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1. INTRODUCTION  

 

“Dementia is a syndrome due to disease of the brain, usually of a chronic or 

progressive nature, in which there is disturbance of multiple higher cortical functions, 

including memory, thinking, orientation, comprehension, calculation, learning 

capacity, language, and judgement. Consciousness is not clouded. The impairments of 

cognitive function are commonly accompanied, and occasionally preceded, by 

deterioration in emotional control, social behaviour, or motivation. This syndrome 

occurs in Alzheimer's disease, in cerebrovascular disease, and in other conditions 

primarily or secondarily affecting the brain.” 

(World Health Organization ICD-10, 2007) 

 

Different types of dementia are difficult to identify in vivo, especially at early 

stages and partly due to the frequent co-existence of various etiologies. Recent 

techniques, including examination of biomarkers in cerebrospinal fluid (CSF) and 

advanced brain imaging techniques facilitate a more precise diagnosis of a given type 

of dementia. As previous diagnostic criteria for the Alzheimer type of dementia (AD) 

only captured the disease after dementia occured, new criteria involving recent 

biomarkers aim to arrive at a diagnosis at early stages, even prior to the onset of overt 

dementia. Along with episodic memory impairment, neuroimaging and CSF analysis 

have been proposed as reliable and important tools to make an accurate AD diagnosis 

possible, including forms of AD with co-existing cerebrovascular disease. 

The objective of this thesis aims to exploit the posssibilities of CSF analysis and 

neuroimaging in order to better understand the relationship between cerebrovascular 

and degenerative changes and cognition. To do so, measures of cerebral white matter 

changes from magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) 

were studied in cognitively impaired patients and compared to levels of CSF 

biomarkers and cognition. In degenerative and vascular cognitive impairment, risk 

factors and pathological disease processes have been well mapped. However, it 

remains unclear which exact mechanisms trigger these processes and in which way 

white matter changes and cortical events are connected. Improved early diagnostic 

specificity and better knowledge of interaction between vascular and degenerative 

changes may give rise to specific approaches to prevention and therapy, based upon 

individual risk-profiles. 
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1.1 Leukoaraiosis 

1.1.1 Background 

The increased availability of computer tomography (CT) and MRI in clinical practice 

beginning in the 1970´s and 1980´s revealed cerebral white matter changes in both 

normal elderly and cognitively impaired individuals (Verny et al., 1991; Meyer et al., 

1992). The observed white matter changes (presenting as diffuse low density areas on 

CT scans and as areas of hyperintensity on T2- and FLAIR-weighted MRI scans) 

were often considered to be an expression of leukoencephalopathy associated with 

Binswanger`s disease (Hachinski et al., 1987; Inzitari and Mascalchi, 1990; 

O'Sullivan, 2008). In the need for a more neutral term, Hachinski and colleagues 

suggested the term Leuko-araiosis (leuko = white, araiosis = rarefaction) on the basis 

of Greek etymology (Hachinski et al., 1987). It was suggested to avoid the term 

“Binswanger” when describing these white matter rarefactions (Pantoni and Garcia, 

1995). White matter changes (WMC), white matter hyperintensities (WMH), and 

white matter lesions (WML) are now commonly used terms. 

 

1.1.2 Etiology 

Periventricular and deep white matter areas are supplied by long penetrating arterioles 

originating from pial arteries (De Reuck, 1971; Salamon et al., 1966). WML in the 

elderly are associated with microvascular disease leading to ischemia and 

hypoperfusion (Fernando et al., 2006; Roman et al., 2002; Ward and Brown, 2002). 

Age, hypertension, and hyperhomocysteinemia are known risk factors for both 

arteriolosclerosis and WML (Bertsch et al., 2001; Breteler et al., 1994; Vermeer et al., 

2002) and post mortem pathological associations between WML and 

arteriolosclerosis have been described (Awad et al., 1986; van Swieten et al., 1991). 

There is a strong correlation between age-related WML and vascular risk factors (de 

Leeuw et al., 2002). In most patients, cognitive impairment associated with WML is 

regarded primarily as a vascular cognitive disorder (Roman, 2002; Roman et al., 

2004). 

WML may affect both periventricular (PV) and subcortical (SC) white matter 

(de Groot et al., 2000a; Fazekas et al., 1993), with PV regions lying in the distal part 

of the perfused region. Ischemic WML may therefore develop as a result of ischemia 

caused by arteriolosclerosis, which starts distally in deep penetrating end arterioles as 
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suggested by post-mortem studies (De Reuck, 1971; Englund, 2002; Pantoni, 2002; 

Roman et al., 2002; van Swieten et al., 1991; Simpson et al., 2007). 

SC and PV WML subtypes show many similarities with regard to 

pathogenesis, but substantial differences in tissue response and vascular risk factors 

between WML in the two regions have been described (Simpson et al., 2007; Lazarus 

et al., 2005). However, the strong correlation between PV and SC WML suggests 

etiopathological similarities, implying that these lesions may be manifestations of a 

single underlying disease process. In this view, PV and SC WML may represent a 

continuum of neurovascular pathology (DeCarli et al., 2005). 

Alternative mechanisms for WML development cannot be excluded. WML 

have been related to gliosis, demyelination and axonal loss (Awad et al., 1986; 

Fazekas et al., 1993; van Swieten et al., 1991; Ward and Brown 2002, see below), and 

genetic factors may also have a strong influence on the development of leukoaraiosis. 

A study quantifying leukoaraiosis in monozygotic and dizygotic twins suggested that 

as much as 71% of the cerebral white matter lesion volume could be explained by 

heritability (Carmelli et al., 1998). Genes affecting blood pressure or other 

(metabolic) pathways have been proposed as possible contributors (Turner and 

Fornage, 2002). 

In addition to reduced cognitive function, white matter lesions have been 

associated with depression, gait disturbances and disability in the elderly (de Groot et 

al., 2000b; Pantoni et al., 2006; Teodorczuk et al., 2007; Baezner et al., 2008) 

 

1.1.3 Quantification of white matter lesions 

Several semi-quantitative visual rating scales are available for the grading of white 

matter lesion severity. Some scales differentiate only into normal, moderate, and 

severe WML load (van Swieten et al., 1991), while others divide WML into 

periventricular and subcortical, as well as into different anatomical regions (de Groot 

et al., 2000a; Fazekas et al., 1987; Scheltens et al., 1993;Wahlund et al., 2001). 

Other methods include semi-automated volumetric approaches as well as computer-

assisted volumetric measurements and segmentation methods (DeCarli et al., 1995; 

Gurol et al., 2006). These various approaches have in common that they measure 

white matter damage as seen on CT or conventional MRI scans. As WML may be 

associated with white matter affection beyond lesions visible on conventional MRI 

(Taylor et al., 2007, O´Sullivan et al., 2001), these commonly used methods may not 
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adequately reveal the underlying but visually hidden white matter pathology. 

 

1.2 Cognitive Impairment 

1.2.1 Mild Cognitive Impairment (MCI) 

Individuals with cognitive impairment but preserved performance of activities of 

daily living who do not meet criteria for overt dementia are referred to as patients 

with mild cognitive impairment (MCI) (Petersen et al., 2001; Petersen et al., 1999). 

According to the original criteria (Peterson et al., 1999), besides subjective memory 

impairment, preserved general intellectual function, intact ADL, and absence of overt 

dementia, objective memory impairment must be present to meet the diagnostic 

criteria for MCI (amnestic MCI). In the recently revised MCI criteria (Winblad, et al., 

2004) also patients without memory impairment, but with deficits in other cognitive 

domains may be classified as MCI (non-amnestic MCI). In particular patients with 

amnestic MCI are at risk of developing AD, and 40-60% will convert to AD within 5 

years (Petersen et al., 2004). MCI etiology clearly is heterogeneous. In order to 

understand pathogenetic mechanisms and in order to enable development of disease 

modifying drugs it is important to recognize the underlying pathology at an early 

stage (DeKosky and Marek, 2003). 

Structural and functional imaging studies have revealed alterations of the 

posterior cortex including posterior cingulate gyrus and the medial temporal lobe 

(MTL) in patients with MCI and AD. Compared to normal controls, a reduced volume 

of the entorhinal cortex and hippocampus has been observed in MCI patients (Convit 

et al., 1997; Du et al., 2001). The determination of hippocampal volume may thus 

contribute to the prediction of AD development in patients with MCI (Jack et al., 

1999). Fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) studies 

have revealed reduction of glucose metabolism in the MTL and posterior cingulate 

cortex of MCI patients, especially in ApoE-�4 carriers (Mosconi, 2005). 

