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4. Introduction 

Heart failure (HF) is the common endpoint of heart disease of various etiologies, and is a 

major cause of hospitalizations and death worldwide(1-3). Essentially, HF represents a 

pathophysiologic state of impaired cardiac function in which the heart is unable to maintain 

cardiac output sufficient for adequate perfusion of organs and tissues (4; 5). Coronary artery 

disease, hypertension, cardiomyopathies and valvular disease represent major causes of HF. 

Projections are that the prevalence likely will increase as a consequence of increasing mean 

age of the population (6; 7). Furthermore, increased survival from myocardial infarction (MI) 

will leave more patients living with HF(8). Even with the best treatment currently available, 

the overall 5-years mortality of HF is still over 50% and thus, hardly better than that of many 

types of cancer, reflecting the fact that the pathogenetic mechanisms underlying HF are still 

incompletely understood. In addition to reduced capacity of the heart to pump blood, HF is 

associated with activation of pro-inflammatory responses and mediators which itself can lead 

to progressive deterioration of cardiac function(9-11). More detailed knowledge of molecular 

mechanisms of HF has become a subject of intensive research. Chronic alterations in structure 

and geometry of the cardiac muscle, so-called remodeling, are widely found in heart failure 

patients(12; 13). Left ventricular (LV) remodeling itself is a progressive  process which often 

is initiated by stress events or biomechanical loading such as myocardial infarction and poorly 

controlled hypertension(12; 13). As a paradigm, remodeling can either be predominantly 

eccentric (i.e. the heart is dilating), concentric (muscle mass is increasing) or a combination of 

both(13; 14).  Basic research and translation of its results into clinical trials has seen major 

recent advances and led to the establishment of new treatment modalities targeting �–

adrenergic signaling, Ang II and aldosterone activation(15-18).  

Cardiac function is controlled by the autonomic nervous system, hormones, and diverse 

autocrine, endocrine or paracrine factors. G protein-coupled receptors (GPCR) comprise a 
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major class of receptors, and are in fact one of the largest known protein families(19). GPCRs 

are involved in most fundamental biological signaling processes, and in essence in most of 

mammalian tisssues(20; 21). The vital importance of GPCR signaling in cardiac disease is 

illustrated by the fact that the vast majority of current cardiovascular drugs target specific 

GPCRs, such as �1-AR, angiotensin type-II receptors, aldosterone or endothelin (ET) 

receptors(17; 18; 22; 23). 

Increasing knowledge of signaling mechanisms in cardiac physiological and pathological 

states will be crucial for improving treatment of the HF and its precursing disease entities. 

Furthermore, targeted interaction with key pathophysiological signaling mechanisms holds 

the potential of preventing evolution to cardiac hypertrophy and HF upon given stress signals, 

as has been shown in numerous experimental studies. The present work aims to explore novel 

molecular mechanisms in hypertrophy and HF, as well as to investigate potential therapeutic 

principles. 
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Fig. 1   Adaptive and maladaptive cardiac hypertrophy (modified from Frey et. al. (24)) 

 

Cardiac hypertrophy and remodeling in heart failure 

Cardiac hypertrophy, i.e. excessive growth of the heart, can initially occur by cardiomyocyte 

hyperplasia, but primarily by increase of cell mass. Postnatal cardiac growth is a normal 

physiological phenomenon aiming at increasing heart size, i.e. to maintain cardiac output in 

the growing organism or to meet increased bodily demands during exercise training.  

Pathological stimuli such as catecholamine excess or increased afterload can lead to 

maladaptive cardiac hypertrophy, as seen in hypertension or aortic stenosis. Multiple 

signaling and transcription pathways are involved in this process, leading to hypertrophic 

remodeling of the LV (fig. 1)(24; 25). This type of LV hypertrophy (LVH) is an independent 

risk factor for cardiac morbidity and mortality(26). In HF patients, elevated levels of 

catecholamines are frequently seen(27; 28). Sustained adverse stimulation will increase 
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cardiomyoctes and thus, cardiac mass, both through increased afterload or direct cardiac 

effects. Among the adrenergic receptors, �1-AR couple to the hetrotrimeric G-protein G�q. 

Upon agonist activation, the G�q unit activates phospholipase C, which increases inositol-

1,4,5-triphosphate and diacylglycerol. The former increases intracellular calcium, while the 

latter leads to further activation of PKC isozymes(29). The G�q pathway has been extensively 

studied for its importance in cardiac hypertrophy and HF(30). Based on a body of largely 

experimental evidence; one may suggest that factors leading to hyperactive G�q signaling 

predispose to cardiac hypertrophy, and potentially, transition to decompensated HF(31-35). 

