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Summary

Biological databases and computational biology tools are provided by research groups
around the world, and made accessible on the Web. Combining these resources is a com-
mon practice in bioinformatics, but integration of heterogeneous and often distributed tools
and datasets can be challenging. To date, this challenge has been commonly addressed in
a pragmatic way, by tedious and error-prone scripting. Recently however a more reliable
technique has been identified and proposed as the platform that would tie together bioinfor-
matics resources, namely Web Services. In the last decade the Web Services have spread
wide in bioinformatics, and earned the title of recommended technology. However, in the
era of high-throughput experimentation, a major concern regarding Web Services is their
ability to handle large-scale data traffic. We propose a stream-like communication pattern
for standard SOAP Web Services, that enables efficient flow of large data traffic between
a workflow orchestrator and Web Services. We evaluated the data-partitioning strategy
by comparing it with typical communication patterns on an example pipeline for genomic
sequence annotation. The results show that data-partitioning lowers resource demands of
services and increases their throughput, which in consequence allows to execute in-silico
experiments on genome-scale, using standard SOAP Web Services and workflows. As a
proof-of-principle we annotated an RNA-seq dataset using a plain BPEL workflow engine.

1 Introduction

Combining scientific resources is vital for acquiring a complete picture of a scientific problem,
and plays a key role in the process of generating new knowledge. A plethora of tools and
databases hosted at different sites around the globe are available to the life sciences community,
and constitute a vast mine of information. Integration of all these distributed resources creates
new perspectives, enables scientists to ask broader questions, but it also poses new challenges.
Cooperation between distributed heterogeneous software systems is one such key challenge.

The challange is often addressed by ad-hoc scripting, that tightly couples required resources.
This pragmatic approach is a tedious and error-prone process, so recently a more promising
method has gained significant attention. SOAP Web Services have been proposed as the tech-
nology that can connect the distributed, heterogeneous bioinformatics resources [1]. They have
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been chosen for several reasons: SOAP Web Services are a W3C ! standard for interopera-
ble communication over the Internet; they provide mechanisms for semantic annotation, and
automatic discovery and invocation; it is a well-established technology with large user and
developer communities being a guarantee of sustainable support; they come along with good
documentation, tools and libraries. Furthermore, in accordance with Service Oriented Archi-
tecture principles where simple components are loosely orchestrated to provide higher-order
functionality, SOAP Web Services can be combined into workflows. In a scientific context,
these workflows can be complex analysis pipelines representing in-silico experiments.

The bioinformatics community has taken up the Web Services technology: it was recommended
and promoted by the EMBRACE project [2]; the ELIXIR initiative building on the EMBRACE
guidelines, encourages use of Web Services in the design of distributed data infrastructure [3];
many publishers of bioinformatics tools provide SOAP interface to their software (e.g. EBI?,
CBS in Denmark?®, IBCP in Lyon*, CBU in Bergen’). Several workflow management systems
that make extensive use of Web services have been developed, e.g. Taverna [4], Kepler [5],
Triana [6], and Sedna [7]. The SOAP Web Services have the potential to become the common
digital platform for data access and exchange in bioinformatics.

However, in the era of high-throughput experiments, the technology designated to integrate
distributed scientific resources must have capacity to manage massive volumes of data. XML
messages used in the SOAP protocol are expensive to process, and voluminous to send over the
Internet. The great advantage of having data structured in XML, parsed and loaded into mem-
ory on arrival, becomes the problem of SOAP as the data size grows. The capability of handling
large-scale data with SOAP Web Services has been a concern in context of scientifc applica-
tions [8—10]. Improving the efficiency of SOAP Web Services and workflows is important for
ensuring their wider endorsement in bioinformatics.

One of the key advantages of SOAP Web Services is the possibility of manipulating structured
XML data, which is automatically validated and ready-to-use right after a SOAP message ar-
rives. Hence, instead of seeking more efficient data representations and transport protocols,
we aim at optimizing the resource utilization by Web Services that exchange structured data
using SOAP. We approached the problem by breaking it into solvable sub-problems using a
well known paradigm for algorithm design - divide and conquer. This paradigm has succes-
fully been applied to optimize data transport (e.g in the TCP/IP stack) and to allow processing
of huge XML documents (e.g. the Pegasus [11] workflow management system breaks down
XML-based specification of large worklows into pieces [12]). As we show in the results, the
partitioning can largely improve SOAP performance as well. By dividing the data, we were able
to run a genome-scale pipeline using standard SOAP Web Services. Our results prove that sen-
sible use of the technology that is reported to be inefficient [8, 13], and questioned to scale [9],
can bypass the limitations and enable high-throughput workflows composed of standard SOAP
Web Services.

http://www.w3.org
’http://www.ebi.ac.uk/Tools/webservices/
Shttp://cbs.dtu.dk/services/ws.php
“http://gbio-pbil.ibcp.fr/Tools/
Shttp://api.bioinfo.no/wsfront/
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2 Related work

RESTTful services [14] are alternative to SOAP Web Services method of integrating software
systems. In contrast to message-oriented SOAP Web services, the central element in REST
architecture is a resource. Resources are identified by a URIs, stored on servers, and accessed
(possibly via proxies) by clients. In comparison with SOAP services, RESTful services are
light-weight and good for ad hoc solutions, while SOAP Web Services are more advanced, fea-
turing support for security and quality-of-service, which makes software systems more robust
and reliable [15]. In this respect REST is better suited for explorative development, and SOAP
for building large, long-lasting software infrastructure. Applicability of both technologies to
bioinformatics is further discussed in [16].

