish the connection with the server, the LOGOUT
command is sent to the server. The server responds to the command with
untagged BYE line followed by a tagged result line. This server/client com-
munication is shown in Figure 2.15.

IMAP Commands Valid in the Nonauthenticated State

Since an IMAP session starts with the Nonauthenticated state, the LOGIN
command is initiated by client to enter the authenticated state since it can not
send most commands until a fully authenticated state is satisfied. The LOGIN
command works with username and password. The server then responds with
a single tagged result line. This procedure is shown in Figure 2.11.

IMAP Commands Valid in the Authenticated State

As the name by itself implies, the LIST command lists all the mailboxes on the
server that match the requirement specified in its arguments: the “reference
name” and the “mailbox name.” The asterisk (*) and percent sign (%) charac-
ters can be used as wldcards to list all mailboxes. Figure 2.17 illustrates this
process. As we can see from this output, mailboxes are arranged like a tree,
with INBOX serving as its root. This particular IMAP protocol uses a period
(.) as a separator between parent and child folders so INBOX.Friends is a child
of the INBOX mailbox. The HasChildren attribute simply indicates that this
folder has subfolders whereas the other folders do not and are identified by
HasNoChildren. This arrangement can vary according to IMAP configuration
on the server. It is possible to configure all folders to be created as subfolders
of the INBOX even if an email client is configured not to display them the same
way.

Figure 2.17: The IMAP LIST Command

The STATUS command returns some basic information without selecting the
folder. Depending on what information is going to be extracted, the command
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takes arguments such as the mailbox name and a status code. More than one
status codes can be specified in a single request. Figure 2.18 illustrates a client
requesting the total number of messages and the number of recent messages
separately.

Figure 2.18: The IMAP STATUS Command

The SELECT and EXAMINE commands basically function similarly by return-
ing the information about the specified mailbox. The basic difference between
them is that EXAMINE returns a read-only reference whereas SELECT returns
a read-write reference. Both commands take a mailbox name as an argument.
These commands MUST be issued before a client can access any messages
from their mailbox. The Selected state is named after this command since it
is entered after successful selection of a mailbox. The server responds with the
status information for the mailbox selected. Among the information returned
by server are the FLAGS that are valid for the mailbox, a list of FLAGS that
the client is privileged to change, the number of messages in the mailbox, the
number of RESENT and UNSEEN messages.

The CREATE, DELETE and RENAME commands are simple and create, delete
and rename a mailbox, respectively. They take the name of a mailbox as an
argument and request the server to carry out the requested command. The
server responds with a flagged result line.

Figure 2.19: IMAP CREATE Command Usage

The IMAP protocol allows clients to delete messages. When a user deletes a
message, the message is not deleted immediately, but rather marks it with the
\Delete flag.
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Figure 2.20: IMAP RENAME Command Usage

The EXPUNGE command deletes all messages which are marked with the
\Delete flag in the mailbox. This function is implemented by various IMAP
clients differently, and many of them provide options for users to decide the
fate of a deleted message. For example, the Thunderbird IMAP client provides
the following options after a message is deleted: 1) Move the deleted message
to a folder like Trash, 2) Just mark it as deleted, and 3) Remove it immediately.
It also allows users to issue an EXPUNGE command to clean up the Inbox
and/or to Empty Trash on exit. Each option mentioned above is managed by
the client software differently to manipulate the mailbox on the server. For
example, Figure 2.22 shows the usage of EXPUNGE command assuming four
messages were set with the Deleted flag in the INBOX. In this example, the
EXPUNGE command deleted all four messages one by one.

Figure 2.21: IMAP DELETE Command Usage

The CLOSE command has same effect as EXPUNGE command. The difference
is that after CLOSE command deletes the messages, it deselects the currently
selected folder. If a CLOSE command is issued, the client can not perform any
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Figure 2.22: IMAP EXPUNGE Command Usage

action on any messages until the deselected folder or another folder is selected.

The LSUB command functions like the LIST command except that it shows
only mailboxes marked as an active with a SUBSCRIBE command, as illus-
trated in Figure 2.23.

Figure 2.23: IMAP LSUB Command Usage

The SUBSCRIBE command permits a client to add a mailbox to the list of sub-
scribed mailboxes, taking the desired mailbox as an argument. The subscribed
mailboxes can be viewed by the LSUB command or LIST command. This pro-
cess is illustrated in Figure 2.24.

The UNSUBSCRIBE command is used to remove a mailbox from the list of
subscribed mailboxes. It also takes the mailbox name as an argument, as
shown in Figure 2.25.

The APPEND command is a multi-line command that appends text as a new
message within a mailbox. It accepts a list of flags that need to be set on the
new message. Date and time strings also included before the text. The brack-
eted number at the end of the command indicates the length of the message so
that the server knows when the client is finished.
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Figure 2.24: IMAP SUBSCRIBE Command Usage

Figure 2.25: IMAP UNSUBSCRIBE Command Usage

IMAP Valid Commands in the Selected State

The FETCH command is used to access messages in mailbox and it is the most
important command to retrieve messages from mailboxes. It has several op-
tions depending on what the user wants. Some of them are message flags,
email headers, and text of the body.

Using the FETCH command a user can select only one or more messages by
using the message sequence number in a range. It is possible to select all mes-
sages usine the “*”. Figures 2.27, 2.28 and 2.29 illustrate this procedure.

The STORE command adds, replaces or removes IMAP flags on messages, as
illustrated in Figure 2.30.

The COPY command copies any number of messages. This command is useful
for moving messages from one folder to another since IMAP does not have
built-in move command. Figure 2.31 illustrates this procedure.
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Figure 2.26: IMAP APPEND command Usage

Figure 2.27: A FETCH Command Selecting One Message

The UID command is issued with COPY, FETCH, STORE, or SEARCH com-
mands, together with unique identifiers in place of message sequence num-
bers.

The IDLE command allows a client to constantly monitor a mailbox so that a
user will be notified when a new message arrives. The server responds and
waits until a new message arrives or the client breaks the connector with the
DONE command (usually in order to send another command). During this
waiting period, the server sends “* OK Still here” message to inform the client
that the server is connected. Figure 2.32 illustrates this procedure. The DONE
command is the only command without a preceding tag.

2.4.5 Mailbox Synchronization

IMAP clients save some data on client computers in a cache. When a server
replies to EXPUNGE command that a message has been removed, the client
maps these messages’ UIDs to its cache. When a mailbox is selected by client,
an IMAP server is required to send status replies. The most important fields
for mailbox synchronization are changes to UIDVALIDITY, EXISTS and UID-
NEXT. When a client receives these fields, the client performs any action re-
quired to bring the mailbox in to a synchronized state by modifying with the
Sequence number, the UID number and message flags attributes [17].

Whenever the UIDVALIDITY value is changed on server side, the client cleans
its cache by removing any data in relation to its mailbox messages. This could
happen when UIDs changed or a message part is modified on the server side.
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Figure 2.28: A FETCH Command Selecting Three Messages

Figure 2.29: Fetch Command with Fast Option

If there is no UIDVALIDITY value or cache information changed, then the
client can fetch a complete UID mapping and message flags.

Any change in UIDNEXT value is checked by a change in UID value and EX-
ISTS. If the UID value change is the same as the EXISTS value change when
the UIDNEXT is changed, then it means some new messages have arrived but
none were deleted. In this situation, the client only has to request the UID
values of the new messages and FLAGS for all messages in the mailbox. How-
ever, if the changes in UID and EXISTS differ, then the client must retrieve the
UIDs of all messages in the mailbox.

Finally, if the UIDNEXT value has not changed, then it means that no new
messages have arrived in the mailbox since the last time synchronization. In
this situation, if the EXISTS value is changed, then this indicates that some
messages are permanently removed, and clients are obliged to fetch their UID
to Sequence value again as a whole. However, if EXISTS and UIDNEXT values
have not changed, this indicates that there have been no change in the mailbox
and only the message flags must be resynchronized.

After accomplishing these checks and communicating with the server without
error, then a client is said to be in the fully synchronized state and it is ready
to make any mailbox updates.

2.4.6 Differences Among IMAP Clients

Although the purpose of different IMAP clients is to access and manipulate
mailboxes on IMAP server in such a way that it provides equivalent functions
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Figure 2.30: IMAP STORE Command Usage

Figure 2.31: IMAP COPY Command Usage

to local folders, they all implement IMAP differently. This is due in part to the
fact that the IMAP protocol recommendations do not require all commands
to be implemented. IMAP commands are divided into REQUIRED, RECOM-
MENDED and OPTIONAL. RFC-2119 describes the exact definitions of these
and other terms [11].

For example, in Microsoft’s open specification documentation [5], the level
of support for Outlook’s IMAP4 service did not implement the RFC4315 Re-
quired, Recommended and Optional portions. RFC4315 was developed to
provide features to reduce the amount of time and resources used by some
disconnected-use client operations. Moreover, RFC3501 Recommended por-
tions and some parts of the Optional portion are also not implemented in Out-
look. Outlook ignores the next unique identifier value under UID message
attribute and some flags under Flags message attribute. Outlook also does not
use the CHECK, EXAMINE, SEARCH, UID SEARCH commands and ignores
untagged responses UNSEEN and UIDNEXT. Finally, Outlook never does a
partial fetch using FETCH command.

2.5 IMAP server Performance

IMAP servers require resources like other server systems/processes. How-
ever, an IMAP server must be able to handle large number of connections
and processes. It also should stay up 24/7 to provide uninterrupted service
to users. Moreover, it should have adequate disk space to store and memory
to process even very large numbers of mail messages with little or no signif-
icant performance degradation. However, the optimal type of resources and
platform is highly dependent on the number of current users and the rate of
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Figure 2.32: The IMAP IDLE and DONE Commands

growth. Good capacity planning before putting the server in service usually
prevents future problems as well as building users’ confidence. Some suggest
that the normal workload should not be greater than half the capacity of a mail
server [26].

Disk is the most important fixed resource when it comes to an IMAP server.
The disk space requirement can grow up to 100 percent per year [26]. In an
IMAP server configuration, disk is the most crucial factor because the servers
are I/O bound. If the disk configuration is not tuned appropriately, the system
might spend unnecessary time in the I/O wait state [26].

An IMAP server’s memory requirement is one of the difficult areas in server
configuration since it is directly related to the number of users that are ac-
tively reading their mail simultaneously rather than to the total number of
mail accounts. Moreover, each user connection has different memory require-
ments since each user spends different amounts of time connected to read and
reply to emails and they have different sized mailboxes. The IMAP process
must retain the physical memory allocated to a client process until that spe-
cific connection is disconnected. Although memory shortages can be solved
by swapping out client process(es), minimzing such instances results in the
best performance of the server’s memory subsystem [26].

2.6 Related Work

As of this writing, there are no previous studies directly comparing the perfor-
mance of IMAP servers with respect to the impact of different IMAP clients.
However, there are several studies which study related areas and issues with
respect to IMAP server performance.

One long term traffic traces study, based on application level analysis of SMTP,
POP3 and IMAP performance and traffic characteristics, showed that both the
duration of command exchange before emails were transmitted and the num-
ber of emails transmitted make a significant contribution to the heavy-tailed
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distribution. In the same study, serial processing of commands for sending
and receiving email was shown to account for a significant share of the latency
[12].

Another study on organizational network traffic showed that the email traffic
from SMTP and IMAP constitutes 94 percent of the total (in bytes) [41]. How-
ever, these researchers found no significant difference between internal and
wide area IMAP email traffic in terms of connection sizes except that the for-
mer connections are longer-lived. In the same study, the direction of the traffic
volume of SMTP and IMAP/S was largely unidirectional to SMTP servers and
to IMAP/S clients. This study also discovered that the success rate for IMAP/S
connections was 99-100 percent.

A performance comparison between different email storage options provided
by IMAP server indicated that the combination of the Cyrus IMAP and mySQL
has an advantage over the Courier-IMAP and UW-IMAP server for searching
and scanning header fields [20]. The result difference was mainly because of
mySQL’s full text indexing, which significantly sped up the searching. More-
over, a server-side buffer cache also is another factor that improves perfor-
mance by providing fast access to recently accessed data during searching.
The final conclusion was that IMAP servers with DBMS based file access can
search email better than a traditional file-based one.

A security comparison based on an automated entry/exit analysis between
open source IMAP servers UW-IMAP, Cyrus, and Courier-IMAP revealed that
Courier was the best product of the three with respect to security risk [24].

2.7 Email Infrastructure Future Directions

There is no doubt that the functionality of email services will certainly con-
tinue despite the fact that different new technologies are emerging to com-
municate digital messages. Many agree on the need to change on the current
system due to its susceptibility to Spam and security issues. However, the
question remains as to what within the system needs to change? There is no
clear future design for email infrastructure but the following points have been
raised by various researchers in different contexts.

The advancement of human life style with rapid changes in handheld device
technology allow users to manipulate digital messages including email. Cellu-
lar phones, Personal Digital Assistants (PDAs), iPhones, iPods and email em-
bedded application software are demanding a radical change in the features of
MUAs. For example, MUAs are being developed in diversified forms to be as
small as possible to fit the capacity of the handheld devices. At the same time,
large single user desktop MUAs that can handle multimedia MIME types and
graphics are also under development. This change in MUAs calls for upgrad-
ing the email infrastructure. For example, BlackBerry Enterprise Server offers
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BlackBerry smart phone users the ability to manipulate their email messages
and other digital messages. The email is provided by push technology to the
users and synchronizes with their desktop mail client [8].

To implement such advancements over a large scale, scalability is the major
issue to address in the email infrastructure, necessary due to mobile email-
ing demands for synchronization. The issue of synchronization is crucial for
handheld devices since they have small memories, and they generally do not
download messages like desktops do. Moreover, the cost of Internet connec-
tions in small devices is rather high compared to other types. In this regard,
IMAP plays a central role since the handheld devices prefer to manipulate
messages remotely.

With respect to large desktop and single user MUAs, the application software
is becoming larger because they are expected to display growing MIME types
locally. The demand from the user side to exchange more types of MIME
types, HTML formatted text, JPEG and PNG images, and PDF documents
makes email client development difficult and complicated. It is worth not-
ing that integration of MUAs with web browsers has become important due to
the widespread use of embedded hyperlinks included within email messages
[52].

Many applications now must also function in a virtualization environment.
However, corporate email infrastructure has not yet exploited the benefits of
virtualization. The administrative efficiency observed by other applications
through virtualization should motivate sites to consider hosting their mail
servers in virtualized environment. This invites researchers to experiment
more on possible performance bottlenecks especially in disk I/O and network
traffic and high availability of email service if implemented under a virtual-
ized environment.
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Chapter 3

Experimental Design and
Methodology

This chapter describes the methodology utilized to conduct the experiment.
This discussion will include consideration of the following points:

• The design of the experimental environment.

• The design and goals of the experiments.

• The tools and procedures used to carry out the experiments.

• The statistical analysis of the observed performance metrics.

3.1 Experimental Environment

In computer experiments, a large experimental domain is employed to explore
complicated non linear functions. This kind of experiment involves observing
a large number of variables to obtain the desired results. Since computer ex-
periments are deterministic, which means identical output should be obtained
from samples with same input settings [28], one has to able to control the envi-
ronment where the experiment is going to be conducted. Thus, in the follow-
ing section, the physical hardware environment settings and the IMAP server
and client computer system setup will be discussed.

3.1.1 Hardware Environment

Figure 3.1 shows the experimental lab physical network setup. The IMAP
server system was assembled with two network interfaces, one for the exter-
nal Internet network and the other for communication with the client system.
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A cross-over cable was used to connect the IMAP server with client computer.
During every active experimental period, the external interface of the IMAP
server was blocked. This was the control mechanism used to avoid external
network traffic interference.

The whole experiment was controlled through the external interface of the
client system. Communication was accomplished using SSH.

Figure 3.1: Experimental Physical Hardware Setup

IMAP Server System Hardware

This subsection describes the IMAP server system hardware configuration.
The report was gathered using linux lshw command, and it includes the mem-
ory configuration, firmware version, main board configuration, CPU version
and speed, cache configuration, and bus speed for the system.

1. Motherboard

Product: 0XC320 Vendor: Dell Computer Corporation.

2. BIOS

Vendor: Dell Computer Corporation; Physical id: 0; Version: A07 (04/25/2008);
Size: 64KiB; Capacity: 960KiB.

3. CPU: There are two identical CPUs

4. CPU 0

Product: Intel(R) Xeon(TM) CPU 3.00GHz; Vendor: Intel Corp.; Physical
id: 400; Bus info: cpu@0 and cpu@1; Version: 15.4.10; Serial: 0000-0F4A-
0000-0000-0000-0000; Slot: PROC-0 and PROC-1; Size: 3GHz; Capacity:
3600MHz; Width: 64 bits; Clock: 800MHz.

5. Memory Description: System Memory; Physical id: 1000; Slot: System
board or motherboard; Size: 2GiB.
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6. SCSI Disk

Product: LD 0 RAID1 69G; Vendor: MegaRAID; Physical id: 2.0.0; Bus
info: scsi@0:2.0.0; Logical name: /dev/sda Version: 5B2D; Size: 68GiB
(73GB).

• Volume:0
Description: EXT3 volume; Vendor: Linux; Physical id: 1; Bus info:
scsi@0:2.0.0,1; Logical name: /dev/sda1; Logical name: /; Version:
1.0; Serial: a96f4d92-5dab-48b0-816d-4889d1506136; Size: 67GiB; Ca-
pacity: 67GiB.

• Volume:1
Description: Extended partition; Physical id: 2; Bus info: scsi@0:2.0.0,2;
Logical name: /dev/sda2; Size: 729MiB; Capacity: 729MiB; Capa-
bilities: primary extended partitioned partitioned:extended.

• Logical Volume
Description: Linux swap / Solaris partition; Physical id: 5; Logical
name: /dev/sda5; Capacity: 729MiB; Capabilities: nofs.

7. Network: 2 identical Ethernet interfaces eth0 and eth1

Product: 82541GI Gigabit Ethernet Controller; Vendor: Intel Corpora-
tion; Physical id: 7 and 8; Bus info: pci@0000:06:07.0 and pci@0000:07:08.0;
Logical name: eth0 and eth1; Version: 05; Serial: 00:14:22:20:57:1d and
00:14:22:20:57:1e; Capacity: 1GB/s; Width: 32 bits; Clock: 66MHz; Ca-
pabilities: pm pcix bus-master cap-list ethernet physical tp 10bt 10bt-fd
100bt 100bt-fd 1000bt-fd autonegotiation; Configuration: autonegotia-
tion=on broadcast=yes driver=e1000 driverversion=7.3.20-k2-NAPI du-
plex=full firmware=N/A ip=192.168.1.101 latency=32 link=yes mingnt=255
module=e1000 multicast=yes port=twisted pair speed=1GB/s.

3.1.2 System Environment

Operating System Configuration

Debian GNU/Linux 5.0.5 Lenny was selected as the operating system for the
experiment. The default packages installed by the distribution were used to
run the system. A few services were disabled, including syslog, cron and the
exim4 default SMTP protocol (see Figure 3.2).

The following additional packages were required for the experiments, and
they were installed on IMAP server and run during the experiments.