Due to the high rate of patients with MCI who develop AD, MCI is commonly 

considered as clinical pre-AD. Imaging techniques and cerebrospinal fluid (CSF) 

biomarkers (see below) may be helpful to identify incipient AD in MCI patients. 

Subjective cognitive impairment (SCI) has recently been suggested as a pre-

MCI stage in a possible SCI-MCI-AD disease continuum (Reisberg and Gauthier, 

2008), making this population interesting for longitudinal studies as well. 
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1.2.2 The Neurobehavioral Cognitive Status Examination (Cognistat) 

The Neurobehavioral Cognitive Status Examination (Cognistat) (Kiernan et al., 1987; 

Schwamm et al., 1987) is a test of cognitive function. It usually takes less than 45 

minutes to complete, depending on the cognitive status of the patient, which makes it 

suitable for use in the testing of large samples. However, it is important that trained 

staff performs the test. Cognistat includes subtests for orientation, attention, 

comprehension, repetition, naming, visuoconstruction, memory, calculation, 

similarities (verbal abstraction and concept formation), and judgment. The memory 

scale tests delayed verbal memory and includes cued recall. In the beginning of the 

test, the examiner asks general questions about the patients name, age, etc, before the 

examiner asks questions related to orientation (place and time). Next, the examiner 

tests memory and attention. Verbal memory is tested and the patient is asked to repeat 

a series of digits. The patient will be asked to recall the items he/she was asked to 

remember earlier. Spontaneous speech is tested by asking the patient to describe a 

detailed drawing. Language ability is further tested by observing the response to 

simple commands (comprehension) and by asking the patient to repeat phrases and 

sentences (repetition). In the last subtest of the language section, naming, the patient 

is asked to name parts of separate object when pointed to. Constructional ability is 

tested by having to draw an item, which was presented, on a stimulus sheet for ten 

seconds. Constructional ability is tested as the patient must fit plastic tiles into designs 

shown on a card. Calculation is tested by simple verbal mathematics. Reasoning 

consists of two subtests (similarities and judgment). Similarity is tested as the patient 

must explain in which way two concepts are similar. In the subtest for judgment the 

patient must show his/her ability to solve basic problem scenarios by answering 

questions demonstrating practical judgment. 

 

1.3 Alzheimer's disease 

1.3.1 Background 

Accounting for approximately 60% of all dementia cases, Alzheimer's disease (AD) is 

the most common cause of dementia in the industrialized nations. In 2006, the 

worldwide prevalence was estimated at 26 millon , a number expected to quadruple in 

the next 40 years. This means that 1 in 85 persons will be affected by 2050 

(Brookmeyer et al., 2007). In the western world, the AD prevalence in people older 

than 85 years of age is around 30%. Besides cancer, stroke, and cardiovascular 
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disease, AD has become one of the major causes of morbidity in the developed 

nations (Blennow et al., 2006; Tedeschi et al., 2008). This renders AD into a major 

public health problem. If early diagnosis and treatment could help delay disease onset 

and progression by as little as one year, the global AD burden would be significantly 

reduced (Brookmeyer et al., 2007). 

AD is neuropathologically characterized by loss of synapses, neuron 

degeneration, extracellular senile plaques, and intracellular neurofibrillary tangles. 

The amyloid cascade hypothesis is an important hypothesis for the cause of AD. 

Imbalance in A� production and clearance lead to A� aggregation and formation of 

plaques. Recent research has highlighted the neurotoxicity of diffusible A� oligomers 

(Blennow et al., 2006; Walsh and Selkoe, 2004). The formation of neurofibrillary 

tangles, another major component of AD pathogenesis, is believed to cause axonal 

dysfunction thereby compromising neuronal and synaptic function (Iqbal et al., 2005). 

Neurofibrillary tangles consist of abnormally hyperphosphorylated tau protein 

(Grundke-Iqbal et al., 1984). Tau is a microtubule-associated protein mainly located 

in neuronal axons. It is important for the stabilization of microtubuli and axonal 

maintenance (Drubin et al., 1988). However, it is yet not clear whether tau pathology 

and tangle formation are a cause or a consequence of the AD disease process. 

According to the amyloid hypothesis of AD, �-amyloid or precursors cause 

both nerve cell loss and memory failure. Genes causing familial early onset AD show 

non-allelic heterogeneity and are all related to metabolism of amyloid. The only 

established genetic risk factors for late onset AD, Apolipoprotein E, may be related to 

both amyloid metabolism and to the development of cerebrovascular pathology (see 

later in text). 

There are three high penetrance genes which have been related to early onset 

familial AD. �-amyloid precursor protein (APP), is located on chromosome 21 and is 

triplicated in Down syndrome, possibly accounting for the early development of 

Alzheimer´s disease in trisomy 21 individuals. Families with autosomal dominant 

early onset Alzheimer´s disease harbor point mutations in APP, leading to amino acid 

changes at proteolytic sites for �, �, and �-secretases that normally are involved in 

processing the APP protein. Two other genes related to early onset familial AD are 

presenilin 1 and 2, located on chromosomes 14 and 1 respectively. Mutations in these 

genes are the most common causes of familial AD and they have been shown to 
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increase production or alter the ratio of amyloid peptides (A�1-40 and A�1-42) 

(Selkoe, 2002). 

Histopathological confirmation still is the gold standard for a definite AD 

diagnosis. The National Institute of Neurological and Communicative Disorders and 

Stroke and the Alzheimer's disease and Related Disorders Association (NINCDS-

ADRDA) have defined criteria for probable AD. The diagnosis of probable AD is 

based on clinical and neuropsychological examination, the presence of cognitive 

impairment confirmed by neuropsychological testing along with exclusion of other 

causes of dementia. The use of CT and MRI scans in the context of these criteria is 

essential to identify alternative causes of cognitive impairment (brain tumors, normal 

pressure hydrocephalus, subdural haematomas, etc) as well as concomitant 

cerebrovascular disease (Blennow et al., 2006). 

New scientific knowledge about early AD, proteomic findings, and the availability of 

functional and structural imaging has led to a revision of the NINCDS-ADRDA 

criteria for research purposes (Dubois et el., 2007). As new AD biomarkers have 

become available, the new criteria propose the use of MRI, positron emission 

tomography (PET), and CSF analysis not only for exclusion of alternative causes of 

dementia, but as specific supportive criteria in addition to episodic memory 

impairment. 

 

1.3.2 Alzheimer's disease and white matter changes 

Small vessel disease and AD often coexist and patients with cerebrovascular disease 

have increased risk for AD (de la Torre, 2002; Snowdon et al., 1997). Clinical 

distinction between the two entities may be difficult, as both AD and microvascular 

disease lack focal signs initially and progress insidiously. In addition, ischemic brain 

disease and WML may also be etiologically linked to AD (Snowdon et al., 1997; 

Vermeer et al., 2003). 

Established risk factors for vascular disease like hypercholesterolemia, hypertension, 

and hyperhomocysteinemia may increase the risk for sporadic AD (Gorelick, 2004; 

Napoli and Palinski, 2005; Casserly and Topol, 2004), and a reduced risk for AD after 

treatment of hypertension and hypercholesterolemia has been described (Casserly and 

Topol, 2004; Forette et al., 2002; Fassbender et al., 2001; Lim et al., 2005). 
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Figure 1 shows the prevalence of WML and AD according to age group. WML occurs 

earlier than AD, supporting the hypothesis that cerebrovascular events increase the 

risk of AD. 

 

 

Figure 1: WML and AD prevalence adapted from Masani et al., 2003 and Hy et 

al., 2000. 

 

WML prevalence precedes AD prevalence by 20 to 30 years. 

 

 

WML have been associated with hippocampal atrophy in AD (de Leeuw et al., 2004), 

and a recent study of patients with cerebral autosomal dominant arteriopathy with 

subcortical infarcts and leucoencephalopathy (CADASIL) suggests that subcortical 

vascular lesions are associated with low CSF A�42 (Formichi et al., 2008). 

Experimental studies have suggested mechanisms that could account for this effect. 

Ischemic changes in the surroundings of neuronal tracts may lead to glial activation, 

formation of amyloid precursor protein (APP), and release of diffusible agents that 

may induce apoptosis (Sachdev et al., 2004; Wallin et al., 2000; Melton et al., 2003; 

Badan et al., 2003; Jin et al., 2001; Nihashi et al., 2001). After experimental white 

matter damage, studies suggest that amyloid could be deposited in the disconnected 
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cortical regions, or APP could be transported to cortical regions from the site of 

damage along neuronal tracts (Yam et al., 1998; Murakami et al., 1998). 