Neuroendocrine factors and cytokines such as ET-1 and AT-II promote activation of 

important downstream signaling cascades including MAPK, calcineurin, NFAT/GATA4, 

PKC, CaMK, and IGF-1 pathway constituents(36; 37). One important issue relating to GPCR-

mediated hypertrophy and HF is to delineate specific signaling complexes in order to 

ascertain critical intracellular events regulating the hypertrophic response and transition to 

HF(38). 

 

Endothelin system  

Endothelin (ET) is a 21-amino acid peptide first isolated from porcine endothelial cells.(39) 

Three isoforms encoded by separate genes exist; ET-1, ET-2 and ET-3(39; 40). ET-1, the 

major isoform of the endothelin peptide family in the cardiovascular system, is among the 

most potent vasoconstrictors (~100 x norepinephrine) known to date, and possesses as 

positive inotropic and chronotropic effects (41-44), mitogenic effects on smooth muscle cells 

(45), influence on salt and water homeostasis, and stimulation of the renin-angiotensin-

aldosterone (RAAS) and sympathetic nervous systems (for reviews, see (46; 47) (fig. 2).  
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Fig. 2   The vascular endothelin (ET) system (modified from Kirkby et al (48)) 

 

ET-1 is essential for normal embryonic development (49; 50). The biosynthesis of ET-1 

occurs through several proteolytic steps to form the prohormone prepro-ET, the inactive 

intermediate big ET-1, which is subsequently processed by endothelin-converting enzyme 

(ECE) into biologically active ET-1 (Fig. 2)(51). Two isoforms of ECE with distinct pH-

optima, ECE-1 and ECE-2, with 4 and 2 subtypes, respectively, have been characterized(51-

55). In vivo, the activity of ECE-1 appears to be the rate-limiting step in ET-1 

biosynthesis(56; 57).  
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Table 1. Function of ET receptors in the cardiovascular system. 

Cell type ETA receptors ETB receptors 
Cardiomyocytes Hypertrophy(58) 

Positive inotropy(41) 

Protection from apoptosis(59) 

Positive chronotropy(42) 

Hypertrophy? 

Cardiac fibroblasts Growth, fibrosis(60-62) Growth, fibrosis(63; 63; 64) 
Endothelial cells  Vasodilation through the 

release of NO and 
prostacyclin(65) and 
adrenomedullin(66) 

ET-1 clearance/reuptake(67) 

Increased ET-1 gene 
expression(68) 

Vascular smooth muscle 
cells 

Vasoconstriction, growth (45; 
69) 

Vasoconstriction(70) 

 

ET-1 is mainly produced by endothelial, vascular smooth muscle cells, and macrophages and 

acts through binding to Gq-protein-coupled ETA and ETB receptors(71). In the cardiovascular 

system, ETAR and ETB R signaling produces distinct effects (table 1). Within the vasculature, 

ET-1 is secreted predominantly abluminally, i.e. on the basal side of endothelial cells to act on 

vascular smooth muscle cells (VSMC)(72), resulting in substantially higher concentrations 

within the vascular wall compared to plasma levels. Under normal physiological conditions, 

ET-1 plasma levels are low, with ET-1 acting rather as a paracrine factor(73). In cardiac 

disease such as HF, ET-1 levels are elevated and thought to derive primarily from spillover in 

the vasculature(74-79). Several reports have shown that the pulmonary circulation contributes 

to circulating plasma ET-1 levels in HF(80; 81). The synthesis and secretion of ET-1 by 

endothelial cells is increased by various growth factors, cytokines and vasoactive factors, such 

as Ang II, vasopressin, bradykinin, norepinephrine and ET-1 itself (82). Low shear stress 

increases ET-1 mRNA, while high shear stress decreases it (83; 84). The clearance of ETs 

from plasma may occur through cleavage by neutral endopeptidase EC3.4.24.11 (85), and 

through binding to ETBR, which especially in the lung acts as a clearance receptor (86; 87). 

Due to effective clearance, the plasma half life of infused ET-1 is only one minute (47). 
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Importantly, ET-1 contributes in the pathogenesis of post-MI remodeling and HF, and plasma 

levels strongly predict mortality and morbidity(75; 76; 88-90). In this condition, ET-1 

increases afterload by peripheral ETAR mediated vasoconstriction(91-93). Moreover, ET-1 

levels are increased in relation with the severity of pulmonary arterial hypertension (PAH) in 

HF; likewise, ETR inhibition ameliorate the degree of PAH in animals and patients with 

HF.(94-98). On the contrary, short-term therapy aimed at lowering afterload and elevated 

filling pressures in HF patients rapidly reduced ET-1 and neurohormonal activation (99). 