1. SSH

This package was required for logging into a remote machine and for
executing commands on the IMAP server and client system remotely. A
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Figure 3.2: Services Running on the IMAP server During Experiments [List
obtained from the Debian Runlevel configuration tool rcconf]
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passwordless connection between the IMAP server and the client system
was achieved via the ssh-keygen mechanism (which is used to generate
and manage keys for SSH authentication).

2. Postfix

This package was required as a Mail Transfer Agent (MTA) to deliver
messages to mailboxes. Postfix was installed on IMAP server. The de-
fault configuration file, main.cf, was used for this experiment with the
addition of the entry “home *mailbox = Maildir/” at the end of the file.

To make the Maildir message format workable (this mailbox format is
described later in this chapter), the /etc/procmailrc file was created with
“DEFAULT=$HOME/Maildir/” as its first entry.

Since Maildir works with filesystems that support directory indexes, the
third extended filesystem (ext3) type was chosen for the volume holding
the mailstore. Ext3 is a Linux journaled file system, and it is the default
file system for most Linux distributions. Ext3 supports directory index-
ing, but it needs to be enabled. The following command checks whether
directory indexing is enabled or not:

tune2fs -l /dev/sda1 — grep features

In this case, directory indexing was enabled because “dir *index” was
listed among the filesystem features. Otherwise, it can be enabled for
this filesystem as follows:

umount /dev/sda1
tune2fs -O dir *index /dev/sda1
e2fsck -fD /dev/sda1
mount /dev/sda1

The following library packages also were installed with Postfix: postfix-
tls, libsasl2-2, sasl2-bin, and libsasl2-modules.

3. Dovecot

Dovecot is an Open Source IMAP and POP server for Linux operating
systems. The packages dovecote-imapd and dovecote-common were in-
stalled to run the Dovecot server. The default configuration in /etc/dovecot/dovecot.conf
was used, with the following changes:

• disable *plaintext *auth = no

• mail *location = maildir:˜/Maildir
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4. Dstat

Dstat is a plugin-based, real-time monitoring tool for generating sys-
tem resource usage statstics [50]. This tool was used to collect the re-
quired data in this experimental setup. It was selected because it allowed
network bandwidth measurements to be compared directly with disk
throughput during the same time interval [50]. In addition, the tool’s
ability to export the results in CSV file format was very convenient.

5. Psmisc

This package was required because it contains the killall command, which
was used to kill processes by name.

6. Shar Utils

This package was installed because it contains the uuencode command.
The uuencode command was used to encode binary files created by the
dd command in order to create test messages from binary files.The com-
bination of this command with dd proved a useful method of easily in-
creasing or decreasing message size for the experiment.

The following packages were required and installed on client system.

1. Expect

Since the simulation package is written in using the Expect program (see
below), this package was installed and run on the client system. The Ex-
pect programming language was used to simulate the clients’ behavior
because of its capability to automate interactive processes, in this case,
an interactive session between the email client and the IMAP server[30]
and [31].

3.2 Major Experimental Components Selection

3.2.1 IMAP client selection

The following five email clients were selected for study and comparison:

• Microsoft Office Outlook 2007 SP2 MSO

• Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.10) Gecko/20100512
Thunderbird/3.0.5

• Opera/9.80 (Windows NT 6.1; U; en) Presto/2.5.24 Version/10.54

• Sylpheed version 3.0.0 GTK+ 2.10.14 / GLib 2.12.13 Operating System:
Win32
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• Mulberry V4.0.8

Five desirable email client attributes were identified and used as the basis of
selection. They are: popularity among propritory email clients, popularity
among Open Source email clients, simplicity, full integration with a browser,
and homogeneity.

Microsoft Outlook 2007 was selected as a candidate because it is one of the
top popular, widely used proprietary desktop email clients, although it is plat-
form dependent. Thunderbird was selected because it is a widely used an
Open Source desktop email client. Opera was selected because it is fully in-
tegrated with Opera web browser. Mulberry was selected because it supports
only IMAP, fulfilling the homogeneity criterion. Finally, Sylpheed was selected
because it is simple, lightweight yet feature-full and easy to use. The compar-
ison was not intended to compare proprietary vs Open Source software, but
rather to investigate differences in IMAP protocol implementations.

3.2.2 IMAP Server Selection

Dovecot is a widely-used Open Source IMAP and POP3 server for Linux/UNIX-
like systems. It is fast, simple to set up, and it requires no special administration[45].
Its simplicity is the main reason for selecting it for this experiment because the
main purpose of this thesis is studying and comparing IMAP clients behavior
under different scenarios.

3.2.3 Mailbox Format Selection

There are several different types of mailbox formats in use today. The most
widely used are two: the flat-file and file or message formats. In the flat-file for-
mat, the mailbox and messages in the mailbox are stored in a single file. In the
second type, file or message format, the mailbox is a directory and messages
under it exist as a separate file citeweb10.

The file or message format was selected for this experiment because the format
is highly responsive to disk I/O-intensive IMAP commands like deleting and
file status change. This is because of its high amount of inode usage on the
disk. In the extreme case, this can result in disk thrashing and other I/O prob-
lems when there is an very large amount of message manipulation, especially
for creating and deleting messages[18]. While such situations are best avoided
in production environments, this tendency could actually prove favorable to
an experiment comparing different clients’ behavior as problems could man-
ifest themselves more easily and dramatically, making them easier to detect
and measure. Thus, among the many file or message format schemes, Maildir
was selected for this experiment.
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3.3 Client Behavior Simulation

In order to investigate the research questions posed by this thesis, it is neces-
sary to observe email client operations in a realistic manner and environment.
However, the inherent interactive nature of these processes makes such tasks
challenging. Accordingly, a substantial effort was required in order to perform
such operations in a manner that is amendable to repeatable observation and
scientific study. Clearly, performing repeated tests of email clients manually
would be both inordinately time consuming and difficult to reproduce, and
any results would be accordingly unreliable. A way to automate this process
to minimize time requirements to perform the experiments and guarantee the
reproducibility of the observed metrics was essential.

Currently, there is no benchmarking tool focused on IMAP client behavior. The
few related tools that do exist, such as SLAMD [49] and MSTONE [51], focus
on stress and performance measurements and thus do not reflect the perfor-
mance overhead from clients’ IMAP implementation choices. The reason that
these and other similar benchmarking tools were not selected for this experi-
mental purpose is that:

1. These tools mix SMTP traffic and performance overhead with IMAP dur-
ing the experimental period, and isolated IMAP traffic was needed for
valid network bandwidth metrics.

2. They are designed to conduct different level of stress tests against IMAP
servers, not simulate normal operations.

3. Although the tools utilize IMAP commands for benchmarking purposes,
they do not reflect actual behavior of existing IMAP client softwares.
Thus, they cannot simulate a specific client’s IMAP behavior.

Therefore, this thesis introduces a new concept of IMAP server benchmarking
IMAP that accurately simulates the differing behavior of IMAP client software
and their implementation differences.

3.3.1 Preparatory Investigations of Client IMAP Implementations

The benchmark tool created for this thesis simulate the precise IMAP imple-
mentation of each client software program. In order to do so, this low-level
functioning must be observed and recorded. This preliminary step is common
requirement in Open Source programming projects such as the SAMBA facility
[48][13].
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The methods employed by each email client to communicate with IMAP server
for each mail operation were studied by observing the network traffic associ-
ated with each supported operation using Wireshark1. Each operation was
performed manually using the unmodified client software at the GUI level.

A traffic filter was created for the manipulation of a group of 80 email mes-
sages. The network traffic was then dumped while the activities were accom-
plished for all five selected five. The following steps were followed:

Step 1: A script was prepared to create the necessary message folders, and then
subscribe to them. The script was used again in the finished benchmarking
tool for message folder preparation.

Step 2: The user logged in and waited for messages.

Step 3: Wireshark was started to capture the traffic between the client machine
and the server for the filtered IMAP protocol traffic.

Step 4: A prepared script that sends one message every 30 seconds was started.
The script sent a total of 80 messages. The 30 second interval is to allow time
for the user to manipulate the message. This script was also ultimately incor-
porated into the completed benchmarking tool.

Step 5: As each message arrived at the client machine, the user manipulated
them, based on a previously-generated random number that determined the
kind of manipulation for that message. Table 3.1 shows the possible outcomes
for messages. The Action column shows what happened to the individual
messages: MOVED with Fx indicates the message was moved to Folder x;
DELETE means that the message was deleted; SPAM indicates the message
was considered as spam and handled according to the email client’s defaults.
The No. column shows the sequence number corresponding to the message’s
arrival in the client software.

Step 6: The 80 messages were divided in to four groups of 20 messages. After
manipulating all of the messages with a group, the user then SELECTs each of
four message folders, one by one, and reads the messages newly moved from
the Inbox. The number of messages that were moved to each message folder
after the completion of each message group is summarized in the following
tables. In each table,l the first column shows the list of created message folders,
the second columns shows the amont of messages moved to each folder, and
the third column shows the message IDs number upon arrival in the message
folder.

Step 7: The client program terminated connection with the IMAP server, and
the user was logged out.

Step 8: Wireshark was stopped from capturing the traffic.

1Wireshark is a network protocol analyzer for Unix and Windows [44]
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Steps 1 through 8 were repeated for all selected client softwares. The captured
traffic was then studied to determine the underlying IMAP commands issued,
and this information was prepared for simulation.

3.3.2 Programming

Once the network traffic data was analyzed, the Expect facility was used to
simulate email client’s communication with the IMAP server. The traffic cap-
tured using Wireshark was studied, and each client’s activity was reproduced
using Expect. A flow chart was prepared for each client before programming
started. For example, the flow chart for the Sylpheed email client is shown
in Figure 3.3.2 The simulation scripts are not included with this thesis report
because of their size. The scripts can be provided by request.

This inherent behavior of Expect was very beneficial to the ultimate goals of
the experiment. Fore example, it is the nature of Expect not to not issue the next
request before the server responds to the previous request, making scripting
using it essentially self-throttling. Therefore, if disk I/O performance is fast,
the IMAP server is able to respond to commands sent from clients quickly. If
the disk I/O performance is slow, there could be high I/O wait, and the IMAP
server will respond to clients more slowly. Expect handles all cases smoothly
and reliably. In this way, the whole experiment was controlled, and the re-
lationships and trends among the selected performance metrics were main-
tained. Moreover, it was also very easy to monitor other undesirable perfor-
mance overhead that appeared in the experiment.

3.3.3 Benchmarking Tool Architecture

The custom benchmarking tool has three major components:

• The first component is a collection of scripts written in Expect that sim-
ulate the five selected IMAP client software.

• The second component is a collection of preparation scripts written in
Expect and bash. These include a script that sends message to mailboxes
of a specified message size and ID, a script that creates no-login user
accounts on server, a script that clears out the existing mail folders direc-
tory, and a collection of scripts written for each client that prepares the
mailbox for next experiment, depending on the experimental require-
ments.

2Since drawing the flow chart in a publication worthy manner requires a long time, and
the programming implementation is similar for the other clients, the flow charts for the other
clients are not included in this thesis. At the time of developing the benchmarking tool, hand
written flow charts were employed. One can easily understand the simulation scripts for the
other clients using Sylpheed’s flow chart as a template.
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Figure 3.3: Flow chart for Sylpheed Optimized Behavior Simulation Script
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• The third component is the main driver script which automates the whole
benchmarking process. It is written in bash. It prompts for various ex-
perimental parameters and then controls the experiment according to
the specified requirements. After collection, the results are put either in
CSV format or in text file, so that the experimenter can analyze them as
required.

The code for the benchmarking tool is included in an appendix.

3.4 Experimental Design

Identical experiments were run in order to compare the result of different
clients’ behavior before, up to, and after message manipulation. Each experi-
ment was replicated 35 times because the standard deviation was not known
in advance. For stochastic data such as this, each single group of message ma-
nipulations was were repeated so that a steady state pattern was achieved to
obtain accurate results concerning the trends of client behavior.

The experiment were controlled and automated by the custom benchmark-
ing tool described previously. This helped to eliminate human induced errors
from manual operations. Among the many tasks the script accomplishes are:
rebooting the server between each replication, ensuring that the desired num-
ber of clients are running , starting and stopping the performance monitoring
tools, and the like. The functioning of the main automation component of
the benchmarking tool is illustrated in Figure 3.4. The scripts to automate the
benchmarking process are attached in Appendix B.

3.4.1 Message Group Selection

Message group represents 80 messages in a group. The 80 message group is
based on survey results from the Radicati Group [46]. According to the survey,
by 2014, the average number of messages received by a typical corporate user
per day will be 80. Among these messages, only 65 will be legitimate and the
rest will be Spam. Therefore, the number of messages in a group is set at 80.

3.4.2 Message Size Selection

Message sizes during the experiments should reflect realistic average email
message sizes. However, it is difficult to find relevant scientifically supported
data in this regard. There are different sources that suggest the average size
of an email message. About.com reported that average email size is 75 Kbytes
[47]. As the source reported, attachments, news letters and marketing email
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Figure 3.4: Benchmarking Automate Script Flow Chart
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skewed the average to this level. Thus, this thesis used this information to
decide on the size of an email message for experiment purposes.

Two sizes of message were used to compare the different IMAP clients: 3.4
Kbytes and 76 Kbytes, representing small and average message sizes. Note
that the small message size simulates typical text-only messages well, the type
which makes up a substantial portion of actual communication-related email
messages. Time constraints did not allow messages larger than average to be
included in this thesis. Each scenario discussed below was tested with these
two message sizes.

3.4.3 Client Scenarios: Default vs Optimized

Client behavior was actually simulated in two modes: the default mode used
by the unmodified client software as installed, and an optimized mode cor-
responding to modifying available client software options and preferences to
provide the best possible performance. Both the default and optimized version
experiments were repeated with both message sizes (3.4 KB and 76 KB).

Default Client Configurations

The default scenario tried to simulate the IMAP clients’ behavior without op-
timizing it. It focuses on default behaviors that do not have a direct effect on
users’ message manipulation but might have an impact on server side resource
usage.

For example, different clients implement the final destination of message after
deletion differently. Outlook and Mulberry leave the deleted messages in In-
box by marking them as deleted, visually in client GUI and flagging them as
deleted on IMAP server. In contrast, Sylpheed and Thunderbird move deleted
items to Trash folder (which is created and subscribed during initial installa-
tion of the client). the Opera mail client just flags messages as deleted and
shows the deleted messages in Trash folder (again created on the client ma-
chine during initial configuration). It has to be noted that the Trash folder
does not exist on IMAP server. Thus, Opera, Outlook and Mulberry do not
change UID value that each message received at message arrival in Inbox but
identify them as deleted via flags.

Opera provides two options for deletion. The first mode is used when user
wants to delete messages permanently. This is useful when deleting unread
spam messages. The second mode is performed via the keyboard delete key
or by right clicking on the message and selecting “Move to Trash.” This feature
is shown on Figure 3.5. Note that the Trash folder is visible on client machine.
When messages are deleted, they exist physically in Inbox but appear to be in
Trash folder. The user can view the messages in Trash as shown in Figure 3.6.
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Figure 3.5: Opera Option for Handling Deleted Messages
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Figure 3.6: Trash Messages in the Inbox
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In contrary, Sylpheed and Thunderbird movs the deleted messages perma-
nently from Inbox to Trash folder on server side and provide them with new
UID values. This scenario is selected to find out if there were any performance
difference between the different clients resulting from the differences in han-
dling deleted messages.

The other important varying default behavior of email clients is in handling
the EXPUNGE command. As it has been explained in the background part
of this thesis, the EXPUNGE command permanently removes messages with
deleted flag set. Opera by default utilizes the EXPUNGE command after delet-
ing messages permanently or moving them to another folder. However, Sylpheed,
Outlook and Thunderbird do not use EXPUNGE command to clear messages
with deleted flags unless the user explicitly specifies it. Similarly, Mulberry
does not use EXPUNGE command by default, but it has a button on front side
of its GUI that invokes it.

Figure 3.7: Thunderbird’s Default settings

Optimized Client Configurations

The optimized scenario was designed to investigate on different clients’ capa-
bilities and flexibility in manipulating messages. For example, Thunderbird
provides three choices to users for the destination of a deleted message. Users
can choose to “Move it to a folder”, giving the user flexibility missing from
other clients. Users can also choose to “Just mark it as deleted,” equivalent to
the behavior of Outlook and Mulberry. Finally, users can choose to “Remove
it immediately,” probably an unpopular option since no one wants to lose a
message forever if it is deleted by mistake. These options are offered via a
Radio Button control, so a user must choose only one of the three. Thunder-
bird also provides two options via check boxes further specifying how to deal
with deleted messages when exiting from a folder. They are “Clean up Inbox
on Exit” and “Empty Trash on Exit.” A user can choose one of them, both,
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or neither of them. Figure 3.7 shows these features within the client software
GUI.

Figure 3.8: Outlook’s Purge Option

Figure 3.9: Outlook’s Purge Option

Outlook provides different options in this regard. Its users can either leave
deleted messages marked and visible in GUI or use the purge option shown in
Figures 3.8 and 3.9. Figure 3.8 shows temporary clearing of messages with
deleted flags. However, Figure 3.9 provides for clearing deleted messages
while switching folders if user is online.

Opera does not need to optimize the default behavior of the client because
(as explained earlier) it provides a simple purging option via right clicking on
Trash folder and selecting “Empty Trash” (see Figure 3.10). Moreover, when
an undesirable messages arrives, user has option to delete them permanently
using the feature shown in Figure 3.5.

Mulberry by default does not use EXPUNGE command when messages are
moved from one folder to another. The users should either click on the Ex-
punge button on toolbar or optimize the default in the preferences as shown
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Figure 3.10: Opera Emptying the Trash Option

Figure 3.11: Mulberry Optimization options
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in Figure 3.11). This client provides an optional expunge warning to users
which is useful since Expunge command is dangerous if used inappropriately.

Sylpheed does not Expunge messages with deleted flags and does not provide
an option like Thunderbird, Outlook and Mulberry to expunge messages on
exit from folders. It behaves like Opera in that user can clear Trash folder from
File menu’s Empty all trash item.

3.5 Observed Data

This section describes the actual experimental observations in detail.

Each individual experiment was a set of three sub-experiments. Two of them
are dependent on the performance measurement portion, hereafter referred
to as the main experiment, because they were performed before and after it.
The sub-experiments obtain the mailbox size before and after the main exper-
iment. The main experiment measures system performance with respect to
disk throughput (disk write and read), network bandwidth (packets received
and sent), CPU time usage, system interrupts and context switches.

3.5.1 Disk Volume Utilization

The main purpose of this experiment is to compare the different clients and to
find out how much server disk space utilized during experimental period.

Each mailbox folder space utilization is measured three times: (1) Right after
mailbox folder is created, (2) After desired amount of message are inserted for
experimental purposes, and (3) After the main experiment is completed. The
du shell command is used to gather mailbox folder disk usage.

The sample size to collect disk space utilization is directly related to the actual
experiment replication since the capture is controlled by the benchmarking
process.

