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1. Introduction

1.1. Placenta  

The placenta is a transient organ that supports the growth and development of 

the fetus (Figure 1). It provides exchange of oxygen, nutrients and waste products 

between mother and fetus. It functions as a substitute for the lungs, intestines and 

kidneys of the fetus until these organs are fully developed and can perform these 

functions on their own. The nutrients transported across the placenta to the fetus 

include amino acids, carbohydrates, lipids, vitamins, minerals and water. The waste 

products transported from the fetus to the mother are carbon dioxide and urea [1]. 

Placenta is also an important endocrine gland responsible for the production of many 

hormones important for the maintenance of pregnancy. Other placental functions 

include energy metabolism to support the placentas own needs, modification of 

nutrients destined for the fetus, maintenance of a immunological barrier, transfer of 

heat and detoxification of xenobiotics.  

Placentation 

After conception the fertilized egg develops into a blastocyst. The inner cell mass 

of the blastocyst develops to become the fetus while the outer cell mass becomes the 

placenta and the fetal membranes. The outer cell layer consists of highly specialized 

placental cells called trophoblasts (Figure 2). The trophoblasts invade the endometrium 

in a tightly controlled manner that is important for the implantation and placentation 

process. Failure to control the invasion process results in a very aggressive cancer, 

choriocarcinoma [2].  

Placentation occurs from about weeks 6 to 18 of pregnancy [4]. The maternal 

and fetal circulations are separated by the chorionic villi. The chorionic villi are finger-

like structures covered with an outer layer of syncytiotrophoblast, surrounding a cell 

layer of cytotrophoblasts. Underneath the cytotrophoblasts there are stromal cells and 

fetal endothelial cells that line the fetal vessels in the chorionic villi. The villi are divided 

in floating and anchoring villi; the floating villi are bathed in maternal blood and 

function as the place of exchange of gases and nutrients between mother and fetus, 

whereas the anchoring villi attach the placenta to the endometrium.  
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Figure 1: Schematic overview of the placenta, the placental structure and a placental terminal villus. 

Modified from Benirschke & Kaufmann [3].
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Figure 2: Implantation of the blastocyst. Within 4-5 days after fertilization the embryo develops into 

a blastocyst, a spherical structure composed on the outside of trophoblasts and on the inside the inner 

cell mass. The inner cell mass will develop into the fetus and the trophoblasts will develop into the 

placenta and the fetal membranes. At about day 6 the blastocyst will attach to the uterine wall 

(endometrium) and the trophoblast cells will start invading the endometrium and by that the process of 

placentation begins.

 

In the first trimester of gestation the cytotrophoblasts within the floating villi 

proliferate and differentiate into the multinucleate syncytiotrophoblast by fusion. The 

syncytiotrophoblast is subject to continuous renewal and the aged nuclei form syncytial 

knots that buds out from the villi and can be released into the maternal circulation as 

cellular debris. The cytotrophoblasts within the anchoring villi can fuse to form 

syncytiotrophoblast or they form columns of extravillous trophoblasts. The extravillous 

trophoblasts invade the decidua (the gestationally altered maternal uterine endometrium 

during pregnancy) and are believed to migrate either interstitially (through the decidual 

tissue) or retrogradely (through the spiral arteries) into the maternal decidua. They 

transform the narrow spiral arteries into wide, thin-walled and dilated vessels, which 

transport the arterial blood from the maternal side to the placenta (Figure 3).  
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Figure 3: Trophoblast invasion. The villous cytotrophoblasts are trophoblast stem cells that can 

differentiate into two major cell lineages; the syncytiotrophoblast and the invasive extravillous 

trophoblasts. In the first trimester the cytotrophoblasts proliferate and form cell columns that anchor 

the placenta to the uterus. Two types of extravillous trophoblasts are derived from the cell columns; the 

interstitial and the endovascular invasive trophoblasts. The interstitial invasive trophoblast migrates 

through and invades the uterine tissue, whereas the endovascular invasive trophoblast migrates to the 

maternal uterine spiral arteries. There the trophoblast displaces and replaces the endothelial cell lining of 

the spiral arteries and plays a role in the degradation of the muscle and elastic coat which is replaced 

with fibrinoid tissue. The trophoblasts migrate deep into the uterine myometrium where they fuse to 

form giant cells. Modified from Moffet-King [5]. 

 

The blood flow to the placenta changes dramatically during early pregnancy. In 

the first trimester the spiral arteries are in the process of being transformed and are 

essentially blocked by a column of trophoblast cells so the maternal blood flow to the 

placenta is at a minimum. Ultrasound measurements show that the uteroplacental blood 

flow increase significantly at week 12 and reaches maximum at week 14 of gestation [6]. 

Burton et al found by studying hysterectomy samples that the maternal spiral arteries are 

blocked by trophoblasts at week 6-8 and that this blockage gradually disappears between 

week 8-12 of gestation so that a substantial blood flow to the placenta is not established 

until week 12 [7]. The oxygen tension in the intervillous space increases gradually from 
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week 8-12, and also coincides with an increase in anti-oxidant systems in placental tissue 

[8].  

This means that before week 12 the invading cytotrophoblasts are subjected to 

an oxygen gradient, with increasing oxygen tension from the intervillous space to the 

maternal blood in the myometrium. This gradient could be important in the regulation 

of trophoblast invasion [9]. At the end of the first trimester with full onset of the 

uteroplacental circulation, the oxygen concentration in the placenta rises three-fold and 

poses new challenges for the trophoblast cells [10]. The syncytiotrophoblast 

mitochondria are particularly sensitive to high oxygen levels, as they have low levels of 

antioxidants [10]. It has been found that excessive levels of antioxidants in 

cytotrophoblasts inhibit syncytialization and therefore the oxygen level is also important 

for the differentiation of cytotrophoblasts [10]. 

The area of the placenta that is available for exchange of nutrients is increasing 

rapidly until week 26 of gestation, when the villous surface area exceeds 4 m2 [3]. At the 

end of the second trimester the mature intermediate villi appear and a few weeks later 

the terminal villi appear and increase rapidly in numbers from this point onwards. The 

fetal blood flow to the placenta also increases exponentially with gestational age and the 

increase in exchange area. Increased blood flow from the maternal side and the 

appearance of terminal villi coincide with a marked increase in fetal fat deposition.  

 

1.2. Fatty acids and their importance in fetal nutrition 

Placental uptake of maternal fatty acids (FAs) is essential for growth and 

development of the feto-placental unit. During the last trimester of pregnancy the fetus 

accumulates large amounts of fat, and free fatty acids (FFAs) are the main class of 

naturally occurring lipids transferred across the placenta [11]. The fetal circulation is 

enriched with long-chained polyunsaturated fatty acids (LCPUFAs) compared to the 

maternal circulation.  

Fatty acids  

FAs are a normal constituent of the human diet and they are derived from animal 

or vegetable fats. They serve as building blocks of phospholipids and glycolipids, they 
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are fuel molecules stored intracellularly as triacylglycerides (TAG) (predominantly in 

adipocytes), and they are precursors for hormones and intracellular messenger 

molecules. FAs are carboxylic acids with hydrocarbon chains of varying lengths and a 

carboxyl group at the terminal end. Natural FAs normally have between 4 to 28 carbons 

in their chain, and most have an even number of carbon atoms because their 

biosynthesis involves acetyl-CoA, a coenzyme carrying a two-carbon-atom group. The 

FAs are classified by the numbers of double bonds in their hydrocarbon chain or the 

degree of saturation. A saturated FA has no double bonds; a mono saturated FA has 

one double bond, while polyunsaturated FAs (PUFAs) have 2 or more double bonds. 

The location of the first double bond in the hydrocarbon chain relative to the methyl 

end (termed n or �) is of importance for the physiological function of the FA (Figure 

4).  

 
Figure 4: Structure of the n-3 long-chain polyunsaturated fatty acid docosahexaenoic acid (DHA, 

22:6n-3), with 22 carbon atoms in the hydrocarbon chain and 6 double bonds. The first double bond 

relative to the methyl (H3C) end is located in the n-3 position.  

Essential fatty acids 

The FAs linoleic acid (LA, 18:2n-6) and �-linolenic acid (ALA, 18:3n-3) are called 

essential FAs because they cannot be synthesized by the body itself, because humans 

lack the enzymes necessary for introducing a double bond below the n-9 position. 

Consequently these FAs must be derived from the diet. The primary producers of these 

FAs are plants and marine microalgae, and together with oils from vegetables, seeds and 

nuts they are the main source for the essentials FAs in our diet. The long chained n-3 

and n-6 PUFAs may be synthesized in the body from the essential FAs (Figure 5), 

however this conversion is not very efficient and therefore it is important to obtain 

these from the diet as well. The main dietary source of n-3 PUFAs, such as 

eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), is oily 
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fish. The main source of n-6 PUFA, such as arachidonic acid (AA, 20:4n-6), is animal 

fat and eggs.  

 

 

Figure 5: Conversion of the essential fatty acids linoleic acid (LA, 18:2n-6) and �-linolenic acid (ALA, 

18:3n-3) by desaturase and elongase enzymes to form the long-chain polyunsaturated fatty acids 

arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), respectively.  

Physiological functions of LCPUFAs 

The LCPUFAs are important constituents of cellular membranes.  They increase 

the fluidity of membranes due to their high degree of unsaturation and may reduce the 

cholesterol content of membranes and thus alter their structure and organization [12].  

LCPUFAs are also important in signal transduction and eicosanoid production. AA is a 

precursor of several classes of signaling molecules called eicosanoids, including 

prostaglandins, prostacyclins, thromboxanes and leukotrienes. These eicosanoids are 

important for the regulation of several cellular processes such as immune response, 

inflammation, coagulation and vasoconstriction [13]. LA is a constituent of complex 

lipids in the permeability barrier of the skin [14]. EPA is also a precursor for eicosanoids 

but it is a poorer substrate than AA and the resulting eicosanoids are less potent [15,16].  

High levels of n-3 PUFAs may reduce AA-induced signaling because they replace AA in 

the incorporation of membrane phospholipids and also compete for enzymes involved 
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in the eicosanoid synthesis, and thereby contribute to an anti-inflammatory effect [17].  

DHA is the most abundant n-3 PUFA in tissues, especially in brain and retina [14] and 

it is important in fetal development.  

The PUFAs may also regulate gene expression due to their effect on several 

transcription factors. Both n-3 and n-6 PUFAs are natural ligands for the transcription 

factors PPARs and SREBP-1 which control various genes of inflammatory signaling 

and lipid metabolism [17].

Importance of LCPUFAs in fetal nutrition 

The fetus depends on maternal supply of essential FAs and LCPUFAs. Even if 

the essential FAs (LA and ALA) are obtained from the maternal circulation, they must 

be elongated and desaturated to be converted into LCPUFAs. Basal expression of �-5 

and -6 desaturase and elongase have been reported both in fetal liver and in the placenta 

[18,19], however their enzyme activities are low. Both AA and DHA are important 

structural components of the nervous system and adequate supply of these could be 

critical at the time of embryonic organogenesis as well as during the growth of the fetal 

brain, which is at its peak in the last trimester [20].  

Supplementation of pregnant women with ALA did not lead to increased DHA 

levels in the umbilical cord [21].  On the other hand, several studies report that intake of 

EPA and DHA by pregnant women raises the content of these FAs in fetal tissues [22]. 

Increased consumption of n-3 LCPUFAs from fish and fish oils during pregnancy has 

also been suggested to be beneficial to the fetus and to lower the risk of PE [23,24]. 

Hence, an adequate maternal dietary intake of LCPUFAs and subsequent adequate 

transport across the placenta is critical for the development for the fetus.  

Fatty acid metabolism in the placenta 

During the first trimester of pregnancy there is an accumulation of maternal 

body fat that allows accumulation of LCPUFAs in adipose tissue, which can be 

mobilized in the latter half of the pregnancy and transferred to the fetus. FAs are mainly 

stored in the body as TAGs. In order to be utilized by the cells as fuel, the FAs are 

processed in three steps. First the TAGs are degraded to FAs and glycerol by lipase 

enzymes in a process called lipolysis, which takes place on the outer plasma membrane 
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of the cell. The FFAs are then bound to serum albumin which transports them across 

the membrane. Inside the cell, on the outer membrane of the mitochondria, the FAs 

must be activated by the attachment of coenzyme A (CoA) before they can be 

transported into the mitochondria where they are degraded. This activation is catalyzed 

by the enzyme acyl-CoA synthetase (ACS). In the degradation process the FA is 

oxidized to introduce a double bond. This double bond is subsequently hydrated to 

introduce an oxygen atom and thereby the FA is converted to an alcohol. The alcohol is 

then oxidized to a ketone and finally a two-carbon unit is cleaved off by CoA to yield 

acyl-CoA and a FA, which is two carbon atoms shorter than the original FA. This 

process can be repeated until the FA is completely converted in to acyl-CoA. FA 

degradation and synthesis are reverse processes regulated in response to diet by a host 

of different hormones and enzymes.  

Cholesterol  

Cholesterol is an important component of structural membranes and a precursor 

of steroid hormones and oxysterols. Cholesterol is distributed in cells as free cholesterol 

in the plasma membrane and internal membranes and as cholesteryl esters stored in 

lipid droplets [25,26]. The plasma membrane is highly enriched in cholesterol which 

constitutes about 30 mole percent of the lipids [27] and contributes to the rigidity of the 

membrane and the organization of specialized membrane domains called lipid rafts. 

Cells need a constant supply of cholesterol in order to maintain their membranes [28], 

but on the other hand accumulation of excessive free cholesterol is toxic to the cell 

[26,29].  Correlation between maternal hypercholesterolemia and fatty streak formation 

in fetal aorta [30] suggests the existence of a placental cholesterol transport system.  

 

1.3. Fatty acid transport in the placenta 

Fetal lipid deposition increases exponentially during gestation and 90% of the 

fat is deposited in the last 10 weeks of pregnancy (reaching 7 g/day) [31]. The fetus is 

capable of synthesizing FAs, however it obtains most of its FAs from the maternal 

circulation via the placenta [32]. The barrier between the maternal and fetal circulation 

consists of trophoblast cells connective tissue and fetal endothelial cells. All these cell 
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layers may contribute to the transport across the placenta; in addition the placental 

metabolism also contributes to transfer of nutrients from the maternal to the fetal side. 

There are different mechanisms involved in placental transport such as simple 

diffusion, facilitated diffusion and active transport [1].  

Most maternal FAs are transported to the fetus as TAGs in lipoprotein particles 

[33]. TAGs cannot directly cross the placental barrier and consequently a complex 

system of placental transport has developed. This system involves several receptors and 

enzymes such as LDL receptor, VLDL/apoprotein E receptors, placental lipoprotein 

lipase, placental phospholipase A2 and intracellular lipases [33,34,35,36,37,38,39,40]. 

Alterations in placental LPL activity and LDL receptor protein expression are 

associated with IUGR [41,42,43,44], and imply that the placental lipid transport system 

is important for adequate fetal growth. 

Maternal FAs, as well as FAs newly synthesized in the placenta, are transported 

across the trophoblasts by diffusion or by active transport [45,46]. The existence of a 

complex FA transport system comprising multiple membrane and cytoplasmic proteins 

responsible for FA transport and metabolism in human placenta has been demonstrated 

[47], including  fatty acid binding proteins (FABPs) and CD36 (also named FAT for 

fatty acid transporter), and fatty acid transport proteins (FATPs) (Figure 6).  

Preferential uptake of LCPUFAs 

 Fetal blood is especially enriched in LCPUFAs compared to the maternal 

circulation at the time of birth [48,49,50,51], but how this selective enrichment occurs is 

largely unknown. Active transfer of FAs from the maternal circulation to the fetus has 

been demonstrated by in vitro and in vivo experiments. Pregnant women were 

administered [13C]-labeled FAs four hours previous to elective cesarean section,  and the 

[13C]-labeled FAs were detected in both placental tissue and cord blood at the time of 

delivery [48]. Preferential transfer of LCPUFAs has also been demonstrated using 

perfused human placenta [52,53].  
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Figure 6: Schematic overview of proteins involved in fatty acid transport in trophoblast cells. Modified 

from Duttaroy [20].  

Fatty acid binding and transport proteins 

FABPs are cytoplasmic proteins involved in the intracellular trafficking of FAs in 

different tissues, and they all bind long chained FAs [54,55]. Several isoforms have been 

detected in human placental trophoblasts, and the expression of FABP1 and 4 was 

enhanced by hypoxia and PPAR� agonists [55].  