Based on encouraging experimental data (100) and human hemodynamic studies, several 

randomised controlled trials (RCT) have explored the putative benefit of ETR blockade in HF 

patients (table 2). Both dual or non-selective receptor blockers (targeting ETAR and ETBR) 

and selective ETAR blockers have been employed. To date, the vast majority of these trials 

have failed to show improved outcome. However, in patients with isolated PAH, an 

infrequent yet rapid progressive and incurable cardiovascular disease leading to right-sided 

HF, non-selective ET receptor blockade has consistently demonstrated favourable 

outcomes(101). For this type of patients, ET-1 receptor blockers Bosentan, and more recently, 

Sixtasentan and Ambrisentan, have been added to the list of efficient pharmacotherapy(102). 

Despite recent major advances in ET research, many aspects of ET biology and in particular, 

origin, role and fate of elevated plasma ET-1 in HF are still poorly understood. 
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Inflammation in heart failure 

Among multiple compensatory processes being activated as beforementioned, chronic HF is 

characterized by inflammatory reponses and activation of the innate immunity.  Recently it 

has been shown that patients with HF have increased plasma and myocardial levels of 

inflammatory cytokines(9; 10; 119-123). Among proposed mechanisms for this immune 

activation, which are not mutually exclusive, are neurohormonal activation, hemodynamic 

overload, and activation of the innate immune system secondary to cardiac stress events, i.e. 

myocardial infarction. Experimental data have demonstrated a role for inflammatory and 

vasoactive cytokines such as tumor necrosis factor-� (TNF-�), interleukin-1 (IL-1), ET-1, and 

monocyte chemoattractant peptide-1 (MCP-1), all of which may contribute to the 

development and progression of HF by promoting myocardial hypertrophy or dysfunction, 

extracellular matrix remodeling, inducing apoptosis(9; 10; 119-124). Uncertainties exist as to 

the organ and cellular source of many of these cytokines, but the clinical significance is 

illustrated by a consistent and significant correlation of plasma levels and clinical 

outcomes(122; 125-128). Both TNF-� and ET-1 are such proinflammatory cytokines which 

can be produced by macrophages. Importantly, cardiac overexpresion of TNF-�  (129) or ET-

1 (130) in mice leads to similar phenotype of inflammatory cardiomyopathy. Currently, only 

few experimental and human studies have addressed the question whether targeting of an 

overactivated immunity in HF may carry benefit. “Single target” approaches such as blockade 

of TNF-� receptor in patients with HF have not demonstrated outcomes superior to 

conventional treatment, while more broad-based anti-inflammatory strategies demonstrated 

clinical improvements (131-135). More research in this area is needed to precisely identify 

important mechanisms in the immunopathogenesis of chronic HF which then could be 

counteracted pharmacologically. 
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G protein-coupled receptor signaling and desensitization in HF 

Cardiac output is normally regulated by the autonomic nervous system and can be increased 

through release of stress hormones such as catecholamines. Catecholamines such as 

norepinephrine transmit their “message” through G protein-coupled receptors (GPCR), whose 

common feature is a seven-transmembrane span and their ability to activate heterotrimeric  

G-proteins. Activation of G-proteins initiates transduction of the extracellular signal to 

intracellular effector molecules(136). In the heart, GPCRs signaling may regulate function by 

modulating heart rate and contractility, or structure by inducing events such as cell growth or 

death (apoptosis). As a typical example for the GPCR-related signaling cascades, agonist 

binding to �1-adrenergic receptors (�1-AR) in the heart will activate the G protein G�ss (s, 

stimulatory). Activated G�ss will then activate adenylate cyclase (AC), leading to AC-

catalyzed synthesis of cAMP. Functioning as a second messenger, cAMP then activates 

protein kinase A (PKA), leading to positive chronotropy (increased heart rate), inotropy 

(increased contractile force) and lusitropy (quicker relaxation)(137-140). �1-adrenergic 

receptors (�1-AR) are the predominant cardiac GPCRs activated by endogenous 

norepinephrine and epinephrine, with minor contributions by �2-AR and, at least in some 

mammalian species, �1-AR(141; 142). In HF irrespective of the initiating event, 

compensatory mechanisms such as augmentation of �1-AR signaling are rapidly activated, in 

order to maintain sufficient cardiac output. This is afforded at the cost of increased heart rate 

and myocardial oxygen consumption. Prolonged activation of �1-AR, moreover, can induce 

programmed cell death of heart muscle cells (cardiomyocyte apoptosis), reduced number as 

well as reduced response of receptors, and ultimately worsening of cardiac function(142; 

143). The deleterious consequences of chronic neurohormonal overactivation suggest an 

important protective role for mechanisms which desensitize neurohormone-mediated GPCR 

responses in HF.  Based on these fundamental molecular events, �1-AR blockade has 



 17

emerged as a major therapeutic principle in heart failure during the last decade. Activation of 

the renin-angiotensin-aldosterone system (RAAS) is another important mechanism activated 

in HF, leading to increased circulating and myocardial levels of the vasoconstrictor peptides 

renin and angiotensin II as well as the mineralocorticoid hormone aldosterone. All of these 

three components of the RAAS are established or emerging drug targets in heart failure(15-

18). In HF, loss of response due to prolonged or augmented activation of GPCRs such as the 

�-AR has been identified, a phenomenon termed receptor desensitization (138; 144-146). 

