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Abstract 

 

 

The cellular processes leading to spinal long-term potentiation (LTP) are regarded as 

underlying mechanisms of sensitization in the dorsal horn.  

 

In this study, spinal LTP was induced by high-frequency stimulation (HFS) conditioning of 

the sciatic nerve. Electrophysiological extracellular recordings from nociceptive single 

dorsal horn neurons were used in combination with quantitative real-time reverse 

transcriptase polymerase chain reaction (RT-PCR) to examine the mechanisms for induction 

and maintenance of spinal LTP.  

 

Spinal administration of the N-methyl-D-aspartate-2B (NMDA-2B) receptor antagonist Ro 

25-6981 showed an antinociceptive effect on spinal dorsal horn neuronal activity and clearly 

attenuated the magnitude of spinal LTP. Moreover, induction of LTP after HFS 

conditioning was not observed following pre-treatment of the Ca2+/calmodulin-dependent 

protein kinase II (CaMKII) inhibitor AIP. A transient increase in the expression of the gene 

for the transcription factor Zif268 was observed in the spinal cord 120 minutes after HFS 

conditioning. Further, the expression of the genes for interleukin-1β (IL-1β), glial cell line-

derived neurotrophic factor (GDNF) and inducible nitric oxide synthase (iNOS) increased 

significantly in the ipsilateral dorsal horn 360 minutes after HFS conditioning. 

 

These data demonstrate that activation of the spinal NMDA-2B receptor and the 

intracellular CaMKII enzyme may be important for the induction of spinal LTP. Moreover 

our results indicate that increased gene expression of Zif268, IL-1β, GDNF and iNOS 

following HFS might be associated with the maintenance of spinal LTP.  
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1. INTRODUCTION 

 

 

1.1. Pain versus nociception 

Pain is defined as an unpleasant sensory and emotional experience associated with actual or 

potential tissue damage, or described in terms of such damage, for review see (Loeser and 

Treede, 2008). According to this definition, pain is a subjective experience. The pain 

processing is complex and do not only include the perception of sensory signals, but also 

cognitive analysis and associated emotional responses. Whether or not a particular stimulus 

will be perceived as painful depends not only on the nature of the stimulus, but also on 

memories, emotions and the context within it is experienced.  

 

Nociception is defined as the neuronal processes of encoding and processing noxious 

stimuli, for review see (Loeser and Treede, 2008). Hence, nociception, which refers to the 

object of sensory physiology including activity in specialized receptors, i.e. nociceptors, and 

specialized pathways activated by stimulation of the nociceptors, must be distinguished 

from the subjective phenomenon pain. Nociception is the core of many pain states, but pain 

may also occur without nociception and vice versa. 

  

 

1.2. Adaptive and maladaptive pain 

Pain is extremely important for all animals and essential for their survival. Generally, pain 

function as a protective mechanism warning the organism of potential or actual tissue 

damage. Acute nociceptive pain that is evoked by some sort of noxious stimuli has a clear 

biological function and normally causes the individual to escape from or remove the painful 

stimuli in time to prevent tissue damage, for review see (Kavaliers, 1988).  

 

The pain system has the ability to increase its sensitivity and reduce the threshold following 

exposure to inflammation or an injurious stimulus. The increased pain sensitivity for 

stimulation in the area of damaged tissue (primary hyperalgesia) and adjacent undamaged 

tissue (central hyperalgesia) is caused by sensitization of peripheral nociceptors innervating 

the area or sensitization centrally in the spinal cord, respectively. In addition, pain in 

response to non-nociceptive stimulus (allodynia) may occur. The development of 
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hyperalgesia is a necessary process encouraging immobilization to optimize the healing 

process. Like acute nociceptive pain evoked by noxious stimuli, this increased pain 

sensation following minor injuries and inflammation has a clear adaptive function.   

 

Normally the pain is temporary and disappears after tissue healing, but sometimes the pain 

and the pain hypersensitivity exceeds the healing process and may become long-lasting or 

chronic. The maintenance of pain following a healing process does not seem to serve a 

biological purpose and might result in unnecessary suffering for the individual. Under these 

circumstances, the pain sensation has a maladaptive dysfunction. 

 

 

1.3. Nociceptive processing and plasticity 

In most cases our perception of pain starts with activation of peripheral nociceptors, located 

on primary afferent nerve endings. The primary afferent nerve fibers conduct nociceptive 

information into the dorsal horn of the spinal cord where it is integrated with information 

from other sensory systems or segmental- or supraspinal regulation. From the spinal cord 

the nociceptive signals are conducted via neurons projecting to important areas in the 

brainstem and thalamus and further to sub-cortical and cortical areas where the perception 

of pain occurs.  

 

Nociceptive processing is subject to extensive plasticity at all levels of the pain system from 

the nociceptors in the periphery and centrally where connections between neurons are made. 

The plasticity of nociceptive processing is important for the development of different pain 

states. Multiple neurotransmitters, neuromodulators, receptors and structural changes are 

involved in the nociceptive transmission and contribute to the system’s plastic properties. 

Recently, recruitment of spinal glial cells has been shown to play a major role in plasticity 

and might influence on the development of hyperalgesia and allodynia (Meller et al., 1994; 

Watkins et al., 1997; Ma and Zhao, 2002; Ying et al., 2006). 

 

The mechanisms of plasticity in the nociceptive system are not fully revealed. Hence, there 

is a need for more knowledge about the cellular mechanisms responsible for peripheral and 

central neuronal plasticity important for development of pain hypersensitivity. In this thesis 
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components of central neuronal plasticity, which might be important for the development of 

pain hypersensitivity are investigated.  

 

 

1.4. The nociceptive signaling- and modulatory system 

 

1.4.1. Primary afferent nerve fibers 

The primary afferent nerve fibers respond to a variety of sensory modalities including 

mechanical, thermal and chemical stimuli. Thickly myelinated Aβ-fibers with low activation 

threshold receptors are responsible for conveying tactile information, whereas thinly 

myelinated Aδ-fibers and polymodal nociceptors of the unmyelinated C-fibers respond to 

more intense mechanical, chemical and thermal stimuli. These fibertypes conduct action 

potentials from the periphery to the central terminals at different velocities, with the Aβ-

fibers being the fastest and the C-fibers being the slowest, for review see (D'Mello and 

Dickenson, 2008). 

 

Nociceptors are free peripheral nerve endings innervating most of the tissues of the body 

including skin, muscles, joints and viscera, for review see (Willis and Westlund, 1997). In 

general, the nociceptive information is conducted from the periphery via the dorsal root 

ganglion into the grey matter of the spinal dorsal horn through primary afferent Aδ- and C-

fibers. Two important transmitters released from the primary afferent fibers following 

peripheral noxious stimuli are glutamate (Glu) (Kangrga and Randic, 1991) and substance P 

(SP)  (Kantner et al., 1985). Activation of Aδ-fibers leads to a sensation of fast, sharp and 

pricking pain in contrast to activation of the C-fibers that gives a sensation of slow burning 

and aching pain (Konietzny et al., 1981; Ochoa and Torebjork, 1989). In the spinal cord, 

neurotransmitters and neuromodulators released from the primary afferent nerve fibers may 

activate populations of both second order neurons and glial cells. 

 

 

1.4.2. The spinal dorsal horn 

The spinal cord consists of a butterfly-shaped core of grey matter containing cell bodies 

surrounded of a white matter primarily consisting of myelinated axons. In 1954, Rexed 

demonstrated that the grey matter of the spinal cord can be divided into ten distinct laminae 
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due to cellular architecture (Rexed, 1954). Physiological studies have since demonstrated an 

analogous functional laminar organization.  

 

The dorsal horn of the spinal cord includes laminae I-VI. Laminae VIII and IX comprise the 

ventral horn of the spinal cord, lamina VII is the transition between the dorsal and the 

ventral horn and lamina X is the grey matter around the central canal (Figure 1A). The 

central terminals of the primary afferent fibers terminate in the dorsal horn of the spinal 

cord. Aβ-fibers predominantly innervate laminae III-VI, whereas the high threshold 

nociceptive Aδ- and C-fibers terminate predominantly superficially in laminae I and II, with 

a smaller number reaching deeper into lamina V (Light and Perl, 1979; Sugiura et al., 1986), 

for review see (Todd, 2002) (Figure 1B). 

 

 

 

 

(A) (B)

 

 

Figure 1. Cross section of the spinal cord showing; (A) the localization of the spinal cord 

laminae I-X and (B) the central termination of the different primary afferents. Adapted from 

(Brodal, 2007a; b).  
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The spinal cord itself contains various neuronal cell types, which make direct or indirect 

connections with primary afferent fibers. Based on the projection of their axons, dorsal horn 

neurons can be divided into three general classes; interneurons, propriospinal neurons and 

projection neurons. Interneurons are local intrinsic dorsal horn neurons, which send their 

axons for only a short distance within the spinal cord. They act as local relays in spinal 

processing and comprise both excitatory and inhibitory interneurons. Propriospinal neurons 

are larger and send axons across segments of the spinal cord and are therefore involved with 

information transfer across spinal cord segments and reflex responses. Projection neurons 

send axons to supraspinal centers along ascending pathways and are responsible for the 

transfer of sensory information from the spinal cord to the brain, for review see 

(Sandkuhler, 1996; Willis and Westlund, 1997). Several lines of evidence have 

demonstrated that changes in synaptic efficacy in between the primary afferent neurons and 

the projection neurons may be crucial for the activity in the ascending pathways (Svendsen 

et al., 1997; Sandkuhler and Liu, 1998; Rygh et al., 1999; Gjerstad et al., 2001; Ikeda et al., 

2003).  

