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Preface
The purpose of this Short-Term Scientific Mission has been to investigate the use of the Sound 

Description Interchange Format (SDIF) as a container format for Gesture Description Interchange 

Format (GDIF) recordings. 

Much of my work has been related to learning the equipment at the hosting laboratory, and 

to make the equipment capable of communicating with the software I have been using. 

Background
In current music research, several types of devices for communicating data are widely used. These 

devices  include  motion  capture  systems,  sensors  for  measuring  pressure,  acceleration,  position, 

body-related data, etc., interfaces like keyboard, mouse and game controllers, digital musical instru-

ments, video cameras and audio interfaces. Recording data from different sources presents a chal-

lenge in regard of synchronizing the data for post processing and analysis. This is mostly due to dif-

ferent standards for storing data and different sample rates in the various data streams [Jensenius et

al. 2007]. Several standards present possible solutions to synchronisation issues, but they are often 

not meant for music research, and lack proper implementation of music-related data streams, such 

as audio, OSC, midi, etc. [ibid.].

As suggested in  [Jensenius 2007: 213] the SDIF format can provide the necessary frame-

work for GDIF recordings. A small pilot study for a project on co-articulation in piano performance 

was carried out at  the Department  of Musicology at  the University of Oslo in December  2007 

[Jensenius et al. 2008]. This study verified that an approach of recording movement-related data to 

SDIF files could be useful, especially so in regard of synchronizing data from multiple sources. 
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SDIF
The  Sound  Description  Interchange  Format  has  been  developed  at  IRCAM1,  CNMAT2,  and

IUA-UPF3 as a standard for storing different sound representations [Wright et al. 1998]. SDIF con-

tains different sound descriptions in separate streams along a common timeline. The streams consist 

of time-tagged frames where each frame contains one or more 2D matrices which contain the actual 

data. Since the frames are time-tagged, they do not rely on a specific sample rate,4 and may exist 

anywhere along the timeline of the SDIF file, like illustrated in figure  1. The SDIF-specification 

includes a library of predefined stream (frame 

and matrix) types, like for instance the Picked 

Spectral  Peak  (1PIC)  denoting  peaks  in  the 

sound spectrum, where each 1PIC frame con-

tains one 1PIC matrix consisting of 4 columns 

referring  to  amplitude,  frequency,  phase  and 

confidence,  and matrix rows corresponding to 

the number of peaks  [Wright et al 1999]. The 

SDIF  format  is  not  constrained  to  the  pre-

defined stream types, but allows for other stream types to be defined in the header of each SDIF 

file. These stream types are defined with a four character frame ID and one or several four character 

matrix ID(s). The self-defined IDs starts with an X (e.g. XPOS in my first example below). Frame 

types include the frame ID, frame description and matrix types to be included in the frame. The 

matrix type definition include the matrix ID and column descriptions. Matrix ID is often the same 

as Frame ID when there is only one matrix in each frame. The SDIF format also allows for writing 

meta information (e.g. date, name, descriptions of the file, etc.) in name-value tables (NVT) as part 

of the file header, this is especially useful for writing information on the recording setup in a GDIF 

recording.

GDIF
The  Gesture  Description  Interchange  Format  is  currently  under  development  as  a  standard  for 

recording, streaming and describing musical movement. GDIF development is still mainly focusing 

on what aspects of musical movement to include in the format, and currently there is no defined 

format in which to store the files, but XML, SDIF and OSC has been suggested as protocols for 

1 Institut de Recherche et Coordination Acoustique/Musique, Centre Pompidou, http://www.ircam.fr/
2 Center for Music & Audio Technologies, University of California at Berkeley, http://cnmat.berkeley.edu/
3 Institut Universitari de l'Audiovisual, Universitat Pompeu Fabra, http://www.iua.upf.es/
4 Other than the limitations in the double precision float denoting the time tag. 

