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Abstract 

Non-linear wave reflection on inclined planes is studied. 

Analytical expressions which describe the run-up and the back-wash 

are obtained both for single and periodic waves. The maximum run-up 

height for a single harmonic wave compare well with observations of 

solitary waves on relatively steep slopes. A simple breaking 

criterion for the collapse of a solitary wave during the back-wash 

is deviced. The criterion is found to agree well with observations. 

From the form of the water surface during the run-up we have 

estimated the possible water spill-over into a reservoir. Energy 

consideration indicate that less than 30 per cent of the wave 

energy may be available for power production. 
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1. Introduction 

Large water waves generated either by seismic activity, land­

slides or avalanches have in many cases caused deaths and wide­

spread destruction. For this reason wave amplification have been 

subject for numerous studies. Reviews of the litterature are given 

by LeMehaute et al. (1968), Meyer and Taylor (1972), Hails and Carr 

(1975) and Provis and Radok (1977) and in the article by Hibberd and 

Peregrine (1979). 

Power production based on wave run-up has also been considered 

see for example Mehlum (1978) and Helstad (1980). According to 

their plans the water in the run-up wedge may be led into a reser­

voir where energy can be produced by a conventional hydro-electric 

power plant. 

In this article we shall apply a method originally developed 

by Carrier and Greenspan (1958) in order to study run-up and re­

flection of non-linear waves on inclined slopes. Analytical 

expressions for wave run-up heights are obtained both for single 

waves and periodic waves and the results for a single wave are 

compared with experimental observations of solitary wave run-up. 

Experiments have shown that long waves reflected from rela­

tively steep slopes may break or collapse during the back-wash after 

the maximum run-up height has been reached. We have deduced a 

simple breaking criterion for this type of breaking and compared it 

with obsevations. Finally we have made some estimates of the 

fraction of wave energy available for power production based on wave 

run-up. 
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2. Basic equations 

We shall consider the run-up of long two-dimensional water 

waves on a plane slope which is inclined an angle e to the hori-

zontal direction. The bottom topography is drawn in figure 1 with 

the x-axis horizontal and the y-axis in the vertical direction. The 

undisturbed water has a uniform depth H for x~-1 and the slope 

is described by the line y=-ax for x~-1 where a=tan8=H/l. 

Initially the water is at rest and the water surface is horizontal. 

For t=O we prescribe, at x=-L, the surface elevation ~ 0 (t) 

corresponding to a wave disturbance propagating toward the slope. 

We will assume that the amplitude of the disturbance is suffi-

ciently small compared to H and that the typical wave length is 

sufficiently large compared to H so the WqVe motion may be 

described by the linearized shallow water equation for x~-1. 

Hence the equations of motion and of continuity are 

ou 
- = ot 

on -g­
ox 

on o 
o t = - ox ( uH) 

( 2-1 ) 

where ~ is the surface displacement and u is the horizontal 

velocity and g denotes the acceleration of gravity. For x>-1 

where the water depth becomes shallow non-linear effects will be 

important. In this region the dominant non-linear terms are re-

tained in the equation of motion and in the equation of continuity. 

Hence 

ou ou on + u-::-- = -g..;;;...;J. 
ot ox ox (2-2) 

on =-_£[u(h+~)] 
ot ox 
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where h=-ax denotes the water depth at rest. We follow Carrier 

and Greenspan (1958) and Carrier (1966) and introduce a new set of 

independent variables a,A defined by 

A 2 = u+agt 

a 4 = lg(h+r,) 

For t=O, u=O and A=O. At x=-1 11 may be neglected compared to 

H. Hence a=4c 0 where c 0= lgH. These variables have the remark-

able property that u, when regarded as function of a and A, is 

determined by a linear differential equation. If we write 

u = l .£1 
a oa (2-3) 

it can be shown that the function $ of a and A satisfies the 

equation 

(2-4) 

The details are given by Carrier and Greenspan (1958). 

