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INTRODUCTION

Cellular growth and migration is regulated by growth factors. Extracellular growth 

factors bind to transmembrane receptor proteins. Binding of growth factors to the 

extracellular domain of the receptors causes activation of the receptor and starts signaling 

cascades inside the cell, initially by the recruitment of other proteins to the intracellular 

domain. One of the first growth factor receptors to be identified was the Epidermal 

Growth Factor Receptor (EGFR) (Cohen, 1962). This receptor is activated by binding a 

specific set of growth factors, and as a response it binds and phosphorylates other 

proteins inside the cell. This leads to the onset of signaling cascades which are again 

terminated by internalization and deactivation of the receptor. 

Structure and activation of the EGFR
The EGFR is a member of the EGFR family of receptor tyrosine kinases, which in 

addition to the EGFR (ErbB1) consists of ErbB2, ErbB3 and ErbB4. These receptors are 

widely expressed in human tissues and are involved in processes like development, 

proliferation and differentiation (reviewed in Olayioye et al., 2000). Extracellularly, the 

EGFR contains a 620 aa ligand binding domain consisting of four domains (I-IV) (Lax et 

al., 1988) (see Figure 1). The domains also known as the two large (L) domains and the 

two cysteine-rich (CR) domains are important for ligand binding and dimerization (Lax et 

al., 1989; Garrett et al., 2002; Ogiso et al., 2002). The transmembrane domain spans the 

plasma membrane, supposedly as an -helix (Rigby et al., 1998) and connects the EGFR 

tyrosine kinase domain to the extracellular domain through the juxtamembrane domain. 

The tyrosine kinase domain is responsible for autophosphoryation of tyrosine residues on 

the C-terminal regulatory domain of EGFR itself upon EGFR stimulation (reviewed in 

Burgess et al., 2003). The phosphorylated tyrosine (pY) residues in the EGFR are 

recognized by SH2-domains and PhosphoTyrosine-Binding (PTB) domains in other 

proteins. This leads to recruitment of and phosphorylation of intracellular substrates. The 

best characterized signaling pathway activated by the EGFR is the ras-MAPK pathway. 

The phosphorylated residues pY1068, pY1148 and pY1173 are considered to be the 

major phosphorylation sites, whereas pY992, pY1045 and pY1086 are considered minor 
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phosphorylation sites (Downward et al., 1984; Downward et al., 1985; Hsuan et al.,

1989; Margolis et al., 1989; Walton et al., 1990; Levkowitz et al., 1999).

The growth factor peptides EGF, Transforming Growth Factor alpha (TGF- ) and 

amphiregulin (AR) bind specifically to the EGFR (Riese and Stern, 1998). Betacellulin, 

Heparin-Binding EGF (HB-EGF) and epiregulin (EPR) also bind EGFR, but not 

exclusively. These ligands also bind ErbB4. Within the EGFR family, the different 

family members form homodimers, but also heterodimers, with ErbB2 as the preferred 

dimerization partner. The events leading to dimerization of EGFR upon ligand binding 

are now well understood, as the crystal structure of the extracellular domain of EGFR 

bound to ligand has been solved (Garrett et al., 2002; Ogiso et al., 2002). Upon binding 

ligand, the extracellular domain changes conformation from a closed to an extended 

configuration, thereby freeing a dimerization loop and allowing receptor dimerization 

(Ogiso et al., 2002; Burgess et al., 2003; Ferguson et al., 2003) (see Figure 2). As the 

Figure 1. Structural organization of the EGFR.  Extracellularly, the EGFR contains a 620 aa 
ligand binding domain that again is built of four domains (I-IV). The transmembrane domain spans 
the plasma membrane, and  the juxtamembrane domain connects the EGFR tyrosine kinase domain 
to the extracellular domain. The regulatory domain lies C-terminally, and has multiple tyrosine 
residues which are phosphorylated upon activation of the EGFR.  
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family members are activated by different ligands and also stimulate different signaling 

pathways intracellularly, the heterodimerization allows for a complex system of EGFR  

family receptor activation and signaling (Holbro et al., 2003). As shown in Figure 3, 

EGFR can dimerize both with itself, and with ErbB2, leading to activation and signaling. 

ErbB2 is the preferred dimerization partner for all the EGFR family receptors, but this 

receptor has no ligand and relies on dimerization with another ligand-bound member of 

the EGFR family for activation. Recently, the crystal structure of the extracellular domain 

of ErbB2 has also been resolved, revealing a possible explanation for the preference for 

this receptor in dimerization. ErbB2’s extracellular domain differs from that of the EGFR 

in having a fixed conformation resembling the ligand-activated state, thereby allowing 

dimerization independent of ligand binding (Cho et al., 2003). ErbB3 has impaired kinase 

activity, and ErbB3 homodimers do not signal (Guy et al., 1994) 

Increased activation of the EGFR and increased expression of ErbB2 is strongly related 

to development of cancer. The EGFR was the first cell-surface receptor that was linked to 

cancer (de Larco and Todaro, 1978). Increased activation of the EGFR can arise through 

mutations, overexpression or stimulation of the EGFR by autocrine loops (Yarden and 

Sliwkowski, 2001). For controlled signaling from the EGFR, a rapid receptor inactivation 

Figure 2. Conformational change in the ligand binding region of EGFR upon ligand binding and 
dimerization. Without bound ligand the EGFR extracellular region holds an autoinhibited configuration where 
the dimerization interface  (domain II) is hidden by interactions with domain IV(Holbro et al., 2003). EGF 
binding causes rotation of   domain I towards domain III, freeing domain II from interactions with domain IV. 
Upon ligand binding, each monomer in the resulting dimer now holds an extended conformation allowing 
interactions between two dimerization arms in the II domains. The figure is from Bache et al., 2004, and the 
figure legend is modified. 
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is necessary upon activation. An important pathway in this inactivation of the EGFR is by 

removing the EGFR from the plasma membrane by endocytosis.  

Endocytosis
The interior of cells is confined by a biological membrane that functions to separate the 

interior of the cells from the environment. Small molecules such as amino acids, sugars 

and ions are translocated into the cell through protein channels or active pumps. Larger 

molecules, however, enter the cells by means of endocytosis (reviewed in Conner and 

Schmid, 2003), where the molecules are enclosed by the plasma membrane, pinching off 

to form a vesicle that transports the molecules into the cell interior (see Figure 4).  

There are different forms of endocytosis. Phagocytosis is the uptake of very large 

particles (>50 μm) (reviewed in Aderem and Underhill, 1999) and occurs in specialized 

cells such as the macrophages, monocytes and neutrophils in mammals. Phagocytosis 

includes the uptake of bacteria, dead tissue and small particles, and is important in control 

of inflammation by the immune system. Pinocytosis is uptake of fluid and solutes only. A 

major pathway is via macropinocytosis, however, solutes and fluid can also be 

Figure 3: Ligand binding and dimerization of ErbB receptors. Upon ligand binding, EGFR family 
receptors dimerize into homo- or heterodimers. EGFR can dimerize with itself or with ErbB2. ErbB2 is 
the preferred dimerization partner for all the ErbBs, but ErbB2 has no ligand of its own and thus relies on 
dimerization for activation. The ErbB3 receptor has impaired kinase activity, and ErbB3 homodimers do 
not signal. The figure is from Traub, 2003, and the figure legend is modified. 
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internalized by clathrin-mediated endocytosis, caveolin-mediated endocytosis and 

clathrin- and caveolin-independent endocytosis. 

Clathrin-mediated endocytosis
The best characterized portal of entry for nutrients and receptor ligands into cells is  

clathrin-mediated endocytosis (reviewed in Kirchhausen, 2000; reviewed in Conner and 

Schmid, 2003) . The main components of clathrin-coated pits are clathrin triskelia and 

their adaptors. From these coated pits the membrane buds inwards and pinches off from 

the plasma membrane thereby forming clathrin-coated vesicles. Upon formation of the 

coated vesicle, clathrin is removed and the uncoated vesicle moves inwards and 

eventually fuses with other uncoated vesicles and/or preexisting early endosomes. While 

some receptors like the Low-Density Lipoprotein Receptor (LDLR) and the Transferrin 

Receptor (TfR) are constantly recruited to clathrin-coated pits, others become 

incorporated only after activation of the receptor (reviewed in Mukherjee et al., 1997). 

Receptors are recruited to clathrin-coated pits by interactions with adaptors, like the 

Adaptor Protein complex 2 (AP-2) in the case of the TfR (Mukherjee et al., 1997). 