See http://recherche.ircam.fr/equipes/analyse-synthese/sdif/standard/sdif-standard.pdf for low-level structure details 
on SDIF.
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Figure 1: Example of frames without a defined sample rate in  
two SDIF streams
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storing and communicating GDIF data [Jensenius et al. 2007b]. One of the goals for GDIF develop-

ment is to develop methods for structuring data from musical performances. These methods should 

be transparent of mediation-technology and independent of the interfaces being used for gathering 

data, i.e. capable of handling different/varying sample rates, bit resolutions, etc. simultaneously. 

Software development
To provide a good user interface for recording and playing back SDIF files I have developed a set of 

Jamoma5 modules.  Jamoma is  a standard for  building high level  modules  for  Max/MSP/Jitter6, 

providing standards for user interface,  communication and patcher structure  [Place and Lossius

2006]. The modules developed for use with the SDIF format are to a large extent based on the SDIF 

objects in the FTM7 library. The modules are:

– jmod.sdif.play – streaming data from SDIF files

– jmod.sdif.record – recording data to SDIF files

– jmod.sdif.record.nvt – module for writing name value tables to the SDIF file

– jmod.sdif.record.control – module for recording to predefined stream types

– jmod.new_file_player – module for generating indexed file names, useful for making 

several succeeding recordings within a single session. 

In addition to these modules, I made the component  jcom.sdif.record.data for converting lists of 

data to fmat8 matrices, which is the format needed by jmod.sdif.record. The modules presented are 

still being improved, and because some functions are likely to change I do not include any instruc-

tions for module use in this paper. The help patches and html documentation files provided with 

Jamoma are continuously updated, and provide the necessary user instructions for the modules. The 

modules are available from the current active-branch of Jamoma.9,10

Setup in the IDMIL
The following equipment was used in my test recordings in the IDMIL.

5 http://www.jamoma.org
6 http://www.cycling74.com
7 http://ftm.ircam.fr
8 Float matrix FTM object.
9 https://jamoma.svn.sourceforge.net/svnroot/jamoma/branches/active   

See http://www.jamoma.org/wiki for instructions on how to download.
10 Please note that the modules have only been tested on Windows. Testing and adjusting the modules for Mac use will 

be done in the near future.
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Vicon V-46011

The Vicon-460 generates 3D models of objects based on position-tracking of reflective markers 

placed on the object and kinaesthetic models of the objects in question. 6 IR-cameras are recording 

the reflections of the markers, as a basis for calculating 3D positions for all the markers. 

Tarsus is a Vicon application for for real time streaming of motion capture data. The data 

output  from Tarsus is  based on predefined models of the objects  to be recorded.  Based on the 

marker placement, the Vicon system recognizes a predefined object, e.g. a limb or a musical instru-

ment, and outputs 3D position data and 3D orientation data for the objects. Tarsus works as a TCP 

server, communicating on port 800. Any TCP-client may connect to this server through the TCP/IP 

protocol and request for a single data packet or streaming of data packets. 

Streaming  data  from Vicon  to  Max/MSP is  not  possible  using  the  included  objects  for 

TCP/IP communication.12 The mxj net.tcp.send object gives a message when the reply from the 

server is received, but they do not display the contents of the reply-package, which is where the 

Vicon data is located. To get the Vicon data to Max/MSP, it is therefore necessary to use a third 

party external or standalone software that is able to communicate with both Max/MSP and Tarsus. 

For this project I did try several 3rd party clients,13 and found the Windows application QVicon-

2OSC14 by Christopher Frauenberger and Johannes Zmoelnig to be the most useful. This application 

provides a good user interface, and sends the parsed Vicon data as Open Sound Control messages 

through UDP. I  have  made a  Jamoma module  called  jmod.QVicon2OSC with  which  one  can 

remotely control the QVicon2OSC application, and receive data in Open Sound Control format. The 

use of this module makes it possible for a user to control all the data from within the Max/MSP 

environment without having to swap between different programs. 