The surface displacement is determined by 

(2-5) 

and x and t as functions of a and A are given by the 

relations 

x = 1 ( 1 ~ <P - 2u 2 - 1a62 ) 
2ag 4 ~ 

t = 2!g(A-2U) 

(2-6) 

( 2-7) 

In order to solve eq. (2-4) we introduce a Laplace transformation 

of $ with respect to t'=A/2ag defined by 

(X) 

~ = J<Pe-stdt' 

0 



- 4 -

With the initial conditions q>=O and 

d 2 ~ + l dq> _ (-S-)24)' = O 
da a da 2ag 

~=0 
oA. at t'=O 

The solution of this equation bounded for a=O is 

4> = CJ 0 ( 2 iq ~) 

we find 

(2-8) 

where J 0 is the zero order Bessel function, C is an integration 

constant, i=v'-=1, sl a q=--, and ~=--- At x=-1 we assume that c 0 4c 0 " 

the amplitude of the disturbance is small and by neglecting the 

non-linear terms in eq. (2-5) we have 

= 1 1 oq> 
T] g 4 ~ 

By taking the Laplace transformation of this equation we find 

(2-9) 

at x=-1 or a=4c 0 • The corresponding velocity is 

l 0 4>' 
u = a oa (2-10) 

In consistence with these approximations we also set t=t' at 

x=-1. 

The linear set of equations (2-1) is Laplace transformed with 

respect to t and a solution which represents an incoming and a re-

fleeted wave is easily obtained. At x=-1 we assume that u and TJ 

are continuous. Hence the solutions for x>-1 and x<-1 are 

matched by the conditions (2-9) and (2-10). By neglecting terms 

corresponding to wave reflections at x=-L we obtain 

4> = 

L -q(--1) 
~ 1 
TJoJ 0 (2 iq~ )e 

J 0 ( 2 1 q) - iJ 1 ( 2 i q } 
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where ~ 0 is the Laplace transform of the incoming wave and J 1 is 

the Bessel function of order one. By using the Laplace inversion 

theorem we find ~ and the corresponding expression for u=~ ~ 

and 2J. can be written or.. 

o<!> = 4gAI 1 TI 
4gAI 2 

u = - a 

where A is the amplitude of the incoming wave, and Il and I 2 

are functions of a and A. defined by 

( 2-11 ) 

where 
lA. 

f=(--2 -L+l)/c 0 • The integration path in the complex s-plane 
co 

is chosen so that the real constant y is larger than the real 

parts of all singularities of the integrals. 

The surface displacement can be expressed by the functions I 1 

and I 2 and from (2-5) we find 

(2-12) 

By using the relations (2-6) and (2-7) n/A is obtained as 

function of x and t. 

At the point where the water surface meets the sloping beach 

the \'later depth is zero and a=O. For this 

and from ( 2-4) ~ oA. =2u. Since ~=au 
ot for 

the minimum values of ~ occur for u=O. 

run-up height by ~=R we have 

R 
= I l 

A 

value u=~ ocr 

a=O the maximum and 

If we denote the maximum 

(2-13) 
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for A=A =2agt where A is determined by the condition m m m 

o2,h 
~ = 0 for cr=O. ( 2-1 4) 

3. Solution in special cases 

In order to discuss some consequencies of the theory we shall 

evaluate the integrals (2-11) in two cases. First we shall 

consider an incoming disturbance which consists of a single 

harmonic wave defined by the surface elevation at x=-L 

T] 0 ( t) = ~ ( 1- cos Q t) I 

where A and Q are constants. 

transformed of this function is 

-21tS 
A Q 2 ( 1 - e -Q-) 

TJo = 2 
s(s2+Q2) 

for ( 3-1 ) 

For t 2n 
>-

Q TJo=O. The Laplace 

This expression for TJo leads to poles in the integrals (2-11) for 

s=O and s=±iQ. The denominators in the integrals are also zero 

-for and s where 
n 

s n denotes the complex conjugate of 

Values of s are given in Appendix 1. 
n 

By standard complex integration techniques we find for O<Qf<2n 

I 1 = 1 
Jo(K/;) 

-----------[J 0 (K)cosQf+J 1 (K)sinQf]+r 1 (Qf) 
2 2 

I2 = 

J 0 ( K ) +J l ( K ) 

