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Summary and Conclusions

This Master’s thesis covers almost all aspects of Condition Based Maintenance (CBM). All ob-

jectives in Chapter 1 are met. The thesis is mainly comprised of three parts. First part intro-

duces the world of CBM to readers. This part presents data acquisition, data processing and

databases, which are the foundation to CBM. Then it highlights models which are divided into

physics based models, data-driven models and hybrid models, for diagnostic and prognostic

use. Three promising diagnostic and prognostic models are specified, i.e., Markov model, Ar-

tificial neural networks and the time-dependent proportional hazard model. Afterwards, CBM

main steps are presented in Figure 2.2. This figure is made based on a large quantity of literature

review and can function as an index when readers are querying CBM data, diagnostic and prog-

nostic models and steps. It can also give readers a whole picture of CBM. Next, introductions

of Prognostic and Health Management (PHM), CBM industry applications and CBM state of the

art are followed. Specific challenges, phenomena and questions are summarized.

Second part presents a Matlab toolbox made by the writer. This toolbox estimates components’

Remaining Useful Life (RUL) with a standard deviation, the probability to survive till the next

maintenance time and Probability of Failure on Demand (PFD) based on numerous simula-

tions. The stochastic processes behind are the (continuous time) Markov model, the Brownian

motion process and the Gamma process. Users can choose among them in the toolbox. Spe-

cially, MTTF and the steady-state-probability can be achieved by using the Markov model. This

toolbox is used often in the next part when data is analyzed. The writer makes the graphic inter-

face of this toolbox easy for people to use. All instructions are given. All code is also attached,

from the whole toolbox code to a tiny simulation step with detailed explanations. This toolbox

makes it possible for the people with little knowledge in statistics and maintenance to make

their own maintenance plans. This toolbox can be download on-line.

The third part of this Master’s thesis uses 7 statistic models and 3 stochastic processes to model

the degradation process of the elastomeric annular body from the annular preventer of a BOP

system. To make these models, many relevant papers and books are studied. In this Master’s
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thesis, these models are not just "theories" or "formulas". Instead, for each model, the writer

gives a vivid example by analyzing the data with all Matlab code and detailed explanations fol-

lowing. The writer believe by doing this readers can have a deeper understanding of each model.

They may use one of these models for their own data in the future. To make it easier for read-

ers to follow, the difficulty of these models is increasing one after one. The complex model can

give a more precise estimation of the lifetime with more influence factors being taken into con-

sideration. As to the structure of the third part, firstly, much literature about BOP is read. A

brief description about BOP systems is followed. Virtual failure data is simulated based on a

trustful BOP reliability report. The exponential model is firstly used to give a preliminary under-

standing of the data. Afterwards, the Weibull model, the log-logistic model and the log-normal

model are used. All these models use Maximum likelihood Estimation (MLE). Minitab is the

analysing software used here. Then, the Brownian motion process is introduced to model the

degradation process. Next, the covariates are introduced (e.g., the temperature). The Weibull

regression model is elaborated followed by Proportional hazard model (Cox regression model)

and Arrhenius model. These three are very promising models used in CBM. Brownian motion is

used again to model the degradation. However, this time, the covariates are taken into account.

It leads to the change of the path of the Brownian motion process each time when covariates

are changing. It is more complex but more realistic. This is the final step to model the degra-

dation in a component level. To model the degradation in a system level, two extra models are

included. That is the Markov model and the Brownian motion process for a koon system with

covariates. They are shown in the same chapter. Finally, relevant maintenance plans are made

based on the result of "RUL" and "the probability to survive till the next maintenance interval.
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Chapter 1

Introduction

1.1 Background

Condition Based Maintenance (CBM) is a maintenance program that recommends maintenance

decisions based on the information collected through condition monitoring (Jardine et al., 2006).

By implementing CBM, the under-maintenance situation and over-maintenance situation can

be reduced, resulting in the reduction in downtime, spare parts inventory, maintenance cost

and risk hazards.

A report from International Atomic Energy Agency tells a successful CBM application for the

nuclear plants. The use of CBM enables intrusive maintenance operations to be replaced by

diagnostic. By such way, the stipulated inspection interval could be prolonged and total uptime

could be ensured. For example, for electric servo-motors, the original interval for complete

maintenance is 10 years. By performing diagnostic of leak tightness enables this interval to be

raised to 15 years, the availability deviations are highlighted (of about 5 to 7%) and downtime

due to incorrect operation is reduced by one third. Finally, given the number of valves (6000) in

the EDF fleet, the savings were about 300000 euros /year (I.A.E.A, 2007).

More and more similar stories can be found, telling CBM is a correct tool to both enhance the re-

liability and reduce the maintenance cost. Recently, CBM attracts many interests, both in indus-

tries and researches. Figure 2.2 shows the main steps in CBM. literature shows that many types

2
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of data and models could be used in CBM. From the literature survey, one clear phenomenon

is that the theoretical models of CBM are well developed. Numerous advanced mathematical

models are proposed so far. Usually these models are validated by laboratory experiments only

and the results indicate corresponding methods are satisfying. With the help of modern com-

puters, these sophisticated mathematical models can be easily applied.

A key indicator for equipment health condition in CBM is called Remaining Useful Life (RUL).

RUL is the useful life left on an asset at a particular time of operation. Its estimation is central

to condition based maintenance and prognostic and health management (Si et al., 2011). RUL

is usually assessed through various sources (i.e., performance data and condition monitoring

data). Various methods on assessing RUL have been shown on many publications.

Despite the huge achievements found from literature within the CBM concept, there are many

remaining problems. Some problems are listed below:

1. Are there any universal rule to choose type of data and models used in the rotating ma-

chinery and the non-rotating machinery?

2. It is believed that theory/models of CBM have reached their bottlenecks and application

of CBM in industry has just started. There is a huge gap between theory and application.

How can future work narrow the gap? That is, the industry should give more data to the

academic world. In return, the academic world should support the industry by supplying

more promising models.

3. How to combine both performance data (e.g., the speed) and condition monitoring data

(e.g., the vibration) to make maintenance decisions?

4. Methods for fault diagnostic are numerous. As to prognostic, due to its huge uncertainty,

there is high risk in making the maintenance decisions based on the assessment of RUL.

Usually validations for RUL are undertaken in laboratory only. How can further work im-

prove the accuracy of RUL assessment?

5. What are the most promising models for prognostic shown in the literature?
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1.1.1 Literature Survey

Literature survey for this Master’s thesis is comprised of three parts. First part is to find the state

of the art of CBM, emphasising on models and applications. Large quantity of literature sur-

vey has been performed on CBM and relevant topics. Some representative review papers and

suggested papers for readers with interests in CBM are also shown. Techniques within the Prog-

nostic and Health Management (PHM) field are also reviewed. Second part is to view literature

concerning Blowout Preventer (BOP). It covers BOP test methods, BOP components descrip-

tions and BOP monitoring. In addition, literature involving elastomer condition monitoring is

surveyed since these elastomers are critical to annular preventers in a BOP system. The third

part is to study some books and papers regarding to stochastic processes.

There are many publications on models used in CBM. For this report, the publications from

acknowledged scientific journals are selected. These publications are ranked according to cited

numbers, reputation of author/university, published date and relevance. Only the publications

with high rank are reviewed and cited in this article. Many representative models are discussed

in this master’s thesis.

This paragraph lists some inspiring review papers regarding to CBM. Jardine et al. (2006) is a

great review paper for CBM. It visualizes a very clear structure about CBM including many data

types and models. However, most papers cited are around year 2000. Considering researches in

the CBM area developing rapidly, and many heuristic papers being published in the last decade,

especially for prognostic models, more recently published review papers are also summarised.

Heng et al. (2009) synthesises and places methods for rotating machinery prognostics from pub-

lications in the past few years. For each method, merits and weaknesses are listed. Si et al. (2011)

reviews the recent modeling developments for estimating the RUL. The review is centred on

statistical data driven approaches which rely only on available past observed data and statistic

models. Lee et al. (2014) provides a comprehensive review of the PHM field (see Section 2.4),

followed by an introduction of a systematic PHM design methodology, and methods of convert-

ing data to prognostics information.
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Suggestion papers for readers with interests in CBM are (Jardine et al., 2006) and (Heng et al.,

2009). Suggestion articles for readers with interests in BOP systems are (Kenny, 2004) and (Holand,

1999). A suggested book for stochastic processes is (Ross, 2014). Research centers focusing on

CBM can be found in Appendix B.6. Key words to search for CBM papers can be found in Ap-

pendix B.7.

1.2 Objectives

The main objectives of this Master’s thesis are

1. Introduce CBM to readers. All aspects of CBM, including data/models/the state of the art

and industry applications, should be covered.

2. Make a toolbox to help make maintenance plans. It should cover some models with de-

tailed explanations.

3. Use some models to analyze the data in a component level and in a system level with and

without the covariates.

1.3 Limitations

This Master’s thesis doesn’t make any repetitions on formulas and methods which are already

elaborated in RAMS courses. The approaches discussed in this Master’s thesis for CBM are not

covered in RAMS main courses. The writer believe it is a more meaningful job to explore "new

field" than repeating the methods which are well taught during the lectures.

Only simulated data and data from Minitab database is used in Chapter 4 to demonstrate the

models. In the future, more data from the industry should be used.
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1.4 Approach

The first objective is achieved by performing a large quantity of literature review. It consumes

a lot of time. The second objective is achieved by both literature survey and Matlab on-line

courses learning. Stochastic processes knowledge is gained through a course from NTNU and

the supervision provided by Professor Anne Barros. The third objective is achieved by learning

the lifetime data analysis and the supervision from Anne.

1.5 Structure of the report

The rest of the report is organized as follows. Chapter 2 elaborates CBM data, CBM models,

the state of the art of CBM and CBM industry applications. Chapter 3 presents a self-made

toolbox to help make maintenance plans. Chapter 4 first describes BOP systems. Then the data

is analyzed by different models with the Matlab code and explanations. Chapter 5 summarizes

the thesis and gives recommendations for the further work.

1.6 A summary of previous work

The previous master’s project discusses spare parts optimization by using stochastic processes.

Vivid examples are given to demonstrate these approaches. Two cost equations are given as

well. In addition, gearbox data sets from "Aker Solutions" are analyzed. These data sets are suc-

cessfully analyzed to assess gearbox health conditions. The model behind is explained. Many

efforts are made to analyze these data sets and to write Matlab code. All necessary explanations

for Matlab code are also supplied. The result shows that for the first 20-30 minutes, the friction

coefficient will increase dramatically. After that, it begins to drop and remains steady for the rest

of the operation time. In other words, the most vulnerable time for the gearbox to fail is the first

20-30 minutes when it starts to work.



Chapter 2

The world of condition based maintenance:

CBM data, models, steps and the state of the

art

This Chapter gives an overview of CBM to readers. It covers almost all aspects of CBM.

Z Condition Based Maintenance (CBM): It is a maintenance program that recommends main-

tenance decisions based on the information collected through condition monitoring (Jardine

et al., 2006). By implementing CBM, the under-maintenance situation and over-maintenance

situation can be reduced, resulting in the reduction in downtime, spare parts inventory, main-

tenance cost and risk hazards.

Z Diagnostic: Diagnostic is the process of identifying health states, detecting and isolating

each failure mode.

Z Prognostic: prognostic is the process of estimating the Remaining Useful Life (RUL), in some

cases, being able to continuously make trustful predictions.

7
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2.1 CBM data

This section firstly discusses data acquisition and data processing for CBM. Use of historical

data is discussed, and OREDA database is mentioned. Most methods for analyzing data in CBM

are covered in this section.

2.1.1 Data acquisition and processing

Data acquisition is the first step to implement CBM for the machine fault diagnostic and prog-

nostic. Useful data contains event data (e.g., breakdown, oil change, preventive maintenance),

which is stored usually manually, and condition monitoring data (e.g., vibration, temperature,

pressure and oil analysis data), which is stored either manually or automatically. Afterwards

useful information from the raw data needs to be extracted. This procedure is called “feature

extraction”. For example, from the vibration raw data, time-domain analysis can extract “Root

Mean Square (RMS)” and “wavelet transform” can extract “wavelet coefficient” . These extracted

features are further used for diagnostic and prognostic. For example, RMS, kurtosis and wavelet

coefficient can be used as the inputs in Artificial Neural Network (ANN) or Hidden Semi Markov

Model (HSMM) for diagnostic and prognostic.

The algorithms and tools for data processing are dependent on the type of data acquired. For ex-

ample, oil analysis data and temperature belong to value type data. Vibration data and acoustic

data belong to waveform type data. For waveform type data, time-domain analysis, frequency-

domain analysis and time-frequency analysis are mostly used methods to extract the features.

A time-domain graph shows how a signal changes with time. Popular approaches are time syn-

chronous averaging and time series analysis. In the time-domain analysis, extracted features

are usually estimated mean, estimated variance, estimated skewness, estimated kurtosis, root

mean square, etc. A frequency-domain graph shows how much of the signal lies within each

given frequency band over a range of frequencies. Most widely used analysis is spectrum anal-

ysis by means of fast Fourier transform. Here, a spectrum is a collection of sine waves that,

when combined properly, produce the time-domain signal under examination. However, ma-
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chinery fault occurs commonly with non-stationary waveform. Thus time-frequency analysis

has been introduced to handle with this problem. Short-time Fourier transform or spectrogram

and Wigner-Ville distribution are mostly used. The results suggest that acoustic signals like vi-

bration signals are very effective for the early detection of faults. Infrequently vibration signals

are easily affected by mechanical resonance. The acoustic emissions signals show more stable

performance. Wavelet transform is another approach to deal with time-frequency analysis.

Value type data are simpler than waveform data. When the number of variables is large, the

correlation structure makes analysis complex. Principal component analysis (PCA) and inde-

pendent component analysis (ICA) are two useful multivariate analysis techniques. Regression

analysis is also used for analyzing value type data.

2.1.2 OREDA, data used in SCADA, NASA database

The foundation of CBM is data. The quality of data will eventually influence the accuracy of

machine health diagnostic and prognostic. Take measuring vibration data for example. There

is a term called “resolution” which is determined by the number of data points measured from

accelerometer. It also means that the more data points are captured, the more detailed wavefor-

m/spectrum are. A low resolution waveform data set may lead to wrong diagnostic. Following

subsections present some databases.

The OREDA handbook collects generic data, containing failure rate, failure number for specific

failure mode, and is a limited extract from the OREDA database. See (www.oreda.com). The

OREDA database also contains failure time, downtime and more detailed information. Fun-

damental maintenance optimization can be made by this trend with the target minimizing the

cost per time unit. The prediction made based on that cannot be accurate. OREDA gives his-

torical data (failure data), which is less enough for diagnostic and prognostic. For accurate di-

agnostic/prognostic, real time data is most preferred (i.e., OREDA database could also collect

condition monitoring data, in order to help validate diagnostic and prognostic models. How-

ever this may be impossible to obtain in general through OREDA project, but it could be gath-

www.oreda.com
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ered from specific companies or through relevant project such as the PROASENSE project. See

(www.proasense.eu).

In some wind turbines, SCADA system (supervisory control and data acquisition) acquires and

stores real-time process data (at 5-min to 10-min interval). It enables maintenance personnel to

consistently have access to timely and accurate indications. For each wind turbine, 60 param-

eters have been grouped into 4 categories: wind parameters, energy conversion parameters,

vibration parameters and temperature parameters and recorded. E.g., turbine status informa-

tion or signals such as temperatures, currents and pressures can be used to give a sign of the

turbine condition. Some papers showed that changes in signal behavior can be detected weeks

in advance.

Another example is NASA Prognostics Data Repository which focuses exclusively on prognostic

data sets. This data set can be used for the development of prognostic algorithms. Most of them

are time series data from some normal state to a failure state. See (www.ti.arc.nasa.gov).

2.2 Models for diagnostic and prognostic

This section tries to summarize recent researches and applications with regard to diagnostic

and prognostic models in CBM. It discusses physics-based model, some data-driven models

and hybrid models. The common questions for choosing models are:

• What is the underline failure mode/reasons corresponding to the condition characteris-

tics observed?

• How to perform prognostic?

2.2.1 Physics based model

Physics based models are mathematical models to describe the physical phenomena of the sys-

tem for a certain failure mechanism (e.g., degradation). If built in a correct way, they can greatly

improve the accuracy of prognostics (e.g., remaining useful life). However, it is difficult to build

www.proasense.eu
www.ti.arc.nasa.gov
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authentic physics based models for complex systems. Physics-based model is powerful both in

diagnostic and prognostic. In physics-based model approaches, the component and its degra-

dation are represented by a set of mathematical laws. Each physics-based model is unique for

its corresponding system. To build physics-based models, sometimes, interruption of operation

is needed. For complex system, it is difficult to build physics-based models. Thus, for most in-

dustry applications, physics-based models are not commonly used. However, if these models

are built in a correct way, it can provide accurate estimation. Moreover, with the improving un-

derstanding of degradation of system (e.g., crack propagation and spall growth), the accuracy

of physics-based models can be improved. Another merit of physics-based models is that they

require less data comparing to data-driven models.

2.2.2 Data-driven models

Data-driven models are more commonly used in CBM. They do not need physical knowledge.

they utilizes collected monitoring data to estimate the health state of equipment.

Statistical process control, cluster analysis, expert system and fuzzy logic

Statistical process control and cluster analysis are for diagnostic use. statistical process control

is to measure deviation of the current signal from normal condition. If the deviation exceeds

the control limits, machine is considered in an abnormal state. Cluster analysis is a statistical

classification approach. It groups signals in such a way that signals within same cluster have

similar characteristics or features. Signals in different clusters have large differences. Simple

cluster analysis can be realized in SPSS, Minitab and Excel. Expert system is a computer system

using expert knowledge extracted by human to solve problem. In the area of diagnostic, expert

system contains rule-based reasoning, case-based reasoning, model-based reasoning and neg-

ative reasoning. In modern application expert system is usually combined with artificial neural

network for machine diagnostic to enhance accuracy. Yang et al. (2004) presents an approach

combining expert system with an neural network for fault diagnostic. Fuzzy logic theory is de-

veloped to measure uncertainty. It is also applied for machine diagnostic. Expert system and

fuzzy logic usually integrated with each other or artificial neural network to achieve more accu-

rate diagnostic.
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Following paragraphs elaborate Markov model, Artificial Neural Network (ANN) and Propor-

tional Hazard Model (PHM). Unlike aforementioned models, these models can be built for prog-

nostic.

