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INTRODUCTION

Throughout history, infectious disease has been a leading cause of death in humans. 

Descriptions of sepsis date back to antiquity. Hippocrates viewed it as evil and as a dangerous 

biological decay (1). The word “sepsis” derives from Greek, and refers to decomposition of 

animal or organic matter in the presence of bacteria (2). Our perspectives and, not least,

knowledge have thereafter changed, but despite the entry of antibiotics, sepsis represents 

danger and is still a major challenge and a significant cause of morbidity and mortality.

During the last part of the twentieth century, an improved understanding of sepsis 

pathophysiology and molecular mechanisms, including the host immune response, has 

emerged. One prevailing theory has been that sepsis represents an uncontrolled host-

inflammatory response, as clearly formulated by L. Thomas in 1972:

The micro-organisms that seem to have it in for us […] turn out on close examination
to be rather more like bystanders […] it is our response to their presence that makes 
the disease. Our arsenals for fighting off bacteria are so powerful […] that we are in 
more danger from them than the invaders (3).

Hence, one of the main tasks in sepsis-related research has been to intervene and inhibit the 

detrimental effects of the excessive host-inflammatory response. Our growing understanding 

of innate immunity and its capacity to respond effectively on exogenous as well as 

endogenous danger has made it particularly interesting as a target for intervention. In this 

Thesis I will present the work done by colleagues and myself, on different target strategies in 

Gram-negative induced inflammation and sepsis.

Inflammation

Inflammation is primarily a protective immune response trying to restore homeostasis. The

inflammatory pathways can be divided into inducers, sensors, mediators and effectors (4),

which is helpful when trying to dissect and distinguish between complex networks of 

mediators and cascade systems that participate in these reactions. Different inducers initiate 

the inflammatory response by activating specialized sensors leading to the release of different 

mediators such as cytokines and subsequent effects. Bacteria and viruses are classical

exogenous inducers, but endogenous inducers derived from tissue injury, tissue hypoxemia or 

other kinds of tissue stress or malfunction might well trigger the host response. Regardless of 
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the cause, these processes are followed by vascular dilatation, capillary leakage and 

recruitment of mediators and different cells. The short-term process of acute inflammation 

was described by Celsus (ca. 30 BC – 38 AD), who divided the process into five cardinal 

signs; dolor (pain), calor (heat), rubor (redness), tumor (swelling) and functio laesa (loss of 

function), all reflecting the pathophysiology of inflammation (Figure 1). The increased blood 

flow causes the redness and increased temperature, the accumulation of fluids and mediators

causes the swelling and pain, whereas the loss of function is a consequence of it all.

Inflammation can be classified either as acute or as chronic, with different and specific 

characteristics, but both are to a large extent, local and often limited processes. Uncontrolled 

inflammatory processes may develop systemically which represent a far more dramatic 

picture, as seen in severe sepsis.

Figure 1: The five cardinal signs of inflammation: Calor, Rubor, Tumor, Dolor and Functio laesa

Innate Immunity

The principal difference between the innate and the adaptive immune system concerns the 

receptors used for the immune recognition (5). The adaptive immune system is organized 

around specialized T- and B-cells and their respective receptors, which are generated 

somatically through an ingenious process of clonal selection and constitute an enormous 

repertoire of specificities (1014 – 1018 different receptors) (5). The clonally expressed 

receptors form the basis of adaptive immunity and are essential in triggering immunological 

memory. The clonal diversity and large population of lymphocytes are essential for an 
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efficient immune response, but the adaptive immune system is not called into play until after 

several days, leaving the host defenseless (6).

The receptors of the innate immune system are germ-line encoded, implying that the 

specificity of each of the receptors is genetically determined (7). These receptors have 

evolved through evolution, thus reflecting an older defense strategy. Instead of recognizing 

detailed specific features of a pathogen, the system relies on recognizing conserved molecular 

patterns of exogenous as well as endogenous origin (7,8). The recognition proteins of innate 

immunity are accordingly called pattern-recognition receptors (PRRs). The inflammatory 

inducers of non-self-derived patterns of microbes are commonly referred to as pathogen 

associated molecular patterns (PAMPs) (7,9). The counterpart, patterns of self, refers

originally to damage -associated molecular patterns (DAMPs) or “alarmins” (10-12). In recent 

times, DAMPs has been given a wider meaning by also referring to danger associated 

molecular patterns. The terminology at this point is somewhat confusing, mixing danger and 

damage and needs to be elucidated shortly. According to the “danger model” introduced by 

Matzinger (10,13) immunity is not designed to discriminate between self and non-self, but to 

recognize danger-associated molecular patterns irrespective of their nature. In other words, 

immunity is primarily engaged in protecting the host from danger rather than in recognizing 

foreignness. As a consequence, a microbial derived pattern or tissue trauma may trigger 

similar innate immunity pathways. In the present Thesis the term DAMPs refers to danger of 

exogenous as well as endogenous origin.