Clathrin 
Coated vesicles were first observed in 1964 (Roth and Porter, 1964) by means of electron 

microscopy. The structure was further described as a lattice consisting of pentagons and 

hexagons (Kanaseki and Kadota, 1969; Kadota and Kadota, 1973; Crowther et al., 1976), 

Figure 4. Different routes of endocytosis. Large particles are taken up by phagocytosis, while fluids and 
smaller partles are taken up by pinocytosis. This can occur either through macropinocytosis (protrusions of the 
plasma membrane) or by formation of vesicles by invagination of the plasma membrane. The major route of 
endocytosis is clathrin-mediated endocytosis, where a clathrin-cage encloses the forming vesicle. Endocytosis 
can also occur independently of clathrin, often by means of caveolin-mediated endocytosis, where uptake 
happens through vesicles enriched in caveolin. There is also evidence for other routes of internalization 
independent of both clathrin and caveolin. At least two different pathways have been described, one dependent 
on dynamin, and one independent on dynamin. The figure is from Haucke, 2005, and the figure legend is 
modified. 
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and the major component of the coat was later demonstrated to be clathrin(Pearse, 1975, 

1976). Clathrin assembles into a structure called a triskelion, a three-legged structure 

built by three heavy and three light chains of clathrin (Ungewickell and Branton, 1981). 

The Clathrin Heavy Chain (CHC) polypeptide contains different functional regions (see 

Figure 5). The N-terminal domain is a globular ß-propeller. The globular domain is 

important in binding other proteins, while the distal and proximal segments are important 

for self-assembly of the clathrin cage. The proximal segment also mediates binding of 

Clathrin Light Chain (CLC) (reviewed in Mousavi et al., 2004). The CLC exists in two 

isoforms, LCa and LCb. These appear to be randomly recruited to clathrin triskelia and 

are believed to be involved in CHC trimerization (Chu et al., 1996; Huang et al., 1997). 

Additionally CLC is believed to negatively contribute to the regulation of self-assembly 

of clathrin (Ybe et al., 1998) and has also been proposed to be involved in recruitment of 

the actin polymerization machinery (Newpher et al., 2006).

Figure 5. Structure of the clathrin triskelion and the hexagonal clathrin-barrel. A Model of the 
clathrin triskelion composed of three heavy chains (blue) and three light chains (yellow). The heavy chain 
contains five distinct regions: The globular N-terminal domain, the more flexible linker segment, the 
“ankle”, the distal and the proximal segment separated by the ”knee”. B The smallest symmetrical form of 
clathrin triskelia is the hexagonal barrel, here shown with a single triskelion highlighted in blue. The 
figure is adapted from Fotin et al., 2004, and the figure legend is modified. 
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AP-2
In addition to clathrin, the clathrin-coated pit also contains adaptor proteins. Adaptor 

proteins are responsible for the selection of cargo proteins in clathrin-mediated 

endocytosis (reviewed in Traub, 2003) by their ability to bind both cargo molecules and 

clathrin. The major adaptor protein complex in clathrin-mediated endocytosis is AP-2, 

and AP-2 is believed to be the key protein complex responsible for coated pit formation. 

It is still unclear, however, whether AP-2 is actually critical for all clathrin-mediated 

endocytosis (Hinrichsen et al., 2003; Motley et al., 2003; Rappoport et al., 2006). The 

AP-2 complex is composed of four subunits, , ß2, μ2 and 2.  The two large subunits, 

and ß2 are each composed of a N-terminal domain called the head or trunk domain, and a 

globular C-terminal domain called the appendage, or the ear, domain. These two distinct 

domains are connected through the flexible hinge domain. AP-2 is targeted to the plasma 

membrane through its -subunit which interacts with phosphatidylinositol-4,5-

bisphosphate (PI(4,5)P2) or phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) in the 

membrane (Gaidarov et al., 1996; Gaidarov and Keen, 1999). Additionally, the ear 

domain of the -subunit has been shown to interact with regulators of vesicle formation. 

Such regulators are epsin, Eps15 (EGFR-pathway substrate-15) and amphiphysin 

(Slepnev and De Camilli, 2000). A clathrin box in the hinge domain and an additional 

domain near the ear domain of the ß2-subunit facilitates direct binding to clathrin (Ahle 

and Ungewickell, 1989; Kirchhausen et al., 1989; Mousavi et al., 2004) and facilitates 

clathrin assembly. The ß2-subunit may also be involved in cargo recognition (Rapoport et 

al., 1998). Cargo is recruited through interactions between sorting motifs in protein cargo 

and the AP-2 complex. The most important subunit for cargo selection is the 2-subunit,

which interacts with tyrosine-based sorting signals (YXX , where  is a bulky 

hydrophobic residue) and dileucine sorting signals within the cytosolic domain of integral 

membrane protein receptors (Aguilar et al., 1997). In addition, the 2-subunit contains a 

phosphoinositide-binding site (Rohde et al., 2002). The current view of AP-2 function in 

clathrin-mediated endocytosis is that AP-2 initially is recruited to an assembly site at the 

plasma membrane through its cargo- and membrane-binding abilities. It is then self-

associated to form clusters which in turn recruit and assemble clathrin (reviewed in 

Mousavi et al., 2004). In addition to AP-2, the tetrameric adaptor protein complexes AP-
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1, AP-3 and AP-4 are also involved in clathrin-coat formation. Whereas AP-2 is 

primarily involved in clathrin assembly at the plasma membrane, AP-1, AP-3 and AP-4 

mediate sorting events at the trans-Golgi network (TGN) or endosomes  (reviewed in 

Boehm and Bonifacino, 2001). 

Additional adaptor proteins in clathrin-mediated endocytosis 
In addition to AP-2, other adaptor proteins also appear to be important in clathrin-

mediated endocytosis (reviewed in Mousavi et al., 2004). AP180 localizes to synapses 

(Perry et al., 1992), while CALM (Clathrin Assembly Lymphoid Myeloid leukemia 

protein) is ubiquitously expressed (Dreyling et al., 1996).  Each protein has a PI(4,5)P2

binding domain and both bind to AP-2 and clathrin. Both AP-2 and CALM/AP180 are 

able to stimulate clathrin assembly by them selves, but the interaction between AP-2 and 

CALM/AP180 increases the ability of AP-2 to assemble clathrin (Hao et al., 1999). ß-

arrestin is another sorting adaptor involved in clathrin-mediated endocytosis. ß-arrestin 

binds to PI(4,5)P2 (Gaidarov et al., 1999a), clathrin and AP-2 (Goodman et al., 1996; 

Laporte et al., 1999) and is involved in endocytosis of G Protein-Coupled Receptors 

(GPCRs) (reviewed in Marchese et al., 2003a). Upon activation and phosphorylation of 

GPCRs and engagement of ß-arrestin, ß-arrestin is recruited to preexisting sites of 

clathrin assembly where it promotes rapid endocytosis of GPCRs (reviewed in Traub, 

2003). Dab2 (Disabled-2) is another protein suggested to act as an adaptor in clathrin-

mediated endocytosis (Traub, 2003). Dab2 binds PI(4,5)P2 and clathrin (Mishra et al.,

2002). Dab2 interacts with AP-2 and can also interact with non-tyrosine-phosphorylated 

motifs in the cytoplasmic tail of LDLR (Oleinikov et al., 2000; Morris and Cooper, 

2001).

Epsin is localized to clathrin-coated pits (Stang et al., 2004; Hawryluk et al., 2006) and 

has been found to be involved in clathrin-mediated endocytosis (Chen et al., 1998; 

Wendland et al., 1999). Whereas some authors have proposed that epsin functions as an 

adaptor in clathrin-mediated endocytosis (reviewed in Wendland, 2002), others have 

shown that epsin is involved in the formation of membrane curvature within clathrin-

coated pits. Epsin contains an ENTH (epsin amino-terminal homology) domain that binds 

to PI(4,5)P2 (Itoh et al., 2001; Ford et al., 2002) and through this interaction is proposed 
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to facilitate membrane curvature by insertion of an epsin -helix into the inner leaflet of 

the membrane lipid bilayer (Ford et al., 2002). Epsin binds both clathrin and AP-2 (Chen

et al., 1998; Hussain et al., 1999; Owen et al., 1999; Rosenthal et al., 1999; Traub et al.,

1999; Drake et al., 2000), and epsin has multiple Ubiquitin Interacting Motifs (UIMs) 

that recently were shown that to preferentially bind polyubiquitin chains (Hawryluk et al.,

2006). Given these capabilities, epsin has been proposed to function as an adaptor for 

sorting of ubiquitinated cargo for clathrin-mediated endocytosis (Barriere et al., 2006; 

Duncan et al., 2006; Hawryluk et al., 2006; Sorkina et al., 2006). Epsin was first 

described as an Eps15 interacting protein (McPherson et al., 1998). Eps15 is an AP-2 

binding (Benmerah et al., 1996) protein with conserved N-terminal EH (Eps15 

homology) domains  through which Eps15 binds epsin (Chen et al., 1998). Eps15 also 

binds polyubiquitin and is suggested to act in partnership with epsin to sort 

polyubiquitinated cargo into clathrin-coated vesicles (Hawryluk et al., 2006). 