The plasma membrane FABP (FABPpm), the FATPs and FAT/CD36 are the 

main trophoblast membrane proteins. FABPpm is a peripheral membrane protein 

thought to act as an extracellular FA receptor that facilitates the diffusion of FAs 

through the membrane [31]. The placenta specific protein p-FABPpm has been found 

exclusively on the maternal facing microvillous membrane [47], and has been shown to 

preferentially bind DHA and AA [56]. The p-FABPpm is similar in size (~40 kDa) to 

the ubiquitous version of the same protein, which is found in most mammalian cells, 

but the amino acid composition is different [46]. A specific placental version of 



 22

FABPpm has been described [57] located on the microvillous membrane of the placenta 

facing the fetal circulation [58].  

FATPs are integral proteins with membrane spanning regions and are thought to 

function as FAs transporters. There are six members of this family identified so far and 

they differ in tissue expression, subcellular location and substrate specificity 

[59,60,61,62,63,64]. FATP1, 2, 3, 4 and 6 have been shown to be expressed in placenta 

[65,66]. FATP1 and 4 have also been found expressed in trophoblast cells [66]. The 

FATPs have inherent ACS activity, which enables catalyzation and conversion of FFAs 

into acyl-CoAs [67]. It has also been reported that FATP1 and 4 is upregulated by 

PPAR�/RXR agonists in primary human trophoblasts [68].  

FAT/CD36 is a transmembrane FA transporter and scavenger receptor for 

oxidized LDL [47,69,70,71]. It is expressed in human trophoblast cells and is involved 

in the uptake of long chain FAs in placenta [47,72]. FAT/CD36 was also shown to be 

associated with lipid rafts (which are microdomains of the plasmamembrane rich in 

cholesterol and sphingolipids and important in cell signaling) in adipocytes [73]. Lipid 

rafts are important for virus-induced syncytium formation [74], but it is not known 

whether they are involved in comparable processes in syncytiotrophoblast formation in 

placenta. Their presence in syncytiotrophoblast was demonstrated for the first time in 

work by Linton and colleagues [75,76]. 

Caveolin-1 is another protein involved in cellular uptake of FAs and cholesterol. 

It is the main structural element of caveolae [77], a subclass of lipid rafts forming 

characteristic flask shaped invaginations that can be distinguished by electron 

microscopy. Caveolae are dynamic structures that can bud from the plasma membrane, 

forming cytoplasmic vesicles involved both in receptor-mediated uptake of solutes into 

the cell [78] and in transcytosis (vesicular transport through the cell membrane) [79]. 

The unique lipid raft environment attracts key signaling proteins, such as G proteins, 

protein kinase C, protein kinase A, prostacyclin synthase and endothelial nitric oxide 

synthase (eNOS) [80,81]. Recent studies have shown that caveolin-1 can associate with 

lipid bodies in a reversible and lipid regulated fashion [82,83]. Caveolin-1 can also bind 

FAs [84], and some data imply that lipid rafts might be involved in regulating LCPUFA 

uptake [85,86,87,88,89]. 
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Long chain acyl-CoA synthetases (ACSLs)  

The acyl-CoA synthetases are enzymes necessary for de novo lipid synthesis, FA 

degradation and remodeling of membranes. They activate FAs by converting them into 

membrane impermeable acyl-CoAs, this facilitates FA transport by trapping the FAs 

inside cells. The acyl-CoAs have numerous metabolic fates within cells, including 

incorporation into triacylglycerols (TAG) and membrane phospholipids, as substrates 

for ß-oxidation and protein acylation, and as ligands for transcription factors. They have 

been found in all organisms investigated and have an essential role that has been 

conserved through evolution [90]. The ACSLs can be divided into five subfamilies 

based on their FA chain length preference; acyl-CoA synthetase short chain (ACSS, C2-

C4), medium chain (ACSM, C4-C12), long chain (ACSL, C12-C20), bubblegum 

(ACSBG, C14-C24) and very long chain (FATPs, C18-C26) [90,91].  

 Five genes have been identified in the ACSL family. They are named ACSL1 and 

3 to 6 and vary in tissue distribution, intracellular locations and regulation, implying that 

the different isoforms have distinct functions [92,93,94]. It has been suggested that the 

different ACSLs direct the FAs into distinct metabolic pathways [95]. Presently, there is 

little knowledge about the role and function of these proteins in placental FA uptake.   

Lipid droplets and associated proteins 

Most mammalian cells are able to store neutral lipids in intracellular lipid 

droplets. In addition to serving as lipid storage depots, lipid droplets appear to 

participate in lipid homeostasis, cell signaling, intracellular vesicle trafficking, and 

disease processes [96,97,98,99,100]. The structure of the lipid droplets is similar to 

lipoproteins; a neutral lipid core surrounded by a phospholipid and cholesterol 

monolayer onto which the lipid droplet associated proteins (LDAPs) are attached [98]. 

The LDAPs (recently named perilipins [101]) consist of a group of 5 proteins with 

sequence homology that are associated with lipid droplets and include S3-12, LDAP5, 

TIP-47, perilipin and ADRP. Many other proteins have also been found associated 

with lipid droplets, including caveolin-1. ADRP (also called perlipin 

2/ADFP/adipophilin) belongs to a group of PAT family proteins (perilipin, ADRP and 

tail-interacting protein of 47 kDa (TIP-47)) [102]. Perilipin expression is mainly 

confined to adipocytes while ADRP and TIP-47 expression is widely distributed in 
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different tissues [103]. Perilipin has a well-defined role as a regulator of TAG lipolysis 

in adipocytes, where it stimulates translocation of hormone sensitive lipase. The roles 

of ADRP and TIP-47 are, on the other hand, still unclear.  

ADRP (Adipose Differentiation Related Protein) 

ADRP is a 48-50 kDa lipid droplet associated protein expressed widely in 

different cells and tissues that store or synthesize lipids and is extensively used as a 

marker for lipid droplets. The protein co-localizes with the surface of neutral lipid 

droplets inside the cell and is assumed to play a role in uptake, transport and storage of 

lipids [104].  ADRP is highly expressed in adipose tissue and is induced early during 

adipocyte differentiation [105,106]. ADRP mRNA expression is increased at the 

transcriptional level in the presence of FAs in preadipocytes [107]. Furthermore, ADRP 

binds to FAs [108] and cholesterol [109]. ADRP is highly expressed in placenta tissue 

on mRNA level [110]. It is expressed in human villous trophoblasts and both mRNA 

and protein expression is enhanced during differentiation of cytotrophoblasts into 

syncytiotrophoblast [111]. 

Regulation of ADRP expression suggests it to be a PPAR/RXR target gene, both 

in adipose cells and placental trophoblasts [111]. Primary trophoblasts in culture 

spontaneously differentiate, and accumulate lipids in the form of small lipid droplets 

[112]. PPAR activators, including oxidized lipids, have been shown to promote 

trophoblast differentiation [112,113]. ADRP is expressed in human villous trophoblasts 

and in concordance with the accumulation of lipid droplets, the mRNA and protein 

expression is enhanced during differentiation of cytotrophoblasts into 

syncytiotrophoblasts [111]. Recently it was reported that ADRP is a direct LXR target 

gene with several LXRE response elements, and both mRNA and protein expression of 

ADRP is increased in hepatocytes treated with the synthetic LXR agonist GW3965 

[114].  

 

 

 

 

 



 25

1.4. Nuclear receptors 

Transcription factors are proteins involved in the regulation of gene 

transcription; they include about 10% of all human genes and are the largest family of 

human genes [115]. The nuclear receptor (NR) super family is a diverse group of 

evolutionary related DNA binding transcription factors, and 48 different types are 

identified in humans [116]. Most of the NRs are ligand-dependent but there is still a 

large number of orphan receptors, meaning NRs without any known ligands [117]. The 

ligands are small hydrophobic molecules that include FAs, cholesterol derivatives, 

retinoids, thyroid hormone, prostaglandins, leukotrienes and xenobiotics [118]. Because 

the NRs are dependent on ligands for activation, they have essential roles in 

communication between the cell/body environment and the genome. They have vital 

roles in a variety of biological processes such as development, reproduction, 

homeostasis, inflammation and metabolism [118,119,120].  

NRs share a characteristic structure that consist of five to six homologous 

domains [116], with different functions that ensures site-specific binding to DNA and 

binding of ligands and cofactors [121]. Over 300 cofactors that increase or repress the 

transcription of genes have been identified [122,123]. In addition to regulation by 

ligands and cofactors, NRs can also be modified by phosphorylation, glycosylation, 

methylation, acetylation, ubiquitinylation and small ubiquitin-like modulation [122].  

The NRs can be divided into several subfamilies depending on sequence 

homology, ligand sources or physiological functions [116,124]. They are usually 

classified according to the DNA-binding and dimerization properties. This classification 

consists of four different groups [117]. Class 1 receptors include homodimeric steroid 

hormone receptors. Class 2 receptors are ligand-dependent and form heterodimers with 

retinoid X receptors (RXRs). Class 3 and 4 include orphan receptors, homodimers and 

monomers respectively. In this study we were interested in the Class 2 receptors 

peroxisome proliferator activated receptors (PPARs) and liver X receptors (LXRs). 

Peroxisome Proliferator Activated Receptors (PPARs) 

The PPARs have distinct tissue distribution and control a vast array of genes 

involved mainly in the lipid metabolism, but are also involved in other cellular processes 

such as inflammation and cellular differentiation [125,126,127,128]. The PPARs have 
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three distinct members PPAR�, � and � [129,130]. PPAR� is expressed in metabolically 

active tissues including the liver, heart, kidney and skeletal muscle [131] where it 

controls lipid catabolism and transport.  PPAR� is mainly expressed in adipose tissue, 

macrophages, colon and placenta [131]. It is essential for adipocyte differentiation 

[132,133] and activates genes that promotes fat storage and reduces serum lipid levels. 

Other effects of PPAR� are improved glucose homeostasis and decreased inflammation 

[131]. PPAR� is expressed throughout the body [131] and is involved in many biological 

processes such as cholesterol transport.  

Natural activators for PPARs include medium and long-chained FAs [134,135], 

oxidized metabolites of linoleic acid from oxLDL [136] and eicosanoids [137,138,139]. 

Synthetic ligands for PPAR� are fibrates [137] that are used therapeutically in humans 

for lowering hepatic production of triglycerides by increasing FA oxidation [131], and as 

anti-inflammatory drugs [140]. Thiazolidinediones are synthetic ligands for PPAR� that 

have been used therapeutically in humans to increase insulin sensitivity [141,142].   

Stimulation of PPAR� activity by these ligands, can among other functions, 

enhance the transcription of CD36/FAT, leading to further uptake of oxLDL and 

differentiation of monocytes into foam cells [136,143,144].   

Liver X Receptors (LXRs)   

LXRs play key roles as regulators of lipid and glucose metabolism [145]. In the 

lipid metabolism they regulate de novo FA synthesis, TAG synthesis, LDL synthesis and 

metabolism, and cholesterol homeostasis [146,147,148]. They are also involved in the 

pathogenesis of many diseases including atherosclerosis, diabetes and inflammation 

[149]. 

LXRs consist of two isomers, termed alpha and beta, which share considerable 

sequence homology and are activated by the same ligands [150]. LXR� is ubiquitously 

expressed, while LXR� expression is restricted mainly to tissues involved in lipid 

metabolism such as the liver and adipose tissue [151].

The natural ligands that activate LXRs are oxysterols [152,153]. Oxysterols are 

oxidized derivatives of cholesterol that are present in oxLDL [154], and maternal 

plasma oxLDL has been associated with increased in maternal circulation in PE [155].  

LXRs can also be induced by non-steroidal synthetic ligands such as T0901317 



 27

(Tularik) and GW3965 [135,156]. Activation of LXR by synthetic ligands results in a 

reverse transport of cholesterol from peripheral tissues to the liver, and has been 

shown to inhibit the development of atherosclerosis in mice [157]. This has made LXR 

a promising target for treatment against atherosclerosis; however, there are undesirable 

side-effects such as increased hepatic lipogenesis leading to hepatic steatosis [156].  

There are also natural ligands with antagonizing effects against LXRs, such as 

PUFAs. These FAs inhibit the activation of LXR by competing with the activating 

ligands in the order ARA>EPA>DHA>ALA, whereas saturated and monounsaturated 

FAs have very little effect on the activation of LXR [158].  

PPARs and LXRs in placenta 

All three PPAR isoforms have been detected in human placenta and in placental 

trophoblast cells [159]. Both the PPARs and the RXRs are involved in several aspects of 

pregnancy development such as implantation, placentation, trophoblast invasion and FA 

uptake [160]. Studies of PPARy knock-out mice have shown that abnormal 

development of the placenta results in embryonic death at mid-gestation [161], and that 

PPARy/RXR heterodimers are essential for differentiation of trophoblast cells. PPARy 

and RXR agonists also increase the differentiation of isolated primary human 

cytotrophoblast cells [162]. Cytotrophoblast differentiation is characterized by increased 

hCG production and hCG has been shown to be a direct PPARy target gene and its 

expression is increased by PPARy [112,162]. It has also been shown that PPARy has a 

role in trophoblast invasion. In an in vitro invasion assay, using extravillous 

cytotrophoblast cells, it was shown that both natural and synthetic PPAR ligands 

inhibited trophoblast invasion [163].   

LXRs have also been shown to be involved in placentation and trophoblast 

invasion.  Both oxysterols and synthetic LXR agonists inhibited invasion of extravillous 

cytotrophoblasts in vitro [164]. The anti-angiogenic protein endoglin, which is increased 

in maternal circulation in PE [165,166], was identified as a direct LXR� target gene in 

the placental cell line JAR [167]. Endoglin is highly expressed in syncytiotrophoblast and 

has been shown to inhibit trophoblast invasion [167]. Weedon-Fekjaer et al found that 

LXR increased the synthesis of FAs and inhibited the secretion of hCG in placental 

BeWo cells [168]. The role of LXRs in cholesterol transport in the placenta has been 
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investigated in human placental endothelial cells and it was found that these cells had 

increased cholesterol efflux after LXR activation compared to human umbilical vein 

endothelial cells (HUVEC) [169].  

 

1.5. Preeclampsia 

Preeclampsia (PE) is a major complication of pregnancy characterized by 

hypertension and proteinuria [170] developing in the second half of pregnancy [171]. PE 

affects at least 3-4% of all pregnancies, representing a major threat to maternal and fetal 

health, and responsible for approximately 50 000 maternal deaths annually [172]. The 

severe forms of PE typically results in preterm delivery, low-birth weight and increased 

risk of fetal morbidity and mortality [173].  

Definitions 

There are several definitions of PE in use, and in the papers included in this 

thesis we have used a widely accepted definition from the American College of 

Obstetrics and Gynecologists [170]. The criteria for diagnosis of PE are as follows: 

 

1) Hypertension is defined as “blood pressure of 140 mmHg systolic or higher or 90 

mmHg diastolic or higher that occurs after 20 weeks of gestation in a woman with 

previous normal blood pressure”.  

2) Proteinuria is defined as “urinary excretion of 0.3 g protein or higher in a 24 h urine 

specimen”.  This corresponds to a protein dipstick reading of +1 or higher.  

 

PE is unpredictable in its onset, progression and severity. It is sometimes divided 

into early onset PE occurring prior to week 34 of gestation, and a late onset PE 

occurring at or after 34 weeks of gestation [174,175]. PE is considered to be severe if 

the blood pressure � 160/110, or proteinuria at 5 g/24 h (� +3 on dipstick) is present. 

Eclampsia is a severe variant of the disease involving the occurrence of seizures in a 

preeclamptic woman, where the seizures cannot be attributed to other causes. The 

HELLP syndrome is another variant of PE [176], which includes hemolysis, elevated 

liver enzymes and low platelet counts.   
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Intrauterine growth restriction (IUGR) or fetal growth restriction (FGR) is 

defined as the failure of a fetus to reach its expected growth potential at any gestational 

age [177]. The newborn birth weight percentiles were calculated according to national 

birth registry data [178] or an ultrasound based weight percentile [179]. 

Gestational hypertension is defined as new onset hypertension � 140/90 after 

week 20 of gestation but without proteinuria [170]. In cases of superimposed PE on 

hypertension, the women have developed hypertension before week 20 (or 

pregestationally), with new-onset proteinuria after week 20. Also, we defined 

superimposed PE on diabetes mellitus (pregestational diabetes type 1 or 2, or gestational 

diabetes mellitus) as  PE developing in a pregnant woman already diagnosed with 

diabetes mellitus (pregestational or gestational diabetes mellitus) according to WHO 

criteria [180]. 