ANN-based methodology and Bayesian Network

Artificial Neural Network (ANN) based methodology have been considered to be a very promis-

ing way to assess equipment health condition. The ANN mimics animal’s central nervous sys-

tem. It consists input layer, hidden layer, output layer, and one or several nodes within each

layer. The training process is that the ANN learns unknown functions altering its weights to fit

the observed input and output. One famous training algorithm is called back propagation. The

multi-layer feed forward networks trained using back propagation algorithm is the most widely

used method in machinery fault diagnostic. Other neural networks models are "cascade cor-

relation neural network", "recurrent neural network", "counter propagation neural network"

and "racial basis function neural network". These neural networks are trained usually by ex-

perimental data and simulated data with seeded failure mode. it is called supervised learning.

While unsupervised neural networks learn by itself with new coming information. For exam-

ple, self-organizing map and back propagation neural network, these types of neural network is

popularly used for prognostic. Huang et al. (2007) is a good example in which vibration data is

used.

For diagnostic, Li et al. (2000) discusses several rolling bearing vibration features in both time

and frequency domain, and these features are used for bearing fault diagnostics. Temperature

sensors, vertical/horizontal mounted vibration sensors and motor current sensors are com-

bined to diagnose faults in bearing. Simulated data is used to train ANN and the actual data

is used to validate the model with result showing around 90% accuracy. The simulation tool

used is called MotorSim which is a MATLAB-SIMULINK based program. Rafiee et al. (2007)

uses a multi-layer perception neural network (feed forward neutron network) to diagnose gears

and bearings faults of a typical gearbox system. All vibration signals are collected using the

accelerometer which is mounted on the outer surface of the bearing. Standard deviation of
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wavelet packet coefficient is the feature extracted to train the ANN. The results show that a

multi-layer perception network has close to 100% perfect accuracy to identify gear failures and

bearing defects. However, gear failures and bearing defects are not specified in his paper. Samanta

and Al-Balushi (2003) presents a procedure for a rolling element bearing fault diagnostic through

ANN. Time-domain vibration signals of the rotating machinery with normal and defective bear-

ings have been used as inputs.

For prognostic, Tian et al. (2010) uses failure and suspension data, including age, vibration data,

to predict RUL. Output is the percentage of life. The proposed approach is validated by real-

world vibration monitoring data collected from pump bearings. Normally, recurrent neural net-

work is applied when dealing with time series prediction. Wang et al. (2004) uses an extended

recurrent neural network to predict the health condition of gearbox based on the vibration data.

The result shows that the average normalized prediction error is less than 5%, which is more

than satisfactory. Mahamad et al. (2010) proposes a feed forward neural network with Leven-

berg Marquardt of training algorithm to achieve RUL of bearing failures. Root mean square and

kurtosis from present and previous points are inputs, and normalized life percentage is the out-

put.

This paragraph briefly introduces Bayesian networks (BNs). BNs is the key computer technology

in artificial intelligence to deal with probability. It uses nodes to describe the variable and arcs to

connect those variables. Bayesian networks combine prior knowledge and updated information

to provide full representations of probability distributions over their variables (e.g., the newly

updated wavelet transform combines prior knowledge to show the change of belief on health

condition of the rotating machinery). The following four types of software are used when dealing

with BNs: BayesiaLab, GeNIe, Hugin and Netica. Within BNs, the most commonly used tool to

model the machine health state is Dynamic Bayesian network (DBN). It is a dynamic graphical

model to predict future process based on the observed data and underlying correlation as time

passes. Medjaher et al. (2012) proposes a Mixture of Gaussians Hidden Markov Models (MoG-

HMMs), represented by Dynamic Bayesian Networks (DBNs) to model the bearing degradation

and predict RUL.
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Remark: ANN and BNs are powerful tools for diagnostic and prognostic used in CBM. Normally

methods used in waveform data analysis are: wavelet transform, bispectrum analysis, etc. Fea-

ture extracted are: wavelet packet coefficient, standard deviation of wavelet packet coefficient,

bispectral patterns, vibration root mean square, kurtosis, etc.

Hidden Markov model

Hidden Markov Model (HMM) is the simplest kind of dynamic (also called “temporal”) Bayesian

network, which is particularly useful to estimate the machine health condition for both diag-

nostic and prognostic (Bunks et al., 2000). HMM is built based on data and extract the specific

feature in data to predict the health condition of machine.

Figure 2.1: Transition diagram of a Hidden Markov Model

The Figure 2.1 is an example of Hidden Markov Model (HMM). O is called the sequence of emis-

sion which can be observed (e.g., the vibration RMS). However, the sequence of states, which

is Si in Figure 2.1, is usually invisible. That is the reason to use word “hidden”. It means that

HMM states are hidden from direct observations. One reason to use HMM in CBM is that the

underlying mechanism (fault classes) can be treated as a hidden process (Si ) and can be in-
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ferred through system emission (Oi ). One goal of analysis of the hidden Markov mode is to seek

to recover the sequence of states (Si ) from the observed data (Oi ). ti j is the state transition

probability, which illustrates the law of transition between states. ei j is the emission probabil-

ity showing the probability of certain observation under each state. The HMM is trained first

and used to predict the sequence of states, Posterior State Probabilities, etc. Another reason to

choose HMM in CBM is that there have been many publications on how to estimate the param-

eters of a HMM, which provide the required theoretical foundation. Moreover, HMM functions

can be found in MATLAB statistic toolbox (e.g., “hmmviterbi” is to calculate the most probable

state path for a hidden Markov model). These functions can be directly applied in MATLAB,

which makes realization of HMM in practice easier.

Bunks et al. (2000) first points out that HMM could be applied in the area of prognostic in ma-

chining processes. The idea comes from speech processing and handwriting word recognition

which are made based on HMMs. A HMM based on helicopter gearbox data is proposed, in

which vibration data under different operation conditions (e.g., torque level) are used. The re-

sult shows that HMMs have a strong potential for constructing algorithms for CBM. Li et al.

(2005) uses HMM to classify feature vectors, which are obtained by the FFT, wavelet transform,

and bi-spectrum, to diagnose faults in rotating machinery. Zhang et al. (2005) presents an in-

tegrated fault diagnostic and prognostic approach for bearing in CBM. Firstly the principal sig-

nal features are extracted by Principal Component Analysis (PCA). Secondly, HMM are used to

simulate a component degradation process. Finally, on-line RUL prediction for a component

is realized. Experiments are conducted showing the effectiveness of this scheme. Baruah and

Chinnam (2005) presents a HMM using sensor signals to identify the health state of machine

and estimate RUL. A test on a vertical drilling machine validates the proposed methods. How-

ever, HMM has its inherent limitation: a failure threshold needs to be defined and duration of

states is exponentially distributed. Thus, a Hidden Semi Markov Model (HSMM) is introduced

to make up for HMM’s deficiencies. HSMM is a HMM with temporal structures. HSMM does not

follow the Markov chain assumption that the duration of states is exponentially distributed. So

it is a more powerful method to deal with real problems. Dong and He (2007) proposes a HSMM

which shares a same structure of HMM except the probabilities of being a changes in hidden
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states depend on the time. A statistical modeling methodology for performing both diagnostic

and prognostic is proposed. The target failure position is the bearing in the hydraulic pumps.

Oil containing dust is used to define the health states of pump. They are also hidden states. To-

tally four hidden states are defined. Vibration data is processed by using wavelet packet (i.e., to

extract features). Wavelet coefficients is obtained by the wavelet packet decomposition. These

inputs are actually “emission” or "observation" in HSMM. They can be used to train and test

the model. Two outcomes are: duration of each states and RUL of bearing. The result also

shows that HSMM-based diagnostic has a much better performance than HMM-based diag-

nostic. Peng and Dong (2011) presents an age-dependent HSMM to assess equipment health

states. That is to say the probability of making change to a less healthy states will increase with

age. Therefore, failure rate is dependent on both equipment age and equipment conditions. Fi-

nally, RUL is predicted by combining both hazard rate and health-state transition matrix. For

both HMM and HSMM, challenge is to relate actual physical degradation and states changing.

Time-dependent proportional hazard model

Time-dependent proportional hazard model is a popular model used in CBM. The failure rate

can be assessed by knowing machine condition variables and current time. Lin et al. (2004) ex-

tracts useful condition covariates from raw vibration signals and develop optimal maintenance

policies for the gearboxes by using proportional hazard model. Axial vibration data is captured

by accelerometer. Wavelet is used to decompose gear motion error signal and to extract the

residual error for gear fault detection. ARL algorithm is used for processing vibration signal.

A software called EXAKT is used to analyze the data and provides the tool to build the propor-

tional hazard model . Raw data acquired are: changes in load, input shaft rate, amplitude, phase,

wavelet and event data (e.g., installation, failure time). The targeted failure mode is gear tooth

failure, and the corresponding failure mode is shaft failure. After data processing, covariates

obtained from raw data are: gear motion error signal , residual error signal, fault growth param-

eter(FGP), revised fault growth parameter (FGP1), etc. These covariates can be derived from raw

data by using algorithms suggested. The Weibull proportional hazard model is used in this case.
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The time-dependent proportional hazard model has a failure rate form:

h(t ) = β

η
(

t

η
)
β−1

exp(γ1Z1(t )+ ...γp Z1(t )) (2.1)

where η is the scale parameter. β is the shape parameter. Z1(t ),. . . , Z1(t ) are covariates at

time t, representing the extracted features from condition monitoring data. γ1, . . . , γp are the

weights (coefficients). Time-dependent proportional hazard model depends on gearbox geom-

etry, i.e.,η, β, γ1, . . . , γp will change if the mechanical configuration of gearbox is changed. In his

paper, only one covariate is used. Maintenance decision is based on the average costs per unit

time. A threshold level, where the "minimal cost " can be obtained, is defined. If the hazard rate

is exceeding this limit, gearbox needs to be replaced immediately. Otherwise, no maintenance

activity is needed. Sun et al. (2006) proposes proportional covariate model to deal the situation

where failure data are sparse or zero. Hazard rate is estimated by using accelerated life tests

and condition monitoring data. Lin et al. (2006) firstly applies principal component analysis to

reduce the number of covariates (measurements), and then uses time-dependent proportional

hazards model for CBM optimization.

2.2.3 Hybrid models

Hybrid models combine two or more models together to get more accurate outcome. Loutas

et al. (2011) presents a model combined with vibration, acoustic emission and oil debris to

monitor the progressive wear in gears. Health gears are tested until they are seriously dam-

aged in the lab. On-line monitoring for vibration, acoustic emission and oil debris monitoring

(ODM) are performed. Features are extracted from the acquired waveforms and data fusion is

accomplished. i.e., to choose the most representative extracted features. Principal component

analysis (PCA) and independent component analysis (ICA) is applied. At the end, health moni-

toring scheme for gearboxes is proposed. The result showed that the combination of vibration,

acoustic emission and oil debris monitoring data gives a more reliable outcome for the machine

health indication.
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2.3 CBM main steps

CBM main steps are as follows. Raw data acquisition → data processing (extracting features and

diagnostic) → diagnostic (patten recognition) → prognostic→ maintenance optimization. Fig-

ure 2.2 shows CBM steps. The figure is made based on a large quantity of the literature survey

and should cover almost all types of models in the literature. Chapter 4 elaborates many promis-

ing diagnostic and prognostic models from Figure 2.2. In addition, for promising models, many

representative papers are cited in this Master’s thesis.
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Figure 2.2: CBM main steps



CHAPTER 2. THE WORLD OF CONDITION BASED MAINTENANCE 20

2.4 Prognostic and health management

To find more accurate prognostic models, a recently developed concept called Prognostic and

Health Management (PHM) is described here. CBM and PHM have many similarities. The type

of sensors and prognostic models used in PHM are also used in CBM. Moreover, more and more

research efforts have moved to PHM.

Very similar to CBM, PHM uses machine condition information to allow early detection of im-

pending or incipient faults, assess the health states of machine, and to predict remaining use-

ful life (Heng et al., 2009). Due to their similarity, the scarcity of CBM applications in industry

can be replenished by less scarce PHM applications. Recently, PHM has a rapid development.

It is generally accepted that the PHM can use machine failure mechanism, current machine

conditions to achieve a good result of faults diagnostic and prognostic. Moreover, CBM can be

regarded as a supporting implementation technology to PHM. Some similar areas of research,

sharing the same disciplines as PHM, are health management (SHM), integrated vehicle health

management (IVHM) or engine health management (EHM). Each of these areas of research has

their own specific focusing. However, the prognostic models built behind these areas of re-

search, which are the core concept, are the same to CBM models (i.e., physics-based models,

data-driven models and hybrid models). By knowing this can help us to find more literature

with respect to prognostic models.

2.5 CBM industry applications

The US Department of Defense’s Joint Strike Fighter program is leading the development of next

generation strike weapon systems for the US Navy, Air Force, and Marine Corps. Here, the vehi-

cle is being designed with a fully functional PHM system. Smart sensors are installed on airframe

structures, engines and electronics. PHM is also applied in modern automotive (Toyota: car as-

sembly line) and wind turbine.
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NASA will develop Integrated Vehicle Health Management (IVHM) systems for the Second Gen-

eration Reusable Launch Vehicle, crew, and cargo transfer vehicles. Advanced smart sensors,

diagnostic and prognostics software for sensors will be embedded in the vehicle and provide

both real-time and life-cycle vehicle health information. NASA also applies PHM for faulted

aerospace components. More details can be found at The Prognostic Center of Excellence (PCoE).

GE aviation developed an IVHM system. On board sensors collect aircraft health information.

This information are sent and analyzed by GE aviation maintenance office. Advanced prognos-

tic is made and correct maintenance task is performed. Finally this system increases aircraft up

time and reduces maintenance cost.

Honeywell has developed some condition-based maintenance portfolios for helicopters. These

portfolios include on-board or carry-on hardware, sensors, cabling, software and data manage-

ment service. These sensor-driven data and analysis gathered directly from the aircraft, provid-

ing information about the engine, gearbox, shafts, fans and rotor system. A report from Honey-

well shows that by applying this “Health and Usage Monitoring System”, army combat aviation

brigade CBM fleet saved 101million over 22 months, avoided 2957 maintenance man-hours for

1 year, and reduced 66% mission aborts due to vibration over 5 years.

Rolls-Royce applied an improved oil-debris monitoring to monitor the Rolls-Royce Trent XWB

engine, which is exclusively for the Airbus A350 XWB. This system is based on quantitative de-

bris monitoring, which is a proven, mature technology. It offers a significant progress in fault

diagnostic and prognostic.

2.6 Some condition monitoring systems

NOV has developed a condition monitoring system called eHawk whose support centers are

found in Houston, Kristiansand, and Stavanger. It is a real time on-line condition monitoring

system (i.e., 24/7/365 days a year). It utilizes different types of data including vibration data.
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EHawk system provides faster issue response time, reduced service personnel visits to the field

and enables maintenance center to remotely handle issues at a reduced cost.

GE has developed an acoustic leak detection system and a condition monitoring system called

"the subsea multi-domain condition monitoring system". These two condition monitoring use

acoustic emission data and electronic emission data and allow operators to monitor the in-

tegrity of their subsea installation. The acoustic leak detection system uses acoustic hydrophone

technology to detect and locate subsea oil and gas leaks. The system can detect both crude oil

and gas with coverage up to 500 meters.

FMC has developed a on-line Condition and Performance Monitoring system supported by an

historical database. This system enables early detection and diagnostic,and makes proactive

and condition-based maintenance possible (i.e., Recognizing and understanding equipment

condition based on performance). In 2012, FMC project team successfully implemented the

world’s first subsea CPM system at the Gjøa field.

Cameron announced a subsea BOP condition monitoring system in 2014. This system synthe-

size both real-time data and historical data to provide diagnostic.

National Instruments has also developed many condition monitoring systems which use vibra-

tion data, lube oil data, strain, acoustic data and temperature data.



Chapter 3

A self-made Matlab toolbox to model

degradation by simulating three types of

stochastic processes

This chapter elaborates simulations for degradation models by using the Markov model, Brown-

ian motion (the Wiener process) and the Gamma process. The theory, the Matlab code with de-

tailed explanations and the logic diagrams are presented. For a better illustration, a Matlab tool-

box is developed. Users can fill in the value for each parameter and get a RUL (Remaining Useful

Life) with a standard deviation, a probability to survive till the next maintenance interval and the

PFD (Probability of Failure on Demand). The results are calculated based on the current degra-

dation level (i.e., condition monitoring under each inspection), inherent mathematical laws

and the number of simulations. The code files for this Matlab toolbox can be download from

"https://www.dropbox.com/sh/lxwnvfj5inq44wc/AAAJqbJ0sCpz8d5NN-wDgzyJa?dl=0" and

are also attached in the Appendix B. The code for simulations of the Markov model, Brownian

motion and the Gamma process can be found in this chapter. This toolbox is also used often in

Chapter 4 when those stochastic models are introduced, showing the toolbox can help to make

maintenance decisions.

23
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3.1 The continuous-time Markov model

In the probability theory, the Markov model is a stochastic model that assumes the Markov prop-

erty (Ross, 2014). That is to say the future states of the process depends only upon the present

state and does not depend on the history. This chapter discusses the continuous-time Markov

model whose transition rates are defined as "frequency", e.g., 0.005 per year. The previous Mas-

ter project has discussed the discrete-time Markov models in which transition rates are defined

as "probability", e.g., 0.02. However, The former one has much wider applications. For simplic-

ity, The Markov model in this chapter actually refers to the continuous-time Markov model.

For degradation models, conventional reliability models like FTA (Fault Tree Analysis) is insuf-

ficient. Because FTA is mainly a static model which is used to find the top event probability. It

can not model dynamic processes like the degradation propagation. Unlike FTA, the Markov

model is a strong tool to deal with dynamic problems and can model both the maintenance

strategy and the degradation propagation. Thus it is reasonable to use the Markov model for

CBM. However, it has some limitations. Firstly, all possible states and the transition rates need

to be defined. For a complex system, it is very likely to omit some states. Secondly, transition

rates are difficult to determine due to various reasons, e.g., lack of the data. Thirdly, the so-

journ time has to be exponentially distributed. Ross (2014) is a good textbook for the theory of

the Markov model. Beyond that, Rausand and Høyland (2004) illustrates methods to the find

steady state probabilities, MTTF, PFD, PFH by using the Markov model. Readers can find these

methods elaborately illustrated in the textbooks with all necessary equations, e.g., Chapman-

Kolmogorov Equation, Kolmogorov’s back/forward equations. There is no necessity to make

more repetitions here.

When it comes to the simulation. There is a merit. It breaks the limitation of the Markov model

that the sojourn time has to be exponentially distributed. The randomly simulated sojourn time

can be chosen as any form of distributed value, e.g., normal distribution, Weibull distributed.