A standard optimization method for SOAP Web Services is Message Transmission Optimiza-
tion Mechanism (MTOM)®. MTOM attachments allow to send arbitrarily large files in a binary
form, which optimizes the bandwidth utilization. The MTOM attachment is not treated as the
rest of the SOAP message with respect to (de)serialization and format validation. This accounts
for a great spare of resources, but comes on a cost of the main advantage of using SOAP Web
Services: the data sent by an MTOM attachment is not validated, and no structure nor format
can be forced on the attached file(s). The MTOM attachments are excellent for sending data
in a well-established file format, which is accepted and consumed by all services. However,
attachments become problematic in scenarios where data-conversion between syntactically in-
compatible formats is necessary, or when a subset of the data needs to be extracted on-the-fly
between two service invocations.

Styx Grid Services (SGS) [17] attempt to cater for efficient data-exchange interoperable ser-
vices. SGS use a file-sharing protocol, Styx, to exchange messages and facilitate streaming of
data between services: a result is passed as a reference to the subsequent service, and retrieved
using Styx protocol. SGS support is built-in into Taverna, and after wrapping with a SOAP
Web Service wrapper, they can work with other systems as well (e.g. Triana). An idea of
passing references instead of data is also used in "handle-aware’ services and Kepler [18]. The
Kepler workflow engine avoids mediating the data between subsequent services in a workflow,
by passing a data-handle instead, i.e. the data-producing service returns a data-handle to the
Kepler workflow engine; the data-handle is forwarded to the data-consuming service, and used
to retrieve the data directly from the data-producing service with a file transport protocol (e.g.
FTP, SCP, HTTP). Pass-by-reference (or handle) approach is a ’lazy’ data-transport method that
can greatly spare resources, by transporting the acctual data only when necessary. Use of more
efficient file-transport protocols like Styx or FTP, also contributes to the increased performance.
The drawbacks of the pass-by-reference approach are similar to MTOM attachments (and any
file-based approach): lack of automatic validation of data format, and no support for on-the-fly
manipulation of the data. Also, tracking of data provenance becomes more difficult, if the data
is stored by the workflow orchestrator only as a temporary reference.

Data-Grey-Box Web Services proposed in [10] is an extension to the SOAP Web Services stan-
dard that includes a middle-layer between services and service consumers. The middle-layer
is responsible for storing and moving the data using specialized tools, opposed to the original
standard where the data-exchange is direct and using SOAP messages. The solution, although
elegantly separating data and functional concerns, has several impractical requirements: (1) an

Shttp://www.w3.org/TR/soapl2-mtom/
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extra set of mediator services (introducing additional points of failure); (2) an input- and output-
data repository exposed on the client side; and (3) an extension of the Web Service standards
(e.g. WSDL) that breaks existing clients.

Very recently a new W3C recommendation on a binary XML format has been published. Effi-
cient XML Interchange Format (EXI)” compacts XML documents using the XML Schema® to
guide and optimize the process, resulting in better compression than gzip’. EXI documents are
also faster in parsing and support streaming, which will definitely have impact on performance
of SOAP Web Services in the future. Currently only one commercial library provides support
for efficient XML in Web Services.

3 Results

First, we present the data-partitioning communication pattern for standard SOAP Web Services,
which is the main result of this work. A Java framework for implementing PartIO services is an
additional result, and will be described briefly. Further, we present the outcomes of the PartlO
evaluation: a benchmark of the communication patterns, a genome-scale test, and a BPEL test.

3.1 Data-partitioning communication pattern

Typically an execution of a procedure on an array of input elements, involves calling the pro-
cedure with the array as an argument. If the procedure is executed by a Web service, a client
sends a request with an array of inputs, and receives (or retrieves) a reply with an array of out-
puts. All the input elements of an array are sent in one message, and all the output elements are
sent in one message, thus we refer to this approach as All-In-All-Out (ATAO). An advantage
of sending the entire input as one piece is that the service can find the optimal way to process
it, e.g. prepare resources, process in batches, employ concurrent computations. The overhead
involved in starting the computation is little, and the bandwidth consumption is also reduced as
minimal overhead in network communication is needed to transfer the data, i.e. two messages
are used: 1 to send input and 1 to get output. However, the throughput of the AIAO commu-
nication pattern is limited by the size of the array that can be sent in a single message. Also,
partial results are not accessible before the execution is complete.