 

The spinal dorsal horn sensory projection neurons are in turn divided into different classes 

based on their synaptic input, laminar location and projection site. Low-threshold mechano-

receptive cells are excited by Aβ-afferent fibers and respond to innocuous stimuli. These 

cells are found in all laminae, but primarily in laminae III and IV. The nociceptive specific 

(NS) cells respond exclusively to noxious stimuli, such as intense mechanical stimulation, 

chemicals and temperatures above 45 oC. These nociceptive specific cells are present in 

lamina I, but also in laminae IV and V and synapse with Aδ- and C-fibers only. Convergent 

multireceptive cells, termed wide-dynamic range (WDR) cells, receive input from all types 

of sensory fibers; Aβ-, Aδ- and C-fibers, and therefore respond to the full range of 

stimulation, from light touch to noxious pinch, heat and chemicals. The WDR cells respond 

in a graded manner to peripheral stimuli with increasing response to increasing stimulus 

intensity. They are located widespread in the dorsal horn. However, the highest density of 

these neurons is within the deeper laminae of the dorsal horn, for review see (D'Mello and 

Dickenson, 2008). 

 

Essential to and modulating these neuronal spinal cord cell types are the non-neuronal glial 

cells. Glial cells have generally been considered primarily to subserve housekeeping and 
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supportive roles in the nervous system, but there is evidence showing that glial cells also 

influence on nociceptive transmission (Ma and Zhao, 2002). Glial cells in the spinal cord 

consist of oligodendrocytes, astrocytes and microglia and are the most abundant cell type in 

the central nervous system (CNS). There are 3-5 more glial cells than neurons in the CNS, 

for review see (Hansson, 2006). Oligodendrocytes are cells responsible for myelin sheath 

formation and until today there are few experiments investigating its contributions to the 

regulation of nociceptiv transmission. Therefore, only astrocytes and microglia are 

discussed in this thesis.  

 

Astrocytes are in intimate contact with neurons and they communicate signals to each other 

via the extracellular space. The astrocytes thightly enwrap the vast majority of the synapses 

in the CNS and selectively modulate neuron to neuron synaptic communication. In addition, 

they make extensive contacts with endothelial cells from capillaries, for review see (Abbott 

et al., 2006), interact with microglia and are interconnected with one another by gap 

junctions forming networks of coupled astrocytes (Cornell-Bell et al., 1990; Blomstrand et 

al., 1999). Generally, astrocytes perform functions critical for optimal neuronal functioning, 

including regulation of the composition of the extracellular environment, as well as 

providing energy and metabolic precursors to neurons, for review see (Hansson, 2006; 

Watkins et al., 2007).  

 

Microglia are small cells with a variable number of branching processes. They are 

considered to be the equivalent of macrophages in the periphery and perform immune 

surveillance under basal conditions. Resting microglia direct small processes toward blood 

vessels, other glial cells and neuronal elements and act as sensors to various stimuli that 

threaten physiological homeostasis. Activation of microglia may result in changes in 

morphology from a resting ramified shape into an active amoeboid shape, changes in gene 

expression, cell proliferation and function, for review see (Hansson and Ronnback, 2003; 

Watkins et al., 2007). 

 

Both astrocytes and microglia are now known to play a key role in regulating synaptic 

transmission and participate in synaptic plasticity (Ma and Zhao, 2002), for review see 

(Araque et al., 1999). Glial cells are capable of responding to various neuronal factors, such 

as glutamate, SP and adenosine triphosphate (ATP) via their receptors and subsequently 
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change glial responsitivity leading to the release of chemical mediators, such as 

proinflammatory cytokines, ATP, nitric oxide (NO), excitatory amino acids, prostaglandins 

and nerve growth factors, that can act on neurons and alter their functions. Glial cells may in 

this way directly or indirectly participate in neuronal sensitization, for review see (De Leo et 

al., 2006; Watkins et al., 2007). 

 

 

1.4.3. Ascending pathways 

The output of sensory information from the dorsal horn to different structures in the brain is 

carried by spinal projection neurons along ascending pathways (Ikeda et al., 2003), for 

review see (Willis and Westlund, 1997; Gauriau and Bernard, 2002; Todd, 2002) (Figure 2). 

One of the major ascending pathways important for pain is the spinothalamic tract (STT) 

sending direct projections to different nuclei in thalamus. Most of the STT cells originate in 

the superficial laminae I, but some STT cells are also present in the deeper laminae III-VII 

and X (Giesler et al., 1979; Burstein et al., 1990). Moreover, the spinomesencephalic tract 

(SMT) and the spinoreticular tract (SRT) project to important homeostatic control regions in 

the brainstem and the mesencephalon, i.e. the parabrachial (PB) area, reticular formation, 

locus coeruleus (LC), subcoereleus (SC) and the midbrain periaqueductal grey (PAG) 

(Wiberg et al., 1987; Yezierski, 1988; Andrew et al., 2003). The SMT and the SRT originate 

in laminae I and V in the spinal cord. Some SMT are also located in lamina VII. The 

majority of the axons in the STT, SMT and the SRT cross to the contralateral side of the 

spinal cord before projecting to the supraspinal structures. In contrast, the 

spinohypothalamic tract (SHT) projects bilaterally to the hypothalamus and the ventral 

forebrain (Burstein et al., 1987). The SHT projections, originating in the laminae I, V, VII 

and X, may be important in autonomic, neuroendocrine and emotional aspects of pain. 

 

Importantly, many projection neurons are involved in activation of descending modulatory 

systems, which in turn may control the sensory transmission in the dorsal horn. 

 

 

1.4.4. Descending modulatory systems 

Descending pathways from brainstem and midbrain structures are able to influence on 

nociceptive signaling in the dorsal horn of the spinal cord (Figure 2). Although some 
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descending projections are facilitatory, most descending projections are of inhibitory nature 

(Gjerstad et al., 2001). The midbrain PAG and the brainstem rostroventromedial medulla 

(RVM) are important areas in the supraspinal descending modulatory system. These 

structures control activity in the serotonergic, noradrenergic and enkephalinergic descending 

projections (Reddy et al., 1990; Marlier et al., 1991; Rajaofetra et al., 1992). PAG receives 

projections from both laminae I nociceptive neurons and laminae III-VI dorsal horn neurons 

(Keay et al., 1997). In addition, there are projections to the PAG from the reticular 

formation, LC, hypothalamus (Beitz, 1982), amygdala (Hopkins and Holstege, 1978), 

medial prefrontal areas, anterior cingulate cortex and insular cortex (Hardy and Leichnetz, 

1981; Beitz, 1982). Thus, the nociceptive modulatory system is a complex network, which 

integrates information from other areas in the brain with information from the brainstem and 

the spinal dorsal horn. The descending modulatory system may therefore be controlled by 

complex cognitive and emotional processing (Matre et al., 2006). PAG projects minimally 

to the spinal dorsal horn, so the nociceptive-modulating action of the PAG on the spinal 

cord, is relayed largely through the RVM. Additional systems from the LC to the spinal cord 

also modulate spinal activity. 

 

Thus, the spinal dorsal horn functions as a sensory filter that is controlled by the descending 

modulatory system from supraspinal structures (Figure 2). The nociceptive information 

reaching the brain may due to this regulation be conciderably changed compared to the 

intensity of the nociceptive peripheral stimuli. 
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Figure 2. A simplified presentation of the nociceptive signaling- and modulatory system. 

Activation of peripheral nociceptors generates activity in Aδ- and C-fiber afferents, which 

conduct the nociceptive information into the spinal dorsal horn where glutamate (Glu) and 

substance P (SP) are released. From the spinal cord the nociceptive signals are transferred 

via neurons projecting to different areas in the brainstem, subcortical- and cortical areas. 

Pathways from the cortical areas, periaqueductal grey (PAG) and hypothalamus control, via 

a link in the rostroventral medulla (RVM), excitatory and inhibitory output from the 

brainstem to the spinal cord. Additional systems from the locus coeruleus (LC) to the spinal 

cord also modulate spinal activity. Adapted from (Gjerstad, 2007). 



24 

 

1.5. Synaptic plasticity and central sensitization in the spinal cord  

An important feature of synaptic processing is that it is subject to diverse forms of use-

dependent plasticity (Liu and Sandkuhler, 1995; Liu and Sandkuhler, 1997), for review see 

(Dubner and Ruda, 1992; Woolf, 1996). It has long been recognized that synaptic plasticity 

plays an important role in the development of sensitization of nociceptive neurons in the 

spinal cord and it is believed that central sensitization is critical for the development of 

different pain states where hypersensitivity in the CNS is likely to occur, for review see 

(Woolf and Salter, 2000).  

 

Central sensitization of spinal nociceptive neurons has been defined to involve several 

phenomena including increased excitability of nociceptive neurons in the CNS to their 

normal afferent input and a reduction in the activation threshold, for review see (Loeser and 

Treede, 2008). In addition, central sensitization may also induce spontaneous discharges and 

a spread of the receptive field. On the behavioral level, central sensitization may manifest as 

secondary hyperalgesia (increased pain sensitivity to noxious stimulation) and/or allodynia 

(pain in response to non-nociceptive stimuli), for review see (Woolf, 1996). 

 

Central sensitization may be the outcome of a variety of cellular and circuits changes that 

occur in the CNS, which may alter neuronal excitability either for a short or prolonged 

period. In addition to an increase in synaptic strength (Randic et al., 1993; Liu and 

Sandkuhler, 1995), central sensitization may also involve other mechanisms not directly 

affecting the synapses. These mechanisms may include loss of inhibitory interneurons or 

structural reorganization (Woolf et al., 1992), for review see (Woolf and Doubell, 1994). 

Central sensitization needs to be differentiated from peripheral sensitization, which is 

characterized by increased excitability of peripheral nerve terminals. In central sensitization, 

responses to sensory stimulation may be enhanced in the spinal cord and/or the brain 

without any change in the excitability of primary afferent neurons, for review see (Willis, 

2002).  

 

Evidence for increased excitation (central sensitization) in the spinal cord following noxious 

afferent stimulation was first fully described in 1983 by Woolf (Woolf, 1983). In 

decerebrated rats with intact spinal and brainstem reflexes, Woolf showed that a heat injury 

to the lateral edge of the foot decreased the mechanical and heat withdrawal thresholds and 
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increased the amplitude of flexor reflexes both ipsi- and contralateral to the lesion. 

Following this study, a large number of published research reports have generated evidence 

for a central component in hypersensitive pain states, for review see (Coderre et al., 1993; 

Mannion and Woolf, 2000). 