Jl(K/;} 
-----------[-J 0 (K}singf+J 1 (K)COSQf]+p 1 (Qf) 

2 2 
J 0 ( K ) +J 1 ( K ) 

(3-2) 

(3-3) 

where r 1 (Qf) and p 1 (Qf) represent the contribution from the 

poles sn and sn. (See Appendix 1) 

s . n 
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The parameter K is defined by 

K = 

For Qf 2n only the poles sn and sn contribute to the integral 

and we find 

I 1 = r 1 (Qf)-r 1 (Qf-2n) 

I 2 = p 1 (Qf)-p 1 (Qf-2n) 

(3-4) 

The front of the disturbance will travel from x=-1 to a position 

where in a· time span 

xf 
d ll[ 1-(_xf)!] tf = f = 

-1 X !. c 0 1 
ca(-T)2 

Since u and T] are zero ahead of the disturbance 

and we have 

Hence both I 1 and I 2 are zero for f<tf. This means that the 

series r 1 (Qf) and p 1 (Qf) can be expressed by the first terms on 

the right hand side of (3-2) and (3-3) respectively. It can also 

be shown that the contributions from the series r 1 (Qf) and p 1 (Qf) 

are negligible except for small values of Qf and large values of 

K. For Qf=n the terms in the series corresponding to the poles 

s 1 and ~ 1 are deminished by a factor exp(-n ln(4n)/2K) 

compared to the value for Qf=O. When K=2 this factor is 0.14 

and when K< 1 the factor is less than 0.02. Hence we may neglect 

r 1 and p 1 in (3-2) and (3-3) except in the first stage of the 
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run-up. The maximum run-up height, ~=R, therefore occurs for 

f=f where 
r 

This corresponds to a time 

and 

t = f /Q + (L-l)/c 0 r r 

R = 1 + 
A 2 2 1 

[ J 0 ( K ) +J 1 ( K ) J 2 

(3-5) 

(3-6) 

The expression (3-6) shows that the ratio R/A depends only on the 

parameter K. For K~o R/A~2 which corresponds to reflection at 

a vertical wall (1=0) or reflection of infinitely long waves 

(Q=O) by a sloping beach. For K>O the ratio R/A is always 

larger than 2. Similarly we find that the maximum back-wash, ~=S 

occurs for f =f +n where f is defined by (3-5). Hence we s r r 

have that 

s 1 = 1 - ------~-------
A 2 2 1 

[ J 0 ( K ) +J 1 ( K ) ] 2 

(3-7) 

which shO\'IS that also the ration S/A depends only on the 

parameter K. 

The surface displacement at the time of maximum run-up 

penetration or back-wash is 

where 

.!l = 1 ± 
A 2 2 ! 

[ J 0 ( K ) +J 1 ( K ) r 
( 3-8) 

~=--0- is defined by (2-6). The upper and lower sign in (3-
4c0 

(3-8) refer respectively to the run-up and the back-wash state. 

Since is a function of X 

l ' K 
and A 

H 
the form of the surface 
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displacement at the time of maximum run-up or back-wash height will 

depend both on K and the nit io A/H. 

The formulas (3-5)-(3-8) lead to approximative values of the 

parameters R/A, S/A, f 
r 

and f which are in good agreement with s 

the values obtained from ( 3-2)- ( 3-4) when .the series r 1 ( Q f) and 

p 1 (Qf) are retained. The two sets of parameters are shown in 

table 1 for values of K between 1 and 5. 

Table I 

Run-up Back-wash 

K Correct Approximate Correct Approximate 

Qf 
R 

Qf 
R 

Qf s Qf s r r s r 
11: A 11: A 11: A 11: A 

1 • 0 1 • 1 6 2.13 1 • 1 7 2.13 2.16 -0.13 2.1 7 -0.13 

2.0 1 • 40 2.61 1 • 38 2.62 2.40 -0.62 2.38 -0.62 

3.0 1 • 72 3.08 1 • 71 3.34 2.72 -1 • 26 2.71 -1 • 34 

4.0 2.00 3.50 2.05 3.48 2.96 -1 • 63 3.05 -1 .48 

5.0 2.36 3.87 2.34 3.68 3.00 -2.42 3.34 -1 • 68 

The form of the water surface at the time of maximum run-up 

and maximum back-wash for K=3 and A/H=0.1 is shown in figure 2. 