Another common approach relies on iterating over the input array and invoking the Web service
operation for single input elements. Each request and each reply carry only one input and
one output element, respectively. In the rest of the text we refer to this approach as One-In-
One-Out (OIOO). The OIOO communication pattern has a low throughput (i.e. one input
at a time), unless simultaneous calls to a Web service are enabled (called data parallelism
by [19]). In contrast to the AIAO, the OIOO is not limited by the size of the input array,
and it provides insight into partial results of the execution. In addition, the OIOO increases
workflow performance by overlapping communication and computation (Fig. 1). However, the
OIOO has several drawbacks:

"http://www.w3.0rg/TR/2011/REC-exi—20110310/
8http://www.w3.org/XML/Schema
‘http://www.gzip.org/
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* Numerous messages with single data elements increase the proportion of bandwidth uti-
lized to convey message headers, rather than data.

* The overhead involved in starting an execution on the computational resource multiplies
by the length of the input array, and becomes substantial if single executions are rapid
and the input array long

* Multiple simultaneous invocations create separate computational jobs for each input el-
ement. These jobs often require tracking for status, in addition to sending the input and
retrieving output. Such frequent communication creates a high load on a service, reduces
its performance, and may cause flooding in extreme cases. The number of simultaneous
jobs needs to be constrained, which significantly limits the throughput of a pipeline using
OIOO communication pattern.

In the Partitioned Input/Output (PartlO) communication pattern a Web service is treated as a
processor converting a stream of input data into a stream of output data. The input data is
appended in partitions in separate request messages, that are correlated with one execution.
The output data is retrieved in partitions by separate reply messages, as soon as it is produced.
The execution is not complete before the stream of input is closed and all the input data is
processed.

The AIAO and OIOO can be viewed as two extremes on the scales of message size and fre-
quency of service invocations. The PartlO communication pattern is an intermediate approach,
aiming at optimizing the balance between the message size and communication frequency. The
PartlO combines the advantages of both AIAO and OIOQ, and at the same time removes their
limitations. Data-partitioning allows a SOAP Web Service to exchange XML data of genome-
scale, split between messages of suitable size. The frequency of communication is kept low by
aggregating single input and output elements into portions, and also by correlating all partitions
with one execution. This way the number of requests tracking status of a job is dramatically re-
duced (compared to parallel OIOO). Variable partition size allows for balancing and optimizing
the cost of splitting between too many messages (i.e. network and execution overhead), and the
cost of processing large messages. Similarly to the OIOO, the PartlO communication pattern
naturally facilitates overlapping communication and computation, and allows for inspection of
intermediate results.

We designed an abstract Web service interface that supports communication in the PartIO pat-
tern. We found following operations necessary:

/I prepares the computation by sending necessary parameters and acquiring a job identifier
initJob ( job-_description ) : job-id

/I starts computation on the input data
startJob ( job_id ) : void

// submits a portion of data; can be invoked multiple times
appendInput ( job_id, input_element[] ) : void

/I informs the service that all the input data has been sent
closelnput ( job-id ) : void

/I tracks the current status of a job by informing about the number of processed input elements
/I and available output elements
getStatus ( job_id ) : status

/I retrieves a given number of single output elements; can be invoked multiple times
getResult ( job_id, number_of_results ) : result_element []

doi:10.2390/biecoll-jib-2011-163 5



Journal of Integrative Bioinformatics, 8(2):163, 2011 http://journal.imbio.de

C - workflow coordinator
S1, S2 — services
—» input message
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Figure 1: The effect of overlapping communication and computation. On the left-hand side the
workflow coordinator (orchestrator) invokes service S1 with the entire input. After S1 completes
and its entire output is retrieved, service S2 is invoked. On the right-hand side, the S1 service
is invoked with the entire input, but the output is retrieved in portions as soon as they become
available, and is immediately transported to S2. Transport of partial results from S1 to S2 overlaps
with ongoing computations on S1 (and possibly S2). As depicted in the figure, the overlap can
substantially reduce the overall run-time of a pipeline. Also partial results may become available
before the pipeline completes. The OIOO and the PartIO strategies, in contrast to AIAO, make
the overlapping communication and computation possible.

3.2 The PartlO framework

We developed a Java framework that facilitates development of PartlO Web Services. The
framework incorporates the common logic for data-partitioning services, and in addition allows
to execute computations locally, or transparently on a local cluster or the Grid. Architecture of
a PartIO service built on top of the framework is presented and described in Fig. 2.

Execution of a PartlO service starts by initiating a computation (job) and creating a unique
identifier of the job. The identifier is used to append partitions of input, that are correlated
with the job. The PartIO framework splits the input partitions further into single elements, and
persists them in a database. Next, the PartlO framework aggregates single input elements into
batches, and schedules for computation using GridSAM. Sizes of batches that are scheduled for
computation are independent of sizes of input partitions appended to the job, so the granularities
of transportation and computation can be configured separately. When a computation on a batch
of inputs is finished, the framework splits the result of computations into singletons, and persists
them in a database. As soon as first result elements are stored in the database, the PartIO service

doi:10.2390/biecoll-jib-2011-163 6



Journal of Integrative Bioinformatics, 8(2):163, 2011 http://journal.imbio.de

client can retrieve them in partitions of arbitrary size. Anytime after creating the job, its status
can be tracked using the job identifier. Status report includes progress of computation (e.g.
initiated, running, completed, failed), number of input elements appended, number of input
elements processed, and number of output elements retrieved.