 

 

1.5.1. Long-term potentiation (LTP) 

The discovery of use-dependent increase in synaptic strength, called long-term potentiation 

(LTP), in hippocampus initiated an extensive research in the field of neuroscience of 

synaptic plasticity (Bliss and Lømo, 1973). Brief high-frequency trains of electrical stimuli 

resulted in increased efficiency of transmission at the perforant path-granule cell synapse in 

the rabbit hippocampus that could last for hours (Bliss and Lømo, 1973).  

 

Changes in synaptic strength has later been demonstrated in many other parts of the central 

nervous system (Randic et al., 1993; Liu and Sandkuhler, 1995; Rogan et al., 1997). 

Induction of spinal LTP was first demonstrated in vitro in spinal cord slices of the ventral 

horn (Pockett and Figurov, 1993). Later, induction of LTP has been shown both in vitro and 

in vivo in the dorsal horn using different techniques; field potential recordings in superficial 

dorsal horn neurons, single cell recordings in deep dorsal horn WDR neurons and patch-

clamp techniques in identified superficial neurons in the spinal cord (Randic et al., 1993; 

Liu and Sandkuhler, 1995; Svendsen et al., 1997; Gjerstad et al., 2001; Azkue et al., 2003; 

Ikeda et al., 2003; Qu et al., 2009). Optical recording techniques have been utilized to 

monitor presynaptic activity in primary afferents (Ikeda and Murase 2004). 

 

Previous studies have demonstrated that spinal LTP may be induced by various noxious 

stimuli. For example, brief electrical high-frequency stimulation (HFS) (about 100 Hz) 

conditioning of the sciatic nerve induces LTP in superficial and deep dorsal horn neurons 

(Liu and Sandkuhler, 1995; Svendsen et al., 1997; Gjerstad et al., 2001; Wallin et al., 2003; 

Ikeda et al., 2006). Recently, it has been shown that low-frequency stimulation (LFS) (2 Hz) 

conditioning of the dorsal root afferents successfully induced LTP in lamina I neurons 

projecting to the PAG (Ikeda et al., 2006). In deep dorsal horn neurons a frequency of 30 Hz 

induced a robust LTP, whereas LFS (3 Hz) conditioning induced a short-lasting spinal LTP 

(Haugan et al., 2008). Moreover, strong natural stimulation, such as inflammation, radiant 
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heating of the skin and tissue- and nerve injury has also been shown to induce LTP in the 

spinal dorsal horn (Sandkuhler and Liu, 1998; Rygh et al., 1999; Ikeda et al., 2006). 

However, some of these forms of low level afferent input may induce LTP only, if 

descending pathways are interrupted (Sandkuhler and Liu, 1998). Most of the experimental 

studies inducing spinal LTP are based on HFS conditioning of the sciatic nerve.  

 

These studies have shown that the character, intensity and frequency of the peripheral 

conditioning stimuli are important for the time course and duration of spinal LTP. For 

instance, after a brief electrical or mild natural noxious stimulus LTP may last for only a 

few minutes, but may, however, last for up to 24 hours following repetitive trains of HFS 

applied to the sciatic nerve (Liu and Sandkuhler, 1997), for review see (Sandkuhler, 2007). 

Full expression of LTP may take only a few minutes after tetanic stimulation (Randic et al., 

1993; Liu and Sandkuhler, 1995; Liu and Sandkuhler, 1997; Svendsen et al., 1998) or may 

require up to an hour after natural noxious stimulation (Sandkuhler and Liu, 1998). 

Moreover, the frequency of discharge might influence on which synapse that become 

potentiated (Ikeda et al., 2006).  

 

Experimental data suggest that the expression of LTP is influenced by descending control 

and local inhibitory systems. In rats where the descending pathways were interrupted or 

weakened, HFS gave a greater LTP compared to intact rats (Svendsen et al., 1999a; Gjerstad 

et al., 2001), suggesting a tonic descending inhibition preventing LTP under physiological 

conditions. Moreover, spinal cord stimulation, increasing the activity in inhibitory systems, 

attenuated established spinal LTP in deep WDR neurons (Wallin et al., 2003). Interestingly, 

noxious sciatic stimulation, which induces spinal LTP, has also been shown to affect 

activity in the supraspinal pain modulating circuitry (Hjornevik et al., 2008; Hjornevik et al., 

2009).  

 

Spinal LTP has similarities with the phenomenon central sensitization and it has been 

suggested that spinal LTP is a form of central sensitization or vice versa, for review see 

(Sandkuhler, 2000; Willis, 2002). It is a well established experimental phenomenon within 

the spinal cord, for review see (Sandkuhler, 2000; 2007). Several mechanisms are involved 

in the induction and maintenance of spinal LTP.  
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1.5.2. Cellular mechanisms of spinal LTP 

Previous data show that tetanical stimulation of the sciatic nerve leads to not only glutamate 

release from primary afferent neurons, but also increased extracellular SP level in the dorsal 

horn (Afrah et al., 2002).  

 

It is now well established that co-release of glutamate and SP stimulates postsynaptic α-

amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)-, neurokinin 1 (NK1)- and 

metabotrophic glutamate (mGlu) receptors, which in turn, because of the subsequent long-

lasting postsynaptic depolarization, remove the Mg2+-block of the N-methyl-D-aspartate 

(NMDA) receptors. Binding of glutamate to unblocked NMDA receptors triggers a 

substantial influx of Ca2+ into the postsynaptic neuron. In addition, a depolarization of 

postsynaptic neurons may lead to Ca2+-influx through voltage-gated T-type Ca2+-channels. 

Activation of both the mGluRI- and the NK1 receptors may trigger the phospholipase C 

(PLC)- inositol 1,4,5-triphosphate (IP3) pathway, leading to release of Ca2+ from 

intracellular stores, which further increases the cytosolic Ca2+-concentration. It has been 

shown that application of antagonists for the AMPA receptor (Svendsen et al., 1998), NK1 

receptor (Liu and Sandkuhler, 1997), mGluRI (Azkue et al., 2003) and the NMDA receptor 

(Liu and Sandkuhler, 1995; Pockett, 1995; Svendsen et al., 1998; Ikeda et al., 2003) partly 

or fully prevent the induction of spinal LTP. Moreover, the NMDA receptor antagonist AP5 

may reverse the potentiated C-fiber evoked response when it is given 1 hour after HFS 

(Svendsen et al., 1999b). In addition, evidence exists that induction of LTP also involves 

activation of the T-type Ca2+-channels, PLC and the intracellular IP3 receptors (Ikeda et al., 

2003). Thus, these receptor systems seem to be important for the induction of spinal LTP 

(Figure 3). 

  

As a consequence of the activation of these receptors, a significant rise in Ca2+-level is 

induced in spinal dorsal horn neurons. A rise in postsynaptic Ca2+-concentration is essential 

for LTP induction and the magnitude of Ca2+ is linearly correlated with the magnitude of 

LTP in vitro (Ikeda et al., 2003). Recent data have demonstrated that stimuli inducing LTP 

cause substantial rise in Ca2+ in lamina I neurons, not only in vitro, but also in intact animals 

(Ikeda et al., 2006). 
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Increased cytosolic Ca2+ may result in activation of a variety of different Ca2+-dependent 

cellular responses. Previous data indicate that the Ca2+-dependent enzymes protein kinase A 

(PKA), Ca2+/calmodulin-dependent protein kinase II (CaMKII) and protein kinase C (PKC) 

may be important for the induction of LTP of field potentials (Yang et al., 2004). Thus, 

spinal LTP may be associated with both phosphorylation of receptors and transcription 

factors, which may contribute to changes in the synaptic efficacy.  

 

Furthermore, data suggest that the nitric oxide synthase (NOS) and NO are involved in LTP 

of C-fiber evoked field potentials induced by tetanic sciatic stimulation (Ikeda and Murase, 

2004; Zhang et al., 2005b). The gaseous molecule NO, which is synthesized under the 

control of NOS, is a cell-permeable neuromodulator, and may diffuse freely in the 

extracellular space to excert its action on adjacent or distant cells.  

 

A rise in cytosolic Ca2+-level may also trigger changes in the transcriptional and 

translational levels in dorsal horn neurons. Recent data show that maintenance of LTP in the 

spinal dorsal horn may be inhibited by protein synthesis inhibitors anisomycin and 

cycloheximide (Hu et al., 2003). This indicates that the maintenance of LTP in the spinal 

cord may involve altered gene expression and protein synthesis. A primary event in this 

process may be induction of transcription factors, followed by altered expression of late-

response genes (LRGs). 

 

Prolonged activation of both extracellular signal-regulated kinase (ERK) and cAMP 

response element-binding protein (CREB) following induction of spinal LTP of C-fiber 

evoked field potentials has been shown (Xin et al., 2006). Thus, it is suggested that the 

ERK/CREB pathway in the spinal dorsal horn is necessary for the induction and 

maintenance of LTP. Although ERK is involved in cytosolic cellular signaling, it can also 

be translocated to the nucleus where it activates CREB, which in turn stimulates 

transcription by binding to the regulatory cAMP response element (CRE). Actually, CREB 

binding sites have been found in the promoter region of a long list of genes. The 

ERK/CREB pathway may therefore have both short-term and long-term effects on the 

neuronal excitability.  
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Many transcription factors may be induced by the ERK-CREB pathway. Expression of the 

CRE-containing transcription factor Zif268 (Rygh et al., 2006; Haugan et al., 2008) and 

activity-regulated-cytoskeleton-associated protein (Arc) (Haugan et al., 2008) in the spinal 

dorsal horn have been shown to be associated with spinal LTP. Generally, the responses of 

the transcription factors are complex and may drive a chain of molecular events, including 

induction of other transcription factors as well as LRGs like growth factors, signaling 

enzymes and structural proteins that may lead to long-term changes in synaptic efficacy. 

Today, there are few studies examining the expression of specific genes or proteins in the 

spinal cord following HFS conditioning of the sciatic nerve.  