In the next case we consider the incoming disturbance consists 

of a train of periodic waves. Hence the surface elevation at 

x=-L is 

TJo = A sin Qt for t >0 (3-9) 

the Laplace transform of this function is 

TJo = A 
Q 
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By proceeding in the same way as in the previous case we find 

I l = 
2J 0 ( K/;) 

-----------[J 0(K)sinQf-J 1(K}cosQf]+r 2(Qf} 
2 2 

J 0 ( K ) +J 1 ( K ) 

2J l ( K /;) 

----------[J 0 (K)cosQf+J 1 (K}sinQf]+p 2 (Qf} 
2 2 

J 0 ( K ) +J l ( K ) 

(3-10) 

where r 2 (Qf) and p 2 (Qf) represent the contribution from the 

poles s 
n 

and s • 
n 

and p 2 are given in Appendix 1. Also in 

this case the series r 2 and p 2 can be neglected except in the 

first stage of the run-up. 

When the steady state is established the maximum run-up, 

rr=R, occurs for f=f where 
r 

tan Qf = -r J 1 (K) 

and 

R 2 = 
A 2 2 1 

[ J 0 ( K } +J 1 ( K ) J 2 

The corresponding surface displacement is 

.!l. = 
A 

2J 0 ( K/;) 

2 2 . 1 
[ J 0 ( K ) +J 1 ( K ) J 2 

( 3-1 1 ) 

(3-12) 

(3-13) 

where I; is a function of x. Again we see that the ratio R/A 

depends only on the parameter K, while the form of the 

surface at the time of maximum run-up depends both on K and the 

ratio, A/H. The expression (3-12) also shows that the maximum run-

up height for a periodic wave is larger than for the single wave 

(3-6). 
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The maximum back-wash, ~=S, is in this case given by S=-R 

and the surface displacement at the time of the back-wash is given 

by (3-13) with a change of sign. The water surface at the time of 

maximum run-up and maximum back-wash for K=3 and A/H=0.1 is 

depicted in figure 3. 

Experiments show that even relatively long waves often break 

during the back-wash of the water. In order to establish a crite-

rion for when breaking occurs we shall consider the slope of the 

water surface at ~=0 which corresponds to the edge of the water 

wedge. The surface displacement for a single wave is given by 

(3-8) provided the lower sign is used. We also have that 

~ = ~[1-

Hence the expression for is obtained by differensiating with 

respect to x. We find 

( .£.!)_) = 
ox 1;=0 

A/1 
2 2 1 

4 [ J 0 ( K ) +J 1 ( K ) J 2 

Breaking during back-wash may occur if 

A 
H 

.£.!)_ 
ox becomes infinite i.e. 

the breaking criterion for a single wave given by (3-1) may be 

2 2 1 
4 [ J 0 ( K ) +J 1 ( K) J 2 

!1. .. 
H 

( 3-1 4) 

In a similar way we find a breaking criterion for the periodic 

waves given by (3-9) 

A H" ., 

2 2 1 

2 [ J 0 ( K ) +J 1 ( K ) J 2 
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4. Comparison with experiments 

Measurements of the run-up, R, of solitary waves on inclined 

planes with bottom topography as shown in figure 1 are described by 

Wiegel (1964), Arntsen (1978) and Langsholt (1981). They found 

that there is a nearly linear relationship between the amplitude, 

A, and the run-up height R. Langsholt measured the run-up of 

solitary waves on inclined planes of different roughness. He found 

that the run-up was strongly effected by friction especially for 

small inclination angles. The relation between R and A given 

by Wiegel and Langsholt can be written 

( 4-1 ) 

where the parameters K and a are determined by a least-square 

fit to the data. 

Wiegel found that K and a depend on the inclination angle, 

e, and he determined K and a for e 0 
values between 5 and 

45 °. In the recent study by Langshol t K and a is also found to 

depend on water depth and the roughness parameter of the plane. 