Pathophysiology 

The exact pathophysiology of PE remains unknown. A “two-stage model” was 

proposed by CW Redman in 1991 [181]. In the first stage there is poor placentation 

while the second stage is the maternal syndrome diagnosed by hypertension and 

proteinuria. Poor placentation includes abnormal implantation, inadequate remodeling 

of the spiral arteries and thereby reduced or altered placental perfusion (Figure 7).  

This altered blood flow to the placenta leads to oxidative stress, which in some 

cases may be due to hypoxia. It is proposed that the oxidatively stressed placenta 

releases different pro-inflammatory factors into the maternal circulation and thereby 

causes the maternal syndrome. These suggested placental factors are pro-inflammatory 

cytokines (TNF-�, IL-6 [182,183]), anti-angiogenic factors (sFLT1 and sEng 

[165,184,185,186]), placental debris (such as syncytiotrophoblast microparticles: STBMs) 

[187] and activated immune cells [188,189]. In the second stage it is thought that the 

maternal circulating factors produced by the stressed placenta cause an excessive 

systemic inflammatory maternal response [188] with generalized maternal endothelial 

dysfunction [190], contributing to the maternal clinical features of PE [191,171].  
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Figure 7: Illustration of the uterine spiral arteries in a non-pregnant woman, in preeclampsia and in 

normal pregnancy. In preeclampsia the trophoblast invasion and physiological transformation of the 

spiral arteries are incomplete, resulting in an abnormal blood supply to the placenta. Modified from 

Moffet-King [5]. 

 

Recently it has been proposed that the development of PE starts even earlier 

than at the stage of spiral artery remodeling, with an increased release of proteins 

already in the first trimester [192].  It has also been suggested that the blood volume to 

the placenta is not reduced, as previously suggested [193]. Instead, the narrower, non-

transformed spiral arteries in PE cause the blood to enter the intervillous space at a 

velocity much greater than normal. This, in turn, causes damage to the placental villi 

both on a micro- and macroscopic level and may alter the placental morphology and 

function [194].  

Risk factors and treatment  

Risk factors for PE include previous history of PE and a family history of PE, 

primiparity, multiple pregnancy, obesity and chronic medical conditions such as 

preexisting hypertension and diabetes [191].  

Presently PE cannot be prevented and the only “treatment” is delivery of the 

fetus with removal of placental tissue. If placenta tissue is retained after termination of 

the pregnancy, PE can persist [195]. Also, removal of decidua after delivery with 
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curettage has shown beneficial clinical effects [196,197]. Treatment with 

antihypertensive medication may serve to prolong the pregnancy [198], due to 

improved maternal blood pressure control and reduced need for premature delivery. 

There have been a number of treatment and primary as well as secondary prophylactic 

intervention studies. Antioxidant supplementation using vitamin E and C did not 

reduce the incidence in a large randomized controlled trial (RCT) [199], whereas a 

previous smaller RCT was promising [200]. Calcium supplementation has also proven 

ineffective, but could be useful in developing countries where nutritional levels are 

insufficient [201]. Also, n-3 FAs have been suggested to play a role in the prevention of 

PE, but the evidence for this is not conclusive. There have been three randomized trials 

where fish oil supplementation was given to high risk women, but none these trials 

reported any reduction in PE [202,203]. Although acetyl salicylic acid (aspirin) has 

shown to reduce the incidence of PE in some studies, without augmenting 

complications such as placental abruption, there is hitherto no conclusive evidence as 

to which group of pregnant women that would benefit from such an intervention [204].   

Inflammation  

Normal pregnancy is a state of mild systemic inflammatory response, but the 

physiological basis for this is not known except that the phenomenon arises from the 

placenta itself [205]. PE is associated with a more extreme maternal inflammatory 

response than occurs in normal pregnancy [188]. How the problems of abnormal 

placentation generates the systemic inflammatory problems of PE remains to be 

explained, but it is thought that release of pro-inflammatory factors from the syncytial 

surface of the placenta into the maternal circulation could be important, and could 

possible be the link between stage 1 and 2 of PE [205]. Syncytiotrophoblast 

microparticles (STBMs) are vesicles shed from the placenta into the maternal circulation 

during pregnancy. In PE there is a significant increase in the amounts of particles that 

are shed [187]. These particles have an anti-endothelial effect and stimulate release of 

pro-inflammatory substances form the endothelium [187]. The pro-inflammatory 

cytokines tissue necrosis factor (TNF)-� and interleukin (IL)-6 are both elevated in 

preeclamptic circulation [182]. It is suggested that the placenta contributes to the 

elevated plasma cytokine levels, but the dysfunctional maternal endothelium, peripheral 
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blood mononuclear cells and other tissues, such as the adipose tissue, are also likely to 

be involved [206].  

Oxidative stress  

Reactive oxygen species (ROS) are highly reactive molecules that contain an 

oxygen atom. ROS can be free radicals with unpaired electrons such as superoxide (O2·-) 

and hydroxyl anions (OH·), or non-radical intermediates such as hydrogen peroxide 

(H2O2). ROS are natural byproducts of oxygen metabolism and have important 

physiological roles in the regulation of cell signaling, for instance in the regulation of 

nitric oxides and vascular tone. However, if the concentration of ROS becomes 

excessive, due to different environmental stresses, and an imbalance between the level 

of ROS and the level of antioxidants arises, then ROS can start attacking lipids, proteins 

or DNA. These attacks cause chain reactions that lead to widespread damage and loss 

of function in cells, and this situation is referred to as oxidative stress.  

Pregnancy is a state of excessive oxidative stress arising from increased placental 

mitochondrial activity and production of reactive oxygen species and decreased 

expression and activity of antioxidants [207]. In PE there is an increased level of 

oxidative stress, which results from ischemia-reperfusion injury that in turn is caused by 

the altered perfusion of the placenta due to the abnormal placentation [208]. The 

oxidative stress of PE is not restricted to the placenta but is dispersed in the maternal 

circulation and is a part of the systemic inflammatory response [205].  

In placenta the evidence for excessive oxidative stress in PE includes finding of 

increased generation of lipid peroxides and isoprostanes [207,209,210,211], xanthine 

oxidase [212] and nitro tyrosine residues [213], which indicates an excessive production 

of superoxide. In the maternal circulation the evidence include increased superoxide 

production from circulating neutrophils [214]. It is also known that TNF-�, which is 

increased in the circulation in PE [182], can induce oxidative stress directly [215] or 

indirectly by enhancing the levels of oxLDL [216] or through the xanthine oxidase 

pathway [217].  Placental oxidative stress is viewed as a key intermediary step in the 

pathophysiology of PE, as a mediator of the endothelial cell dysfunction [191,218].  

Hypoxia is a situation where the oxygen tension is too low and this may result in 

oxidative stress. It has been suggested that hypoxia is the mediator of the pathological 
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changes observed in pregnancy complications such as PE, however there is limited 

evidence to support this [10]. Burton et al proposed instead that it may be fluctuations in 

the oxygen level in the intervillous space that creates the pathological changes due to 

ischemia-reperfusion stress in PE [219].  

Dyslipidemia  

The dyslipidemia of PE is an amplification of the lipid changes observed in 

normal pregnancies. It includes elevated cholesterol and triglycerides, increased 

circulating FFAs, reduced high density lipoproteins (HDL) and increased concentrations 

of small LDL which leads to the presence of oxLDL in maternal circulation 

[220,221,222,223,224,225], while total and LDL cholesterol levels are not considerably 

different [221,222]. Augmented circulating maternal concentrations of the oxidized lipid 

8-isoprostanes are also reported in PE [226,227].  

The maternal dyslipidemia is present already in the first and second trimester of 

gestation and is evident before the clinical detection of PE [228,229,230,231]. A rise in 

circulating TAG concentrations is present [232] as early as 10 weeks of gestation [233]. 

A dose-response effect of TAG has been observed, with a four-fold elevated risk of 

developing PE in women with the highest circulating levels of TAG compared to 

normal levels [234]. Even though hypertriglyceridemia may contribute to the 

development of PE, therapeutic intervention is probably not a good alternative, as strict 

correction of maternal hypertriglyceridemia in rodents has been shown to have negative 

effects on fetal growth and development [235].  

 The lipid abnormalities in PE are similar to abnormalities as observed in patients 

with cardiovascular disease [236,237]. The two diseases also have several other risk 

factors in common, including obesity, diabetes mellitus, insulin resistance and 

endothelial dysfunction [236,238]. Also, the phenomenon of “acute atherosis” of the 

decidual/uterine spiral arteries, which is more often seen in PE than in uneventful 

pregnancies [239], closely resembles the early stages of atherosclerotic lesions found in 

cardiovascular disease [240].  
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Lipotoxicity  

Accumulation of excess lipids in non-adipose tissues is termed lipotoxicity and 

can lead to cell dysfunction and death [241]. Lipotoxicity has been suggested to play a 

role in insulin resistance and hyperlipidemia [242], which are also features of PE and 

diabetes mellitus. The combination of hypoxia, oxidative stress and increased lipid 

concentrations observed in PE may result in excess lipid peroxidation products. Lipid 

peroxides and oxygen free radicals stimulate peroxidation reactions that damage cells 

and cell membranes. These effects include alterations in membrane fluidity and 

permeability and endothelial cell injury and dysfunction [243]. Oxidized lipids, such as 

the endogenously produced 9S-hydroxy-octadecadienoic acid (9-HODE), 13S-hydroxy-

octadecadienoic acid (13-HODE), and 15S-hydroxy-eicosatetraenoic acid (15-HETE), 

are particularly relevant to trophoblast biology, in which they are implicated in 

trophoblast injury [32,244]. PE has been associated with enhanced lipid peroxidation in 

trophoblasts [245,246] and there has been demonstrated an increased production of 15-

HETE in vitro from trophoblasts derived from preeclamptic women [247,248]. 8-iso-

PGF2�, a lipid peroxidation product, is a well-known marker of oxidative stress and is 

elevated in the maternal circulation as well as in placental/decidual tissue in PE 

[226,209,210]. Staff/Halvorsen et al demonstrated an accumulation of fat in the 

trophoblast cell line JAR, when incubated with 8-iso-PGF2�, as well as reduced 

trophoblast invasion [249], which could suggest a possible in vivo effect of this oxidized 

lipid in PE. 

Acute atherosis 

Acute atherosis is defined as accumulation of CD68 positive foamy macrophages 

in the uteroplacental spiral arteries, including areas of fibrinoid necrosis [250,251]. The 

name acute atherosis is derived from atherosclerosis because the phenomenon 

resembles early atherosclerotic changes of other systemic blood vessels. These areas of 

lipid deposition are found in non-transformed spiral arteries and have been associated 

with PE, although it is not specific for this pregnancy complication [252,253,254].  

Acute atherosis in spiral arteries are associated with augmented risk for local thrombosis 

and thereby necrosis in the placental tissue underlying the plugged arteries, adding to the 

reduced placenta function more common in PE than in uneventful pregnancies. 
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Presently there is little knowledge of the molecular mechanisms behind the formation of 

acute atherosis, however it has been suggested that the hyperlipidemia in the maternal 

circulation in PE could participate in the lipid changes in the spiral arteries [223]. Also, it 

is probable that reduced transformation of the spiral arteries could contribute to the 

lipid deposition in the narrow parts of untransformed spiral arteries [255].  

Diabetes mellitus in pregnancy 

 Diabetes mellitus and PE share many pathophysiological features, including insulin 

resistance, endothelial dysfunction, oxidative stress, and inflammation [256,257,258]. 

Both pregestational diabetes and gestational diabetes mellitus (GDM) are associated 

with a two- to four-time increased risk of developing PE in pregnancy [259,260,261]. 

Gestational diabetes and pre-pregnancy obesity is associated with large babies, while PE 

is associated with growth restricted babies [262]. Superimposed PE on diabetes mellitus 

(SPE) includes women with diabetes mellitus (preexisiting or gestationally induced) that 

develop PE in the present pregnancy. SPE present a higher risk for poor perinatal 

outcome and placental abruption than PE alone [263]. 

The development of insulin resistance [264] together with adipose tissue 

accumulation [265] in the third trimester of pregnancy is a possible adaptation of the 

maternal metabolism to optimize fetal nutrition. Insulin inhibits hormone sensitive 

lipase and thereby decreases triglyceride hydrolysis in the adipose tissue resulting in 

reduced circulation of FFA and glycerol. Insulin resistance thus increases the activity of 

hormone sensitive lipase and results in increased levels of lipoproteins and FFA in the 

circulation. Gestational insulin resistance is accentuated in PE [266], and can be 

observed weeks before the clinical onset of PE [267,268]. Furthermore, placenta 

secretes a variety of hormones that is suggested to play a role in gestational insulin 

resistance [269]. However the role of adipose tissue could also be important. Adipose 

tissue has an endocrine function, secreting several metabolically active proteins such as 

leptin, resistin, adiponectin, TNF-� and IL-6, termed adipokines [270]. During 

pregnancy, the placenta is an additional source of adipokines, such as leptin and resistin 

[271,272]. 
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2. Aims of  present study

The main aim of this study was to increase the understanding of the role of 

trophoblasts and placenta in lipid transport and storage in general, and in dyslipidemic 

pregnancies specifically. The first objective was to study the transport of FAs across the 

trophoblast cells, in order to gain a better understanding of how the selective 

enrichment of LCPUFAs in the fetal circulation occurs. The second objective was to 

explore the role of lipid transport and storage associated proteins in the placenta in 

dyslipidemic pregnancies, such as pregnancies complicated by PE and/or diabetes 

mellitus, with a particular focus on the lipid droplet associated protein ADRP.  

 

 Specifically, the following questions were addressed: 

1. Is there any difference in the transport of LCPUFAs compared to that of non-

essential FAs across trophoblast cells? 

2. Is there any difference in the uptake and storage of LCPUFAs compared to that 

of non-essential FAs in trophoblast cells? 

3. Does LCPUFAs influence the uptake of FAs in trophoblast cells? 

4. If so, which lipid metabolism genes are involved in the LCPUFA influenced 

uptake of FAs in BeWo cells? 

5. Are the transcription factors LXR and PPAR dysregulated in PE in placenta, 

decidua and adipose tissue? 

6. Is there any dysregulation of the expression of lipid droplet associated proteins 

such as ADRP and FA transport/binding proteins such as FATPs and FABPs in 

placenta in pregnancies complicated by PE or diabetes mellitus? 

7. Where in the placenta is ADRP protein expression localized?  

8. Is ADRP expression in trophoblast cells regulated by FAs and/or oxidative 

stress? 
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3. Summary of  Papers 
 

Paper 1: Long-chain polyunsaturated fatty acid transport across human placental 

choriocarcinoma (BeWo) cells  

LCPUFAs are critical for the growth and development of the fetus. In the first 

paper our aim was to investigate the mechanism behind the differential transport of 

LCPUFAS and non-essential FAs assumed to take place in trophoblast cells. We used 

the BeWo cell line as model of placental trophoblasts and a transwell cell system to 

study the transport of radiolabeled FAs across these cells. 

Results: 

� BeWo cells incubated with OA contain more TAGs, more lipid droplets and 

have higher ADRP (lipid droplet marker protein) expression than cells incubated 

with DHA. 

� Incubation of the FAs together with triacsin C (an inhibitor of the esterification 

of FAs into acyl-CoA) abolished the TAG accumulation and the expression of 

ADRP. 

� Caveolin-1, a structural protein of lipid rafts in the plasma membrane, and also 

believed to partake in FA uptake, was induced by OA, but expression was not 

affected by triacsin C. 

� Radiolabeled DHA and AA was more efficiently transported across the cell layer 

than OA and PA, the concentration of DHA and AA in the basolateral chamber 

was ~4 and ~2.5 fold higher than for OA, respectively. OA was similar to PA.  

� A physiological FA mix was used to mimic the plasma concentration of FAs in 

the third trimester of pregnancy, the concentrations of PA and OA was ~20-fold 

and ~10-fold higher than for DHA and AA, and we found that the relative 

transport of LCPUFAS was more efficient.  

� Triacsin C inhibited the uptake of radiolabeled PA and OA by ~70%, whereas 

uptake of LCPUFAs was inhibited by only 20%. 

� Triacsin C increased the efflux of radiolabeled OA compared with DHA in a 

transwell system.  
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Paper 2: Long-chain polyunsaturated fatty acids stimulate cellular fatty acid 

uptake in human placental choriocarcinoma (BeWo) cells 

 In light of our findings in Paper 1 and the importance of LCPUFAs for fetal 

nutrition, our aim was to study the effect of LCPUFAs on the uptake of FAs in 

placental trophoblast cells. Further we wanted to study the effect of LCPUFAs on the 

expression of genes involved in FA uptake and lipid metabolism in trophoblasts. We 

used BeWo cells and studied the uptake of radiolabeled FAs, as well as gene expression 

by quantitative real-time RT-PCR. 