It has also been proposed that Wallerian degeneration may contribute to white 

matter changes (Englund, 1998; Leys et al., 1991). Supporting this notion, altered 

white matter myelination and a relationship between white matter gliosis and 

parenchymal A� load have been described in AD patients (Chalmers et al., 2005; 

Roher et al., 2002). WML in patients with AD may therefore partly arise secondary to 

cortical pathology. However, white matter degeneration has also been found in 

patients with early AD without signs of cortical thinning (de la Monte, 1989), 

suggesting that white matter is affected before cortical degeneration occurs. Diffusion 

alterations in parahippocampal white matter of AD patients have been observed as 

well, and after correcting for hippocampal volume (Salat et al., 2008). These findings 

suggest that white matter alterations may represent an additional mechanism, besides 

cortical degeneration, in the AD disease process. 

 

1.4 White matter changes and cognition 

WML may affect subcortical-cortical networks, as well as cortical association and 

projection fibers, leading to cortical disconnection and causing cognitive affection 

(Catani and Ffytche, 2005; Nordahl et al., 2006; O´Sullivan et al. 2004). 

WML are associated with cognitive loss and dementia (Artero et al., 2004; 

Prins et al., 2002, Prins et al., 2004), but the associations reported between ischemic 

WML and cognition are variable (Au et al., 2006; Breteler et al., 1994; Burns et al., 

2005; de Groot et al., 2000a; Hunt et al., 1989; Longstreth et al., 1996; Reed et al., 

2007; Sabri et al., 1999). Executive functions and information processing speed are 

most consistently found to be affected, whereas affection of memory is a less 

consistent finding (Catani et al., 2005; Jokinen et al., 2006; Prins et al., 2005; 

Salamon et al., 1966; Soderlund et al., 2006).
 
The variability of the findings may be 

due to differences in methodology and different patient groups with various types of 

co-existing brain disease. 

Both PV and SC WML have been associated with impaired cognition (de 

Groot et al., 2000a; Baum et al., 1996; Burns et al., 2005; Delano-Wood et al., 2008; 

Gold et al., 2007; Soderlund et al., 2006). However, the findings are inconsistent and 

it is not clear to what degree the effects of PV and SC WML on cognitive function 

differ. Due to separate anatomical locations, PV and SC WML affect different fiber 
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tracts. PV lesions most likely affect projection and longer distance association fibers, 

whereas SC lesions affect short distance association fibers and cortical-subcortical 

networks (Brodal, 1998). These differences may lead to different modalities of 

impairment of cognitive function. 

As most cognitive capabilities are sensitive to the effects of AD, particularly 

delayed recall, the effects of WML alone are difficult to detect. Therefore, a 

subpopulation of patients without manifest or incipient AD is required to study the 

specific cognitive effects of WML. The use of CSF biomarkers is one possible way to 

stratify patients with cognitive impairment into groups more or less likely to suffer 

from incipient AD. 

As a part of the Papez-circuit (Papez, 1937), the posterior cingulum fibers play 

an important role in memory function as they connect the posterior cingulate gyrus 

with the medial temporal lobe (Buckner et al., 2005; Catani et al., 2002; Crosby, 

1962). A number of recent studies have focused on cingulum fibers using diffusion 

tensor imaging (DTI). These studies have shown that white matter diffusion 

parameters correlate with working memory in healthy middle-aged and elderly adults 

(see below). 

 

1.5 Cerebrospinal fluid biomarkers 

The use of CSF biomarkers may contribute to early detection of AD (de Leon et al., 

2007). Such markers have been suggested as adjunct markers for the diagnosis of 

“probable AD” in patients with episodic memory deficits (Dubois et al., 2007). 

CSF biomarkers (tau and beta-amyloid proteins) for AD have a diagnostic 

specificity and sensitivity of around 85% (Blennow and Hampel, 2003; Wiltfang et 

al., 2005). These markers have been shown to predict the development of clinical 

dementia and AD in patients with MCI (Diniz et al., 2007; Hampel et al., 2004; 

Hansson et al., 2006). In addition, these CSF biomarkers have been shown to 

distinguish AD in patients with vascular dementia, irrespective of co-existing 

subcortical cerebrovascular disease (Stefani et al., 2005). CSF biomarkers possess 

high sensitivity to differentiate early AD from normal aging, depression, Parkinson’s 

disease, and alcohol dementia, but lower specificity with respect to other types of 

dementias, such as fronto-temporal and Lewy body dementia (Andreasen and 

Blennow, 2005). 
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Low levels of CSF A�42 have consistently been observed in patients with AD 

(Andreasen et al, 1999; Blennow and Hampel, 2003). An inverse correlation between 

CSF A�42 levels and brain amyloid deposition has been established in pathological 

studies (Strozyk et al., 2003), including in-vivo amyloid imaging studies (Fagan et al., 

2006; Forsberg et al., 2007). Experimental evidence further suggests that the 

reduction of A�42 seen in AD may be partly due to A�42 deposition in amyloid 

plaques (Kawarabayashi et al, 2001). However, one should not loose sight of the fact 

that A�42 serves as a surrogate marker, and reduced levels may also be seen in other 

neurodegenerative diseases (Sjogren et al., 2002; Otto et al., 2000; Noguchi et al., 

2005; Mollenhauer et al., 2005). 

Elevated CSF levels of total Tau protein (T-tau) and phospho-Tau (P-tau) have 

been observed in different neurodegenerative diseases and are probable markers for 

axonal damage and tangle formation (Blennow and Hampel, 2003; Sunderland et al., 

2003; Sussmuth et al., 2001; Teunissen et al., 2005). High levels of CSF T-tau may 

indicate the extent of neuronal damage. In the rapid progressive neurodegenerative 

disorder Creutzfeldt-Jakob disease (CJD), very high levels of CSF T-tau have been 

observed (Otto et al., 1997; Skinningsrud et al., 2008). Likewise, in acute ischemic 

stroke a positive correlation between increased CSF T-tau and the size of the 

infarction have been reported (Hesse et al., 2000). The P-tau isoform does not seem to 

be elevated in acute ischemic stroke or CJD. Since this particular isoform represents 

the phosphorylation state of tau protein in the brain it may be a better marker for AD 

(Blennow and Hampel, 2003). 

In combination with careful clinical examination, medical history, and brain 

imaging, CSF biomarkers may in fact increase the diagnostic accuracy in early AD. 

 

1.6 Apolipoprotein E 

Apolipoprotein E-�4 (ApoE-�4) carrier status is the only well established genetic risk 

factor for late onset AD (Corder et al., 1993). APOE is a protein with many different 

functions related to lipid metabolism and lipid transport between cells (Herz and 

Beffert, 2000). The gene is located on chromosome 19, and three common isoforms 

are known in humans (ApoE-�2, ApoE-�3, and ApoE-�4). The isoform ApoE-�4 has 

been related to increased risk of developing AD (Farrer et al., 1997). For patients who 
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carry two ApoE-�4 alleles, the chance of developing AD by the age of 85 is in the 

order of 50% to 90% (Corder et al., 1993). 

It is yet not clear through which mechanisms ApoE-�4 increases the risk for 

AD. However, considerable evidence indicates that ApoE-�4 may interact with APP 

processing and induce aggregation and binding, as well as cause reduced clearance of 

�-amyloid (Wisniewski et al., 1993; Strittmatter et al., 1993; Holtzmann et al., 2000; 

Bales et al., 1997). ApoE-�4 has also been related to cardiovascular and 

cerebrovascular disease (Eichner et al., 2002; McCarron et al., 1999). In particular 

small vessel disease (arteriolosclerosis) and micro infarcts have been associated with 

ApoE-�4 in brains of AD patients (Yip et al., 2005), and ApoE-�4 positive AD 

patients have higher WML load than ApoE-�4 non-carriers (Bronge et al., 1999). The 

latter suggests that ApoE-�4 may play a role in the cerebrovascular pathology 

frequently observed in AD patients. However, the role of the different ApoE 

genotypes in the development of cerebrovascular disease and WML needs to be 

further clarified (for review see Turner and Fornage, 2002). 

 

1.7 Diffusion Tensor Imaging 

1.7.1 General background 

Diffusion tensor imaging (DTI) can be used to quantify white matter integrity (Le 

Bihan et al., 2001). DTI may reveal white matter changes and degradation of white 

matter fiber bundles not detectable with conventional MRI (Deo et al., 2006; Taylor et 

al., 2007). DTI techniques are mostly based on diffusion of water molecules. 