On basis of the theoretical predictions in section 3 it is 

possible to deduce a relation between the run-up and the amplitude 

for a solitary wave. The surface displacement corresponding to a 

solitary wave propagating over a uniform depth is 

TJ =A cosh- 2 <P(t) 

where A is the amplitude and 

1 c 0 t 
<P = (o.75 A) 2 

H H 

(4-2) 

Although the front of a solitary wave is not well defined the time 

span th from the peak to half the peak displacement is easily 
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measured in an experiment. The solitary wave may be approximated 

by a single harmonic wave (3-l) and we assume that 

Qt = ~ 
h 2 

The matching between the harmonic wave (3-1) and the solitary wave 

(4-1) is shown in figure 4. Since $(th)=0.8814 we find 

(4-2) 

Hence for given values of water depth, amplitude and inclination 

angle we may estimate the parameter K for a solitary wave and use 

the theory in section 3 to determine the corresponding run-up. 

The results of these computations are displayed by the graphs in 

figure 5. It turnes out that for 0.1 A/H 0.4 the relationship 

between the parameters A/H and R/A can to high degree of 

accuracy be approximated by the function (4-1). Table II shows 

values of the parameters K and a computed from this theory 

and from Wiegel's and Langsholt's experimental data. 

Table II 

Theory Langsholt Wiegel 

e a K a K a K 

45° 0. 1 5 2.95 0.1 5 3.05 

30° 0.18 3. 81 0.1 6 3.24 0.13 3.28 

20° 0.23 4.94 0.13 3.60 0.15 3.48 

15° 0.22 5.58 0.1 2 3.62 

For inclination angles larger than 30° the theoretical and the 

experimental results agree well and the difference in R/A is less 

than 10 per.cent. 
0 

For inclination angles smaller than 30 .the 
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difference becomes larger and for 9=15° the theory predicts 

considerably higher values of R/A than observed. The reason for 

the discreapancy may mainly be due to frictional effects which 

becomes more important for small values of 9 especially at the 

edge of the water wedge. This is clearly illustrated by Langsholt 

who determined the parameters a and K for different water 

depth, H, between 10 and 25 em. Langsholt found that for 9=30 
0 

a and K were nearly independent of H provided H~15 em. For 
0 

9=12 , however, K was found to vary considerably with depth. 

Another source of error in the theoretical results may be dis-

persion effects and non-linear effects (for x<-1) which are 

neglected in the present theory. Recently Pedersen (1981) have 

included these effects and found a better agreement with 

experimental results for values of 9 
0 

less than 30 • 

Experiments show that a solitary wave reflected from an 

inclined plane may break during the back-wash state and Arntsen 

(1978) observed for which values of A/H and 9 breaking occured. 

His results are displayed in figure 6 and these results may be 

compared with predictions made on basis of the breaking criterion 

(3-14). For K>1 we may use asymptotic expansions for the Bessel 

functions. Hence the square root in (3-14) may be approximated by 

(l-)t. By using this result we finally obtain from (3-14) and nK 

(4-2) the following breaking criterion for a solitary wave 

10 
A 9 
H > 0.479(tan9) 

The lower bound on A/H is depicted by dotted line in figure 6 and 

the close correspondence with Arntsen's observations is streaking. 
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5. Some consideration regarding power production by wave run-up 

The possibilities of power production by water waves has 

recently been investigated by several research groups. The wave 

motion may for example be used for pumping water into a reservoir 

above sea level where electricity is produced by a conventional 

hydro-electric power plant (Helstad, 1980). It has been argued 

that as much as 70-80 per cent of the energy in the waves at sea 

level would be converted to potensial energy at the reservoir. 