Four aspects of the above processing are specific to the implemented service, and are not a
part of the general framework (i.e. input and output data-types, and back-end computation).
These aspects are specified by abstract interfaces (see Fig. 2) and implemented by the service
provider:

XMLInputSplitter - splits a partition of input into single input elements

InternalJobCreator - creates a job specification for GridSAM and input file(s) necessary
for the computation

OutputltemCreator - creates a list of single output elements from the results of the com-
putation

XMLOutputAssembler - assembles single output elements into a partition of a result,
which is retrieved by the client

3.3 Performance assessment

To evaluate the partitioning strategy, we have performed a series of tests on a simple gene
annotation pipeline (Fig. 3). One BLAST service instance allowed search (alignment) in any
of three databases: UniProtKB/Swiss-Prot [20], UniProtK B/TrEMBL [20], and NCBI NR [21].
In the following text, executions of the service using a particular database are distinguished by
a subscript with the name of the database, e.g. BLAST syiss— prots BLAST . grBr, BLAST N R.

Three versions of the annotation workflow were implemented, each using one of the considered

communication patterns, i.e.:

1. All-In-All-Out (AIAO) - sends all the input data in one request and retrieves all the output
data in one response

2. One-In-One-Out (OIOO) - sends input and retrieves output data as single input/output
elements in separate request/response messages. Each input element initiates a separate
computational job.

3. Partitioned Input/Output (PartlO) - sends and retrieves input/output data in partitions (or
batches of single elements)

3.3.1 Benchmark

Although we address the throughput limitation of SOAP Web Services, we carried out a small-
scale test where we analyzed the performance differences arising only from the differences in
communication patterns. The workflows were run on a dataset of 500 EST-contig sequences,

doi:10.2390/biecoll-jib-2011-163 7
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XML Internal Output XML
Input Job Item Result
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|
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Figure 2: Architecture of a PartlO service built on top of the PartlO framework. The service
implementation exposes its own WSDL interface and uses the framework for managing data-
partitions. Implementation of four aspects specific to the service function (i.e. XMLInputSplitter,
InternalJobCreator, OutputItemCreator, and XMLOutputAssembler) needs to be provided. The
PartIO framework uses a database to persist information about jobs, and input and output data.
Communication with the Grid infrastructure and monitoring computations is delegated to Grid-
SAM. Core of the framework interacts with GridSAM via a SOAP Web Service interface, so both
components can be deployed on different physical sites.

three times each. Average values for memory use (MEM), processor use (CPU), data-transport
time and run-time are reported.

Overall run-times of the AIAO, PartlO and OIOO workflows, as well as the resource con-
sumption of the Web service stack in the three approaches are summarized in Table 1. The
data-partitioning workflow completed the execution in the shortest time. With respect to re-
source consumption, the data-partitioning communication pattern is in-between the AIAO and
the OIOQ, i.e. PartlO workflow required on average less memory than AIAO, but more than
OIOOQ. On the other hand, the PartIO workflow required on average more CPU than AIAO, but
less than OIOO. The time of data-transport correlated with number of messages used to trans-
port the data, i.e. it was the shortest for AIAO and the longest for OIOO. Availability of partial
results is summarized in Table 2. At any given timepoint in the workflow run-time (except at
the very beginning) the PartIO workflow had in summary more input data processed than AIAO
and OIOO.

doi:10.2390/biecoll-jib-2011-163 8
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Figure 3: Gene annotation pipeline. The pipeline comprises subsequent BLAST searches in three
protein databases: UniProtKB/Swiss-Prot, UniProtKB/TrEMBL and NCBI NR. First, input gene
sequences are searched in Swiss-Prot. If no hits is found, TTEMBL is searched. In case of no
match, NR is used. Next, Gene Ontology annotations for hits from Swiss-Prot and TrEMBL are
retrieved using QuickGO, and used as annotations for the input genes. Genes that only have
similar sequences in NR, get the description of the most similar sequence as a putative annotation.

3.3.2 Genome-scale test

To test the throughput-limits of the considered communication patterns and their applicability
to large-scale analyzes, we executed the annotation workflows on a genome-scale dataset. In
every workflow run, in total 23k alignment searches were performed: EST-contig sequences
from the 14k input dataset that didn’t get significant hits in BLAST g,iss— prot, Were searched in
BLAST . ga B, and then if failed to align again, in BLAST vy (see Fig.3). The computation
ran on a large cluster and exploited available computational resources to the highest degree
feasible. The ATIAO workflow was excluded from this comparison due to its limitation on the

doi:10.2390/biecoll-jib-2011-163 9
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Table 1: Resource utilization in the benchmark. The AIAO, OIOO0, and PartlO communication
patterns were compared with respect to: processor (CPU) and memory (MEM) utilization during
message processing by the Web service stack; data-transport time; and the overall run-time of
the workflow. The last column presents percentage difference in run-time relative to the PartIO
workflow run-time.