One can get numerical solutions instead of analytical solutions. The main ideas behind the sim-

ulation are following. For a certain state, there are several transition rates with different values.
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Figure 3.1: A 2oo2 system with three degradation levels

For each transition rate, Matlab generates a random number with λ = the transition rate. As

mentioned before, this number can be simulated by any forms of distribution. Take exponen-

tial distribution as an example, the virtual sojourn time for each transition rate is simulated by

the Matlab code "exprnd(λ)". The "real" sojourn time is chosen as the minimum value of these

simulated "virtual" sojourn time. For example, Figure 3.1 is a Markov diagram for a 2oo2 sys-

tem. Each component has three degradation level, i.e., perfect, deteriorated and failure. State

5 means both are perfect, while state 4 and state 3 mean that only component B is deteriorated

and only component A is deteriorated, respectively. State 2 means both are deteriorated but sys-

tem is still functioning. Since system will not fail until one of the components fail. State 1 refers

to at least one component fails and is a "unavailable state". The "failure rates" for component

A among perfect state, deteriorated state and failure state are 0.002 per hour and 0.02 per hour.
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For component B, they are 0.0015 per hour and 0.015 per hour. The assumption for the mainte-

nance strategy is that this system is inspected periodically. During each condition monitoring,

a maintenance task is executed immediately if the system enters state 4,3,2 and 1. The repair

rate is 0.1 per hour regardless of the degradation level and the number of the deteriorated com-

ponents. The transition rates between states are shown in Figure 3.1. There are two transition

rates from the state 2, i.e., λ25 = 0.1 and λ21 = 0.035 . Two exponentially distributed random

numbers are generated by Matlab as, e.g., 9.3 by λ25 and 34.3 by λ21. The minimum value is 9.3.

Thus the next step which the process goes to is state 5 and the sojourn time is 9.3. This value

is recorded and it is called "one step". Each simulation runs 25000 steps and the results, e.g.,

the RUL with standard deviation, the steady state probabilities and PFD are estimated based on

the above principles. Figure 3.2 is a logic diagram for Markov chain simulations. As shown in

red, the input contains the transition matrix, the initial state, the number of simulations and the

maintenance interval. As shown in green, there are two types of output. It depends on whether

the transition matrix has absorbing states or not.

The Matlab code for the Markov chain simulations with detailed explanations is below.

1 %This s c r i p t i s used to simulate a countinuous time Markov chain . I t f inds

2 %steady−s t a t e p r o b a b i l i t i e s or RUL and PFD.

3 %The following variables can be changed to s u i t the d i f f e r e n t s i t u a t i o n .

4 l l = [−0.001 0.001 0 ; 0 −0.1 0 . 1 ; 0.1 0 −0.1] ;

5 % Write your t r a n s i t i o n matrix above .

6 lambdas=1./ l l ;

7 numStates = length ( lambdas ) ; % Here number of s t a t e s are speci f ied .

8 numSimulations=20000; % Choose the number of simulation

9 numSteps = 25000;% Here the chain length i s speci f ied .

10 States = zeros ( 1 , numSteps) ;

11 %States ( 1 ) = randi ( numStates ) %; i f the i n i t i a l s t a t e i s unknow

12 States ( 1 ) =1; % i f the i n i t i a l s t a t e i s 1

13 tao =1000; %Define your maintenance i n t e r v a l here to find PFD

14

15 % Changing the following variables are not recommended .

16 warn=ones ( 1 , numStates ) * i n f ;

17 % I f an absorbing s t a t e e x i s t s , t h i s "warn" vector helps to find RUL

18 MTTF_vector=zeros ( 1 , numSimulations ) ;
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Figure 3.2: Logic diagram of Markov model simulations

19 Time = zeros ( 1 , numSteps) ; %To record time spent in each simulation

20 sojourn_time= zeros ( 1 , numStates ) ;% Find " v i r t u a l " sojourn time

21 rate = zeros ( 1 , numStates ) ;% Find t r a n s i t i o n rate for each s t a t e .

22 Count = zeros ( 1 , numStates ) ;

23 absorb=sum(ismember( lambdas , warn , ’ rows ’ ) ) ; %This value i s to check i f there

24 % i s one or more obsorbing s t a t e s . "obsorb=0" means that there i s no

25 % absorbing s t a t e . Otherwise , i t means that there i s at l e a s t one

26 % absorbing s t a t e .

27

28 %Case one : no obsorbing s t a t e s . In t h i s case , we w i l l get the steady s t a t e

29 % p r o b a b i l i t i e s since there i s no obsorbing s t a t e .

30 i f absorb==0

31 for i = 1 : numSteps−1
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32 rate = lambdas ( States ( i ) , : ) ;

33 for n=1: numStates

34 sojourn_time (n) = exprnd ( rate (n) ) ; % MAIN PRINCIPLE , to generate a

35 % random exp distr ibuted number

36 end

37 m = min( sojourn_time ( sojourn_time >0) ) ; % Choose the minimum

38 % From s t a t e i to i , the t r a n s i t i o n rate i s

39 % negative . in such case , function "exprnd" w i l l not give the value .

40 % Thus i t w i l l not influence the "min" function .

41 index = find ( sojourn_time == m) ;% find the next s t a t e

42 States ( i +1) = index ;% find what i s the next step of process

43 Count ( States ( i ) ) = Count ( States ( i ) ) +m; %To sum each sojourn time

44 % for the each s t a t e

45 Time( i +1) = Time( i ) + m; % To record the time

46 end

47 plot (Time , States , ’ x ’ ) ;

48 prop = Count/Time(end) ; % To find the steady s t a t e p r o b a b i l i t i e s

49 disp ( [ ’The steady s t a t e p r o b a b i l i t i e s are ’ num2str ( prop ) ] ) ;

50

51 % Case two : there i s at l e a s t one obsorbing s t a t e . In t h i s case , we w i l l

52 % get RUL with standard deviation and PFD

53 else

54 for j =1: numSimulations

55 for i = 1 : numSteps−1

56 rate = lambdas ( States ( i ) , : ) ;

57 for n=1: numStates

58 sojourn_time (n) = exprnd ( rate (n) ) ;

59 end

60 i f isequal ( sojourn_time , warn) ==0

61 m = min( sojourn_time ( sojourn_time >0) ) ;

62 % From s t a t e i to i , the t r a n s i t i o n rate i s

63 % negative . in such case , function "exprnd" w i l l not give the value .

64 % Thus i t w i l l not influence the "min" function .

65 index = find ( sojourn_time == m) ;% To find the next s t a t e

66 States ( i +1) = index ;

67 Count ( States ( i ) ) = Count ( States ( i ) ) +m; %To sum each sojourn time
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68 % for the each s t a t e

69 Time( i +1) = Time( i ) + m; % To record the time

70 else

71 MTTF_vector ( j ) =Time( i ) ;

72 break ;

73 end

74 end

75 end

76 MTTF=sum( MTTF_vector ) /numSimulations ;

77 fa i luret ime =( tao−MTTF_vector ) . / tao ;

78 fa i luret ime ( find ( fai luretime <0) ) =0;

79 pfd=sum( fai luret ime ) /numSimulations ;

80 disp ( ’An absorbing s t a t e i s found ! ’ ) ;

81 disp ( [ ’MTTF i s ’ num2str (MTTF) ’PFD i s ’ num2str ( pfd ) ] ) ;

82 end

Take a 2oo2 system for an example. As shown in Figure 3.1, each component has three degra-

dation level, i.e., perfect, deteriorated and failure. The state 5 means both are perfect, while

state 4, 3 and 2 mean that the system is still functioning with deteriorated performance. The

state 1 is a failure state. By using the simulation, the steady state probabilities are found to be

0.0053319,0.00037,0.016018,0.012522,0.96576 for the state 1,2,3,4,5, respectively. If the transi-

tion rate, i.e., the repair rate, from 1 to 5 is removed, and maintenance interval is set as 1000, the

simulation gives MTTF=1913(hours) and PFD=0.215.

3.2 Brownian motion (The Wiener process) with drift

Let us consider to simulate a Markov chain with infinite states with Pi ,i+1 = Pi ,i−1 = 1
2 , i = 0,±1,±2, ....

It is actually a symmetric random walk with taking smaller and smaller time intervals. This pro-

cess is called Brownian motion. The Brownian motion process, sometimes called the Wiener

process, is one of the most useful stochastic processes in applied probability theory (Ross, 2014).

Ross (2014) also gives a definition of Brownian motion:

A stochastic process X (t ), t ≥ 0 is said to be a Brownian motion process if

• X (0) = 0;
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• X (t ), t ≥ 0 has stationary and independent increments;

• for every t > 0, X (t ) is normally distributed with mean 0 and variance σ2t .

Note that Brownian motion without introducing "Drift" value is not suitable to model degrada-

tion propagation. It has two main reasons. First, under a certain period of time, the degradation

level is either unchanged or increased. It shall never decrease, i.e., the trend is monotonically

increasing. However, Brownian motion is non-monotonic. In addition Brownian motion is nor-

mally distributed with mean 0. It means that after a period of time, the expectation remains

unchanged and the process path has neither an increasing trend nor an decreasing trend. Sec-

ond, the process does not necessarily start from X (0) = 0. The value of X (0) is only based on the

current degradation level. Thus to fit the degradation model, two changes are made.

• X (0) = current degradation level;

• for every t > 0, X (t ) is normally distributed with mean µt and variance σ2t .

where µ is called the drift coefficient and σ2 is variance parameter. Ross (2014) gives another

equivalent definition

X (t ) =σB(t )+µt

where B(t ) is standard Brownian motion whose density function is

f (x) = 1p
2πt

exp(−x2/2t )

Even though Brownian motion with drift is still non-monotonic, it can have a monotonic trend

over a period of time. For any positive value µ, the path will fluctuate around µt . These fluctu-

ations can be considered as noise. The expectation after time t is µt . See Figure 3.4. By intro-

ducing the drift value µ, Brownian motion can model degradation propagation. In this Master

thesis, "Brownian motion with drift" is the only type of Brownian motion introduced. Another

type of Brownian motion is "geometric Brownian motion" which is also suitable to model the

degradation propagation.

The main ideas behind this simulation are following. Firstly a small time interval as a time
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unit t is defined, e.g., one second. An increment after this time unit t is normally distributed

with mean µt and variance σ2t where µt and variance σ2 are determined by the expert judge-

ment and the previous data. It is like the methods used to determine the failure rates. Secondly,

these increments are recorded as the degradation level at each time. Under each simulation,

the process runs until the time meets a predefined limit, e.g.,a year. Finally, the results, e.g., the

RUL and the probability to survive till the next maintenance interval can be estimated after a

large number of simulations. Figure 3.3 is a logic diagram for Brownian motion simulations. As

shown in red, the input contains a drift value, a sigma, the number of simulations, a current

degradation level, a failure level and the maintenance interval. As shown in green, the output

is RUL with standard deviation and the probability to survive till the next maintenance interval.

The Matlab code for Brownian motion with detailed explanations is below.

Figure 3.3: Logic diagram of Brownian motion simulations
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1 % Simulate a Brownian Motion process with D r i f t . To estimate the RUL and the

2 % probabi l i ty to survive t i l l the next maintenance i n t e r v a l .

3 mu= 0 . 2 ; % Define your degradation paramters here .

4 sigma =1; % These two values are defined by the previous data and the expert judgement .

5 t =1; % Define the time unit .

6 NumSteps=1000; % Define the number of steps under each simulation .

7 Time=1:NumSteps ;

8 D=zeros ( 1 ,NumSteps) ; % Before a simulation , the degradation l e v e l i s set to be 0

9 D( 1 ) =55;% Write your s t a r t i n g point of the degradation l e v e l under an inspection .

10 F a i l _ l e v e l =69; % Write your f a i l u r e l e v e l above which the system f a i l s .

11 NumSimulations=25; % Write the number of simulations .

12 MTTF=NumSteps*ones ( 1 , NumSimulations ) ; %Default MTTF

13 maintenance_interval =37; % Write your maintenance i n t e r v a l . I t needs to be integer

14 prop=zeros ( 1 , NumSimulations ) ;% Default p r o b a b i l i t i e s of surviving t i l l the next

15 % maintenance i n t e r v a l

16

17 for j =1:NumSimulations

18 for i =1:NumSteps−1

19 D( i +1)=D( i ) +normrnd(mu* t , sqrt ( t ) *sigma ) ;% MAIN PRINCIPLE , to generate a

20 % random normally distr ibuted number

21 end

22 i f D(NumSteps) > F a i l _ l e v e l % i f the degradation l e v e l exceed the f a i l u r e l e v e l

23 % a f t e r each simulation

24 MTTF( j ) =find (D> F a i l _ l e v e l , 1 , ’ f i r s t ’ ) ;

25 % or use : MTTF( j ) =find (D==min(D(D>= F a i l _ l e v e l ) ) ) ; but a b i t slow .

26 % disp ( [ ’ I t f a i l s in ’ num2str (MTTF) ’ seconds ’ ] ) ;

27 else

28 % disp ( [ ’ I t w i l l not f a i l in ’ num2str (NumSteps* t ) ’ seconds ’ ] ) ;

29 end

30 i f D( maintenance_interval ) > F a i l _ l e v e l

31 % I f the degradation l e v e l exceed the f a i l u r e l e v e l at the next

32 % maintenance i n t e r v a l

33 prop ( j ) =0; % The probabi l i ty to survive i s set to be 0 .

34 else

35 prop ( j ) =1; % Otherwise , i t i s 1 .

36 end
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37 plot (Time ,D) ;

38 hold on ;

39 end

40 prop_to_survicetilnextmaintenanceinterval=sum( prop ) /NumSimulations ;

41 RUL=sum(MTTF) /NumSimulations ;

42 variance =(sum( (MTTF−RUL) . ^ 2 ) ) /NumSimulations ;

43 standard_deviation=sqrt ( variance ) ;

44 disp ( [RUL standard_deviation prop_to_survicetilnextmaintenanceinterval ] ) ;

For example, µ = 0.2, σ = 1, the current degradation level under an inspection is 55, the fail-

ure level is 69 and the maintenance interval is 37. The simulation gives the result of the RUL,

the standard deviation of RUL and the probability to survive till the next maintenance interval,

74.5320,41.8636,0.8680 respectively. Figure 3.4 is an example of 25 simulations under afore-

mentioned criteria.

Figure 3.4: Degradation modelled by Brownian motion
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3.3 The Gamma process

Section 3.2 discusses Brownian motion where the increment after time t is normally distributed.

If this increment after time t is Gamma distributed, the process is called the Gamma process.

That is to say X (t ) ≡ Gamma(k,θ) where k is the shape parameter and θ is the scale parameter.

The probability density function of X (t ) using the shape-scale parametrization is

X (t ) = xk−1 exp −x
θ

θkΓ(k)
for k,θ > 0

Here Γ(k) is the gamma function evaluated at k.

The main idea behind the simulation of the Gamma process is similar to the one behind the

Brownian motion process. Firstly a small time interval as a time unit t is defined, e.g., one sec-

ond. An increment after this time unit t is Gamma distributed with shape parameter A and

scale parameter B. This random number can be generated by the function "gamrnd(A,B)" in

Matlab. The shape parameter A and the scale parameter B are determined by the expert judge-

ment and the previous data sets. Secondly, these increments are recorded as the degradation

level at each time. Unlike Brownian motion, the Gamma process always has a non-negative

value of the increment. Finally, the results, e.g., the RUL and the probability to survive till the

next maintenance interval can be estimated after a large number of simulations. Figure 3.5 is a

logic diagram for Gamma processes simulations. As shown in red, the input contains a shape

parameter, a scale parameter, the number of simulations, a current degradation level, a failure

level and the maintenance interval. As shown in green, the output is RUL with standard devia-

tion and the probability to survive till the next maintenance interval.

The Matlab code for The Gamma process simulations with detailed explanations is below.

1 % gamma process simulation

2 t =1;% Define a time unit

3 A= 1 . 1 ; B=10; % Define two parameters

4 numSteps=20;

5 y=zeros ( 1 , numSteps) ;

6 y ( 1 ) =55; % Write your s t a r t i n g point of the degradation l e v e l under an inspection .

7 time =1:numSteps ;
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Figure 3.5: Logic diagram of Gamma processes simulations

8 numSimulation=150; % Write the number of simulations .

9 F a i l u r e _ l e v e l =270; % Write your f a i l u r e l e v e l above which the system f a i l s .

10 maintenance_in =20; % Write your maintenance i n t e r v a l . I t needs to be integer

11 MTTF=ones ( 1 , numSimulation ) . * numSteps* t ; % Default MTTF

12 prop=ones ( 1 , numSimulation ) ; % Default p r o b a b i l i t i e s of surviving t i l l the next

13 % maintenance i n t e r v a l

14 for j =1:numSimulation

15

16 for i =1:numSteps−1

17 y ( i +1)=y ( i ) +gamrnd(A* t , B) ;

18 % MAIN PRINCIPLE , to generate a random Gamma distr ibuted number

19 end

20 i f y (numSteps) > F a i l u r e _ l e v e l
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21 f i r s t _ t i m e =find ( y> F ai l u r e_ le v el , 1 , ’ f i r s t ’ ) ;

22 MTTF( j ) = f i r s t _ t i m e * t ;

23 i f f i r s t _ t i m e * t < maintenance_in

24 prop ( j ) =0;

25 else

26 end

27 else

28 end

29 plot ( time , y ) ;

30 hold on ;

31 end

32 Mttf=sum(MTTF) /numSimulation ;

33 variance=sum( (MTTF−Mttf ) . ^ 2 ) /numSimulation ;

34 sd=sqrt ( variance ) ;

35 survive=sum( prop ) /numSimulation ;

36 disp ( [ Mttf sd survive ] ) ;

For example, A = 1.1, B = 10, the current degradation level under the inspection is 55, the fail-

ure level is 270 and the maintenance interval is 20. The simulation gives the result of the RUL,

the standard deviation of RUL and the probability to survive till the next maintenance interval

19.0267,1.861,0.6933 respectively. Figure 3.6 is an example of 50 simulations under aforemen-

tioned criteria.

3.4 The toolbox instruction

The toolbox combines aforementioned three degradation models. In the pop-up menu located

in the upper left corner, users can choose the type of the degradation model. To use Markov

simulation, first type in all parameters. See Figure 3.7 Secondly, click the "simulation button".

Finally all results are shown on the same dashboard. Figure 3.7 is an example of using this self-

made toolbox to simulate Markov chains by inserting the same parameter in Section 3.1.