PRRs are expressed on many effector cells, such as macrophages, dendritic cells and 

neutrophils but are also present as secreted proteins that act as soluble pattern recognition 

molecules (7). The Toll-like receptors belong to the most important class of PRRs and will be 

discussed later, as will the effects of the complement system, which can be regarded as a

humoral “Master Alarm System” of innate immunity (14). Examples of important 

intracellular PRRs are the NOD-like (Nucleotide Oligomerization Domian) receptors, which 

respond on both microbial and endogenous danger signals (15), and the RIG-like (Retinoic 

acid Inducible Gene) receptors, which recognize non-self RNA species from viral infections 

(16). None of these effector pathways will be discussed further in this Thesis, nor will the 

functions of the Natural killer cells, which belong to a subpopulation of cytotoxic 

lymphocytes, and which constitute an important component of innate immunity (17).
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In contrast to the adaptive immune system, innate immune pathways are fast-acting. Once 

activated, the effector cells or activated components will immediately perform their effector 

functions, such as producing and secreting signal molecules. Cytokines constitute an 

important class of inflammatory mediators with numerous and multifaceted activities. They 

activate resident cells such as fibroblasts, endothelial cells and tissue macrophages and are 

strongly involved in leukocyte recruitment through increased expression of cell surface 

molecules and chemoattraction (18). TNF-�, IL-�������IL-6 are regarded as primary 

cytokines. These play key roles in acute inflammations and sepsis, and are known to induce 

fever- and acute phase responses among a large variety of other effects (19). Arachidonic acid 

metabolites such as prostaglandins, prostacyclins, thromboxanes and leukotrienes constitute 

another important class of inflammatory mediators that either enhance the effects of other 

mediators or directly induce diverse inflammatory effects (20). Leukotriene B4 (LTB4),

which will be discussed later in this Thesis, is a potent chemotactic agent and activator of 

white cells, in particular neutrophils. The hemostatic system is also interconnected with innate 

immune responses, is activated concurrently, and is intimately connected through mutual 

interactions, in particular to the complement system (21,22).

The complement system

The complement system (Figure 2) is an upstream arm of innate immunity and consists of 

more than 30 different plasma and cell-bound proteins (23). Several of these proteins are 

proteases and are capable of being activated by proteolytic enzymes. The precursors, so-called 

zymogens, are widely distributed in body tissue and plasma, and when activated they trigger 

an enzyme cascade reaction. The physiological effects are diverse, including recognition and 

elimination of microorganisms, disposal of waste by clearance of immune complexes and 

apoptotic cells, and working as a bridge between innate and adaptive immunity (23).

Additionally, complement also functions as an important humoral system that senses danger 

of exogenous as well as endogenous origin (24).

Activation is known to occur via three routes; the classical pathway (CP), the lectin pathway 

(LP), and the alternative pathway (AP) (25), which converge and lead to the cleavage of the 

central complement factor C3. CP activation is initiated by the binding of C1q to immune 

complexes but also when binding to other molecules such as C-reactive protein (CRP) and 

phosphatidylserine (26,27). The LP is triggered by the binding of polysaccharide structures on 
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microorganisms as well as on apoptotic cells by mannose binding lectin (MBL) or ficolins 

(28,29). Further activation of the CP and LP is closely similar, leading to the cleavage of C4 

and C2 to C4b and C2b, which together form the classical/lectin C3 convertase, C4b2b. In 

contrast to the CP and LP, the AP is not dependent on binding to a specific structure; instead, 

spontaneous hydrolysis (tickover) of C3 generates small traces of C3b, which may attach to

nearby target surfaces. Target-bound C3b binds factor B, which in turn is cleaved by factor D 

to Bb, which remains bound to C3b forming the AP C3 convertase C3bBb. Properdin is an 

important stabilizer of the AP C3 convertase, but evidence suggests that it may work as PRR 

for de novo activation of the AP (30). The C3 convertases cleave C3 at a single site, 

generating C3b and C3a. C3a is an anaphylatoxin that stimulates inflammatory processes, 

whereas C3b covalently binds to bacterial walls and acts as opsonins, thereby facilitating 

phagocytosis, or binds to C3 convertase to form C5 convertases. The terminal complement

pathway starts with the cleavage of C5, by the classical/lectin (C4bC3bC2b) or the alternative 

(C3bBb3b) C5 convertases, releasing C5a and C5b. C5b induces the assembly of the terminal 

C5b-9 complement complex (TCC), which can lyse certain pathogens and cells when 

incorporated into their lipid membranes (31). Like C3a, C5a is a potent anaphylatoxin and 

will be discussed later. The role of complement as a critical alarm system relies on the sensors 

of the distinct complement pathways, which act as soluble PRRs.