Polhemus Liberty
The Polhemus Liberty15 uses an electromagnetic field (EMF) within which it can determine the 

absolute position and orientation of several sensors. The unit at the Input Devices and Music Inter-

action Laboratory has eight sensors for which the system outputs six degrees of freedom data: 

3 DOF position data. X, Y, Z

3 DOF orientation data. Azimuth, Elevation, Roll

The Polhemus Liberty is capable of outputting data at a rate of 240 Hz. However, due to a previous 

11 The information on the Vicon system presented here is based on information found in the Vicon manuals. These are 
part of the software package delivered with the Vicon system. In particular the documents I have been using are:
ViconiQ_Option_RTE.pdf, Tarsus Communication.html, CommunicationsProtocol.rtf and ChannelSpecifications.rtf

12 Such as the mxj-objects net.tcp.send and net.tcp.recv.
13 Like tcpclient for PureData
14 http://sonenvir.at/downloads/qvicon2osc
15 www.polhemus.com
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setup of  the Polhemus system in the IDMIL,  the data  is  output  at  a  low,  variable  sample rate 

(30-35 Hz) in the recordings presented here.

Audio/Video
A Canon GL2 video camera was used for the video recordings, and all audio recordings was done in 

locally on the computer generating the audio using Max/MSP and PureData. In the setups presented 

here, synchronization issues related to the audio and video recordings is solved by recording 1 to a 

SDIF stream at the time the audio/video recording starts, and a 0 when it ends. This approach has 

worked in my setup, but is not the most reliable, and should be improved by e.g. recording several 

pulses or a ramp every nth sample.

T-Stick
The T-Stick is a family of musical instruments, described in [Malloch and Wanderley 2007]. It uses 

several  capacitive  sensors,  accelerometers,  pressure  sensors  and  a  piezoelectric  crystal  contact 

microphone as sensor inputs. The large amount of sensors give a complex structure for musical con-

trol of the sound module. The instrument is sensitive to tilt angles, shaking, bending, touch  posi-

tion, pressure and structural vibrations in the instrument.

Phantom Omni
The Phantom Omni16 haptic device is a device for measuring position and orientation in six degrees 

of freedom (X, Y, Z, azimuth, elevation, roll). The device applies force feedback in three degrees of 

freedom (X, Y, Z). In the setup presented here, the device communicates through an experimental 

feature of DIMPLE [Sinclair and Wanderley 2007]. 

Recordings
To investigate the use of SDIF files as a container format for GDIF, I made recordings of impro-

vised musical performances using the musical instruments, devices and motion tracking systems 

mentioned above. Two different recording setups were used. A local network was set up to allow 

data processing to be shared between several computers.

The recordings presented here are mostly for illustrative purposes to present the method in 

question,  and thus I  will  not make any thorough analysis  on the recorded data.  I  will  however 

present visualisations of the recordings. Some of the patches, and files presented here are available 

from http://folk.uio.no/krisny/research/ .

16 http://www.sensable.com/haptic-phantom-omni.htm
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Force-feedback algorithm with audio synthesis
In  the  first  setup,  a  Phantom  Omni  haptics 

device was used along with a height map geo-

metric  texture  algorithm made  by Steven Sin-

clair.  The force vectors to the feedback device 

was calculated based on the normal of the height 

map. The lateral surface forces that is felt by the 

user was applied to a synthesis model. We recorded the synthesized audio, the X, Y and Z position 

coordinates from the Phantom Omni as well as the X, Y and Z force coordinates. All processing dir-

ectly related to the haptics software and hardware, as well as audio recording was done on a Win-

dows PC. Video recording was done on a Mac Pro, and the recording of the GDIF data was done on 

another Windows PC. Data was sent over a local network as Open Sound Control messages. For 

efficiency reasons, all data, except for the sync streams, was recorded in 5-sample vectors, with a 

sample for each ms. Each sample in the vector was recorded to a separate SDIF-matrix row.

Five SDIF streams were defined for recording the data:17 

Position stream: Data stored in XPOS frames, each including a single XPOS matrix. The matrix 

columns refer to the three cartesian input position coordinates from the Phantom omni. 

Force stream: consisting of three-column, five-row XFOR matrices within XFOR frames. The 

X, Y and Z columns make up the force vector for each sample. The matrix rows refer to five 

succeeding force vector samples.