 

Recently, recruitment of glial cells has shown to play a major role in plasticity (Ma and 

Zhao, 2002; Ikeda and Murase, 2004). Experimental data based on animals in anaesthesia 

have revealed that disruption of the function of glial cells by glial metabolic inhibitor may 

block spinal LTP (Ma and Zhao, 2002). Thus, it seems likely that induction of spinal LTP 

not only involves activation of neurons, but also activation of glial cells within the spinal 

cord (Ma and Zhao, 2002; Ikeda and Murase, 2004). However, the details on how the glial 

cells may influence on neuronal nociceptive transmission following induction of spinal LTP 

remains to be investigated. 

 

In theory, SP released from neurons following tetanic stimulation (Afrah et al., 2002) may 

be a source of activation of glial cells via their receptors (Svensson et al., 2003; Liu et al., 

2006; Werry et al., 2006). Upon activation, glial cells may activate, synthetize or release 

substances that directly or indirectly may enhance nociceptive processing and transmission 

in the spinal cord by increasing the release of neurotransmitters from presynaptic terminals 

and the excitability of nearby neurons. These substances may include the proinflammatory 

cytokine interleukin-1β (IL-1β), the trophic factor glial cell line-derived neurotrophic factor 

(GDNF), iNOS synthesized NO, p38 mitogen-activated protein kinase (p38 MAPK), 

cyclooxygenase 2 (COX2) synthetized prostaglandins and tumor necrosis factor α (TNFα) 

(Appel et al., 1997; Marcus et al., 2003; Raghavendra et al., 2004), for review see 

(Marchand et al., 2005; Watkins et al., 2007). Thus, glial cells may respond to various 

neuronal factors that subsequently may alter glial response and ultimately affect glial- 

neuronal interaction, for review see (De Leo et al., 2006). 
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Based on previous studies, it has been suggested that at least two different phases of LTP 

can be distinguished depending upon duration and signal transduction pathways involved, 

for review see (Sandkuhler, 2007). While the early- phase might involve activation and 

modification of existing receptors and proteins, it is suggested that the late- phase might 

involve changes in gene expression and de novo protein synthesis (Ma and Zhao, 2002; 

Azkue et al., 2003; Hu et al., 2003; Ikeda et al., 2003; Xin et al., 2006). 
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Figure 3. Diagram of a synapse consisting of a primary afferent nerve terminal, a spinal 

neuron, a glial cell and potential mechanisms involved in LTP and central sensitization. Co-

release of glutamate (Glu) and substance P (SP) in the dorsal horn activates postsynaptic 

AMPA receptors, mGluR1 receptors, NK1 receptors and intracellular IP3 receptors, which 

in turn because of subsequent long-lasting postsynaptic depolarization activates the T-type 

Ca2+-channel and remove the Mg2+-block of the NMDA receptors. This increases the 

cytosolic Ca2+-level resulting in stimulation of NOS and the intracellular kinases, i.e. PKA, 

PKC and CaMKII. The increase in cytosolic Ca2+-level may trigger activation of ERK, 

which in turn may activate transcription of genes encoding proteins important for synaptic 

transmission. Neurotransmitters released from neurons may also be a source of activation of 

glial cells. Upon activation, glia cells synthesize and release substances, i.e. cytokines, 

which may modulate synaptic transmission. These processes might be important for 

induction and maintenance of LTP. Adapted from (Gjerstad, 2007). 
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2. AIMS OF THE STUDY 

 

 

The main purpose of this study was to investigate the cellular mechanisms of induction and 

maintenance of spinal LTP induced by HFS conditioning of the sciatic nerve. More 

specifically we aimed to: 

 

 

I. Investigate the role of the NMDA receptors containing the NMDA receptor 2B 

(NR2B) subunit on the induction of LTP in single nociceptive dorsal horn 

neurons. 

 

 

II. Examine whether the intracellular CaMKII in the spinal cord is necessary for 

induction of LTP in single nociceptive dorsal horn neurons. 

 

 

III. Examine whether expression of the transcription factors Zif268 and c-fos are 

associated with maintenance of spinal LTP. 

 

 

IV. Investigate whether maintenance of spinal LTP is associated with local spinal 

changes in the expression of genes encoding the proinflammatory substances IL-

1β, GDNF, iNOS, p38 MAPK, COX2 and TNFα.  
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3. METHODS 

 

 

The methods used are described in detail in paper I-IV. However, below is a brief 

description of the different methods used. 

 

 

3.1. Animals 

Female Sprague-Dawley (SD) rats delivered from Scandbur DK, Sollentuna, Sweden were 

used in all experiments. After arrival, the rats were housed in standard white plastic cages 

with four animals in each cage. The air temperature was kept at 20-22oC and the relative 

humidity was kept at 50-55 %. The experiments were performed during the light period of 

an artificial 12h/12h dark/light cycle. The light was switched on at 06:00 am. All animals 

had free access to standard rat food and water. At least one week of acclimatization was 

allowed before the experiments. The rats used weighed 250-350 gram.  

 

 

3.2. Anaesthesia and surgery 

The rats were anaesthetized with urethane (1.3-2.1 g/kg body weight, intraperitoneally) and 

placed on a heating pad. Absence of foot withdrawal to pinch indicated adequate 

anaesthesia. The core temperature was kept constant at 36-37 oC by means of an electrical 

feedback control unit. In some experiments, a tube was inserted 10 mm into the trachea and 

fixed with a suture for artificial ventilation (Harvard Rodent ventilator, model 683). 

Laminectomy was performed at vertebrae Th13-L1, corresponding to the spinal cord 

segments where the sciatic nerve roots enter the cord.  

 

The sciatic nerve was dissected free at the mid-thigh level and isolated from the surrounding 

tissue by a plastic film. A bipolar silver hook electrode was placed proximal to the main 

branches of the sciatic nerve for electrical stimulation. To avoid muscle contractions in the 

experiments with single cell recordings, the rats received an intramuscular injection of 0.2 

ml pancuronium bromide (2 mg/ml; Pavulon, Organon, the Netherlands). The animals were 

killed immediately after the experiments.  
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3.3. Single-cell recordings 

For single-cell recordings, parylene-coated tungsten microelectrodes with impedance 2-5 

M  (Friedrick Haer & CO, Bowdoinham, USA) were lowered vertically into the dorsal 

horn of the spinal cord by an electronically controlled micromanipulator (Figure 4A). The 

recorded signals were amplified with an AC pre-amplifier, filtered with band-width 500-

1250 Hz corresponding to the duration of the action potentials 0.8-2.0 ms, digitalized with 

the interface CED 1401µ and continuously captured on a PC with the software CED Spike 2 

(Cambridge Electronic Design, Cambridge UK). The sampling frequency was 20000 Hz. 

Spikes 40-300 ms after stimulus were defined as C-fibre responses, i.e. responses in the 

neurons evoked by C-fibre activation (Figure 4 B). Single cell recordings were ensured on 

the basis of amplitude and shape of the action potentials (Figure 4 C).  

 

After the microelectrode was lowered into the dorsal horn, the spinal cord segments where 

the sciatic nerve roots enter the cord were identified by the neuronal responses to finger 

tapping of the hind paw. Extracellular single cell activity was recorded from neurons at 

depths of 80 –1000 µm from the surface of the spinal cord. All single cells used in the 

experiments were identified by their ability to respond to natural stimuli: brush, fingernail 

pressure and surgical forceps pinch. The brush produced a feeling of touch, the fingernail 

pressure produced a feeling of firm pressure near pain threshold and the surgical forceps 

pinch produced pain well above the pain threshold when similar stimuli were applied to the 

human skin. Neurons responding to these modes in a graded manner were characterized as 

WDR neurons, whereas neurons responding only to surgical forceps pinch were 

characterized as NS. 
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Figure 4. Extracelluar recordings in the spinal dorsal horn. The signals were captured by the 

software CED Spike 2 (Cambridge Electronic Design, Cambridge, UK). (A) Experimental 

apparatus set up for extracellular single cell recordings. (B) Neuronal activity evoked by a 

single test pulse applied to the sciatic nerve. Spikes 40-300 ms after stimulus were defined 

as C-fiber response. (C) Comparison of shape and amplitude of the action potentials from 

two cells. 

0.5 ms 
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3.4. Electrical stimulation 

All electrical stimuli were applied to the sciatic nerve by the hook electrode. In the 

experiments for single-cell recordings, a test stimulus was delivered every 4th minute (2 ms 

rectangular pulses, 1.5 x C-fiber threshold). Three or six stable C-fiber control responses 

served as a baseline for the subsequent experiment with the cell. Induction of LTP was 

obtained by HFS conditioning (1 ms rectangular pulses, 3 x C-fiber threshold, five trains of 

1 s duration, 100 Hz, 10 s intervals between the trains). The neuronal activity was monitored 

for 120 (paper I, II), 180 (paper III) or 360 (paper IV) minutes following application of 

HFS. Only one experiment was performed in each animal.  

 

 

3.5. Drug administration 

In paper I, we used the NMDA-2B receptor antagonist Ro 25-6981 hydrochloride, 

(( R, S)- -(4-Hydroxyphenyl)- -methyl-4-(phenylmethyl)-1-piperidinepropanol-

hydrochloride), (C22H29NO2·HCl) obtained from Sigma-Aldrich CO, St. Louis, Mo, USA. In 

paper II, we used the CaMKII inhibitor AIP ([Ala9]-Autocamide 2-related inhibitory peptide 

trifluoroacetate salt, Myr-Lys-Lys-Ala-Leu-Arg-Arg-Gln-Glu-Ala-Val-Asp-Ala-Leu-OH) 

obtained from Sigma Aldrich, St. Louis, USA. Both drugs were applied directly onto the 

spinal cord. 