Complement activation is subjected to tight regulation by soluble and membrane-bound

inhibitors limiting deposition of complement fragments on normal cells. Several inhibitors act 

on complement convertases through promoting degradation of activated complement

fragments or by accelerating decay of the convertases (25). Pathogens are prone to 

opsonization due to the lack of these inhibitors, though many bacteria have evolved evasion 

strategies, thereby subverting complement attack (32). Excessive or inappropriate activation 

of complement may lead to tissue damage, and dysregulation of complement is associated 

with many diseases (33).

Several complement receptors are expressed on different cells, interacting with the release of 

complement fragments that make the immune system able to adapt into physiological changes 

(24). Complement receptor 1 (CR1/CD35) expressed on neutrophils and monocytes, mediates

phagocytosis, but in the circulation this receptor is predominately expressed on red cells (24).

Here, CR1 serves as a receptor for C3b-tagged immune complexes which are transferred to 

the liver and processed by macrophages. The leukocyte expressed complement receptor 3,
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(CR3)(CD11b/CD18), is an important recognition receptor of innate immunity (34). It binds 

the inactive derivate of C3b, iC3b, which on its own acts as an opsonin. In addition, CR3 

promotes leukocyte adhesion, migration and recognition of a broad range of different 

microbial molecules (34).

Figure 2. The complement System (Mollnes TE, Song WC, Lambris JD 2002. Trends Immunol 23:61-

64, with permission from Elsevier)

The anaphylatoxins of complement 

C3a and C5a are small split fragments of complement activation known as anaphylatoxins.

They both promote inflammation, in particular C5a, which is an extremely potent 

inflammatory mediator that under certain clinical conditions may cause more damage than 

help (35). A well of C5a-effects have been described: C5a promotes phagocytosis and 
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oxidative burst in neutrophils and monocytes (36), upregulates adhesion molecules and the 

cell-surface molecule CD11b (CR3) in neuthrophils (37), induces the release of granular 

enzymes, and is an important chemoattractant for neutrophils (35,38). C5a increases

trombogenicity by upregulation of tissue factor (TF) on endothelial and neutrophil cells 

(39,40). C3a causes smooth-muscle contraction (38), and both anaphylatoxins promote

vasodilation and increase capillary leakage (35). Furthermore, C3a and C5a are implicated in 

the pathogenesis of asthma; C3a by inducing mast cell degranulation and transcription factor 

activating, leading to increased inflammation (41), whereas C5a seems to play a dual role by 

limiting allergen sensitization on the one hand, and increasing inflammation on the other (42).

Interestingly, evidence suggests that the anaphyloxins are required for the survival of liver 

cells during regeneration (43). The latter fact shows that C3a and C5a have prosurvival 

properties, and do not only take part in a tissue-injury inflammatory process. The effects of 

the anaphylatoxins are mediated through the C3a receptor (C3aR) and the C5a receptors

(C5aR and C5L2), which are distributed on a variety of cells, such as myeloid-, endothelial-,

epithelial, and smooth muscle cells, as well as on different parenchyma cells (24). The 

significance and biologic role of the C5L2 receptor are debated and not fully understood,

though observations indicate that C5L2 may work as a “scavenger” receptor, thereby 

opposing the proinflammatory effects transmitted via C5aR (44,45). In contrast to the C5aR, 

the majority of the receptor is located intracellularly, and upon cell activation it is translocated 

to the cell surface (45). Interestingly, C5L2 seems to be an important ligand for the expression 

of the harmful sepsis mediator HMGB1 (46).

Toll-like receptors

Toll-like receptors (TLRs) are proteins that play key roles as PRRs. Most classes of TLRs are 

found on innate immune cells such as neutrophils, monocytes/macrophages, dendritic cells

and mast cells, but they are also widely expressed on T- and B-cells as well as on a variety of 

other cells, including endothelial cells (47). Ten different mammalian TLRs have been 

identified (48). All are classified as type 1 transmembrane proteins with an extracellular 

leucine-rich repeat domain, a signal transmembrane �-helix portion, and a conserved 

intracellular TIR (Toll/IL-1R/Resistance) domain (49). Upon activation, all TLRs except for 

TLR3 recruit the adaptor molecule MyD88 for intracellular signal transduction, leading to the 

activation of the transcriptional nuclear factor-����NF-��), or of other transcription factors 

such as IRF3, IRF5 and AP-1, required for transcription of a wide range of inflammatory and 
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immune response genes. A MyD88 independent pathway mediates the activation of 

interferon-regulatory factors and subsequent induction of interferon-� (47-49).