Diffusion of molecules is restricted by cell membranes and fiber structures. In 

cerebral white matter, axonal membranes and myelin represent such barriers and 

diffusion parallel to fiber bundles is greater than perpendicular diffusion. The 

principle of restricted molecular mobility in some directions is called “diffusion 

anisotropy”. Fractional anisotropy (FA) can be calculated from the diffusion tensor 

eigenvalues and is a measure of directional diffusivity (Basser et al., 1994; Le Bihan 

et al., 2001). FA varies between 0 (isotropic diffusion / equal diffusion in all 

directions) and 1 (entirely anisotropic / undirectional diffusion). The FA parameter is 

expected to be reduced when axonal damage or dysmyelination occur. Mean 

diffusivity (MD) is a measure of diffusion averaged in all directions and indicates the 

magnitude of diffusion. MD will typically increase when axonal membranes or 
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myelin are damaged (Le Bihan et al., 2001; O´Sullivan et al., 2001; Ulug et al., 1999). 

The diffusion eigenvalues may be separated into components, which describe 

diffusivity parallel (�1) or perpendicular (�2 and �3) to the axonal tracts (Basser et 

al., 1994; Xue et al., 1999). Axial diffusivity (DA, parallel to axon tracts) and radial 

diffusivity (DR, perpendicular to axon tracts) may be helpful to better describe the 

underlying pathology of white matter alterations reflected by FA (Wang et al., 2008). 

After experimental ischemia, reduced DA is followed by increased DR mirroring the 

sequence of Wallerian degradation of axons and myelin components in the CNS 

(George and Griffin 1994a; George and Griffin 1994b; Sun et al., 2008). It has been 

suggested that decreased DA may reflect axonal loss and that increased DR may be 

associated with dysmyelination (Pierpaoli et al., 2001; Song et al., 2003; Song et al., 

2002). Parts of the DA and FA changes observed in the acute phase after axonal 

damage may be transient, and DR changes observed in the chronic stage after axonal 

damage may represent myelin degradation (Concha et al., 2006). Experimental 

evidence from contusion injuries also suggests that changes in DR are sensitive to 

secondary changes beyond the site of the primary histologically defined lesion (Budde 

et al., 2007). 

Studies have reported an association between age-related cognitive decline 

and reduced FA (Charlton et al., 2006). In addition, reduced (FA) in posterior 

cingulum fibers has been observed in MCI patients compared to normal controls 

(Fellgiebel et al., 2005; Zhang et al., 2007). Few studies have examined directional 

diffusivity (DR and DA) in MCI and AD patients, and so far the findings have been 

inconclusive. One study reported reduced DA, consistent with axonal degeneration, in 

the temporal lobe of AD and MCI patients (Huang et al., 2007), whereas another 

study focused on frontal regions and found signs of altered myelination (increased 

DR) in frontal white matter of early AD patients (Choi et al., 2005). 

 

1.7.2 Regions of interest (ROI) analysis 

The manual placement of regions of interest (ROI) in known white matter fiber tracks 

is a common method to measure diffusion parameters. First, MD, FA, individual 

eigenvalue images, and color-coded eigenvector (cDTI) maps are generated. In the 

cDTI maps the pixel color and intensity reflect the principal diffusion direction and 

FA magnitude, respectively. The nordicICE Basis and Diffusion Modules 

(NordicImagingLab AS, Bergen, Norway) is a preferred software that may be used 
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for this purpose, but other programs for DTI processing are available (Zhang et al., 

2007). 

When placing the ROI it is important to ensure that partial CSF or grey matter 

volume is avoided. This can be done by co-alignment of the DTI data (b=0 scans) 

with the MP-RAGE images (e.g. by using Statistical Parametric Mapping (SPM5), 

Wellcome Trust Centre for Neuroimaging, London, UK). White matter segmentations 

may then be created from the co-registered MP-RAGE sequence using the 

segmentation module provided by SPM5. The white matter masks as well as the cDTI 

maps may be used for orientation to avoid possible artifacts due to partial CSF or grey 

matter volume. ROI are usually placed in the part of the fiber tract with the highest 

signal intensity. To ensure the proper anatomical placement of the ROI between 

subjects, it is helpful to use the cDTI map in addition to comparing images. 

 

 

Figure 2: Illustration of region of interest (ROI) placements 

 

The figure illustrates the placement of regions of interest (ROI) in the color-coded 

(cDTI) map. ROI are shown in Cingulum fibers (A), genu corpus callosum (B), 

splenium corpus callosum and forceps major (C). 
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2. AIMS OF THE PRESENT STUDY 

 

The main goal of the present work was to examine the relationships between white 

matter changes, risk factors for cerebrovascular disease and CSF biomarkers for 

Alzheimer disease (AD), but we also asked whether and how white matter changes 

relate to cognition in patients with cognitive impairment. Within the framework of 

this thesis, we posed and attempted to answer the following specific questions: 

 

Is there a link between white matter lesions and amyloid pathology? 

The relationship between cerebrovascular disease and cerebral degenerative disease 

has been widely studied, with experimental data showing that there might be a link 

between ischemia and amyloid deposition. We therefore aimed to test this hypothesis 

in patients with cognitive impairment by investigating a possible relationship between 

white matter lesion (WML) load (as a measure of cerebrovascular disease) and the 

CSF biomarker A�42 (a surrogate marker for amyloid deposition in the brain) (Paper 

I). 

 

Do ApoE genotype and white matter lesions interact in the development of amyloid 

pathology? 

Both cerebrovascular disease and ApoE-�4 are known risk factors for AD. Paper I 

showed that both WML and the ApoE-�4 genotype might increase the risk of having 

low CSF A�42. These findings led to the hypothesis that these two important risk 

factors for AD might interact (paper IV) in the development of amyloid pathology as 

measured by CSF A�42. Paper IV aimed to test this hypothesis by analyzing the risk 

of having low CSF A�42 in ApoE-�4 carriers versus non-carriers in patient cohorts 

with either low or high WML loads. 

 

Are white matter lesions related to cognitive loss, and does the location of white 

matter lesions matter? 

WML appear in all areas of the cerebral white matter and consistently affect fiber 

tracks connecting areas of the brain, which are important for cognitive function. 

WML has therefore been related to axonal damage and gliosis in imaging and histo-

pathological studies. If WML lead to damage of fiber tracks it is conceivable that 
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WML will affect cognitive function. As most cognitive capabilities are sensitive to 

the effects of AD, particularly delayed recall, a sub-population of patients without 

manifest or incipient AD is needed to study the specific cognitive effects of WML. 

For this purpose, we decided to compare effects of WML on cognitive loss in patients 

with normal and pathological CSF A�42 values (Paper II). 

The relationship between subtypes of WML – periventricular (PV) and subcortical 

(SC) – is not yet clear. There is experimental evidence of closely related underlying 

pathomechanisms, but some studies argue that these WML subtypes represent entirely 

different disease processes. The location of these WML also suggests that they affect 

different fiber tracks, and therefore will affect cognition in different ways. For this 

reason, we aimed to investigate the co-existence of WML subtypes and their relation 

to cognitive impairment (paper III). 

 

Are diffusion tensor parameters related to Tau pathology and could these changes be 

part of the development of mild cognitive impairment? 

Reduced white matter integrity investigated with diffusion tensor imaging (DTI) has 

been observed in patients with mild cognitive impairment (MCI) compared to normal 

controls, particularly in areas related to the memory network. DTI parameters reflect 

reduced white matter integrity and axonal damage. Also, Tau pathology may reflect 

axonal dysfunction. As Tau protein in CSF has been shown to be elevated in patients 

at risk of developing AD, we hypothesized that white matter diffusivity changes 

would be more apparent in patients with elevated CSF T-tau levels than in patients 

with normal T-tau levels (paper V). 
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3. ABSTRACTS / SUMMARY OF RESULTS 

 

Paper I 

Associations between white matter lesions, cerebrovascular risk factors, and low 

CSF Aß42 

 

Objective: To analyze a putative relationship between white matter lesions (WML), 

risk factors for WML, and Alzheimer disease (AD) as measured with the surrogate 

marker CSF A�42. 

Methods: We analyzed effects of acquired risk factors for cerebrovascular disease and 

WML on AD as measured with an intermediate marker, CSF A�42. A total of 127 

consecutive patients with subjective memory impairment (mean age 66 years; 57 

women) investigated at a university-based memory clinic had brain MRI scans. WML 

were rated on a 12-point scale with a semi-quantitative procedure. We used path 

analysis with established and possible risk factors for WML and for reduced CSF 

A�42 (age, hypertension, hyperhomocysteinemia, hypercholesterolemia, APOE-�4) 

as variables. 

Results: The WML score was 1.5 points higher (p<0.05) in hypertensive than in non-

hypertensive patients, and 1.9 points higher (p<0.05) in patients with 

hyperhomocysteinemia than in those with normal homocysteine levels. 