Data-transport Run-time Run-time relative

CPU [%] MEM [%] time [s] [s] to PartIO [%]
AIAO 11.87 33.66 16.4 6591 127
0)(0]0) 46.59 19.34 43.7 5826 112.5
PartIO 19.98 2591 19.5 5180 100

Table 2: Availability of partial results in the benchmark, presented in percent of the total result
available. The availability of partial results is compared for the three workflows, in the three main
steps of the pipeline: BLAST 5.;ss— prot (SP), BLAST 1. gr 51 (TR), BLAST v (NR). The avail-
ability is shown at three checkpoints of the workflow run-time. The AIAO workflow does not pro-
vide insight into the final results until the end of the pipeline. At each stage (e.g. BLAST 5,,iss— Prots
BLAST-gr s, BLAST v r), only the entire result from the stage is made available at the end. In
contrast, the OI0OO workflow was able to provide as much as 10% of the final results in 1/4 of the
pipeline run-time, and 32% final results when it was half-way. The PartIlO workflow produced
first final results in the middle of the run-time, but at that time it had the entire BLAST s.,iss— prot
stage completed, and 79 % of the BLAST .z /51 stage.

1/4 172 3/4
SP TR NR SP TR NR SP TR NR
AIAO 100 O 0 100 O 0 100 100 O
OI00 31 18 10 51 41 32 74 67 38
PartIO 100 12 0 100 79 1 100 96 44

data size, which was significantly lower than size of the input dataset.

The PartlO workflow completed the annotation pipeline on 14k sequences in 3 hours and 20
minutes. The OIOO workflow required 23 hours and 28 minutes to annotate the same dataset.
The average throughput measured in number of query sequences scheduled for processing in
parallel in the PartlO workflow was 3365, compared to 85 in the OIOO workflow (Fig. 4). The
maximum throughput reached by the PartlO workflow was 13767 query sequences scheduled
for processing at the same time. Both workflow executions had spare computational power
available on the cluster (over 200 free CPUs were available during both runs).

Processor and memory utilization was measured for the Web service stacks of the BLAST
service and of the workflow orchestrator. The measurements are presented in Figure 5 and in
Table 3. The Web service invoked in the PartlO pattern used less than half of the CPU power
required by the OIOO Web service (18.5% compared to nearly 42%). The PartlO service had
also 25% lower memory consumption, i.e. 16.46% for PartlO and 22.1% for OI0O. Only small
difference was observed in resources used by the workflow orchestrators. Sum of the time spent
on transporting the input and the output data was 280.3 seconds for the PartlO workflow and
1005.6 seconds for the OIOO workflow.

For every BLAST step of the PartlO workflow run, we calculated the back-end execution time
of the BLAST tool. Sum of the times required to complete each of the three BLAST steps was

doi:10.2390/biecoll-jib-2011-163 10
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Figure 4: Throughput of the BLAST service invoked in the PartIO and OIOO communication pat-
terns in the genome-scale test. (a) Workflow throughput measured in number of query sequences
being scheduled concurrently for similarity search (logarithmic scale on Y axis). In the OI0OO
workflow the average throughput was 85, with a maximum at 142. In the PartIO workflow the
average throughput was 3365, with a maximum at 13767 (b) Throughput measured in concurrent
executions of the BLAST program on the cluster. Each BLAST execution corresponds to one CPU
used on the cluster. In the PartlO workflow, the BLAST service used on average 218 CPUs (max
452 CPUs). In the OI0O workflow, the BLAST service used 85 CPUs on average (max at 142).
The numbers are equal to the query-sequence measure of throughput (a), since OIOO services
process one input sequence per execution.

Table 3: Resource utilization in the genome-scale test. The OIOO and PartIO communication
patterns were compared with respect to average processor (CPU) and memory (MEM) utiliza-
tion during message processing by the Web service stack (ws), and by the workflow orchestrator
(wf). Sum of the time spent on communication and the overall run-time of the workflows is also

presented.
CPU [%] MEM [%] Data-transport Run-time
(wf)  (ws) (wf) (ws) time [s] [hrs]
PartlO 1.84 1847 8.52 16.46 280.3 03:20
OI0O0 1.64 4199 999 22.10 1005.6 23:28

44 seconds longer than the runtime of the entire PartIO pipeline. It means that if the analysis
was executed directly on the cluster, running the three BLAST searches one after another, it
would take longer than the same analysis using SOAP Web Services.