If the repair rate from the failure state is removed, there will be an absorbing state in the Markov

diagram. The corresponding row in the transition matrix is replaced with all elements 0. In such

case, the user needs to fill in the value of maintenance interval in the up right corner to estimate
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Figure 3.6: Degradation modelled by Gamma processes

the PFD. The RUL with standard deviation is also estimated. See Figure 3.8.
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Figure 3.7: Markov model with no absorbing state
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Figure 3.8: Markov model with an absorbing state
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Compared to the dashboard for the Markov model, the dashboard for Brownian motion and the

Gamma process is more clear and easier to use. Fill in all input values and click the "simulation

button". All results are shown on the same dashboard. The plot for the simulations is on the

right corner. The Y-axis refers to the degradation level. The X-axis refers to the time. See Figure

3.9 for Brownian motion and Figure 3.10 for the Gamma process.

Figure 3.9: Toolbox for the Brownian motion
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Figure 3.10: Toolbox for the Gamma process

3.5 Summary

This chapter discusses the Markov model, the Brownian motion process and the Gamma pro-

cess and uses these models to simulate degradation propagation. In addition, a Matlab tool-

box is developed. Users without any stochastic processes knowledge can still use this tool-

box to make good maintenance strategies. The toolbox comprises two files. One is the code

"Three stochastic models for CBM Version1.m". Another one is the figure "Three stochastic

models for CBM Version1.fig". Both can be download from "https://www.dropbox.com/sh/

lxwnvfj5inq44wc/AAAJqbJ0sCpz8d5NN-wDgzyJa?dl=0". To use the toolbox in Matlab, both

files need to be placed in the Matlab folder. Double click the code and press the "RUN" button

https://www.dropbox.com/sh/lxwnvfj5inq44wc/AAAJqbJ0sCpz8d5NN-wDgzyJa?dl=0
https://www.dropbox.com/sh/lxwnvfj5inq44wc/AAAJqbJ0sCpz8d5NN-wDgzyJa?dl=0
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which could be found in Matlab EDITOR panel. Choose a desired model and fill in all param-

eters. Press the "simulate" button, and the results can be found in the same panel. It usually

takes less than 13 seconds to find the results. For a large number of simulations, more time is

expected. The code and the figure for the toolbox are also enclosed in Appendix B.



Chapter 4

Stochastic modelling for the BOP system

condition based maintenance

BOP means Blow Out Preventer. It is pressure control equipment used as a final safety barrier

by controlling the formation pressure and fluid encountered in the well. If a well control situ-

ation occurs, e.g., the formation fluid entering the well uncontrolled, the well can be closed in

at the BOP. A BOP is installed on the top of the wellhead, and it consists of three main subsys-

tems, which are Lower Marine Riser Package (LMRP), Lower Blowout Prevent (LBOP) and the

control system. LBOP is also called the BOP stack. These three subsystems are designed to work

together in a drilling operation.

Figure 4.1 is the Deepwater Horizon BOP stack. This configuration has two annular preventers,

two shear rams and three pipe rams. This configuration is used as the basis for the analysis in

this report. Many variations to this stack configuration exit. These variations are called stack

classes. According to API standard 53, a subsea BOP shall be class 5 or greater, which implies

the BOP consisting of at least one annular preventer, two pipe rams and two sets of shear rams.

By searching the API standard 53, the Deepwater Horizon BOP stack is found to be class 7. The

higher number reflects the higher redundancy in the BOP system. However, a BOP system with

high redundancy has some weaknesses. It may increase the complexity, the chance of common

cause failures and the total BOP system maintenance downtime. Thus increasing the redun-

dancy may not be the best solution. However, by introducing the BOP system condition mon-

43
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Figure 4.1: Deepwater Horizon BOP stack. (U.S. Chemical Safety And Hazard Investigation
Board, 2010), page 18

itoring can, in some extent, tell exact the health state of some subsystems and give real-time

well operation information. It can raise the alarm about incipient failures, and consequently it

can enhance the reliability of the BOP system. In addition, it can cut many unnecessary main-

tenance tasks without compromising on reliability and safety.
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The cost of BOP downtime can led to significant expense to the drilling contractor. The total

BOP downtime cost for one of the drilling contractors was around $80 million for year 2012

(Kenny, 2004). So there is a huge benefit in having a BOP condition monitoring system and per-

form CBM.

4.1 BOP system description

4.1.1 Lower Marine Riser Package

The major components of the Lower Marine Riser Package (LMRP) in Figure 4.1 from top to bot-

tom are:

Flex Joint

Though the flex joint is not labelled in Figure 4.1, it is very easy to be found. It locates between

LMRP and riser adapter. It is the cylinder-shape part above upper annular in Figure 4.1. The

main function of the flex joint is to allow the riser adapter and riser system to pivot on top of the

LMRP up to 10 degrees off center to reduce the bending moments on the BOP stack and the well

head (Kenny, 2004).

Annular Preventers

Two annular preventers are labelled in Figure 4.1, i.e., the upper annular and the lower annular.

The annular has a donut shaped rubber seal called elastomeric packing element reinforced with

steel ribs or inserts (Kenny, 2004). Annular preventers are actually rubber sealing elements and

can seal any size of the drilling string, including an open hole to close the wellbore. Because

it is forming a 360 degree seal (not 2 half moons like the rams). When a kick is detected, the

annular preventer is the first element to seal against the well pressure. It withstands much lower

pressure compared to the pipe ram, and it is the reason that the annular preventer is located on

the top part of the stack.
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Control Pods

Control pods control the supply of hydraulic fluid for the operation of LMRP and LBOP. There

are two redundant control pods used in the BOP, known as the blue pod and the yellow pod. See

Figure 4.1.

Subsea Gate Valve

It is at the bottom of LMRP (between the lower annular and LBOP in Figure 4.1. While running

the BOP stack, the subsea gate valve is used to test riser connections (Kenny, 2004).

Choke and Kill Lines

They are the two "pipes" through the whole BOP stacks. They are depicted in Figure 4.1 (without

labelled). The choke line is used to circulate the fluid from the well and the kill line is used to

pump fluid into the well when the rams are closed (Kenny, 2004).

4.1.2 Lower Blowout Preventer

The major components in LBOP are rams. Four types of rams from top to bottom in Figure 4.1

are:

Blind Shear Ram

Blind shear ram is designed to shear the drilling string (if any) and seal the wellbore. It contains

rubber sealing elements and can seal the well when the well does not contain a pipe. It is the

only ram in the BOP stack has the capability in both sealing off a well and shearing the drill pipe.

Though the ability for a blind shear ram of sealing off an open hole is lower compared to the an-

nular preventer or the pipe ram. Blind shear rams are used as the last resort to regain the control

of the well. However, if there is a drill pipe in the wellbore, the price of actuating the blind shear

ram is very high, both in terms of downtime and drill pipe destruction. If the blind shear ram

fails to act as the last barrier, it may lead to the total loss of the well control, or even a blowout.

Some investigation reports of Deepwater Horizon accident suggest that the drill pipe buckled

due to high pressure. The blind shear ram failed to cut the drill pipe completely. Other suggest
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that the drill pipe tool joint was passing the blind shear ram, and the blind shear ram can not

shear the tool joint since it is not designed to do so. In either way, the blind shear ram failed to

shear the drill pipe. Unfortunately, a blow out occurred subsequently. Thus, ensuring that the

blind shear ram can function on the demand is very important.

Casing Shear Ram

Casing shear ram is designed to shear the casing or bigger sized drill pipe. it can not seal off

the wellbore since it does not contain rubber sealing elements. A casing shear ram has a higher

capacity in shearing compared to a blind shear ram.

Pipe Rams

Pipe Rams are designed to seal around the outer diameter of the drill pipe to control the pres-

sure from a wellbore. There are two types of pipe rams. Standard pipe rams are to seal on a

specified drill pipe outer diameter. Variable bore rams are more flexible and can seal multiple

size of pipes with some loss in pressure capacity. The Upper and the middle pipe ram in Figure

4.1 have a same function as aforementioned. In addition, the middle pipe ram can be used to

strip through to hang off drill pipes (Kenny, 2004). Pipe ram does not contain rubber sealing

elements.

Test Ram

At the bottom of the LBOP, there is a test ram. Test rams are upside down pipe rams which per-

mit the BOP to hold pressure from the top of the rig. The test ram can be closed and the annular

and all the rams can be pressure tested against the drill string without exposing the BOP to well

pressures. Using test rams at the bottom of the stack can lead to significant time and cost sav-

ings (Kenny, 2004).

4.1.3 Summary

For a short summary, the function of different rams and annular preventers are:
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• Blind Shear Rams are designed to shear the pipe and seal the well during a well control

situation.

• Casing Shear Rams are designed to shear the casing.

• Pipe Rams are designed to seal around the drill pipe.

• Variable Bore Pipe Rams can seal around various size of pipes.

• The annular preventers are designed to seal the wellbore by closing around the drill pipe.

Kenny (2004) gives several primary functions of a BOP system:

• Regulate and monitor wellbore pressure.

• Shut in the well (e.g. seal the void, annulus, between drillpipe and casing).

• “Kill” the well (prevent the flow of formation fluid, influx, from the reservoir into the well-

bore).

• Seal the wellhead (close off the wellbore).

• Sever the casing or drill pipe (in case of emergencies).

4.2 Annular preventer: the data source, inferences and assump-

tions

Following sections chooses the annular preventer to analyze. An annular preventer is the pre-

liminary element that is activated in a BOP system. When a kick is detected, in many cases, the

well pressure is low, and the drill pipe is in the well. The casing is usually not passing the BOP

system. This scenario is regarded as the only situation in this Master’s thesis, and it is the most

common scenario which can be observed during a daily drilling operation. For this scenario,

two annular preventers are activated at first. Afterwards, the pipe rams can be activated if it is

necessary. In total, the whole BOP stack acts as a 1oo4 system, i.e., two annular preventers and

two pipe rams. See Figure 4.1. In terms of downtime and drill pipe destruction, for this scenario,
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cutting drill pipe is not an option. Thus neither the blind shear ram nor the casing shear ram is

taken into consideration.

Figure 4.2: Annular preventer failure modes and associated number of failures. (Holand, 1999),
page 50

An annular preventers has at least five types of failure modes. Among them, "internal leakage",

"external leakage" and "fail to close" are dangerous undetected failure (DU failure). "Fail to

open" and "fail to fully open" are safe failure. Table 4.2 shows an overview of annular preventer

failure modes, including corresponding number of failures, MTTF, average downtime, etc. As

can be seen from Table 4.2, 6 out 12 annular preventers failure is "internal leakage", which also

accounts for 94% of total lost time (317hours/336.5hours). Thus DU failure "internal leakage" is

considered as the most critical failure mode. If "internal leakage" can be successfully modelled,

or a condition based maintenance plan is made, it can significantly reduce the downtime due to

the annular preventers failure and improve the reliability of the whole BOP stack.

Figure 4.3 is a cutaway view of an annular preventer. The shadow part labelled with 107 is the

rubber sealing elements, called elastomeric annular body (hereinafter referred to as “the elas-

tomer”). Number 109 refers to the metal inserted in which is like ribs. When a sealing demand

occurs, the metal inserted pushes the elastomeric annular body to have a 360 degree seal. The
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elastomer can seal multiple size of drill pipes or an open hole (at least for some annular preven-

ters). Since the elastomer is made of rubber, it is particularly sensitive to the time of exposure

and to high temperatures. As is known to all, BOP subsystems are often exposed in a High Pres-

sure High Temperature (HP/HT) condition. Thus the aging rate of the elastomer accelerates.

When the elastomer ages, it loses its ability to return to original condition. Exposing in a high

temperature condition for a long time can increase an elastomer’s hardness considerably, sig-

nificantly affecting its ability to seal. It may result that more force is needed to seal, or internal

leakage after sealing.

Figure 4.3: Cutaway view of an annular preven-

ter

Though the oxidizing process of the elas-

tomer can be accelerated by various things,

high temperature is considered to be the most

significant factor. Following sections dis-

cusses models to model the elastomer degra-

dation process. For example, if the tem-

perature in a wellbore remains unchanged,

the elastomer deterioration process can be

modelled by a Brownian motion process.

Let X (t ) define the deterioration level at

time t. For every t > 0, X (t ) is nor-

mally distributed with mean µt and variance

σ2t .

Holand (1999) gives MTTF for the failure

mode "internal leakage" of the annular pre-

venter 1242 hours and 90% confidence interval (629,2851). Holand (1999) also assumes the

number of failures during a specific time period is modelled by a homogeneous Poisson pro-

cess with failure rate λ. This λ is estimated by:

λ̂= Number of failure

accumulated operating time
= n

s
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Though it is not explicitly indicated in his report which method he chooses to estimate the fail-

ure rate. Clearly, the method is Maximum Likelihood (MLE) with the exponential distribution.

As can be found in his report, the number of failures of the annular preventer internal leakage is

6. The number of observed annualr preventers is 26. Unfortunately, Holand (1999) does not give

the value of each annular preventer survival time or failure time. To find which type of censoring

his report chooses, the 90% confidence interval from Figure 4.2 is examined. If the experiment

has a set number of subjects or items and stops the experiment at a predetermined time, i.e.,

type I censoring, the 90% confidence interval is:

629 =
2

n∑
i=1

xi

χ2(0.05,2r +2)
≤ 1

λ̂
= θ̂ ≤

2
n∑

i=1
xi

χ2(0.05,2r )
= 2851

If the experiment has a set number of subjects or items and stops the experiment when a prede-

termined number are observed to have failed, i.e., type II censoring, the 90% confidence interval

is:

527 =
2

n∑
i=1

xi

χ2(0.05,2r )
≤ 1

λ̂
= θ̂ ≤

2
n∑

i=1
xi

χ2(0.05,2r )
= 2851

The only difference is the degree of freedom of χ2 distribution on the left. r is the failure number

"6". The accumulated operation time
n∑

i=1
xi is 1242× 6 = 7452 days. In addition, the value of

χ2 distribution can be found in the table. After comparing the confidence interval calculated

above and the one in Figure 4.2, it is clear that the experiment is type I censored, i.e., the time is

truncated at some predetermined value. All these findings can help to simulate failure times.

Five assumptions to make the following models work:

1. Temperature varies from time to time. It is very difficult and impractical to test all critical

elastomers with every drilling fluid combination at all the possible temperature ranges.

We assume the temperature is the only influence factor to accelerate the degradation rate.

In addition, the average temperature is used.

2. It is assumed that the failure mode "internal leakage" in an annular preventer is 100%

caused by a deteriorated elastomer.
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3. Specific tests (such as sealing characteristics tests for ram preventers or drift tests for an-

nular preventers) can be used to re-qualify elastomers prior to a drill stem test or during

between-well maintenance. We assume after each test, we know exactly the degradation

level of the elastomer.

4. under each test (usually every 14 days), the probability to reveal a failure during each test,

given such failure has occurred, is a random variable between 0 and 1. We assume this

number is 1.

5. A failure could be found either during a test or under a demand. Then it is recorded as

a failure time. The time to perform the preventive maintenance will be regarded as right

censored, if a preventive maintenance should perform before the failure.

4.3 Analyze failure data without introducing covariates

The following Matlab code simulates 30 failure data for an annular preventer with the failure

mode "internal leakage". According to (Holand, 1999), the failure time is assumed to be expo-

nentially distributed with θ = 1242. The inference of the confidence interval from Figure 4.2

shows the experiment is right censored. Here, the truncated time is assumed to be 350 days.

1 % To Simulate the l i f e t i m e for 30 Annular preventer .

2 % f a i l u r e mode: i n te rn al leakage . The experiment stops a f t e r 350 days .

3 l i f e t i m e =exprnd (1242 ,1 ,30) ; censored=zeros (1 ,30) ;

4 censored ( find ( l i fet ime >350) ) =1; l i f e t i m e ( find ( l i fet ime >350) ) =350;

22 out of 30 simulated failure data for the annular preventer is right censored at time 350. The

rest is the exact failure time. They are 308.227, 90.953, 315.435, 250.074, 285.195, 259.295, 78.169,

164.508. Value 1 means the exact failure time while value 0 means right censored. See Appendix

B.3.

4.3.1 Exponential model

This is the starting point of analyzing this data set. Under this model, the lifetime is assumed

to be exponentially distributed. If a failure is observed at time ti , the contribution to the likeli-
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hood function is ( 1
θ

e− ti
θ ). If a right censored value, i.e., 350, is observed, the contribution to the

likelihood function is 1−e− 350
θ . Thus the likelihood function for exponential model is:

L(θ) = ∏
failure

(
1

θ
e− ti

θ )
∏

right censored
(1−e− 350

θ )

Minitab gives the Maximum value of log-likelihood function "-64.596", at which θ̂ is 1181.48.

Figure 4.4 is the probability plot for this exponential model with the 90% confidence interval .

Eight points refer to 8 observed failure time. It is an "OK" fit since only one point is outside the

90% confidence interval. The way Holand (1999) calculating the 90% confidence interval is dif-

ferent from the one used in Minitab. Minitab calcuates 90% confidence interval as θ̂e±1.645
�SD(θ̂)
θ̂ ,

where Φ(1.644854) = 0.95,Φ(−1.644854) = 0.05. �SD(θ̂) = θ̂p
r
= 1181p

6
is the standard error. Lower

standard error means better estimation.

Figure 4.4: Probability plot for the exponential model

4.3.2 Weibull model, log-logistic model and log-normal model

Other distributions may fit the data better. Here three types of models are analysed, i.e., the

Weibull model, the log-logistic model and the log-normal model. These three distributions be-
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long to the log-location-scale family. The lifetime for a annular preventer with failure mode

"internal leakage" T has a log-location-scale family of distributions if lnT has a location-scale

family. Lawless (2002) gives lnT =µ+σU , where

if ln T ∼ Normal (µ,σ), then T is log-normal ∼ (µ,σ), i.e., lnT=µ+σU and U ∼ Normal (0,1).

if lnT∼logistic(µ,σ), then T is log-logistic (µ,σ), i.e., lnT=µ+σU and U ∼ logistic (0,1).

if T ∼Weibull(θ,α), i.e., lnT= lnθ+ 1
α

and U ∼ Gumbel(0, 1), then lnT∼ Gumbel (lnθ, 1
α

).

Thus the cumulative distribution function for log-location-scale family is

FT (t ) = P (T ≤ t ) = P (lnT ≤ ln t ) = P (U ≤ ln t −µ
σ

) =Φ(
ln t −µ
σ

).

And the probability density function for log-location-scale family is

fT (t ) =φ(
ln t −µ
σ

)
1

σt
.