3.5.2 Performance Metrics

The following computer performance metrics were collected simultaneously
using the dstat tool. 1) Disk I/) read and write performance, 2) Network band-
width usage for packets received from and sent to the IMAP server, 3) System
interrupts and context switches issued, and 4) CPU time usage by user, system,
idle and I/O wait.
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Disk I/O performance metrics are used to evaluate how IMAP client activities
affect the read and write performance of the experimental system. For exam-
ple, message downloads and copy and move operations increase disk read and
write activities. Thus, the results from disk I/O performance were the direct
reflection of the IMAP command’s resource requirements.

Network bandwidth usage for packets received and sent was controlled by the
scripts because it is the direct reflection of the amount of commands that each
client sends to the IMAP server and the server responses.

The system context switch is the metric associated with the of storing and
restoring state of a CPU so that execution can be resumed at a later time. In
most cases, in this experiment context switching is caused by system interrupts[38].
A system interrupt is generated by the I/O controller and signals the normal
completion or occurrence of an error or failed condition in the I/O activities.
Thus, this performance metric is selected since it has direct relationship with
disk I/O activity [38] and [27].

Among the CPU time use variables listed above, the main interest was the I/O
wait time because it reflected directly the disk I/O activities[38].

These performance metrics was gathered by the dstat tool. The following com-
mands were run on the experimental system remotely from the client side:

dstat –output experimentaloutput.csv –noheaders -dnyc -D total -N total -C
total

The –ouput option were used to gather the data and save in CSV format. The –
noheaders option was used to avoid headers between data. The -dnyc options
tells dstat to relate disk-throughput with total network bandwidth, cpu usage
and system counters.

Dstat starts and stops were controlled by the benchmarking tool so that dstat
was run for 10 seconds before and after the actual experiment. Each experi-
mental replication run was separated by rebooting the machine to control the
cold cache and minimize experimental error.

The amount of time that dstat spends gathering this performance data is de-
pendent on the client. This means, since the nature of the data collected is
time series, the length of time required to run each client simulation is differ-
ent. However, the benchmarking tool controls the simulation scripts existence
through their PID so that when the simulation script finishes its job, the bench-
marking process stops the data collection by killing the PID of the dstat process
on the experimental system.
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3.5.3 Number of Messages in Message Folders

This sub-experiment records the number of messages left in each message
folder after completion of each replication. A script was written to accomplish
this task. The script was run only after completion of the main experiment
because the main experiment directly influenced the number of messages in a
message folder.

3.6 Data Analysis and Interpretation

After collection, the various metrics were plotted and analyzed. Various forms
of standard statistical analysis were used.

• The data collection method is time series-based. After collecting data
for 35 replications of each experiment, arithmetic mean values for the
35 replication were calculated. The standard deviation measures how
widely each individual values are dispersed from the mean value. The
standard deviation results were used to plot error bars.

• Trend analysis was also attempted to project values in the time series
graph and to compare the resource usage based on the growth trend on
the graphs (via regression analysis).

• The correlation coefficient of the 10 performance metrics were calculated
to determine the relationship between them. In the result tables, the cor-
relation matrix lists the performance metrics variable names down the
first column and across the first row. The diagonal of a correlation ma-
trix indicates the correlations between each variable and itself, and these
values are thus always 1 (a variable is always perfectly correlated with
itself).

• The best fit function for each time-series based graph, selected based on
R-squared value. This statistic makes it possible to understand the slope
increase or decrease of the observed quantity as the amount of messages
in the Inbox decreases or increases. The value of R-squared is also re-
ported.

• Trend analysis was used to project values in the time series graph and to
compare the resource usage based on the growth trend on the graphs.
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Action No. Action No. Action No. Action No.
MOVE
F2

1 DELETE 21 MOVE
F3

41 DELETE 61

MOVE
F1

2 MOVE
F1

22 SPAM 42 MOVE
F4

62

MOVE
F3

3 SPAM 23 MOVE
F4

43 MOVE
F4

63

SPAM 4 MOVE
F1

24 DELETE 44 DELETE 64

MOVE
F1

5 MOVE
F3

25 MOVE
F2

45 DELETE 65

DELETE 6 DELETE 26 MOVE
F4

46 MOVE
F3

66

SPAM 7 DELETE 27 MOVE
F2

47 SPAM 67

DELETE 8 MOVE
F2

28 MOVE
F3

48 DELETE 68

MOVE
F4

9 MOVE
F3

29 MOVE
F1

49 MOVE
F4

69

SPAM 10 MOVE
F2

30 DELETE 50 DELETE 70

SPAM 11 DELETE 31 DELETE 51 MOVE
F2

71

MOVE
F1

12 MOVE
F4

32 DELETE 52 MOVE
F3

72

SPAM 13 MOVE
F2

33 MOVE
F1

53 MOVE
F1

73

SPAM 14 DELETE 34 MOVE
F2

54 DELETE 74

MOVE
F4

15 MOVE
F4

35 SPAM 55 SPAM 75

DELETE 16 SPAM 36 DELETE 56 MOVE
F2

76

MOVE
F3

17 MOVE
F1

37 MOVE
F1

57 MOVE
F4

77

DELETE 18 MOVE
F3

38 SPAM 58 DELETE 78

DELETE 19 SPAM 39 MOVE
F3

59 MOVE
F2

79

DELETE 20 SPAM 40 DELETE 60 DELETE 80

Table 3.1: This Table Shows the fate of each message as they arrived in mail-
box. The action column shows what happend to the individual messages.
If MOVED with Fx then it indicates the message was moved to Folderx. If
DELETE, then the message was deleted. If SPAM then the message was con-
sidered as spam and deleted based on the email client implementation. The
No. column shows the sequence number according to the messages arrival in
the clients software.
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Folder No. of mes-
sages

message
No.

F1 3 1,2,3
F2 1 1
F3 2 1,2
F4 2 1,2

Table 3.2: This table shows the summery for each message folders created afer
the first 20 message group manipulation. The first column shows the list of the
created message folders. The second shows the amont of messages moved to
each folder. The third one shows the message UID number while arriving in
the message folder.

Folder No. of mes-
sages

message
No.

F1 3 4,5,6
F2 3 2,3,4
F3 3 3,4,5
F4 2 3,4

Table 3.3: This table shows the summery for each message folders created afer
the second 20 message group manipulation. The first column shows the list of
the created message folders. The second shows the amont of messages moved
to each folder. The third one shows the message UID number while arriving
in the message folder.

Folder No. of mes-
sages

message
No.

F1 3 7,8,9
F2 3 5,6,7
F3 3 6,7,8
F4 2 5,6

Table 3.4: This table shows the summery for each message folders created afer
the third 20 message group manipulation. The first column shows the list of
the created message folders. The second shows the amont of messages moved
to each folder. The third one shows the message UID number while arriving
in the message folder.
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Folder No. of mes-
sages

message
No.

F1 1 10
F2 3 8,9,10
F3 2 9,10
F4 4 7,8,9,10

Table 3.5: This table shows the summery for each message folders created afer
the fourth 20 message group manipulation. The first column shows the list of
the created message folders. The second shows the amont of messages moved
to each folder. The third one shows the message UID number while arriving
in the message folder.
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Chapter 4

Results

This chapter presents the results from the actual experiments conducted.

4.1 Overview of Presented Results

The chapter is divided separate sections for each client: Mulberry, Opera, Out-
look, Sylpheed and Thunderbird. Each client section contains the following
results:

• Graphs plotting the results of the experiments using the small message
size of 3.4 KBytes and simulating the client software’s default behavior:
disk I/O read and write performance, network bandwidth sent and re-
ceived, system interrupt levels, context switches, and total system CPU
usage. These graphs include error bars.

• The correlation matrix between the preceding performance metrics over
time. Each correlation matrix lists the performance metrics’ variable
names down the first column and and across the first row. The diago-
nal of the correlation matrix always consists of ones (these are the cor-
relations between each variable and itself, always perfectly correlated).
The value of any correlation coefficient must be between +1 and -1. In
this thesis, correlation coefficient values with absolute values greater
than or equal to 0.9 but less than 0.95 are considered to be correlated
(positively or negatively, depending on the sign). Correlation coeffi-
cient absolute values greater than or equal to 0.95 are considered to be
very strongly correlated. Negative correlation indicates an inverse re-
lationship between performance metrics variables: as one increases, the
other decreases. Positive correlation indicates a direct relationship be-
tween performance metrics: as one increases the other increases. Values
approaching zero indicates the absence of any relationship between the
performance metrics.
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• The same result presentations are repeated for the experiments using the
small message size and simulating the client software’s optimized be-
havior.

• Graphs plotting the results for the client’s default and optimized behav-
ior for disk I/O and network bandwidth. These allow an easy compar-
ison between the two operational modes for the most important perfor-
mance metrics.

• Graphs plotting the results of the experiments using the default client
behavior and the average message size of 76 KBytes: disk I/O read and
write performance, network bandwidth sent and received, and CPU I/O
wait time. For convenience, the corresponding small message size data
is included in each plot for comparison purposes. Error bars are omitted
from these graphs due to time constraints and as they follow the same
trends as for the corresponding small message size data.

• Graphs plotting the results of the experiments using the optimized client
behavior and the average message size for the same metrics as the pre-
ceding. Again, the corresponding small message size data is included
for comparison purposes.

4.1.1 Visual Analysis

Figure 4.1: This example graph presents data for the client’s default and opti-
mized behavior.

This section elaborates how to interpret the graph results obtained from the
actual experiments. The discussion is based on the model graph shown in
Figure 4.1.
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2800 messages were put in mailbox before the start of all experiments. 80 mes-
sages at a time were manipulated by each client until all 2800 messages in
mailbox were handled, for both the default and optimized behaviors. This
process is controlled by the benchmarking tool explained previously. The fol-
lowing explanation summarizes the data presented in each graph and places
it into its experimental context.

This example graph is one comparing the client’s default and optimized be-
havior. All labeled items will not be present on every graph.

Circle number 1 is the point in the graph where resource utilization starts. The
starting point for each performance metric is similar for the default and opti-
mized behavior of the client because both start with the amount of messages
indicated at circle 4. If the amount of messages in the Inbox is increased or
decreased at the start, the performance metrics’ starting point values on the
y-axis also would decrease or increase correspondingly. However, 2800 initial
messages in the mailbox was maintained throughout the experiments.

Circle number 2 shows the end of the experiment after manipulating all 2800
messages for default behavior of the client. The length could be different for
the various clients.

Circle number 3 shows the end of the experiment after manipulating 2800 mes-
sages for optimized behavior of the client. The length could be different for all
clients. This point indicates the y-axis value when the Inbox is empty.

Circle number 4 indicates the amount of messages in all mailboxes at starting
point of the experiment. This is consistent for all clients under both the default
and optimized scenarios.

Circle number 5 shows the amount of messages in all mailboxes for the default
behavior of clients at the end of the individual experiment. Note that the Trash
box is implemented only by Thunderbird and Sylpheed. The amount of mes-
sages in the Inbox is different for each client (explained later). The 2800 value
in the model graph is an example.

Circle number 6 shows the amount of messages in all mailboxes for the opti-
mized behavior of clients at the end of the individual experiment. The actual
data values will again vary by client.

Circle number 7 shows the slope of the graph for the optimized behavior of
clients as the amount of messages in Inbox decreases by 80 and the amount of
messages in other message folder increases by 10 for every 80 message group
manipulation. In most cases, the best function that fits the graph is a third de-
gree polynomial. The best fit function was selected based on R-squared value.
The function equation and R-squared values are included in the graphs. From
this data, it is possible to understand the slope increase or decrease as the
amount of messages in Inbox decreases or increases.
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Circle number 8 shows the slope of the graph for default behavior of clients
when the amount of messages did not decrease in the Inbox (for most clients
except Sylpheed and Opera). The amount of messages in other message fold-
ers increases by 10 as each group of messages is manipulated. In most cases,
the best function that fits the graph was closer to linear.

Circle number 9 shows an arrow indicating the the time elapsed in seconds
required to complete the experiment.

Circle number 10 is an important point for the visualization discussion. By
projecting from circle number 3, it is possible to determine the the performance
value of the y-axis when the Inbox is empty.

Circle number 11 visualizes what would happen if the user received 80 mes-
sages at a time and manipulated them under the optimized behavior. This best
case could not be achieved in the real application since there would not be any
messages in Inbox at the end of 80 message group manipulation, merely an
increase of 10 messages in each of the other message folders.

Circle number 12 visualizes the same process for the default behavior, indicat-
ing what would happen if the user received 80 messages at a time and manipu-
lated them. It is an adaptation of the optimized behavior slope (circle number
7) because they have similar trends except that this one moves from high to
low since its initial point is when the value in x-axis is zero and the Inbox is
empty. This indicates that the client starts with equal performance resource us-
age to the visualized optimized behavior (circle number 10) with a slope trend
similar to the optimized behavior.

Circle number 13 is the limit of time for the optimized behavior for an in-
creased or decreased amount of messages in the Inbox in the experiment.

Circle number 14 is the limit of time the for default behavior for the constant
amount of messages in the Inbox in the experiment.

Thus, the model demonstrates a decreased in performance as the amount of
messages accumulate in Inbox and other message folders for the default be-
havior and a constant resource demand with a very slight slope decline as the
experiment runs for the optimized behavior.

4.1.2 Statistical Analysis

The graphs are plotted from the per-value means of 35 measurement replica-
tions. Error bars are plotted from standard deviation values. The wider error
bars indicate the potential error or degree of uncertainty. The equations dis-
played on various graphs are the function that best fits the graph. The thin on
each the graph is the trend line. The R-squared value shown is the square of
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the Pearson product moment correlation coefficient through data points. This
value indicates the fitness of the selected function to the actual values in graph.

Most client’s default behavior graphs showed a linear function trend line.
Graphs from Mulberry, Thunderbird and Outlook are good examples for this.
Sylpheed graphs behave the same for its both behavior graphs. For client’s
optimized behavior, some showed an exponential function but the slopes for
this function were not significant because the slope for theses graphs were not
steep as normal exponential function graphs. Most graphs were fitted with
polynomial function of varying degree from 2 to 5. The equations with R-
squared values indicated on the graphs provide evidence as to how well the
function fits to actual graph. From these equations, one can easily see the trend
by which the performance mertics decreased or increased.
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4.2 Mulberry

4.2.1 Mulberry Default Behavior: 3.4 Kbyte Message Size

The following graphs show Mulberry’s default behavior for the 3.4 Kbyte mes-
sage size. Figures 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7 show Mulberry’s default behav-
ior server side resource usage for disk I/O read and write performance, net-
work bandwidth usage for packets received and sent, and system interrupts
and context switching. Figure 4.8 shows CPU time usage by user and system,
and CPU idle and wait time. The graphs are plotted from per-point means of
35 replications.

Table 4.9 shows the calculated correlation coefficient values for this client’s
default behavior for all measured performance metrics.

Figure 4.2: Mulberry Default Behavior Disk I/O Read Performance: 3.4 Kbyte
Message Size

Figure 4.3: Mulberry Default Behavior Disk I/O Write Performance: 3.4 Kbyte
Message Size

Figures 4.2, 4.4, 4.5 and 4.7 show a very slight decline in disk I/O read, both re-
ceived and sent network bandwidth usage and system interrupt performance.
The trend analysis equations for these graphs indicate decreased performance
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Figure 4.4: Mulberry Default Behavior Network Bandwidth Received Perfor-
mance: 3.4 Kbyte Message Size

Figure 4.5: Mulberry Default Behavior Network Bandwidth Sent Performance:
3.4 Kbyte Message Size
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with time, yielding slopes of -0.09, -0.01, and -2 projected for disk I/O read
and network bandwidth usage (both received and sent) and context switch
performance.

Since the nature of the data allowed fluctuation in individual mean values, the
R-squared value for all trend lines confirms this and it is difficult to conclude
that the regression line represents the true relationship of performance metrics
across time. The error bars are graphed from calculated standard deviation for
each plotted value in each graph. As one can see, the deviation of individual
values from mean are reasonable given the nature of the experiment.

This property is demonstrated due to the small number of message increase
in message folders other than Inbox. In every message group manipulation,
the number of messages increased by 10 in each message folder. In this client’s
behavior, the amount of messages in Inbox is unchanged because Mulberry by
default does not permanently remove deleted messages. Rather it marks them
as deleted in the client GUI to make this property visible to users and sets
the Deleted flag on each deleted message on server side. Since the number
of messages in Inbox, which was 2800 initially, stayed constant through the
completion of the experiment, the decrease in performance with regards to
the above mentioned parameters is insignificant. However, if the number of
messages moved were put in a single folder or the amount of messages moved
to each folder were high, the slope in the decreasing trend of the metrics could
have been more steep.

Figure 4.6: Mulberry Default Behavior System Interrupts: 3.4 Kbyte Message
Size

In contrast, the slope corresponding to the performance of disk I/O write and
system interrupts increased by 10 and 2 respectively (see 4.3 and 4.6). This
could be due to a very low start at the beginning of the graph and an imme-
diate increase after 10 seconds. This property could not be associated with
the actual client’s behavior because the simulation script for one group of 80
messages multiple time during the life span of a single replication experiment.
Therefore, it is difficult to rationalize this result from the client behavior point
of view.
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Figure 4.7: Mulberry Default Behavior Context Switches: 3.4 Kbyte Message
Size

Figure 4.8: Mulberry Default Behavior CPU Usage Performance: 3.4 Kbyte
Message Size
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As shown in Figure 4.8, user and system CPU time showed slight increases
over the experimental run. This is due to the slightly increased requirements
for disk I/O. However, the slightly decreased slope seen by CPU time by I/O
wait is probably the reflection of the corresponding small decrease in disk I/O
read.

Figure 4.9: Correlation Between Performance Metrics: Mulberry Default Be-
havior, 3.4 Kbyte Message Size

In Figure 4.9, the read and writ columns represent disk I/O read and write
performance, respectively; recv and send represent network bandwidth usage
for packets received and sent, respectively; int and csw represent system in-
terrupts and context switches; usr, sys and wai represent CPU time usage by
user time, and system time and I/O wait time. The correlation for any pair
performance metrics is located at the row and column intersection for those
two variables.

The total amount of messages in the Maildir directory for each message folder
increased by 350 at the end of each experiment. The total amount of messages
in the four folders has become 1400, and this increases the overall number of
messages to 4200. Figure 5.9 indicates that disk usage is increased by half of
the total group of messages manipulated: 1400.

The shaded correlation coefficient value (9.9) in Figure 4.9 shows that there
was a strong relationship between network bandwidth usage for packets re-
ceived and sent. The IMAP protocol itself does not enforce any strong re-
lationship between commands received and sent since different commands
received from clients request different tasks, and the packet size for the com-
mand requested does not correlate with that for the response command in
most cases. For example, the response packet for a FETCH command issued
from the client to fetch the BODY part of a message can be much smaller than
the response packet size for one that encapsulates the body part of the mes-
sage. However, the simulation methodology as implemented enforces strong
relationship between the network bandwidth usage in both directions, and the
strong correlation relationship showed in Figure 4.9 could be due to the simu-
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lation implementation. This issue will be discussed in detail in the Discussion
chapter.
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4.2.2 Mulberry Optimized Behavior for 3.4 Kbyte Message Size

The following plotted graphs shows Mulberry’s optimized behavior for the
3.4 Kbyte message size. The graphs plot the same data metrics as those in the
preceding section. Figure 4.10, 4.11, 4.12, 4.13, 4.14 and 4.15 shows Mulberry’s
optimized behavior server side resource demand for disk I/O read and write
performance, network bandwidth usage for packets received and sent, system
interrupts and context switching, and CPU usage (respectively). Figure 4.17
shows the correlation between the performance metrics chosen for this thesis
experiment.