3.4 BPEL test

This test was a proof-of-principle experiment aiming to show that by using PartlO, the standard
Web technologies can be used to perform a genome-wide analysis. Web standards and inter-
operability are central to our work. We designed the PartlO communication pattern following
the WS-* standards and OASIS Web Service Interoperability (WS-I) guidelines, to make sure
it will be possible to use it in any service-oriented setting. The BPEL test also proves that the

doi:10.2390/biecoll-jib-2011-163 11



Journal of Integrative Bioinformatics, 8(2):163, 2011 http://journal.imbio.de

Workflow Orchestrator Web Service
8 - o 8 8 - o
— o — 8 %
g -
o | é o _| I
[¢) [e] |
— o _| o _|
o\o (o) (o)
]
o
o 2 4 S -
o | o | :
I N :
o — o — g e
I I I I
[e][e]6} PartlO [e][e]6} PartlO
o _| o _|
4 < —_—
o _| o _|
(42] (42]
S
= o o
LIEJ N N
= T — 9 -
-~ == !
o o
o 8 o
I I I I
[e][e]6] PartlO [e][e]6] PartlO

Figure 5: Resource utilization in the genome-scale test. The OIOO and PartIO communication
patterns were compared with respect to processor (CPU) and memory (MEM) utilization during
message processing by the Web service stack, and by the workflow orchestrator. The boxplots
present distribution of measured values during workflow executions: the smallest and the largest
value (lower and upper whisker, respectively), lower and upper quartile (bottom and top of the
box, respectively), and median (bar in the box). Outliers are presented as circles. Measurements
were taken every second.

PartIO services conform to standards and can be orchestrated by standard SOAP Web Service
orchestration tools.

We implemented the gene annotation pipeline (Fig. 3) in BPEL! - a de-facto standard Web
Service orchestration language. The workflow was deployed on a regular desktop in an out-of-
the-box workflow engine, and was used to annotate 17k contig sequences from a transcriptome
assembly of honey bee (Apis mellifera). The entire execution required 14 hours and 15 minutes
to finish.

Onttp://docs.oasis—open.org/wsbpel/2.0/0S/wsbpel-v2.0-0S.html
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4 Discussion

Our tests compared the data-partitioning communication pattern with typical patterns of inter-
action with SOAP Web Services in a bioinformatic workflow. The AIAO strategy is common
in bioinformatic services, which are often used to batch-process arrays of objects (e.g. services
predicting post-translational modifications of proteins deployed at CBS, Technical University
of Denmark). AIAO services are simple in design and use, and in most cases are perfectly
sufficient. However, as proven by the genome-scale test, they do not scale to facilitate use in
high-throughput analysis pipelines.

The OIOO communication pattern is probably the most prevalent among bioinformatics ser-
vices (e.g. sequence similarity search services deployed at EBI in Hinxton). OIOO does
not intrinsically support large-scale computations, but by using concurrent invocations, the
throughput of an OIOO service can be largely improved. The Taverna workflow management
system exploits this potential in intra-processor data parallelism for implicit iterations [22].
Nevertheless, the extent of throughput gain achieved by parallelization of service invocations
is limited by the number of concurrent requests a service is able to handle. Too large frequency
of invocations may result in a service spending more time serving the communication than pro-
cessing the data, and in extreme cases may even overload the service (e.g. Taverna controls
the number of concurrent invocations to a service with a parameter). For Web services with
access to a computational resources with a large capacity, the OIOO interface is a throughput
bottle-neck. This is clearly illustrated by the comparison of OIOO and PartlO workflows in
the genome-scale test where very high CPU usage of the BLAST service invoked in OI0O
pattern indicates heavy load caused by frequent communication. The heavy load hindered full
utilization of computational resource which resulted in significantly lower throughput and over
7 times longer run-time.

The data-partitioning communication pattern lifts the limitation on the throughput of SOAP
Web Services. Flexible balancing of the number of requests and sizes of data partitions enables
a Web service to spare resources (memory, CPU, data-transfer time) and increase throughput.
The stream-like interface of PartlO services, allows to overlap communication and computa-
tion (pipelining effect), and hence reduces the run-time. It is observed in the genome-scale
test where the execution time of the analysis using PartlO Web Services was shorter then the
execution time of the same analysis performed step-by-step directly on the cluster.

Other approaches that aim at improving efficiency of Web services focus on the transport layer,
either optimizing the data-transfer (MTOM, Data-Grey-Box Web services), or reducing it to
the necessary minimum (’pass-by-reference’, i.e. SGS, data-handles). The data-partitioning
communication pattern does not reduce the volume of data that is exchanged, but allows to
balance the load, making handling of huge data feasible. The performance improvement is a
direct result of the pipelining effect, not present in any of the proposed approaches. Additional
contrast with the Data-Grey-Box Web services is that the data-partitioning pattern does not
require any change to the SOAP Web Service standards, and can make use of any of existing
Web service tools.

PartlO-enabled optimizations apply to workflow orchestrators as well, and allow use of standard
Web Service orchestration tools. As a proof of concept we annotated a deep-sequencing (RNA-
seq) dataset executing our pipeline in an out-of-the-box BPEL workflow engine. BPEL was
designed for business applications, and has no special support for scientific needs, in particular
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large data-traffic [23]. The execution time elapsed by the BPEL workflow was longer than the
PartIO Java workflow used in the genome-scale test test, but the BPEL engine performs many
additional operations (e.g. stores all messages and communication history in a database) which
were not part of the Java workflows in the genome-scale test. Taking that and the larger input
dataset into consideration, the difference in run-time when compared to the OIOO workflow
is substantial. The BPEL workflow example indicates that the standard Web technologies are
powerful enough to fully facilitate in-silico experimentation on a large scale.