Sorting signals 
The sorting signal normally rests in the cytoplasmic part of the receptor to be identified 

and the most studied sorting signals are the tyrosine-based (consensus motif NPXY or 

YXX ) and the dileucine based  (consensus motifs [DE]XXXL[LI] or DXXLL) sorting 

signals (reviewed in Bonifacino and Traub, 2003). In the case of the TfR the tetrapeptide 

is YXRF (Jing et al., 1990; McGraw and Maxfield, 1990), a tyrosine-based 

internalization signal of the YXX  type that binds directly to the 2-subunit of AP-2. 

Binding of 2 to tyrosine-based sorting signals is proposed to be dependent upon 

phosphorylation of 2, likely mediated by the kinases AAK1 (Adaptor-Associated 

Kinase 1) and GAK (cyclin-G-Associated protein Kinase) (Umeda et al., 2000; Olusanya

et al., 2001; Collins et al., 2002; Conner and Schmid, 2002; Korolchuk and Banting, 

2002; Ricotta et al., 2002; Conner et al., 2003; Sorkin, 2004).  Other receptors are 

believed to make use of additional connector proteins coupling their sorting signals to the 

clathrin coat. The LDLR does not have the  YXX  sorting signal of TfR. LDLR contains 

a distinct signal, FxNPxY, and the LDLR does not appear to depend on AP-2 for 

internalization to the same degree as does the TfR (Traub, 2003). ARH (Autosomal 

Recessive Hypercholesterolemia) and Dab2 have been suggested to interact with the 

FxNPxY of LDLR, in addition to AP-2 and clathrin, thereby recruiting LDLR to coated 
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pits (He et al., 2002; Mishra et al., 2002; Nagai et al., 2003; Sorkin, 2004). Whether or 

not the internalization of EGFR is dependent on AP-2 is under discussion. EGFR 

interacts with AP-2 (Sorkin and Carpenter, 1993; Sorkin et al., 1995), but the 

internalization rate is not significantly affected by mutations inhibiting its interaction 

with AP-2 (Nesterov et al., 1995). Furthermore, some have reported that downregulation 

of the 2 subunit of AP-2 did not affect EGFR internalization (Motley et al., 2003), 

whereas others have found that 2 is important for EGFR downregulation (Huang et al.,

2004). There has also been contradiction regarding the importance of the 2 subunit of 

AP-2 in internalization of the EGFR (Hinrichsen et al., 2003; Motley et al., 2003; Huang

et al., 2004; Johannessen et al., 2006). Receptors are believed to be recruited into 

preexisting clathrin-coated pits. However, it has been shown that the EGFR is able to 

induce the formation of new clathrin-coated pits (Johannessen et al., 2006).

Figure 6. Interactions between the different subunits of the AP-2 complex, clathrin and other 
possible adaptors/connector proteins. AP-2 interacts directly with proteins with sorting signals YXX
and (DE)XXXL(LI). Other signals requires the help of connector proteins for recruitment to clathrin-
coated pits. Epsin is believed to recruit ubiquitinated proteins to clathrin-coated pits through interactions 
with both clathrin and the appendage domain of the -subunit of AP-2. Dab2 and ARH are believed to 
help recruit proteins with the sorting signal FXNPXY to clathrin-coated pits through interactions with 
clathrin and AP-2. Dab2 interacts with the appendage domain of the -subunit of AP-2, while ARH 
interacts with the appendage domain of the ß-subunit. ß-arrestin connects GPCRs to clathrin-coated pits 
through interactions with both clathrin and AP-2. The figure is from Traub, 2003, and the figure legend is 
modified. 
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Ubiquitination as internalization signal for EGFR  
Requirement of AP-2 in internalization of the EGFR is questioned and the mechanisms 

for recruitment of EGFR to clathrin-coated pits are elusive. Lately, the focus for EGFR 

recruitment to clathrin-coated pits has been on ubiquitination. Ubiquitin is a 76 aa 

peptide, which upon a chain reaction involving E1, E2 and E3 enzymes becomes 

covalently attached to lysine residues on target proteins. The ubiquitin-activation enzyme 

(E1) binds free ubiquitin. In the case of HECT (Homologous to E6AP Carboxy 

Terminus)-domain ligases, ubiquitin is then transferred via an E2 conjugating enzyme, to 

an E3 ligase enzyme. The E3 also binds the target protein, and catalyzes the covalent 

attachment of ubiquitin to the target. RING (Really Interesting New Gene)-domain E3 

ubiquitin ligases, however, are not believed to bind ubiquitin but to mediate direct 

transfer from the E2 conjugating enzyme to the target protein (reviewed in Weissman, 

2001). The binding of EGF results in dimerization of the EGFR and subsequent 

activation of its kinase domain and autophosphorylation of tyrosine residues in the 

cytoplasmic tail. SH2-domain containing proteins recognize and bind phosphorylated 

tyrosine residues, and the autophosphorylation of EGFR in dimers is followed by 

recruitment of different proteins containing Src Homology 2 (SH2)-domains (reviewed in 

Burgess et al., 2003). An SH2-domain containing protein of special interest in EGFR 

endocytosis is the ubiquitin ligase Cbl. Cbl binds both directly and indirectly to activated 

EGFR (Galisteo et al., 1995; Lupher et al., 1996; Waterman et al., 2002) and acts as a 

negative regulator of  EGFR signaling (reviewed in Thien and Langdon, 2001). The 

EGFR has been found to be ubiquitinated upon EGF stimulation (Galcheva-Gargova et 

al., 1995). Cbl has been demonstrated to be responsible for this  ubiquitination 

(Levkowitz et al., 1998; Joazeiro et al., 1999; Levkowitz et al., 1999; Waterman et al.,

1999; Yokouchi et al., 1999; Lill et al., 2000), and it has been suggested that 

ubiquitination of the EGFR acts as a signal for endocytosis of the EGFR (Levkowitz et 

al., 1998; Miyake et al., 1998). Cbl is an E3 ubiquitin ligase of the RING-finger family, 

and there are three Cbl proteins in mammals: c-Cbl, Cbl-b and Cbl-3 (also called Cbl-c). 

c-Cbl, Cbl-b and Cbl-3 have Tyrosine Kinase Binding (TKB) domains, through which 

Cbl proteins can interact directly with the EGFR at pY1045 (Levkowitz et al., 1999). 

Additionally, c-Cbl and Cbl-b bind the EGFR adaptor protein Grb2 (Growth factor 
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receptor-bound protein 2) via a proline-rich region in c-Cbl/Cbl-b and one of the SH3 

domains of Grb2 and is believed to be recruited to the EGFR indirectly through such 

interactions (see Figure 7). Both direct and indirect interaction of Cbl proteins with 

EGFR mediate ubiquitination of the EGFR (Levkowitz et al., 1996; Waterman et al.,

2002).

In addition to different protein-protein interaction domains, Cbl proteins contain a 

cysteine rich RING finger domain which has been shown to be responsible for the 

ubiquitin ligase activity. The domain is required for recruitment of E2 enzymes, and 

functions together with the linker sequence that connects the TKB domain and the RING 

finger domain in this recruitment (Joazeiro et al., 1999; Levkowitz et al., 1999; Yokouchi

et al., 1999; Zheng et al., 2000). The E3 activity is regulated by phosphorylation of 

residues Y368 and Y371 in c-Cbl, and phosphorylation probably results in 

conformational changes in c-Cbl favoring E3 activity (Levkowitz et al., 1999; 

Kassenbrock and Anderson, 2004). Additionally, c-Cbl activity is proposed to be 

Figure 7. c-Cbl is recruited to EGFR directly through pY1045 and indirectly via Grb2 to 
EGFR through pY1068 or pY1086. c-Cbl contains a binding site for phosphorylated EGFR 
tyrosine residue 1045 within the tyrosine kinase binding (TKB) domain. c-Cbl is also able to 
interact with an SH3-domain of Grb2 through its proline rich domain (PRD). Grb2 interacts 
with EGFR through phosphorylated tyrosine residues 1068 and 1086, and recruits c-Cbl to 
EGFR also through this interaction. 
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regulated by ubiquitination. c-Cbl mediates  ubiquitination both of c-Src and of c-Cbl 

itself (Yokouchi et al., 2001).

Downregulation of the EGFR is regulated at several steps in endocytosis, both by sorting 

into clathrin-coated pits at the plasma membrane and by sorting for degradation or 

recycling at the early endosomes. Whether or not c-Cbl-mediated ubiquitination of the 

EGFR is important at the internalization step in endocytosis has been discussed. 