Results: 

� Preincubation of BeWo cells for 24 h with LCPUFAs increased the uptake of 

FAs by ~20-50%. Preincubation with OA on the other hand did not significantly 

change the FA uptake as compared with the uptake in untreated cells (controls).  

� After preincubation with LCPUFAs, radiolabeled FAs were incorporated into 

phospholipid fractions to a greater extent compared to cells preeincubated with 

OA or controls, simultaneously there was a decreased incorporation of FAs into 

the TAG fraction.  

� The gene expression of long-chain acyl-CoA synthetases ACSL1 and ACSL5 

were increased when BeWo cells were incubated with the LCPUFAs AA and 

DHA compared to both OA and control. Incubation with EPA also increased 

the expression of these genes compared to the control.  

� The gene expression of the lipid droplet associated protein ADRP was increased 

by AA, EPA and DHA compared with the control.   

� The gene expression of ACSL3 and LPIN1 was decreased after incubation with 

all the FAs including OA compared with the control.  
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Paper 3: Expression of liver X receptors in pregnancies complicated by PE 

 We wanted to move from the placental trophoblast cell model to explore the 

expression of placental genes involved in lipid metabolism in the placenta, and explore 

whether any of these genes were dysregulated in PE. In the third paper we focused on 

transcription factors LXRs (� and �) and PPARs (� and �) and their target genes. We 

examined tissue samples from uncomplicated and preeclamptic pregnancies and studied 

the gene expression in placenta, decidua and subcutaneous fat tissue. The placental lipid 

classes and FA profile were also analyzed.  

Results:  

� The expression of LXR� and � were similar in all three gestational tissues.  

� PPAR� had a higher expression in placenta than in decidua and fat (~20 fold 

higher) while PPAR� was more highly expressed in fat tissue than the other 

tissues. 

� The expression of LXR� and � and PPAR� was significantly decreased in 

preeclamptic placenta, while PPAR� was not differentially expressed as 

compared to uneventful pregnancies.  

� The expression of the target genes CD36/FAT, and APOE was significantly 

decreased in preeclamptic placenta, while the expression of LDL receptor was 

increased. 

� Protein expression of LXR � was decreased in preeclamptic placenta, while LXR 

� was similarly expressed in PE and controls.  

� The mean concentration of FFA in placenta with PE was significantly lower than 

in control placenta.  

� The total concentration of n-6 PUFAs (LA, DGLA and AA) was increased in 

preeclamptic placenta.  

� There was a positive correlation between the gene expression of LXR� and the 

concentration of FFA in preeclamptic placentas.  
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Paper 4: Increased Adipose Differentiation Related Protein (ADRP) expression 

in preeclamptic placenta 

 In the fourth paper we explored the expression of genes involved in lipid 

metabolism, focusing on genes involved in FA transport in the placenta and exploring 

whether there is any dysregulation of these in PE. We examined placenta tissue samples 

from uncomplicated (n=33) and preeclamptic pregnancies (n=30), as well as 

pregnancies complicated by DM (n=10) and SPE (n=6). We also incubated BeWo cells 

with FAs, oxidative stress and inflammatory agents in order to mimic the preeclamptic 

situation.  

Results: 

� The gene expression of the lipid droplet associated protein ADRP was increased 

in preeclamptic placenta. 

� The gene expression of FATP1 and CAV1 was decreased in PE placenta.  

� In SPE (superimposed PE on top of diabetes mellitus) the expression of PLIN, 

S3-12, LSDP5, FABP3 and 4 and FATP1 and 4 was increased. 

� The protein expression of ADRP was increased in PE, while the expression of 

caveolin-1 was unaltered.  

� ADRP protein expression was localized to vacuoles within fibrinoid tissue in 

placental tissue sections, and also in vesicles in trophoblast cells.  

� Caveolin-1 protein expression was mainly localized to endothelial cells in 

placental tissue sections and in some specimens in cytotrophoblast cells. 

� The FAs OA and LA that are increased in maternal circulation in preeclamptic 

pregnancies increased the expression of ADRP in BeWo cells on both gene and 

protein level, while PA did not.  

� Oxidative stress induced by hydrogen peroxide increased the expression of 

ADRP in BeWo cells on both gene and protein level. 
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4. Methodological considerations 

4.1. Advantages of combining clinical research and in vitro 

experiments 

The work presented in this thesis is based on analyses of blood and tissue 

samples from pregnant women and on in vitro experiments in cell culture. Both 

approaches have advantages and restrictions, but in general they complement each 

other. Clinical material gives an overview of the actual situation in the patient 

population, and screening of target genes or proteins in patient populations can be 

useful both for generating hypotheses and for confirming them. Data obtained from 

clinical material can pose interpretation challenges, because there can be huge individual 

differences from one patient to another, and also there are many variables that cannot 

be controlled. In addition, when studying a whole organ, such as the placenta, it is 

important to remember that it consists of a number of different cell types that may have 

very different roles and functions. In a tissue/organ, the different cell types 

communicate with each in a paracrine manner by secreting messenger molecules, and 

will also be subject to endocrine communication by hormones or other circulating 

molecules from other organs. In cell experiments, on the other hand, it is possible to 

control the experimental settings so that the influence of confounding factors will be 

limited. However, cell experiments have the disadvantage of being pure model systems, 

where the settings are usually far from the complex physiological situation that we try to 

mimic. By combining the two systems it is possible to test hypotheses generated from 

the complex in vivo situation in the purer in vitro situation, facilitating a more 

comprehensive understanding of physiological processes, such as FA uptake and 

transport in the placenta.  

 

4.2. Cell system 

The BeWo choriocarcinoma trophoblast cell line is used as a model of placental 

trophoblast in this study. BeWo was the first commercially human trophoblast cell line 

available, developed in 1968 [273]. It was prepared from a malignant gestational 
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trophoblast cancer (choriocarcinoma), which is composed entirely of 

syncytiotrophoblast and cytotrophoblast cells [274]. BeWo cells grow as undifferentiated 

cytotrophoblast but can be induced to differentiate into syncytiotrophoblast, and they 

also secrete hCG [275]. BeWo cells also have similar properties of lipid transport and 

metabolism as isolated primary cytotrophoblasts and syncytiotrophoblast for instance 

polarized transport of LCPUFAs and expression of genes involved in lipid metabolism 

[47,274,276]. BeWo cells have been widely used to study the uptake and transport of 

various biological compounds in the placenta, such as amino acids [277,278,279,280], 

glucose [281], cholesterol [282] and FAs [283,284]. BeWo cells can form confluent 

monolayers when grown on permeable membranes, and demonstrate polarized 

membrane expression of apical and basolateral protein markers and tight junction 

formation [283]. Therefore we believe that BeWo is a good model for studying FA 

uptake and transport in the placenta. 

  

4.3. Patient selection 
In this study we have used clinical information and biological samples from an 

ongoing biobank inclusion of patients with complicated or uncomplicated pregnancies 

at Oslo University Hospital, Ullevål, Norway. This hospital has the largest delivery unit 

in Norway, presently with over 7000 deliveries annually. The biobank collection was 

started by our research group in 2001 and includes women with uncomplicated 

pregnancies and women with pregnancies complicated by PE or diabetes mellitus. For 

the papers included in this thesis, a total of 79 women with singleton pregnancies were 

included from the biobank study. We chose to include patient samples where sufficient 

tissue samples from placenta, decidua and subcutaneous fat were available, as well as 

maternal plasma and serum. We had originally intended to measure the concentration of 

lipid associated proteins in the maternal circulation; however, in the end we did not 

include any such analyses in the papers included in this thesis.   

All patients were delivered by cesarean section. None of the women were in 

active labor, had ruptured membranes or clinical signs of infection at the time of 

delivery. No women with chronic hypertension or renal disease were included. The 

cesarean section was clinically indicated independently of the research study. 
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Uncomplicated pregnancies were used as a control group (n=33), and included 

normotensive and otherwise healthy women undergoing elective cesarean section due to 

breach presentation or psychosocial reasons.   

The women diagnosed with PE (n=30) were previously healthy and 

normotensive prior to pregnancy. The reasons for delivery by cesarean route in these 

cases were that vaginal delivery was not appropriate due to disease progression or 

severity and/or unfavorable cervical ripening. Of the 30 patients with PE three had 

HELLP syndrome and two had both PE and clinically demonstrated IUGR.  

The patients with superimposed PE on diabetes mellitus (n=6) were delivered by 

cesarean route with the same clinical indications as the PE group. The women with 

diabetes mellitus (n=10) were delivered by cesarean route with the same clinical 

indications as the control group. Therefore the number of patients in this group is small, 

as patients with DM are normally delivered vaginally.  

Cases of superimposed PE on hypertension were not included in this Ph.D. 

project because these cases are probably distinct from PE and may have different 

pathophysiology [285].  

All patients that agreed to participate in the study signed a voluntary informed 

consent. They have the possibility to withdraw from the study at any time without 

giving any reason and without any consequences regarding the relationship to Oslo 

University Hospital, Ullevål. The cesarean section biobank study was approved by the 

Regional Committee of Medical Research Ethics in Eastern Norway (REK Øst), with 

permission from the Norwegian Data Inspectorate (Datatilsynet) and final approval by 

the Ministry of Health (for the biobank).  

 

4.4. Delivery mode 

 A major strength of our study is the relatively large placental sample size from a 

clinically well-characterized study population. In addition, only pregnancies delivered by 

cesarean section without any indications of labor were included in the study. Hence, 

unpredictable effects of vaginal delivery such as oxidative stress can be avoided and will 

not influence the blood samples or tissue material. We believe that this is an advantage 

of our study protocol, since vaginal delivery is associated with oxidative stress in 
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maternal and fetal circulation [286,287,288]. Uterine contractions during labor leads to 

intermittent utero-placenta blood that causes hypoxia-reperfusion injury and increased 

oxidative stress [212,219]. Xanthine oxidase activity was increased in placental tissue of 

laboring women [212]. Markers of oxidative stress and apoptosis were increased in 

placental tissue after labor, and the expression of several genes and proteins were altered 

due to vaginal delivery [219]. On the other hand, some authors suggest that labor does 

not affect gene expression as compared to vaginal delivery [289,290] but our view is that 

one cannot safely rule out some degree of increased oxidative stress in a preeclamptic 

delivery as compared to deliveries in uneventful pregnancies. 

Another advantage associated with delivery by cesarean section is the possibility 

to obtain decidua and fat tissue. It would be difficult to obtain sufficient decidual 

suction tissue samples after a vaginal delivery. Also, subcutaneous fat biopsies would 

also be more difficult to obtain in vaginal deliveries, demanding additional local 

anesthesia and extra skin incision. The alternative method for obtaining decidual tissue 

is blind curettage, but we consider this to be unethical as it is a clinically unnecessary 

procedure after an uncomplicated delivery, with a small risk of uterine perforation and 

infection. The decidual tissue sampled for this project was collected by the vacuum 

suction method designed by Staff and coworkers [291,292], and evaluated as superior to 

classic placental bed biopsies and basal membrane biopsies in collecting decidual spiral 

arteries, but inferior to placental bed biopsies in collecting myometrial tissue and 

topographically adequate decidual tissue. The quality of our tissue material, with rapid 

nitrogen freezing after collection, is a major advantage of our study protocol, combined 

with extensive clinical information and a thoroughly clinically selected study population.  

Due to the mode of delivery of the patient population included in our biobank, 

we have a subgroup of patients with more severe PE than in the general Norwegian 

preeclamptic population. Of the 30 women with PE included in this study, 20 had 

severe PE according to ACOG criteria. Women with clinically less severe PE are more 

often delivered vaginally. Therefore the patients with PE delivered by cesarean section 

tend to have a more severe form of the disease than the total group of women with PE 

delivered at our hospital. Our PE group is therefore not representative for all women 

with PE.  However, it is possibly a more interesting group to study as early and severe 
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PE has the most severe consequences for the infant and maternal health, as well as for 

their health later in life.  

 

4.5. Gestational age 

A limitation of our study is that there is a significant difference in gestational age 

between our study groups, the PE group delivering earlier than the control group. It is 

ethically unacceptable and impractical to have gestationally age matched controls to the 

cesarean delivered preeclamptic patients, as women will not have an early cesarean 

section if the pregnancy is normal. Premature deliveries are generally due to pathological 

conditions, such as inflammation or infection and therefore not suitable as controls. 

Correcting for gestational age is mathematically possible but it is not necessarily 

biologically correct, as premature delivered women with PE will generally have a more 

severe form of the disease than women delivered at term. Still we cannot exclude that 

differences in gestational length between the study groups could potentially affect our 

results and conclusions. It is possible that the differences we report between PE and 

controls could be over- or underestimated, depending on how placental gene expression 

varies with pregnancies or PE severity. On the other hand, in a longitudinal study of 

gene expression during pregnancy [293] none of the genes found to be regulated by 

gestational length correspond to the genes that we found dysregulated in PE or diabetes 

mellitus in the present study (Paper 3 and 4). 

 

4.6. Protein expression in placenta samples 

Immunoblotting of whole placenta proteins lysates is not optimal because the 

placenta tissue consists of a number of different cell types such as trophoblasts, immune 

cells endothelial cells and stromal cells. In Paper 3 and 4 we did immunoblotting on 

placental lysates in order to confirm our findings on the mRNA level. This is not always 

possible because proteins can be regulated differently on the mRNA and protein level. 

The regulation of protein expression is complex and involves several steps, including 

initiation of transcription, possible modifications of the mRNA by alternative splicing, 

translation of mRNA into protein, and numerous posttranslational modifications of the 
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protein. For example, ADRP protein is degraded when lipids are not present [294]. This 

is clearly observed in BeWo cells where protein expression of ADRP is almost absent in 

control cells grown in regular medium, while cells incubated with OA express high 

amounts of ADRP (Paper 1 and 4). We have observed that the mRNA expression of 

ADRP in placenta tissue is high while the protein expression in the tissue is very low 

(Paper 4).  

In Paper 4 we performed immunohistochemistry of ADRP and caveolin-1 

protein expression in placental sections to be able to study the localization of these 

proteins in the tissue. Both proteins are expressed highly in the placenta on the mRNA 

level [110] and the proteins are expressed in primary term trophoblasts [276,111]. 

However, when studying these proteins with IHC in cesarean delivered samples, we 

found that ADRP was mainly expressed in clusters of vacuoles in the fibrinoid tissue in 

the extracellular matrix, and we only found occasional staining of ADRP in 

syncytiotrophoblast.  The explanation for this may be that IHC is a rough visual 

technique for detecting protein expression in tissue.  

 

4.7. Quantitative real-time PCR  

Selection of genes for gene expression analysis  

In Paper 3 and 4 we performed quantitative real-time RT-PCR (qRT-PCR), using 

custom-made 384-well microfluid cards (TaqMan Low Density Array; LDA). In Paper 3 

we selected the NRs LXR� and �, RXR� and PPAR� and � and some of their target 

genes. In Paper 4 we selected genes involved in FA uptake, transport and storage in the 

placenta. We selected four endogenous controls, 18S rRNA [293], GAPDH [295], TBP 

and YWHAZ [296], all commonly used for this purpose and previously used as 

endogenous controls in placenta gene expression analyses. We found that YWHAZ was 

the most stable control in placental and decidual tissue, while TBP was the most stable 

in adipose tissue. Cleal et al recently did a test of different endogenous control genes in 

placenta tissue using real-time PCR and found that YWHAZ was the most stable 

control in placenta [297]. In Paper 2 we also analyzed gene expression using qRT-PCR, 
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totally we selected 47 genes involved in the lipid metabolism and five endogenous 

controls listed in Table 1 (Paper 2, 3 and 4). 

Calculation of gene expression  

In Paper 2, 3, and 4 we used qRT-PCR and microfluid cards to investigate the 

expression of several genes both in BeWo cells and in pregnancy tissues. To calculate 

the gene expression we used the 2-��Ct method described by Livak and Schmittgens 

[298].  

In Paper 3, we used a modified version of this method in order to be able to 

compare the gene expression of LXR� and LXR� in the different tissues investigated. 