The data-partitioning communication pattern is independent of the back-end computational re-
sources, but aims at maximizing throughput of complex computational pipelines, and therefore
it is natural to discuss (and test) it in the context of high-performance computing (HPC) in-
frastructures. In HPC, task fragmentation (or aggregation) is a common optimization strategy.
PartIO services with access to HPC resources, can make use of the data-partitioning performed
on a Web service communication level, bring it down to the computing level, and further opti-
mize load on the Grid (similarly to data chunking in [24]). In this respect, the data-partitioning
has an added value in Grid settings.

In the benchmark we focused on the influence of the partitioned communication on the Web
service stack, and its impact on the entire workflow run-time. With respect to resource con-
sumption, the data-partitioning communication pattern was ranked between the two opposite
extremes of communication frequency and message size, i.e. AIAO and OIOOQO. The total work-
flow run-time was however shortest for the PartIO workflow, which shows that correct balance
of the communication granularity together with the pipelining effect optimized the workflow
performance. Moreover, we believe that the merits of the partitioned communication were re-
duced by a fast network and the choice of the test workflow, i.e. the overall communication
time in the pipeline constituted less than 0.4% of the average workflow run-time in case of the
PartlO workflow, and 0.75% for the OIOO. We expect even larger differences in performance in
circumstances where data transportation accounts for a more significant share of the workflow
run-time.

5 Conclusion

We have presented a partitioned input and output pattern for communication between workflow
orchestrator and SOAP Web Services. We have shown that the data-partitioning lowers the re-
source demand of standard SOAP Web Services. In consequence, performance and throughput
of the services and workflows is largely improved, and makes the standard SOAP Web Services
capable of executing genome-scale in silico experiments without a significant overhead.

The standard Web technologies were proposed to connect the distributed resources in bioin-
formatics due to their ability to communicate across boundaries (of platforms, languages and
networks). In addition, they have a potential to make in silico analysis faster, more robust,
accessible and reproducible. We have shown that, if used sensibly, the standard SOAP Web
Services can address the needs of genome-scale research. The PartlO communication pattern
together with the software framework that we have developed, will hopefully ease implementa-
tion of high-capacity services, and in effect trigger wider adoption of the SOAP Web Services
in bioinformatics.

In the light of new developments of the W3C standard for binary XML exchange, EXI, we
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plan to include streaming of binary XML documents into the PartlO framework. Integration
with other approaches to improve performance of standard SOAP Web Services and workflow
systems will also be considered.
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A Methods

A.1 Implementation

The PartlO framework was implemented using Java 1.6. The core of PartlO uses a relational
database for storing information about jobs, input and output data (see Fig. 2). The database
records are accessed and manipulated using Apache OpenJPA 1.2.1 persistence library. The
PostgreSQL 8.3 database was used in the tests. The framework delegates job submission
to GridSAM!'! 2.3.0, which is an application providing a job submission interface to many
commonly used distributed resource management systems. The communication uses Grid-
SAM’s Web service interface, and JSDL!? for job description. GridSAM was configured to use
TORQUE (formerly PBS) for job scheduling on a cluster.

In Web service and workflow development for the benchmark we used Java 1.6, Apache Axis2
1.4 as a SOAP stack, and XMLBeans 2.3 for binding XML to Java code. In the genome-scale
test, Apache Axis2 1.5.4 and XMLBeans 2.4 were used. In the BPEL test the workflow was
implemented in BPEL language and deployed in Apache ODE 1.3.5 workflow engine. All tests
services and workflows (except BPEL workflow) were developed in Java 1.6, and services were
deployed in the Apache Tomcat 6.0.32 container.

"nttp://www.omii.ac.uk/wiki/GridSAM
Phttp://forge.gridforum.org/projects/jsdl-wg
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A.2 Hardware setup

The test workflows were run on a computer with 4GB of memory and a Dual-Core 2.8GHz
processor. The BLAST Web service using PartlO framework (Fig. 2) was deployed on a virtual
machine with 3GB of memory and a Dual-Core 2.6 GHz processor. The actual computation by
the BLAST tool was run on a cluster: in the benchmark a dedicated queue consisting of 12
cores was used (3 identical nodes with 2 dual core processors and 4GB of memory each), in
the genome-scale and BPEL tests a common queue with 164 heterogeneous nodes and 846
processors was used. All computers shared a 100Mbit network.