Inhibition of EGFR ubiquitination by overexpression of the Cbl-binding protein Sprouty, 

known to inhibit Cbl’s interactions with E2 enzymes (Fong et al., 2003), was found to 

block the progression of the EGFR into clathrin-coated pits and to block endocytosis of 

the EGFR (Stang et al., 2004). However, others have found that Cbl-mediated 

ubiquitination is required for EGFR degradation, but not for internalization (Duan et al.,

2003). Also, it has been shown that overexpression of c-Cbl does not affect EGFR 

internalization, but increases EGFR degradation only (Levkowitz et al., 1998). In the 

same study, overexpression of the oncogenic v-Cbl, a Cbl mutant able to bind pY1045 in 

the EGFR, but lacking the RING finger and the proline-rich domain, did not affect 

internalization of the EGFR. This Cbl mutant, however, increased receptor recycling. In 

addition, EGFR has been shown to be internalized independently of activation, by use of 

the specific EGFR tyrosine kinase inhibitor AG-1478 together with EGF (Wang et al.,

2002). An EGFR mutant unable to bind Cbl directly (Y1045F) was not inhibited in 

internalization (Jiang and Sorkin, 2003). Finally, in a CHO cell line with a temperature-

sensitive E1 ubiquitin-activating enzyme, EGFR downregulation, but not internalization,

was impaired. In this last study it was also proposed using Cbl–/– mouse embryonic 

fibroblast cell lines that endogenous Cbl is essential for ligand-induced ubiquitination and 

efficient degradation of EGFR, but not for internalization (Duan et al., 2003).

Monoubiquitination vs polyubiquitination 
As already described, ubiquitin is covalently attached to lysine residues on target 

proteins. However, also ubiquitin carries lysine residues, and these lysines serve as sites 

for self-conjugation. This leads to chains of multiply linked ubiquitin peptides, usually 

linked through lysine residue 48 (Lys48) but also Lys63, Lys11 and Lys29-chains are 
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known to exist (reviewed in Weissman, 2001). The Lys48-linked chains tags proteins for 

proteosomal degradation and are important signals for the turnover of many proteins in 

eukaryotic cells. Lys63-chains are known to be important in DNA repair, but have also 

been shown to be involved in targeting proteins for endocytosis and for vacuolar 

degradation of transporters in yeast. The ubiquitination of EGFR results in a “smear” of 

the EGFR band when doing Western blot, representing EGFR of higher molecular 

weight. This can represent both polyubiquitination as well as multiubiquitination patterns. 

The activation of EGFR was initially believed to result in polyubiquitination of the 

receptor (Galcheva-Gargova et al., 1995). In yeast, however, monoubiquitination was 

initially proposed to be the signal for endocytosis of plasma membrane receptors (Hicke 

and Riezman, 1996). Monoubiquitin has been shown to be sufficient for internalization of 

membrane receptors in yeast (Shih et al., 2000). In human cells, addition of a single 

ubiquitin molecule to the TfR, which is normally recycled from early endosomes, was 

sufficient for sorting the TfR into Hepatocyte growth factor regulated tyrosine kinase 

substrate (Hrs)-positive sorting microdomains on early endosomes (Raiborg et al., 2002), 

and monoubiquitination of EGFR has been shown to be sufficient for EGFR 

internalization (Haglund et al., 2003; Mosesson et al., 2003). It is not known though, 

whether additional ubiquitin residues are added to these initial monoubiquitin molecules, 

giving polyubiquitination intracellularly. Recently, using antibodies specific for 

polyubiquitin and also by using mutants of ubiquitin and EGFR, multiple 

monoubiquitination was proposed to be sufficient for internalization and degradation of 

receptor tyrosine kinases (Haglund et al., 2003; Mosesson et al., 2003). The question 

whether mono- or polyubiquitination drives endocytosis is still, however, discussed. In 

fact, using tandem mass spectrometry, it was recently demonstrated that more than 50% 

of the ubiquitin on activated EGFR is in the form of polyubiquitin, mostly Lys63-linked, 

but also some ubiquitin linked through Lys48, Lys11 and Lys29 was observed (Huang et 

al., 2006). Is has also been shown that the UIM of epsin, an adaptor protein proposed to 

be important for internalization of ubiquitinated cargo, preferentially binds to 

polyubiquitin (Hawryluk et al., 2006).
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Dynamin  
Dynamin is a large GTPase important for both clathrin-dependent and clathrin-

independent endocytosis, but its exact function in endocytosis is still partly unclear. 

Dynamin contains four conserved domains (see Figure 8).  

At the N-terminal end is a GTPase domain through which dynamin binds GTP and GDP. 

The pleckstrin homology (PH) domain mediates binding of dynamin to 

phosphoinositides, facilitating membrane binding of the protein (Salim et al., 1996; Klein

et al., 1998). Dynamin is capable of hydrolysing GTP without the help of an extra GAP 

(GTPase activating protein). Indeed, dynamin contains its own GAP, the GTPase Effector 

Domain (GED). Self-assembly of dynamin into oligomers activates the GTPase-

stimulating effect of this domain (Muhlberg et al., 1997; Sever et al., 1999). Through its 

Proline Rich Domain (PRD), dynamin is further able to interact with a number of SH3 

domain containing proteins involved in endocytosis, such as amphiphysin, cortactin, 

endophilin, Grb2, intersectin and Src (Gout et al., 1993; Miki et al., 1994; Seedorf et al.,

1994; Grabs et al., 1997; Ringstad et al., 1997; Foster-Barber and Bishop, 1998; 

Yamabhai et al., 1998; McNiven et al., 2000). There is increasing evidence that dynamin 

is involved in the late stages of clathrin-coated vesicle formation, most likely in pinching 

off of clathrin-coated pits (Kosaka and Ikeda, 1983; Carter et al., 1993; van der Bliek et 

al., 1993; Damke et al., 1994; Damke et al., 1995; Sever et al., 2000; Damke et al., 2001; 

Narayanan et al., 2005). Based on the work with the dynamin specific GTP hydrolysis 

inhibitor dynasore, it was recently proposed that dynamin may in fact act at two different 

stages in clathrin-vesicle formation, (Macia et al., 2006). Using dynasore, the authors 

observed the arrest of clathrin-coated vesicle formation at two different stages, both 

Figure 8. Structural organization of dynamin. Dynamin contains a GTPase domain 
through which it binds GTP or GDP, a PH domain through which dynamin interacts with 
PI(4,5)P2 of membranes, a GTPase effector domain (GED) through which dynamin self-
assembles and activates its GTPase activity and a proline-rich domain (PRD) through 
which dynamin interacts with a vast number of SH3-domain-containing proteins. 

GTPase PH GED PRD 

          Dynamin
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directly prior to pinching off and at an earlier stage. Treating cells with dynasore resulted 

in accumulation of what appeared as U-shaped pits which were partially coated, 

indicating halt at an early stage in clathrin-coated pit formation.  

Dynamin has been demonstrated to be involved in recycling from early endosomes to the 

TGN (Nicoziani et al., 2000) and dynamin has also been shown to be recruited to early 

endosomal clathrin coats upon overexpression of the endosomal sorting-protein Hrs 

(Raiborg et al., 2001a). Recycling of the TfR has been proposed to follow two distinct 

pathways, one pathway where dynamin is involved in transport from the early endosome 

to the recycling endosome, and another pathway different from that via the recycling 

endosome (van Dam et al., 2002). Although the importance of dynamin in receptor 

recycling from early endosomes has been reported, dynamin is proposed to function in 

endocytosis mainly on the plasma membrane. In addition to clathrin-mediated 

endocytosis, dynamin is important for caveolin-mediated endocytosis and has been 

reported to be necessary for other forms of caveolin- and clathrin-independent 

endocytosis. Dynamin-independent fluid phase uptake has also been reported, implying 

that there exist forms of endocytosis that do not rely on dynamin (reviewed in Conner 

and Schmid, 2003). 

The actin cytoskeleton 
Although the importance of the actin cytoskeleton in clathrin-mediated endocytosis is at 

present unclear (Fujimoto et al., 2000; Engqvist-Goldstein and Drubin, 2003), there is 

growing evidence for the involvement of the actin cytoskeleton in clathrin-mediated 

endocytosis in mammalian cells (reviewed in Merrifield, 2004). In yeast, actin and actin 

dynamics have been shown to be important for endocytosis (Engqvist-Goldstein and 

Drubin, 2003). In mammalian cells the actin motor protein Myosin VI has been shown to 

localize to clathrin-coated vesicles and to be important for endocytosis of the TfR (Buss

et al., 2001). The involvement of Myosin VI in clathrin-mediated endocytosis has been 

proposed to occur at the stage of transport inwards in the cell (Aschenbrenner et al.,

2003). Actin and the regulators of actin polymerization are believed to be recruited to 

clathrin-coated vesicles by dynamin, as dynamin binds multiple actin-interacting proteins 

(reviewed in Orth and McNiven, 2003). Dynamin is proposed to recruit activators of the 
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Arp2/3 complex such as cortactin and Neural Wiskott-Aldrich Syndrome protein (N-

WASP) to the neck of clathrin-coated pits, thereby causing actin polymerization, which 

can facilitate the last steps of internalization (Qualmann et al., 2000; Kessels and 

Qualmann, 2002; Cao et al., 2003; Merrifield, 2004; Merrifield et al., 2004). The actin 

cytoskeleton is also believed to control lateral movement of clathrin-coated pits 

(Gaidarov et al., 1999b; Santini et al., 2002; Mousavi et al., 2004). Lately, it has also 

been proposed that the actin cytoskeleton is in fact important at multiple stages of 

clathrin–mediated endocytosis such as coated pit formation, constriction, scission and 

lateral motility (Yarar et al., 2005). 