Figure 4.10: Mulberry Optimized Behavior Disk I/O Read Performance: 3.4
Kbyte Message Size

Figure 4.11: Mulberry Optimized Behavior Disk I/O Write Performance: 3.4
Kbyte Message Size

In the optimized behavior mode for Mulberry, all experimental parameters
except CPU usage showed an increase in performance exponentially, as shown
in Figures 4.10, 4.11, 4.12, 4.13, 4.14 and 4.15. While an exponential function is
the best fit, the computed function is not at all steep.

As for the default behavior, the client puts 10 messages in each message folder
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Figure 4.12: Mulberry Optimized Behavior Network Bandwiddth Usage for
Received Packets: 3.4 Kbyte Message Sizer

Figure 4.13: Mulberry Optimized Behavior Network Bandwiddth Usage for
Sent Packets: 3.4 Kbyte Message Size

73



CHAPTER 4. RESULTS

under each message group manipulation. For every 80 messages in a group,
40 of them are moved to four message folders, and the remaining 40 are per-
manently removed from the Inbox. This means that there is a decrease of 80
messages from Inbox and and increase of 10 messages in each four message
folders with each message group manipulation. The slope increase in the per-
formance parameters is due to this amount of message change in the Inbox
and message folders. Thus, the optimized behavior minimizes the amount of
messages in the mail directory, which in turn increases the performance when
changing the status of manipulated messages and renaming them after scan-
ning the directory.

Figure 4.14: Mulberry Optimized Behavior System Interrupts: 3.4 Kbyte Mes-
sage Size

Figure 4.15: Mulberry Optimized Behavior Context Switches: 3.4 Kbyte Mes-
sage Size

The CPU time usage (system and user) showed a slight decrease (see 4.16).
This is due to increased performance for the other performance metrics. In
contrast, I/O wait time showed an increase since there was a significant in-
crease in disk I/O operations.

The correlation coefficient values in Table fig:mulberryoptimized2kcorrelation
confirms the direct relationship between performance metrics. The very strong
correlations between variables with values greater than 0.95 (or less than -0.95)
are shaded with the dark color, and correlations with absolute values greater
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Figure 4.16: Mulberry Optimized Behavior CPU Usage: 3.4 Kbyte Message
Size

Figure 4.17: Mulberry Optimized Behavior Correlation Coefficients
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than or equal to 0.9 less than 0.95 (or greater than -0.95) shaded with the light
color. CPU time by system and user showed inverse relationships with the
other performance metrics as we have seen in the graphs.
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4.2.3 Mulberry’s Default vs Optimized Behavior: 3.4 Kbyte Message
Size

The graphs in this subsection compare this client’s default and optimized be-
havior for disk I/O and network bandwidth usage. The first two graphs are
combined disk I/O read and write performance measured for Mulberry’s de-
fault and optimized behaviors, and the last two are for network bandwidth
usage when packets were received from and sent to the IMAP server.

Figure 4.18: Mulberry Default vs Optimized Disk I/O Read Performance: 3.4
Kbyte Message Size

Figure 4.19: Mulberry Default vs Optimized Disk I/O Write Performance: 3.4
Kbyte Message Size

Figures 4.18,4.19,4.20, 4.21 shows the comparison between Mulberry’s default
and optimized behavior resource consumption while running the experiment.

The major difference between the default and optimized behavior of the Mul-
berry client is that the default behavior shows a linear relationship between
performance metrics because the performance metrics had approximately con-
stant value across the lifespan of the experiment. As it has been explained, the
slight decline could be due to a small increase in the number of messages in
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Figure 4.20: Mulberry Default vs Optimized Network Bandwidth Usage, Pack-
ets Received: 3.4 Kbyte Message Size

Figure 4.21: Mulberry Default vs Optimized Network Bandwidth Usage, Pack-
ets Sent: 3.4 Kbyte Message Size
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four message folders other than the Inbox. However, in the optimized case,
an exponential property of graph was demonstrated due to the decline in the
amount of messages in the Inbox and the corresponding increases in individu-
ally folders for each message group manipulation round. Although there was
an increase in number of messages in the other message folders, the decrease
in the amount of messages in the Inbox seems to have dominated the perfor-
mance differences, and the exponential performance increase was observed.
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4.2.4 3.4 vs 76 Kbyte Message Size Comparison for Mulberry De-
fault Behavior

This section presents the plotted results from the 76 Kbyte message experi-
ments using the Mulberry default behavior, presented in comparison with
those for the 3.4 Kbyte messages size. Figure 4.22, 4.23, 4.24, 4.25, and 4.26
present the 75 Kbyte message size results (in comparison with the correspond-
ing results for the Kbyte message size) for disk I/O read and write perfor-
mance, incoming and outgoing network bandwidth, and I/O wait CPU time
(respectively).

Figure 4.22: Mulberry Default Behavior Disk I/O Read Performance Compar-
ison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.23: Mulberry Default Behavior Disk I/O Write Performance Compar-
ison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

From the preceding graphs, operations involving the 76 Kbyte message size
consumed significant resources in disk I/O read and outgoing compared to the
smaller message size. In contrast, the 3.4 Kbyte message size consumed higher
amounts of disk I/O write and incoming network bandwidth resources. This
is a clear indication that as the message size increases, the disk I/O read re-
source requirement also increases. The reason the disk I/O write rate is lower
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Figure 4.24: Mulberry DEfault Behavior Network Bandwidth Usage (Packets
Received) Comparison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.25: Mulberry Default Behavior Network Bandwidth Usage (Packets
Sent) Comparison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.26: Mulberry Default Behavior Disk I/O Wait CPU Comparison for
3.4 Kbyte vs. 76 Kbyte Message Sizes
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could be due to the slow network bandwidth usage for packets received be-
cause of the high disk I/O read that slows down the overall system perfor-
mance. The CPU time used by I/O wait is a good indication that this is the
case.
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4.2.5 3.4 vs 76 Kbyte Message Size Comparison for Mulberry Opti-
mized Behavior

This section presents the plotted graph results from comparisons between Mul-
berry’s optimized behavior for the 3.4 Kbyte and 76 Kbyte messages sizes. Fig-
ures 4.27, 4.28, 4.29, 4.30, and 4.31 present the 75 Kbyte message size results (in
comparison with the corresponding results for the Kbyte message size) for disk
I/O read and write performance, incoming and outgoing network bandwidth,
and I/O wait CPU time (respectively).

Figure 4.27: Mulberry Optimized Behavior Disk I/O Read Performance Com-
parison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.28: Mulberry Optimized Behavior Disk I/O Write Performance Com-
parison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

From the preceding graphs, the 76 Kbyte message size consumed significant
resources in disk I/O read and network bandwidth usage for packets sent from
IMAP server, as was the case for the default behavior. The 3.4 Kbytes message
size consumed higher amounts of disk I/O write and network bandwidth us-
age for packets received by the server. The only difference from the default
behavior size discussed in the preceding subsection is that the 76 Kbyte mes-
sage size graph does not follow the approximate exponential function form
as for the 3.4 Kbyte message size. This could be due to the high CPU I/O
wait time shown in Figure 4.31, which slows the network bandwidth usage
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Figure 4.29: Mulberry Optimized Behavior Network Bandwidth Usage (Pack-
ets Received) Performance Comparison for 3.4 Kbyte vs. 76 Kbyte Message
Sizes

Figure 4.30: Mulberry Optimized Behavior Network Bandwidth Usage (Pack-
ets Sent) Performance Comparison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.31: Mulberry Optimized Behavior Disk I/O Wait CPU Comparison
for 3.4 Kbyte vs. 76 Kbyte Message Sizes
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received due to the fact that the simulation script send commands only after
the IMAP server has responded to previous requests.
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4.3 Outlook

4.3.1 Outlook Default Behavior: 3.4 Kbyte Message Size

The following plotted graphs shows Outlook’s default behavior for 3.4 Kbyte
message size. The graphs are plotted from per-point means of 35 replications.

Figures 4.32, 4.33, 4.34, 4.35, 4.36 and 4.37 show Outlook’s default behavior
server side resource usage for disk I/O read and write performance, network
bandwidth usage for packets received and sent, and system interrupts and
context switching. Figure 4.38 shows CPU time usage by user and system and
CPU wait time.

Table 4.39 shows the calculated correlation coefficient values for this client’s
default behavior all measured performance metrics.

Figure 4.32: Outlook’s Disk I/O Read Performance for 3.4 Kbyte Message Size
Plotted for the Default Behaviour.

Figure 4.33: Outlook’s Disk I/O Write Performance for 3.4 Kbyte Message Size
Plotted for the Default Behaviour

Outlook has an IMAP protocol implementation very similar to Mulberry’s
with regards to managing deleted messages. Like Mulberry, it does not copy
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Figure 4.34: Outlook’s Network Bandwidth Received Performance for 3.4
Kbyte Message Size Plotted for the Default Behaviour

Figure 4.35: Outlook’s Network Bandwidth Sent Performance for 3.4 Kbyte
Message Size Plotted for the Default Behaviour
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deleted messages to the Trash box, and messages are visible on the GUI marked
as deleted for users. If the user does not purge the deleted messages, they ac-
cumulate in the Inbox.

The slight decline in disk I/O read, network bandwidth usage slope for pack-
ets received, and system context switching, -0.07, -0.01, -0.091 respectively,
shows the same trends as was previously discussed for Mulberry for the same
reasons: due to the increased amount of messages in message folders.

The slope in performance of disk I/O write, network bandwidth usage for
packets sent and system interrupts showed a slight increase by 0.4, 0.15 and
0.08 respectively (see 4.33, 4.35 and 4.6). The R-squared values are very low ex-
cept for the outgoing network bandwidth usage and system context switches,
and it is difficult to say that regression line represents the true relationship of
performance metrics across time.

Figure 4.36: Outlook’s System Interrupts for 3.4 Kbyte Message Size Plotted
for the Default Behaviour

Figure 4.37: Outlook’s Context Switch for 3.4 Kbyte Message Size Plotted for
the Default Behaviour

CPU time usage by system and user showed very slight increases. This is due
to the slight increased performance in disk I/O. The decreased percentage in
CPU time for I/O wait is the reflection of the slight increase in disk I/O write.
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Figure 4.38: Outlook’s CPU Usage Performance for 3.4 Kbyte Message Size
Plotted for the Default Behaviour

Figure 4.39: Outlook Correlation Matrix Between Performance Metrics
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Like Mulberry, the total amount of messages in the directory for each message
folder increased by 350 over the course of the experiment (see Figure 5.9). Since
Outlook handles deleted messages similarly to Mulberry, the consequences of
this behavior is the same as for that client (as discussed previously).

Figure 4.39 shows that there was no strong relationship between performance
metrics. This is convincing since the increase or decrease trends seen were not
significant enough to be observed in a correlation coefficient.
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4.3.2 Outlook Optimized Behavior for 3.4 Kbyte Message Size

The following graphs shows Outlook’s optimized behavior for 3.4 Kbyte mes-
sage size. Figures 4.40, 4.41, 4.42, 4.43, 4.44 and 4.45 shows Outlook’s op-
timized behavior server side resource demand for disk I/O read and write
performance, network bandwidth usage for packets received and sent, system
interrupts and context switching, respectively. Figure 4.46 shows the CPU time
usage by user and system as well as I/O wait time.

Figure 4.47 shows the correlation between the performance metrics chosen for
this thesis experiment.

Figure 4.40: Outlook’s Disk I/O Read Performance for 3.4 Kbyte Message Size
Plotted for the Client’s Optimized Behavior

Figure 4.41: Outlook’s Disk I/O Write Performance for 3.4 Kbyte Message Size
Plotted for the Client’s Optimized Behavior

The major optimization achieved for Outlook is enabling purging of items
when switching folders while the user is online. This feature is implemented
by CLOSE command issued from the client during folder switching. This
means the performance issue in the default behavior is still present as long
as the user does not switch between folders or use a one time purging com-
mand. In fact, allowing a user the option of purging items when switching
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Figure 4.42: Outlook’s Network Bandwiddth Usage for Received Packets for
3.4 Kbyte Message Size Plotted for the Client’s Optimized Behavior

Figure 4.43: Outlook’s Network Bandwiddth Usage for Sent Packets for 3.4
Kbyte Message Size Plotted for the Client’s Optimized Behavior

92



4.3. OUTLOOK

between folders is undesirable because a user can switch between several mes-
sage folders repeatedly, causing any accidentally deleted messages to be lost
immediately.

Outlook’s benefit from optimization is similar to Mulberry’s in that there is a
decrease of 80 messages at the end of each message group manipulation cycle.
The exponential increase in performance parameters is due to this amount of
message change in the Inbox and message folders. Thus, this minimizes the
amount of messages in the current directory which in turn increases the per-
formance when changing the status of manipulated messages and renaming
them after scanning the directory.

For these reasons, in the optimized behavior of Outlook, all experimental pa-
rameters except CPU usage showed a exponential increase in performance al-
though not a steep one.

Figure 4.44: Outlook’s System Interrupt for 3.4 Kbyte Message Size Plotted for
the Client’s Optimized Behavior

Figure 4.45: Outlook’s Context Switch for 3.4 Kbyte Message Size Plotted for
the Client’s Optimized Behavior

CPU time usage, both system and user, decreased over time. This is due to
smaller consumption of CPU time as the amount of messages decreased in
the Inbox. This in turn increased the performance for disk I/O because the
command request and response between client and server were fast. Thus, the
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Figure 4.46: Outlook’s CPU Usage for 3.4 Kbyte Message Size Plotted for the
Client’s Optimized Behavior

decreased slope seen by CPU time by I/O wait is the reflection of the increase
in disk I/O write.

The strong correlation coefficient between disk I/O and network bandwidth
usage is confirmed in Table 4.47. The table shows a negative correlation for
CPU time used by user with both disk I/O and network bandwidth usage,
and system interrupts and context switches. This reflects the resource require-
ments for each 80 messages group manipulation during the course of the ex-
periment as the amount of messages decreased across time. The remaining
performance metrics showed a significant strong correlation with one another.
The increased trend in disk I/O is the reflection of high disk I/O as the amount
of messages in the the Inbox decreases.

Figure 4.47: Outlook Optimized Behavior Correlation Coefficients
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4.3.3 Outlook’s Default vs Optimized Behavior for 3.4 Kbyte Mes-
sage Size

In this subsection, the comparison between client’s default and optimized be-
havior for disk I/O and network bandwidth usage is presented. The first two
graphs are combined disk I/O read and write performance measured for Out-
look’s default and optimized behaviors. The remaining two are for network
bandwidth usage when packets were received from and sent to the IMAP
server.

Figure 4.48: Outlook’s Default vs Optimized Disk I/O Read Performance: 3.4
Kbyte Message Size

Figure 4.49: Outlook’s Default vs Optimized Disk I/O Write Performance: 3.4
Kbyte Message Size

Once again, the difference in default and optimized behavior discussed for
Mulberry are applicable to Outlook as well. This is shown in Figures 4.48,4.49,4.50,
4.51. As the figures show, the slope direction, and difference for default and
optimized behaviors is significant and this is clearly due to the clearance of
deleted messages at the end of each message group manipulation round.

The main difference between the default and optimized behavior of the Out-
look client is the slope and direction of the graphs for resource consumption.
The default behavior showed linear relationships between performance met-
rics because the performance metrics had approximately constant value across
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Figure 4.50: Outlook’s Default vs Optimized Network Bandwidth Usage,
Packets Received: 3.4 Kbyte Message Size

Figure 4.51: Outlook’s Default vs Optimized Network Bandwidth Usage,
Packets Sent: 3.4 Kbyte Message Size
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the lifespan of the experiment. However, in the optimized behavior, an expo-
nential graph was observed as the amount of messages in the Inbox declining
over time while increasing in the individual message folders.
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4.3.4 3.4 vs 76 Kbyte Message Size Comparison for Outlooks De-
fault Behavior

This section presents the plotted graph results from comparison between Out-
look’s default behaviors for 3.4 Kbyte vs. 76 Kbyte messages sizes.

Figure 4.52: Outlook Default Behavior Disk I/O Read Performance Compari-
son for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.53: Outlook Default Behavior Disk I/O Write Performance Compari-
son for 3.4 Kbyte vs. 76 Kbyte Message Sizes

These results show that the 76 Kbyte message size consumed significant re-
sources in disk I/O read and network bandwidth usage for packets sent from
IMAP server. On the other hand, the 3.4 Kbyte message experiment showed
higher amounts of disk I/O write and network bandwidth usage for packets
received by the server. This is a clear indication that as the message size in-
creases, disk I/O read resource requirement also showed slight decreases.

Disk I/O write performance for this client showed similar performance for the
two message sizes with the exception that the 76 Kbyte message experiment
took more time. This can be a good example that, unlike disk I/O read, mes-
sage size does not show a strong significant difference in IMAP protocol com-
mands during disk I/O write because the status change has a limited relation-
ship with message size. The network bandwidth usage for packets received
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Figure 4.54: Outlook Default Behavior Network Bandwidth Usage (Packets
Received) Performance Comparison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.55: Outlook Default Behavior Network Bandwidth Usage (Packets
Sent) Performance Comparison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.56: Outlook Default Behavior Disk I/O Wait Comparison for 3.4
Kbyte vs. 76 Kbyte Message Sizes
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and sent were the reflection of the disk I/O write and read relationship. The
CPU time in figure 4.56 is the reflection of the above discussion. High I/O wait
CPU time for 76 Kbyte is due to high disk I/O read.
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4.3.5 3.4 vs 76 Kbyte Message Size Comparison for Outlook Opti-
mized Behavior

This section presents the plotted results comparing Outlook’s optimized be-
havior for 3.4 Kbyte vs. 76 Kbyte messages sizes.

Figure 4.57: Outlook Optimized Behavior Disk I/O Read Performance Com-
parison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.58: Outlook Optimized Behavior Disk I/O Write Performance Com-
parison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

The explanation for the preceding results is not much different from that for
the default behavior comparison. however, the 76 Kbyte message size exper-
iment did not exhibit the increasing slope observed in the 3.4 Kbyte client’s
default behavior. This is due to an increased I/O wait CPU time because of
higher disk I/O read. Otherwise, the results reflect the higher resource de-
mand resulting from higher message sizes.
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Figure 4.59: Outlook Optimized Behavior Network Bandwidth Usage (Packets
Received) Performance Comparison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.60: Outlook Optimized Behavior Network Bandwidth Usage (Packets
Sent) Performance Comparison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.61: Outlook Optimized Behavior Disk I/O Wait Comparison for 3.4
Kbyte vs. 76 Kbyte Message Sizes
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4.4 Sylpheed

4.4.1 Sylpheed Default Behavior for 3.4 Kbytes Message Size

The following graphs show Sylpheed’s default behavior for 3.4 Kbytes mes-
sage size. Figures 4.62, 4.63, 4.64, 4.65, 4.66 and 4.67 shows Sylpheed’s default
behavior server side resource usage for disk I/O read and write performance,
network bandwidth usage for packets received and sent, and system inter-
rupts and context switching. Figure 4.68 shows CPU time usage by user and
system, and CPU idle and wait time. The graphs are plotted from per-point
means of 35 replications.