Because we found that all the four endogenous controls were in some way regulated in 

one or more of the tissues, we could not find a single common endogenous control to 

use for all tissues. Therefore we chose to compare the 2(-Ct) values directly. Briefly, the 

arbitrary values were calculated using the Ct value for each qRT-PCR reaction according 

to the equation: (2(-Ct)) x 109. We multiplied with a factor of 109 in order to obtain a 

number close to 1 instead of a tiny number that would be difficult to read and 

comprehend. Our reason for doing the calculation this way is that it is often difficult to 

find a good endogenous control (a control which it self is not regulated, or regulated 

very little) when comparing gene expression between tissues [299]. And using a 

regulated “endogenous control” could in the worst cases produce results reflecting the 

regulation of the endogenous control, and not that of the target gene.  

The qRT-PCR system we use is producing a doubling of product in every cycle 

as long as there are not any inhibitors present that could interfere with the reaction. We 

did thorough testing of the material to assure that we included equal amounts of RNA 

in each sample and that there was no inhibition of either the reverse transcription of 

RNA to cDNA or in the qRT-PCR. Hence, the amount of total RNA initially measured 

directly represents the level of expression for each gene. We therefore believe that the 

use of Ct values, not normalized to a regulated endogenous control, is the most correct 

way of calculating the gene expression between the tissues in our experiment.  
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Relative versus absolute quantification of gene expression 

 Relative quantification is based on analyzing the changes in gene expression in a 

specific sample compared to a control sample (in our case normal pregnancy samples or 

untreated cells). The 2-��Ct method, or comparative Ct method, is based on a relative 

quantification of the gene expression. It is also possible to do relative quantification 

based on a standard curve method where the gene expression in the unknown samples 

is determined by comparison to the standard curve and extrapolating the value.  

 However, if an absolute quantification of the gene expression is needed, none of 

these two methods are sufficient. Then a standard curve, where the absolute quantities 

of the standards must be known, is needed. This can be done by using plasmid DNA 

and in vitro transcribed RNA. The RNA concentration is measured at 260 nm and the 

RNA copy number is found by using the molecular weight of the DNA or RNA. 

However, a plasmid is not behaving the same way as an endogenous mRNA molecule, 

and using this approach will not identify any potential inhibitors in the samples, which 

are usually the most important confounders of the expression level. Also, plasmid DNA 

can often be contaminated with RNA, which can make the reading at 260 nm inaccurate 

and thereby inflate the copy number of the plasmid. Therefore DNA should not be 

used directly to determine the copy number because it will not be possible to know the 

efficiency of the reverse transcription step [300]. Furthermore, we believe that going 

through the procedure of creating plasmid vectors and cloning them into a cell line 

would be very time consuming and costly and would make the use of PCR methods 

such as LDA cards difficult. Therefore, we believe that the method of relative 

quantification of gene expression is the most useful approach for the gene expression 

analyses performed in Paper 2, 3 and 4 in the current study. 
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5. General discussion 

5.1. Transport and uptake of LCPUFAs in placenta 

  As described in the Introduction, there is a selective enrichment of LCPUFAs 

from the maternal to the fetal circulation. This indicates that there is a system of 

preferential transport of LCPUFA in the placenta that is responsible for this 

biomagnification. FA transport and binding proteins are involved in the placental FA 

uptake [20]. However, the cellular FA uptake is also dependent on several intracellular 

metabolic processes such as the formation of acyl-CoA, complex lipids, lipid droplets 

and oxidation [20]. We therefore studied several mechanisms for FA transport and 

uptake in a trophoblast cell line (BeWo). Using a transwell cell culture system we found 

that OA induces lipid droplets and ADRP expression, and raises the intracellular TAG 

level, to a greater extent than DHA (Paper 1). This indicates that different transport 

mechanisms are involved in the transport of LCPUFAs compared to OA.  

  Furthermore, we found that LCPUFA and OA differentially regulate the 

expression of ACSL1 and 5 (Paper 2). These enzymes are responsible for the 

conversion of FFAs into acylCoAs, which is an obligatory step for further metabolism 

of FFAs once they are taken up by the cell. Inhibiting this step using triacsin C inhibited 

the uptake of radiolabelled OA and PA by ~70%, while the uptake of AA and DHA 

was only inhibited by ~20% in standard cell culture plates (Paper 1). When the same 

incubations were carried out in a transwell system we found that the addition of triacsin 

C increased the efflux of OA to the basolateral chamber, and had no significant effect 

on DHA (Paper 1).  

Our results in Paper 1 led us to believe that LCPUFAs could somehow 

circumvent the acetylation step and be directly transported across the cell. However, the 

results in Paper 2 do not fully support this proposal. Instead, it points towards different 

roles of individual enzymes with ACS activity in regulating the uptake and intracellular 

fates of different FAs. The “channeling hypothesis” by Coleman et al suggests that the 

variety of ACSL isoforms channel FAs into different metabolic pathways [95]. Triacsin 

C inhibits both phospholipid and TAG synthesis in fibroblasts, TAG synthesis in 

hepatocytes, and B-oxidation but only to a lesser extent [92]. Triacsin C selectively 
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inhibits ACSL1, 3 and 4, but not 5 and 6 [90]. Both ACSL1 and ACSL5 have a 

preference for saturated and unsaturated FAs of 16-20 carbons as substrates [301], as 

shown in epithelial cells and adipocytes. However not much is known about ACSLs in 

the placenta and trophoblasts, and their function have not been studied in BeWo cells 

previously.  

 We found that enhanced uptake of radiolabeled FAs after pre-incubation of 

BeWo cells with LCPUFAs was associated with an increased incorporation of the FAs 

in phospholipid fractions and reduced incorporation in TAG fractions, while pre-

incubation with OA had the opposite effect (Paper 2). The ACSL enzymes could 

possibly be involved in this process, directing the FAs towards different intracellular 

lipid pools. In the brain it has been shown that ACSL6 have an important role in uptake 

and incorporation of AA and DHA into phospholipids [302,303].  

Previous results from our group indicate that LCPUFAs can modulate the uptake 

of AA, EPA and DHA, but not OA in BeWo cells [276]. In Paper 2 we report that the 

LCPUFAs can modulate the uptake of both OA and LCPUFAs, and that FAs are 

distributed in different lipid classes depending on whether the uptake was mediated by 

LCPUFA or OA. We showed that LCPUFAs, but not OA upregulate the mRNA 

expression of the ACSLs, ACSL1 and 5, and we therefore suggest that these genes are 

involved in the uptake of LCPUFAS.  

Over-expression of ACSL1 [304,305] and ACSL5 [306] lead to enhanced cellular 

FA uptake in different cell types. Co-immunoprecipitation of ACSL1 and FATP1 in 

adipocytes further suggests that acyl-CoA synthetase is important for FA uptake [307]. 

ACSL proteins are predicted to be localized to membranes, but not much information 

about their actual localization is available, and they have been identified in association 

both with membranes and in the cytosol [90]. ACSL1 is associated with the plasma 

membrane [307], mitochondria and in lipid droplets in adipocytes [308]. ACSL5 has 

been detected in the plasma membrane [309,310,311], in mitochondria [312] and in lipid 

rafts [313]. We did not study the intracellular localization of these enzymes in the BeWo 

cells.  

We did not observe any regulation of the FATPs by any of the FAs in BeWo 

cells (Paper 2). Possibly, incubating BeWo cells with FAs could have an effect on the 

intracellular location of the FATPs and not their expression level. In adipocytes, 
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incubation with insulin did not regulate the expression of FATP1 but instead mediated a 

translocation of the protein from the cytosol to the plasma membrane, and by that the 

transport of long chain FAs was increased [314]. Elchalal et al reported that incubating 

primary term trophoblast with a combination of OA, LA and insulin did not alter the 

mRNA expression of any of the FATPs [315].  
   

5.2. Role of ADRP and lipid droplets in placenta 

When this project was started, the knowledge about lipid droplet proteins and 

ADRP was limited, especially in the placenta. In the past few years the lipid droplet 

research field has increased greatly, with more detailed knowledge about the role of lipid 

droplets. Formerly they were recognized as organelles for lipid storage, but recent 

research has shown that they have many roles in lipid metabolism and in disease 

situations.  

  The background for this project was the previous finding by our research group 

that the lipid droplet associated protein ADRP was up-regulated by FAs both on the 

mRNA and protein level in BeWo cells and primary trophoblast [276]. We hypothesized 

that ADRP might be involved in the uptake and transport of FA in the placenta, and we 

wanted to further study the role of ADRP in placenta and whether ADRP could have a 

role in PE. We have therefore investigated the ADRP expression in BeWo cells in 

relation to FA transport and also the effect of FFA and oxidative stress, that are found 

to be increased in PE, on both gene and protein expression of ADRP in BeWo cells.   

The placenta is not a lipid storing organ, as it does not contain large lipid storage 

areas, in contrast to the acute atherosis phenomenon of decidual spiral arteries. Hence, 

the role of LDs in placenta could be something different than storing lipids as an 

energy source. The transport of lipids from the mother to the fetus is extensive in the 

latter half of pregnancy and there is an increasing accumulation of lipid droplets in the 

placenta with gestational age [316]. It has been speculated that enhanced ADRP 

expression may contribute to FA uptake by the placenta [111]. In a healthy pregnancy, 

ADRP could be important in regulation of FA signaling pathways. Furthermore, in 

pathological pregnancies, dysregulation of ADRP could possibly lead to alterations in 

FA signaling pathways, which are necessary for a healthy pregnancy. We hypothesized 
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that the lipid droplet associated protein ADRP could be involved in the preferential 

transport of FAs from the maternal circulation to the fetus, and that it could possible 

translocate from the lipid droplet to lipid rafts and caveolae in the plasma membrane 

and be involved in the intracellular transport of FAs.   

  There is increasing evidence that lipid droplets are involved in intracellular lipid 

trafficking between different organelles [317]. A variety of proteins that regulate 

membrane traffic have been found associated with lipid droplets by proteomic studies, 

including proteins involved in vesicle formation and motility, motor proteins involved in 

movement along the cytoskeleton, vesicular trafficking and others [317]. Lipid droplets 

have been found to interact with different organelles such as the endoplasmic reticulum, 

endosomes, peroxisomes and mitochondria [317]. The association with mitochondria 

has been reported in adipocytes, liver cells, and skeletal muscle and this interaction is 

suggested to be involved in beta oxidation of FAs [317]. However, ADRP and the other 

lipid associated proteins are mainly thought to act as structural proteins for lipid 

droplets, stabilizing the droplets [318].  

  We found that the expression of ADRP in BeWo cells was increased at mRNA 

level by LCPUFAs but not by OA (Paper 2). The protein level was induced by OA to a 

greater extent than DHA (Paper 1), and also by LA but only slightly by PA (Paper 4). 

Using immunofluorescence cytochemistry (with antibodies against ADRP as a marker 

for lipid droplets) we observed that OA, more than DHA, induced an increase in the 

accumulation of lipid droplets (Paper 1). We found no evidence of co-localization of 

caveolin-1 (a structural protein of caveolae/lipid rafts) and ADRP in BeWo cells (Paper 

1). We also isolated lipid rafts (detergent resistant membranes) by the method of Lygren 

et al [319], and we detected caveolin-1 in the raft fractions, but not ADRP (data not 

shown).  

5.3. Role of ADRP and lipid droplets in preeclampsia 

Accumulation of excess neutral lipids in lipid droplets is associated with 

metabolic diseases, such as obesity, DM2, hepatic steatosis and atherosclerosis [320]. In 

Paper 4 we show that this may also be the case in PE. We found that the lipid droplet 

marker protein ADRP is increased ~2 fold in preeclamptic placenta tissue.  



 54

Dyslipidemia and lipotoxicity 

The lipid abnormalities of PE are described in the Introduction. These metabolic 

alterations include hyperlipidemia, a feature of normal pregnancy but further increased 

in PE. In our patient selection, however, we did not demonstrate elevated total 

cholesterol or TAG in the maternal serum as compared with the control group (Table 

2). The explanation for this discrepancy to other PE population findings where TAG 

concentrations are elevated [232,321,322] could be the patient selection. There is a large 

biological variation between the patients, and we may have included by chance women 

with less hyperlipidemia than other cohorts, and also our population was not very large 

(n=79), implying study power challenges. We did not measure the FFA concentration in 

maternal blood, or other lipid fractions that previously have been shown to be 

dysregulated in PE such as HDL cholesterol.  HDL cholesterol is found to be decreased 

in PE [322,323], while total cholesterol and LDL cholesterol is not altered in PE 

compared to normal pregnancies [324]. In previous studies from our group, using the 

same patient material from our biobank, it was found that the oxidized lipid 8-

isoprostane was elevated in maternal plasma in PE [226] and also in decidual tissue 

[209]. However, the elevated isoprostane could be a marker for oxidative stress [325] 

and not hyperlipidemia. In Paper 3 we measured FFAs in placental tissue and found that 

n-6 PUFAs levels were increased in PE compared with control. On the other hand, not 

all women with PE become dyslipidemic and not all women with gestational 

dyslipidemia develop PE [263]. 
 

Table 2: Concentrations of total cholesterol and TAG in maternal serum in our study  

 Controls  

(n=27) 

Preeclampsia (PE) 

(n=28/29) 

Controls vs. PE 

 Median (min-max) Median (min-max) P-value 

Totalcholesterol (mmol/L) 6.69 (4.93-9.15) 6.36 (3.72-14.26) 0.36 

Triacylglyceride (mmol/L) 2.78 (1.34-7.42) 3.43 (0.81-6.73) 0.17 

Values shown are (number of patients included) median serum concentrations and minimum and 

maximum values. In the PE group total cholesterol was measured in 28 patients, while TAG was 

measured in 29 patients. The concentrations were determined using routine enzymatic methods. The P-

value is given for each diagnosis group compared to the control group and was calculated using non-

parametric Mann-Whitney test.  
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Accumulation of excess lipids in non-adipose tissues is termed lipotoxicity and 

can lead to impaired cell signaling, cell dysfunction and cell death [241]. Lipid 

accumulation in heart, skeletal muscle, pancreas, liver and kidney is associated with 

diseases such as heart failure, obesity and diabetes [320]. Lipotoxicity has also been 

suggested to play a role in insulin resistance, and hyperlipidemia [242], conditions 

associated with both DM and PE. 

In women who later develop PE, the concentrations of OA, LA and PA in the 

maternal circulation is elevated already at week 16-20 of gestation [228,232]. We 

incubated BeWo cells with these FAs and found both mRNA and protein expression of 

ADRP increased with OA and LA, but only slightly with PA (Paper 4).  In cell culture, 

OA supplementation leads to TAG accumulation and is well tolerated, whereas PA is 

poorly incorporated into triglyceride and causes apoptosis [326]. In Paper 1 we found 

that OA induced the protein expression of ADRP, formation of lipid droplets and 

accumulation of intracellular TAG and to a greater extent than DHA. Hence, the 

increased ADRP expression in PE could be due to the higher concentrations of 

circulating OA and LA found in the maternal circulation. It would be useful to measure 

the concentration of these FAs in maternal blood in the samples from our biobank in 

order to support this proposition. However, oxidative stress in the placenta or the 

maternal circulation could also be responsible for the increased ADRP expression in 

preeclamptic placenta.  

 Some studies suggest that lipid droplets may have protective effects in cells 

against lipotoxicity [326,327]. In cardiomyocytes lipid droplets have a protective effect 

against ischemia-reperfusion injury by sequestering FFAs [328]. In muscle cells lipid 

droplets are reported to have a protective effect against the damaging effects of FAs on 

insulin action and glucose tolerance [329,330]. Recently, Gubern et al studied stress 

induced lipid droplet biogenesis without any external source of FAs and found that lipid 

droplet biogenesis was not dependent on de novo FA synthesis, instead structural 

membrane phospholipids were directed to the lipid droplets. The authors suggest that 

this represents a survival strategy whereby the cell recycles membrane lipids to use as 

energy generating substrates as a response to stress such as glucose depravation [331]. 

This is supported by the view that lipid droplets have a role in the management of 

membrane lipids. The composition of lipids in the lipid droplets is complex and 
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includes a variety of different neutral lipids and phospholipids, and the large amount of 

lysophospholids in the lipid droplets implies a role for them in the recycling of 

phospholipids [332,333]. Possibly, recycling of lipids from cell membranes does not 

occur in situations where the cell is in an environment with excess lipids.

The actual role of the alterations in the lipid metabolism in pregnancy and PE is 

not fully understood. In normal pregnancy the hyperlipidemia might be important for 

adequate fetal nutrition. In PE it might contribute to mobilize extra energy from the 

mother that can be taken up and stored by the placenta as a support against the stressful 

PE environment. Another way of looking at the maternal hyperlipidemia is that it is 

harmful for the placenta, and therefore the placenta sequesters these extra lipids as a 

protective mechanism to save the feto-placental unit from lipotoxicity. 