Hypercholesterolemia increased the probability of low CSF A�42 levels by 0.2 

(p<0.05). For each point increase in WML score the probability of low CSF A�42 

levels increased by 0.03 (p<0.05). APOE-�4 was associated with reduced CSF A�42 

(p<0.01). 

Conclusions: Hypercholesterolemia, APOE-�4, and white matter lesions may 

contribute to low CSF A�42 by independent mechanisms. 

If WML load increases the risk of low CSF A�42 levels and reduced levels of CSF 

A�42 levels are associated with amyloid deposition, this indirectly implies a 

relationship between ischemic changes in white matter and cortical pathology as seen 

in Alzheimer's disease. 



 18 

Paper II 

White matter lesion severity is associated with reduced cognitive performances 

in patients with normal CSF A��42 levels 

 

 

Objective – To identify possible associations between white matter lesions (WML) 

and cognition in patients with memory complaints, stratified in groups with normal 

and low CSF A�42 values. 

Material and Methods – 215 consecutive patients with subjective memory complaints 

were retrospectively included. Patients were stratified in two groups with normal 

(n=127) or low (n=88) CSF A�42 levels (cut-off 450 ng/L). Cognitive scores from the 

Mini Mental State Examination (MMSE) and the Neurobehavioral Cognitive Status 

Examination (Cognistat) were used as continuous dependent variables in linear 

regression. WML load was used as a continuous independent variable and was scored 

with a visual rating scale. The regression model was corrected for possible 

confounding factors. 

Results – WML were significantly associated with MMSE and all Cognistat sub-

scores except language (repetition and naming) and attention in patients with normal 

CSF A�42 levels. No significant associations were observed in patients with low CSF 

A�42. 

Conclusions – WML were associated with affection of multiple cognitive domains, 

including delayed recall and executive functions, in patients with normal CSF A�42 

levels. The lack of such associations for patients with low CSF A�42 (i.e. with 

evidence for amyloid deposition), suggests that amyloid pathology may obscure 

cognitive effects of WML. 
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Paper III 

White matter lesion subtypes and cognitive deficits in patients with memory 

impairment 

 

Aim: To analyze the relationship between periventricular (PV) and subcortical (SC) 

white matter lesions (WML) and cognitive function in patients with memory 

impairment. 

Methods: 253 patients with Global Deterioration Scale score �3 referred to a 

university based memory unit due to memory complaints were included (mean age 

69.7 years, 124 females). Cognitive function was assessed with Mini Mental State 

Examination (MMSE) and Neurobehavioral Cognitive Status Examination 

(Cognistat) and full test results were available for 217 patients. PV and SC WML 

loads (semi-quantitative rating on axial T2-MRI scans) were used in linear regression 

as predictors of cognition. 

Results: MMSE was significantly correlated with SC WML (p=0.005), but not with 

PV WML (p=0.19). Cognistat tests for orientation, comprehension, visuoconstruction, 

calculation, similarities, and judgment were negatively correlated with SC WML 

(p<0.01), and verbal memory with parieto-occipital SC WML (p<0.05). 

Visuoconstruction and calculation were negatively correlated with PV WML 

(p<0.05). Parieto-occipital WML were more strongly related to cognition than fronto-

temporal WML. Only SC WML were significantly correlated with cognition when 

PV and SC WML were entered simultaneously in the regression model.  

Conclusions: The results suggest that mainly SC WML are related to cognitive loss, 

and that WML in parieto-occipital regions have stronger negative effects on cognition 

than WML in fronto-temporal regions. The findings further suggest a possible 

sequential development of WML (PV WML � SC WML). 
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Paper IV 

White matter lesion load increases the risk of low CSF A��42 in apolipoprotein E 

�4 carriers. 

 

Background: White matter lesions (WML) are age-related manifestations of ischemic 

cerebrovascular disease, which increase the risk for Alzheimer’s disease (AD). The 

apolipoprotein E �4 (ApoE-�4) genotype is an established risk factor for late onset 

AD and has been related to low levels of A�42 in the cerebrospinal fluid (CSF) and to 

cerebrovascular disease. The aim of the present study was to analyze the relationship 

between WML, ApoE-�4 genotype, and low CSF A�42 in patients recruited from a 

memory unit. 

Methods: 235 patients from 40 to 91 years of age (mean 69 years; 119 women) with 

different degrees of cognitive impairment were included from a university based 

memory clinic. Brain MRIs were performed and periventricular (PV) and subcortical 

(SC) WML were rated on axial T2 MRI images. ApoE genotype and CSF A�42 

levels were analyzed. Patients were stratified in three groups according to WML load. 

Group 1 (n=70) had no WML or only small amounts of PV or SC WML, WML group 

2 (n=83) had high amounts of PV WML and low amounts of SC WML, and WML 

group 3 (n=82) had high amounts of both PV and SC WML. In the three WML 

groups, ApoE-�4 genotype was used in logistic regression as predictor for low CSF 

A�42 (cut-off value �450 ng/L). Age and hypercholesterolemia were entered as co-

variates in the regression model. 

Results: The odds ratio (OR) of having low CSF A�42 was significantly increased in 

the presence of ApoE-�4 only in WML group 3. WML group 1 (OR [95%CI] 1.39 

[0.49, 3.98], p=0.53); WML group 2 (OR [95%CI] 2.38 [0.86, 6.56], p=0.093); WML 

group 3 (OR [95%CI] 3.69 [1.38, 9.88], p=0.009).  

Conclusion: A high WML load may interact with the ApoE-�4 genotype and increase 

the risk for reduced CSF A�42 in patients with cognitive impairment. 
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Paper V 

Cingulum fiber diffusivity and CSF T-tau in patients with subjective and mild 

cognitive impairment 

 

Background: Diffusion Tensor Imaging (DTI) and CSF biomarkers are useful 

diagnostic tools to differentiate patients with mild cognitive impairment (MCI) from 

normal controls, and may help predict conversion to dementia. Total Tau protein (T-

tau) and DTI parameters are both markers for axonal damage, thus it is of interest to 

determine whether DTI parameters are associated with elevated CSF T-tau levels in 

patients with cognitive impairment. 

Methods: Patients with subjective cognitive impairment (SCI) and MCI were 

recruited from a university based memory clinic. Regions of interest were used to 

determine fractional anisotropy (FA), radial (DR) and axial (DA) diffusivity in known 

white matter tracts in patients with MCI (n=39) and SCI (n=8) and 26 cognitively 

healthy controls. 

Results: Significant lower FA and higher DR values were observed in patients with 

pathological vs. patients with normal CSF T-tau levels and vs. controls in left 

posterior cingulum fibers. T-tau values were negatively correlated with FA and 

positively correlated with DR values in the posterior cingulum fibers. 

Conclusion: Cingulum fiber diffusivity was related to T-tau pathology in SCI/MCI 

patients and altered DR may suggest that loss of myelin contributes to early white 

matter changes in patients at risk of developing Alzheimer´s disease. 
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4. GENERAL DISCUSSION 

 

Is there a link between white matter lesions and amyloid pathology? 

Previous studies point to a link between ischemic damage in white matter and cortical 

Alzheimer pathology, but no causal relationship has been definitely established. 

Overlapping risk factors between cerebrovascular disease (CVD) and Alzheimer´s 

disease (AD) suggest a link between the two disease processes. It has been argued that 

non-genetic late-onset AD is triggered by CVD, and therefore should be regarded as a 

primary vascular disease (de la Torre, 2002). This hypothesis is supported by 

neuropathological and experimental studies which show that hypoxia influences 

amyloid percursor protein (APP) metabolism and increases deposition of amyloid-� 

(A�) (Jendroska et al., 1995; Sadowski et al., 2004). In addition, hypoxia has been 

shown to increase the �-secretase cleavage of APP leading to an increased production 

of A�42 protein in mice (Sun et al., 2006). 

 A number of studies have shown that the amount of amyloid plaques increases 

with age, and autopsies of elderly without cognitive impairment have revealed patho-

histological findings similar to those seen in AD (Green et al., 2000; Knopman et al., 

2003). Age, which is also strongly related to WML, therefore represents an important 

confounding factor when investigating the relationship between WML and amyloid 

pathology. A recent study even suggests a relationship between age and CSF A�42 in 

cognitively healthy individuals (Bouwman et al., 2008). However, cerebrovascular 

changes, like WML, were not corrected for in these studies. The main finding of 

paper I was that WML increased the risk of having pathological levels of CSF A�42. 