Receptor desensitization can occur quickly, experimentally even after a few seconds or 

minutes. Also, desensitization can either be limited to agonists acting at a particular GPCR 

subtype, referred to as homologous desensitization, or represent a more general loss of agonist 

responsiveness involving several GPCR even in the absence of agonist occupation of these 

receptors. The former usually involves changes at the level of the GPCR itself, while the latter 

may involve adaptive changes in downstream signaling components. Importantly, 

desensitization is a process distinct from GPCR downregulation, which involves lysosomal 

degradation of GPCRs. Even excessive GPCR desensitization does not necessarily lead to 

downregulation, but both can occur simultaneously, adding to loss of functional response 

upon agonist stimulation. An important mechanism in the ´classical´ model of agonist-

induced desensitization is phosphorylation of the GPCR(147). Phosphorylation is catalyzed 

by a family of kinases termed G protein coupled receptor kinases (GRK). GRK have been 

demonstrated to play a key role in agonist-induced phosphorylation and desensitization of 

numerous GPCR mediated responses. The classical model for agonist-occupied 

desensitization of GPCR involves phosphorylation of serine or threonine residues on the 3rd 

intracellular loop or COOH- terminus of the GPCR(148).  Arrestins, members of another 

family of regulatory proteins, then bind to the GRK-phosphorylated GPCR with high affinity, 
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uncoupling it from further G-protein activation, thus inducing desensitization of the GPCR.  

 

Fig. 3   The G protein-coupled receptor kinase (GRK) family 

 

G protein-coupled receptor kinases (GRKs) 

GRKs constitute a family of seven serine/threonine protein kinases which are further 

subdivided into three main subgroups, i.e. visual GRKs or the rhodopsin kinase subfamily 

(GRK1 and GRK7), the �ARK kinase subfamily including GRK2 (�ARK1) and GRK3 

(�ARK2), and the GRK4 family (GRK4, GRK5, and GRK6) (fig. 3)(149). 

In myocardial tissue, 4 different GRKs have been found, GRK2, 3, 5 and 6. Of these, GRK2 

and GRK3 share important structural similarities. In contrast to the other GRKs, GRK2 and 

GRK3 possess a carboxy-terminal (CT) pleckstrin-homology (PH) domain important for 

membrane targeting and binding to G-protein subunits(149). GRK2, initially termed �ARK1, 
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has been shown to mediate desensitization of myocardial �-AR(150; 151). In experimental 

and human HF upregulation of myocardial GRK2 is found(152; 153). Inhibition of GRK2 in 

genetically engineered mouse models of heart failure, such as the muscle lim protein–

knockout model and cardiac-specific overexpression of calsequestrin, and in a number of 

experimental settings has provided robust evidence of improving cardiac function and 

survival(150; 154-159). Although similar overall structure, GRK3 has distinct substrate 

spesificities determined by the CT domain. While GRK2 regulates cardiac �-AR and Ang II-

R, �1-ARs are not touched by it(150; 160; 161). Vice versa, GRK3 strongly modulates 

cardiac �1-AR, ET-R and thrombin receptor mediated responses without altering �1-AR 

mediated responses or receptor internalization(160-162). Accordingly, GRK2 and GRK3 

seem to have distinct substrate specificities at least within the cardiovascular system (table 3). 

The role of myocardial GRK3 is little studied, as is its potential involvement in cardiac 

disease states, and the role of GRK5 and GRK6 are almost unknown. Several powerful 

molecular strategies have emerged during the last decade and proven valuable tools to study 

GRK isozyme function in vitro and in vivo.  

Table 3. Substrate preferences of GRK2 and GRK3 in cardiovascular tissues. 

Receptor GRK2 GRK3 References 
�1 + - (150; 160; 162) 
�2 + - (163) 
�1 - + (160-162) 
ET - + (162) 

Angiotensin II + - (160; 164) 
Thrombin - + (160; 165; 166) 

Muscarinic ? +(?)  (167) 
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5. Aims of the Study 

This work aimed to elucidate molecular mechanisms involved in the pathophysiology of 

cardiac hypertrophy and heart failure. 