Oxidative stress and inflammation 

Oxidative stress is a feature of PE and is believed to be important in the 

pathophysiology of the syndrome. We induced oxidative stress in BeWo cells using 

different concentrations of H2O2, and found that the number and size of ADRP coated 

lipid droplets increased with increasing doses and incubation times with H2O2 (Paper 4). 

This finding is supported by several studies where different types of oxidative stress 

induced accumulation of lipid droplets in different cell types and species [334,335,336]. 

Hence, we speculate that the increased ADRP gene expression in PE could be due to 

increased oxidative stress in the placenta. Possibly, the combination of hyperlipidemia 

and oxidative stress is even more potent in inducing accumulation of lipid droplets. 

ROS could be involved in oxidation of the excess lipids in the maternal circulation or in 

oxidative attack on lipids in cell membranes in the placental tissue. 

Lipid droplets are normally sparse in normal cells (except adipocytes), but 

increase in number and size in cells associated with inflammation [337]. The 

accumulation of lipid droplets is induced by different inflammatory agents such as LPS 

or cytokines in different cell types [338,339,340], and is also induced in inflammatory 

and infectious diseases [339,341]. In placenta, the number of lipid droplets in amnion 

epithelium increases during labor, indicating that lipid droplets are induced by stress 

[342]. PE is associated with a more extreme maternal inflammatory response than 

occurs in normal pregnancy. The systemic inflammatory response involves an increase 
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in circulating cytokines. We measured the cytokine concentrations of TNF-� and IL-6 in 

maternal plasma in order to confirm the presence of inflammation in our PE group. We 

found that both TNF-� and IL-6 concentrations were increased in plasma from our 

patients with PE as compared to controls (Table 3). It is possible that these pro-

inflammatory cytokines also could be involved in inducing lipid droplet accumulation in 

preeclamptic placenta; however, presently we have no evidence for this. Over-

expression of ADRP increase the expression of cytokines in macrophages and this is 

suggested to be important in the development of atherosclerosis [343].  Hence, it would 

be interesting to study the effect of TNF-� and IL-6 on ADRP expression and lipid 

droplet accumulation in trophoblast cells and vice versa.  

 

Table 3: Concentrations of cytokines in maternal plasma in our study  

 Controls (n=30) Preeclampsia (PE) (n=30) Controls vs. PE

 Median (min-max) Median (min-max) P-value 

IL-6  (pg/mL) 0.7  (0.1-3.5) 1.3 (0.8-13.1) 0.023* 

sTNF R1 (pg/mL) 1184 (762-2383) 1535 (793-3438) 0.008* 

Values shown are (number of patients included) median plasma concentrations and minimum and 

maximum values. Enzyme linked immunosorbent assays (ELISA) for IL-6 (HS600B, Quantikine HS) 

and sTNF R1 (DRT100, Quantikine) both from R&D Systems Europe (UK) was performed in 

duplicates on EDTA-plasma samples according to the manufacturer’s instructions. The sTNF R1 

ELISA measures the total amount of free soluble receptor plus the total amount of soluble receptor 

bound to TNF present in the samples. The circulating levels of the receptor increase in response to 

TNF-� production, and because the half-life of the receptor in plasma is much longer than the half-life 

of TNF, the receptor concentration is considered to be a reflection of the TNF-� activity [344]. The P-

value is given for each diagnosis group compared to the control group (*P <0.05), and was calculated 

using non-parametric Mann-Whitney test.  

There is also increasing evidence that lipid droplets are important regulators of 

inflammatory processes. Several eicosanoid-forming enzymes, involved in the 

conversion of AA into eicosanoids, have been detected both in vitro and in vivo, and 

accumulation of lipid droplets correlates with the capacity of cells to produce 

eicosanoids [345].   

In the preeclamptic situation, there is both a dysregulation of the lipid 

metabolism with excess availability of lipids from the maternal circulation, and also 
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excess inflammation and oxidative stress. Possibly lipid droplets are accumulated in 

placenta during pregnancy due to excess FFA in the circulation and oxidative stress in 

the placenta. We speculate that lipid droplets could have a protective role in placenta, 

whereby excess lipids are stored in the droplets in order to prevent them to exert 

harmful effects intracellularly. Another hypothesis is that the lipid droplet could serve as 

a survival mechanism for the placental cells, whereby it is storing lipids as an energy 

reserve. Possibly, the increased maternal circulating FAs could serve as an adaptive 

protective measure against the oxidative stress and inflammation in the placenta during 

pregnancy. 

Fibrinoid tissue 

In Paper 4, ADRP immunostaining was mainly found to stain clusters of 

droplets in the fibrinoid tissue of the placental extracellular matrix. This result is in 

agreement with Meadows et al who also found that ADRP was localized to fibrinoid 

tissue in the placenta, in a punctuate pattern corresponding to the size and location of 

lipid droplets [346]. The fibrinoid tissue we observed with IHC is most probably of 

fibrin-type fibrinoid, derived from the coagulation cascade. Fibrin-type fibrinoid is more 

prevalent in PE placentas [347], and is associated with apoptosis in trophoblast cells in 

PE [348]. In cultured primary term trophoblasts fibrin protects against hypoxic injury 

[349]. 

Many functions for the fibrin-type-fibrinoid in the placenta have been suggested, 

such as mechanical stability for anchoring the stem villi, as a regulator of intervillous 

circulation, a barrier to limit the invasiveness of the trophoblasts and as a facilitator of 

materno-fetal transport of macromolecules [3]. Alphafetoprotein has been shown to 

pass through fibrin-type fibrinoid gaps in the syncytiotrophoblast layer [350]. Ackerman 

et al identified numerous large lipid droplets in trophoblasts, which increased in size and 

numbers the closer they were in proximity to the maternal interface, and they were also 

associated to regions of necrotic cellular debris [351]. Possibly the lipid droplets could 

be transported out of the placenta via areas of fibrinoid tissue and subsequently shed to 

the maternal circulation in the same manner as STBMs. There is also the possibility that 

the lipid droplets are transported from the placenta to the decidua where they are 

engulfed by macrophages associated with acute atherosis. Katabuchi et al observed areas 
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of fibrin deposition and accumulation of foam cells in the spiral arteries of the decidua, 

predominantly in patients with PE [352]. These foam cells were filled with lipid droplets 

of various sizes.  

5.4. Dysregulation of FA transport genes in preeclampsia

In Paper 3 and 4 we studied the expression of genes involved in lipid metabolism 

in preeclamptic placenta. We found that several genes were dysregulated. Here we will 

discuss the regulation of three of these that are involved in the uptake of FAs. FATP1, 

CD36, and CAV1 were all significantly decreased in preeclamptic placenta (Paper 3 and 

4).  

FATP1 is a 63 kDa transport protein that mediates FA uptake and is expressed 

in a wide variety of cell types and tissues. It is involved in transport of long chained FAs 

with a preference for very long chained FAs and is linked with acyl-CoA synthetase 

activity [353]. Characterization of purified mouse FATP1 protein conveyed that FATP1 

has ACS activity [354]. The protein has a transmembrane domain and several membrane 

associated domains [353]. FATP1 was first identified in placental membranes [47] and 

the expression is induced by PPAR� and RXR agonists in primary trophoblasts [162].  

We found the FATP1 gene expression to be decreased in PE, unfortunately we 

were unable to quantify the protein expression and to observe the intracellular location 

by immunohistochemistry in term placenta. Previously FATP1 has been found localized 

to the plasma membrane and to small vesicles in the cytoplasm [62]. Over-expression of 

FATP1 and CD36 in muscle cells resulted in increased transport of OA and PA [355]. 

FATP1 was localized throughout the cytosol in a reticular pattern, partly co-localized 

with the Golgi system, and CD36 was localized to the extracellular membrane, neither 

of the proteins were co-localized with lipid droplets [355].  

FATP1 is downregulated by TNF-� in the liver [314]. In line with this we 

speculate that inflammation could be involved in down-regulating FATP1 in placenta in 

PE, as we did not observe any regulation of FATPs with FAs in Paper 2. Also, FATP1 

and CAV1 were not regulated by the FAs (PA, OA and LA) that are found up-regulated 

in the maternal circulation in PE, and neither by LCPUFAs (AA and DHA) (Figure 9). 
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Figure 9: Gene expression of ADRP, FATP1 and CAV1 in BeWo cells after 24 h incubation with 100 

μM of different fatty acids (FAs). Gene expression was analyzed using quantitative real-time RT-PCR. 

TBP was used as endogenous control. The P-value is given for each FA compared to the control (*P 

<0.05) and was calculated using Students T-test.  

 

CD36 is reported to be localized to lipid rafts (detergent resistant membranes) 

[73] and in caveolae [86]. Pohl et al showed that caveolin-1 targets CD36 to the plasma 

membrane in mice embryonic fibroblasts, and that in caveolin-1 knock-out mice CD36 

was not localized to the plasma membrane [356]. Interestingly, we found that mRNA 

expression of CD36 and caveolin-1, both associated with caveolae, were decreased in 

PE. In Paper 4 we found caveolin-1 localized mainly to endothelial cells in placental 

sections, but we also observed some occasional staining of cytotrophoblasts. However, 

we found no difference between the sections from preeclamptic pregnancies compared 

to controls (Paper 4). Vandré et al (2007) found caveolin-1 protein expression associated 

with endothelial cells and stromal cells in placenta [357], and Byrne et al found by 

immuno-gold labeling that caveolin-1 in placenta was mostly expressed in endothelial 

cells, and only infrequently in trophoblast cells [358]. The gold particles were localized 

to the basal and apical membrane of the endothelium, mostly on the basal side, 

suggesting a role in active lipid transport from the maternal side to the fetal side. We 

speculate that the reason for the decreased expression of these genes is connected 

somehow to the FA transport system of the placenta, and could be a response to excess 

FFA in the maternal circulation in PE. However, regulation of gene expression is 
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complex and may involve many other factors. The down-regulation could be a 

protective mechanism against further lipid accumulation in the placenta, or it could be a 

reduction of lipid transport from the placenta to the fetus either because the excess 

lipids can be harmful for the fetus or because the placenta needs to accumulate lipids to 

protect itself under the stressful PE environment. Our observation that caveolin-1 is 

mainly expressed in fetal endothelial cells of the placenta (Paper 4) supports this notion.  
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6. Conclusions

The main conclusions of this study are as follows:  

1. LCPUFAs (AA and DHA) are more efficiently transported across BeWo cells 

compared to non-essential FAs (PA and OA).  

2.  The non-essential FA (OA) is incorporated into TAG fractions and induces 

accumulation of lipid droplets in BeWo cells to a greater extent than LCPUFAs 

(DHA).  

3. LCPUFAs modulate the uptake of both LCPUFAs and OA in BeWo cells. The 

uptake of all FAs increase after preincubation with LCPUFAs and the FAs are 

preferentially incorporated into phospholipids. 

4. Incubation of BeWo cells with LCPUFAs increased the gene expression of long-

chain acyl-CoA synthetases, ACSL1 and ACSL5.   

5. There is a dysregulation of LXR�, LXR� and PPAR� in preeclamptic placenta, 

the gene expression is significantly decreased for all three transcription factors.  

6. ADRP gene expression is increased, while FATP1 and CAV1 expression is 

decreased in preeclamptic placenta, and ADRP is also increased on the protein 

level. 

7. The protein expression of ADRP in placenta tissue is localized to clusters of 

vacuoles in the fibrinoid tissue and also to small vesicles inside trophoblast cells.  

8. ADRP expression is regulated by FAs and oxidative stress (H2O2) in BeWo cells.   

 

In conclusion, this study supports the previous observations that LCPUFAs are 

selectively enriched in the fetal circulation. Our results suggest that there are different 

transport mechanisms for LCPUFAS (DHA) and non-essential FAs (OA) in the 

trophoblasts of the placenta. The transport mechanism for OA may involve 

accumulation of TAG in lipid droplets, while DHA possibly to some extent circumvents 

this step. Our results support the concept of a special system for active transport of 

LCPUFA across the placenta. We also found that LCPUFAs influence the uptake of 

FAs in trophoblast cells and this could have important implications for fetal nutrition 

and for dietary advice given to pregnant women. Our results suggest that ACSL1 and 
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ACSL5 could be involved in FA uptake and that conversion of FFAs to acyl-CoA is an 

important step in the LCPUFA influenced uptake of FAs in the placenta.   

We also aimed at exploring the dysregulation of the lipid metabolism in 

pregnancies complicated by PE and/or DM and we show that both PPARs and LXRs 

are dysregulated in placenta in PE. We suggest that these transcription factors could be 

involved in the PE situation, but further research is required for definite conclusions. 

We also show that the lipid droplet associated protein ADRP is dysregulated in PE. The 

increased expression of ADRP is possibly induced by oxidative stress in the placenta, 

even though dyslipidemia may also play a role in this regard.  
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7. Future perspectives 

At the end of the road to a Ph.D. project, there are many questions surfacing that would 

be interesting to study further. Here are some thoughts: 

� What happens at earlier time points in the pregnancy? It would be interesting to 

perform a longitudinal study of placenta tissue samples, both gene expression 

patterns of our proteins of interest and immunohistochemistry analysis could 

provide valuable insights into the metabolic development and adaptations of the 

placenta during the pregnancy. Possibly, excess chorionic villi sampling tissue 

used for prenatal diagnosis could be used for such longitudinal sampling, 

although this material is very difficult to obtain in reasonable amounts. 

� Do LCPUFAs modulate increase in the uptake of all FAs? In this study we 

analyzed the effects on LCPUFA uptake and OA, but what about PA or other 

short chained FAs that are not considered to beneficial in the diet? Is it correct 

to recommend dietary supplementation of n-3 LCPUFA for pregnant women if 

these FAs enhance the uptake of other FAs in the placenta?   

� How is the FA uptake and transport in primary trophoblast cells and 

differentiated BeWo cells? Could there be other cells in the placenta, in addition 

to trophoblasts, involved in the preferential LCPUFA transport?  It would be 

interesting to isolate primary endothelial cells from placenta to compare the FA 

transport in these with other endothelial cells, for example from the umbilical 

cord and aorta.  

� Are lipid droplet associated proteins involved in the development of acute 

atherosis? Decidual tissue with areas of acute atherosis can be used as a model 

for studying the process of atherosclerosis in general, because of similarities in 

the development of lipid deposition in decidua and other tissues. It has been 

shown that ADRP is involved in the formation of plaque in atherosclerosis [359]. 

Hence, it would be interesting to investigate the possible involvement of ADRP 

and other LDAPs in decidua in areas of acute atherosis.  
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 Placenta remains the key factor to a successful pregnancy and is also an 

important predictor of future maternal and offspring health. Further placental 

research will be essential for solving the riddle of PE and other pregnancy 

complications, important for the wellbeing of both the mother and the fetus. The 

similarities in the pathophysiology of PE with other diseases, such as diabetes and 

atherosclerosis, makes further research on PE important also when the focus is on 

development of other diseases. 
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Abstract 
 
Preeclampsia is a pregnancy specific disorder associated with hyperlipidemia. Liver 

X receptor (LXR) � and LXR� are key regulators of lipid homeostasis. In the current study, 
we investigated expression of LXR�, LXR� and their target genes in human term placenta, 
decidua and subcutaneous adipose tissue from pregnancies complicated by preeclampsia. 
Furthermore, we analyzed the protein levels of LXR� and LXR� in placenta. We also 
analyzed lipid concentrations in term placental tissue. Gene expression of LXR�, LXR� and 
fatty acid transporter CD36 was significantly decreased in placental tissues while increased 
expression was observed for LXR� in adipose tissue from pregnancies complicated by 
preeclampsia. The placental protein level of LXR� was reduced, and there was a positive 
correlation between placental LXR� mRNA expression and placental free fatty acids in 
preeclampsia. Our results suggest a possible role for LXR� as a transcriptional regulator in 
the preeclamptic situation.  
 