Phosphoinositides in endocytosis 
The lipid composition of membranes is considered to be important for endocytosis. In 

particular, the phosphoinositides have been shown to direct membrane trafficking by 

recruitment of adaptors and by creating membrane specificity (reviewed in Di Paolo and 

De Camilli, 2006). Phosphatidylinositol (PI) is a phospholipid found at the cytosolic face 

of membranes, and can be phosphorylated in three different positions of its inositol ring, 

giving rise to seven different phosphoinositides, each with a unique subcellular 

localization (see Figure 9). PI(4,5)P2 has been shown to be enriched at the plasma 

membrane, and PI(4,5)P2 mediates recruitment of AP-2 to the plasma membrane in 

clathrin-mediated endocytosis (Gaidarov et al., 1999b; Santini et al., 2002; Mousavi et 

al., 2004). In fact, all the known adaptors in clathrin-mediated endocytosis can bind 

PI(4,5)P2. Additionally, phosphoinositides also recruit both guanine nucleotide exchange 

factors (GEFs) and GAPs. The Rab and Arf classes of small GTPases are important for 

defining intracellular membranes (reviewed in Behnia and Munro, 2005), and their 

activity is regulated by GAPs and GEFs. GTPases can in turn control phosphoinositide-

metabolizing enzymes. Phosphoinositides are also involved in recruitment of elements of 

the cytoskeleton to membranes. PI(4,5)P2 and the small GTPase Cdc42 bind N-WASP. 

Together, the binding of  PI(4,5)P2  and Cdc42 to N-WASP triggers binding of N-WASP 

to the Arp2/3 complex and activation of the Arp2/3 complex (Rohatgi et al., 2000). This, 

in turn, activates actin polymerization. In addition to this, PI(4,5)P2 has been shown to 

bind dynamin (Achiriloaie et al., 1999; Lee et al., 1999; Vallis et al., 1999). Another 

phosphoinositide, PI(3)P, is found mainly on early endosomes and contributes to 
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lysosomal sorting by recruitment of PI(3)P-binding proteins. PI(3)P can be formed by 

dephosphorylation of PI(3,4,5)P3, but most often by phosphorylation of PI by 

PI(3)kinase. Less is known about phosphoinositide PI(3,5)P2, but it has been coupled to 

protein trafficking in the later steps of endocytosis (reviewed in Michell et al., 2006). 

Endosomal sorting of ubiquitinated cargo 
After budding of clathrin-coated pits, the coat disassembles, and the uncoated vesicle 

with its cargo fuses with the early endosome. Here internalized receptors are sorted into 

different microdomains for recycling back to the plasma membrane, for transport to the 

TGN, or to the lysosome for degradation. Cbl-mediated ubiquitination of the EGFR has 

been shown to be important for the sorting of EGFR at early endosomes (Levkowitz et 

al., 1999; Longva et al., 2002; Duan et al., 2003). The process of sorting to the lysosome 

for degradation involves recognition of ubiquitinated cargo by an endosomal sorting 

Figure 9. Intracellular distribution of the different 
phosphoinositides in cell membranes. PI(4,5)P2  is mainly found in 
the plasma membrane, whereas PI(3)P is predominantly located to 
early endosomal membranes. At later sorting endosomes or MVBs both 
PI(3)P and the less studied PI(3,5)P is found. PI(4)P is mainly enriched 
in the trans-Golgi network (TGN). The figure is from Burgess et al.,
2003. 
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machinery and subsequent internalization of retained cargo into intracellular vesicles of 

multivesicular bodies (MVBs) and further transport to the lysosome (reviewed in Raiborg

et al., 2003). Recently, much information has emerged on the machinery responsible for 

this sorting, and the focus has been on Hrs and the Endosomal Sorting Complex Required 

for Transport (ESCRT) complexes. Hrs has been shown to localize to the membrane of 

early endosomes, and it is homologous to the yeast protein Vps27p known to be 

important in protein traffic through a pre-vacuolar compartment (Komada et al., 1997). 

Later, Hrs was shown to localize to microdomains on the limiting membrane of early 

endosomes, identified by the presence of flat, bilayered coats. Often, inwards membrane 

budding is observed at the edge of these coats (Raiborg et al., 2001a; Raiborg et al.,

2002; Sachse et al., 2002). These coats were also shown to be enriched in EGFR, but not 

in TfR (Raiborg et al., 2002; Sachse et al., 2002). Hrs is recruited to early endosomes by 

the specific interactions between its FYVE domain (a zinc finger domain, named after 

Fab1, YOTB/ZK632.12, Vac1 and EEA1) and PI(3)P in the limiting membrane of the 

endosome (Urbe et al., 2000; Raiborg et al., 2001b). Another domain in Hrs, a coiled-coil 

domain, is also believed to be involved in membrane microdomain-binding specificity 

(Raiborg et al., 2001b). Recently, it was demonstrated that clathrin is important in 

recruiting Hrs to the specialized microdomains (Raiborg et al., 2006). Additionally, Hrs 

contains a VHS (Vps27, Hrs and STAM) domain. Such domains have been shown to 

interact directly with receptors (Nielsen et al., 2001). The protein also contains a UIM 

which is capable of binding monoubiquitin in vitro, but actually prefers binding to 

polyubiquitin (Bishop et al., 2002; Polo et al., 2002; Raiborg et al., 2002). Recently, the 

structure of the UIM in Hrs bound to ubiquitin was solved, and it was demonstrated that 

the UIM of Hrs in fact binds two ubiquitin molecules, on two sides of an -helix. Both 

binding sites were shown to be necessary for efficient protein sorting to the degradative 

pathway (Hirano et al., 2006). Overexpression of Hrs has been shown to inhibit 

degradation of the EGFR (Chin et al., 2001; Raiborg et al., 2001a; Bishop et al., 2002) 

and this could potentially be an effect of clathrin clustering and not directly of Hrs itself. 

Hrs has been shown to bind Eps15 and STAM (Signal-Transducing Adaptor Molecule), 

and it has been shown that these proteins form a complex. It has also been shown that Hrs 

recruits STAM to the endosomal membrane, and that Hrs, STAM and Eps15 co-localize 
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with ubiquitinated proteins in clathrin-positive microdomains on early endosomes (Asao

et al., 1997; Bache et al., 2003). As both Hrs, STAM and Eps15 bind ubiquitinated 

proteins, they have been suggested to function together in the capture of ubiquitinated 

proteins for sorting into MVBs (Bache et al., 2003). Also, as Hrs has been shown to bind 

clathrin and recruit clathrin to early endosomes (Raiborg et al., 2001a), it has been 

suggested that clathrin coats recruited by Hrs concentrate receptors in microdomains 

prior to the invagination of the membrane in formation of inner MVB vesicles (Raiborg 

and Stenmark, 2002). Hrs is ubiquitinated itself, and must be deubiquitinated for receptor 

sorting to the degradative pathway. This ubiquitination status is proposed to be regulated 

by Vps4 (Marchese et al., 2003b).

After binding of ubiquitinated cargo by the Hrs/STAM (Vps27/Hse1p in yeast) complex, 

Hrs is believed to recruit the ESCRT-I complex through the ESCRT-I subunit Tsg101 

(Vps23 in yeast). Cargo is then transferred to Tsg101 in the ESCRT-I complex. 

(reviewed in Slagsvold et al., 2006). ESCRT-I is composed of three subunits, namely 

Vps23, Vps28 and Vps37. Downstream of ESCRT-I, ESCRT-II takes over the 

ubiquitinated cargo (Raiborg et al., 2003). ESCRT-II consists of the three subunits 

Vps22, Vps25 and Vps36, and ESCRT-II is able to bind ubiquitin through Vps36 

(Raiborg et al., 2003). After transfer of ubiquitinated cargo to ESCRT-II, the ESCRT-III 

complex is recruited to early endosomes. This complex has two subcomplexes, Snf-

Vps20 and Vps2-Vps24 and has been proposed to function in the final steps of inner-

vesicle scission on early endosomes (Raiborg et al., 2003).

The limiting membrane of early endosomes contains multiple coated domains (Murk et 

al., 2003), and it has been shown that endosomal coats are both Hrs-positive and -

negative, as well as clathrin-positive and -negative (Prekeris et al., 1999; Sachse et al.,

2004).  It is possible that the Hrs-negative coats are in fact formed by the ESCRT 

complexes, and are involved in the final steps of endosomal sorting for the degradative 

pathway.
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Ack1 in endocytosis
Activated Cdc42 associated kinase (Ack) is a nonreceptor protein tyrosine kinase. The 

human and murine forms of Ack are encoded by the TNK2 gene and are called Ack1. 