The specific aims of the study were: 

1)  to identify the origins of increased plasma ET-1 levels in HF 

2) to elucidate the mechanism of increased pulmonary secretion of ET-1 in 

experimental HF 

3) to investigate whether depletion of macrophages reduces pulmonary ET-1 

secretion and progressive cardiac remodeling in HF 

4) to elucidate the role of GRK3 in regulation of myocardial function in vivo 

5) to investigate to what extent inhibition of GRK3 in vivo alters development of 

pathological cardiac hypertrophy and HF after pressure-overload 
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6. Summary of Results 

Paper � 

Juvenile pigs subjected to three weeks of rapid cardiac pacing exhibited significant left 

ventricular dilatation and dysfunction, increased cardiac filling pressures, and over 4-fold 

increase of arterial plasma ET-1 levels, consistent with induction of severe HF. Repeated 

investigations showed an increasing trans-pulmonary gradient of plasma ET-1 during 

evolving HF. Single-bolus multiple indicator-dilution experiments revealed increased 

pulmonary synthesis and release of ET-1 in HF, with pulmonary clearance of ET-1 remained 

unaltered. ECE-1 isozyme activity was selectively increased in congested pulmonary tissue of 

HF pigs, and correlated significantly with the wet/dry weight ratios of the samples, i.e. a 

marker of pulmonary congestion. Furthermore, pulmonary macrophages (PM) in congested 

lobe segments were identified as likely sites of increased synthesis and release of ET-1. 

Paper II 

Two weeks (baseline) after induction of myocardial infarction by coronary ligation, rats in 

severe HF were randomized to treatment with the macrophage toxicant gadolinium chloride 

GdCl3 (HF-Gad) or vehicle (HF-V) for 21 days (end-point). In HF-Gad compared to HF-V 

rats, massive apoptosis of PM and lower pulmonary tissue levels of the macrophage-derived 

cytokines IL-12A and IL-12B and ET-1 were found. Arterial plasma ET-1 levels were 

increased 6-fold in HF-V rats vs. sham-operated rats.  Depletion of PM led to reduced arterial 

plasma ET-1 levels and eliminated the trans-pulmonary gradient of ET-1. Moreover, HF-Gad 

rats exhibited halted progression of cardiac dilatation and dysfunction and significantly 

reduced filling pressures.  

Paper ��� 

Cardiac function of GRK3 was investigated in transgenic mice (Tg-GRK3ct) with cardiac-

specific expression of the carboxyl-terminal portion of GRK3 (GRK3ct) to inhibit its 
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activation through G��-directed membrane translocation. Tail-cuff plethysmography of 3-9 

months old Tg-GRK3ct mice revealed modest hypertension compared to non-transgenic 

littermate control (NLC) mice, an observation confirmed by blood pressure radiotelemetry of 

conscious, unrestrained mice. Heart rate, however, was similar between Tg-GRK3ct and NLC 

mice. Young Tg-GRK3ct mice (3 months) had normal cardiac dimensions but enhanced 

contractility. Moreover, Tg-GRK3ct mice displayed supersensitivity to �1-adrenergic receptor 

stimulation, while response to chronic �1-adrenergic receptor stimulation was unaltered. 

Pressure-volume relationships obtained in electrically paced ex vivo-perfused working hearts 

confirmed hypercontractile myocardium with elevated dP/dtmax, LV developed pressure, 

cardiac output, and stroke work in Tg-GRK3ct mice at physiological filling pressures.  

Paper IV 

Here we sought to elucidate the putative role of myocardial GRK3 in the development of 

pathological cardiac hypertrophy and HF. Tg-GRK3ct and NLC mice were subjected to 

chronic pressure-overload by suprarenal abdominal aortic banding (AB). Six weeks after AB, 

pressure-volume analysis of ex vivo perfused working hearts revealed substantial systolic and 

diastolic cardiac dysfunction in NLC mice, while cardiac function was entirely preserved in 

banded Tg-GRK3ct mice. Cardiac and LV mass was significantly enhanced in banded 

compared to their respective sham groups confirming LVH, but without significant 

differences between banded Tg-GRK3ct and NLC mice. At 12 weeks after AB, NLC mice 

displayed increased LV filling pressures, reduced cardiac output and augmented myocardial 

mRNA levels of BNP consistent with HF, all of which were prevented in banded Tg-GRK3ct 

mice.  



 23

7. Discussion 

This thesis sheds light on novel molecular mechanisms involved in the pathogenesis of 

myocardial hypertrophy, LV remodeling, and HF. Comprehensive integrative physiology and 

molecular techniques were applied in a range of ischemic and non-ischemic HF models in 

pigs, rats and mice, to elucidate important components of GPCR signaling.  