1. Introduction 
 

Preeclampsia is a pregnancy-specific 
disorder affecting 3-10% of all pregnancies 
and a significant cause of maternal and 
neonatal morbidity and mortality. It is 
clinically defined by hypertension and 
proteinuria developing after week 20 of 
gestation. The pathogenesis of preeclampsia 
is still not fully understood and is most 
likely multifactorial. However, a key role 
for the placenta in the etiology of the disease 
is widely acknowledged (reviewed in [1]). 
  Hyperlipidemia of pregnancy 
develops in every pregnant woman, but is 
significantly increased in women with 
preeclampsia relative to healthy 

pregnancies, also prior to clinical onset of 
the disease [2]. The lipid abnormalities of 
preeclampsia include hypertriglyceridemia, 
increased circulating free fatty acids (FFA), 
increased concentration of small low density 
lipoproteins and the presence of oxidized 
low density lipoproteins in maternal 
circulation [3-5], lipids that could add to the 
endothelial dysfunction observed in 
preeclampsia. However, the regulation of 
lipid metabolism in preeclamptic placentas 
has not been studied extensively. 
 Liver X receptors (LXR) are ligand-
activated transcription factors belonging to 
the nuclear receptor superfamily. Two 
isoforms are known; LXR� and LXR�, and 
both are activated by oxidized cholesterol 
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derivatives, oxysterols [6]. They form 
obligate heterodimers with the nuclear 
receptors retinoid X receptors (RXRs). The 
LXRs have been identified as key regulators 
of lipid metabolism through the 
transcriptional regulation of genes involved 
in de novo fatty acid metabolism, 
triacylglycerol (TAG) synthesis and 
cholesterol homeostasis (reviewed in [7,8]). 
Other transcription factors that are important 
regulators of lipid metabolism include 
nuclear receptors of the peroxisome 
proliferator-activated receptor (PPAR) 
family and the sterol regulatory element 
binding protein (SREBP) family [9,10]. We 
previously found that LXR increased the 
synthesis of fatty acids and inhibited 
secretion of human chorionic gonadotropin 
in human placental BeWo cells [11]. A role 
for the LXRs in placentation and trophoblast 
invasion has also recently been described 
[12], as well as in regulation of placental 
cholesterol transport [13,14]. These findings 
suggest that the LXRs may be important in 
human placentation and feto-placental lipid 
transport and metabolism.  
 The LXRs have been extensively 
studied in rodents in vivo, while clinical data 
in humans are limited. In order to explore 
the role of LXR in preeclampsia, we 
investigated the mRNA and protein 
expression in placenta, decidua and 
subcutaneous adipose tissue of LXR� and 
LXR�, their target genes, and other 
transcription factors involved in regulation 
of lipid metabolism. We found a statistically 
significant lower placental mRNA 
expression of LXR� and LXR�, as well as 
lower LXR� protein levels and lower 
concentrations of placental FFAs in 
preeclampsia compared to controls, and a 
correlation between placental mRNA LXR� 
expression and placental FFAs in the 
preeclamptic group. Based on these findings 
we speculate that placental LXR� may have 
a role in regulating FFA levels in the 
preeclamptic placenta. 

2. Materials and Methods 

2.1. Patient selection  
 

Samples were obtained from an 
ongoing biobank collection of patient 
samples from complicated and 
uncomplicated pregnancies at Oslo 
University Hospital, Ulleval. Women with 
singleton pregnancy undergoing caesarean 
section (n=61) were included in this study; 
including 33 women with uncomplicated 
pregnancy (controls) and 28 with 
preeclamptic pregnancy. No women with 
chronic hypertension or renal disease were 
included. All patients were fasted for a 
minimum of 6 hours; none were in active 
labor, had ruptured membranes or clinical 
signs of infection. Preeclampsia was defined 
as blood pressure augmentation after 20 
weeks’ gestation to >140/90 on � two 
occasions six hours apart in a previously 
normotensive woman, combined with 
proteinuria. Proteinuria was defined as 
protein dip stick � 1+ on � two midstream 
urine samples six hours apart or a 24-hour 
urine excretion of � 0.3 g protein, in the 
absence of urinary infection. Severe 
preeclampsia was defined by the American 
College of Obstetricians and Gynecologists 
criteria (ACOG) [15], including women 
with blood pressure of 160 mmHg systolic 
or higher. The newborn birth weight 
percentiles were calculated according to 
national birth registry data [16] or a 
ultrasound based weight percentile [17]. The 
study protocol was approved by the 
Regional Committee of Medical Research 
Ethics in Eastern Norway, and informed 
written consent was obtained from each 
patient. 
 
2.3. Tissue samples 
 
 All tissue samples were obtained during 
cesarean section. Subcutaneous adipose 
tissue biopsies were sampled adjacent to the 
lower abdominal incision. Placenta biopsies 
from a macroscopically normal looking, 
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centrally located cotyledon were collected, 
omitting the decidual layer.  Decidual tissue 
was collected through vacuum suctioning of 
the uterine wall underlying the placenta 
(corresponding to the superficial layer of the 
placental bed, including minimal 
myometrial tissue), as described previously 
[18]. All tissues were snap-frozen in liquid 
nitrogen and stored at –80°C. 
 
2.4. RNA isolation from tissue and cDNA 
synthesis 
 

The tissues were pulverized in liquid 
nitrogen and ~15 mg of tissue was 
homogenized in 800 μl of RNA lysis buffer 
using an Ultra-Thurrax homogenizer for 30 
sec. Total RNA was extracted from 
placental and decidual tissues using 
ABI6100 (Applied Biosystems, Foster City, 
CA) and adipose tissue using RNeasy Lipid 
Tissue Mini kit (Qiagen, Netherland) 
according to the manufacturers' instructions. 
The quality and quantity of the RNA was 
determined using spectrophotometer 
(NanoDrop 1000, NanoDrop Technologies, 
Boston, MA) and capillary electrophoresis 
(Agilent 2100 Bioanalyzer, Agilent 
Technologies, Palo Alto, CA) according to 
manufacturer’s protocol, and was found to 
be sufficient for the gene expression 
analysis with 260/280 and 260/230 ratios 
above 2 and RNA integrity numbers above 
7. cDNA was synthesized (20 �l) from 
extracted total RNA (400 ng) using the 
High-Capacity cDNA Reverse Transcription 
Kit (Applied Biosystems) according to the 
manufacturer’s instructions. 

2.6. mRNA gene analyses by quantitative 
reverse transcriptase polymerase chain 
reaction 
 

Quantitative real-time PCR (qRT-
PCR) was performed using custom-made 
384-well microfluid cards (TaqMan Low 
Density Array) and Gene Expression Master 
Mix (both from Applied Biosystems). The 
RT-PCR was performed using the ABI 
Prism 7900HT Sequence Detection System 

(Applied Biosystems), and data acquisition 
and analysis were done according to the 
manufacturer’s instructions, using the ��Ct 
method except for Figure 1, where a slightly 
different �Ct method version was used. 
Briefly, the arbitrary values were calculated 
using the Ct value for each qPCR reaction 
according to the following equation ((2(-Ct)) 
x 109. The multiplication with 109 was done 
to get a number close to 1 instead of a very 
small number that would be difficult to read. 
The following TaqMan gene expression 
assays were employed:  

LXR� (Hs00172885_m1), LXR� 
(Hs00173195_m1), RXR� (Hs01067640_m1), 
PPAR� (Hs00602622_m1), PPAR� 
(Hs01115513_m1), SREBP-1 (Hs01088691), 
fatty acid synthase (FAS) (Hs00188012_m1), 
fatty acid elongase 5 (Elovl5) 
(Hs01094711_m1), CD36 (Hs00169627_m1), 
lipoprotein lipase (LPL) (Hs00173425_m1), low 
density lipoprotein receptor (LDLR) 
(Hs01092525_m1), apolipoprotein E (ApoE) 
(Hs00171168_m1), ATP-binding cassette 
(ABC), sub-family A, member 1 (ABCA1) 
(Hs00194045_m1), ABC, sub-family G, 
member 1 (ABCG1) (Hs01555189_m1), leptin 
(Hs00174877_m1). Four genes, all commonly 
used as endogenous controls; 18S (Hs99999901-
s1), glyceraldehyde-3-phosphate dehydrogenase 
(Hs99999905_m1), TATA box binding protein 
(TBP) (Hs99999910_m1), tyrosine 3-
monooxygenase/tryptophan 5-monooxygenase 
activation protein, zeta polypeptide (YWHAZ) 
(Hs00237047_m1) were included in the 
expression analysis and the expression 
values of each investigated gene in all tissue 
samples were normalized against the most 
stabile endogenous control in each tissue, 
which was YWHAZ for placenta and 
decidual tissue and TBP for adipose tissue.  
For the comparison of LXR� and LXR� 
between the tissues, all four endogenous 
controls were found to be differentially 
expressed between the tissues. If the chosen 
endogenous controls are regulated, in worst 
case the choice of controls could produce 
results merely reflecting the regulation of 
the endogenous control, not that of the target 
gene. Our thorough testing of the material 
assured us that we included equal amount of 
RNA in each sample and that there was no 
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inhibition of the qRT-PCR reaction, hence, 
that the amount of total RNA initially 
measured would directly represent the level 
of expression for each gene.  We therefore 
believe that the use of Ct values, not 
normalized to the regulated endogenous 
control, when calculating the difference in 
expression between the tissues, is the most 
correct way of measuring the gene 
expression between the tissues in our 
experiment (Figure 1).   
 
2.7. Western blots: Protein analysis of LXR� 
and LXR�  

A ~5 mg piece of placental tissue 
was added to a tube containing 1 spoon of 
glass beads and 300 �l of lysis buffer on ice 
(1% Nonidet-P40, 0.5% sodium 
deoxycholate, 0.1% SDS and 15 �l/ml of 
proteinase inhibitor cocktail). The tissue was 
homogenized using a Precellys24 
homogenizer (Bertin Technologies, France) 
at 5000 rpm for 2 x 20 seconds. Protein 
concentration was quantified using the Bio-
Rad colorimetric assay system with BSA as 
protein standard (Bio-Rad Laboratories, 
Hercules, USA). Fifty μg of total proteins 
were separated on SDS polyacrylamide gels 
(Bio-Rad Laboratories, Inc.), and LXR� and 
LXR� levels were determined by blotting 
with mouse monoclonal anti-human LXR 
antibodies (R&D Systems, Perseus 
Proteomics, Inc., Japan: PP-K8607-00 
(LXR�) or PP-K8917-00 (LXR�), 1: 500). 
Levels of �-actin were determined using 
mouse monoclonal anti-�-actin antibody 
(Sigma-Aldrich Inc.: A5441, 1: 10000).  
Secondary anti-mouse IgG antibody (Abcam 
plc, UK: ab6728, 1: 10000). 
 

2.8. Measurement of lipids and the fatty acid 
profile in placental tissues 
 
Lipid class analysis  

Homogenized placenta tissue (100 -
200 mg), that was initially crushed under 
liquid nitrogen, was removed from -80�C 
storage, transferred to a frozen vial with a 
frozen spatel and immediately added 1.5 ml 

methanol and vortex-mixed to avoid 
metabolism of free fatty acids. Lipids were 
then extracted by Folch, evaporated to 
dryness by vacuum centrifugation and the 
lipids dissolved in 200 μl hexane. The 
hexane containing the lipids was aliquoted 
into two vials, one for polar lipid analysis 
and one for apolar lipids analysis. Lipid 
classes were separated by normal phase 
HPLC and detected with Evaporative Light 
Scattering Detector. Apolar lipids were 
separated with 0.5 % acetic acid in heptane 
delivered at 2.0 ml /min on a Merck 
Purospher Si, 100 mm x 4.6 mm, while 
polar lipids were analyzed in separate 
method using the same column but with a 
mobile phase consisting of 0.5 % acetic acid 
and 5 % methyl tert butyl ether in heptane.  
 
Fatty acid analysis  

Approximately 40 mg placenta tissue 
powder, that was initially crushed under 
liquid nitrogen, was removed from -80�C 
storage, transferred to a frozen vial with a 
frozen spatel and immediately added 0.9 ml 
HCl Methanol and vortex-mixed. 
Transmethylation was performed in an 
ultrasound bath held at 70�C for 30 min, 
then for additional 120 min at 80�C without 
ultrasound. After cooling and neutralization 
by KOH, fatty acid methyl esters were 
extracted with 500 μl hexane.  
 
Gas chromatographic analysis  

Analyses were performed using a 
6890N GC with a split/splitless injector, a 
7683B automatic liquid sampler, and flame 
ionization detection (Agilent Technologies, 
Palo Alto, CA). Separation was performed 
with a Supelco SP2380 (30 m × 0.25 mm 
i.d. × 0.25 μm film thickness) GC column. 
Temperature program, initial: 90ºC with 0.5 
min hold, ramp 50ºC/min to 
150ºC, 10ºC/min to 225ºC, 120 ºC/min to 
245ºC with hold 3 minutes. Carrier gas was 
H2 with a flow of 2.2 ml/min. Fatty acid 
analysis was performed by auto injection of 
0.5 μl of each sample at a split ratio of 0.1:1, 
constant flow mode, injector temperature 
250�C. The flame ionization detector 
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temperature was 270ºC. The sampling 
frequency was 10 Hz. The run time for a 
single sample was 12.37 min. Theoretical 
response factors were used.  
 
2.9. Statistical analysis  

 
Statistical analyses were performed 

with the Statistical Package for the Social 
Sciences (SPSS-PC), version 16.0. For gene 
expression data and lipid concentration data, 
the results were normally distributed and the 
significance was calculated using Student's 
t-test and correlations using linear 
regression. For the patient characteristics, 
differences in continuous variables between 
the control and preeclamptic group were 
tested by non-parametric Mann-Whitney 
tests. A probability level of <0.05 was 
considered statistically significant. 
 
3. Results 
 
3.1. Clinical characteristics  
 

Clinical characteristics of the 28 
preeclamptic and 33 control pregnant 
women included in the study on placenta are 
shown in Table 1. Not all samples were 
available or used for all analyses (decidua: 
30 controls and 27 preeclampsia; adipose 
tissue: 29 controls and 28 with 
preeclampsia; placenta tissue lipid analysis: 
12 controls and 12 with preeclampsia, 
western blot analysis: 6 controls and 6 with 
preeclampsia). In the patient groups used for 
decidual and placental lipid analyses, there 
were no significant differences in diastolic 
blood pressure <week 20 between the 
preeclamptic group and the control group. In 
the placental lipid analysis group, there was 
also no difference in body mass index 
(BMI) prior to pregnancy or at delivery 
between preeclamptic and controls. The 
remaining clinical variations between the 
patient groups were not significantly 
different from the results presented in Table 
1. All preeclamptic patients had severe 
preeclampsia according to ACOG criteria 
[15]. In the preeclampsia group, 20 patients 

delivered prematurely, before week 37, and 
17 of these delivered prior to week 34. In 
the uncomplicated pregnancy group, there 
were no premature deliveries. Further, three 
of the preeclamptic patients had evidence of 
HELLP (hemolysis, elevated liver enzymes 
and low platelets) syndrome [15]. There was 
a significantly higher median BMI (weight 
(kg)/height (meter)2) in the preeclamptic 
group compared to controls, while birth 
weight, neonatal weight percentile and 
gestational age at delivery were significantly 
lower in the preeclamptic group as 
compared to controls. 

3.2. mRNA expression of transcription 
factors in placenta, decidua and adipose 
tissue in healthy subjects 
 

mRNA expression of LXR�, LXR�, 
PPAR�, PPAR�, RXR� and SREBP-1 in 
placenta, decidua and adipose tissue from 
healthy controls are shown in Figure 1. 
Judged by Ct values, LXR� and LXR� were 
similarly expressed in the gestational 
tissues, with an approximately equal 
expression in placenta and decidua, and an 
equal or lower expression than for the rest of 
the transcription factors investigated. In 
adipose tissue, LXR� was similarly 
expressed, whereas higher expression of 
LXR� was observed compared to placenta 
and decidua.  
 
3.3. Expression of genes in placenta, 
decidua and adipose tissue in pregnancies 
complicated by preeclampsia  
 

The results from the placental 
transcription factor expression analysis 
according to patient groups are shown in 
Figure 2a. We found a statistically 
significant lower mean level of expression 
of LXR�, LXR�, RXR� and PPAR� in the 
placentas of the preeclamptic group 
compared to those of the control group. 
However, a significantly higher expression 
of SREBP-1 was observed. There was no 
difference in the expression of PPAR�. The 
results from the placental expression 
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analysis of genes involved in lipid 
metabolism are shown in Figure 2b.  There 
was a significantly lower expression of both 
CD36/FAT and ApoE, and a significantly 
higher expression of LDLR in preeclamptic 
placentas as compared with the controls 
(Figure 2b). We included leptin as a positive 
control because it is upregulated in 
preeclampsia in both serum and placental 
tissue [19] and found a 12-times higher 
expression in preeclamptic placentas 
compared to control placentas (P=.0001) 
(data not shown). The results from the 
decidua expression analysis according to 
patient groups are shown in Figure 2c and 
2d. We found a statistically significant 
lower mean level of expression of ABCG1 
in the decidua of the preeclamptic group 
compared to the control group. There were 
no differences in the expression of any of 
the other genes that were analyzed. The 
results from the adipose tissue expression 
analysis according to patient groups are 
shown in Figure 2e and 2f. We found a 
statistically significant higher mean level of 
expression of LXR�, RXR�, PPAR� and 
ABCA1 in the preeclamptic group 
compared with those of control group. There 
were no differences in the expression of any 
of the other genes that were analyzed. 
 