Thus the likelihood function for all log-location-scale family is

L(µ,σ) = ∏
i :δi=1

φ(
ln ti −µ

σ
)

1

σt

∏
i :δi=0

(1−Φ(
ln ti −µ

σ
)). (4.1)

where δi = 1 means the failure time is observed while δi = 0 means it is right censored. Figure

4.5 is the probability plot for four models. It is used to determine which model is the best one to

fit the data. From the value of Anderson-Darling, the Weibull model seems slightly better (with

the lowest value except the exponential model). Besides, the eight points are close to the red

line.

Therefore Weibull model is chosen for the further analysis. After inserting the failure data to

Equation 4.1, maximum value of the likelihood function can be found. Minitab gives the maxi-

mum value of Log-Likelihood "-63.283", at which the shape parameter α and the scale param-

eter θ are estimated as 1.84315, 600.802 respectively. Figure 4.6 is the probability plot for the

Weibull model. It is a good fit since all points are within 90% confidence interval.

A null hypothesis is raised to test if the data come from an exponential distribution. This is done



CHAPTER 4. STOCHASTIC MODELLING FOR BOP CBM 55

Figure 4.5: Probability plot for four models

Figure 4.6: Probability plot for the Weibull model

by testing

H0 :α= 1 vs H1 :α 6= 1
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If α= 1 is the true value, then W (1) = 2(l̂ (α̂)− l (1) should be χ2
1 distributed (the null hypothesis

is true). In other word, we reject the null hypothesis if W (1) ≥ 2.71 at 10% significant level. l̂ (α̂)

is the maximum value of the likelihood function in the Weibull model and l (1) is the maximum

value of the likelihood function in the exponential model. Thus

W (1) = 2(l̂ (α̂)− l (1) = 2× (−63.283− (−64.596)) = 2.626 < 2.71

So the null hypothesis is not rejected. The conclusion is hence that there is not enough evi-

dence to conclude that the data is not exponentially distributed. Another alternative is to check

the 90% confidence interval for α.

It is easy to find the the Mean residual Life (MRL) for aforementioned models. Rausand (2014)

gives

MRL(t ) = 1

R(t )

∫ ∞

t
R(x)d x. (4.2)

Take Weibull model for an example, MRL(t ) = 1

e−( t
θ

)
α

∫ ∞
t e−( x

θ )αd x. By inserting the estimated

parameters α = 1.84,θ = 600.8 and t = 170( i.e., half year), MRL is calculated as 407.5. See the

following Matlab code.

1 theta =600.8; a =1.84; t =170; % from the previous analysis

2 fun = @( x ) 1/exp(−( t / theta ) ^a ) *exp(−(x/ theta ) .^ a ) ;

3 MRL = i n t e g r a l ( fun , t , Inf )

The weakness for this approach is that the influence factor, e.g., the temperature, is not taken

into consideration. These models can hardly incorporate the condition of the elastomer mon-

itored under the each inspection. Besides, the MRL is only an estimated mean value for Re-

maining Useful Life (RUL). The operation conditions vary. It leads to a huge uncertainty of the

estimation. So these models can only give a preliminary analysis of RUL. To apply CBM, more

advanced models need to be established.

4.3.3 The Browian motion process

If the deterioration process of the elastomer in an annular preventer can be modelled with Brow-

nian motion, at each time t with observed health state of the elastomer, one can estimate RUL
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more precisely. To make this model work, firstly, a failure level needs to be defined. In this Mas-

ter’s thesis, the failure level for the elastomer is defined as number "100". It is unit-less. This

number could be any positive number, e.g.,25. However, in such case, other parameters in the

Brownian motion process needs to be altered to fit the historical data. Secondly, the parameters

for the Brownian motion process are estimated from the historical data, i.e., from Appendix B.3.

The method to estimate the parameters is same as before, i.e., maximum likelihood estimation.

Thirdly, based on the health state monitored under the each inspection, RUL is estimated as the

first time hitting the failure level. This value can be found by running the self-made toolbox in

Chapter 3.

let X (t1), X (t2) be the degradation levels for the elastomer at time t1, t2 respectively, where t1

is the current time and t2 is the future time. According to (Ross, 2014), X (t2)−X (t1) is normally

distributed with mean µt and variance σ2t , i.e., the Brownian motion process with a drift value

µ. Another alternative expression is

X (t2 − t1) =σB(t2 − t1)+µ(t2 − t1).

where B(t ) is standard Brownian motion whose density function is

f (x) = 1p
2πt

exp(−x2/2t ) See Section 3.2.

Firstly, let us consider the simplest situation where µ = 0 and σ = 1. It is also called standard

Brownian motion. The lifetime for an annular preventer can be modelled as the first time the

process hits the failure level, i.e.,100. Let TF L denote the first time the Brownian motion process

hits failure level. It is interesting to find the distribution of TF L . by conditioning on whether or

not Ta ≤ t , it gives

P (X (t ) ≥ F L) = P (X (t ) ≥ F L | TF L ≤ t )P (TF L ≤ t )

+P (X (t ) ≥ F L | TF L > t )P (TF L > t ).
(4.3)
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If the first hitting time is greater than t, then X(t) must less than FL. Therefore, P (X (t ) ≥ F L |
TF L > t ) = 0. If the first hitting time is less than t, then the X(t) can be either above or below

the failure level with fifty-fifty chance (due to symmetry since µ = 0). Hence P (X (t ) ≥ F L) =
P (X (t ) ≥ F L | TF L ≤ t ) = 1

2 . We see that

P (TF L ≤ t ) = 2P (X (t ) ≥ F L) = 2p
2π

∫ ∞

α
e−x2/2t d x = FF L(t ). (4.4)

Afterwards, fF T (t ),RF T (t ) can be easily derived. Given lifetime data, one can have likelihood

function

L(µ,σ) = ∏
i :δi=0

(1− 2p
2π

∫ ∞

α
e−x2/2t d x)

∏
i :δi=1

fF T (t ). (4.5)

where δi = 1 means the failure time is observed while δi = 0 means it is right censored. However,

to model the lifetime of the annular preventer, i.e.,µ > 0, the situation is not that simple. For

µ 6= 0, Equation 4.4 can not be used (not symmetric any more). Consequently, Equation 4.5 is

worthless. Although modelling the situation where µ> 0 follows the same steps as µ= 0. That is,

the cumulative distribution function and the probability density function of the first hitting time

should be derived firstly since it is the only way to establish the likelihood function. Secondly,

the maximum likelihood estimators µ̂, σ̂ are found by maximizing L(µ,σ). In practice this is

done by solving the likelihood equations (two equations in two unknowns)

∂L(µ,σ)

∂µ
= 0,

∂L(µ,σ)

∂σ
= 0.

To simply the problem, σ is assumed to be 1 for the following analysis. Jackson et al. (2009)

give the probability density function and the cumulative distribution function for the Brownian

motion process first hitting time with µ 6= 0 and σ= 1

fF L(t ) = F Lp
2πt 3

e
−(F L−µt )2

2t ,

FF L(t ) =Φ(
−F L+µtp

t
)+e2µF LΦ(

−F L−µtp
t

).
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Hence the likelihood function is

L(µ) = ∏
i :δi=0

(1−Φ(
−F L+µtip

ti
)+e2µF LΦ(

−F L−µtip
ti

))
∏

i :δi=1

F L√
2πt 3

i

e
−(F L−µti )2

2ti . (4.6)

where ti is the lifetime from Figure 4.4 and FL=100. Inserting all numbers, maximum likelihood

is found to be 7.1182×10−50, where µ̂= 0.283. See the following Matlab code for the maximum

likelihood estimation.

1 % Maximum Likelihood Estimation for the f i r s t h i t t i n g time parameters estimation

2 load ( ’ l i fet ime_master_thesis . mat ’ , ’ l i f e t i m e ’ ) ; % Load the l i f e t i m e data

3 censored=zeros ( 1 , length ( l i f e t i m e ) ) ;

4 censored ( find ( l i fet ime <350) ) =1; % 1 : f a i l u r e ; 0 : r i g h t censored

5 mu= [ 0 : 0 . 0 0 1 : 1 ] ; % Define the range of value mu

6 l ikel ihood=ones ( 1 , length (mu) ) ; % S t a r t i n g point of the l ikel ihood for each mu

7 FL=100; % Failure l e v e l i s 100

8 for i =1: length ( l i f e t i m e )

9 i f censored ( i ) ==0 % Right censered : L=L*(1−cumulative d i s t r i b u t i o n function at t _ i )

10 l ikel ihood=l ikel ihood . * ( FL/ sqrt (2* pi * ( l i f e t i m e ( i ) ^3) ) *exp ((−(FL−mu* l i f e t i m e ( i ) )

. ^ 2 ) . . .

11 /(2* l i f e t i m e ( i ) ) ) )

12 else % Exact f a i l u r e time : L=L* probabi l i ty density function at t _ i

13 l ikel ihood=l ikel ihood .*(1−normcdf((−FL+mu* l i f e t i m e ( i ) ) / sqrt ( l i f e t i m e ( i ) ) ) − . . .

14 exp (2*mu*FL) . * normcdf ( (−FL−mu* l i f e t i m e ( i ) ) / sqrt ( l i f e t i m e ( i ) ) ) )

15 end

16 end

17 [ Maximum_likelihood , y ]=max( l ikel ihood ) ; % Find the maximum value

18 Maximum_likelihood_estimated_mu=mu( y ) ;

Jackson et al. (2009) gives the expected value of the first hitting time for µ> 0, σ= 1 and X (0) =
0, i.e., MTTF.

E(TF L) = F L

µ
,

which is E(TF L) = F L
µ̂ = 100

0.283 = 353.36 (days) in our case. Note that for Weibull model, it is

E(T ) = θ̂×Γ(
1

α
+1) = 600.8×Γ(

1

1.84
+1) = 587( days).
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Minitab gives the 95% confidence interval of E(T ) for the Weibull model (318.936,1080.45),

within which MTTF from the Brownian motion process, i.e.,353.36, can be found. It seems a

good estimation since only 8 out of 30 lifetimes are the exact failure time.

Figure 4.7: Toolbox for Brownian motion

The self-made toolbox in Section 3.2 can help

to find RUL with standard deviation and the

probability to survive till the next mainte-

nance interval. For example, current inspec-

tion tells the health state of the elastomer as

55. See Assumptions 4.2. One would like to

know the probability to survive 120 days, i.e.,

R(120) and RUL. Type in number as shown

in Figure 4.7 and run the simulation. RUL

with standard deviation and the probability

to survive 120 days are found to be 168.82,

45.0097 and 0.866 respectively. Maintenance

decisions can be made based on the result

from the toolbox. It is a feasible approach

to model the an annular preventer elastomer

degradation process when the influence fac-

tors, e.g., the temperature, are not introduced.

The following sections show models incorpo-

rating the temperature, which is the main factor to influence the elastomer’s lifetime.

4.4 Analyze failure data with covariates

When an elastomer in an annular preventer is used for a long period of time, it becomes hard-

ened and loses its damping capability. This aging process results mainly from the heat, and

affects not only the material property but also the useful lifetime of the elastomer (Woo et al.,
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2010). Nevertheless, during its lifetime, an elastomer can be submitted to different types of

degradation from different exposure conditions. A failure is usually caused by the combination

of these factors. Woo et al. (2010) gives some factors which could possibly affect the lifetime of

an elastomer. Among them, the temperature, the humidity, the fluids (gas and vapours) and the

loading pressure are the relevant factors for the annular preventer elastomer lifetime analysis.

These four factors can be regarded as four covariates. The simple linear regression models can

be applied. The lifetime T can be interpreted as

T =β0 +β1X1 +β2X2 +β3X3 +β4X4 +E ,

where β0 is the intercept, β1,2,3,4 are coefficients, X1,2,3,4 are the value of the temperature, the

humidity, the fluids and the loading pressure. E is the error ∼ N (0,1).

For the following sections, only the temperature is chosen for the further analysis. Because it

is the main factor to influence the elastomer lifetime. If the temperature inside the BOP system

is recorded continuously, it can help to build more advance models and improve the accuracy

of RUL estimation (for the elastomer only). In principle, the estimation can be made by extrapo-

lating of the degree of degradation after a given time at a given temperature. Since the BOP data

is confidential and hard to obtain, this Master’s thesis uses a data set from Minitab "Data set li-

brary". Minitab provides numerous sample data sets taken from real-life scenarios across many

different industries and fields of study. The one used in this Master’s thesis "insulation.MTW"

is a data set of the deterioration of an insulation that is used for electric motors under different

temperature. The insulation and the elastomer from an annular preventer are made by similar

types of materials, i.e., the lifetime is highly influenced by the temperature. Thus the models

used to analyze the "insulation data" in the following sections can also be used for BOP system

annular preventer elastomeric annular body. For insulation data set, see Appendix B.4

4.4.1 Weibull regression model

For an observation with a temperature value X , there is a potential lifetime T such that
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ln(T ) =β0 +β1x +σU ,

where U is standard normal distribution, standard Gumbel distribution, standard logistic dis-

tribution for log-normal regression model, Weibull regression model and log-logistic regression

model respectively. See Section 4.3.2. By replacing µ toβ0+β1x, we have the likelihood function

L(µ,σ) = ∏
i :δi=1

φ(
ln ti −β0 −β1x

σ
)

1

σt

∏
i :δi=0

(1−Φ(
ln ti −β0 −β1x

σ
)), (4.7)

where δi = 1 means the failure time is observed while δi = 0 means it is right censored. Note that

the temperature here refers to the "average temperature", not instaneous temperature. That is,

the temperature x is

x =
∫ b

a f (x)d x

b −a
,

where a is the time experiments start and b is the time failures are observed or right censored

time. For the Weibull regression model, Minitab gives following results. See Figure 4.8. The

p-values for the intercept and the coefficient of the temperature are closed to 0. The smaller

the p-value, the more evidence we have against the null hypothesis which, in our case, is H0 :

β0,β1 = 0. So we have enough evidence to reject the null hypothesis. In other words, it means

the estimation is very good.

Figure 4.8: Output from Minitab

The estimated lifetime T can be expressed as

ln(T) = 16.2193−0.057x + 1

2.989
U where U ∼ Gumbel(0,1) α= 2.989

since ln(θ) = µ= β0 +B1x, θ = e16.2193−0.057x . According to (Rausand, 2014), MTTF for Weibull
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model is

θ×Γ(1/α+1)

It is e16.2193−0.057×100 ×Γ(1/2.989+1) = 33056 for the temperature x=100. To check if the Weibull

regression model conforms to the result, random Gumbel distributed numbers are generated to

simulate the lifetime. See following Matlab code.

1 for i =1:100000

2 l i f e t i m e ( i , 1 ) =exp ( evrnd ( 0 , 1 ) /2.989+16.2193−5.7) ;

3 end

4 l i f e t i m e =sum( l i f e t i m e ) /100000;

The average lifetime for temperature is 33039, which is very close to the one obtained by the

formula from (Rausand, 2014), showing the Weibull regression model gives a good estimation.

We can also deduce the survival function R(t) and mean residual life MRL(t)

R(t) = e−( t
θ )α = e

( t

eβ0+β1×x )α
, (4.8)

MRL(t ) = 1

R(t )

∫ ∞

t
R(x)d x = 1

e
( t

eβ0+β1×x )α

∫ ∞

t
e

( y

eβ0+β1×x )α
dy. (4.9)

To find MRL at the temperature 100 and the time T=33039 hours, i.e., at MTTF. Inserting the

estimated values into Equation 4.8 and 4.9, it gives MRL(33039)=9953 hours. See the following

Matlab code

1 theta=exp (16.2193−5.7) ; a =2.989; t =33039; % from the previous analysis

2 fun = @( x ) 1/exp(−( t / theta ) ^a ) *exp(−(x/ theta ) .^ a ) ;

3 MRL = i n t e g r a l ( fun , t , Inf )

Another interesting part is to test whether some covariates are significant or not. For example,

if the covariate "loading pressure" to the elastomer is taken into consideration. A null hypoth-

esis that H0 : β2 = 0 must be tested where β2 refers to the coefficient of the second covariate.

Previously, the p-value of the coefficient of the temperature tells it is significant. This Master’s

thesis makes a virtual covariate which is the logarithm of the temperature data. The purpose by

doing that is to illustrate how to test this null hypothesis in case two or more influence factors
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are observed for an annular preventer in the future.

For the Weibull regression model with two covariates, Minitab gives following results. See Figure

4.9.

Figure 4.9: Output from Minitab

For Model 2, the lifetime is expressed as

lnT =−15.483−0.116x1 +8.107x2 + U

3.148
where U ∼ Gumbel(0,1)

The null hypothesis is done by testing

H0 :β2 = 0 vs H1 :β2 6= 0

Under H0, 2(difference of log-likelihoods) is χ2
1 distributed. Thus we reject the null hypothesis

if it is larger than 3.84 at 5% significant level. In our case, 2(difference of log-likelihoods)=2×
(−559.484− (−561.535)) = 4.102 > 3.84. Thus the null hypothesis is rejected at 5% significant

level. In other words, the second covariate influences the lifetime significantly as well.

Note that these methods can also be applied in a log-logistic regression model and a log-normal

regression model. Nevertheless, to make these two regression models work, ln(θ) and α in the

Weibull regression model should be replace by µ and 1
σ , respectively.
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4.4.2 Proportional hazard model (Cox regression model)

Sir David Cox, in his famous paper from 1972 suggested to use the model

z(t ; x) = z0(t )eβ1x1+β2x2+β3x3+....βk xk (4.10)

In Equation 4.10, z(t ; x) is the failure rate at time t with covariates xi . z0(t ) can be any positive

function of t, i.e., a hazard rate function. β1,β2,β3, ...,βk are ordinary parameters, x1, x2, ..., xk

are the covariates. The model is said to be semi-parametric (Cox, 1987). Suppose the x1, e.g., the

temperature, is increased by 10 degree, then

z(t ; xnew)

z(t ; xold)

= z0(t )eβ1(x1+10)+β2x2+β3x3+....βk xk

z0(t )eβ1x1+β2x2+β3x3+....βk xk
= eβ1×10

The failure rate will actually increase by eβ1×10 times. Thus eβi is actually the "risk" (from the

failure rate perspective) increased if a covariate xi is increase by 1 unit. Cox’ partial likelihood

function is usually calculated to find the estimated βi at which the likelihood function reaches

its maximum value. It would be a time-consuming process to find the estimated value by hand.

The partial likelihood function will be much complex when the number of covariates increases.