 

 

3.6. Investigation of gene expression 

For the investigation of changes in gene expression, the spinal cord segments L3-S1 were 

identified anatomically relative to Th13. Gene expression was investigated by tissue 

harvesting at five specific time points; approximately 15 minutes after laminectomy (native) 

(papers III-IV), 60 (paper III), 120 (paper III), 180 (papers III, IV) and 360 (paper IV) 

minutes after HFS conditioning of the sciatic nerve. In paper III, a section of the whole 

spinal cord approximately 5 mm in length was harvested, whereas in paper IV, the 

ipsilateral dorsal horn, approximately 10 mm in length was harvested. The intensity of the 

HFS conditioning used was 4.5 mA, which corresponded to the mean value of the HFS 

intensity applied in the experiments with single-cell recordings. To avoid long-lasting 

effects of the laminectomy on gene expression in paper IV, the surgical procedure 

associated with laminectomy was performed only 45-15 minutes prior to tissue harvesting. 
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3.7. Quantitative real-time RT-PCR 

Total RNA was isolated from frozen spinal cord tissue with TRIzol reagent following the 

supplier’s protocol (Life technologies, Inc., Rockville, Maryland, USA). RNA was 

reversibly transcribed by aid of the first-strand cDNA Synthesis Kit for reverse-transcriptase 

polymerase chain reaction (RT-PCR) (Roche Diagnostic, Mannheim, Germany). To avoid 

amplification from traces of possible DNA contamination in the RNA isolation, PCR 

primers were designed to span introns. All primers were checked for specificity by BLAST 

search.  

 

Quantitative analysis of specific genes was performed on an ABI 7900 (Applied 

Biosystems, Foster City, California, USA), with the use of the Power SYBR green PCR 

mastermix (Applied Biosystems, Foster City, California, USA). The amount of template 

used in the PCR reaction was cDNA corresponding to i) 200 ng reverse-transcribed total 

RNA for iNOS, ii) 100 ng reverse-transcribed total RNA for Zif268, IL-1β, GDNF, p38 

MAPK and TNFα, iii) 25 ng reverse-transcribed total RNA for COX2 and c-fos and iv) 5 ng 

reverse transcribed total RNA for β-actin. A final melting curve of fluorescence versus 

temperature was generated to screen for co-amplification products.  

 

The quantity of the target cDNA template in each sample was presented with an 

amplification plot indicating the intensity of the fluorescence emitted by the SYBR-green-

bound PCR product, as a function of number of cycles in the reaction (Figure 5A). Based on 

the computer-defined threshold, which is dependent on the background fluorescence, the 

threshold cycle (Ct) value for each sample was estimated with the software SDS, ABI 

(Applied biosystems, Foster City, California, USA). The amount of target cDNA in each 

sample was then calculated using the Ct value and a standard curve prepared for each gene 

(Figure 5B). The gene expression of the target genes Zif268, c-fos, IL-1β, GDNF, iNOS, 

p38 MAPK, COX2 and TNFα was normalized to the expression of the internal standard β-

actin. 
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Figure 5. Detection of gene-expression. The data were analysed using the Applied 

biosystems’ software SDS. (A) Amplification plots of the target gene in the control and the 

LTP group. Delta Rn; intensity of the fluorescence emitted by the SYBR-green-bound PCR 

product. Ct  (threshold cycle);  the number of amplification cycles required to obtain an 

amount of the product reaching a particular computer-defined threshold. (B) Standard curve 

for quantification of the internal standard and the target gene. The Ct value for each sample 

corresponds to a specific amount of cDNA. 

 

 

3.8. Data analysis and statistics 

The data are shown as representative examples, mean ± SEM and scatter diagrams. In paper 

I, III and IV, group means were compared using either paired or unpaired two-tailed 

Student’s t-test. In paper II, two-tailed Mann-Whitney U test was used. Regarding the gene 

expression, fold change values at specific time points were defined by the expression of the 

target gene normalized to the expression of the internal standard β-actin and the native 

expression level. In paper I, III and IV, statistical analyses were performed on log-
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transformed data to compensate for non-normal distributions. A p-value less than 0.05 was 

chosen as the level of statistical significance.    
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4. RESULTS 

 

 

4.1. Spinal LTP is induced by HFS conditioning applied to the sciatic nerve  

The mean C-fiber response, i.e. the mean value of the responses in the dorsal horn neurons 

evoked by C-fiber stimulation, increased significantly following HFS conditioning applied 

to the sciatic nerve. In most of the cells tested, HFS conditioning applied to the sciatic nerve 

induced an increase in the neuronal activity. The response reached a plateau after 60-120 

minutes in the neurons affected by the conditioning stimulation. After this the neuronal 

response appeared to be stable and the increased response outlasted the experimental period 

of 120 (paper I and II), 180 (paper III) and 360 (paper IV) minutes.  

 

The expression of LTP following HFS conditioning was inhibited by spinal application of 

the NMDA-2B receptor antagonist Ro-25-6981 (paper I) and the CaMKII inhibitor AIP 

(paper II). This may indicate that both the NMDA-2B receptor and the CaMKII play an 

important role in the induction of spinal LTP. Moreover a transient increase in the gene 

expression of the transcription factor Zif268 120 minutes (paper III) and an increase in the 

gene expression of IL-1β, GDNF and iNOS 360 minutes (paper IV) following HFS 

conditioning of the sciatic nerve were observed. Given that spinal LTP is induced by HFS 

conditioning, our results suggest that increased expression of these genes following HFS 

conditioning might be associated with the maintenance of spinal LTP.  

 

 

4.2. Paper I 

 

4.2.1. Spinal LTP is attenuated by the NMDA-2B receptor antagonist Ro 25-6981 

The NMDA-2B receptor antagonist Ro 25-6981 was applied directly onto the exposed 

spinal cord in doses of 2.0, 4.0 and 8.0 mM. The C-fiber responses were inhibited in a dose-

dependent manner with a significant reduction in the C-fiber response following application 

of 4.0 and 8.0 mM of the antagonist. Thus, the NMDA-2B receptor antagonist Ro 25-6981 

showed a clear antinociceptive effect on spinal dorsal horn neuronal activity. Moreover, the 

effect of HFS was less pronounced following pre-application of 4.0 mM Ro 25-6981 and 

almost blocked following application of 8.0 mM Ro 25-6981. Administration of this 
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antagonist clearly attenuated the magnitude of the spinal LTP. It seems likely that 

expression of full LTP in dorsal horn neurons may be dependent on the NMDA receptors 

containing the NR2B subunit (paper I). 

 

 

4.3. Paper II 

 

4.3.1. Induction of spinal LTP is blocked by the CaMKII inhibitor AIP  

The CaMKII inhibitor AIP was applied directly onto the exposed spinal cord in doses of 0.2 

and 2.0 mM. The C-fiber mediated responses were not affected by 0.2 and 2.0 mM of the 

CaMKII inhibitor AIP alone or by vehicle. However, induction of LTP in single nociceptive 

dorsal horn neurons, induced by HFS conditioning of the sciatic nerve, was inhibited in a 

dose-dependent manner following pre-administration of the CaMKII inhibitor AIP. This 

indicates that CaMKII might be important for the induction of LTP in single nociceptive 

dorsal horn neurons in the spinal cord (paper II).  

 

 

4.4. Paper III 

 

4.4.1. Spinal LTP is associated with increased gene expression of Zif268 

A transient increase in the gene expression of Zif268 was observed 120 minutes following 

HFS conditioning applied to the sciatic nerve. The observed increase in the gene expression 

of Zif268 was about twofold of the expression in the corresponding control. The expression 

in the control group was at about the same level as the expression in the native group. The 

increased gene expression of Zif268 120 minutes after conditioning was significantly higher 

than in the corresponding control. Regarding the gene expression of c-fos and COX2 a 

different pattern was observed. The expression of c-fos in the control group was 

significantly decreased at 120 minutes compared to the native group. No significant 

differences in the gene expression of c-fos or COX2 were observed between the HFS group 

and the corresponding control- or native group. The results indicate that changes in the gene 

expression of Zif268 might be associated with maintenance of spinal LTP after HFS 

conditioning applied to the sciatic nerve (paper III).    
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4.5. Paper IV 

 

4.5.1. Spinal LTP is associated with increased gene expression of IL-1β, GDNF and 

iNOS 

A significant increase in the gene expression for IL-1β, GDNF and iNOS was observed 360 

minutes following HFS conditioning applied to the sciatic nerve. The observed gene 

expression after HFS were for IL-1β 1.8 fold, for GDNF 1.3 fold and for iNOS 1.6 fold the 

gene expression in the corresponding control group. For both IL-1β and GDNF, the 

expression in the corresponding control was on the same level as the expression in the 

corresponding native group. In contrast, the expression of iNOS in the control group was 

higher than the expression of iNOS in the native group. However, there were no significant 

changes in gene expression for p38 MAPK, COX2 or TNF  360 minutes after HFS 

conditioning of the sciatic nerve. The observed increase in the expression of the genes for 

IL-1β, GDNF and iNOS following HFS conditioning indicates that the neuronal events 

underlying the development of spinal LTP might be associated with an increase in the 

expression of these genes (paper IV).  
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5. DISCUSSION OF METHODS 

 

 

The methods used to investigate the underlying mechanisms for induction and maintenance 

of LTP include electrophysiological extracellular single cell recordings in intact 

anaesthetized rats and real-time RT-PCR on spinal cord tissue following HFS conditioning 

of the sciatic nerve. 

 

 

5.1. Animals and anaesthesia 

All rats were anaesthetized with urethane, which is a commonly used anaesthetic for 

animals in non-recovery experiments. It is carcinogenic, which precludes its use as a human 

anaesthetic (Hara and Harris, 2002). The advantages of urethane in animal anaesthesia are 

that it produces a long-lasting steady level of surgical anaesthesia and, compared to other 

anaesthetics, has minimal effects on autonomic and cardiovascular systems and spinal 

reflexes, for review see (Soma, 1983; Maggi and Meli, 1986). 

 

However, in an in vitro model using Xenopus laevis oocytes, it has been shown that 

urethane potentiates the function of neuronal α4β2 nicotinic acetylcholine (α4β2 neuronal 

nAch)-, α1β2γ2s γ-aminobutyric acidA (α1β2γ2s GABAA)- and α1 glycine receptors. In 

addition, it inhibits the NR1A/NR2A NMDA- and GluR1/GluR2 AMPA receptors (Hara 

and Harris, 2002). Thus, urethane seems to affect both inhibitory and excitatory systems, but 

the magnitude of the effect is less for urethane than the effect observed with other more 

selective anaesthetics (Hara and Harris, 2002).  