There are several isoforms of Ack1, isoform 1 being the best characterized. This isoform 

of Ack1 is 114 kDa. In this thesis Ack1 refers to isoform 1 of Ack1. Bovine Ack is called 

Ack2 and is encoded by the ACK2 gene. There are also several isoforms of bovine Ack, 

the best characterized isoform is 83 kDa. Throughout this thesis, Ack2 will refer to this 

isoform of bovine Ack.  

Ack1 has been shown to be activated by EGF and to be recruited to EGFR following 

EGF stimulation (Galisteo et al., 2006). The kinase was first identified by its binding to 

Cdc42 (Manser et al., 1993) and contains an SH3 domain, a tyrosine kinase domain, a C-

terminal proline-rich sequence, a Cdc42-binding CRIB domain and a Ralt homology 

Figure 10. Endocytic downregulation of  EGFR. Upon ligand binding and 
dimerization EGFR is ubiquitinated and internalized through clathrin-coated 
pits. After vesicle scission clathrin is released, and the vesicle fuses with the 
early endosome. Here the ubiquitinated receptor is believed to be retained from 
the recycling pathway by recruitment into flat clathrin-coated pits by Hrs. 
Retained receptor is then transferred through the three ESCRT complexes and 
internalized into inner vesicles on the early endosome, before being transported 
through the MVBs to the lysosome for degradation. The figure is from Bache et 
al., 2004, and the figure legend is modified. 
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domain. The Ralt homology domain has been shown to mediate binding to the EGFR 

(Fiorentino et al., 2000; Anastasi et al., 2003; Shen et al., 2006). Ack1 also contains a 

UBA domain, and this domain has been suggested to be important for EGFR degradation 

(Shen et al., 2006). The activation of Ack1 following EGF stimulation has been shown to 

be dependent on Grb2 (Kato-Stankiewicz et al., 2001). Ack1 is known to inhibit EGFR 

and TfR endocytosis by its ability to bind clathrin and to alter clathrin distribution (Teo et 

al., 2001). Ack1 also localizes to clathrin-containing vesicles and co-localizes with both 

clathrin and AP-2. In addition, both Ack1 and Ack2 have been suggested to act as 

clathrin-assembly proteins regulated by Cdc42 (Yang et al., 2001). 

Ack1 specifically binds the GTP-bound form of Cdc42 (Manser et al., 1993). Cdc42 is a 

member of the Rho family of GTPases and is known to be involved in regulation of the 

actin cytoskeleton, in regulation of cell polarity and has also been suggested to be 

involved in control of intracellular trafficking (reviewed in Cerione 2004). Ack2 has been 

shown to interact with SNX9, facilitating the degradation of the EGFR (Lin et al., 2002). 

Recently, the interaction with SNX9 has also been shown for human Ack1 (Yeow-Fong

et al., 2005). The interaction between Ack1 and SNX9 occurs through the SH3 domain of 

SNX9 and the proline-rich sequences of Ack1, and SNX9 preferentially interacts with 

inactive Ack1 (Yeow-Fong et al., 2005). In Drosophila the Ack1 orthologue DAck 

phosphorylates the SNX9 orthologue DSH3PX1, thereby causing decreased binding of 

SNX9 to WASP, an interaction that occurs through the SH3 domain of DSH3PX1 

(Worby et al., 2002). Hence, phosphorylation of SNX9 by Ack1 appears to alter the 

binding capacity of its SH3 domain. Additionally, in the presence of SNX9, Ack1 

interacts with the endocytosis-linked protein synaptojanin-1 (Yeow-Fong et al., 2005). It 

has also been shown that Ack1 phosphorylates WASP, thereby enhancing the ability of 

WASP to stimulate actin polymerization (Yokoyama et al., 2005). N-WASP has been 

proposed to be important for efficient endocytosis of EGF and actin assembly at clathrin-

coated pits (Benesch et al., 2005).
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Recently, it was shown that Ack1 in fact interacts with EGFR upon EGF stimulation, and 

that Ack1 is necessary for degradation of EGFR in a manner dependent on the UBA 

domain of Ack1 (Shen et al., 2006). 
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AIMS OF THE STUDY 
Endocytosis of the EGFR is important in regulation of receptor signaling. Internalization 

of the EGFR from the plasma membrane is essential for degradation, but the EGFR’s 

kinase domain is cytosolic and in principle able to keep signaling until it is sorted into 

internal vesicles in early endosomes. Only then is the receptor destined for degradation in 

lysosomes.  

Our first aim was to study the effect of different ubiquitination levels and patterns on 

endocytosis and endosomal degradation of the EGFR. Although it was known that Cbl 

can bind the EGFR both directly and indirectly, the reports on the effects of the 

interaction between the EGFR and Cbl on ubiquitination and internalization of the EGFR 

were contradictory (Waterman et al., 2002; Jiang and Sorkin, 2003; Oksvold et al., 2003; 

Shen et al., 2006). By using PAE cells expressing wild type (wt) or Y1045F EGFR, we 

wanted to investigate whether direct and indirect binding of Cbl would give differences 

in ubiquitination, endocytosis and intracellular trafficking of the EGFR. 

 Our second aim was to characterize endosomal sorting of the EGFR. On endosomes, the 

EGFR is sorted either for recycling or to inner vesicles of MVBs for degradation 

(Gruenberg, 2001). The limiting membrane of early endosomes was known to contain 

functionally distinct microdomains (Raiborg et al., 2001a). Some of these microdomains 

have coats, whereas others do not. We wanted to investigate the domains involved in 

sorting of the EGFR to lysosomes. Should there be different domains, we wanted to 

characterize the composition and function of these domains. 

Our third aim was to characterize the function of Ack1. Ack1 had been shown to bind 

EGFR and clathrin, and overexpression had been shown to impair endocytosis of the 

TfR. We wanted to investigate whether Ack1 had a general function in endocytosis, or 

whether it had a specific function in endocytosis of the EGFR or endosomal sorting. 
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SUMMARY OF ARTICLES 

Article I:
Direct interaction of Cbl with pTyr 1045 of the EGFR receptor (EGFR) is required 

to sort the EGFR to lysosomes for degradation.

In this article we showed that the Y1045F EGFR mutant, which does not bind Cbl 

directly, is ubiquitinated although not to the same extent as wild type EGFR. We showed 

that both direct and indirect binding of Cbl contributed to ubiquitination of the EGFR. 

Using immunofluorescence and confocal microscopy, we showed that the EGFR 

impaired in direct recruitment of Cbl through pTyr1045, was indeed internalized to early 

endosomes upon ligand activation. By immuno-EM we found that different interaction 

between EGFR and Cbl impacted on sorting on early endosomes and that lack of direct 

interaction resulted in inhibited sorting to the degradative pathway. The Y1045F EGFR 

mutant was not sorted into MVBs, but remained on the surrounding membrane of early 

endosomes, or it recycled back to the cell surface. We further demonstrate that the 

Y1045F EGFR mutant failed to co-localize with Hrs, a proposed adaptor for sorting of 

ubiquitinated cargo to the degradative pathway. By flow cytometry, we showed that the 

wt EGFR was downregulated upon EGF stimulation, whereas the Y1045F EGFR 

displayed impaired downregulation.

Article II:
Both clathrin-positive and -negative coats are involved in endosomal sorting of the 

EGF receptor.

In this study different microdomains present on sorting endosomes were characterized. 

We studied the localization of EGFR after ligand-induced internalization to early 

endosomes and observed that both Grb2 and Cbl localized to early endosomes upon 

internalization of the EGFR.  Using immuno-EM, we demonstrated that Grb2 and Cbl 

together with the EGFR were sorted to coated microdomains on early endosomes and 

further transported into internal vesicles of MVBs. Using immunofluorescence and 

Rab5Q79L-induced enlarged endosomes we demonstrate that the microdomains to which 
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EGFR/Cbl/Grb2 were sorted, were only partially clathrin- and Hrs-positive. Immuno-EM 

further demonstrated that the sorted EGFR/Cbl/Grb2 only partially co-localized with Hrs 

and clathrin within coated domains on endosomes, and we propose that sorting of the 

EGFR involves both clathrin-positive and clathrin-negative coats. 

Article III:
Over-expression of Ack1 inhibits internalization and endosomal sorting of the EGF 

receptor.