This relationship was observed despite that there was no significant difference in age 

between patients with normal and pathological CSF A�42 levels (see table 1 later in 

text). The findings in paper I therefore further support previous evidence for links 

between age, hypertension, hyperhomocysteinemia and WML, as well as between 

hypercholesterolemia and ApoE-�4 and low CSF A�42. Hypercholesterolemia is not 

only a vascular risk factor but has previously also been directly implicated in amyloid 

formation as a result of altered metabolization of APP (Wolozin, 2004; Ehehalt et al., 

2003; Rebeck, 2004). In accordance with previous studies, we did not find that 

hypercholesterolemia was related to WML in the age group studied in paper I 

(Breteler et al., 1994; Sawada et al., 2000). WML and hypercholesterolemia could 

therefore independently contribute to low CSF A�42 in subgroups of patients 
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(Casserly and Topol, 2005). However, our findings support the association between 

WML and the two cerebrovascular risk factors, hyperhomocysteinemia and 

hypertension (Vermeer et al., 2002). 

As shown in the introduction (figure 1), MRI scans of patients without known 

memory problems also indicate an enhanced accumulation of WML in the age group 

studied in paper I (Masana et al., 2003). WML therefore probably affect the majority 

of the elderly population, and non-ischemic cases are expected to be rare in older 

patients. As age-associated WML prevalence obviously occurs prior to that of 

increased AD prevalence (cf. Figure 1), the results of paper I suggest that WML could 

predispose susceptible patients for development of AD. Our findings clearly support 

the hypothesis that white matter lesions are linked to amyloid pathology as measured 

by CSF A�42. 

 

Do ApoE genotype and white matter lesions interact in the development of amyloid 

pathology? 

As both ischemia and ApoE-�4 have been related to ß-amyloid metabolism, we 

hypothesized that there may be a connection and possible interaction between 

ischemic WML, ApoE-�4 and degenerative processes that involve APP metabolism. 

The negative correlation between age and CSF A�42 may be induced by ApoE-�4 

status (Peskind et al., 2006). However, due to the very strong connection between 

increasing WML and increasing age (Masana et al., 2003), if not considered, both age 

and WML may confound the analysis of ApoE-�4/CSF A�42 relationships. 

Experimentally, ischemia has been proven to elicit increased APP expression (Nihashi 

et al., 2001). Accordingly, increased amounts of APP have been described intra-

axonally in cases with subcortical ischemia (Akiguchi et al., 1997). Evidence has been 

presented for effects of ApoE-�4 on processing of APP, as well as effects on binding, 

aggregation and deposition of amyloid (Strittmatter et al., 1993; Sanan et al., 1994; 

Selkoe, 2003). Interaction between ischemia and ApoE-�4 in the development of 

amyloid pathology may be studied in humans by comparing the effect of ApoE-�4 on 

CSF A�42 in patients with different grades of WML severity, as shown on MRI 

scans. In paper I we described an association between the total amount of WML and 

low CSF A�42. In a possible interaction between cerebrovascular disease and AD, 

severe subcortical WML may have a more pronounced effect than periventricular 
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lesions that are more distant from the cortex. In addition, the ApoE-�4 genotype may 

influence the metabolism of APP (Strittmatter et al., 1993) facilitating a drop in CSF 

A�42. In paper IV, patients with available analysis of CSF and ApoE genotype from 

paper III were stratified according to WML load. As described in paper III, high 

amounts of subcortical WML were only seen in patients with periventricular WML. 

In contrast, high amounts of periventricular WML were seen in patients without 

subcortical affection. The distribution of PV and SC WML may therefore suggest a 

sequential development of WML, providing the biological basis for partitioning cases 

in groups with less and more WML. 

The results in paper IV suggest that there may be an interaction between WML and 

ApoE-�4 in the development of low CSF A�42. The relationship between WML and 

A�42 was dependent on the presence of ApoE-�4 and the results demonstrate that the 

combination of ApoE-�4 and high WML load may increase the odds of having low 

CSF A�42. After regressing out age and hypercholesterolemia in the group analysis, 

we found that the odds of having a low CSF A�42 value was significantly increased 

in the presence of ApoE-�4 only in patients with high WML load (WML group 3). 

The findings in paper IV therefore support the hypothesis that the co-existence of high 

white matter lesion load and the ApoE-�4 allele increases the risk of having low CSF 

A�42. 

 

Are white matter lesions related to cognitive loss, and does the location of white 

matter lesions matter? 

Several studies have reported associations between WML and cognitive impairment 

(e.g. Gold et al., 2007; Au et al., 2006; Longstreth et al., 1996). The strongest 

associations between WML and cognition involve cognitive functions that are mainly 

dependent on temporal and frontal structures, including associative pathways (Jokinen 

et al., 2006). 

Paper II describes WML-dependent cognitive loss in a population without 

evidence of amyloid deposition based on CSF-analysis. While the results showed a 

consistent correlation between increasing WML and cognitive loss, larger effect sizes 

(higher B-values) and higher levels of significance suggested a stronger relationship 

in the group with normal A�42 levels than in the one with low values. This may be 
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because the more subtle effects of WML may be obscured by the more predominant 

effects on cognition of cortical amyloid deposition in patients with low CSF A�42. 

The results delineate a profile of cognitive loss resulting from WML alone. As the 

effect sizes were largest on categories of verbal memory, similarities, judgment and 

visuoconstruction, the results presented in paper II support earlier reports suggesting 

that WML are related to cognitive domains that are mainly dependent on temporal 

and frontal structures, as well as associative pathways. 

The association between increased WML and reduced verbal memory (after exclusion 

of cases with CSF-evidence for amyloid deposition) suggests that reduced delayed 

memory is also part of the spectrum of vascular cognitive disorder. 

The results of paper III further indicate that subcortical (SC) WML are more 

strongly related to cognitive function than periventricular (PV) WML. These findings 

are supported by some studies (Baum et al., 1996; Delano-Wood et al., 2008), 

whereas others have reported that PV WML are more strongly related to cognition (de 

Groot et al., 2000; Burns et al., 2005). Despite these inconsistencies, it may be 

reasonable to conclude that both PV and SC WML may have effects on cognition. It 

has been argued that since PV WML probably affect long distance association fibers, 

they are more prone to affect cognitive function (de Groot et al., 2000). PV and SC 

WML often co-exist and SC WML are likely to affect cortical-subcortical networks. 

 In paper III all patients with high SC WML loads also had high loads of PV 

WML. This suggests that SC WML may represent a more advanced white matter 

affection than PV WML, thereby explaining why we found that they were more 

strongly related to cognitive impairment. We further examined whether WML in 

fronto-temporal (F-T) and parieto-occipital (P-O) regions affect cognition differently. 

We found that WML in P-O regions were more strongly related to cognitive 

impairment than WML of the F-T regions. In paper II we observed a relationship 

between total WML (Wahlund scale) and verbal memory in the entire patient group. 

In paper III we did not observe a significant relationship between whole brain PV and 

SC WML scores and verbal memory. The discrepancy with regard to WML and 

memory may be due to the different scales used in the two papers, and also to the 

effect of AD pathology on cognition (see below). However, P-O SC WML were 

significantly related to reduced verbal memory. White matter in the parieto-occipital 

regions contains fiber networks that are important for memory function. Disruption of 

cortical regions in these areas (e.g. posterior cingulate and lateral parietal cortex) may 
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thus contribute to impaired memory (Buckner et al., 2005). This could be a plausible 

explanation for our findings that only WML of the P-O regions were negatively 

correlated with memory. Previous studies, which have reported a lack of relationship 

between WML and memory, have not analyzed possible differences between F-T and 

P-O WML (Baum et al., 1996; Delano-Wood et al., 2008). Even though P-O WML 

showed an overall stronger relationship with cognition, the results in paper III also 

indicated that SC WML of the F-T regions were strongly and negatively correlated 

with several cognitive domains including visuoconstruction, similarities and 

judgment. This is in line with other studies, which have related WML to deficient 

frontal-subcortical network functions (executive functions and processing speed) 

(Delano-Wood et al., 2008; Inzitari et al., 2000).  

Paper III also focused on describing the subtypes of WML and their 

relationship to cognitive function. The question whether PV and SC WML represent 

different disease mechanisms or whether they represent a continuum of 

cerebrovascular disease, remains unresolved. However, it has been observed that 

WML often extend from periventricular areas into subcortical white matter with 

increasing WML volume and severity (DeCarli et al., 2005). We found that PV WML 

were present in a younger age group than SC WML. This could be explained by the 

theory presented by DeCarli and colleagues suggesting that PV WML occur before 

more advanced SC WML. 