With the present theory we are able to make an estimate of this 

energy conversion factor. At the time of maximum run-up consider 

the amount of water which has crossed a vertical plane P which 

intersect the beach at a level R0 (see figure 1). The slope of 

the water surface at the edge of the water (~=0) can easily be 

obtained in a similar way as explaned in section 3. For periodic 

waves given by (3-9) 

where 

( OT1) ~ = p tane 
ox 1;=0 

p = A/H 
2 2 1 

2 [ J 0 ( K ) +J 1 ( K) J 2 

A/H+--------------­
K2 

By simple geometrical considerations we find that the amount of 

water (per. unit length along the wave front) is 

v = ~(1-p)(R-R 0 ) 2 /tane 

If this amount of water fills a large reservoir at a level R0 it 

corresponds to a potensial energy (per. unit length) ~E=pgVR 0 

where p is the density of water. The energy (per.unit width) of 
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the incoming wave front is F.: = -1pgA 2 A. where A. = is the 

length. Hence the energy conversion factor may be written 

For 

~E R-Ro Ro 
= ~1t(l-p) (-A-)2 H E 

~E 
R0 =R/3, E has a maximum value 

wave 

Th . · h th t (E~E)m 1'ncreases w1'th K and 1s express1on s ows a 

within the range where this theory is valid we find that 

A/H but 

(~E) is 
E rn 

less than 0.3. Let us consider an example which may be relevant for 

power production by water waves. We take 
0 

H=35m, 9=18.7 , A/H=0.2 

and the wave period is lOs. In this case K=7, R/A=6.62 and 

(~E)m=0.28. For these relatively large values of K and A/H 

wave breaking may occur and this effect together with frictional 

effects most likely reduce the energy conversion factor consider-

ably. Although the estimate relay on very simple arguments it 

indicates that the energy conversion factor may be well lower 

30 per cent in a power plant based on wave run-up. 

6. Concluding remarks 

In the previous section we found that for inclination angles 

0 
. 9<30 there are relatively large discreapancies between computed 

and observed run-up heights. The former values are larger than the 

latter. 
0 0 

For 9=30 the difference is about 5-10% and for 9=15 

about 20-40%. This discreapancy is mainly due to frictional 

effects, capillary effects, dispersion and non-linear effects which 
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may be insufficiently modelled by the present theory. Errors may 

also be induced by approximating the solitary wave by a single 

harmonic wave component. 

Friction is probably the most important source of error for 

small angles where the discreapancies between theoretical and ex­

perimental results are largest. In these cases the run-up wedge 

ends in a long and very thin layer (compared to H). In experi­

ments, where the water depth H is small, this layer is obviously 

strongly effected by friction. This is clearly demonstrated by 

Langsholt's experiments where the ratio R/A is found to increase 

strongly with H. For this reason one may expect that the computed 

run-up height will agree better with observation for large scale 

phenomena where frictional effects (and also cappilary effects) are 

less important. These cases are probably better described by our 

theory than by small scaled experiments. 

In the theory the solitary wave is approximated by a shorter 

and steeper harmonic wave component (fig. 4}. Since the run-up 

height is larger for shorter waves than for longer waves (table 1) 

this may lead to an overestimate of R/A. We have also neglected 

non-linear terms (when x<-L} and dispersion effects. These 

effects tend to cancel each other for solitary waves and the 

approximation may be justified when the typical wave length is 

large compared to 1 (i.e. for small values of K). The results by 

Pedersen (1981}, based on a numerical study of solitary wave run­

up, indicate that the error in R/A due to the latter approxima­

tions is less than 10% for K<4 • 

• 
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Appendix 1 • 

We write the denominator in the integrals (2-11) 

By using relations for Bessel functions we find 

( A-1 ) 

where the bar denotes complex conjugate. If s = s is a root of 
n 

the equation 

N ( s) = 0 (A-2) 

it follows from (A-1) that s = sn is a root of the equation. 

Approximate values for the roots can be found by using 

asymptotic expansion of the Bessel functions. We introduce a 

complex variable defined by 

z = 2sl 
co 

Hence N(s) can be written 

and the roots of (A-2) are given by zn and N(zn)=O. By retaining 

the second order terms in an asymptotic expansion of J 0 (z) and 

J 1 (z) for large values of z we find that the equation N(z ) = 0 
n 
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z 
n 
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An approximate solution of this equation is 

and 

i£ 
= R e n 

n 
where 

and n=1 ,2,3 .••. The accuracy of the approximation is rather good 

and for n=1 the error in R 
n is about 3%. Once the roots of 

equation (A-2) is known the residual contribution to the integrals 

(2-11) from the poles 

that 

= 

Hence we find that the 

s and 
n 

residual 

sn can easily be found. We note 

contributions corresponding to an 

incoming wave defined by ( 3-1 ) are 

iz Qf 
J o ( zn!;.) 