Besides Minitab doesn’t support Proportional hazard model. Luckily, Matlab has an embed-

ded function called "coxphfit" to estimate βi for Proportional hazard model. "Coxphfit" also

returns the loglikelihood, "logl", a structure, "stats", that contains additional statistics, and a

two-column matrix, "H", that contains the T values in the first column and the estimated base-

line cumulative hazard, in the second column (Mathworks). See the following Matlab code

1 % Proportional hazard model parameters estimation

2 load ( ’ proportional_hazard_model_data . mat ’ ) ;

3 censored=abs ( Total ( : , 3 ) −1) ;

4 [ b , logl ,H, s t a t s ]= coxphfit ( Total ( : , 1 ) , Total ( : , 2 ) , ’ censoring ’ , censored )

It is the same data set, which is stored in a matrix called "Total", analyzed by Weibull regression

model. For the value of "Total", see Appendix B.4. Minitab used 0 for right censored while Mat-

lab uses 1. The third line in the code changes value 0 to 1 and vice versa from "Total (:,3)" to

a new column called "censored". "Total(:,1)" is a column for the covariates, i.e., the tempera-

ture. "Total(:,2)" is the column for the response, i.e., the lifetime. "censored" is a column for the



CHAPTER 4. STOCHASTIC MODELLING FOR BOP CBM 66

censored value. 1 means right censored and 0 means the failure time. Note that the notation is

opposite to the one used in Minitab. The estimated β̂=0.1788. The p-value is close to 0 referring

that it is a good estimation, i.e., rejecting the null hypothesis that β= 0. Thus the failure rate at

time t with the temperature x can be expressed as

z(t ; x) = z0(t )e0.1788x

The estimated value of the baseline hazard rate z0(t ) is not directly shown through Matlab. The

cumulative hazard rate is

Z (t ; x) =
∫ t

0
z0(t )e0.1788x = Z0(t )e0.1788x

Thus we can use Proportional hazard model to estimate the survival/reliability function:

R(t ; x) = e−Z (t ;x) = e
ˆ−Z0(t )eβ̂x = e

ˆ−Z0(t )e0.1788x

Because the output from Matlab gives the estimated cumulative hazard rate Ẑ0(t ), which is

stored in the array "H". For "H" value, see Appendix B.5. "H" contains the time t values in

the first column and the estimated baseline cumulative hazard rate Ẑ0(t ) in the second column.

For example, at time 665 with temperature 20. The reliability function is

R(t ; x) = e−Z (t ;x) = e− ˆZ0(t )eβ̂x = e− ˆZ0(665)e0.1788×20

ˆZ0(665), which can be found from array "H", is estimated as 0.0067. Thus R(665;20)=0.7866. In

principle, we can use Proportional hazard model to find R(t ; x) at different time with different

covariates.

4.4.3 Arrhenius model

Arrhenius model is one of the earliest and most successful acceleration models predicts how

time-to-fail varies with the temperature. The model used in this Master’s thesis is



CHAPTER 4. STOCHASTIC MODELLING FOR BOP CBM 67

lnT =β0 +β1 · c

x +273.16
+ 1

α
·W

where W is standard Gumbel distributed and x is the temperature in Celsius. So x +273.16 is

the absolute temperature. For the data set from Appendix B.4, Minitab gives

lnT =−15.1874+0.8307 · 11604.83

x +273.16
+ 1

2.82462
·W (4.11)

Figure 4.10: Output from Minitab

Figure 4.11 is the the probability plot for failure T. Cox (1987) gives the probability function for

the Weibull model

ln(−ln(R(t)) =αlnT−αlnθ.

α= 2.82462, which is the slope. Thus all lines share the same slope. lnθ =β0+β1· 11604.83
x+273.16 is based

on the temperature. Higher temperature results in a lower θ, which makes the line more left. The

failure time under each temperature is scattered clearly near the corresponding probability plot

line, showing that the temperature is a significant influencing factor for the insulation lifetime.

Note theα in Arrhenius model is estimated as 2.8246 which is very close to 3.148, the one gotten

from the Weibull regression model.
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Figure 4.11: probability plot for Arrhenius model

4.4.4 Brownian motion considering the temperature

Jackson et al. (2009) gives the expected value of the first hitting time for µ> 0, σ= 1 and X (0) =
0, i.e., MTTF

E(TF L) = F L

µ
. (4.12)

Failure level (FL) is set to be 100 as the default. We will use Equation 4.12 to find the estimated

µ instead of using the maximum likelihood estimation. One can use the Weibull regression

model, Proportional hazard model or Arrhenius model to find this µ. Nevertheless, this section

only choose Arrhenius model to find the drift value µ in the Brownian motion process. Firstly

MTTF is calculated under each temperature (from 20 to 100 Celsius). Secondly µ is estimated

from Equation 4.12. See the following Matlab code

1 % To find mu under each temperature (model ; Brownian motion and Arrhenius model)

2 x = [ 2 0 : 1 0 : 1 0 0 ] ; % Define the temperature range

3 theta=exp (−15.1874+0.8307*11604.83./( x +273.16) ) ;

4 alpha =2.82462;

5 MTTF=theta *gamma(1/ alpha +1) ;
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6 FL=100;

7 mu=FL . /MTTF;

8 Output=[ x ;mu] ;

The values of µ for 9 temperature points are shown in Figure 4.4.4.

Figure 4.12: The µ value under each temperature

If an annular preventer has been operated under the average temperature 60 Celsius for 8760

hours without any failure. Then The degradation level can be estimated as 39. See the following

Matlab code

1 mu=0.00012; % Find u for each temperature

2 sigma =1;

3 t =1;

4 NumSteps=8760;

5 D=zeros ( 1 ,NumSteps) ;

6 D( 1 ) =0;% Write your s t a r t i n g point of the degradation l e v e l under an inspection .

7 F a i l _ l e v e l =100; % Write your f a i l u r e l e v e l above which the system f a i l s .

8 NumSimulations=250; % Write the number of simulations .

9 DL=zeros ( 1 , NumSimulations ) ;

10 for j =1:NumSimulations

11 for i =1:NumSteps−1

12 D( i +1)=D( i ) +normrnd(mu* t , sqrt ( t ) *sigma ) ;% MAIN PRINCIPLE , to generate a

13 % random normally distr ibuted number

14 end

15 i f D(NumSteps) <0

16 DL( j ) =0

17 else

18 DL( j ) =D(NumSteps)

19 end

20 end

21 ave=sum(DL) /NumSimulations ;

22 i f ave> F a i l _ l e v e l
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23 disp ( [ ’ I t f a i l s before ’ num2str (NumSteps) ’ hours ’ ] ) ;

24 else

25 disp ( [ ’The estimated f a i l u e r l e v e l i s ’ num2str ( ave ) ] ) ;

26 end

In the previous sections, the degradation level is found by the expert judgement during each

inspection. This section gives an another alternative. The final degradation level can be de-

termined based on both the observation and the simulation. After the degradation level is de-

termined, the drift value µ for the future is crucial to find important parameters, e.g., RUL, to

make maintenance decisions. Unlike the µ in the previous sections, here µ is always changing

depending on the temperature. To make the model simple, we assume we know the average

temperature for the next 14 days. In reality, it is possible to have a real-time on-line temperature

monitoring system to alter the value of µ with the fluctuation of the temperature. The path of

the degradation can be simulated continuously. In principle, it is likely to make diagnostics and

prognostics. For example, given the degradation level is 39 as obtained previously and the av-

erage temperature for the following 14 days is 90 Celsius, the drift value µ is found to be 0.0013.

See Figure 4.4.4. Then the toolbox from Chapter 3 can give RUL with standard deviation and the

probability to survive till the next maintenance interval as 993.452, 50.47 and 1 respectively.

4.5 Model the degradation in a system level

Usually two annular preventers are installed in a BOP system, i.e., the upper annular and the

lower annular. See Figure 4.1. They function together as a 1oo2 system. This 1oo2 system will

not fail until both of them fail. Previous sections give degradation models in a component level,

with or without the covariates. This section presents degradation models in a system level.

4.5.1 Markov model

Section 3.1 has elaborated Markov model to model a 2oo2 system with degradation levels. To

make condition based maintenance decisions, accurate estimation of the mean residual life (the

mean value of remaining useful life or mean time to the first DU failure after last inspection), the

probability to survive till the next maintenance interval and PFD value is crucial. Markov model
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is often used. Mean residual life can be found both analytically (by using Laplace transforms,

see (Rausand, 2014) page 352) and numerically (by using the toolbox from Section 3.1). The

probability to survive till the next maintenance interval can be found by the toolbox as well.

So does the PFD value. See Chapter 3. There is no need to make more repetitions here. This

section only discusses the question related to "demands with prolonged duration" for a 1oo2

system. Same topic for a 1oo1 system can be found in (Rausand, 2014) page 354. It is assumed

that demands occur according to a homogeneous Poisson process with demand rate "λde". The

Markov diagram for two annular preventers with DU failure "internal leakage" and the demand

rate "λde" is Figure 4.13

Figure 4.13: Markov transition diagram for a 1oo2 system with the demand rate

State description

2 Fully functioning state

1 The system has one DU failure

0 Two Du failures, unavailable state

2" Demand state: 2 can function when the demand occurs

1" Demand state: 1 can function when the demand occurs
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F Hazardous state

λDU is the failure rate for an annular preventer with DU failure "internal leakage". λde is the

demand rate for an annular preventer to operate. µ is the repair rate. We assume the repair time

is same regardless of the number of the failure components. We also assume when a demand

occurs, no maintenance task can be executed.

Each time a demand occurs, it has a demand duration with mean value MDD. We assume that

the demand duration is exponentially distributed and introduce the demand duration rate µde

= 1/MDD. A hazardous event (HE) can occur in two ways:

1. A demand occurs while the voted group has a fault

2. A dangerous (D) failure occurs while the demand is active (i.e., within the demand duration)

(Rausand, 2014).

State F is an absorbing state. For the proof test interval (0, τ), the average PFD is

PFD = 1

τ

∫ τ

0
P0(t )dt

since the state 0 is a failure state. The frequency of hazardous events (HEF) is the visit frequency

to state F. To come to state F, the subsystem must be in either state 0 or state 1" and then makes

a “jump”. Thus The average HEF in the proof test interval (0, τ) is

HEF = 1

τ

∫ τ

0
(P0(t )λde +P1"(t )λDU)

However when the event "HEF" occurs, it does not necessarily lead to a hazardous event. it only

refers to both annular preventer fail to operate when a demand occurs. The pipe rams in Lower

BOP stack will function as a safety barrier afterwards. It will most likely to prevent the occur-

rence of the hazardous event, i.e., the blowout. Modelling pipe rams is out of the scope of this

Master’s thesis.

The frequency of the demand varies based on various drilling situations. This should be taken

into consideration. Condition based monitoring gives an opportunity to alter the value of the
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demand rate based on the real time drilling condition. Any abnormal phenomena, e.g., the

change of the temperature and pressure in a well hole, could lead to a huge difference of the

demand rate. Thus, in Figure 4.13, λde can be altered based on the condition. So does the

failure rate λDU. Previous sections have shown the method to estimate the failure rate under

various temperature condition. To sum up, the conventional Markov model has predetermined

transition rates. The "Markov model" for CBM should have changable transition rates, includ-

ing the demand rate and the failure rate. If such model is applied successfully, when making

maintenance decisions, HEF is more persuasive than PFD. The last perspective has been always

overlooked.

4.5.2 Brownian motion process for a koon system with covariates

Normally two annular preventers are in one BOP system act as a 1oo2 system. As mentioned

before, the elastomers in an annular preventers are extremely sensitive to the temperature. And

the degradation process can be modelled as a Brownian motion process with a drift in a com-

ponent level. This section gives a solution to model the degradation process of a 1oo2 system

or any koon systems by using Brownian motion processes. The drift value is always changing

based on the observation. here, we use "usage" as the only covariate instead of the temperature.

The reasons are

1. The temperature for the two annular preventers are almost same which leads to the degra-

dation process similar. However, the usage for two annular preventers are not same. Usu-

ally, the upper annular preventer is used more often than the lower annular preventer.

This difference leads to total different two degradation process paths.

2. After enquiring a BOP expert Geir-Ove Strand, it is believed that comparing to the tem-

perature, the "usage" is a more significant influence factor for the annualar preventer life-

time. However, aforementioned models can still be used by simply changing temperature

values to usage values.

The result form Figure 4.4.4 can be used directly. The temperature value is changed to the times

of the use. It is OK to make such change since we use simulated data. The purpose is to illustrate

the model. The usage for the upper annular preventer increases faster than the lower annualr
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preventer. In reality, these numbers can be recorded automatically. The increment of the usage

values can increase the drift value µ, which leads to two different degradation paths. The MTTF

for this 1oo2 system is modelled as the maximum value of the two hitting times. Generally, for a

koon system, MTTF can be modelled as the maximum value of the first n-k+1 hitting times. The

Logic diagram of modelling a koon system is below.

Figure 4.14: Logic diagram for a koon system modelled by Brownian motion with several covari-
ates

4.5.3 Condition based maintenance strategy

Maintenance strategy is easy to make, since most efforts are done before this step. Conventional

maintenance strategies, e.g., age based maintenance or block based maintenance is not suitable

in our case. This section gives two maintenance policies for CBM.

The previous models usually give two results
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• RUL with the standard deviation

• The probability to survive till the next maintenance interval

Foulliaron et al. (2014) presents two maintenance policies which can fit our situation well. How-

ever, some changes are made here. We define the RUL of the system at the inspection time t is

RUL(t) and the probability to survive till the next maintenance interval is P(t). The maintenance

interval is defined as τ

RUL based policy

At the inspection time t for the annular preventers, this policy gives

• if the degradation level is less than the failure level, and RUL(t) < τ, do preventive mainte-

nance.

• if the degradation level is less than the failure level, and RUL(t) > τ, do nothing.

• if the degradation level larger than the failure level, do corrective maintenance

In our case, we can add the standard deviation of RUL as factor for this policy in future work.

Probability based policy

• if the degradation level is less than the failure level, and P(t) < Q, do preventive mainte-

nance.

• if the degradation level is less than the failure level, and P(t) >Q, do nothing.

• if the degradation level is larger than the failure level, do corrective maintenance.

Here Q is a predetermined value between 0 and 1. However, if we define a high Q value, it can

lead to high reliability (low risk) of the system but high preventive maintenance cost, vice versa.
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4.6 BOP condition monitoring systems

This section gives some industry applications in BOP condition monitoring systems. All these

applications have a same principle which is to monitor BOP systems based on the information

collected by sensors. This information can lead to predictable alarm. In addition, those systems

can automatically collect the data and transfer to onshore facilities. Onshore personnel can

analyze this data and convert it to useful information at any time.

4.6.1 NOV BOP dashboard system

The BOP dashboard, shown in Figure 4.15), aims to simplify complex BOP diagnostics in an

easy-to-understand format that facilitates a joint assessment of the issue. In early 2011, BP, En-

sco and National Oilwell Varco (NOV) collaborated on a project to consider preliminary devel-

opment of a BOP dashboard that takes existing alarms, analog data and events from the BOP

EWS and translates them into a high-level “traffic light” status. The traffic light logic is based on

levels of system redundancy that allow the user to understand when critical functions are im-

paired. Originally three automated tiers of colors were envisioned to provide the health status

of the BOP. “Red” status would mean no functionality, “yellow” status would mean functional

but no redundancy, and “green” status would be fully functional and with redundancy (Mckay,

2012).

4.6.2 GE’s drilling ibox system

GE’s drilling ibox system is a combination of hardware and software solution which is used to

convert existing data from event logger into reports, status updates (GE). It is a tool to make

preventive maintenance and condition based maintenance. The BOP can be monitored in real

time from an onshore facility to help with diagnostics and troubleshooting.

4.6.3 Rig watcher

Ashford Technology has developed Rig watcher for real time BOP condition monitoring. It

allows personnel to monitor BOP 24/7 from onshore, making maintenance plans and identi-
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Figure 4.15: BOP dashboard

fying incipient problems. It can view current and historical BOP information anytime, any-

where, and generate accurate valve cycle information for preventive maintenance. See http:

//www.rigwatcher.com/.

4.6.4 Ram position monitoring

A typical drilling BOP system designed for deep water application is equipped with five to six

ram type preventers. These rams are used to shear the drill pipes, to shear the casing, to seal

the well, to control and monitor oil and gas in the well. Rams are critical for BOP systems. If

the ram position can be monitored accurately, it will enhance the BOP systems reliability and,

at the same time reduce the maintenance cost. Ram position monitoring is offered by many

http://www.rigwatcher.com/
http://www.rigwatcher.com/
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BOP vendors. Many of them provide the exact position of ram in real time. Some representative

ram position monitoring systems are GE’s Ramtel (GE), EFC ram sensor, NOV’s ram position

indicator.



Chapter 5

Summary and Recommendations for

Further Work

5.1 Summary and Conclusions

This Master’s thesis covers almost all aspects of Condition Based Maintenance (CBM). All ob-

jectives in Chapter 1 are met. The thesis is mainly comprised of three parts. First part intro-

duces the world of CBM to readers. This part presents data acquisition, data processing and

databases, which are the foundation to CBM. Then it highlights models which are divided into

physics based models, data-driven models and hybrid models, for diagnostic and prognostic

use. Three promising diagnostic and prognostic models are specified, i.e., Markov model, Ar-

tificial neural networks and the time-dependent proportional hazard model. Afterwards, CBM

main steps are presented in Figure 2.2. This figure is made based on a large quantity of literature

review and can function as an index when readers are querying CBM data, diagnostic and prog-

nostic models and steps. It can also give readers a whole picture of CBM. Next, introductions

of Prognostic and Health Management (PHM), CBM industry applications and CBM state of the

art are followed. Specific challenges, phenomena and questions are summarized.

Second part presents a Matlab toolbox made by the writer. This toolbox estimates components’

Remaining Useful Life (RUL) with a standard deviation, the probability to survive till the next

maintenance time and Probability of Failure on Demand (PFD) based on numerous simula-

79
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tions. The stochastic processes behind are the (continuous time) Markov model, the Brownian

motion process and the Gamma process. Users can choose among them in the toolbox. Spe-

cially, MTTF and the steady-state-probability can be achieved by using the Markov model. This

toolbox is used often in the next part when data is analyzed. The writer makes the graphic inter-

face of this toolbox easy for people to use. All instructions are given. All code is also attached,

from the whole toolbox code to a tiny simulation step with detailed explanations. This toolbox

makes it possible for the people with little knowledge in statistics and maintenance to make

their own maintenance plans. This toolbox can be download on-line.