 

Importantly, deep level of urethane anaesthesia has been shown in several studies 

insufficient to pre-emt LTP induction of C-fiber evoked potentials (Svendsen et al., 1997; 

Benrath et al., 2004). Thus, we assume that the background urethane anaesthesia does not 

interfere much with the measurement of electrophysiological responses. However, one 

cannot completely rule out that the dorsal horn single cell responses produced by 

nociceptive stimuli or pharmacological manipulation in the urethane anaesthetized animals 

are the same as those that would have been observed in awake animals (Hara and Harris, 

2002).   
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5.2. Electrophysiological extracellular single cell recordings 
Induction of LTP in the dorsal horn of the spinal cord has been shown both in vitro and in 

vivo using different techniques. Spinal LTP was first demonstrated in vitro in spinal cord 

slices (Pockett and Figurov, 1993). Today, the patch clamp technique, measuring changes in 

potentials or currents across the membrane, is the most used in vitro technique (Ikeda et al., 

2003).  

 

However, some aspects can only be studied in the entire animal with both the primary 

afferent nerve fibers and descending pathways intact. Extracellular single cell- or field 

potential recordings combined with HFS conditioning applied to the sciatic nerve has 

become a well established method to study LTP in the spinal dorsal horn in intact 

anaesthetized rats (Liu and Sandkuhler, 1995; Svendsen et al., 1997; 1998; Gjerstad et al., 

2001; Afrah et al., 2002).  

 

LTP is defined as long-term increase in synaptic strength. The LTP phenomenon may be 

demonstrated by measuring the sum of post-synaptic potentials from several cells, i.e. field 

potentials (Liu and Sandkuhler, 1997) or by the number of action potentials from single 

cells (Svendsen et al., 1997) in the spinal dorsal horn in response to peripheral stimuli. In 

our study, extracellular single cell recordings have been utilized because specific cells can 

be studied and a distinction between laminae can be made. 

 

Single cell recordings were ensured on the basis of amplitude and shape of the action 

potentials. A successful extracellular single unit recording requires the action potentials 

from one cell to be clearly separated from the signals from the nearby cells. However, one 

cannot be absolutely certain that signals from one cell only are studied throughout the whole 

recording period. Moreover, neurons generating weaker electrical fields will more easily be 

overlooked. 

 

Single cells used in the experiments were identified by their ability to respond to natural 

stimuli; brush, fingernail pressure and surgical forceps pinch. As little pinch as possible 

were used in the searching process to avoid sensitization of the neurons. However, when 

searching for superficial NS cells, moderate pinching was applied periodically as a search 

stimulus.  
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5.3. Investigation of gene expression 

In our study, the level of mRNA expression is quantified to investigate the pattern of gene 

expression following HFS conditioning of the sciatic nerve. Reverse transcription of 

extracted RNA from the tissue sample followed by real-time RT-PCR is a very sensitive and 

flexible method for gene expression and quantification analysis, for review see (Bustin, 

2000). The choice of candidate genes studied was based on the knowledge from earlier 

studies on the function of proteins and previous studies on gene- and protein expression 

observed after induction of LTP in hippocampus.  

 

Spinal cord tissue was harvested by rapid dissection and freezing in liquid nitrogen to 

prevent degradation of RNA. Gene expression analysis was performed on RNA isolated 

from a 5 mm piece of the whole lumbar spinal cord in paper III and as a better approach 10 

mm piece of the ipsilateral quadrant of the spinal dorsal horn in paper IV. Isolation of the 

quadrant instead of the whole spinal cord gave an increased specificity in relation to the 

dorsal horn neurons that is influenced by sciatic nerve conditioning. However, it may be 

argued that the results would have been even more conclusive if the gene expression was 

studied in specific laminae.  

 

RNA quality is a critical factor for successful, reproducible and biological relevant gene 

expression analysis. The RNA molecule, once removed from its cellular environment, is 

extremely delicate and exposed to degradation by RNAse molecules and contamination 

under tissue- and RNA isolation. Another factor affecting the accuracy of gene expression 

analysis is DNA contamination (Zhang et al., 2005a), for review see (Bustin and Nolan, 

2004). An important step to secure reliable results is to test the quality of the isolated RNA. 

Therefore, the RNA quality, in accordance with earlier studies (Zhang et al., 2005a), was 

evaluated by on chip gel electrophoresis with the Agilent Bioanalyzer. The technique 

detects the quality of ribosomal RNA which is supposed to be a good measurement for the 

quality of total RNA. The analyses showed satisfactory RNA quality in all the samples. 

 

The primers used for real-time PCR were designed to span introns to avoid false positive 

results from amplification of possible genomic DNA contamination. Primer pairs were 

designed to be complementary to a sequence in the exons on each side of an intron, except 

for one set of primers, where the forward primer was complementary to the sequence of the 
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end of one exon and the beginning of the next. The optimal length for single stranded 

primers is about 18-24 bases with a GC (guanine/cytosine) content of between 40-60%. The 

melting temperature (Tm) of the primer pair should be between 58-60 oC and not differ 

more than 1-2 oC. The primers used in this project were within these parameters, except the 

primers used for iNOS. The possibility of hairpin formation, caused by primers being self-

complementary, or dimerization, caused by primer pairs being complementary, was 

minimized under the design. High GC content in the primer pair, especially at the 3’ end 

was avoided as this can lead to false priming. The specificity of the primers was evaluated 

by BLAST search. 

 

The primer concentration used in the PCR reaction should be kept at an optimal level. Too 

high primer concentration may promote mispriming and accumulation of non-specific 

products. Too low primer concentration is on the contrary a smaller problem at real time 

analysis, as target copy number is calculated at a time point (exponential phase) well before 

the primer supply is exhausted, for review see (Bustin, 2000). However, even if the 

specificity of the primers and the parameters for the reaction were optimized, unspecific 

priming might still have occured. The final PCR product was therefore investigated for 

formation of unspecific products. A melting curve with fluorescence as a function of 

temperature was constructed at the end of all PCR reactions to visualize eventually bi-

products. Theoretically, some bi-products might have melting points close to the main 

product and ideally to exclude this, gel electrophoresis may be performed to analyze the 

amplified PCR product (Zhang et al., 2005a).  

 

To correct for sample to sample variation, i.e. differences in tissue weight and differences in 

the efficiency of the cDNA synthesis, an internal standard was co-amplified with the target 

gene. The expression of the target gene was normalized to the expression of the internal 

standard. Suitable internal standards have a constant expression independent of 

experimental intervention (Zhang et al., 2005a). The gene for β-actin encodes a ubiquitous 

cytoskeleton protein and is most likely independent of the conditioning. As expected, pilot 

studies showed no indications of changes in the expression of β-actin. Hence, β-actin was 

used as an internal standard.  
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6. DISCUSSION OF RESULTS 

 

 

6.1. Induction and maintenance of spinal LTP 

Spinal LTP has been studied since 1993 (Pockett and Figurov, 1993; Randic et al., 1993) 

and is now a well accepted phenomenon that fall into the term central sensitization or vice 

versa, for review see (Sandkuhler, 2000; Willis, 2002). In accordance with previous studies, 

we demonstrated that LTP in the spinal dorsal horn in anaesthetized animals can be induced 

by HFS conditioning of the sciatic nerve (paper I-IV) (Svendsen et al., 1997; Sandkuhler 

and Liu, 1998; Gjerstad et al., 2001; Afrah et al., 2002). In this work, we used this 

established method to investigate some of the mechanisms involved in spinal LTP.  

 

Previous studies show that induction of LTP involves activation and modification of 

receptors and intracellular proteins (Liu and Sandkuhler, 1995; Svendsen et al., 1998; Ikeda 

et al., 2003; Yang et al., 2004; Xin et al., 2006), which may increase the synaptic strength. 

The maintenance of LTP, on the other hand, may involve more long-lasting alterations like 

changes in expression of genes and de novo protein synthesis (Hu et al., 2003). Based on 

this, we wanted to investigate whether the NMDA receptors containing the NR2B subunit 

(paper I) and the intracellular CaMKII (paper II) were involved in induction of spinal LTP. 

In addition, to study the mechanisms for the maintenance of HFS-induced spinal LTP, 

changes in gene expression of the Zif268, c-fos and COX2 (paper III) and changes in the 

gene expression of IL-1β, GDNF, iNOS, p38 MAPK, COX2 and TNFα (paper IV) were 

investigated. 

 

 

6.2. Induction of spinal LTP and activation of the NMDA-2B receptor 

Earlier observations have suggested that spinal LTP involves activation of the NMDA 

receptors (Randic et al., 1993; Liu and Sandkuhler, 1995; Svendsen et al., 1998; Ikeda et al., 

2003). Functional NMDA receptors exist as heteromeric complexes including the essential 

and ubiquitous NR1 subunit in combination with one or more of the NR2A-NR2D subunits. 

In addition, some NMDA receptors contain the subunits NR3A and NR3B (Al-Hallaq et al., 

2002; Matsuda et al., 2002). Compared to the other subunits, it has been shown that the 

NR2B subunit has a relatively restricted distribution in nociceptive transmission and pain 
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regulatory pathways such as in the forebrain (Laurie et al., 1997) and in the superficial 

dorsal horn of the spinal cord (Yung, 1998; Boyce et al., 1999; Nagy et al., 2004), 

suggesting that NMDA-2B receptors may play a critical role in nociceptive transmission.  

 

In our study, we applied the selective NMDA-2B antagonist Ro 25-6981 directly onto the 

spinal cord to investigate the role of the receptor on the induction of LTP in the dorsal horn.  

Spinal administration of the NMDA-2B receptor antagonist showed a clear antinociceptive 

effect on spinal dorsal horn neurons and in addition attenuated the magnitude of spinal LTP. 

These results indicate that activation of the NMDA receptors containing the NR2B subunit 

may be involved in spinal nociceptive synaptic transmission and important for the induction 

of spinal LTP.  

 

Supporting our findings, a recent study showed that spinal application of the NMDA-2B 

antagonist Ro 25-6981 caused a clear antinociceptive effect and a significant inhibition of 

dorsal horn LTP induced by HFS conditioning applied to the sciatic nerve (Qu et al., 2009). 