A.3 Gene annotation pipeline

The pipeline is inspired by the automatic EST annotation pipeline described in [25]. In search
for function of an unknown gene (or protein), its sequence is aligned with databases of gene/pro-
tein sequences with known function. If orthologous gene (protein) is found, it is likely that its
function is similar to the function of the unknown gene (protein). In the pipeline we imple-
mented (Fig. 3), genes were annotated by searching in three protein databases: UniProtKB/Swiss-
Prot [20], UniProtKB/TrEMBL [20], and NCBI NR [21]. NCBI BLAST program was used
to perform the serach/alignment. The order of databases in the pipeline corresponds to the
quality of information they contain, and their size. First, unknown genes were aligned with
Swiss-Prot (Feb 2011 release) which was the smallest (280 MB) and contained 525,207 man-
ually curated records. If no significant matches were found (e-value cutoff at le-15), the gene
sequence was searched against TTEMBL (Feb 2011 release) that contains automatically anno-
tated data (6.5GB, 13,499,622 records). In case of no hits, the last search was performed in
NR (April 2011 release), which contained 13,841,106 sequences (9.8GB) with low quality an-
notations. For the hits found in SwissProt and TrTEMBL, Gene Ontology terms were retrieved
using QuickGO '3, and they were used to annotate input gene sequences. For those genes that
matched NR records, description of the sequence record was used as a putative annotation.

A.4 Input datasets

The input dataset for the genome-scale test consisted of 13767 unique EST-contig sequences
from the cGRASP 16k microarray [26]. For the benchmark we used a subset of the cGRASP
dataset, containing 500 contig sequences. In the BPEL test we annotated RNA-seq reads
mapped to 17182 contigs of the transcriptome assembly being part of the NCBI Apis mellif-
era genome build 4.1.

A.5 Test services and workflows

The test workflows implemented the gene annotation pipeline shown in Fig. 3. The BLAST
service was invoked and provided with data in different patterns:

Bhttp://www.ebi.ac.uk/QuickGO/WebServices.html

doi:10.2390/biecoll-jib-2011-163 18



Journal of Integrative Bioinformatics, 8(2):163, 2011 http://journal.imbio.de

* AIAO (All-In-All-Out) - the entire input of the service is sent in one SOAP message,
and the entire output data is received in one SOAP message. All the input and output is
corellated with one execution (job).

* OIOO (One-In-One-Out) - input is sent in iterations, sequence by sequence. One input
sequence is sent in one SOAP message and corellated with one execution (job). The
output is received in iterations, BLAST result after BLAST result. One BLAST result is
sent in one SOAP message. Sending input and receiveing output is concurrent.

* PartlO (Partitioned Input and Output) - input and output are sent in partitions (or batches).
Every partition is sent in one SOAP message. All the partitions of the input dataset are
corellated with the same service execution (job).

The test workflows are named after the communication pattern they use, i.e. AIAO workflow,
OIOO workflow and PartIO workflow.

The test workflows used the same instance of a PartlO BLAST service. We measured the
overhead of the PartlO framework to be smaller than 1% of overall workflow run-time (bench-
mark), and decided to not implement separate services for the AIAO and OIOO strategies. In
this way the difference between the workflows were limited to the communication pattern, and
implementation-dependent factors were excluded.

A.5.1 Benchmark

The aim of the benchmark was to analyze the performance of the workflows and services,
coming solely from the differences in the communication patterns. Each benchmark test was
repeated 3 times to assess variability of results. The AIAO and OIOO workflows invoked the
services as in the description above. The PartlO workflow sent input sequences to all BLAST
services in portions. The services were supplied with between 3 and 20 input sequences in one
call. Similarly between 3 and 20 BLAST result documents were retrieved from the services in
every message. The first BLAST search in the workflow (Swiss-Prot) was supplied with larger
input messages (5 messages, 100 sequences each), since all the input was available at the start.

In order to complete the test we had to introduce an additional frequency constraint on the
OIOO workflow: to avoid overflow of communication requests to a service, the number of
active job requests and the frequency of polling for status had to be balanced against the com-
munication handling capacity of the service. The limitation did not affect the throughput of the
computation.

A.5.2 Genome-scale test

In the genome-scale test the OIOO and the PartlO workflows were compared on a genome-
sized input. The aim of the test was to measure throughput, identify limitations and compare
the workflows in a real-life scenario. The PartlO workflow used the following partition sizes: 20
input sequences and 20 output BLAST result documents for searches in TTEMBL and NR, and
200 input and 50 output portions for Swiss-Prot. The OIOO workflow used the same settings
as during the benchmark, except that the limitation on concurrent active jobs was raised to 400.
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The AIAO workflow was excluded from this test due to its limitation on the data size: BLAST
results for 14k input sequences constituted 1.6GB of textual XML data, which when parsed
would require considerably more memory than the available 3GB.

A.5.3 BPEL test

The BPEL test aimed to prove that the PartlO services conform to SOAP Web Services stan-
dards, and that by using PartlO strategy, standard Web technologies can be used to perform
a genome-wide analysis. In this test the annotation pipeline (Fig. 3) was implemented us-
ing the BPEL workflow orchestration language. The input sequences to align with Swiss-Prot
were sent in one request, but results were retrieved in portions of size 50. Subsequent searches
(i.e. in TTEMBL and NR) got input and returned output in partitions of size 10 to 20. The
computational hardware was identical as in the genome-scale test.
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