Orientation stream: consisting of XOR9 frames with XOR9 matrices. Each XOR9 matrix con-

sists of 5 rows, where each row contains one rotation matrix (3×3 matrix represented as 

1×9). 

Sync streams: One audio synchronisation stream consisting of XASY frames with a single-num-

ber XASY matrix. And a similar stream for video with XVSY stream and matrix. A sync 

pulse was recorded to the respective sync stream at the moment the recording was initiated.

Using the jmod.sdif.play module, the force-feedback stream can be played back to the Phantom 

Omni along with the audio and video files. This way it could be possible to do empirical studies 

with the exact same data. For instance, several users may experience the exact same haptic feedback 

and evaluate the sound from different audio synthesis algorithms. 

17 The stream types in these recordings are basically the same stream definitions as purposed in [Jensenius et al. 2008], 
with some modifications as outlined in the text.
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Figure 2: Computer and device setup for the haptic device recording
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T-Stick
The second setup was done in two equal ses-

sions.  These were both  recordings  of  impro-

vised T-Stick performances. The devices used 

in  this  setup was a tenor  T-Stick,  Vicon 460 

motion capture system capturing five markers 

on the  T-Stick  and four  markers  on the per-

former's head, a Polhemus Liberty with two sensors placed on the left and the right wrists as well as 

audio and video recording. The devices and computers in use are shown in figure 3. Audio/Video 

sync, Polhemus, and T-Stick data was sent using Open Sound Control. The Vicon Workstation com-

municated over TCP/IP with the QVicon2OSC application on the recording laptop. For this setup, 

the following SDIF streams were defined:

Polhemus stream: Data stored in XPOR (position-orientation) frames, each including a single 

XPOR matrix.  In  each  matrix  there  are  six  columns,  referring  to  X,  Y and  Z  position 

coordinates and azimuth, elevation and roll orientation coordinates. Each sensor is represen-

ted in a separate matrix row. The stream sample rate is variable: between 30 Hz and 35 Hz.

Vicon stream: For this setup, only the position and orientation of the two predefined objects (the 

head of the performer and the T-Stick) was recorded. These data may as well have been 

recorded to XPOR frames, but this would have caused conflicts with the XPOR Polhemus 

stream. Thus, the Vicon data was recorded to XVIC frames each containing a XVIC matrix. 

The columns in the XVIC matrix refer to angle-axis orientation coordinates, and X, Y and Z 

position coordinates. The two objects (T-Stick and head) are recorded to separate matrix 

rows. The Tarsus engine was set to operate at 250 Hz.

T-Stick  stream:  The T-Stick  data  was  recorded as  raw data  to  single-row fourteen-columns 

XTST matrices and XTST frames. The fourteen columns refer to different sensor data.

Sync stream: As in the first setup, a sync impulse was recorded when A/V recording started. 

This stream contains of XSYN frames and XSYN matrices. The audio and video files were 

recorded on one computer, and a synchronize signal was sent to the computer recording the 

SDIF  file.  I  have  chosen  not  to  use  the  XAVS  identificator  as  previously  suggested 

[Jensenius et al. 2008], because it is likely that a synchronisation stream could refer to other 

things than only audio and video. 

7

Figure 3: T-Stick GDIF recording, computer setup
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I set up a simple animation based on the 

data from the Polhemus and the Vicon 

data.18 The axis from the Polhemus and 

the Vicon data was almost aligned, but 

not perfectly, making the animation a bit 

oblique.  The  position  of  the  Polhemus 

EMF  source  is  the  origin  (X=0,  Y=0, 

Z=0)  in  the  Polhemus  data  coordinate 

system, while the recorded Vicon data is 

offset  compared to  this.  Thus I  had to 

adjust the coordinates according to the 

origin  position  and  the  output  data 

(Vicon outputs position data in millimetres, and the Polhemus in centimetres). I had some diffi-

culties adjusting the orientation data,19 so the orientation in the animation is incorrectly displayed. 