3.4. Placental protein levels of LXR� and 
LXR� in pregnancies complicated by 
preeclampsia 
 

To dissect the biological implications 
of LXR in placenta, we next investigated the 
protein levels of LXR� and LXR� in both 
healthy controls and pregnancies 
complicated by preeclampsia. Total proteins 
(50 μg) from 6 patients in each group were 
analysed for LXR� and LXR� expression 
using specific LXR antibodies (Figure 3). 
Both LXR� and LXR� were detected in the 
control group. The protein level of LXR� 
was clearly down-regulated in the 
preeclamptic group compared to the control 
group. In the case of LXR�, no difference in 
the expression level was seen between the 
controls and the preeclamptic group. 

Comparing mean LXR� and LXR� mRNA 
levels for the whole patient groups to the 
mean LXR� and LXR� mRNA levels for 
the selected patient groups used for protein 
analyses (data not shown) did not reveal any 
selection bias for the group used for protein 
analysis, indicating that this was a 
representative selection of the total study 
group. 
 
3.5. Placenta concentrations of lipids and 
fatty acid profiles in pregnancies 
complicated by preeclampsia  
 

The results from the analysis of 
placental lipid classes are shown in Table 
2a. A statistically significant lower mean 
concentration of FFAs was observed in 
placenta tissues from the preeclampsia 
group compared to the control group. No 
statistically significant difference in 
concentration was found for any of the other 
classes of placental lipids between the 
patient groups. 
 We further analysed the total fatty 
acid profile (esterified and non-esterified 
fatty acids together) in placenta, which 
included all saturated fatty acids, 
monounsaturated fatty acids and 
polyunsaturated fatty acids (PUFAs). We 
found a small but significantly higher 
concentration of total n-6 PUFAs (the total 
of linoleic acid, 18:2n-6 (LA), dihomo 
gamma linolenic acid, 20:3n-6 (DGLA) and 
arachidonic acid, 20:4n-6) (ARA) in 
placenta tissues from pregnancies 
complicated by preeclampsia compared to 
controls (Table 2b). No statistically 
significant difference in concentration was 
observed for any of the other fatty acids or 
groups of fatty acids in preeclamptic 
placentas compared to controls (data not 
shown).  
 
3.6. Correlation between LXR expression 
and concentrations of lipids 
 

There was a significant positive 
correlation between LXR� expression in 
preeclamptic placentas and FFA 
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concentration in preeclamptic placentas 
(Figure 3). The same, but statistically non-
significant trend, was observed between 
placental concentrations of FFA and 
placental expression of LXR� and CD36 in 
preeclampsia (data not shown). There was 
no correlation between placental expression 
of LXR�, LXR� or CD36 and placental 
FFA concentration in the control group (data 
not shown).  

 
4. Discussion 
 

There is an increasing interest 
regarding the role of LXR� and LXR� in 
placental biology [11,14,20-23], however, 
their regulation in placenta in pathological 
pregnancy has to the best of our knowledge 
not previously been addressed. In this paper, 
we show a statistically significant lower 
mRNA expression of LXR�, LXR� and 
their heterodimeric partner RXR� in 
preeclamptic placentas as compared to 
controls. Furthermore, we detected both 
LXR� and LXR� proteins expression in 
healthy controls, and we found the protein 
level of LXR� to be down-regulated in the 
preeclamptic placentas compared to 
controls. However, we did not find any 
regulation of LXR� protein expression in 
preeclamptic placentas as compared to 
controls. The observed discrepancies 
between the transcript and protein level 
could suggest mRNA processing or post-
translational modifications of LXR� in 
placenta dissimilar for that of LXR�. LXR� 
has previously been reported to be 
differentially expressed between mRNA and 
protein levels in macrophages [24], and 
recently the amount of LXR� protein was 
shown to be highly regulated by LXR� 
agonists, preventing the protein from 
degradation by ubiquitination [25]. The 
clear difference between expression of 
LXR� in controls and in preeclamptic 
placentas, point towards a role of LXR� in 
normal placenta function.  
 Rodie et al have previously reported 
no consistent difference in placental mRNA 
and protein levels of RXR�, PPAR� or 

PPAR� compared to controls [26], while we 
detected a statistically significant lower 
mRNA expression of PPAR� in 
preeclamptic placentas compared to 
controls. The discrepancy could be due to 
differences in the two study populations. We 
did not investigate the expression of PPAR� 
in our study as it has lower level of 
expression in placenta compared to PPAR� 
[27]. We also analyzed the expression of 
SREBP-1 (a master regulator of genes in de 
novo fatty acid biosynthesis). There was a 
higher expression of SREBP-1 in 
preeclamptic placentas as compared to 
controls. Although SREBP-1 is a direct 
LXR target gene in many tissues, the two 
transcription factors have also previously 
been shown to independently regulate de 
novo lipidogenesis [28]. Taken together, our 
data suggest that the LXR�, PPAR�, their 
heterodimeric partner RXR�, and SREBP-
1c might play regulatory roles in lipid 
metabolism during preeclampsia as these 
genes have a dysregulated or altered mRNA 
expression, and protein level (LXR�), in 
preeclamptic placentas compared to 
controls, in contrast to the other lipid 
regulating transcription factors investigated 
in this study. Small changes in gene 
expression, especially of transcription 
factors, can have major differences in vivo 
as they can alter the expression of many 
different genes [29]. 
 We observed a decreased expression 
of CD36 in preeclamptic placentas 
compared to controls. CD36 is a direct LXR 
target gene in liver and a fatty acid transport 
protein [30].  However, Laivuori et al did 
not find any difference in expression of 
CD36 in preeclamptic placentas compared 
with those of controls [31]. This contrasting 
data may be due to study differences in 
mode of delivery, differences in gestational 
age or other differences between the study 
populations. CD36 is important for the LXR 
mediated increase in liver FFA 
concentrations in mice [30]. We 
demonstrated a statistically significant 
decreased concentration of FFA in 
preeclamptic placentas compared to 
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controls. LXR activation is previously 
reported to increase FFA levels in pancreatic 
� cells and liver tissue [30,32], in our study 
we observed a positive correlation in 
placenta between expression of LXR� and 
levels of FFA in preeclamptic subjects. 
Taken together, these data suggest that 
LXR� could play a role in the control of 
preeclamptic placental concentrations of 
FFA.  
 We found significantly higher 
concentrations of total n-6 PUFAs 
(esterified and non-esterified fatty acids 
together) in preeclamptic placentas as 
compared to controls. This could indicate a 
selective uptake or reduced oxidation of n-6 
PUFAs by the placenta in order to meet the 
fetal demands of long-chain PUFAs. The 
elevated PUFAs in preeclamptic placentas 
could also reflect differences in food intake 
between the preeclamptic and control 
mothers. Circulating free fatty acid levels of 
linoleic acid has been reported to be 
increased in preeclampsia in one study [33]. 
Wang et al found lower concentrations of 
total non-esterified n-6 and n-3 PUFAs 
mainly due to lower concentrations of ARA 
and docosahexaenoic acid (DHA) in 
preeclamptic placentas compared to controls 
[34]. This discrepancy between our findings 
is probably due to the difference in 
measuring non-esterified fatty acids alone or 
esterified and non-esterified fatty acids 
together. 
 The expression of LXR� and LXR� 
is influenced both by the fasting-refeeding 
situation [35,36] and by oxidative stress in 
different tissues [37]. A strength of our 
study is that our results were not 
confounded by the influence of variations in 
fasting-feeding as all women were fasted for 
a minimum of 6 hours. In addition, elective 
cesarean section secured no variation in 
labor duration and thereby possible 
variations in oxidative stress and stretching 
of fetal membranes.  
 There is a significant difference in 
gestational age between our two study 
groups with the preeclamptic group 
delivering earlier than the control group. 

Premature deliveries of uncomplicated 
pregnancies are ethically unacceptable and 
not available as a control group. Similarly, 
premature deliveries are normally due to 
pathological conditions, such as 
inflammation/infection and therefore not 
suitable as controls. Correcting for 
gestational age is mathematically possible 
but it is not necessarily biologically correct, 
as premature delivered women with 
preeclampsia will generally have a more 
severe form of the disease than women 
delivered at term [38]. Still we cannot 
exclude that differences in gestational length 
between the study groups could potentially 
affect the conclusions.  
 Placenta is composed of a number of 
different cell types. LXR� and LXR� are 
reported to be expressed in both 
trophoblasts, macrophages and endothelial 
cells, which are also present in the placenta 
[11,39,40]. To explore which placental cells 
are important for the differences in gene 
expression and protein levels observed 
between the preeclamptic and control group, 
it would be necessary to investigate the 
protein expression of LXR� and LXR� in 
the different placental cell types, e.g. using 
immunohistochemistry (IHC). However, 
due to the relative high background 
detecting LXRs by western blotting, and the 
less controlled antibody-specificity in IHC 
(due to lack of size controls), better LXR 
antibodies need to be developed. These 
experiments are ongoing in our laboratory.  
 In summary, the present study shows 
a down-regulation of LXR� and LXR� 
mRNA levels and LXR� protein levels in 
preeclamptic placentas compared to 
controls. Further, it suggests a role for 
placental LXR� in regulating placental FFA 
concentrations in third trimester 
preeclamptic pregnancy.  
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Figure and Table legends  

Figure 1. Gene expression of transcription factors in placenta, decidua and adipose tissue 
in healthy subjects. Gene expression was analyzed on total RNA extracted from placenta, 
decidua and adipose tissue (controls only) using qRT-PCR. The arbitrary values on the y-
axis were calculated as follows: (2(-Ct)) 	 109. The results are presented as mean fold change 
± standard error of the mean (SEM). 
 
Figure 2. Gene expression of transcription factors and LXR target genes in preeclampsia in 
placenta, decidua and fat compared to controls. Gene expression was analyzed in total 
RNA extracted from preeclamptic (PE) and control tissues, using qRT-PCR normalized to 
YWHAZ for placenta and decidua and TBP for fat tissue. A) Transcription factors in 
placenta B) LXR target genes in placenta C) Transcription factors in decidua D) LXR target 
genes in decidua E) Transcription factors in fat tissue F) LXR target genes in fat tissue. The 
results are presented as mean fold change ±SEM relative to controls. P-values * < 0.05 and 
** < 0.01. 
 
Figure 3. Placental protein levels of LXR� and LXR� in preeclampsia compared to 
controls. Fifty μg total proteins isolated from six patients in the control group (C1-C6) and 
six patients in the preeclampsia group (PE1-PE6) were subjected to SDS-PAGE and blotted 
using anti-LXR�, anti-LXR� or anti-�-actin antibodies as indicated. The control lane (C) 
contains exogenously expressed human LXR� / LXR� in a human hepatoma cell line and is 
used for positive control. Arrow points at LXR�, LXR� or �-actin proteins. * = unspecific 
band. 
 
Figure 4. Correlation between expression of LXR� and concentrations of FFA. Linear 
regression between placental LXR� expression and placental concentrations of FFA. 
Preeclamptic group alone, r2 = 0.237, p-value <0.05 
 
Table 1. Clinical characteristics of the control and preeclamptic (PE) patient groups 
included in the placental gene expression analysis (n=61). Values shown are median (and 
minimum-maximum). The p-values are given for PE compared to control. P-values * < 0.05 
and ** < 0.01. n.s. = not statistically significant. 
 
Table 2. Concentration of different classes of lipids and PUFAs in placenta and maternal 
serum lipids from preeclamptic (PE) compared to control pregnancies. The results are 
shown as mean and 95% confidence interval concentrations. A) Placental lipids (mg/g 
placental wet weight) B) Placental PUFAs (esterified and non-esterified together, g/100 g 
fatty acid methyl ester (FAME)). The p-values are given for PE compared to controls. P-
values * < 0.05. n.s. = not statistically significant. 
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Figures and Tables 
Figure 1. 

 

 

 

 

 

 

 

 

 

Figure 2a. Placenta 
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Figure 2b. Placenta 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2c. Decidua 
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Figure 2d. Decidua 

 

 

 

 

 

 

 

 

 

Figure 2e. Fat 
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Figure 2f. Fat 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  
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Figure 4. Correlation between placental expression of LXR� and placental concentrations 
of      FFA.
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Table 1.  Clinical characteristics of subjects
 

Control (n=33) PE (n=28) PE vs. control  
Median 

(min.-max.) 
Median 

(min.-max.) 
p-value 

Patient age at delivery 
(years) 

33 
(25-40) 

31 
(18-42)  

n.s. 

BMI before pregnancy 
(kg/m2) 

21.7 
(18-30.7) 

24.9 
(19.4-41.1) 

<0.05* 

BMI at delivery (kg/m2) 27.9 
(22.8-37.5) 

31.3 
(24.0-49.6) 

<0.05* 

Parity 0 
(0-3) 

0 
(0-3) 

n.s. 

Gestational age at 
delivery (weeks) 

38.7 
(37-41.7) 

32.6 
(24.9-39.3) 

<0.001** 

Systolic BP 
<week 20 (mmHg) 

110 
(90-135) 

117 
(95-135) 

<0.05* 

Diastolic BP 
<week 20 (mmHg) 

65 
(55-93) 

73 
(50-89) 

<0.05* 

Systolic BP at delivery 
(mmHg) 

120 
(100-153) 

161 
(140-220) 

<0.001* 

Diastolic BP at delivery 
(mmHg) 

70 
(55-92) 

100 
(90-119) 

<0.001* 

Neonatal weight (g) 3600  
(2800-4376) 

1710  
(540-5036) 

<0.001* 

Neonatal weight 
percentile1 

62.0 
(13.6-99.5) 

34.8 
(1.0-99.5) 

<0.001* 

Neonatal weight 
percentile2 

77.7 
(9.0-99.5) 

7.2 
(0.5-99.5) 

<0.001* 

1 Neonatal weight percentile according to national birth registry data [16]  
2 Neonatal weight percentile according to ultrasound based weight percentile [17] 
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Table 2a. Placental lipids

Control (n = 12) PE (n = 12) 
Mean Mean 

PE vs. control 

(95% confidence interval) (95% confidence interval) p-value 

 

Lower Upper Lower Upper  
5.51 6.06 n.s. PC mg/g placenta 

4.89 6.14 4.9 7.22  
2.79 2.8 n.s. PE mg/g placenta 

2.42 3.15 2.25 3.34  
0.24 0.15 <0.05* FFA mg/g 

placenta 0.18 0.31 0.11 0.19  
0.17 0.31 n.s. TAG mg/g 

placenta 0.07 0.27 0.06 0.55  
0.05 0.05 n.s. CE mg/g placenta 

0.03 0.06 0.03 0.06  
3.05 3.03 n.s. Cholesterol mg/g 

placenta 2.72 3.38 2.42 3.63  
 
Table 2b. Placental PUFAs

Control (n = 12) PE (n = 12) 
Mean Mean 

PE vs. control 

(95% confidence interval) (95% confidence interval) p-value 

g/100 g FAME 

Lower Upper Lower Upper  
 Omega-3 PUFAs  

0.24 0.24 n.s. �-linolenic acid 
(18:3 n-6) 0.22 0.25 0.23 0.25  

0.32 0.25 n.s. EPA (20:5 n-3 
0.23 0.41 0.19 0.31  

0.84 0.8 n.s. DPA (22:5 n-3) 
0.73 0.94 0.72 0.89  

4.83 4.56 n.s. DHA (22:6 n-3 
4.29 5.38 3.97 5.16  

6.23 5.85 n.s. Total n-3 PUFAs 
5.53 6.92 5.18 6.52  

 Omega-6 PUFAs  
8.31 9.04 n.s. Linoleic acid 

(18:2 n-6) 7.80 8.81 8.44 9.64  
4.5 4.99 n.s. DGLA  

(20:3 n-6) 3.95 5.04 4.58 5.39  
15.57 15.66 n.s. ARA  

(20:4 n-6) 14.76 16.38 14.71 16.61  
28.37 29.69 <0.05* Total n-6 PUFAs 

27.48 29.26 28.85 30.53  
 Total PUFAs (n-3 and n-6 together)  

34.6 35.54 n.s.  
33.94 35.26 34.71 36.37  
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