 

Origin and mechanisms of elevated ET-1 levels in HF 

In a large animal model of tachycardia-induced HF, we studied the tissue-specific and cellular 

origin of increased plasma ET-1 levels. In HF, ET-1 may act in a endocrine fashion, and 

several reports have indicated the lungs to play a contributing role to increased plasma levels, 

but the relative importance of the pulmonary compared to other vascular beds had not been 

established(80; 81). We here not only demonstrate the pulmonary circulation to be the most 

important source of elevated plasma ET-1, but also show that the trans-pulmonary gradient of 

ET-1 increased with progression of HF. The lungs efficiently remove ET-1 from the 

circulation via binding to its presumed clearance receptor ETBR(86; 87; 168). Other 

investigators have previously found reduced pulmonary density of ETBR and reduced 

fractional extraction of ET-1 in HF models, indicating failure of the lungs to remove ET-1 in 

HF(80; 169). The relative contributions of altered clearance or production of ET-1 to raise 

plasma ET-1 levels in HF remained yet to be investigated(87; 168; 170). We found the 

pulmonary fractional extraction of plasma ET-1 to be about halved in HF pigs. However, 

fractional ET-1 extraction does not take into consideration the circulating plasma volume per 

time unit (cardiac output). Clearance of ET-1, i.e. the absolute amounts of ET-1 being 

removed from the circulation per minute, was not altered, contrasting with previous 

reports(80). However, that study was performed in rats with HF post-MI, and with ET-1 

clearance determined in lungs ex vivo. Another important finding of the present study was that 
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pulmonary synthesis of ET-1 was enhanced and correlated significantly with markers of LV 

filling pressures (LVEDP and PCWP). Augmented ECE-1 activity in congested pulmonary 

tissue was identified as important molecular mechanism for increased pulmonary synthesis of 

ET-1 in HF. These novel findings clearly illustrate the relevance of pulmonary congestion and 

pulmonary endothelial dysfunction for ET-1 activation. 

 Caution has, however, to be exerted when extrapolating these data in order to reach a broader 

understanding of HF. The pacing overdrive model employed her induces homogenous 

eccentric LV remodeling, generating a stable, predictable and relatively homogenous 

experimental HF cohort, but cardiac ultrastructural changes may differ from those observed in 

HF post MI(171; 172). Yet, LV dilatation and dysfunction, peripheral vasoconstriction, and 

neurohormonal activation including that of the ET-1 system, share important similarities with 

human dilated HF(173-177).  

 

Possible implications for future management of HF 

ET-1 is a multifunctional peptide governing numerous and complex biological functions in 

the cardiovascular system. The data presented in this study underbuild the notion that ET-1 is 

an important player in the pathogenesis of HF. Targeting of GPCRs in HF is of proven benefit 

in the case of �1-AR, but has not produced similar beneficial outcomes when targeting ETR. 

In the future, alternative approaches to counteract ET-1 mediated actions should be pursued, 

such as targeting biosynthesis at its molecular and cellular sources. ECE-1 inhibitors have 

been shown to produce similar acute vasodilator effects as ETAR antagonists in HF patients 

already on ACE inhibitor treatment(91; 178). ECE-1 antagonists have been shown to 

normalize ET-1 levels; and several approaches targeting ECE-1 individually or as dual ECE-

1/NEP inhibition or triple ECE-1/NEP/ACE inhibition have produced functional benefits in 

experimental and human HF(179-184). Besides ECE-1, also NEP and chymase may convert 
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bigET-1 to fully mature ET-1; thus, agents inhibiting multiple peptidases may be required. 

However, as both ECE-1, NEP and ACE also participate in the hydrolysis of bradykinin, 

putative adverse effects by accumulation of bradykinin need to be considered when triple 

inhibitors are employed(185; 186). Data from larger RCTs testing the concept of inhibiting 

ET-1 biosynthesis are lacking(48; 184). 

 

Effects of macrophage depletion on ET-levels and LV remodeling in HF after MI  

In the second paper, following up on findings in paper 1, we aimed to further explore the 

importance of specific components of the innate immunity, i.e. PM, for ET-1 synthesis and 

HF progression. Based on successful protocols of PM targeting in a model of PAH and right-

sided HF, we administered GdCl3 in the classical ischemic HF rat model, commencing two 

weeks after induction of a large MI with evidence of HF(187). Immunohistochemical and 

molecular analysis indicated successful PM depletion. The study provided first evidence that 

targeting PM significantly reduced systemic and pulmonary ET-1 levels as well as halted 

cardiac remodeling. There are several important considerations relating to the intervention as 

well as the assumed mode of action of GdCl3. Neither GdCl3 itself nor the chosen route of 

administration may provide entirely selective and specific targeting of PM. More likely, 

GdCl3  may affect several types of actively phagocytosing cells in liver and lungs as well as 

other organs, i.e. liver, spleen and kidneys(188; 189). For instance, there is evidence that 