Table 4.69 shows the calculated correlation coefficient values for this client’s
default behavior for all measured performance metrics.

Figure 4.62: Sylpheed Default Behavior Disk I/O Read Performance: 3.4 Kbyte
Message Size

Figure 4.63: Sylpheed Default Behavior Disk I/O Write Performance: 3.4 Kbyte
Message Size

Sylpheed has implemented the IMAP protocol differently as compared to other
clients. The client is almost consistent in its default and optimized behavior,
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Figure 4.64: Sylpheed Default Behavior Network Bandwidth Received Perfor-
mance: 3.4 Kbyte Message Size

Figure 4.65: Sylpheed Default Behavior Network Bandwidth Sent Perfor-
mance: 3.4 Kbyte Message Size
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especially with respect to handling deleted messages. Sylpheed always runs
the EXPUNGE command for all deleted and moved messages in the Inbox.
Therefore, the client was able to free the Inbox after every single message ma-
nipulation. This useful feature of the client’s behavior is shown in Figures 4.62,
4.63, 4.64, 4.65 4.66, 4.67 and 4.68.

Since Sylpheed freed deleted and moved messages immediately from the In-
box in the experiment, the amount of message did not become or remain a
bottleneck, and the disk I/O and network bandwidth usage performance im-
proved as the experiment progressed.

Figure 4.66: Sylpheed Default Behavior System Interrupts: 3.4 Kbyte Message
Size

Figure 4.67: Sylpheed Default Behavior Context Switches: 3.4 Kbyte Message
Size

Like most clients’ default behavior with regards to CPU time, Sylpheed’s de-
fault behavior showed a decrease in user CPU time consumption as the exper-
iment continued and the amount of messages decreased. From the simulation
scripts behavior, it is not difficult to understand this because a single user lo-
gin for each 80 messages in a group manipulation cycle reflects the user CPU
time usage, and each login required different resource levels as the amount of
messages in the Inbox decreased.

The very strong negative correlation coefficient values shown in Figure 4.77
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Figure 4.68: Sylpheed Default Behavior CPU Usage Performance: 3.4 Kbyte
Message Size

Figure 4.69: Correlation Between Performance Metrics: Sylpheed Default Be-
havior, 3.4 Kbyte Message Size
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are consistent with the observed behavior since they indicate an inverse rela-
tionship between the user CPU time and other performance metrics. In this
client’s behavior, I/O wait showed a positive correlation with disk I/O read
and write, outgoing network bandwidth, and system interrupts and context
switches.
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4.4.2 Sylpheed Optimized Behavior for 3.4 Kbytes Message Size

The following graphs shows Sylpheed’s optimized behavior for the 3.4 Kbytes
message size. The first two graphs present disk I/O read and write. The next
two present network bandwidth usage for packets received from and sent to
the IMAP server (respectively). Next, system interrupt and context switch are
displayed. Finally, the relationship between the different performance metrics
is presented in the calculated correlation coefficient table. All graphs plot the
per-point means of 35 replications.

Figure 4.70: Sylpheed Optimized Behavior Disk I/O Read Performance: 3.4
Kbyte Message Size

Figure 4.71: Sylpheed Optimized Behavior Disk I/O Write Performance: 3.4
Kbyte Message Size

Like Opera email client, Sylpheed does not require much work to optimized it.
The only optimization implemented in this experiment is to empty the Trash
box at the end of each message group manipulation. The trend of performance
requirements in the optimized behavior of Sylpheed is similar to the default
one. This is because of the consistent characteristics of the client in its default
and optimized behavior. The similarity in correlation coefficient values and
CPU time usage for both default and optimized behavior is futher evidence
for this.
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Figure 4.72: Sylpheed Optimized Behavior Network Bandwiddth Usage for
Received Packets: 3.4 Kbyte Message Sizer

Figure 4.73: Sylpheed Optimized Behavior Network Bandwiddth Usage for
Sent Packets: 3.4 Kbyte Message Size

Figure 4.74: Sylpheed Optimized Behavior System Interrupts: 3.4 Kbyte Mes-
sage Size
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Figure 4.75: Sylpheed Optimized Behavior Context Switches: 3.4 Kbyte Mes-
sage Size

Figure 4.76: Sylpheed Optimized Behavior CPU Usage: 3.4 Kbyte Message
Size

Figure 4.77: Sylpheed Optimized Behavior Correlation Coefficients
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4.4.3 Sylpheed’s Default vs Optimized Behavior for 3.4 Kbytes Mes-
sage Size

Figures 4.78,4.79,4.80, and 4.81 show the comparisons between Sylpheed’s de-
fault and optimized behavior resource consumption while running the exper-
iment.

Figure 4.78: Sylpheed Default vs Optimized Disk I/O Read Performance: 3.4
Kbyte Message Size

Figure 4.79: Sylpheed Default vs Optimized Disk I/O Write Performance: 3.4
Kbyte Message Size

As the graphs indicate, the disk I/O resource usage for read and write per-
formance was quite similar. The slight differences but similar trends for net-
work bandwidth usage for received packets could be due to the additional
commands to optimize the client, such as clearing Trash box at the end of each
message group manipulation using Expunge command. The server’s response
to this additional command with a list of deleted messages could contribute to
the significant difference in network bandwidth usage for packets sent.
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Figure 4.80: Sylpheed Default vs Optimized Network Bandwidth Usage, Pack-
ets Received: 3.4 Kbyte Message Size

Figure 4.81: Sylpheed Default vs Optimized Network Bandwidth Usage, Pack-
ets Sent: 3.4 Kbyte Message Size
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4.4.4 3.4 vs 76 Kbytes Message Size Comparison for Sylpheeds’s De-
fault Behavior

Figures 4.82, 4.83, 4.84, 4.85, and 4.86 show the comparisons for Sylpheed’s 3.4
vs. 76 Kbyte message size results under the client’s default behavior.

Figure 4.82: Sylpheed Default Behavior Disk I/O Read Performance Compar-
ison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.83: Sylpheed Default Behavior Disk I/O Write Performance Compar-
ison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

The comparison between message size results shown in the preceding figures
is not much different from other clients behavior. As before, the 76 Kbyte mes-
sage size required much more disk I/O read resources than the 3.4 Kbyte mes-
sage size. Disk I/O write performance took longer time to finish for the larger
message size because disk I/O activities were slowed down by the high disk
I/O read tasks and the performance consumption dispersed across time. This
could be the reason that the graph for disk I/O could not follow the 3.4 Kbyte
slope for default behavior (see 4.83).

The high CPU I/O wait difference observed in Figure 4.86 is a good evidence
for high disk I/O read rates during 76 Kbyte message size experiments.
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Figure 4.84: Sylpheed Default Behavior Network Bandwidth Usage (Packets
Received) Comparison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.85: Sylpheed Default Behavior Network Bandwidth Usage (Packets
Sent) Comparison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.86: Sylpheed Default Behavior Disk I/O Wait Comparison for 3.4
Kbyte vs. 76 Kbyte Message Sizes
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4.4.5 3.4 vs 76 Kbytes Message Size Comparison for Sylpheed’s op-
timized Behavior

Figures 4.87, 4.88, 4.89, 4.90, and 4.91 graph Sylpheed’s 3.4 and. 76 Kbyte
message size optimized behavior results.

Figure 4.87: Sylpheed Optimized Behavior Disk I/O Read Performance Com-
parison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.88: Sylpheed Optimized Behavior Disk I/O Write Performance Com-
parison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

The message size difference comparison for optimized behavior of the client
showed in the preceding figures has a similar trend to that seen in the compar-
ison between default vs optimized behavior of the client.
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Figure 4.89: Sylpheed Optimized Behavior Network Bandwidth Usage (Pack-
ets Received) Performance Comparison for 3.4 Kbyte vs. 76 Kbyte Message
Sizes

Figure 4.90: Sylpheed Optimized Behavior Network Bandwidth Usage (Pack-
ets Sent) Performance Comparison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.91: Sylpheed Optimized Behavior Disk I/O Wait Comparison for 3.4
Kbyte vs. 76 Kbyte Message Sizes
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4.5 Thunderbird

4.5.1 Thunderbird Default Behavior for the 3.4 Kbyte Message Size

The following graphs shows Thunderbird’s default behavior for the 3.4 Kbyte
message size. Figures 4.92, 4.93, 4.94, 4.95 4.96 and 4.97 show Thunderbird’s
default behavior server side resource usage for disk I/O read and write perfor-
mance, network bandwidth usage for packets received and sent, and system
interrupts and context switching. Figure 4.98 shows CPU time usage by user
and system, and I/O wait time. The graphs are plotted from per-point means
of 35 replications.

Table 4.99 shows the calculated correlation coefficient values for all perfor-
mance metrics.

Figure 4.92: Thunderbird Default Behavior Disk I/O Read Performance: 3.4
Kbyte Message Size

Figure 4.93: Thunderbird Default Behavior Disk I/O Write Performance: 3.4
Kbyte Message Size

The resource requirements for this experiment were almost constant, as in the
cases for Thunderbird and Outlook, because the amount of messages in the
Inbox were the same throughout the experimental cycle. The slight decrease
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Figure 4.94: Thunderbird Default Behavior Network Bandwidth Received Per-
formance: 3.4 Kbyte Message Size

Figure 4.95: Thunderbird Default Behavior Network Bandwidth Sent Perfor-
mance: 3.4 Kbyte Message Size
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in disk I/O read, network bandwidth usage for packets received and sent, and
system interrupt and context switch could be due to the slight increase in the
amount of messages in the five message folders other than the Inbox. The
decrease in performance is indicated by slope -0.05, -0.01, -0.06 and -0.01 for
disk I/O read, network bandwidth usage for packets received and sent, and
system interrupt and context switching, respectively.

Although the R-coefficient value indicates that the linear function does not rep-
resent all points, one can see the decline in the above mentioned parameters
was insignificant. This is because Thunderbird by default does not perma-
nently remove deleted messages unless the user utilizes optimizing options
explained previously in the methodology chapter of this thesis. Thus, since a
large amount of messages remained in the Inbox, the resource usage for the
whole experiment was dominated by this message box. The increase in disk
I/O write performance, however, could not be explained from client’s behav-
ior perspective. This result could be due to the low disk I/O write at the start
and sudden increase after 20 seconds.

Figure 4.96: Thunderbird Default Behavior System Interrupts: 3.4 Kbyte Mes-
sage Size

Figure 4.97: Thunderbird Default Behavior Context Switches: 3.4 Kbyte Mes-
sage Size

Figure 4.98 shows the CPU usage for the entire experimental cycle. As one
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Figure 4.98: Thunderbird Default Behavior CPU Usage Performance: 3.4
Kbyte Message Size

Figure 4.99: Correlation Between Performance Metrics: Thunderbird Default
Behavior: 3.4 Kbyte Message Size
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can see from the graph, the CPU time usage from user, system, I/O wait was
constant. User time comprised the highest amount of time, followed by system
time. The I/O wait time was almost zero.

Figure 4.99 shows the correlation between the performance metrics chosen for
this thesis experiment. From the table, there was no strong relationship be-
tween the select performance metrics, as expected.
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4.5.2 Thunderbird Optimized Behavior for 3.4 Kbyte Message Size

The following plotted graphs show Thunderbird’s optimized behavior for 3.4
Kbyte message size. Figures 4.100, 4.101, 4.102, 4.103, 4.104 and 4.105 show
Thunderbird’s optimized behavior server side resource demand for disk I/O
read and write performance, network bandwidth usage for packets received
and sent, system interrupts and context switching, respectively. Figure 4.106
shows the CPU time usage by user and system time as well as I/O wait time.

Figure 4.107 shows the correlation between the performance metrics chosen
for this thesis experiment.

Figure 4.100: Thunderbird Optimized Behavior Disk I/O Read Performance:
3.4 Kbyte Message Size

Figure 4.101: Thunderbird Optimized Behavior Disk I/O Write Performance:
3.4 Kbyte Message Size

From the preceding results, it is possible to say that the resource requirements
were increasing for all metrics except the CPU usage. The constant start in
user CPU time usage is followed by a a very slight decline after almost 80
second (see Figure 4.106). This could be a good reflection of the user CPU time
requirement decreasing as the amount of messages decrease in the Inbox.

The strong correlation coefficient seen in Table 4.107 is another good reflection
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Figure 4.102: Thunderbird Optimized Behavior Network Bandwiddth Usage
for Received Packets: 3.4 Kbyte Message Sizer

Figure 4.103: Thunderbird Optimized Behavior Network Bandwiddth Usage
for Sent Packets: 3.4 Kbyte Message Size

Figure 4.104: Thunderbird Optimized Behavior System Interrupts: 3.4 Kbyte
Message Size
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Figure 4.105: Thunderbird Optimized Behavior Context Switches: 3.4 Kbyte
Message Size

Figure 4.106: Thunderbird Optimized Behavior CPU Usage: 3.4 Kbyte Mes-
sage Size

Figure 4.107: Thunderbird Optimized Behavior Correlation Coefficients
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of strong relationship between disk I/O and network bandwidth usage.
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4.5.3 Thunderbird Default vs Optimized Behavior for 3.4 Kbyte Mes-
sage Size

Figures 4.108,4.109,4.110, 4.111 shows the comparisons between Thunderbird’s
default and optimized behavior resource consumption for the experiment.

Figure 4.108: Thunderbird Default vs Optimized Disk I/O Read Performance:
3.4 Kbyte Message Size

Figure 4.109: Thunderbird Default vs Optimized Disk I/O Write Performance:
3.4 Kbyte Message Size

As shown in the preceding graphs, the default and optimized behavior of the
client disk I/O and network bandwidth usage show significant differences.
While the default behavior requires very close to constant disk I/O read per-
formance and network bandwidth usage in both directions, the optimized be-
havior begins with equal performance levels to the default behavior but then
shows a significant increase as the amount of messages in the Inbox decreases.
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Figure 4.110: Thunderbird Default vs Optimized Network Bandwidth Usage,
Packets Received: 3.4 Kbyte Message Size

Figure 4.111: Thunderbird Default vs Optimized Network Bandwidth Usage,
Packets Sent: 3.4 Kbyte Message Size
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4.5.4 3.4 vs 76 Kbyte Message Size Comparison for Thunderbirds’s
Default Behavior

This section presents the plotted graph results from comparison between Thun-
derbird’s default behaviors for 3.4 Kbyte vs. 76 Kbyte messages sizes.

Figure 4.112: Thunderbird Default Behavior Disk I/O Read Performance Com-
parison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.113: Thunderbird Default Behavior Disk I/O Write Performance
Comparison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

The results from the preceding figures display a common performance in-
crease for 76 Kbyte as compared to 3.4 Kbyte message size, as discussed for
other clients. The only difference here is Thunderbird’s high disk I/O write
rate. This is supported by the results seen in the I/O wait CPU time (see Fig-
ure 4.116).
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Figure 4.114: Thunderbird DEfault Behavior Network Bandwidth Usage
(Packets Received) Comparison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.115: Thunderbird Default Behavior Network Bandwidth Usage
(Packets Sent) Comparison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.116: Thunderbird Default Behavior Disk I/O Wait CPU Comparison
for 3.4 Kbyte vs. 76 Kbyte Message Sizes
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4.5.5 3.4 vs 76 Kbyte Message Size Comparison for Thunderbird’s
optimized Behavior

This section presents the plotted graph results from comparison between Thun-
derbird’s optimized behaviors for 3.4 Kbyte vs. 76 Kbyte messages sizes.

Figure 4.117: Thunderbird Optimized Behavior Disk I/O Read Performance
Comparison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.118: Thunderbird Optimized Behavior Disk I/O Write Performance
Comparison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

The results in this subsection confirm the previous trends where the 76 Kbyte
message size required substantially more resources, especiallforin disk I/O
read.
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Figure 4.119: Thunderbird Optimized Behavior Network Bandwidth Usage
(Packets Received) Performance Comparison for 3.4 Kbyte vs. 76 Kbyte Mes-
sage Sizes

Figure 4.120: Thunderbird Optimized Behavior Network Bandwidth Usage
(Packets Sent) Performance Comparison for 3.4 Kbyte vs. 76 Kbyte Message
Sizes

Figure 4.121: Thunderbird Optimized Behavior Disk I/O Wait CPU Compari-
son for 3.4 Kbyte vs. 76 Kbyte Message Sizes
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4.6 Opera

4.6.1 Opera Default Behavior: 3.4 Kbyte Message Size

The following graphs show Opera’s default behavior for the 3.4 Kbyte message
size. Figures 4.122, 4.123, 4.124, 4.125, 4.126 and 4.127 shows Opera’s default
behavior server side resource usage for disk I/O read and write performance,
network bandwidth usage for packets received and sent, and system inter-
rupts and context switching.

Figure 4.128 shows CPU time usage by user and system, and CPU idle and
wait time. The graphs are plotted from per-point means of 35 replications.

Table 4.129 shows the calculated correlation coefficient values for this client’s
default behavior for all measured performance metrics.

Figure 4.122: Opera Default Behavior Disk I/O Read Performance: 3.4 Kbyte
Message Size

Figure 4.123: Opera Default Behavior Disk I/O Write Performance: 3.4 Kbyte
Message Size

Opera has implemented the IMAP protocol differently than other clients. Some
commands’ observed behavior varies substantially in response to changes in
the statuses and amount of messages in message folders. For example, the
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Figure 4.124: Opera Default Behavior Network Bandwidth Received Perfor-
mance: 3.4 Kbyte Message Size

Figure 4.125: Opera Default Behavior Network Bandwidth Sent Performance:
3.4 Kbyte Message Size

Figure 4.126: Opera Default Behavior System Interrupts: 3.4 Kbyte Message
Size
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Figure 4.127: Opera Default Behavior Context Switches: 3.4 Kbyte Message
Size

Figure 4.128: Opera Default Behavior CPU Usage Performance: 3.4 Kbyte Mes-
sage Size
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client provides a different approach as to how to handle a deleted message.
Since it does not permanently delete all messages with a deleted flag unless
the user demands it, Opera distinguishes a deleted message in a pseudo1 Trash
box from a permanently moved message to another folder just by switch-
ing between -FLAGS and +FLAGS. This switching method is implemented
by flagging messages in the pseudo Trash box with -FLAGS so that the mes-
sages existed in users local machine Trash box but are not permanently re-
moved with other messages. This technique becomes progressively more per-
formance intensive as the number of messages in the Trash box increases be-
cause the client has to search those messages’ UIDs and set -FLAGS for Deleted
before issuing any command that searches and/or removes messages with
+FLAGS for Deleted.