Orientation  data  is  different  in  the  two systems:  Polhemus outputs  azimuth,  elevation  and roll 

coordinates in degrees and the QVicon2OSC application outputs orientation data in radians in axis-

angle format.  Figure  4 shows the 3D animation placed in front of the video recording.  This is 

played along with the audio recording. In the figure, the red ball (partially hidden) is the Polhemus 

marker on the left wrist, the green ball is the Polhemus marker on the right wrist, the blue cylinder 

is the T-Stick and the yellow egg-shape is the head, the two latter based on the Vicon position (and 

orientation) data. I have included the orientation, even though it is incorrectly displayed, because in 

spite of the error it provides some idea of the T-Stick behaviour. Along with this, one may also play 

back the T-Stick data, which in this animation could display the different control actions performed 

on the T-Stick (e.g. by illuminating the touch position).

Evaluation of device synchronization using the Jamoma SDIF modules
To get an impression of the stability of the SDIF modules, I made a simple recording of two SDIF 

streams with 100 Hz sample rate and 2 ms offset between data in the two streams. Data was gener-

ated as random integers locally on the recording computer. This recording gave a perfect synchron-

18 A screenshot from this animation is shown in figure 4. The animation is done in Jitter using OpenGL, and is a 
modification of Polhemus Tools developed by Alexander Refsum Jensenius (Jensenius 2007). When playing back 
GDIF data along with the video, the jmod.sdif.play module is slowed down. Thus, to make the animations run 
smoothly, the video was played on one computer and GDIF data was sent from another computer through UDP. The 
animations show some delay between animation and video; the use of several computers for playback may be the 
cause of this. The sdif.play module will be improved to avoid the need for several computers when streaming video.

19 The difficulties regarding orientation data from the Vicon system is due to different variants of the axis-angle 
orientation coordinates between the Vicon system and the jit.gl.handle object that was used for the animation. The 
orientation axis in the two systems are not aligned.
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Figure 4: Visualization of the recorded data along with video analysis.  
Motiongram and motion image technique from (Jensenius 2007).



isation, as displayed in figure  5 where all the samples are exactly 2 and 8 ms apart.  Thus, the

jmod.sdif.record module seems to be stable. 

The synchronisation issue is different when working on a 

network based setup, and a similar evaluation should be made for 

the setups presented above. In the first setup, data packets were 

sent  at  a  constant  rate  of  200  Hz,  and  thus  the  time  interval 

between packets of the same type should be 5 ms. However, the 

time intervals  between the samples  in  the recorded file  are  not 

constant. The ping time between the machines was measured to 0 

ms, but the large amount of GDIF data being sent did probably 

slow the  network  further  down.  The  histogram in  figure  6 

shows this time flutter. This flutter is not necessarily critical 

when we are dealing with movement data due to a rather small 

sample rate, but would become a problem if we want to send 

audio data over the network. 

Network lag is also the most likely reason for the delay 

between video  and animated  data  in  the  videos  from these 

recordings presented on http://folk.uio.no/krisny.

In the second setup, the Polhemus (left and right wrist) 

and Vicon/accelerometer (T-Stick) data are data describing different objects which are independent 

of each other. Unfortunately, I did not have the time to make recordings where the Vicon system and 

Polhemus sensors both related to the same object, and thus I do not have the best data for evaluation 

of synchronisation between the different data sources. However, because the hands of the performer 

are on the T-Stick, the wrist data and the T-Stick data does in many cases refer to the same action 

trajectory. As an evaluation of the synchronisation of different data sources, I have chosen to look at 

these data. Figure 7 shows a Max/MSP multislider plot of the derivative of the Vicon Z-axis values 
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Figure 7: Max/MSP multislider plot of a small segment (~7 seconds) of the T-Stick recordings. The 
devices were connected to three different computers, recording was made on a forth computer. The 
three top plots display up-down velocity, the bottom plot displays total acceleration (absolute value).