The third part of this Master’s thesis uses 7 statistic models and 3 stochastic processes to model

the degradation process of the elastomeric annular body from the annular preventer of a BOP

system. To make these models, many relevant papers and books are studied. In this Master’s

thesis, these models are not just "theories" or "formulas". Instead, for each model, the writer

gives a vivid example by analyzing the data with all Matlab code and detailed explanations fol-

lowing. The writer believe by doing this readers can have a deeper understanding of each model.

They may use one of these models for their own data in the future. To make it easier for read-

ers to follow, the difficulty of these models is increasing one after one. The complex model can

give a more precise estimation of the lifetime with more influence factors being taken into con-

sideration. As to the structure of the third part, firstly, much literature about BOP is read. A

brief description about BOP systems is followed. Virtual failure data is simulated based on a

trustful BOP reliability report. The exponential model is firstly used to give a preliminary under-

standing of the data. Afterwards, the Weibull model, the log-logistic model and the log-normal

model are used. All these models use Maximum likelihood Estimation (MLE). Minitab is the

analysing software used here. Then, the Brownian motion process is introduced to model the

degradation process. Next, the covariates are introduced (e.g., the temperature). The Weibull

regression model is elaborated followed by Proportional hazard model (Cox regression model)

and Arrhenius model. These three are very promising models used in CBM. Brownian motion is

used again to model the degradation. However, this time, the covariates are taken into account.

It leads to the change of the path of the Brownian motion process each time when covariates

are changing. It is more complex but more realistic. This is the final step to model the degra-



CHAPTER 5. SUMMARY 81

dation in a component level. To model the degradation in a system level, two extra models are

included. That is the Markov model and the Brownian motion process for a koon system with

covariates. They are shown in the same chapter. Finally, relevant maintenance plans are made

based on the result of "RUL" and "the probability to survive till the next maintenance interval.

5.2 Discussion and recommendations

• Change different elastomer types for various temperature range. For example, choosing

softer elastomers for lower temperature wells while harder elastomers for higher temper-

ature wells. By applying this, the temperate may not be the most significant influence

factor. Instead, the frequency of the usage of the annular preventer may become the most

significant influence factor. Because, wear and tear of the elastomer, caused by pipes pass-

ing by the BOP system, can lead to the internal leakage under demand. Aforementioned

models can still work only by replacing the temperature value to the usage.

• There is an almost infinite combination of drilling fluids, considering the large number of

additives and the temperature ranges of operations. It is very difficult and impractical to

test all critical elastomers with every drilling fluid combination possible, especially at all

the possible temperature ranges. Thus, when a drilling fluid is selected for a program, the

operator should ensure that it is compatible with the specific elastomers in the intended

BOP. The equipment manufacturers should document the effect of temperature on the

elastomers used as sealing components.

• The exponential model, the Weibull model, log-scale-family models and the Brownian

motion process can be used to model the degradation process without considering co-

variates, in a component level. Parameters like RUL, the probability to survive till the next

maintenance interval, can be estimated based on the failure data.

• The Weibull regression model, the Proportional hazard (Cox regression) model, Arrhenius

models and the Brownian motion process can be used to model the degradation process

when considering covariates, in a component level. Parameters like RUL, the probability
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to survive till the next maintenance interval, can be estimated based on the failure data

and the condition monitoring data.

• The Markov model and the Brownian motion process can be used to model the degra-

dation process with covariates, in a system level. Parameters like RUL, the probability to

survive till the next maintenance interval, can be estimated.

• Data and models are essential for making accurate diagnosis and prognosis. Many indus-

try applications within CBM concepts can be found. Many condition monitoring systems

are built recently in oil & gas industry.

• For accurate machine health diagnostic and prognostic, hidden (semi) Markov model, Ar-

tificial neural network and time-dependent proportional hazard model are good choices.

• CBM is a very wide concept. To be a good CBM engineer, one needs to have some knowl-

edge in signal processing, data processing, stochastic processes, statistic models, machine

mechanism, data mining and maintenance optimization. To make an analogy, if CBM is

a house, then maintenance optimization knowledge is only the roof. That is the last step

of CBM. The aforementioned knowledge is the bricks to build that house, and they are

essential. It is not wise to only focus on the roof.

• CBM up to the step “diagnostic” is well developed. See Figure 2.2. That is to say in step

“raw data acquisition”, “feature extraction” and “diagnostic”, choosing the correct models

and approaches is efficient to make machine fault diagnostic. However, the step “prog-

nostic” has not reached its maturity. Remaining Useful Life (RUL) prediction is always

with high uncertainty. Thus, instead of giving an uncertain RUL, CBM contributes more

on optimal maintenance strategy. Maintenance suggestions are made based on minimiz-

ing cost per time unit. Nevertheless, we have no best tool to validate whether it is the best

decision. Especially for dynamic system, conditions are changing over time. To achieve

more accurate prognostic, on-line condition monitoring is necessary.

• Remaining useful life (RUL) is the useful life left before equipment failure. Its estimation

is a key indicator for the health condition of equipment both in CBM and PHM. In CBM,
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RUL is usually estimated through various sources (i.e., event data and condition monitor-

ing data). Various methods on estimating RUL have been shown on many publications.

However, there is no such best approach which suits universally and reaches most accu-

rate outcome.

• Due to the huge uncertainty in prognostics, there are certain risks in making maintenance

decisions based on the prediction of RUL in CBM. Methods for fault diagnostic are numer-

ous and the results always show these methods are trustful. As to prognostics, methods

are scarce, and the results show that RUL is usually not so trustful. Usually validations for

RUL are undertaken in laboratory only.

• It is important to acquire correct data at correct position with correct measurement.

• What type of Data is needed to make models work? The answer can be found at Figure

2.2. To build these models, historical data is needed. Take ANN and HSMM for exam-

ple, historical data including event data (historical performance data, e.g., the speed) and

condition monitoring data (e.g., vibration) are used to “train” the models. See suggested

papers (Tian et al., 2010) and (Wang et al., 2004). And the on-line condition monitoring

data are used for diagnostic and prognostic.

5.3 Recommendations for Further Work

• More rams

This Master’s thesis only consider annular preventers in a BOP system. Pipe rams and

other types of rams should be taken into consideration in future work.

• Improve the toolbox

The self-made toolbox needs more modification work. It can be improved to a new level,

in which all models are included and data can be analyzed directly. In this phase, Matlab

and Minitab are used to analyze the data.

• Improve prognostic models

There is need to improve prognostic models, i.e., gathering data from sensors, extract fea-
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tures and comparing prognostics models against actual incidents or malfunctions. The

development of an equipment degradation prognostic model needs historical data and

equipment conditions. Thus a database (e.g., an extended OREDA database) that holds

both event data and condition monitoring data can help both build/validate models and

make prognosis.

• Applications of CBM in industry has just started

Numerous advanced mathematical models for CBM are proposed so far. Usually these

models are validated by laboratory experiment and the results indicate corresponding

methods are satisfied. With the help of modern computer, these sophisticated mathe-

matics models can be easily applied. Many steps (except the step "prognostic") of CBM as

showed in Figure 2.2 are well established. However, it is believed that the theory/model of

CBM has reached its bottleneck and application of CBM in the industry has only started.

• On-line condition monitoring is the future

For complex dynamical system, physics based models can seldom be built with high ac-

curacy, while data driven models are prevalently applied. Vibration analysis is the most

effective/popular method for machine condition monitoring both in the laboratory and

the industry. However, vibration sensors are usually costly. This makes vibration sen-

sors being installed only at the main components in most cases. Another suggestion for

dynamic system is that on-line condition monitoring is extremely important to get an ac-

curate prediction. According to (Jardine et al., 2006): Developing advanced sensor and

on-line condition monitoring to continuously monitoring its own health using on-line

data acquisition, on-line signal processing and on-line diagnostic tools.

• Research on Prognostic and health management

Methods for diagnostic and prognostic are two different aspects. Papers for diagnostic are

vast. Nevertheless, researches on prognostics have not received its prominence compared

to the other steps in CBM. The number of papers for prognostic started to increase steadily

around year 2005, many of which are under a concept called "Prognostic and Health Man-

agement (PHM)". Prognostic is superior to diagnostic. However, outcome of prognostic is

not always trustful at this phase.
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Acronyms

ANN Artificial Neural Network

CBM Condition Based Maintenance

HMM Hidden Markov Model

HSMM Hidden Semi Markov Model

IFR Increasing Failure Rate

IVHM Integrated Vehicle Health Management

LBOP Lower Blowout Prevent

LMRP Lower Marine Riser Package

MTTF Mean Time to Failure

PFD Probability of Failure on Demand

PHM Prognostic and Health Management

RAMS Reliability, Availability, Maintainability, and Safety

RUL Remaining Useful Life

SHM System Health Management
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Additional Information

B.1 Toolbox dashboard
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Figure B.1: Toolbox dashboard
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B.2 Matlab code for the toolbox

1 function varargout = Brownian_motion_simulation_GUI ( varargin )

2 % Begin i n i t i a l i z a t i o n code − DO NOT EDIT

3 gui_Singleton = 1 ;

4 gui_State = s t r u c t ( ’gui_Name ’ , mfilename , . . .

5 ’ gui_Singleton ’ , gui_Singleton , . . .

6 ’ gui_OpeningFcn ’ , @Brownian_motion_simulation_GUI_OpeningFcn , . . .

7 ’ gui_OutputFcn ’ , @Brownian_motion_simulation_GUI_OutputFcn , . . .

8 ’ gui_LayoutFcn ’ , [ ] , . . .

9 ’ gui_Callback ’ , [ ] ) ;

10 i f nargin && ischar ( varargin { 1 } )

11 gui_State . gui_Callback = str2func ( varargin { 1 } ) ;

12 end

13

14 i f nargout

15 [ varargout { 1 : nargout } ] = gui_mainfcn ( gui_State , varargin { : } ) ;

16 else

17 gui_mainfcn ( gui_State , varargin { : } ) ;

18 end

19 % −−− Executes j u s t before Brownian_motion_simulation_GUI i s made v i s i b l e .

20 function Brownian_motion_simulation_GUI_OpeningFcn ( hObject , eventdata , handles , varargin )

21

22 handles . output = hObject ;

23 guidata ( hObject , handles ) ;

24 % −−− Outputs from t h i s function are returned to the command l i n e .

25 function varargout = Brownian_motion_simulation_GUI_OutputFcn ( hObject , eventdata , handles

)

26 varargout { 1 } = handles . output ;

27 function edit1_Callback (~ , eventdata , handles )

28 % hObject handle to edit1 ( see GCBO)

29 % −−− Executes during object creation , a f t e r s e t t i n g a l l properties .

30 function edit1_CreateFcn ( hObject , eventdata , handles )

31 % hObject handle to edit1 ( see GCBO)

32
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33 i f ispc && isequal ( get ( hObject , ’ BackgroundColor ’ ) , get ( 0 , ’ defaultUicontrolBackgroundColor

’ ) )

34 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

35 end

36

37

38 % −−− Executes on button press in pushbutton1 .

39 function pushbutton1_Callback ( hObject , eventdata , handles )

40 % hObject handle to pushbutton1 ( see GCBO)

41 % eventdata reserved − to be defined in a future version of MATLAB

42 % handles structure with handles and user data ( see GUIDATA)

43 mu = str2double ( get ( handles . edit1 , ’ Str ing ’ ) ) ;

44 sigma = str2double ( get ( handles . edit2 , ’ Str ing ’ ) ) ;

45 t =1;

46 NumSteps=1000;

47 D=zeros ( 1 ,NumSteps) ;

48 Time=1:NumSteps ;

49 D( 1 ) = str2double ( get ( handles . edit3 , ’ Str ing ’ ) ) ;

50 F a i l _ l e v e l = str2double ( get ( handles . edit4 , ’ Str ing ’ ) ) ;

51 NumSimulations=str2double ( get ( handles . edit6 , ’ Str ing ’ ) ) ;

52 MTTF=1000.*ones ( 1 , NumSimulations ) ;

53 prop=zeros ( 1 , NumSimulations ) ;

54 maintenance_interval=str2double ( get ( handles . edit18 , ’ Str ing ’ ) ) ;

55 for j =1:NumSimulations

56

57 for i =1:NumSteps−1

58 D( i +1)=D( i ) +normrnd(mu* t , sqrt ( t ) *sigma ) ;

59 end

60

61 i f D(NumSteps) > F a i l _ l e v e l

62 MTTF( j ) =find (D==min(D(D>= F a i l _ l e v e l ) ) ) ;%because the time unit here i s one

63 % disp ( [ ’ I t f a i l s in ’ num2str (MTTF) ’ seconds ’ ] ) ;

64 else

65 % disp ( [ ’ I t w i l l not f a i l in ’ num2str (NumSteps* t ) ’ seconds ’ ] ) ;

66 end

67 i f D( maintenance_interval ) > F a i l _ l e v e l
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68 prop ( j ) =0;

69 else

70 prop ( j ) =1;

71 end

72 prop_to_survive=sum( prop ) /NumSimulations ;

73 RUL=sum(MTTF) /NumSimulations ;

74 variance =(sum( (MTTF−RUL) . ^ 2 ) ) /NumSimulations ;

75 SD=sqrt ( variance ) ;

76 % plot (Time ,D, ’ Parent ’ , handles . axes1 ) ;

77 plot (Time ,D) ;

78 hold on ;

79 end

80 hold o f f ;

81 set ( handles . text3 , ’ s t r i n g ’ , [RUL SD prop_to_survive ] ) ;

82

83 % −−− Executes on button press in e x i t .

84 function exit_Callback ( hObject , eventdata , handles )

85 % hObject handle to e x i t ( see GCBO)

86 % eventdata reserved − to be defined in a future version of MATLAB

87 % handles structure with handles and user data ( see GUIDATA)

88 delete ( handles . f igure1 ) ;

89

90 function edit2_Callback ( hObject , eventdata , handles )

91

92 % −−− Executes during object creation , a f t e r s e t t i n g a l l properties .

93 function edit2_CreateFcn ( hObject , eventdata , handles )

94 % hObject handle to edit2 ( see GCBO)

95

96 i f ispc && isequal ( get ( hObject , ’ BackgroundColor ’ ) , get ( 0 , ’ defaultUicontrolBackgroundColor

’ ) )

97 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

98 end

99

100 function edit3_Callback ( hObject , eventdata , handles )

101

102 function edit3_CreateFcn ( hObject , eventdata , handles )
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103 % hObject handle to edit3 ( see GCBO)

104

105 i f ispc && isequal ( get ( hObject , ’ BackgroundColor ’ ) , get ( 0 , ’ defaultUicontrolBackgroundColor

’ ) )

106 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

107 end

108

109 function edit4_Callback ( hObject , eventdata , handles )

110 % hObject handle to edit4 ( see GCBO)

111

112

113 % −−− Executes during object creation , a f t e r s e t t i n g a l l properties .

114 function edit4_CreateFcn ( hObject , eventdata , handles )

115

116 i f ispc && isequal ( get ( hObject , ’ BackgroundColor ’ ) , get ( 0 , ’ defaultUicontrolBackgroundColor

’ ) )

117 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

118 end

119

120 function edit5_Callback ( hObject , eventdata , handles )

121 % hObject handle to edit5 ( see GCBO)

122 % −−− Executes during object creation , a f t e r s e t t i n g a l l properties .

123 function edit5_CreateFcn ( hObject , eventdata , handles )

124 % hObject handle to edit5 ( see GCBO)

125 i f ispc && isequal ( get ( hObject , ’ BackgroundColor ’ ) , get ( 0 , ’ defaultUicontrolBackgroundColor

’ ) )

126 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

127 end

128 function edit6_Callback ( hObject , eventdata , handles )

129 % hObject handle to edit6 ( see GCBO)

130 % −−− Executes during object creation , a f t e r s e t t i n g a l l properties .

131 function edit6_CreateFcn ( hObject , eventdata , handles )

132 % hObject handle to edit6 ( see GCBO)

133 i f ispc && isequal ( get ( hObject , ’ BackgroundColor ’ ) , get ( 0 , ’ defaultUicontrolBackgroundColor

’ ) )

134 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;
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135 end

136 % −−− Executes on button press in pushbutton3 .

137 function pushbutton3_Callback ( hObject , eventdata , handles )

138 % markov

139 f =get ( handles . uitable2 , ’ data ’ )

140 dimension=str2num ( get ( handles . d , ’ Str ing ’ ) ) ;

141

142 for i =1: dimension

143 for j =1: dimension

144 r ( i , j ) = f ( i , j )

145 end

146 end

147 l l =cell2mat ( r ) ; % Your t r a n s i t i o n matrix here .

148 % lambdas= f ( find (~ isnan ( f ) ) ) ; % Your t r a n s i t i o n matrix here .

149 for d=1: length ( l l )

150 i f sum( l l (d , : ) ) ~=0

151 l l (d , d) =−1;

152 else

153 end

154 end

155 lambdas=1./ l l ;

156 % lambdas ( find ( lambdas== i n f ) ) =0;

157 numStates = length ( lambdas ) ; % Here number of s t a t e s are speci f ied .

158 numSimulations = str2num ( get ( handles . edit7 , ’ Str ing ’ ) ) ; % Choose the number of simulation

159 numSteps = 19000;% Here the chain length i s speci f ied .

160 States = zeros ( 1 , numSteps) ;

161 % States ( 1 ) = randi ( numStates ) %; i f the i n i t i a l s t a t e i s unknow

162 States ( 1 ) = str2num ( get ( handles . edit8 , ’ Str ing ’ ) ) ; % i f the i n i t i a l s t a t e i s 2

163 %Changing the following variables are not recommended .

164 warn=ones ( 1 , numStates ) * i n f ;% I f an absorbing s t a t e e x i s t s , t h i s "warn" vector

165 % helps to find MTTF

166 MTTF_vector=zeros ( 1 , numSimulations ) ;

167 Time = zeros ( 1 , numSteps) ; %To record time spent in each simulation

168 sojourn_time= zeros ( 1 , numStates ) ;% Find " v i r t u a l " sojourn time

169 rate = zeros ( 1 , numStates ) ;% Find t r a n s i t i o n rate for each s t a t e .

170 Count = zeros ( 1 , numStates ) ;
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171 absorb=sum(ismember( lambdas , warn , ’ rows ’ ) ) ; %This value i s to check i f there

172 % i s one or more obsorbing s t a t e s . "obsorb=0" means that there i s no

173 % absorbing s t a t e . Otherwise , i t means that there i s at l e a s t one

174 % absorbing s t a t e .

175 %Case one : no obsorbing s t a t e s

176 i f absorb==0

177 for i = 1 : numSteps−1

178 rate = lambdas ( States ( i ) , : ) ;

179 for n=1: numStates

180 sojourn_time (n) = exprnd ( rate (n) ) ;

181 end

182 m = min( sojourn_time ( sojourn_time >0) ) ;

183 % From s t a t e i to i , the t r a n s i t i o n rate i s

184 % negative . in such case , function "exprnd" w i l l not give the value .