GdCl3  interferes with hepatic Kupffer cell function, and reduces pro-inflammatory cytokines 

in sepsis or liver ischemia-reperfusion models(190-195). Moreover, even after first passage 

through the lungs, relevant amounts of GdCl3 could have reached the myocardium to exert 

positive inotropic effects as demonstrated at least in vitro in a dilated cardiomyopathy HF 

model(196). Nevertheless, several lines of evidence support the effectiveness of the 

intervention: First, massive apoptosis of CD68-positive cells in lung tissue were found in 
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GdCl3 -treated HF rats. Next, cardiac tissues showed only few CD68 positive cells, little 

apoptosis, and no differences between HF groups (data not shown). Last, trans-pulmonary 

gradients of plasma ET-1 as well as pulmonary tissue ET-1 and IL-12A and IL-12B levels 

were substantially reduced by the intervention. However, due to the small animal size, it was 

not feasible to perform experiments deciphering the relative contribution of pulmonary 

clearance and synthesis of ET-1, as in paper 1.  

The putative importance of PM in ET-1 biosynthesis and functional progression in HF needs 

to be corroborated in future studies. Both application of tissue- and cell-specific drugs and 

genetic targeting of PM or PM-related cytokines may be valuable and technically feasible 

strategies.  

 

Inhibition of myocardial GRK3 in vivo enhances contractility and �1-AR signaling  

Specific aspects of GPCR signaling, i.e. the role of myocardial GRK3 in regulation of cardiac 

function in vivo, were addressed in papers III and IV. GRK2 (formerly �ARK-1), the isozyme 

of GRK3 has been shown to be regulated in experimental and human HF, and inhibition of 

GRK2 provided rescue of cardiac function in several HF models(150; 152; 153; 155-159). 

GRK3, previously thought to be subservient to its isozyme GRK2, is increasingly appreciated 

as a novel important regulatory kinase. Unlike GRK2, GRK3 does not seem to be regulated in 

cardiac tissue in HF(197). However, its selective expression in cardiomyocytes may imply an 

important functional role(197). Previous studies, performed in transgenic mice with cardiac-

restricted overexpression of GRK3, revealed specificity of GRK3 to desensitize �1B-AR and 

thrombin receptor, while �1-AR and Ang II signaling were not altered(160; 161). To date, 

studies of cardiac-specific targeting of GRK3 in vivo are lacking. A recent report from our 

laboratory provided in vitro evidence of striking differences in receptor specificities of GRK2 

and GRK3 in adult rat cardiomyocytes(162). It could be clearly shown that GRK3, but not 
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GRK2, regulated �1-AR and ET-R, while GRK2 or its peptide inhibitor reduced and 

enhanced �1-AR signaling, respectively. To study these findings in vivo, we generated 

transgenic mice expressing a peptide inhibitor of GRK3 (GRK3ct) in the myocardium, which 

exhibit phenotype with enhanced cardiac function and elevated blood pressure. Evidence of 

subtle LV diastolic dysfunction was found in the GRK3ct mice although the relevance of 

these ex vivo findings at very high filling pressures is uncertain. By ex vivo and in vivo 

experiments, GRK3 was identified to modulate �1-AR and ET-R, but not �1-AR. The 

dominant �1-AR subtypes in mice appear to be �1A-AR and �1B-AR. While cardiac-restricted 

overexpression of the �1A-AR in transgenic mice increased contractility in the absence of 

hypertrophy, overexpression of the �1B-AR induced early diastolic dysfunction and 

progression towards overt dilated HF later on(198-200). We did not succeed in identifying 

which �1-AR subtype was modulated most by GRK3ct expression, but the phenotypic 

findings point to predominant augmentation of �1A-AR signaling.  

Several aspects of the study, in particular relating to the transgenic model need to be 

discussed as important limitations. Cardiac myocyte-restricted expression of an inhibitory 

peptide, i.e. GRK3ct; may not only inhibit GRK3; an argument already raised in the case of 

GRK2ct. Apart from GRK3, other PH domain-containing proteins might be inhibited. 

GRK3ct may in fact inhibit GRK2, and although data obtained in rat cardiomyocytes ex vivo 

demonstrated selectivity of GRK3ct peptides for GRK3, we cannot exclude such effects to 

occur in mice in vivo(162). However, the lack of enhanced �1-AR signaling in the present 

study argues against relevant inhibition of GRK2. Moreover, even though not observed in our 

experiments, downstream regulation by sequestration of G�� could have occurred, leading to 

altered G��-mediated signaling. However, the distinct specificities of GRK3ct compared to 

GRK2ct at the functionally most important cardiac GPCR and the similar specificities of the 

corresponding kinases GRK3 and 2 argue against sequestration of G��(162).  
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To substantiate the findings presented here, alternative routes of manipulating GRK3-

mediated signaling should be pursued. For instance, targeted deletion of cardiac GRK3 (i.e. 

cardiac specific knock-out of GRK3, GRK3-KO) could be performed. Previously, enhanced 

chronotropic component of the baroreceptor reflex has been described in a general GRK3-KO 

model(167). However, blood pressure was not determined in that paper, making judgments on 

possibly altered �1-AR mediated enhancement of heart rate after nitroprusside administration 

difficult. Also, the lack of cardiac-selectivity in that genetic model obscures interpretation, 

and to date no further studies have been conducted attempting to clarify these findings. To 

gain more knowledge on putative dose-response effects of GRK3 manipulation on distinct 

GPCR signaling, supplemental functional studies in transgenic mice with different cardiac 

expression levels of GRK3 or an inhibitor would be needed. 