The etiopathology of PV and SC WML are similar and ischemic events play 

an important part (Ward and Brown, 2002). PV and SC regions are perfused by pial 

end arterioles (De Reuck, 1971), with PV regions lying in the distal part of the 

perfused region. Arteriolosclerosis starting distally in deep penetrating end arterioles 

could explain that PV WML may occur before SC WML. As previously shown, we 

also found that PV and SC WML were strongly correlated. The strong correlation 

between the PV and SC WML subtypes described here suggests etiopathological 

similarities, but as mentioned, differences in tissue response and vascular risk factors 

between WML in the two regions have been described (Simpson et al., 2007; Lazarus 

et al., 2005). The hypothetical sequential nature of PV and SC lesions and putative 

etiopathological differences between the lesion subtypes need to be clarified in 

prospective studies. If PV lesions herald white matter disease, this early stage may be 

important for the initiation of therapy for patients at risk for more severe affection. 
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Collectively, the findings of this thesis support the hypothesis that WML are 

related to reduced cognitive function. The findings further suggest that the 

localization of WML matters, but this may be because SC WML represent a more 

advanced stadium than WML in PV regions. 

 

Are diffusion tensor imaging parameters related to Tau pathology and may these 

changes be part of the development of cognitive impairment? 

Over the last two decades Diffusion Tensor Imaging (DTI) has emerged as an 

important non-invasive technique to investigate disease processes related to white 

matter changes and axonal damage. As discussed earlier, there seems to be a link 

between cerebrovascular disease and AD, and both cerebrovascular changes and AD 

pathology probably occur years before the manifestation of cognitive impairment and 

dementia. To detect early events in the development of cognitive impairment, the 

combination of advanced neuroimaging like DTI and the use of biomarkers (e.g. from 

CSF) must be applied before full-blown dementia occurs. Patients with subjective and 

mild cognitive impairment (SCI and MCI) are at risk of developing dementia 

(Reisberger and Gauthier, 2008). These patients therefore are of high interest when 

studying disease development. Several DTI studies have revealed reduced white 

matter integrity in MCI and AD patients. In addition, decreased connectivity from 

areas related to the memory network (hippocampus and posterior cingulate cortex) to 

the rest of the brain has been described (Fellgiebel et al., 2005; Zhang et al., 2007; 

Zhou et al., 2008). 

As both DTI and CSF T-tau alterations have been related to axonal damage, 

paper V aimed to examine the relationship between these two parameters in patients 

at risk of developing AD. The patient population included both SCI and MCI, and T-

tau was used to stratify the group. In Paper V we found that elevated CSF T-tau 

values were related to lower FA and increased DR in SCI/MCI patients. Signs of 

decreased FA and increased DR in posterior cingulum fiber tracts of these patients 

indicate early tau-related white matter alterations. Increased DR may reflect loss of 

myelin (Pierpaoli et al., 2001; Song et al., 2003; Song et al., 2002), but DR is a 

sensitive measure, possibly also reflecting distant pathological processes (Budde et 

al., 2007). Our findings in the left posterior cingulum bundle are in line with previous 

studies of MCI patients (Fellgiebel et al., 2005; Zhang et al., 2007). The significant 

FA and DR alterations we observed in the genu of corpus callosum may indicate that 
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early white matter pathology also appear in neocortical connections in patients at risk 

of developing AD. Paper V did not reveal group differences in DA, but axon loss with 

transient effects on DA can not be excluded (Concha et al., 2006; Sun et al., 2008). 

Moreover, the observed association between DR and CSF T-tau levels may reflect 

underlying axonal affection (Teunissen et al., 2005). 

In addition to axonal damage, Tau pathology has also been related to hippocampal 

atrophy (Adalbert et al., 2007; de Leon et al., 2007). In a subsample of the cohort 

studied in paper V, we have reported associations between pathological CSF 

biomarkers and reduced hippocampal volume and cortical thinning (Fjell et al., 2008). 

We found no association between hippocampal volume and directional diffusivity in 

the sample studied in paper V, but we did observe that both FA/DR in white matter 

tracts and hippocampal volume were associated with CSF T-tau levels. This fully 

agrees with the findings of Salat et al. (2008) suggesting that white matter alterations 

(demyelination or reduced axonal integrity) may represent an additional mechanism, 

besides cortical degeneration, in the AD process. 

The results of paper V support the hypothesis that Tau pathology in the CSF 

may be related to axonal damage as measured with DTI. Since Tau pathology in 

patients with cognitive impairment is related to AD, the observed DTI changes may 

represent early events in the disease process. Paper V further substantiates the 

importance of using CSF analysis and neuroimaging to differentiate patients with 

cognitive impairment at an early stage. However, follow up studies are needed to 

detect potential differences in disease development between these subgroups of 

SCI/MCI patients. 

 

Methodical aspects and limitations 

The patients in this thesis were all admitted to a university based memory clinic due 

to cognitive impairment of different degrees. As all patients sought help because of 

cognitive problems, one may expect these patients to have more pathologic findings 

(e.g. WML) than would be observed in the average population without overt cognitive 

problems. Due to possible paradoxical relationships between cerebrovascular risk 

factors (e.g. blood pressure levels) and WML when studied in high age groups 

(Turner and Fornage, 2002), paper I included patients between 40-75 years of age. In 

paper II-IV, inclusion was less restrictive than in paper I and no age limit was used in 
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the inclusion criteria. The patient cohort studied in the subsequent papers II-IV was 

therefore larger than in paper I. The age range extended from 40 to 91 years. 

Path analysis, which is a form of multiple regression analysis (Bollen, 1989) 

was used to test the hypothesis in paper I. The path analysis model implies a set of 

covariances among all pairs of variables. Adding, removing or changing the direction 

of an effect arrow means changing the set of regression equations. Path analysis tests 

whether or not postulated effects, based on the theory presented, correspond to the 

observed covariance structure of the data. Path analysis does not prove causality, but 

it tests whether the data set allows or denies the postulated effects. The path analysis 

model which had the best fit in paper I did not include a direct effect arrow from age 

to CSF A�42 levels. However, the design of the path analysis model corrects for a 

possible relationship between these two factors, and still suggests that WML load may 

be associated low CSF A�42 levels. Table 1 shows that there were no significant 

differences in age between patients with low and normal CSF A�42 levels, but a 

significant difference in WML load which was confirmed by testing with Students t-

test. 

 

 

Table 1: Age and WML load of patients with pathological and normal CSF A�42 

levels in paper I 

 A�42 � 450 

n = 58 

A�42 > 450 

n = 63 

Mean difference 

(95% CI of the difference) 

p-value 

Age 66.6 (6.9) 65.4 (7.5) -1.2 (-3.7;1.4) 0.37 

WML load 5.5 (3.3) 4.1 (2.9) -1.3 (-2.4;-0.2) 0.02 

Numbers are mean (SD) unless otherwise given. Student’s t-test. 

 

 

When interpreting the results from studies investigating the relationship between 

WML and cognition, two important issues have to be taken under consideration: 

1) What population was studied? Effects of WML on cognition in patients 

with cognitive impairment, as in paper II and III, may differ from effects of WML 

observed in a cohort of normal elderly. Also, as shown in paper II, in selected AD 

patients, the pronounced effects of amyloid deposition and neurofibrillar pathology 
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may make the effects of WML more subtle and less easy to discern in cognitive tests. 

The effect of WML on cognition in the elderly has recently been reviewed (Frisoni et 

al., 2007). When compared to the effects of a neurodegenerative disorder such as AD, 

the effects are relatively small. This may explain why the effects of WML on 

cognition are difficult to detect in the presence of AD. 

2) What scale or method was used to quantify PV and SC WML? There are 

various methods to quantify PV and SC WML. In our study we defined PV WML as 

WML adjacent to the ventricles. If these lesions extended more than 1 cm away from 

the ventricle and further into deep white matter, the part of the WML, which was 

more than 1 cm away from the ventricle wall, was rated as SC WML. Other studies 

(e.g. van Straaten et al., 2008), define all WML adjacent to the ventricle wall as PV 

WML. This means that the WML defined as “high levels of PV WML” in the some 

studies would have been defined as high levels of PV and high levels of SC WML in 

others, even though they describe the same phenomenon: advanced WML extending 

from the periventricular regions into deep subcortical areas. 

For assessment of cognitive function in paper II and III, the Neurobehavioral 

Cognitive Status Examination (Cognistat) (Kiernan et al., 1987; Schwamm et al., 

1987) was used. The Cognistat is primarily a screening test, which has gained 

considerable popularity. Like in all test situations, anxiety and stress may cause the 

patient to perform worse than he/she normally would. Using experienced staff trained 

for the specific purpose can minimize this problem. In the memory unit at Akershus 

University Hospital, where the testing was conducted, the staff has many years of 

clinical experience, and the Cognistat test has been in use in the unit for almost a 

decade. 