Moreover, previous behavioural findings have indicated that different selective NMDA-2B 

receptor antagonists possess antinociceptive activity in both acute and chronic pain models 

(Bernardi et al., 1996; Taniguchi et al., 1997; Sakurada et al., 1998; Boyce et al., 1999; 

Chizh et al., 2001).  

 

Patch clamp studies of single channels in substantia gelatinosa neurons of spinal cord slices 

show that NMDA receptors containing the NR2B subunit seem to have higher Ca2+-

conductance than other NMDA receptors (Momiyama, 2000). Ca2+ is a critical intracellular 

signaling molecule for triggering plastic changes (Ikeda et al., 2003). The increase in 

intracellular Ca2+-concentration may lead to activation of Ca2+-dependent enzymes in signal 

transduction pathways, including CaMKII, important for long-lasting modifications and 

sensitization.  

 

 

6.3. Induction of spinal LTP and activation of the intracellular CaMKII  

Several lines of evidence demonstrate that induction of LTP in the hippocampus might be 

dependent on the molecule CaMKII (Ito et al., 1991; Silva et al., 1992; Otmakhov et al., 

1997; Giese et al., 1998). Thus, CaMKII, whose activation is dependent on intracellular 
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Ca2+, has long been considered to be important for LTP in hippocampus. However, since 

CaMKII is abundantly expressed in the superficial layers of the spinal cord (Bruggemann et 

al., 2000), it is likely that this molecule plays a role not only in the brain, but also in the 

superficial laminae of the spinal cord receiving nociceptive input from primary afferents. 

  

In our study, we applied the specific CaMKII inhibitor AIP directly onto the spinal cord to 

investigate whether the enzyme is involved in the induction of spinal LTP. We observed that 

LTP in single nociceptive neurons was attenuated in a dose-dependent manner following 

pre-treatment of AIP. In experiments with no conditioning, no effect of AIP was observed. 

Our results indicate that CaMKII may be important for the induction of LTP in single 

nociceptive dorsal horn neurons.  

 

Recent data demonstrating that CaMKII contributes to induction of spinal LTP of field 

potentials, when the inhibitor is applied before conditioning (Yang et al., 2004), support our 

results. Moreover, the observation that capsaicin-induced central sensitization is prevented 

by the CaMKII inhibitor KN-93 further supports the importance of this kinase at the spinal 

level (Fang et al., 2002).  

 

In some cases CaMKII can be activated and then locked in an active formation. This process 

may either arise from binding of Ca2+/calmodulin (Hanson et al., 1994) or by binding to the 

NMDA receptor subunit NR2B (Bayer et al., 2001). In this situation the CaMKII stays 

active independent of Ca2+/calmodulin binding (Thiel et al., 1988; Bayer et al., 2001), 

allowing its enzymatic activity to continue long after the Ca2+ signal has returned to 

baseline.  

 

Activation of CaMKII mediates a variety of different cellular responses to calcium, which 

may affect synaptic plasticity. These include phosphorylation of various receptors and 

transcription factors (Barria et al., 1997; Fang et al., 2002; Fang et al., 2005a). For example, 

in the spinal cord, it has been shown that CaMKII activity enhances both the 

phosphorylation of AMPA receptor subunit GluR1 and the transcription factor CREB 

during capsaicin-induced central sensitization (Fang et al., 2002; Fang et al., 2005a). 

Moreover, in hippocampus, CaMKII also promotes incorporation of new AMPA receptors 

in the membrane (Hayashi et al., 2000).  
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Taken together, these studies indicate that CaMKII activity might be important for synaptic 

plasticity, probably through several different cellular responses.  

 

 

6.4. Spinal LTP and gene expression 

Earlier data have shown that the late-phase spinal LTP may be inhibited by the protein 

synthesis inhibitor anisomycin and cycloheximide (Hu et al., 2003). It has therefore been 

suggested that maintenance of LTP in the spinal cord may involve altered gene expression 

and protein synthesis. Changed gene expression may involve at least two steps; i.e. i) 

changes in expression of genes encoding transcription factors and ii) changes in expression 

of LRGs encoding other proteins. There are few studies discussing possible changes in the 

expression of specific genes following HFS-induced spinal LTP. Thus, investigation of gene 

expression of the transcription factors Zif268 and c-fos and the LRGs encoding IL-1β, 

GDNF, iNOS, p38 MAPK, COX2 and TNFα following HFS conditioning applied to the 

sciatic nerve was performed. 

 

 

6.4.1. Gene expression of Zif268, c-fos and COX2 

Previous studies have shown that the expression of Zif268 and c-fos is increased after 

induction of LTP in hippocampus (Nikolaev et al., 1991; Jones et al., 2001). However, since 

long-term changes in spinal sensitivity are controlled by similar mechanisms as for 

hippocampal LTP, for review see (Ji et al., 2003), increased expression of Zif268 and c-fos 

may also occur at the spinal cord level. Moreover, evidence exists that peripheral 

inflammation increases the expression of Zif268, c-Fos and COX2 in the spinal cord 

(Herdegen et al., 1994; Samad et al., 2001).  

 

In our work, we demonstrated a transient increase in the expression of the Zif268 gene 2 

hours following HFS conditioning of the sciatic nerve. Thus, our results indicate that a 

change in the gene expression of Zif268 might be associated with the HFS conditioning-

induced spinal LTP. Expression of the Zif268 gene is presumably regulated by different 

Ca2+-dependent signaling pathways, as several different regulatory regions, including CRE 

sites, are found close to the promoter region. Previous studies have indicated that induction 

of the Zif268 gene is essential for stabilization of the late-response LTP in hippocampus 



51 

 

(Jones et al., 2001). The transient increase of the expression of Zif268 observed in our work 

is consistent with an involvement in the transition from the early- to the protein synthesis-

dependent late-phase of spinal LTP. Interestingly, recent studies have shown that the 

immunoreactivity for Zif268 expressing neurons is up-regulated in the superficial spinal 

cord 3 hours following induction of LTP  (Rygh et al., 2006; Haugan et al., 2008), i.e. 

approximately at the time point where the early- to late-phase transition is believed to occur 

(Jones et al., 2001; Hu et al., 2003).  

 

The Zif268 gene encodes a zinc-finger transcription factor and activates the expression of 

different downstream target genes. Thus, induction of Zif268 may be an important element 

in altered gene- and protein expression and in this way participate in the signaling cascade 

required for maintenance of LTP. Moreover, recent data using antisense treatment towards 

this gene resulted in deficit long-term maintenance of inflammatory hyperalgesia (Rygh et 

al., 2006). This indicates a role for the Zif268 gene in the process leading to sensitization. 

 

No clear changes were observed for c-fos or COX2 following conditioning. Compared to 

previous data on c-Fos and COX2 expression in inflammatory pain (Herdegen et al., 1994; 

Ji and Rupp, 1997; Samad et al., 2001), it was expected to observe an increase in the 

expression of these genes. Apparently, our data showed that the expression level of c-fos in 

the control at 2 hours was lower than the expression in the native group. Since the 

expression of c-Fos and COX2 are considered to be important for noxious stimuli in other 

models and c-Fos has been used as a marker of activation of nociceptive neurons, it was 

surprisingly that induction of spinal LTP did not increase the expression of c-fos or COX2. 

It is possible that this is related to the nature of the noxious stimuli. c-Fos expression may 

also be suppressed by anaesthesia (Buritova and Besson, 2001).  

 

 

6.4.2. Gene expression of IL-1β, GDNF, iNOS, p38 MAPK, COX2 and TNFα 

In our study, we demonstrated a significant increase in the gene expression of IL-1β, GDNF 

and iNOS in the ipsilateral dorsal horn compared to the corresponding controls 6 hours 

following HFS conditioning of the sciatic nerve. The increase in both the C-fiber response 

and the gene expression of IL-1β, GDNF and iNOS 6 hours following HFS conditioning 
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applied to the sciatic nerve indicates that spinal LTP might be associated with an increased 

expression of these genes. 

 

The increased gene expression of the proinflammatory IL-1β observed in our work 6 hours 

following conditioning is in line with a previous animal study showing an up-regulation of 

IL-1β in the spinal cord following peripheral inflammation (Raghavendra et al., 2004). 

Supporting a role for spinal cord IL-1β in sensitization, earlier data have shown that 

intrathecal administration of IL-1β produces enhanced dorsal horn neuronal response, but 

also mechanical and thermal hyperalgesia in animal models (Reeve et al., 2000; Sung et al., 

2004). Moreover intrathecal administration of IL-1 receptor antagonists reduced 

inflammatory pain in animals (Zhang et al., 2008).  

 

Earlier studies indicate that IL-1β is mainly induced in glial cells after inflammation (Zhang 

et al., 2008). Thus, the up-regulation of IL-1β following HFS conditioning may be due to 

activation of glial cells and increased gene expression of IL-1β in these cells. Supporting 

this, it is suggested that induction of spinal LTP not only involves activation of neurons, but 

also activation of glial cells (Ma and Zhao, 2002).  

 

Previous findings have suggested that IL-1β exerts its action through different mechanisms 

including increased excitatory synaptic transmission, enhanced NMDA-induced currents, 

decreased inhibitory synaptic transmission, suppressed GABA- and glycine-induced 

currents, increased CREB phorphorylation (Kawasaki et al., 2008) and increased expression 

and/or release of other substances like GDNF (Verity et al., 1998; Tanabe et al., 2009), 

iNOS and NO (Sung et al., 2004; Sung et al., 2005). Interestingly, all these events may 

influence on nociceptive transmission and contribute to increased synaptic strength. Thus, it 

has been suggested that IL-1β may be important for development of sensitization in the 

spinal cord. 

 

GDNF was initially purified from conditioned medium of rat B-49 glial cells as a potent 

trophic factor for mesencephalic dopaminergic neurons (Lin et al., 1993).  Later, it has been 

shown that GDNF also may be a neurotrophic factor for sensory neurons (Matheson et al., 

1997). Interestingly, we observed an increase in the gene expression of GDNF in the spinal 

cord 6 hours after HFS conditioning of the sciatic nerve. Although the number of 
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experiments on gene expression was low at 3 hours after condtitioning, we saw a tendency 

for an increased expression of GDNF already at this time point. Despite different 

stimulation protocols, this is in line with the results showing an upregulation of the gene for 

GDNF already at 30 minutes, with a peak at 3 hours (Satake et al., 2000). Our findings 

suggest that upregulation of mRNA for GDNF 6 hours after conditioning might be 

associated with spinal LTP.  