n 
<X> K2 

r 1 (Qf) 2Re I K = e 
n=1 K2-z 2 Jo(zn) 

n 

and 

iz Qf 
J 1 ( zn!;.) 

n 
co K2 

Pl(Qf) 2Im I K = e 
n=1 K2-z2 Jo(zn) 

n 

The residual contributions corresponding to a periodic wave 

train (3-7) are 

iz Qf 
iKZ J o ( zn I;) 

n 
<X> 

r 2 ( Qf) -4Re I n K = Jo(zn) 
e 

n=1 K 2_z 2 
n 

and 

iz Qf 
i KZ Jl(z !;.) n 

co ---
p 2 ( Qf) -4Im I n n K = -jo(zn) e 

n=l K2-z2 
n 



- 20 -

References 

(1) Arntsen, ¢.A. (1978) Theoretical and experimental study of 
wave run-up on relatively steep slopes. Cand.real. 
dissertation, University of Oslo, pp. 155. 

(2) Carrier, G.F. (1966) Gravity waves on water of variable 
depth. J. Fluid Mech., 24, 641-659. 

(3) Carrier, G.F. and Greenspan, H.P. (1958) Water waves of 
finite amplitude on a sloping beach. J. Fluid Mech., 
!, 97-109. 

(4) Hails, J. and Carr, A. (1975) Nearshore sediment dynamics and 
sedimentation. Wiley. 

(5) Helstad, J. (1980) Power production based on focused ocean 
swells. Norwegian Maritime Research, i· 

( 6 ) Hibberd, s. and Peregrine, D.H. 
beach: a uniform bore. 

(1979) Surf and run-up on a 
J. Fluid Mech., ~, 323-345. 

(7) Langholt, M. (1981) Experimental study of wave run-up. Cand. ' 
real. dissertation, University of Oslo, pp. 132. 

(8) LeMehaute, B. Koh, R.C.Y. and Hwang, L.S. (1968) A synthesis 
on wave run-up. J. Water ways and Harbor Division, 
ASCE, Vol. 94, No WW1, 78-92. 

(9) Mehlum, E. and Stamnes, J. (1978) On the focusing of ocean 
swells and its significance in power production. 
Rapport~ Sentralinstitbttet for industriell forskning 
Oslo. 

(10) Meyer, R.E. and Taylor, A.D. (1972) Run-up on beaches. In 
waves on beaches and resulting sediment transport 
(ed. R.E. Meyer), pp. 357-411. New York: Academic 
Press. 

(11) Pedersen, G. (1981) Run-up of solitary waves in a channel. 
Cand.real. dissertation, University of Oslo, pp. 142. 

(12) Provis, D.G. and Radok, R. (1977) Waves on water of variable 
depth. Lecture notes in physics, Vol. 64, Springer. 

(13) Wiegel, R.L. (1964) Oceanographical Engineering. International 
series in theoretical and applied mechanics. Fluid 
Mechanics Series, Prentice Hall. 



- 21 -

Figure Captions 

Figure 1 Geometry for the model. 

Figure 2 Surface displacement for single wave K=3, A/H=0.1, 

a) maximum run-up, b) back-wash. 

Figure 3 Surface displacement for periodic wave K=3, A/H=0.1, 

a) maximum run-up, b) back-wash. 

Figure 4 Surface displacement for single wave (full drawn line) 

and solitary wave (dotted line) with Qth=n/2. 

Figure 5 Wave run-up for solitary wave. Computed run-up height for 
0 0 0 0 . 

inclination angles 15, 20, 30 and 45 (full drawn l1nes) 

Observed run-up height (Wiegel, 1964) for 30° and 45° 

(dotted lines). 

Figure 6 Breaking of solitary waves during back-wash. Arntsen's 

(1978) observational results: o no breaking, 6 indi­

cation of breaking, o breaking waves. Breaking 

criterion with dotted line. 
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