In this article we studied the function of Ack1 in endocytosis and intracellular sorting of 

the EGFR. We showed that Ack1 co-localized with EGF on EEA1-positive early 

endosomes. Using immuno-EM, we studied the intracellular localization of Ack1 and 

confirmed that Ack1 localized to early endosome-like compartments as well as to a 

reticulum consisting of interconnected coated tubules. We showed that endocytosed EGF 

co-localized with Ack1 on early endosomes and on the Ack1 positive reticulum and that 

overexpression of Ack1 inhibited internalization of EGFR. We further demonstrated that 

internalized EGFR was retained in early endosomes and that translocation into MVBs 

was inhibited. These results led us to propose that Ack1 is involved in endosomal sorting 

of the EGFR. Also, we confirmed that overexpression of Ack1 caused sequestration of 

clathrin intracellularly and thereby inhibited clathrin-mediated endocytosis. Furthermore, 

we found that overexpression of Ack1 induced sequestration of dynamin, and probably 

the inhibited clathrin-independent endocytosis could be explained by this.
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METHODOLOGICAL CONSIDERATIONS 

Experimental models 

Cultured cell lines are powerful tools in molecular biology and are important for studies 

of cell biology. They allow differences in protein expression by transient or stable 

transfection and studies of protein localization and protein-protein interactions upon 

different manipulations. As cell lines can be cultured for longer periods of time, cell lines 

allow multiple experiments to be performed. Genotypic and phenotypic alterations may, 

however, occur over time. To limit such events, cells were kept in culture for no more 

than 8 weeks. Cells with low passage numbers were stored in liquid nitrogen. When using 

cultured cell lines, one should, however, be careful not to generalize observations made 

in one specific cell line. To enable culturing, cells must be immortalized, and different 

cell lines have different origins in addition to being differentiated to various degrees. It is 

therefore important not to immediately generalize importance of observations made in 

one cell line. Also, it is important to be aware of differing subcellular protein 

compositions in specific cell lines. Differences in the speed of cellular processes like 

endocytosis could also be cell specific.

 In this work three different cell lines have been used. The human cervical carcinoma cell 

line HeLa and the human laryngeal carcinoma cell line Hep2 both express relatively high 

amounts of EGFR. Whereas the HeLa cells express approximately 7*104 EGFRs at the 

plasma membrane (Ringerike et al., 1998), we estimated the amount of EGFR on the 

plasma membrane of Hep2 cells to be roughly 5*105 by flow cytometry. The morphology 

of the cells is useful for microscopy studies as the ratio of cytosol to nucleus is high, 

allowing studies of cytosolic proteins. The studies on the Y1045F EGFR mutant were 

mostly performed in cells derived from a Porcine Aortic Endothelial (PAE) cell. The 

original PAE cells do not express endogenous EGFR, but cells stably transfected with 

either human wt EGFR or Y1045F EGFR have been made (Jiang and Sorkin, 2003). The 

different cell lines expressed relatively similar amounts of the EGFR, the amount of 

Y1045F EGFR being slightly higher than that of wt EGFR. One should be aware that 

these cells are of porcine origin, and that EGFR of human origin may not bind all 
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proteins of porcine origin as efficiently the homologous proteins in cells of human origin. 

The cell line is well described, however, and the EGFR appears to be endocytosed in a 

manner similar to that of endogenous EGFR in human cells (Carter and Sorkin, 1998). 

Immunological methods 

Another powerful tool in cell biology is the different immunological methods. These 

methods are based on the very specific recognition between an antigenic epitope and an 

antibody. These methods are useful for visualization of specific proteins and their 

localization in cells using microscopy, and also for detecting and quantifying specific 

proteins in total cell lysate, after lysis of the cell. Another important method is the use of 

antibodies for immunoprecipitation studies, both to study protein modifications and 

protein-protein interactions. Using immunological methods, the critical point is having 

good antibodies. They must be specific for the protein in question and bind with high 

affinity. Antibodies with low specificity may give false positives, and misinterpretation 

of data. All our antibodies were analyzed for specificity.

Microscopy 

Immunostaining combined with confocal and electron microscopy enabled us to study the 

intracellular localization of different proteins. Using multiple labeling for 

immunofluorescence microscopy, bleedthrough from the different fluorochromes can 

cause false interpretations of signals, a problem we tried to minimize by taking images 

sequentially. Also, when using multiple antibodies simultaneous, cross-reaction between 

antibodies may occur, giving rise to erroneous interpretations. It is therefore important to 

include negative controls when doing double or triple labeling experiments. We also tried 

to minimize nonspecific binding by incubating the prepared cells with BSA prior to 

labeling. By using fluorescently labeled EGF, we avoid problems connected to antibody 

cross-reaction and non-specificity when studying localization of the EGF/EGFR-

complex. One must be aware, however, that EGF may dissociate from the EGFR, so that 

fluorescent EGF may not always co-localize with the EGFR. Using fluorescently labeled 

EGF can also be an advantage when studying receptor endocytosis, as only newly 

endocytosed EGFR will be detected and not newly synthesized intracellular EGFRs being 
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transported towards the plasma membrane. The resolution of confocal microscopy is 

limited, and immuno-EM is a better tool for studying protein localization to specific 

membrane domains. Another advantage of using EM is that electron-dense membranes 

and coats can be visualized without specific markers. A limitation when using both 

confocal microscopy and EM, is that the images obtained are only 2-dimensional. Using 

confocal microscopy, this can lead to false positive co-localization of proteins that are in 

fact separated in the third dimension. In case of EM, the problem with 2-dimensional 

pictures is often that the section is so thin that important information can be lost. 

Continuous structures may be difficult to follow, and may be misinterpreted as two 

separate structures if a part of the structure lies outside the slide. Immuno-EM also allows 

quantitation of the labeling, but like other immunolabeling techniques, one must be aware 

of limitations such as antigen accessibility, labeling efficiency and cross-reactivity. 

Internalization of EGF 

We measured internalization, recycling, and degradation of EGFR by incubating cells 

with 125I-EGF and then measuring the radioactivity in different fractions of cells and 

medium. This method allows for highly reproducible and quantitative data, obtained from 

much larger total amount of cells than when using microscopy. One must keep in mind, 

however, that one is in fact studying the internalization of EGF, and not the total pool of 

the EGFR. As for fluorescent EGF in microscopy studies, 125I-EGF may dissociate from 

the EGFR, so there may be discrepancies between the observed localization and 

degradation of EGF, and that of the EGFR. EGFR degradation can, however, be readily 

confirmed by Western blotting of total cell lysate. 

Enlarged endosomes by Rab5Q79L overexpression  

The confocal microscopy resolution limits the studies of small microdomains on 

endosomes. To solve this problem we overexpressed the constitutively active mutant of 

Rab5, Rab5Q79L, in HeLa cells. This causes the formation of enlarged early endosomes 

in the cells due to increased fusion of early endosomes (Stenmark et al., 1994). The 

introduction of enlarged endosomes allows studies of microdomains on early endosomes 

even with confocal microscopy. The endosomal microdomains formed upon Rab5Q79L 
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overexpression have been well characterized, and the presence of distinct microdomains 

has been confirmed by other methods as well. It is important, however, to be aware of 

possible sources of misinterpretation when using this method. First, small vesicles 

docking at the early endosome may be misinterpreted as endosomal microdomains. This 

is only avoided with experience in studying enlarged endosomes. Also, the induction of 

large endosomes causes redistribution of lysosomal markers and appears to disrupt 

lysosome biogenesis (Rosenfeld et al., 2001).

Transient overexpression of Ack1 

Transient overexpression of proteins is a widely used and powerful tool in molecular cell 

biology. The method allows easier detection of interactions with target proteins and 

studies of localization. Overexpression of fluorescently tagged protein is helpful in 

studying protein localization by microscopy. Increased expression of a specific protein 

may also result in altered cell phenotype and may thereby indicate the function of the 

endogenous protein. Overexpression of proteins, with or without small tags such as HA, 

is helpful when endogenous expression of the protein is too low to allow microscopic 

studies. Tags may be useful to overcome problems such as lack of specific antibodies, 

because antibodies to the tags are normally easier obtainable than antibodies to a specific 

protein. An important thing to consider when overexpressing proteins is that tightly 

controlled interactions with other proteins may be disturbed. Also, interactions that 

normally rarely occur in the cell may be induced by overexpression of proteins. 

Interactions observed when overexpressing a protein may thus not take place at normal 

expression levels. Also, interacting proteins that normally participate in multiple 

reactions in the cell may be sequestered upon overexpression of one of its interaction 

partners and thus induce false phenotypes. This is the case with overexpression of Ack1. 