This switching between +FLAGS and -FLAGS on Deleted messages has ad-
vantages and disadvantages. In this thesis experiment, the advantage was
dual. First, the client minimized the total amount of messages left at the end
of each replication since it does not copy deleted messages from the Inbox to
another Trash box unlike Thunderbird and Sylpheed (see Figures 5.9 and 5.9).
Thus with Opera the total amount of messages in the Inbox were not dupli-
cated to another folder for the sake of management, saving disk space at the
end of the experiment. Secondly, Opera’s approach avoids the frequent use of
the disk intensive COPY command to move messages from the Inbox to the
Trash folder.

The other unique implementation choice made by Opera is that the client pro-
vides a feature to permanently delete a message before being read if the user
does not want to read it. This feature is available always so that whenever a
user receives a spam message in the Inbox, it is possible to permanently re-
move it without opening it. In this thesis experiment, Opera minimized the
amount of messages in the Inbox by approximately 20 percent at the end of
the experiment because of this feature.

The combined effect of Opera’s behavior from the preceding three factors is
demonstrated by a significant linear increase trend (slope 75) in disk I/O write
performance (see Figure 4.123). While the amount of messages decreased by
20 percent with every message group manipulation, contributing to fast access
of messages in an Inbox, an increased and frequent change of message status
(-FLAGS and +FLAGS) contributed to many more system calls and high disk
I/O demands.

CPU usage was generally low apart from a slight increase in I/O wait CPU
time and a corresponding decrease in user CPU time. This is due to small
decrease in the amount of messages in mailboxes as the experiment progresses
(see 4.128).

1The Trash box exists only on users local machine as folder but it does not exists on server
side because the messages exist in Inbox with Deleted flags.
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Figure 4.129: Opera Default Behavior Correlation Between Performance Met-
rics: 3.4 Kbyte Message Size

4.6.2 Simulation Issues for the Opera Client

During the implementation of this client, it was not possible to adapt the dy-
namic nature of the client’s behavior in a straightforward manner. The ap-
proximate simulation of this client’s activity was implemented through a sig-
nificant amount of additional, separate commands which Opera is able to im-
plement via a single client command. This necessity resulted in the increased
network bandwidth usage trend for both received and sent packets, and it is
difficult to discuss the traffic (see Figures 4.124 and 4.125) and the very high
slope linear increase trend in disk I/O write performance from the perspective
of the client’s actual behavior.

The strong correlation shown in Figure 4.129 is also misleading due to the
above mentioned simulation problem.

Unfortunately, for these reasons, the simulation implementation for Opera’s
default behavior is somewhat distorted, and the trends showed in the results
graph may not reflect the actual default behavior of the client.
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4.6.3 Opera Optimized Behavior for the 3.4 Kbyte Message Size

The following plotted graphs shows Opera’s optimized behavior for 3.4 Kbyte
message size. Figures 4.130, 4.131, 4.132, 4.133, 4.134 and 4.135 shows Opera’s
optimized behavior server side resource demand for disk I/O read and write
performance, network bandwidth usage for packets received and sent, system
interrupts and context switching (respectively). Figure 4.136 shows the CPU
time usage by user and system. It also shows the CPU time in percent when it
in the I/O wait state. Figure 4.137 shows the correlation between the perfor-
mance metrics chosen for this thesis experiment.

Figure 4.130: Opera’s Disk I/O Read Performance for 3.4 Kbyte Message Size
plotted for Client’s Optimized Behavior

Figure 4.131: Opera’s Disk I/O Write Performance for 3.4 Kbyte Message Size
plotted for Client’s Optimized Behavior

All measure performance metrics except CPU usage showed a similar increase
in slope with time. This an increase in the values of the performance metrics is
due to the rapid decline in the amount of messages in Inbox and -FLAGS and
+FLAGS switching whenever there was a need to run the EXPUNGE com-
mand.

The simulation problem was solved in the optimized behavior of this client.
This is because emptying the pseudo Trash message box at the end of each

137



CHAPTER 4. RESULTS

Figure 4.132: Opera’s Network Bandwiddth Usage for Received Packets for
3.4 Kbyte Message Size plotted for Client’s Optimized Behavior

Figure 4.133: Opera’s Network Bandwiddth Usage for Sent Packets for 3.4
Kbyte Message Size plotted for Client’s Optimized Behavior

Figure 4.134: Opera’s System Interrupt for 3.4 Kbyte Message Size plotted for
Client’s Optimized Behavior
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Figure 4.135: Opera’s Context Switch for 3.4 Kbyte Message Size plotted for
Client’s Optimized Behavior

Figure 4.136: Opera’s CPU Usage for 3.4 Kbyte Message Size plotted for
Client’s Optimized Behavior
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message group manipulation occurs in the optimized configuration, avoid-
ing the dynamic nature of the client behavior in handling deleted messages
beyond each message group manipulation intended for the simulation experi-
ment. The strong correlation coefficient value in Figure 4.137 is good testimony
to the direct relationship between the performance metrics.

Figure 4.137: Correlation Coefficients Calculated for Relationships Between
Measured Performance Metrics for Opera’s Optimized Behavior: 3/4 Kbyte
Message Size

140



4.6. OPERA

4.6.4 Opera’s Default vs Optimized Behavior for 3.4 Kbyte Message
Size

In this subsection, the comparison between Opera’s default and optimized be-
havior for disk I/O and network bandwidth usage should be presented. The
problem in simulating the dynamic nature of the client’s IMAP protocol imple-
mentation does not allow a scientifically valid comparison between the default
and optimized behaviors. However, the plots were prepared in the same man-
ner as for the other clients for consistency, but comparisons must be made with
extreme caution. The first two graphs are combined disk I/O read and write
performance measured for Opera’s default and optimized behaviors. The last
two are for network bandwidth usage corresponding to packets received from
and sent to the IMAP server.

Figure 4.138: Opera’s Default vs Optimized Disk I/O Read Performance: 3/4
Kbyte Message Size

Figure 4.139: Opera’s Default vs Optimized Disk I/O Write Performance: 3/4
Kbyte Message Size
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Figure 4.140: Opera’s Default vs Optimized Network Bandwidth Usage, Pack-
ets Received: 3/4 Kbyte Message Size

Figure 4.141: Opera’s Default vs Optimized Network Bandwidth Usage, Pack-
ets Sent: 3/4 Kbyte Message Size
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4.6.5 3.4 vs 76 Kbyte Message Size Comparison for Opera Default
Behavior

This section presents the plotted graph results from comparisons between Opera’s
default behaviors for 3.4 Kbyte vs. 76 Kbyte messages sizes. These graphs are
included for consistency purposes. However, this comparison is based on de-
fault behavior of the client which is considered to be invalid in this thesis, these
results should be viewed with extreme caution.

Figure 4.142: Opera Default Behavior Disk I/O Read Performance Compari-
son for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.143: Opera Default Behavior Disk I/O Write Performance Compari-
son for 3.4 Kbyte vs. 76 Kbyte Message Sizes
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Figure 4.144: Opera Default Behavior Network Bandwidth Usage (Packets Re-
ceived) Performance Comparison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.145: Opera Default Behavior Network Bandwidth Usage (Packets
Sent) Performance Comparison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.146: Opera Default Behavior Disk I/O Wait CPU Comparison for 3.4
Kbyte vs. 76 Kbyte Message Sizes
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4.6.6 3.4 vs 76 Kbyte Message Size Comparison for Opera Optimized
Behavior

This section presents the plotted graph results from comparison between Opera’s
optimized behaviors for 3.4 Kbyte vs. 76 Kbyte messages sizes. Figures 4.147,
4.148, 4.149, 4.150, and 4.151 present the 76 Kbyte message size results (in com-
parison with the corresponding results for the Kbyte message size) for disk
I/O read and write performance, incoming and outgoing network bandwidth,
and I/O wait CPU time (respectively).

The high resource consumption as the message size increased to 76 Kbytes
seen in other clients is also applicable to Opera.

Figure 4.147: Opera Optimized Behavior Disk I/O Read Performance Com-
parison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.148: Opera Optimized Behavior Network Bandwidth Usage (Packets
Received) Performance Comparison for 3.4 Kbyte vs. 76 Kbyte Message Sizes
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Figure 4.149: Opera Optimized Behavior Network Bandwidth Usage (Packets
Received) Performance Comparison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.150: Opera Optimized Behavior Network Bandwidth Usage (Packets
Sent) Performance Comparison for 3.4 Kbyte vs. 76 Kbyte Message Sizes

Figure 4.151: opera Optimized Behavior Disk I/O Wait CPU Comparison for
3.4 Kbyte vs. 76 Kbyte Message Sizes
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Chapter 5

Discussion and Analysis

This chapter discusses and further analyzes the results presented in the previ-
ous chapter. The first section discusses the common performance issues shared
by all selected clients while experimenting. Subsequent sections compare the
five clients under the relevant scenarios.

5.1 Common Performance Issues and Trends for All Clients

As it has been elaborated in the methodology chapter, Maildir was selected as
the message box format for the experiments conducted in this thesis. Although
Maildir was developed mainly to support multiple concurrent access by dif-
ferent applications to avoid file locking[14], it has some performance overhead
issues.

The major performance bottleneck in this message box format is that the entire
directory where the messages resides must be scanned and read to perform
any modification or access to an existing file under it[18].

A mail message is stored as a file in a mail directory. As such, it is always
checked for existence by executing the stat(2) Unix system call. This makes the
file system inefficient because the entire file in the directory must be read for
every status change of a message. This means that the frequent demand from
clients to change status of a message results in significant performance over-
head because the files (which are messages in this case) need to be renamed
after every status change request[18].

In this experimental set up, a shared mailbox scenario was implemented. There-
fore, there were a frequent rescan of the mailbox directories, especially the In-
box, where significant message manipulation taken place.

Thus, if there are several system calls for several messages access and ma-
nipulation, this will be reflected in an increased amount of context switching
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and system interrupts [33]. Moreover, as the number of messages in Maildir
subdirectories increases, disk I/O becomes an important performance issue
for some IMAP protocol commands that demand frequent access and status
change of messages.

Network bandwidth usage for packets received and sent is the other perfor-
mance metric which has a direct relationship to disk I/O performance. The
Expect programming language which was used to simulate the clients’ behav-
ior is capable of building an interactive session between client and server[30]
and [31]. This means the program does not issue the next request unless the
server responds for the previous request.

However, the scripts are designed for instant command exchange, so that the
speed of the disk I/O is directly proportional to the speed of the network band-
width usage in both directions. Therefore, if the disk I/O is slow or fast by
any reason while reading or writing to disk, then the network bandwidth also
becomes correspondingly slow or fast because the script issues the next com-
mand as it receives and check the response for the previous one.

Another common performance issue is the IMAP commands’ resource de-
mands. Some IMAP commands are disk I/O intensive, and others are network
bandwidth intensive. Consider the functioning of the FETCH command. First
of all, the FETCH command slows disk I/O as the number of messages in-
crease in the message folder because it must scan and search for specific mes-
sages based on their UIDs to meet the clients’ request. Secondly, the FETCH
command can be issued by client software for different purposes. The com-
mon ones observed during this experiment are to fetch the envelope, header,
body, UID, UID and flags, and flags (as explained in the background chapter).

In most cases, if the client issued FETCH command to look for the status of
each messages flags, then it is disk I/O read intensive and does not consume
much network bandwidth since the server responds with a summary. How-
ever, if the command is issued to fetch the body part of the messages, then the
command is disk I/O read intensive and also consumes significant network
bandwidth, depending on the size of the message. Thus, as the number of
messages in the message box increases, othe resource demands from FETCH
command also increase.

STORE command is another important command with regards to resource
consumption. In most cases, the command is issued to change the status of
a message flag. As discussed above, status change has a dual resource de-
mand. First, the message has to be located, which requires little disk I/O read
resource consumption. Second, the file name (the message in this case) has
to be changed as the Maildir implementation enforces this to reflect the status
change. Therefore, there will be a lot of disk I/O write resource requirements,
depending on the amount of messages that are going to be affected.

Another disk I/O intensive command is COPY. Although most clients provide
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for moving messages from one message folder to another, in typical implemen-
tations, they just COPY the message and then delete from the old folder.

Other commands like IDLE and NOOP are only network bandwidth intensive
because they do not affect messages in message boxes.

5.2 Analysis of the 3.4 Kbyte Message Size, Default Be-
havior Experiments

The following figures display graphs that compare the performance of the five
client programs for the various performance metrics being considered for their
default operation modes and using the smaller, 3.4 Kbyte message size.

Figure 5.1: Disk I/O Read Performance, 3.4 Kbyte Message Size: Default Be-
havior

Figure 5.2: Disk I/O Write Performance, 3.4 Kbyte Message Size: Default Be-
havior

From the preceding results, one can clearly see the significant difference be-
tween clients’ resource requirements on IMAP server. In disk I/O read, Mul-
berry completed the task quickly with high resource consumption. Sylpheed
showed a low start but finishes quicker than Outlook, Thunderbird and Opera.
Thunderbird and Opera took a longer time to complete manipulating the 2800
messages, followed by Outlook.
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Figure 5.3: Incoming Network Bandwidth, 3.4 Kbyte Message Size: Default
Behavior

Figure 5.4: Outgoing Network Bandwidth, 3.4 Kbyte Message Size: Default
Behavior
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When this trend is analyzed in combination with Table 5.6, the sum of total
disk I/O read needed to complete the tasks does not show much difference
between clients. Mulberry’s efficiency is confirmed because it completes the
tasks with lowest total amount of disk I/O write (754 MB) and network band-
width usage: 2 MB and 18 MB for received and sent performance respectively.
Outlook is the second best in disk I/O write (844 MB) and network bandwidth
usage: 4 MB and 24 MB for packets received and sent respectively followed by
Thunderbird. Sylpheed consumed much more disk I/O write resources (2149
MB) and network bandwidth, both for packets sent (35 MB) and received (5
MB).

Opera’s behavior simulation problem is clearly seen here, and the values are
invalid since the performance is too much exaggerated. However, the frequent
use of STORE command by the client and switching of message flags could
contribute to the performance because it requires frequent renaming of file
names.

Although Sylpheed showed consistency in its default and optimized behavior,
a frequent request for status of messages in all available folders using STA-
TUS command might be the case in addition to high number of CLOSE and
EXPUNGE commands as shown in Table 5.5.

Thunderbird showed the second worst in disk I/O write resource usage be-
cause of the highest amount of STORE command used (265) compared to the
others.

As explained earlier, since the disk I/O performance is directly proportional to
network bandwidth usage, the higher amount of bandwidth usage for Sylpheed
followed by Thunderbird is self explanatory. In the same context, the system
interrupt and context switch trends also followed the trend and agreed with
disk I/O performance as shown in Table 5.6.

Figure 5.5: System Interrupts, 3.4 Kbyte Message Size: Default Behavior

In Figure 5.7, Sylpheed’s performance showed the highest CPU I/O wait time
usage. This is the direct reflection of Sylpheed’s worst performance in disk I/O
read. Thunderbird and Outlook showed approximately comparable results in
I/O wait time. Mulberry started with highest I/O wait time usage but showed
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Figure 5.6: System Context Switches, 3.4 Kbyte Message Size: Default Behavior

a dramatic decline over time. Opera’s I/O wait time usage is in the midde with
slight increase over time.

Figure 5.7: I/O Wait, 3.4 Kbyte Message Size: Default Behavior

Figures 5.8 and 5.9 show the size of message boxes and the amount of messages
remaining after the completion of each replication. These result shows the disk
space usage differences between clients. From Table 5.2, Opera mail utilizes
the least disk usage (11.29 MB), followed by Sylpheed (12.78 MB). Thunder-
bird is the worst (25.54 MB), followed by Outlook (18.25) and Mulberry (17.68
mB). This is because Opera cleaned deleted messages from the Inbox as the
experiment went on. These result are the direct reflection factors noted in dis-
cussion of the previous chapter.

Opera’s best performance with this regard is because of its spam permanent
deletion feature without read from the Inbox. Opera also does not copy deleted
messages to the Trash. Sylpheed’s performance is due to its ability to copy
deleted messages from the Inbox and clear them immediately. Outlook and
Mulberry leave deleted messages in the Inbox until users clean them. Thun-
derbird is the worst because it keeps all copied deleted messages in the Trash
and Inbox, and messages exist duplicated in to message folders. Table 5.1 pro-
vides additional evidence for these conclusions.
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Figure 5.8: Message Box Size After Manipulation of 2800 Messages: Default
Behaviour

Figure 5.9: Messages Left After Manipulation of 2800 Messages: Default Be-
havior
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Inbox Folder1 Folder2 Folder3 Folder4 Trash Total
Mulberry 2800 350 350 350 350 0 4200
Opera 875 350 350 350 350 0 2275
Outlook 2800 350 350 350 350 0 4200
Sylpheed 0 350 350 350 350 1400 2800
Thunderbird 2800 350 350 350 350 1400 5600

Table 5.1: Number of Messages Left After Manipulation of 2800 Messages: 3.4
Kbyte Message Size, Default Behavior

Inbox Folder1 Folder2 Folder3 Folder4 Trash Total
Mulberry 11.46 1.51 1.50 1.50 1.70 0.00 17.68
Opera 5.26 1.50 1.51 1.50 1.51 0.00 11.29
Outlook 12.17 1.52 1.52 1.52 1.52 0.00 18.25
Sylpheed 1.11 1.50 1.49 1.49 1.49 5.71 12.78
Thunderbird 13.43 1.61 1.61 1.61 1.61 5.66 25.54

Table 5.2: Message Box Sizes (MB) After Experiment Completion: 3.4 Kbyte
Message Size, Default Behavior

5.3 Analysis of the 3.4 Kbyte Message Size, Optimized
Behavior Experiments

The following figures display graphs that compare the performance of the five
client programs for the various performance metrics being considered for their
optimized operation modes and using the smaller, 3.4 Kbyte message size.

Figure 5.10: Disk I/O Read Performance, 3.4 Kbyte Message Size: Optimized
Behavior

Figures 5.10,5.11,5.12, 5.13, 5.14 and 5.15 compare disk I/O read and write per-
formance, network bandwidth usage for packets received and sent, and sys-
tem interrupts and context switches (respectively) for the five client programs
under consideration.

As for the default mode results, Mulberry again completed the tasks first by
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Figure 5.11: Disk I/O Write Performance, 3.4 Kbyte Message Size: Optimized
Behavior

Figure 5.12: Incoming Network Bandwidth, 3.4 Kbyte Message Size: Opti-
mized Behavior

Figure 5.13: Outgoing Network Bandwidth, 3.4 Kbyte Message Size: Opti-
mized Behavior
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Figure 5.14: System Interrupts, 3.4 Kbyte Message Size: Optimized Behavior

Figure 5.15: Context Switches, 3.4 Kbyte Message Size: Optimized Behavior

Figure 5.16: I/O Wait CPU Percentage, 3.4 Kbyte Message Size: Optimized
Behavior
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utilizing higher disk I/O read performance and network bandwidth for pack-
ets received. Its results were followed by Sylpheed. The other clients were es-
sentially equivalent in their performance for disk I/O write and network band-
width for packets sent. The experiments’ slight differences in length caused
Thunderbird to finish slowest, followed by Opera.

Outlook consumed higher disk I/O read resources as compared to Thunder-
bird and Opera, which were neck and neck except for Thunderbird’s delayed
finishing.