Papers I-V were all cross-sectional studies with relative small patient samples. 

Cross-sectional data can be used to assess the prevalence (total number of cases in a 

population at a given time) of acute or chronic conditions. However, cross-sectional 

studies are descriptive studies where cause (exposure, e.g. age, hypertension) and 

consequence (disease, e.g. WML, CSF A�42) are measured simultaneously in a given 

population. A cross-sectional study therefore provides a "snapshot" of the 

characteristics of a measured disease or condition in a population at a given point in 

time. Cross-sectional studies are very useful to explore relationships between 

exposure and measured disease/condition. However, since exposure and disease status 

are measured at the same point in time, such studies can not clarify whether the 
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exposure preceded or followed the disease, and therefore the relationship between 

exposure and disease can not be definitely established. Prospective, longitudinal 

studies observe the course of disease development as several measurements are 

performed over a period of time. Exposure to certain possible risk factors may be 

followed before a certain disease or condition develops. In papers I-IV the data were 

collected retrospectively. This obviously resulted in some missing data, making the 

samples smaller. 

When studying acquired risk factors, as was done in paper I, a large patient 

cohort is needed. In paper I, only 121 patients were available for studying the 

relationship between acquired risk factors for cerebrovascular disease, WML and CSF 

A�42. The findings therefore need to be confirmed in larger patient sample and, 

preferably, in a longitudinal study. However, as discussed earlier, many studies have 

shown that cerebrovascular disease and beta amyloid processing are somehow 

connected. Despite the small patient sample, paper 1 demonstrates a link between 

these two important factors in the development of AD. 

In paper V, the use of two different scanners with slight differences in 

acquisition matrices may possibly have introduced biases, but the reported effects 

were observed in both samples and scanner site was regressed out in all analyses so it 

is not likely that this introduced a systematic bias in the results. Another weakness of 

paper V was that controls were not tested formally with regard to cognitive 

performance. To ensure that controls are “cognitively healthy”, it is important to 

include formal testing of the control cohorts in future studies. 

According to criteria for MCI, in addition to subjective memory impairment, 

preserved general intellectual function, and no or very mild ADL problems, 

objectively verifiable memory impairment or deficits in other cognitive domains must 

be present (Petersen et al., 1999, Winblad et al., 2004). Patients with early cognitive 

deficits may fall into either GDS group 2 and 3, e.g. based on pre-morbid cognitive 

capacity and the fact that cutoffs for cognitive tests are group-based and not 

individualized. It has been suggested that AD may be identified earlier if intra-

individual changes are considered rather than cutoffs based on group norms (Storandt 

et al., 2006). In order not to exclude patients with very early disease, patients with 

subjective memory complaints and clinical dementia rating (CDR) = 0.5 but with 

screening test results above cut-off, corresponding to criteria for SCI (or GDS 2) and 

to “CDR 0.5/uncertain dementia” (Morris et al., 2001), were also included in paper V. 
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Analysis of the entire SCI/MCI group and for the MCI group alone were performed, 

giving much the same results, but with lower levels of significance when excluding 

SCI patients from the analysis. The latter effect is likely to reflect the smaller sample 

size. The SCI group alone was not large enough for separate analysis. 

 

Comments 

The exact cause of white matter lesions associated with age and cognitive decline 

have not yet been established. As discussed, the main hypothesis is that chronic 

hypoperfusion of the brain and/or disruption of the blood-brain barrier are the main 

contributors to these changes. This is supported by molecular studies showing higher 

contents of hypoxia-associated proteins in WML than in normal white matter 

(Fernando et al., 2006). Other changes associated with WML include apoptosis of 

oligodendrocytes, increased microglial activation, and myelin attenuation (for 

discussion see Simpson et al., 2007). Oligodendrocytes comprise the largest 

component of white matter, their main function being the insulation of the axons. 

Recent studies suggest that myelinating processes of oligodendrocytes contain N-

Methyl-D-aspartate (NMDA) receptors, which render them sensitive to damage when 

extra cellular glutamate is released during ischemia (Káradóttir et al., 2005). More 

research related to molecular events during ischemia is needed, but these or similar 

mechanisms could help explain how hypoperfusion of the cerebral white matter could 

contribute to dysmyelination and white matter degeneration. The findings in paper V 

show how the combination of CSF analysis and DTI is essential to detect early white 

matter changes in subgroups of patients before they are visible on conventional MRI. 

It remains to be investigated whether these early alterations are related to 

cerebrovascular risk factors. 

 

Recent research suggests many similar risk factors for degenerative and vascular 

cerebral disease such that there is little doubt that these disease processes are 

somehow related. Findings presented in this thesis likewise suggest a link between 

vascular and degenerative disease processes. However, it is not yet clear how events 

in gray and white matter are related. White matter changes seem to play an important 

role in the development not only of vascular, but also of degenerative cognitive 

impairment and dementia. As previously discussed, white matter changes have been 
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observed before cortical degeneration occurs, and cerebrovascular changes are 

common in AD.  

AD is considered to be a multifactorial disease where both genetic factors and 

cerebrovascular changes play important roles. It is easily conceivable that various 

pathological processes in different degrees may lead to a common final pathway. 
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5. CONCLUSIONS AND FURTHER PERSPECTIVES 

 

Both cerebrovascular changes and ApoE genotype are related to amyloid pathology 

in CSF 

The findings presented in this thesis supports the hypothesis that there is a link 

between cerebrovascular disease and amyloid pathology. The age-independent 

relationship between WML and low CSF A�42 levels in paper I suggests that chronic 

ischemia may increase the risk of developing AD pathology. Paper IV further 

supports this hypothesis and suggests an interaction between ischemia and genetic 

predisposition in the development of AD pathology. Age, hypertension and 

hyperhomocysteinemia are further confirmed as important risk factors for ischemic 

WML. Since ApoE-�4 carriers with high WML loads were found to exhibit low CSF 

A�42, these particular patient cohorts may benefit from early treatments of e.g. 

hypertension and hyperhomocysteinemia in order to prevent further disease 

development. 

 

White matter lesions are related to cognitive function 

This thesis also confirms that WML are associated with impairments of multiple 

cognitive domains, including delayed recall and executive functions. By 

demonstrating this relationship in a patient group without CSF findings of amyloid 

pathology, the hypothesis that WML alone may affect cognitive function receives 

considerable support. Our findings suggest that in the group with low CSF A�42 the 

more subtle effects of WML may be obscured by the more predominant effects that 

cortical amyloid pathology may have on cognition. 

 

Subcortical WML are more strongly related to cognition than periventricular WML 

An important finding of our studies was that SC WML were more strongly related to 

reduced cognitive function than PV WML. PV WML were observed in a younger age 

group than SC WML, and all patients with high loads of SC WML also had high 

loads of PV WML. This suggests that SC WML may represent a more advanced stage 

of microvascular disease than PV WML. The stronger relationship between SC WML 

and cognition supports the latter interpretation.  
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DTI and CSF analysis are essential to differentiate early disease mechanisms 

As presented in paper V, DTI combined with CSF biomarkers could be shown to be 

useful tools to identify early disease related changes in patients at risk of developing 

AD. In these patients early pathogenetic events may be related to axonal damage in 

fiber tracks affecting the memory network. These observations bear on the important 

issue of early identification of disease processes, which need to be understood for the 

development of disease modifying drugs. 

 

In summary, the results presented in this thesis add substantial new information 

concerning white matter changes in the human brain. Even though our findings in 

human subjects are by necessity descriptive and correlative, we have every reason to 

assume that white matter changes may contribute to the development of cognitive 

impairment and AD pathology. As all results presented in this thesis are based on 

cross-sectional data, our findings need to be confirmed in prospective and 

experimental studies. 

Some objectives of further studies might include the following approaches: 

I. to longitudinally study WML progression and compare this to the 

development of low CSF A�42 

II. to study WML progression and its relationship to cognitive decline and 

cortical atrophy 

III. to study cerebrovascular changes in gene modified hypertensive rats and relate 

this to amyloid deposition, and if possible also to ApoE-�4 status 

IV. to longitudinally study DTI changes in SCI/MCI patients and compare this to 

CSF biomarkers and cognitive decline 

V. to study how early DTI changes are related to vascular risk factors 

VI. to study molecular events related to ischemia and hypoperfusion 
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ERRATA 

Page 35, 3rd paragraph: “included” has been replaced by ”include” 
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