 

GRK3 inhibition rescues pressure-overload induced cardiac dysfunction 

In paper four, we extended our study on the regulatory role of GRK3 on cardiac function into 

a pathophysiological setting. In a pressure-overload model, inhibition of GRK3 prevented 

development of HF, and preserved cardiac function, while induction of pathological LVH 

itself was not altered. To exclude peripheral circulatory effects, comprehensive analysis of LV 

pressure-volume relations both in vivo and ex vivo were performed. An interesting observation 

is the lack of GRK3ct to augment increases of cardiac mass after pressure-overload, compared 

to our findings after chronic �1-AR stimulation. This behaviour resembles indeed that of 

GRK2ct in comparable settings(201; 202). One readily available explanation might be a 

concomitant GRK3ct-mediated enhancement of pro-hypertrophic pathways such as via �1B-

AR, being counteracted by beneficial �1A-AR-mediated enhancement of cardiac function in 

resisting high afterload, resulting in a neutral net effect on cardiac mass. In addition, pressure-

overload induced hypertrophy also occurs through activation of neurohormones such as Ang 
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II and ET-1; mediators which did not evoke enhanced ERK1/2 activation in cardiomyocytes 

of GRK3ct mice compared NLC mice (fig. 6, paper 3). Phosducin, a G��-binding protein that 

does not resensitize �-ARs, enhances contractility of failing cardiomyocytes in a similar 

fashion as GRK2ct(203), and in the absence of increased �-AR-stimulated cAMP formation. 

Conceptually, the effects of GRK2ct could at least partially be due to inhibition of G�� rather 

than �-AR resensitization. In view of the current findings that GRK3ct mediates similar 

cardioprotection as GRK3ct,  at least some of the beneficial effects could involve signal 

transduction via common downstream pathways, including G��-mediated effects. Recent data 

showed G��-dependent phosphoinositide 3-kinase (PI3K) activation in afterload-induced 

cardiac hypertrophy(204). The same group also demonstrated PI3K to form a cytosolic 

complex with GRK2, leading to GRK2-mediated translocation of PI3K to the membrane with 

subsequent attenuation of �-AR sequestration (205). These data were supported by evidence 

for preserved �-AR function and restored cardiac function through inhibition of receptor-

localized PI3K in several HF models (206; 207).  

In order to decisively establish a protective role for GRK3 inhibition in HF, several strategies 

would be applicable. MI-induced HF or volume overload models would need to be applied in 

order to address the impact of particular stressor stimuli on GRK3 signaling. Ongoing projects 

are going to evaluate cardiac function in hybrids of GRK3ct mice or mice with cardiac-

specific GRK3-KO cross-bred with genetic HF mice. Findings obtained in experimental 

models may eventually be tested by adequate pharmaceutical interventions, i.e. application of 

small-molecule approaches(208). If successful, this may provide the basis for testing GRK3 

modulation in human HF.  
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8. Conclusions 

1. In a large animal model, the lungs were identified as the most important contributors 

to elevated plasma ET-1 levels in severe HF. Pulmonary synthesis and release of ET-

1were increased, while pulmonary clearance of ET-1 remained unaltered. Increased 

ECE-1 isozyme activity in congested pulmonary tissue was identified as an important 

mechanism, with pulmonary macrophages (PM) appearing as novel cellular sites of 

increased synthesis of ET-1. 

2. In post-MI HF in rats, treatment with the macrophage toxicant GdCl3  for 21 days 

induced massive apoptosis of PM, lowered inflammatory cytokines and plasma levels 

of ET-1, and eliminated the trans-pulmonary gradient of ET-1. Importantly, 

macrophage depletion halted progressive cardiac dysfunction and HF after MI.  

3. Cardiac-specific inhibition of GRK3 in transgenic mice induces modest cardiac 

hypercontractility and hypertension, with structurally normal hearts. GRK3 inhibition 

increased responsiveness to �1-AR stimulation, while response to �1-AR stimulation 

was unaltered.  

4. Inhibition of GRK3 did not affect cardiac hypertrophy upon chronic pressure-

overload. However, cardiac function was preserved in Tg-GRK3ct compared to NLC 

mice, indicating a protective role of GRK3 inhibition in this HF model. 
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