When the preceding graphs are interpreted in conjunction with Table 5.7, Mul-
berry was again an efficient client in resource usage because the sum of total
amount of resources consumed for disk I/O write and network bandwidth
usage for packets received was the lowest at 697 MB and 18 MB, followed by
Outlook, which consumed 864 MB and 19 MB respectively. The number of sys-
tem interrupts and context switches recorded in this table is another reflection
of the disk I/O performance figures.

In Figure 5.16, Sylpheed’s performance was the worst of all for CPU I/O wait
time usage. This is the direct reflection of Sylpheed’s worst performance in
disk I/O read (explained earlier). Thunderbird, Outlook and Opera exhibited
similar performance in with respect to CPU I/O wait time. Mulberry started
with almost similar CPU I/O resource demands with Thunderbird, Outlook
and Opera but showed a significant increase after approximately 30 seconds.

Figure 5.17: Message Box Size After Manipulation of 2800 3.4 Kbyte Messages:
Optimized Behavior

Figures 5.17 and 5.18 shows the size of message boxes and amount of messages
left after the completion of each replication. The corresponding numerical data
is tabulated in Tables 5.3 and 5.4.

In Table 5.4, Opera mail again utilizes the least disk usage (6884 KB), followed
by Sylpheed (6904 KB) and Outlook (7184 KB). Thunderbird is the worst (7880
KB). This is because the other clients cleaned deleted messages from the Inbox
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Figure 5.18: Messages Left After Manipulation of 2800 3.4 Kbyte Messages:
Optimized Behavior

Inbox Folder1 Folder2 Folder3 Folder4 Trash Total
Mulberry 0 350 350 350 350 0 1400
Opera 0 350 350 350 350 0 1400
Outlook 0 350 350 350 350 0 1400
Sylpheed 0 350 350 350 350 0 1400
Thunderbird 0 350 350 350 350 0 1400

Table 5.3: Messages Remaining After Experiment Completion: 3.4 Kbyte Mes-
sages, Optimized Behavior

as the experiment went on. These result are the direct reflection of what we
have discussed so far.

Although clients cleaned their messages, the Inbox occupied significant disk
space. This is due to Maildir’s implementation that inodes are freed and con-
sidered to be reused later again. Maildir does not immediately remove deleted
messages from the Inbox although the client software cleans them unless the
mailbox is permanently removed.

5.4 Analysis of the 76 Kbyte Message Size, Default Be-
havior Experiments

The following figures display graphs that compare the performance of the five
client programs for the various performance metrics being considered for their
default operation modes and using the average size, 76 Kbyte message size.

From the preceding graphs, it is clear that Mulberry’s finishing time is the
shortest, followed by Sylpheed and Outlook. Thunderbird took the longest
time to complete the experiment. Almost all clients showed constant resource
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Figure 5.19: Disk I/O Read Performance, 76 Kbyte Message Size: Default Be-
havior

Figure 5.20: Disk I/O Write Performance, 76 Kbyte Message Size: Default Be-
havior

Figure 5.21: Incoming Network Bandwidth, 76 Kbyte Message Size: Default
Behavior
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Figure 5.22: Outgoing Network Bandwidth, 76 Kbyte Message Size: Default
Behavior

Figure 5.23: System Interrupts, 76 Kbyte Message Size: Default Behavior

Figure 5.24: System Context Switches, 76 Kbyte Message Size: Default Behav-
ior
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Inbox Folder1 Folder2 Folder3 Folder4 Trash Total
Mulberry 752 1536 1540 1540 1536 6904
Opera 760 1532 1528 1536 1528 6884
Outlook 924 1556 1556 1552 1556 40 7184
Sylpheed 1112 1544 1544 1544 1544 96 7384
Thunderbird 1228 1644 1648 1648 1656 56 7880

Table 5.4: Final Mailbox Sizes (MB): 3.4 Kbyte Messages, Optimized Behavior

Figure 5.25: I/O Wait CPU Percentage, 76 Kbyte Message Size: Default Behav-
ior

consumption with regards to disk I/O, network bandwidth usage and sys-
tem interrupts and context switches. All clients showed downward spike on
their graphs, although the spikes are not always well visible because of scaling.
However, this is reflected in the CPU I/O wait (see Figure 5.25).

This could be due to the disk I/O write requirements from the increased mes-
sage size. The disk I/O write graph shows an upward spike at similar lo-
cations and time intervals for each client. This behavior is most clearly seen
in Mulberry’s line. Since Mulberry issued a small number of commands to
complete the task, disk I/O intensive commands like STORE could be issued
closely together, resulting in increases in disk I/O operation. Thus, the I/O
wait spikes in Mulberry are high. Except for the disk I/O write graph, the
other performance metrics showed downward spikes at the same time inter-
val. This shows that the disk I/O write caused the CPU wait time.

5.5 Analysis of the 76 Kbyte Message Size, Optimized
Behavior Experiments

The following figures display graphs that compare the performance of the five
client programs for the various performance metrics being considered for their
optimized operation modes and using the average size, 76 Kbyte message size.
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As the preceding graphs show, all performance metrics for all clients showed
an increased performance as the amount of message in inbox was decreasing.
From this results, one can easily see that Mulberry finished in short period of
time than others as usual. Sylpheed is the next client finished the tasks with
little short from Outlook. Thunderbird took the longest time to complete the
tasks.

Figure 5.26: Disk I/O Read Performance, 76 Kbyte Message Size: Optimized
Behavior

Figure 5.27: Disk I/O Write Performance, 76 Kbyte Message Size: Optimized
Behavior

As in case in of the default behavior of clients for same message size, Mulberry
is the highest disk I/O read resource consumer followed by Sylpheed. Outlook
and Thunderbird were neck and neck except for the extended total experiment
time for Thunderbird (see Figure 5.26). However, all clients except Sylpheed
showed a similar level of disk I/O write performance over the length of time
they took.

Other performance metrics are the reflection of these disk I/O requirements.
Clients showed competitive resource demand in network bandwidth usage for
packets received (see Figure 5.28). However, Mulberry consumed the highest
level of network bandwidth for packets received from the server, followed by
Sylpheed. This traffic could be the direct reflection of disk I/O read perfor-
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Figure 5.28: Incoming Network Bandwidth, 76 Kbyte Message Size: Opti-
mized Behavior

Figure 5.29: Outgoing Network Bandwidth, 76 Kbyte Message Size: Opti-
mized Behavior

Figure 5.30: System Interrupts, 76 Kbyte Message Size: Optimized Behavior
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Figure 5.31: System Context Switches, 76 Kbyte Message Size: Optimized Be-
havior

Figure 5.32: I/O Wait CPU Percentage, 76 Kbyte Message Size: Optimized
Behavior
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mance since the server sends responses back immediately for any disk read
operation-related commands like FETCH.

CPU time wait showed in Figure 5.32 is the reflection of the performance dif-
ference between clients during disk I/O intensive operations. Mulberry again
consumes hight percentage of CPU time followed by Sylpheed. Others are
very close, differing only in the length of time required to complete the task.
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Command Mulberry OutlookThunderbird Sylpheed Opera
IDLE 0 383 273 0 282
DONE (without tag) 0 383 273 0 282
idling (without tag) 0 383 273 0 282
NOOP (single way) 121 12 168 0 2
FETCH (Envelope) 120 0 0 0 0
FETCH (HEADER) 80 96 96 96 119
FETCH (BODY) 120 105 160 105 105
FETCH (UID) 0 96 0 0 0
FETCH (UID FLAGS) 0 4 0 40 39
FETCH (FLAGS) 0 0 168 0 0
COPY 40 40 80 80 40
STORE (Deleted) 80 0 0 80 180
STORE(Deleted&Seen) 0 80 81 0 0
STORE (Seen) 0 40 104 65 0
STORE (NonJunk) 0 0 80 0 0
SELECT INBOX * 5 6 5 84 81
SELECT Folder1 4 5 4 4 13
SELECT Folder2 4 5 4 4 15
SELECT Folder3 4 5 4 4 13
SELECT Folder4 4 5 4 4 14
SELECT Trash 0 0 1 1 0
SELECT Junk E-mail 0 1 0 0 0
LOGOUT 1 1 1 1 1
LOGIN 1 1 1 1 1
CAPABILITY 1 2 1 1 1
LSUB 1 2 1 0 1
LIST 0 2 1 0 119
NAMESPACE 0 0 1 1 0
STATUS INBOX 0 0 0 4 0
STATUS Folder1 0 0 0 14 10
STATUS Folder2 0 0 0 14 10
STATUS Folder3 0 0 0 14 10
STATUS Folder4 0 0 0 14 10
STATUS Trash 0 0 0 44 0
CLOSE 1 1 17 100 0
EXPUNGE 0 0 2 80 55
Total (OK) 587 1658 1803 855 1685

Table 5.5: This table shows the number of commands that each client issued
for one message group manipulation round.
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Client read writ recv send int csw usr sys idl wai time
Mulberry 27 754 2 18 89,385 244,012 10 8 79 2 1.4
Opera 22 7,710 15 32 333,090 764,500 9 10 79 2 5.3
Outlook 26 844 4 24 151,291 352,903 12 10 77 1 3.6
Sylpheed 26 2,149 4 35 176,162 520,733 9 7 80 3 1.9
Thunderbird 26 1,617 5 27 211,389 535,518 13 9 77 1 5

Table 5.6: This table compares the total sum amount of resource usage under each selected performance metric for the default
behavior of the various clients. Columns read and write show disk I/O read and write performance in MB per second. Column recv
and send show the sum of total amount of network bandwidth usage for packets receved and sent in MB per second. Columns int
and csw show the sum of total amount of system interrupt and context switch. Columns usr and sys show the average percentage
CPU time usage for user and system time. Columns idl and wai shows the average percentage of CPU time in the idle and wait
states. Column time shows the average elapsed time required to complete the experiment.

Client read writ recv send int csw usr sys idl wai time
Mulberry 25 697 2 18 83,284 220,312 9 8 81 2 0.9
Opera 23 1,367 5 26 167,820 427,774 11 9 79 2 2.4
Outlook 27 864 4 19 144,593 328,273 11 9 78 2 2.2
Sylpheed 27 2,263 4 74 200,916 511,759 9 8 79 3 1.8
Thunderbird 27 1,454 5 26 186,692 471,904 10 9 79 2 2.7

Table 5.7: This table compares the total sum amount of resource usage under each selected performance metric for the optimized
behavior of the various clients. Columns read and write show disk I/O read and write performance in MB per second. Column recv
and send show the sum of total amount of network bandwidth usage for packets receved and sent in MB per second. Columns int
and csw show the sum of total amount of system interrupt and context switch. Columns usr and sys show the average percentage
CPU time usage for user and system time. Columns idl and wai shows the average percentage of CPU time in the idle and wait
states. Column time shows the average elapsed time required to complete the experiment.
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5.6 Summary from tables

Table 5.5 the number of commands issued from client side for one message
group which was 80 in this thesis experiment.

From the table, one can easily see the difference in IMAP protocol implemen-
tation by different email client softwares under same amount of message ma-
nipulation. The figures in the table are from network traffic filter while each
client’s simulated scripts manipulated 80 messages. The table result indicates
that Thunderbird issued 1803 commands followed by Opera which was 1685.
However, the amount of commands in Opera column are increased by signif-
icant amount during simulation. Outlook issued 1658 followed by Sylpheed
that amounted 855. Mulberry issued the least amount of commands.

The total amount of commands has direct relation with network bandwidth
usage resource requirement for both packets received and sent from the server.
The less amount of commands shown in Mulberry and Sylpheed is because
they do not implement IDLE command by default.

Sylpheed issued high number of EXPUNGE, CLOSE and SELECT the Inbox
commands. This is to achieve a single login implementation unlike other
clients in this experiment. However, the frequent request for status of each
message folder has contributed the high amount of resource usage discussed
earlier.

Thunderbird issued the highest number of STORE command (265) followed
by Opera (180) for all types of flag options. Again Thunderbird issued 424
FETCH commands to manipulate 80 messages because of its frequent request
for new message and messages flags. Mulberry issued 320 FETCH commands
because it fetches envelope part of the message unlike other clients. Outlook,
Opera and Sylpheed issued 301, 263 and 241 FETCH commands respectively.
Sylpheed and Opera are the only client that utilized STATUS command for 104
and 40 times respectively. Other commands issued by these clients is listed in
table 5.5.

Table 5.6 and 5.7 summarize the total sum amount of resource usage under
each selected performance metrics for default and optimized behavior of se-
lected clients respectively. The calculation is made from the mean values ob-
tained from 35 replications for each client.

From the tables, Opera is th highest consumer in disk I/O write (7710 MB/sec)
followed by Sylpheed (2149 MB/Sec). Thunderbird and outlook are the third
and fourth with values 1617 MB/Sec and 844 MB/Sec respectively. Opera’s
figures are highly distorted because of the additional commands for imple-
mentation purpose. This can be seen from the network bandwidth received
and sent.

In the optimized behavior of clients, Sylpheed is the worst (2263 MB/Sec) in
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disk I/O write followed by Thunderbird (1454 MB/Sec). Opera is the third
and this time, the simulation problem is much more reduced in this client’s
behavior. Thus, it is possible to say this is the close to actual behavior of the
client. Outlook and Mulberry are the fourth and fifth with disk I/O usage with
values 864 MB/sec and 697 MB/sec respectively.

5.7 Trend Analysis

Trend analysis was attempted to project values in the time series graph and to
compare the resource usage based on the growth trend on the graphs. Most
client’s default behavior graphs showed a linear function trend liine. Graphs
from Mulberry, Thunderbird and Outlook are good example for this. Sylpheed
graphs behave same for both default and optimized behaviors graph. For
cllient’s optimized behavior, some showed an exponential function but the
slopes for this function were not significant because the slope for theses graphs
were not steepy as normal exponential function graphs. Most graphs fitted
with polynomial function with varying degree from 2 to 5. The equations with
r-square value indicated on the graphs to provide evidence how well the func-
tion fits to the actual graph. From these equations, one can easily see the trend
by which the performance mertics decreased or increased.
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5.8 Conclusion

At the present, the IMAP protocol standards are generally focused on allowing
a client to access and manipulate electonic mail messages on a server. How-
ever, the diversity of the IMAP protocol commands permits email client de-
velopers to implement the protocol differently without realizing its server side
consequences.

The effects of different IMAP clients on IMAP server performance and re-
source usage has been described and quantified through studying how dif-
ferent IMAP clients implement the IMAP protocol. Disk I/O read and write
usage was the major performance metric studied, as well as network band-
width usage. The CPU I/O wait percentage was also a metric that reflected
the performance bottlneck inherent in disk I/O write peformance. Network
bandwidth usage was also directly influenced by the disk I/O performance.
It is possible to say the selected performance metrics appropriatly evaluated
clients’ behavior under different scenarios.

From the outcomes, Mulberry has shown efficient use of resources in all perfor-
mance metrics except disk space usage. Outlook has shown mid level perfor-
mance consumption in most selected performance metrics. Opera and Sylpheed
showed consistent IMAP protocol implementation in their default and opti-
mized behaviors. Opera was the best client for disk space utilization but has
shown higher disk I/O resource usage in its default behavior, although the ad-
ditional overhead due to simulation should be considered. Sylpheed’s highest
resource consumption, especially in its optimized behavior, was a surprising
result because it is thought to be lightweight client. Thunderbird’s perfor-
mance with respect to disk space usage was the worst in all scenarios. In most
optimized client’s behavior results, Opera, Outlook and Thunderbird showed
very similar results, with the exception being disk usage.

The default vs. optimized and small vs average message size scenarios helped
to clearly see the resource requirement differences among different clients.
All clients’ comparison between their default vs. optimized behavior clearly
showed a significant difference in all selected performance metrics. The re-
sults also show significance difference between these selected clients. The
selected message size comparison also highlighted the significant difference
among clients’ default and optimized behaviors.

5.8.1 Limitation and Obstacles in the Experiments

Most of selected clients except Sylpheed manipulated messages on IMAP server
via multiple logins concurrently to mailboxes. Thus, any manipulation to the
mailboxes is accomplished through the already established connection. How-
ever, during simulation for this experiment, it was not possilbe to achieve this
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since the telnet connection that this thesis adapted allowed only a single con-
nection. Hence, the simulation was implemented through switching between
mailboxes. This problem was significant during Opera mail’s simulation since
there was a lot of switching between the Inbox and other message folders.

The other major problem was during simulation Opera’s mail client behavior
for managing deleted messages. The client implements dynamic clearing of
messages with deleted flags through the SEARCH command and removing
the deleted flag status for listed messages when running the EXPUNGE com-
mand. This implementation helped the client not permanently remove deleted
messages when the user wants them to remain. However, it was not possible
to achieve this implementation within the benchmarking tool developed for
this thesis. Thus, the above implementation was achieved through a signifi-
cant amount of additional command runs.

Another obstacle in this experiment was simulating a single message arrival
in a mailbox. In an actual email infrastructure, this is done through the SMTP
protocol that delivers the messages to the mailbox. However, in this experi-
ment, since the experiment is only about IMAP protocol, messages were put
in mailbox before the experiment began to avoid the complications of concur-
rent SMTP traffic.

The original plan of this project was to include multiuser and bulk email ma-
nipulation experiments. The bulk email manipulation experiment was com-
pleted for 3 message folders successfully, but due to limitations of time, the
results could not be included for discussion and analysis.

A multiuser experiment was also conducted for 8 users. However, the design
could not reflect a real life scenario due to limitations in the current version of
the benchmarking facility.

5.8.2 Contributions of the Thesis

The major output of this thesis is its contribution to the study of IMAP clients’
behavior. The achieved results from this thesis could be helpful for standard
organizations like The Internet Engineering Task Force (IETF). Since the mis-
sion of IETF is “to make the Internet work better by producing high quality,
relevant technical documents that influence the way people design, use, and
manage the Internet,” the outcome from this thesis could contribute to look at
IMAP protocol implementation from resource usage point of view. The find-
ings might influence the standard organizations to work closely with IMAP
client developers.

The other contribution from the outcome is for system administrators who
manage email service infrastructure for large organization with thousands cus-
tomers. The result could provide an insight during resource allocation and
preparation. Since availability is crucial to email service, the outcome could
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contribute knowledge for a quick understanding of accidental mail server re-
source requirements due to a client’s specific implementation of the IMAP pro-
tocol.

The methodology utilized in this thesis can be adapted easily for additional
research on the existing organizational email infrastructure. Benchmarking
IMAP servers based on clients behavior is a new concept, and it can be devel-
oped further. Thus, a system administrator can confidently control the infras-
tructure if the maximum threshold resource usage can be studied based on the
email clients used by its users.

Email client developers should take also such issues into consideration in the
process of email client development. Developers should be careful when they
decide on the default behavior for their software based on these results since
most users utilize software with its default configuration.

Last but not least, the outcome underscore the principle that users should op-
timized their email client from a resource usage perspective. By doing so, a
single user can save a lot of resources such as Internet traffic and other indirect
resource consumption. Although this is a different topic, as the amount of mes-
sage increases in mailbox, the resource requirement from server side and client
machine also increases for message manipulation of newly arrived messages.
Synchronizing mailboxes is also elongated because of deleted and unwanted
messages that should be permanently removed. This could contiribute in a
small way power usage in data centers.