Expressed at high levels, Ack1 sequesters clathrin in the cell, thereby inhibiting clathrin-

mediated endocytosis.  
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DISCUSSION OF RESULTS 

Ubiquitination and endocytosis 

There is currently agreement that ubiquitination is important in endocytic downregulation 

of the EGFR. Exactly which step of receptor endocytosis is controlled by ubiquitination 

is, however, still debated. Because of conflicting evidence, the importance of 

ubiquitination in initial endocytosis of the EGFR and in sorting on early endosomes is not 

fully understood. We used the EGFR mutant Y1045F for this purpose, as Cbl, the 

ubiquitin ligase responsible for ubiquitination of the EGFR, does not bind directly to this 

receptor (Levkowitz et al., 1998; Joazeiro et al., 1999; Levkowitz et al., 1999; Waterman

et al., 1999; Yokouchi et al., 1999; Lill et al., 2000). We found that the Y1045F EGFR 

was not degraded. This is consistent with the results of others demonstrating that direct 

binding of Cbl to the EGFR is necessary for EGFR degradation (Levkowitz et al., 1998; 

Levkowitz et al., 1999; Waterman et al., 1999; Jiang and Sorkin, 2003). Together with 

the observed arrest of Y1045F EGFR at the limiting membrane of early endosomes, this 

supports the notion that ubiquitination is important in sorting the EGFR to MVBs and 

lysosomes for degradation (Levkowitz et al., 1999; Longva et al., 2002; Duan et al.,

2003).

To examine this further, we studied ubiquitination of the EGFR and found the Y1045F 

EGFR to be ubiquitinated to some extent. This was in agreement with results reported by 

Waterman et al. (Waterman et al., 2002) who showed that Y1045F EGFR was 

ubiquitinated, especially upon overexpression of Cbl and Grb2. Our results were, 

however, in contrast to other publications showing lack of Y1045F EGFR ubiquitination 

(Levkowitz et al., 1999; Jiang and Sorkin, 2003). A recent study employing tandem mass 

spectrometry confirmed that the Y1045F EGFR mutant is indeed ubiquitinated upon 

stimulation with EGF. Out of 6 lysine residues identified as sites of ubiquitination within 

the kinase domain of EGFR, 2 were still ubiquitinated in the Y1045F EGFR mutant 

(Huang et al., 2006). Thus, ubiquitination is still a possible signal for internalization of 

the EGFR by clathrin-mediated endocytosis.  
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Ubiquitination of the EGFR has been shown to occur at the plasma membrane (Stang et 

al., 2000), and Cbl has been demonstrated to be important for internalization of the 

EGFR (Thien et al., 2001; Soubeyran et al., 2002; Waterman et al., 2002; Jiang and 

Sorkin, 2003; Huang and Sorkin, 2005). We have found that ubiquitination of the EGFR 

is necessary for its recruitment into coated pits (Stang et al., 2004). It has been found that 

ubiquitination of the EGFR by Cbl can occur both via the direct interaction between the 

EGFR and Cbl and via indirect interactions through Grb2 (Waterman et al., 2002). In 

paper I we confirmed this by overexpression of Cbl- and Grb2 mutants. It has been 

proposed that these two interactions represent different, independent pathways for 

receptor ubiquitination (Waterman et al., 2002). Others have recently proposed that Grb2 

mediated recruitment of Cbl to the EGFR is necessary for internalization, whereas the 

direct interaction is necessary for sorting of the EGFR in early endosomes (Huang and 

Sorkin, 2005).  These results are in agreement with ours.  

It has been proposed that the internalization apparatus for ubiquitinated proteins at the 

plasma membrane requires only minimal ubiquitination of receptors for interaction, 

whereas the sorting apparatus for ubiquitinated cargo at the endosome requires more 

ubiquitination for binding (Huang et al., 2006). This is not contradictory to our results. 

Another explanation, however, for the different requirements in interactions between Cbl 

and EGFR in internalization and endosomal sorting, could be formation of different 

ubiquitin patterns by the different interactions. Support for this model lies in the recent 

study of UIMs of ubiquitin binding proteins. The UIM domain of epsin 1, an adaptor 

protein suggested to function in clathrin-mediated endocytosis of ubiquitinated cargo, 

consists of multiple tandem UIMs that preferentially bind polyubiquitin (Hawryluk et al.,

2006). Hrs, which is responsible for endosomal sorting of ubiquitinated cargo, has only 

one UIM. This UIM actually binds two molecules of ubiquitin simultaneously, each on 

different sides of an -helix (Hirano et al., 2006). The differences in binding of ubiquitin 

to UIMs of epsin 1 and Hrs support the notion that different ubiquitin patterns are 

important at different stages of endocytosis and intracellular sorting. In support of this we 

found the Y1045F EGFR mutant, although ubiquitinated, to be excluded from Hrs-
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positive coats on early endosomes. Wt EGFR, however, was concentrated in Hrs-positive 

coats on the limiting membrane of early endosomes.  

In paper II, using immuno-EM, we found that also Cbl and Grb2 are recruited into coated 

microdomains on endosomes. This is in agreement with previous studies, demonstrating 

recruitment of Cbl and Grb2 to early endosomes upon EGF stimulation (Sorkin et al.,

2000; Jiang and Sorkin, 2002; Longva et al., 2002; Huang and Sorkin, 2005). This further 

supports the notion that sustained ubiquitination of the EGFR is necessary for endosomal 

sorting of the EGFR for degradation by the lysosomal pathway (Longva et al., 2002). 

Although the importance of Grb2 for efficient endosomal sorting is not yet fully 

understood, it has been proposed that on the plasma membrane, Grb2 functions in 

receptor endocytosis by recruiting Cbl (Huang and Sorkin, 2005). Also, Grb2 appears to 

be important for efficient recruitment of Cbl to early endosomes (Jiang and Sorkin, 

2003). Thus, our results further support the notion that sorting of the EGFR for 

degradation relies on sustained ubiquitination of the receptor and on interaction with the 

sorting machinery consisting of Hrs/STAM and the ESCRT complexes (reviewed in 

Raiborg et al., 2003).

The finding that EGFR localizes to Hrs/clathrin-positive coats is in agreement with 

previous immunofluorescence and EM studies (Raiborg et al., 2002; Sachse et al., 2002). 

It has been demonstrated that endosomes contain multiple coated domains (Murk et al.,

2003), and both Hrs-positive and Hrs-negative coats have been observed (Sachse et al.,

2004). We found the EGFR/Cbl/Grb2 complexes also in coated microdomains negative 

for Hrs and clathrin. Clathrin-negative coats have been  reported by others (Sachse et al.,

2004), but the exact function and composition of these coats are unknown. It is possible 

that ESCRT complexes also form coats on early endosomes, and our observation would 

then be in agreement with the findings that ubiquitinated cargo is transferred from 

Hrs/STAM complexes to ESCRT complexes before being sorted into internal vesicles on 

MVBs (reviewed in Raiborg et al., 2003). The late stages of sorting would then involve 

coats devoid of Hrs and clathrin. This is supported by the recent findings that the 

Hrs/clathrin-coated microdomains are dynamic structures where Hrs and clathrin are 
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exchanged with similar kinetics. A model is proposed in which clathrin and Hrs are 

released from the particular microdomains simultaneously, allowing recruitment of the 

ESCRT complexes before sorting into internal vesicles (Raiborg et al., 2006). Thus, it is 

possible that the coats devoid of clathrin and Hrs represent EGFR in complex with the 

ESCRTs.

Ack1 and EGFR endocytosis 
We found that overexpression of Ack1 sequestered clathrin and inhibited internalization 

of the EGFR. This is in agreement with previous studies, demonstrating that 

overexpression of Ack1 or Ack2 perturbs clathrin distribution and impairs TfR 

internalization (Teo et al., 2001; Yang et al., 2001). As internalization of the EGFR is 

also strictly clathrin-dependent (Kazazic et al., 2006), the observation that overexpression 

of Ack1 also impairs EGF endocytosis is not surprising. It must be emphasized, however, 

that this is an effect of overexpression of Ack1, and probably not the effect of 

endogenous Ack1 in vivo. Others have observed, however, that overexpression of Ack2 

together with SNX9 enhances internalization of the EGFR (Lin et al., 2002). Thus, it is 

likely that the effect of transient expression of Ack1 is very sensitive to expression levels 

achieved. The fact that Ack1 was localized to early endosomes together with EGF, and 

that overexpression retained the EGFR on the limiting membrane of early endosomes, 

suggests the involvement of Ack1 in EGFR sorting. Involvement of Ack1 in EGFR 

sorting is also suggested in the recent study, where siRNA-induced downregulation of 

Ack1 was demonstrated to affect downregulation of the EGFR (Shen et al., 2006). 

However, Shen et al. suggested that over-expression of Ack1 facilitated downregulation 

of the EGFR. The contradicting conclusions in their and our studies could partially be 

explained by sequestration of proteins involved in sorting of the EGFR upon 

overexpression of Ack1. 

We further found that overexpression of Ack1 in addition to inhibiting clathrin-dependent 

endocytosis inhibited the clathrin-independent endocytosis of MHC-I. The inhibited 

endocytosis of MHC-I is most likely due to an Ack1-induced sequestration of dynamin, 

as we found that dynamin co-localized with Ack1 intracellularly. Altogether, these results 
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show that overexpression of Ack1 can interfere with endocytosis and thereby with signal-

transduction at several stages. This can again interfere with growth regulation. 
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