185 % Thus i t w i l l not influence the "min" function .

186 index = find ( sojourn_time == m) ;% find the next s t a t e

187 States ( i +1) = index ;

188 Count ( States ( i ) ) = Count ( States ( i ) ) +m; %To sum each sojourn time

189 % for the each s t a t e

190 Time( i +1) = Time( i ) + m; % To record the time

191 end

192 plot (Time , States , ’ x ’ ) ;

193 prop = Count/Time(end) ; % To find the steady s t a t e p r o b a b i l i t i e s

194 % disp (sum( prop*lambdas ) ) ;% This value s h a l l be 0 i f i t i s a good simulation

195 % disp ( [ ’ The steady−s t a t e p r o b a b i l i t i e s are ’ num2str ( prop ) ] ) ;

196 % i f abs (sum( prop*lambdas ) ) <=2e−16

197 % disp ( ’ Congratulations ! I t i s a good simulation ’ ) ;

198 % else abs (sum( prop*lambdas ) ) >=2e−16

199 % disp ( ’Opps ! I t i s a bad simulation . Try again or increase value "numSteps " ’ ) ;

200 % end

201 set ( handles . text12 , ’ s t r i n g ’ , num2str ( prop ) ) ;

202 set ( handles . text26 , ’ s t r i n g ’ , [ ] ) ;

203 set ( handles . edit15 , ’ s t r i n g ’ , ’PFD i s the steady−s t a t e p r o b a b i l i t i e s of f a i l u r e s t a t e s ’ ) ;

204

205

206
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207

208 %Case two : at l e a s t one obsorbing s t a t e

209 else

210 for j =1: numSimulations

211 for i = 1 : numSteps−1

212 rate = lambdas ( States ( i ) , : ) ;

213 for n=1: numStates

214 sojourn_time (n) = exprnd ( rate (n) ) ;

215 end

216 i f isequal ( sojourn_time , warn) ==0

217 m = min( sojourn_time ( sojourn_time >0) ) ;

218 % From s t a t e i to i , the t r a n s i t i o n rate i s

219 % negative . in such case , function "exprnd" w i l l not give the value .

220 % Thus i t w i l l not influence the "min" function .

221 index = find ( sojourn_time == m) ;% find the next s t a t e

222 States ( i +1) = index ;

223 Count ( States ( i ) ) = Count ( States ( i ) ) +m; %To sum each sojourn time

224 % for the each s t a t e

225 Time( i +1) = Time( i ) + m; % To record the time

226 else

227 MTTF_vector ( j ) =Time( i ) ;

228 break ;

229 end

230 end

231 end

232 MTTF=sum( MTTF_vector ) /numSimulations ;

233 variance=sum( ( MTTF_vector−MTTF) . ^ 2 ) /numSimulations ;

234 sd=sqrt ( variance ) ;

235 set ( handles . text26 , ’ s t r i n g ’ , [MTTF; sd ] ) ;

236 set ( handles . text12 , ’ s t r i n g ’ , [ ] )

237 tao=str2num ( get ( handles . edit16 , ’ Str ing ’ ) ) ;

238 fa i luret ime =( tao−MTTF_vector ) . / tao ;

239 fa i luret ime ( find ( fai luretime <0) ) =0;

240 pfd=sum( fai luret ime ) /numSimulations ;

241 set ( handles . edit15 , ’ s t r i n g ’ , num2str ( pfd ) ) ;

242 % disp ( ’An absorbing s t a t e i s found ! ’ ) ;
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243 % disp ( [ ’MTTF i s ’ num2str (MTTF) ] ) ;

244 end

245

246 % set ( handles . text3 , ’ str ing ’ , [ f f ] )

247

248 function edit7_Callback ( hObject , eventdata , handles )

249

250 % −−− Executes during object creation , a f t e r s e t t i n g a l l properties .

251 function edit7_CreateFcn ( hObject , eventdata , handles )

252 i f ispc && isequal ( get ( hObject , ’ BackgroundColor ’ ) , get ( 0 , ’ defaultUicontrolBackgroundColor

’ ) )

253 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

254 end

255

256 function edit8_Callback ( hObject , eventdata , handles )

257

258 function edit8_CreateFcn ( hObject , eventdata , handles )

259

260 i f ispc && isequal ( get ( hObject , ’ BackgroundColor ’ ) , get ( 0 , ’ defaultUicontrolBackgroundColor

’ ) )

261 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

262 end

263

264 % −−− Executes on select ion change in popupmenu1.

265 function popupmenu1_Callback ( hObject , eventdata , handles )

266

267 contents = get ( handles . popupmenu1, ’ Value ’ ) ;

268

269 switch contents

270 case 1

271 set ( handles . text14 , ’ Str ing ’ , ’Go yellow ’ ) ;

272 case 2

273 set ( handles . text14 , ’ Str ing ’ , ’Go green ’ ) ;

274 case 3

275 set ( handles . text14 , ’ Str ing ’ , ’Go red ’ ) ;

276 otherwise
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277 delete ( handles . f igure1 ) ;

278 end

279

280 % −−− Executes during object creation , a f t e r s e t t i n g a l l properties .

281 function popupmenu1_CreateFcn ( hObject , eventdata , handles )

282

283 i f ispc && isequal ( get ( hObject , ’ BackgroundColor ’ ) , get ( 0 , ’ defaultUicontrolBackgroundColor

’ ) )

284 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

285 end

286

287 % −−− Executes on button press in pushbutton5 .

288 function pushbutton5_Callback ( hObject , eventdata , handles )

289 % hObject handle to pushbutton5 ( see GCBO)

290 % eventdata reserved − to be defined in a future version of MATLAB

291 % handles structure with handles and user data ( see GUIDATA)

292 t =0.01; % t =1;% MTTF changes when the delta t changes to 0.1 or 0 . 0 1 . . very odd why? ?

293 %ok I find i t out : t needs to be small enough for example 0.001 and

294 %numSteps needs to be large enough

295 A = str2double ( get ( handles . edit9 , ’ Str ing ’ ) ) ;

296 B = 1/ str2double ( get ( handles . edit10 , ’ Str ing ’ ) ) ;

297 numSteps=3000;

298 y=zeros ( 1 , numSteps) ;

299 y ( 1 ) =str2double ( get ( handles . edit11 , ’ Str ing ’ ) ) ;

300 time=zeros ( 1 , numSteps) ;

301 numSimulation=str2double ( get ( handles . edit12 , ’ Str ing ’ ) ) ;

302 F a i l u r e _ l e v e l =str2double ( get ( handles . edit13 , ’ Str ing ’ ) ) ;

303 maintenance_in=str2double ( get ( handles . edit19 , ’ Str ing ’ ) ) ;

304 MTTF=ones ( 1 , numSimulation ) . * ( numSteps* t ) ;

305 prop=ones ( 1 , numSimulation ) ;

306 for j =1:numSimulation

307

308 for i =1:numSteps−1

309 y ( i +1)=y ( i ) +gamrnd(A* t , B) ;

310 time ( i +1)=time ( i ) + t ;

311 end
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312

313 i f y (numSteps) > F a i l u r e _ l e v e l

314 f i r s t _ t i m e =find ( y> F ai l u r e_ le v el , 1 , ’ f i r s t ’ ) ;

315 MTTF( j ) = f i r s t _ t i m e * t ;

316 i f f i r s t _ t i m e * t < maintenance_in

317 prop ( j ) =0;

318 else

319 end

320 else

321 end

322 plot ( time , y ) ;

323 hold on ;

324 end

325 hold o f f ;

326 Mttf=sum(MTTF) /numSimulation ;

327 variance=sum( (MTTF−Mttf ) . ^ 2 ) /numSimulation ;

328 sd=sqrt ( variance ) ;

329 survive=sum( prop ) /numSimulation ;

330 set ( handles . edit14 , ’ s t r i n g ’ , num2str ( [ Mttf sd survive ] ) ) ;

331

332 function edit9_Callback ( hObject , eventdata , handles )

333

334 % −−− Executes during object creation , a f t e r s e t t i n g a l l properties .

335 function edit9_CreateFcn ( hObject , eventdata , handles )

336

337 i f ispc && isequal ( get ( hObject , ’ BackgroundColor ’ ) , get ( 0 , ’ defaultUicontrolBackgroundColor

’ ) )

338 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

339 end

340

341 function edit10_Callback ( hObject , eventdata , handles )

342

343 % −−− Executes during object creation , a f t e r s e t t i n g a l l properties .

344 function edit10_CreateFcn ( hObject , eventdata , handles )

345
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346 i f ispc && isequal ( get ( hObject , ’ BackgroundColor ’ ) , get ( 0 , ’ defaultUicontrolBackgroundColor

’ ) )

347 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

348 end

349

350 function edit11_Callback ( hObject , eventdata , handles )

351

352 % −−− Executes during object creation , a f t e r s e t t i n g a l l properties .

353 function edit11_CreateFcn ( hObject , eventdata , handles )

354

355 i f ispc && isequal ( get ( hObject , ’ BackgroundColor ’ ) , get ( 0 , ’ defaultUicontrolBackgroundColor

’ ) )

356 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

357 end

358

359 function edit12_Callback ( hObject , eventdata , handles )

360

361 function edit12_CreateFcn ( hObject , eventdata , handles )

362

363 i f ispc && isequal ( get ( hObject , ’ BackgroundColor ’ ) , get ( 0 , ’ defaultUicontrolBackgroundColor

’ ) )

364 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

365 end

366

367 function edit13_Callback ( hObject , eventdata , handles )

368 % hObject handle to edit13 ( see GCBO)

369 % eventdata reserved − to be defined in a future version of MATLAB

370 % handles structure with handles and user data ( see GUIDATA)

371

372 % Hints : get ( hObject , ’ String ’ ) returns contents of edit13 as t e x t

373 % str2double ( get ( hObject , ’ String ’ ) ) returns contents of edit13 as a double

374 % −−− Executes during object creation , a f t e r s e t t i n g a l l properties .

375 function edit13_CreateFcn ( hObject , eventdata , handles )

376 % hObject handle to edit13 ( see GCBO)

377 % eventdata reserved − to be defined in a future version of MATLAB

378 % handles empty − handles not created u n t i l a f t e r a l l CreateFcns cal led
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379 % Hint : edit controls usually have a white background on Windows .

380 % See ISPC and COMPUTER.

381 i f ispc && isequal ( get ( hObject , ’ BackgroundColor ’ ) , get ( 0 , ’ defaultUicontrolBackgroundColor

’ ) )

382 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

383 end

384

385 % −−− Executes during object creation , a f t e r s e t t i n g a l l properties .

386 function edit14_CreateFcn ( hObject , eventdata , handles )

387 % hObject handle to edit14 ( see GCBO)

388 % eventdata reserved − to be defined in a future version of MATLAB

389 % handles empty − handles not created u n t i l a f t e r a l l CreateFcns cal led

390 function edit15_Callback ( hObject , eventdata , handles )

391 % −−− Executes during object creation , a f t e r s e t t i n g a l l properties .

392 function edit15_CreateFcn ( hObject , eventdata , handles )

393

394 i f ispc && isequal ( get ( hObject , ’ BackgroundColor ’ ) , get ( 0 , ’ defaultUicontrolBackgroundColor

’ ) )

395 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

396 end

397

398 % −−− Executes when entered data in editable c e l l ( s ) in uitable2 .

399 function uitable2_CellEditCal lback ( hObject , eventdata , handles )

400 % −−− Executes on button press in d .

401 function d_Callback ( hObject , eventdata , handles )

402 % set ( handles . uitable2 , ’ String ’ , NaN)

403 function edit16_Callback ( hObject , eventdata , handles )

404 % hObject handle to edit16 ( see GCBO)

405 % eventdata reserved − to be defined in a future version of MATLAB

406 % handles structure with handles and user data ( see GUIDATA)

407

408 % Hints : get ( hObject , ’ String ’ ) returns contents of edit16 as t e x t

409 % str2double ( get ( hObject , ’ String ’ ) ) returns contents of edit16 as a double

410 % −−− Executes during object creation , a f t e r s e t t i n g a l l properties .

411 function edit16_CreateFcn ( hObject , eventdata , handles )

412 % hObject handle to edit16 ( see GCBO)
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413 % eventdata reserved − to be defined in a future version of MATLAB

414 % handles empty − handles not created u n t i l a f t e r a l l CreateFcns cal led

415

416 % Hint : edit controls usually have a white background on Windows .

417 % See ISPC and COMPUTER.

418 i f ispc && isequal ( get ( hObject , ’ BackgroundColor ’ ) , get ( 0 , ’ defaultUicontrolBackgroundColor

’ ) )

419 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

420 end

421 % −−− Executes during object creation , a f t e r s e t t i n g a l l properties .

422 function d_CreateFcn ( hObject , eventdata , handles )

423 % hObject handle to d ( see GCBO)

424 % eventdata reserved − to be defined in a future version of MATLAB

425 % handles empty − handles not created u n t i l a f t e r a l l CreateFcns cal led

426

427 % Hint : edit controls usually have a white background on Windows .

428 % See ISPC and COMPUTER.

429 i f ispc && isequal ( get ( hObject , ’ BackgroundColor ’ ) , get ( 0 , ’ defaultUicontrolBackgroundColor

’ ) )

430 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

431 end

432 function edit18_Callback ( hObject , eventdata , handles )

433 % hObject handle to edit18 ( see GCBO)

434 % eventdata reserved − to be defined in a future version of MATLAB

435 % handles structure with handles and user data ( see GUIDATA)

436

437 % Hints : get ( hObject , ’ String ’ ) returns contents of edit18 as t e x t

438 % str2double ( get ( hObject , ’ String ’ ) ) returns contents of edit18 as a double

439 % −−− Executes during object creation , a f t e r s e t t i n g a l l properties .

440 function edit18_CreateFcn ( hObject , eventdata , handles )

441 % hObject handle to edit18 ( see GCBO)

442 % eventdata reserved − to be defined in a future version of MATLAB

443 % handles empty − handles not created u n t i l a f t e r a l l CreateFcns cal led

444

445 % Hint : edit controls usually have a white background on Windows .

446 % See ISPC and COMPUTER.
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447 i f ispc && isequal ( get ( hObject , ’ BackgroundColor ’ ) , get ( 0 , ’ defaultUicontrolBackgroundColor

’ ) )

448 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

449 end

450 function edit19_Callback ( hObject , eventdata , handles )

451 % −−− Executes during object creation , a f t e r s e t t i n g a l l properties .

452 function edit19_CreateFcn ( hObject , eventdata , handles )

453 % Hint : edit controls usually have a white background on Windows .

454 % See ISPC and COMPUTER.

455 i f ispc && isequal ( get ( hObject , ’ BackgroundColor ’ ) , get ( 0 , ’ defaultUicontrolBackgroundColor

’ ) )

456 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

457 end



APPENDIX B. ADDITIONAL INFORMATION 102

B.3 Simulated lifetime for the annular preventer with the fail-

ure mode "internal leakage" without considering the tem-

perature

Figure B.2: Simulated lifetime for the annular preventer with the failure mode "internal leakage"
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B.4 Lifetime for the annular preventer with the failure mode

"internal leakage" considering the temperature

Figure B.3: Lifetime for the annular preventer with the failure mode "internal leakage" part 1
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Figure B.4: Lifetime for the annular preventer with the failure mode "internal leakage" part 2
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Figure B.5: Lifetime for the annular preventer with the failure mode "internal leakage" part 3

This data set can also be found in Minitab data set library with the name "Insulate.MTW". See

http://support.minitab.com/en-us/datasets/.

http://support.minitab.com/en-us/datasets/
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Figure B.6: Matrix "Total" used in Proportional hazard model

The values of entries in Matrix "Total" represent the temperature, the lifetime and censored

value, which are the same as shown before. However, the sequence of the column is changed.

Thus one screen shot of Matrix "Total" is given here.
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B.5 Cumulative baseline hazard rate from Proportional hazard

model (H)

Figure B.7: Cumulative baseline hazard rate from Proportional hazard model (H) part 1
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Figure B.8: Cumulative baseline hazard rate from Proportional hazard model (H) part 2
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Figure B.9: Cumulative baseline hazard rate from Proportional hazard model (H) part 3

Column 1 is the time at which failures are observed. Column 2 contains the value of the cumu-

lative baseline hazard rate at the failure time in Column 1.
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B.6 Academic research center focusing on maintenance

The following table contains academic research center focusing on maintenance and univer-

sities with adequate papers regarding to CBM or relevant topics. Table B.1 gives six renowned

research centers focusing on CBM.

Center for Intelligent Maintenance System (IMS):
This center focuses on technologies in embedded and remote monitoring, prognostics technologies,
and intelligent decision support tools (Watchdog Agent® Toolbox).
The Centre for Maintenance Optimization and Reliability Engineering:
This center focuses in the areas of condition-based maintenance, spares management,
protective devices, mathematical modeling, statistical analysis, software for CBM applications,
and failure-finding intervals. This center is within the Department of Mechanical
and Industrial Engineering at the University of Toronto.
NASA prognostic Center of Excellence (PCoE):
This center works on prognostic technology within the application areas of
aeronautics and space exploration
Center for advanced Life Cycle engineering, University of Maryland
The Integrated Vehicle Health Management (IVHM) Centre, Cranfield University, UK
Department of Engineering and Design ,University of Sussex, UK

Table B.1: research centers focusing on CBM
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B.7 CBM key words

Key words used for searching for papers within CBM concepts:

Condition Based Maintenance (CBM), Prognostic and Health Management (PHM), System Health

Management (SHM), Integrated Vehicle Health Mangement (IVHM) and Engine Health Man-

agement (EHM)

Key words for CBM steps and and outputs:

Data acquisition, data processing, extract features, signal processing, diagnostic/diagnosis, prog-

nostic/prognosis, pattern recognition, remaining useful life (RUL), condition monitoring, E-

maintenance, etc.

Key words for CBM data:

Waveform data, vibration data, acoustic emission, motor current, stator current, value type data,

oil analysis data, event data, velocity, strain, voltage, etc.

Key words for CBM data processing:

Time-domain analysis, time synchronous average, frequency-domain analysis, spectrum anal-

ysis, fast Fourier transform, time-frequency analysis, wavelet transform, principal component

analysis, trend analysis, etc.

Key words for CBM models:

Markov, hidden Markov model, Petri net, artificial neural network, proportional hazard model,

fuzzy logic system, expert system, support vector machine, auto-regression model, etc.
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