5.9 Future Work

Since the approach in this thesis is new, several issues could not be addressed,
and they invite further research and analysis.

The benchmarking approach used to test IMAP server is an interesting area
that could be developed with more extensive programming and organization
since existing benchmarking tools do not address these concerns.

Although this thesis could not research and compare different IMAP servers
with the same approach due to time limitations, studying different IMAP servers
response to different IMAP protocol implementation could result an interest-
ing outcome.

During the process of this thesis, obtaining resources related to IMAP were
the major problem to quickly organize and study documents. Developing a
central information center for IMAP and IMAP related developments could
help to facilitate and produce better results for research like this. This can be
achieved through developing a website and collecting resources in relation to
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IMAP protocol, although it requires effort and willingness of concerned par-
ties. Since existing IMAP books are decade old and have not been updated,
information included in this thesis could be developed further and used as an
alternative resource.

The increasing trend on utilizing IMAP protocol is a good indication for the
future of Internet network traffic. Unnecessary resource utilization will lead
to unnecessary resource consumption and competition. Most email clients are
popular because of GUI features that they come with. However, their true
purpose is to implement the IMAP and/or POP protocols. Many users do not
select an email client because of their efficincy in resource usage but because
of their GUI and other fancy features.

Unwisely used resources are an unnecessary waste, especially in developing
countries. Africa and Asia are the most vulnerable continent with this respect
because of lack or adequate technology adaptation. Waste resources because
of IMAP protocol implementation could be used to balance Internet resource
utilization.

The Internet Task Force or another standard agency should consider standard-
izing part or all of the implementation of the IMAP protocol as well as its fea-
tures and insist that such requirements be met before clients are made available
for use.
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Appendix A

List of IMAP RFCs and Their Status

RFC
Num-
ber

Authors Title Obsoleted
by RFC

Updated
by RFC

Year Authors Organi-
zation

Category

1064 M. Crispin Interactive Mail Access Protocol:
Version 2

1176, 1203 1988 SUMEX-AIM

1176 M. Crispin Interactive Mail Access Protocol:
Version 2

1203 1990 University of
Washington

1203 J. Rice Interactive Mail Access Protocol:
Version 3

1730 1991 Stanford

1730 M. Crispin Internet Message Access Protocol -
Version 4

2060, 2061 1994 University of
Washington

Standard
Track
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1731 J. Myers IMAP4 Authentication Mecha-
nisms

1994 Carnegie Mellon Standard
Track

1732 M. Crispin IMAP4 Compatibility with IMAP2
and IMAP2bis

1994 University of
Washington

Informational

1733 M. Crispin Distributed Electronic Mail Models
in IMAP4

1994 University of
Washington

Informational

2060 M. Crispin Internet Message Access Protocol -
Version 4rev1

3501 1996 University of
Washington

Standard
Track

2061 M. Crispin IMAP4 Compatibility with
IMAP2bis

1996 University of
Washington

Informational

2062 M. Crispin Internet Message Access Protocol -
Obsolete Syntax

1996 University of
Washington

Informational

2086 J. Myers IMAP4 ACL extension 4314 1997 Carnegie Mellon Standard
Track

2087 J. Myers IMAP4 QUOTA extension 1997 Carnegie Mellon Standard
Track

2088 J. Myers IMAP4 non-synchronizing literals 4466 1997 Carnegie Mellon Standard
Track

2095 J. Klensin,
R. Catoe, P.
Krumviede

IMAP/POP AUTHorize Extension
for Simple Challenge/Response

2195 1997 MCI Standard
Track

2177 B. Leiba IMAP4 IDLE command 1997 IBM T.J. Watson
Research Center

Standard
Track

2180 M. Gahrns IMAP4 Multi-Accessed Mailbox
Practice

1997 Microsoft Informational
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2192 C. New-
man

IMAP URL Scheme 5092 1997 Innosoft Standards
Track

2193 M. Gahrns IMAP4 Mailbox Referrals 1997 Microsoft Standards
Track

2195 J. Klensin,
R. Catoe, P.
Krumviede

IMAP/POP AUTHorize Extension
for Simple Challenge/Response

1997 MCI Standards
Track

2221 M. Gahrns IMAP4 Login Referrals 1997 Microsoft Standards
Track

2342 M. Gahrns,
C. New-
man

IMAP4 Namespace 4466 1998 Microsoft and In-
nosoft

Standards
Track

2359 J. Myers IMAP4 UIDPLUS extension 4315 1998 Netscape Com-
munications

Standards
Track

2595 C. New-
man

Using TLS with IMAP, POP3 and
ACAP

4616 1999 Innosoft Standards
Track

2683 B. Leiba IMAP4 Implementation Recom-
mendations

1999 IBM T.J. Watson
Research Center

Informational

2971 T. Showal-
ter

IMAP4 ID extension 2000 Mirapoint, Inc. Standards
Track

3348 M. Gahrns,
R. Cheng

The Internet Message Action Proto-
col (IMAP4) Child Mailbox Exten-
sion

2002 Microsoft Standards
Track
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3501 M. Crispin INTERNET MESSAGE ACCESS
PROTOCOL - VERSION 4rev1

4466,
4467,
4469,
4551,
5032,
5182

2003 University of
Washington

Standard
Track

3502 M. Crispin Internet Message Access Protocol
(IMAP) - MULTIAPPEND Exten-
sion

4466,
4469

2003 University of
Washington

Standard
Track

3503 A. Mel-
nikov

Message Disposition Notification
(MDN) profile for Internet Message
Access Protocol (IMAP)

2003 ACI World-
wide/MessagingDirect

Standard
Track

3516 L. Neren-
berg

IMAP4 Binary Content Extension 4466 2003 Orthanc Systems Standard
Track

3517 E. Blanton,
M. Allman,
K. Fall, L.
Wang

A Conservative Selective Acknowl-
edgment (SACK)-based Loss Re-
covery Algorithm for TCP

2003 Purdue Univer-
sity, BBN/NASA
GRC, Intel Re-
search, Univer-
sity of Kentucky

Standard
Track

3691 A. Mel-
nikov

Internet Message Access Protocol
(IMAP) UNSELECT command

2004 Isode Ltd. Standard
Track

4314 A. Mel-
nikov

IMAP4 Access Control List (ACL)
Extension

2005 Isode Ltd. Standard
Track

4315 M. Crispin Internet Message Access Protocol
(IMAP) - UIDPLUS extension

2005 University of
Washington

Standard
Track
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4466 A. Mel-
nikov

Collected Extensions to IMAP4
ABNF

2006 Isode Ltd. Standard
Track

C. Daboo
4467 M. Crispin Internet Message Access Protocol

(IMAP) - URLAUTH Extension
5092,
5550

2006 University of
Washington

Standard
Track

4549 A. Mel-
nikov,
Ed.

Synchronization Operations for
Disconnected IMAP4 Clients

2006 Isode Ltd. Informational

4551 A. Mel-
nikov

IMAP Extension for Conditional
STORE Operation or Quick Flag
Changes Resynchronization

2006 Isode Ltd. Standard
Track

S. Hole
4731 A. Mel-

nikov, D.
Cridland

IMAP4 Extension to SEARCH
Command for Controlling What
Kind of Information Is Returned

2006 Isode Ltd., Inven-
ture Systems Ltd.

Standard
Track

4959 R. Siem-
borski, A.
Gulbrand-
sen

IMAP Extension for Simple Au-
thentication and Security Layer
(SASL) Initial Client Response

2007 Google, Inc.,
Oryx Mail Sys-
tems GmbH

Standard
Track

4978 A. Gul-
brandsen

The IMAP COMPRESS Extension 2007 Oryx Mail Sys-
tems GmbH

Standard
Track

5032 E. Burger,
Ed.

WITHIN Search Extension to the
IMAP Protocol

2007 BEA Systems,
Inc.

Standard
Track
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5092 A. Mel-
nikov,
Ed., C.
Newman

IMAP URL Scheme 5593 2007 BT Informational

5161 A. Gul-
brandsen,
Ed., A.
Melnikov,
Ed.

The IMAP ENABLE Extension 2008 Oryx Mail Sys-
tems GmbH,
Isode Ltd.

Standard
Track

5162 A. Mel-
nikov, D.
Cridland,
C. Wilson

IMAP4 Extensions for Quick Mail-
box Resynchronization

2008 Isode Ltd., Nokia Standard
Track

5182 A. Mel-
nikov

IMAP Extension for Referencing
the Last SEARCH Result

2008 Isode Ltd. Standard
Track

5232 A. Mel-
nikov

Sieve Email Filtering: Imap4flags
Extension

2008 Isode Ltd. Standard
Track

5267 D. Crid-
land, C.
King

Contexts for IMAP4 5465 2008 Isode Limited Standard
Track

5464 C. Daboo The IMAP METADATA Extension 2009 Apple, Inc. Standards
Track
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5465 A. Gul-
brandsen,
A. Mel-
nikov, C.
King

The IMAP NOTIFY Extension 2009 Oryx Mail Sys-
tems GmbH,
Isode Ltd.

Standards
Track

5466 A. Mel-
nikov, C.
King

IMAP4 Extension for Named
Searches (Filters)

2009 Isode Ltd. Standards
Track

5530 A. Gul-
brandsen

IMAP Response Codes 2009 Oryx Mail Sys-
tems GmbH

Standards
Track

5593 N. Cook Internet Message Access Protocol
(IMAP) - URL Access Identifier Ex-
tension

2009 Cloudmark Standards
Track
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Appendix B

Automate Scripts for
Benchmarking

============================================
Main Automate Script
============================================
#!/bin/bash
# mkdir /root/imap-client/program/ #this file tree should exist before run-
ning this script and
#all scripts sould be put under /program directory
# make sure you have enabled ssh connection between server and client ma-
chines through ssh-keygen
# make all packages and softwares installed and configured as explained in
the methodology chapter.
# hostaddress for IMAP server and IMAP client is imap-server and imap-client
# test users must be created with name ”client 1, 2, 3, 4 etc” on IMAP-server. If
already exists
#and is not possible to change, edit the script accordingly
PS3=’Choose the imap-client for test: ’
echo ”Enter the number of client users you want to test: ”
read numberofusers #input
echo ”Enter desired number of email message in a mailbox: ”
read messageinmailbox #iinput
echo ”Enter desired size of message for test: ”
read messagesize #iinput
echo ”How many times you want to repeat the experiment: ”
read replication #iinput
echo
#choose client for test
choice *of()
{
select client #iinput
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do
echo
echo ”You have choosen $client for test purpose and the simulation for this
client will run soon”;
echo
break
done
} #available clients for choice
choice *of Outlook Thunderbird Opera Sylpheed Mulberry Exit
#environment variable
clients=$numberofusers
messages=$messageinmailbox
size=$messagesize
echo ”$clients”;
echo ”$messages”;
if [ $client == ”Outlook” ] —— [ $client == ”Thunderbird” ] —— [ $client ==
”Opera” ] —— [$client == ”Sylpheed” ] —— [ $client == ”Mulberry” ];
then
#clean files from aborted test
rm -r /root/imap-client/$client/*
for i in ‘seq 1 $replication‘;
do
#clean files from aborted test
rsh imap-server rm -r /root/imaptest *results
#prepare directory for test on server
rsh imap-server mkdir -p /root/imap-server/program
#copy scripts to server
scp -r /root/imap-client/program/sendmail *wrapper.sh sendmail.sh imap-
server:/root/imap-server/program/
#prepare directory for test on client
mkdir -p /root/imap-client/$client/results/replication$i/loginfo
#clean files from aborted test
rm -r /root/imap-client/program/${client}fivefolder.expect*
#clean Maildir directory on server
sh /root/imap-client/program/remove.sh $numberofusers
for f in ‘seq 1 $numberofusers‘;
do
#prepare message folders on IMAP server
expect /root/imap-client/program/${client}foldermgmtsinglefivefolder.expect
imap-server 143 client$f Teshu02Dagim $numberofusers
done;
echo ” Test replication $i of $replication Started. Preparing messages to send
to users. Please wait...”;
#collect message box disk space
rsh imap-server du /home/client*/
>/root/imap-client/$client/results/replication$i/${client}Messageboxsizeemptyreplication$i.txt
#send messages to mailbox
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rsh imap-server sh /root/imap-server/program/sendmail *wrapper.sh $num-
berofusers $messageinmailbox $messagesize >& /dev/null
echo ” Sending $messageinmailbox messages to $numberofusers users each.
Wait...”
sleep 5
queuewait=0
postqueue=”‘rsh imap-server postqueue -p‘”
maxwait=180
delay=0
#check message queue
while [ ”$postqueue” != ”Mail queue is empty” ];
do
if [ $queuewait -gt $maxwait ];
then
echo ”Sending message took more than $maxwait minutes. Aborting the test.
Please try again.”
rsh imap-server postqueue -p >>/root/imap-client/$client/results/replication$i/loginfo/errorreplication$i
rsh imap-server postsuper -d ALL
exit 1
fi
echo ”There are messages in queue. Please wait...”
sleep 10
queuewait=$((queuewait + 1))
delay=$((delay + 10))
echo ”Message queue delayed for $delay seconds. If delay more than an hour
test will abort.”
postqueue=”‘rsh imap-server postqueue -p‘”
done
echo ” $messageinmailbox messages sent to $numberofusers users success-
fully.”
# collect Maildir directory disk space usage
rsh imap-server du /home/client*/
>/root/imap-client/$client/results/replication$i/${client}Messageboxsizebeforemanipulationreplication$i.txt
# collect disk volume space usage
for n in ‘seq 1 $numberofusers‘;
do
#copy original simulation scripts
cp /root/imap-client/program/backup${client}fivefolderoptimized.expect ${client}fivefolder.expect$n
&
done;
#prepare directory on server
rsh imap-server mkdir -p /root/imaptest *results/$client/
#restart IMAP server
rsh imap-server reboot
echo ”Rebooting your imap-server. Wait for some minutes...”
# wait for 3 minutes
sleep 180
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# shutdown external interface
rsh imap-server ifdown eth1
# collect perfomance metrics data
rsh imap-server dstat –output /root/imaptest *results/$client/${client}fivefolderoptimizedReplication$i.csv
–noheaders -dnyc -D total -N total -C total &
sleep 10;
for m in ‘seq 1 $numberofusers‘;
do
# run simulation scripts
expect /root/imap-client/program/${client}fivefolder.expect$m imap-server
143 client$m Teshu02Dagim >& /dev/null & done;
checkprocess=‘pgrep expect —wc -l‘
maxprocess=$(( $numberofusers + 10 ))
minprocess=5
counthigh=0
# check processes for simulation scripts. This is helpful for multiuser tests
if [ $checkprocess -gt $maxprocess ]; then
echo ”$i Process $checkprocess” >>/root/imap-client/$client/results/replication$i/loginfo/Reason1
echo ”$i Process $checkprocess” >>/root/imap-client/$client/results/replication$i/loginfo/errorreplication$i
kill -9 $(pgrep expect)
echo ”There is problem with the test”
exit 1
fi
while [ $checkprocess -gt $minprocess ] && [ $checkprocess -le $maxprocess ];
do
checkprocess=‘pgrep expect —wc -l‘
echo ”$i Process $checkprocess” >>/root/imap-client/$client/results/replication$i/loginfo/Reason2
if [ $checkprocess -gt $maxprocess ]; then
echo ”$i Process $checkprocess” >>/root/imap-client/$client/results/replication$i/loginfo/Reason1
echo ”$i Process $checkprocess” >>/root/imap-client/$client/results/replication$i/loginfo/errorreplication$i
kill -9 $(pgrep expect)
echo ”There is problem with the test”
exit 1
fi
sleep 3
done
count=0
while [ $numberofusers -gt 5 ] && [ $checkprocess -gt 0 ] && [ $checkprocess
-le $minprocess ];
do
checkprocess=‘pgrep expect —wc -l‘
if [ $count -gt 5 ]; then
echo ”$i Process $checkprocess and $count”
>>/root/imap-client/$client/results/replication$i/loginfo/errorreplication$i
kill -9 $(pgrep expect)
exit 1
fi
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count=$(( $count + 1 ))
echo ”$i Process $checkprocess” >>/root/imap-client/$client/results/replication$i/loginfo/Reason3
echo ”$i Count $count” >>/root/imap-client/$client/results/replication$i/loginfo/Reason3
sleep 3
done
while [ $numberofusers -le 5 ] && [ $checkprocess -gt 0 ];
do
checkprocess=‘pgrep expect —wc -l‘
echo ”$i Process $checkprocess” >>/root/imap-client/$client/results/replication$i/loginfo/Reason4
sleep 3
done
sleep 10
#stop data collection on IMAP server
rsh imap-server killall python;
sleep 3
#pull collected data from IMAP server
scp -r imap-server:/root/imaptest *results/$client/${client}fivefolderoptimizedReplication$i.csv
/root/imap-client/$client/results/replication$i/
#clean earlier created directory
rsh imap-server rm -r /root/imaptest *results
#collect message box size
rsh imap-server du /home/client*/
>/root/imap-client/$client/results/replication$i/${client}MessageboxsizelastReplication$i.txt
for c in ‘seq 1 $numberofusers‘;
do
# collect amount of messages left in message folders
expect /root/imap-client/program/${client}checkmailbox5folder.expect imap-
server 143 client$c Teshu02Dagim
$numberofusers >/root/imap-client/$client/results/replication$i/messagesleftinmailboxreplication$i
done;

make server external interface available
rsh imap-server ifup eth1
sleep 5
#clean copied simulation scripts from client server
rm -r /root/imap-client/program/${client}fivefolder.expect*
echo ” Test replication $i of $replication completed.”;
#clean Maildir directory
sh /root/imap-client/program/remove.sh $numberofusers
#remove earlier created folders from IMAP server
rsh imap-server rm -r /root/imap-server
done;
echo ”Rebooting client server...”
sleep 5
reboot
else echo ”These are the opetions we have. If you want to try again run the
main program”;
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echo ”None of the options selected”>>/root/imap-client/$client/results/replication$i/loginfo/errorreplication$i
exit 1
fi
exit 0
============================================
Mailbox Cleaner Script
============================================
#! usr/bin/bash
# cleaning mailbox and message folders
echo ”Clearing Mailbox and Folders...”
for u in $(seq 1 $1);
do
rsh imap-server rm -r /home/client$u/Maildir
done
echo ”Clearing Mailbox and Folders Completed”
=============================================
Message Sender Script
=============================================
#! usr/bin/bash
#send messaes to test users and should be run on IMAP server
i=1
while [ $i -le $clients ];
do
for m in ‘seq 1 $messages‘; do dd if=/dev/urandom bs=$sizek count=1 —
uuencode - — mail -s ”Test message” client$iimap-server.vlab.iu.hio.no &
done;
i=‘expr $i + 1‘
done
=============================================
Wrapper Script
=============================================
#wrapper script to run sendmail.sh
clients=”$1”
messages=”$2”
size=”$3”
export clients messages size
sh /root/imap-server/program/sendmail.sh ”$”
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