 

The GDNF protein has previously been shown to be present mainly in superficial layers, but 

is also observed in deeper laminae of the spinal dorsal horn (Holstege et al., 1998; Fang et 

al., 2003).  Since this region of the dorsal horn receives many afferent inputs, it seems likely 

that GDNF are involved in spinal processing of sensory information. However, there are 

conflicting data about its role in nociceptive transmission. One report describes reduced 

hyperalgesia in complete Freund’s adjuvant-induced inflammation following intrathecal 

administration of an antibody blocking the GDNF function (Fang et al., 2003). In contrast, 

intrathecal administration of GDNF showed potent analgesic effects in rat models of 

neuropathic pain (Boucher et al., 2000; Sakai et al., 2008). Different type of administrations, 

pain models and dosage may account for these seemingly contradictory observations.  

It has been suggested that GDNF is present not only in glia, but also in primary afferent 

terminals in the dorsal horn (Holstege et al., 1998; Satake et al., 2000). Whether the 

increased expression of GDNF observed in our work takes place in neurons and/or in glial 

cells remains to be investigated.  However, our data showing an increase in both C-fiber 

response and gene expression of GDNF following HFS conditioning suggest that increased 

GDNF gene expression might be associated with spinal LTP. 

 

GDNF acts on neurons and glial cells that express the receptor components for GDNF 

signaling, i.e. the signal transducing elements RET or neuronal cell adhesion molecule 

(NCAM) and the ligand binding domain GDNF family receptor α1 (GFRα1) (Bennett et al., 

1998; Honda et al., 1999; Paratcha et al., 2003; Jongen et al., 2007). Through activation of 

the receptor, GDNF is known to trigger multiple signaling pathways and is found to have 

influence on glial NO production (Chang et al., 2006). 

 

The diffusible messenger NO is produced from L-arginin by three distinct isoforms of NOS, 

i.e. nNOS (neuronal), eNOS (endothelial) and iNOS. NO is a product of activated neurons 
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as well as glial cells and exert its effect on nearby cells. While nNOS is found in dorsal horn 

neurons in superficial laminae, iNOS expression is found to be upregulated in spinal glial 

cells following inflammation (Maihofner et al., 2000). Thus, the increased gene expression 

of iNOS observed in our work may result from amplified expression of iNOS in glial cells. 

Interestingly, it has been suggested that NOS and NO is involved in the LTP of C-fiber 

evoked field potentials in the spinal cord and thermal hyperalgesia induced by tetanic 

stimulation (Zhang et al., 2005b).  

 

Our findings revealing an increased mRNA expression of iNOS in the ipsilateral dorsal horn 

6 hours after HFS conditioning of the sciatic nerve, is in line with previous observations 

showing an increased expression of iNOS in the spinal cord with a maximum at 4 hours 

following hindpaw zymosan injection (Guhring et al., 2001). However, our data also 

showed that the expression of mRNA for iNOS in the control group at 6 hours was high 

compared to the native group. 

 

Why the expression of mRNA for iNOS increased in the control experiments, remains to be 

investigated. The methodological difference between the native group and the control group 

was the isolation of the sciatic nerve and the time lag of 6 hours. One possible explanation 

for the increased gene expression for iNOS in the control group compared to the native 

group may be the result of long-lasting sensory input from the periphery following the 

surgery and the process of the sciatic nerve isolation. In addition, the expression of iNOS 

might be influenced by local spinal release of cytokines after splitting the meninges.  

 

Based on previous data showing increased mRNA for COX2 (Beiche et al., 1998; Samad et 

al., 2001) and TNFα (Raghavendra et al., 2004) in the spinal cord following peripheral 

inflammation, it was expected to observe an increase in COX2 and TNFα in our LTP model. 

However, no clear changes in the gene expression of COX2 or TNFα, nor p38 MAPK were 

observed in our work 6 hours after HFS conditioning of the sciatic nerve, suggesting that 

spinal LTP may not be associated with clear changes in the expression of these genes.  
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6.5. Clinical implications of spinal LTP 

It has been suggested that the neuronal events leading to spinal LTP may at least in part be 

important for the development of central sensitization and hyperalgesia, for review see 

(Sandkuhler, 2000). However, the relevance of LTP induced by HFS conditioning as an 

underlying mechanism for the development of central sensitization and hyperalgesia 

observed following inflammation, tissue- or nerve injury may be questioned. The most 

frequently used form of conditioning to induce LTP in spinal nociceptive superficial and 

deep dorsal horn is brief electrically HFS (about 100 Hz) of the sciatic nerve (Liu and 

Sandkuhler, 1995; Svendsen et al., 1997). This form of conditioning has lately been 

criticized to be supra-maximal of the physiological frequency range of primary afferent C-

fibers. However, it has been shown that some C-fibers may reach discharge rates up to 

approximately 200 Hz (Fang et al., 2005b). 

 

Earlier data demonstrate that in deep dorsal horn WDR neurons HFS (30 or 100 Hz) induces 

a robust LTP, whereas LFS (3 Hz) conditioning induces a short-lasting LTP (Haugan et al., 

2008). However, supporting the relevance of LTP in central sensitization and hyperalgesia, 

it has recently been shown that LFS (2Hz) conditioning successfully may induce LTP in 

lamina I neurons projecting to the PAG (Ikeda et al., 2006). Moreover, strong natural 

stimulation such as inflammation and tissue- and nerve injury has also induced LTP in the 

spinal dorsal horn (Sandkuhler and Liu, 1998; Rygh et al., 1999; Ikeda et al., 2006).  

 

Interestingly, it has been shown that HFS conditioning of sciatic nerve fibers, which induces 

LTP at synapses of C-fibers in the spinal cord, has behavioral consequences in rats and 

causes ipsilateral hind paw thermal hyperalgesia for 6 days (Zhang et al., 2005b) and 

bilateral mechanical allodynia for 4-6 days (Ying et al., 2006). This suggests that LTP at C-

fiber synapses has an impact on nocifensive behavior. In addition, a perceptual correlate to 

LTP in the nociceptive pathways has been described in humans and further suggests 

clinincal implications of this phenomenon (Klein et al., 2004). 

  

Finally, superficial NK1 expressing neurons important for the expression of spinal LTP 

(Ikeda et al., 2006), also seems to be involved in the expression of hyperalgesia in behaving 

animals (Mantyh et al., 1997; Nichols et al., 1999). 
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6.6. Future perspectives 

Spinal LTP, central sensitization and hyperalgesia seems to involve the same essential 

elements, i.e. activation of primary afferent C-fibers, induction protocols and signal 

transduction pathways, for review see (Sandkuhler, 2007). Moreover, the ease with which 

LTP is induced during inflammation supports the proposal that the mechanisms of LTP are 

similar to those of central sensitization associated with peripheral inflammation (Vikman et 

al., 2003). Based on these observations, it is a good support for LTP having a clinical 

relevance. Furthermore, it has been suggested that induction of spinal LTP by noxious 

stimulation may be one mechanism whereby acute pain is turned into chronic pain (Klein et 

al., 2004).  

 

Hence, it is important to further investigate the cellular mechanisms responsible for 

plasticity within the spinal nociceptive circuits. Moreover, further research may also reveal 

novel and maybe better therapy to prevent or reverse the development of central plastic 

changes leading to hyperalgesia.  

 

Taken together, more knowledge about the mechanisms underlying the cellular events 

leading to hyperalgesia may be important for future treatment of long-lasting pain states.  
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7. CONCLUSIONS 

 

 

I. Spinal administration of the NMDA-2B receptor antagonist Ro 25-6981 showed 

an antinociceptive effect on spinal dorsal horn neuronal activity and clearly 

attenuated the magnitude of the spinal LTP induced by HFS of the sciatic nerve. 

These observations indicate that activation of the dorsal horn NMDA-2B 

receptors may be involved in spinal nociceptive transmission. Furthermore, full 

expression of LTP in dorsal horn neurons seems to be dependent on activation of 

these receptors. Our results suggest that activation of the NMDA-2B receptors 

may be important for induction of LTP in single nociceptive dorsal horn 

neurons. 

 

 

II. Induction of LTP in nociceptive dorsal horn neurons, induced by HFS 

conditioning of the sciatic nerve, was not observed following pre-treatment of 

the highest dose used of the CaMKII inhibitor AIP. The clear inhibition of LTP 

by spinal pre-administration of AIP indicates that CaMKII may play an 

important role in the induction of spinal LTP in single nociceptive dorsal horn 

neurons.   

 

 

III. Our data demonstrated a transient increase in the expression of the Zif268 gene 

120 minutes following HFS conditioning of the sciatic nerve. In contrast, no 

clear change was observed in the expression of c-fos and COX2 following HFS 

conditioning. These results indicate that the transient increase in the expression 

of Zif268 may be associated with spinal LTP. Since Zif268 is a transcription 

factor, which controls the expression of other genes, it seems likely that spinal 

LTP is associated with de novo synthesis of proteins. 

 

 

IV. The expression of the genes for IL-1β, GDNF and iNOS significantly increased 

in the ipsilateral spinal dorsal horn 360 minutes following HFS conditioning of 
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the sciatic nerve.  No clear changes were observed in the gene expression for p38 

MAPK, COX2 and TNFα. The increase in both the C-fiber response and the 

gene expression of IL-1β, GDNF and iNOS following HFS conditioning indicate 

that induction of LTP might be associated with changes in the expression of 

these genes. The increase in the gene expression of IL-1β, GDNF and iNOS is 

consistent with the hypothesis that these genes might be associated with 

maintenance of spinal LTP. Whether or not there is a causal relationship between 

up-regulation of IL-1β, GDNF or iNOS and maintenance of LTP remains to be 

investigated. 
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