Figure 6: Histogram of time interval between 
  force-packets

Figure 5: First frames of recorded SDIF 
file, displayed in FTM track object

http://folk.uio.no/krisny


for the T-Stick, the equivalent values for the Polhemus sensors and the magnitude of the accelera-

tion vector from one of the T-Stick accelerometers. The values are scaled, and are not comparable in 

terms of amplitude. The Polhemus data and the T-Stick data are of lower sample rates than the 

Vicon data. These data are upsampled to the Vicon sample rate (with simple, constant interpolation) 

and so the time-axis should be comparable for all four data sources.

Measuring time between zero-crossings in the same direction of the Polhemus and Vicon 

data plotted above (before scaling) will give an indication of the level of synchronisation. Values 

greater than 0 is an upwards movement and less than 0 is a downwards movement. By looking only 

at the time differences between movements that obviously are the same movement (like the ones 

displayed  in  figure  7)  I  found  time  differences  to  be 

between approximately 5 and 176 ms. A histogram of the 

79  measurements  made is  displayed in  figure  8.  Taking 

into consideration that the time interval between Polhemus 

samples is approximately 32 ms, and that the plots above 

refer to separate objects that do not necessarily move at the 

same time, the time differences are acceptable, but due to 

the insecure nature of these data, it is not possible to draw 

any hard conclusions on this experiment. 

The T-Stick recording was done in two sessions, where the Vicon system in both cases was 

set to operate at 250 Hz. For unknown reasons, the Vicon data in the first session was only recorded 

at a variable sample rate of approximately 120-130 Hz.  In the second session the average sample 

rate for the recorded Vicon stream is 250 Hz, but there is 

time flutter similar to the time flutter in the force stream as 

presented above. Figure  9 shows a histogram of the time 

interval  between Vicon samples  in  one  of  the  recordings 

from the  second  T-Stick  session.  I  assume this  flutter  is 

mostly due to the amount of data being sent over the net-

work. A lower Vicon sample rate or a faster network con-

nection may possibly have solved this problem. 

Conclusions and future work
Recording GDIF data to SDIF files as presented in this paper may solve many problems related to 

synchronization of data from different sources. In a recording situation, one would assume that ana-

lysis is meant to be done as post-processing, and so any preprocessing necessary for the analysis 
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Figure 9: Flutter in Vicon sample rate
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data zero-crossings.



could also be done subsequent to the recording. But, provided there is enough CPU power, it is pos-

sible to record higher GDIF layers already at this stage. The jmod.sdif.record module may also be 

used for recording higher level GDIF streams as part of the post-processing of data, and I believe it 

provides a good basis for further development of systems for storing and streaming GDIF data. 

Advantages of  using the methods presented here include the possibility to record any kind 

of numerical data from several sources independent of sample rate. It also provides a simple solu-

tion  for streaming recorded data in raw or analysed format along with audio/video recordings of the 

performance. The disadvantages are the loss OSC coded information (since data needs to be recor-

ded to fmat matrices). For streaming OSC data, the OSC namespace will need to be described in a 

name-value-table in the recording of the file, and re-applied during playback. Another disadvantage 

of using a real-time approach when recording data is the loss of possibilities for post processing. By 

recording data from the Vicon system to a 3rd party application, one loses many of the post-pro-

cessing features that are available in the Vicon software. The Vicon system also allows streaming of 

audio and video simultaneously to the post-processing, so unless one wants to record data from 

other sensors, like the Polhemus or the T-stick, it is preferable to make recordings directly to the 

Vicon system.

Other approaches (like the MAV framework [Koerselman et al. 2007]) may also be evalu-

ated for working with motion-related data. I have not focused on other approaches in this Short-

Term Scientific Mission, and thus they have not been presented here.

The Jamoma SDIF modules will be improved by implementing a better solution for video 

synchronisation and support for standard SDIF types directly to the SDIF file as well as multi-

stream playback from a single SDIF play module. Some graphical issues will also be improved. 

The  Jamoma  modules  presented  here  are  available  from  the  current  active  branch  of 

Jamoma. Video examples, the patches in use in this presentation and some of the recorded files are 

available from http://folk.uio.no/krisny/research/ .
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