TLRs are located both on the cell surfaces and intracellularly on endosomal compartments;

thus, ligands of extra- and intracellular DAMPs are recognized. A broad range of different 

ligands are recognized by TLRs: bacterial cell wall components and DNA, viral, parasitic, and 

fungal products, as well as endogenously derived products such as DNA, intracellular matrix,

and proteins (47). Specific accessory proteins or co-factors regulate TLRs by contributing to 

ligand discrimination and receptor signaling (48,50). In 1998 TLR4 was demonstrated to be 

the PRRs for lipopolysaccharide (LPS) of Gram-negative bacteria (51). However, TLR4 

signaling is facilitated by the co-receptors, MD2 and CD14 (48,50). MD2 is a soluble protein 

associated with the extracellular domain of TLR4. In vivo experiments show that LPS 

responsiveness is dependent on MD2 (52), and crystal structures of TLR4-MD2 in complex 

with LPS have displayed how MD2 facilitates and potentiates TLR4 signaling by bridging 

two TLR4 molecules (53).

CD14 - the key accessory molecule

CD14 is present as a soluble protein in the blood, or as membrane bound protein to myeloid 

cells. This accessory molecule enhances LPS responsiveness by facilitating the transfer of 

LPS from LPS-binding protein to TLR4-MD2 complexes. There are two different types of 

LPS, rough and smooth, and the latter is the most common form expressed by Gram-negative 

bacteria. CD14 seems to be required for transmission of both types of LPS, whereas rough 

LPS imparts the ability to transfer TLR4 signaling independent of CD14 (54). Besides 

interacting with TLR4, CD14 works as an accessory molecule in relation to other TLRs 

(TLR2, TLR3, TLR5, TLR7 and TLR9) and has the ability to bind a variety of microbial 

products (48). Thus, CD14 is a unique upstream and promiscuous molecule, implicated in 

different TLRs-signaling reacting with a number of ligands with low affinity, and transferring 

the ligand to receptors with a higher degree of specificity and affinity.

The presence of TLRs on endothelial cells and mucosal epithelial cells in the respiratory and 

gastrointestinal tract is of great importance in host defense. Activation leads to upregulation 

of adhesion molecules, and to secretion of chemokines which are required for adequate 

migration of neutrophil cells.
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Hemostasis and Contact activation

Hemostasis is a sensitive and tightly regulated process, involving the coagulation, the 

fibrinolytic system, and platelet activation, as well as endothelial cells. TF is a transmembrane 

glycoprotein that, in vivo, is regarded as the key initiator of coagulation (55). TF is expressed 

by subendothelial cells that are not normally exposed to circulating blood, but disruption of 

vascular integrity exposes TF and initiates the coagulation cascade (56). The hemostasis is 

intimately connected to host defense, especially to the complement system, as several 

interactions exist between these two cascade systems (21). As previously mentioned, the 

anaphylatoxin C5a upregulates TF on endothelial and white cells, by contrast, activated 

clotting factors such as thrombin are able to cleave C5 independent of the C5 convertases

(57). The mutual interactions and almost concurrent activation of these systems force and 

favor host defense. For example, local formation of thrombi to or around the infected area 

provides a protective barrier and prevents bacterial spreading. However, uncontrolled

systemic activation may induce widespread thrombi formation and accompanying

microvascular dysfunction. 

The contact system, also known as the intrinsic pathway of coagulation, or the kallikrein-kinin 

system, can be considered an integrated part of innate immunity (58). The system plays only a 

secondary role in hemostasis but the release of kinins has a broad specter of activities 

including induction of proinflammatory reactions and regulation of blood pressure (59).

Activation liberates the potent proinflammatory peptide bradykinin (BK) and its metabolites 

desArgBK from high molecular-weight kininogen. BK participates in the cardinal feature of 

inflammation, producing vasodilation and increased vascular permeability, triggering the 

release of proinflammatory mediators such as histamine, prostaglandins, leukotrienes,

cytokines, and promoting neutrophil chemotaxis (60). Kinins mediate effects through two

different receptors, the B1 and B2 receptors – the former with high affinity to kinin 

metabolites, the latter with high affinity to native kinins such as BK (61). The B2 receptor is 

constitutively expressed in most tissue, particularly on endothelial cells (62), but can be 

upregulated upon inflammatory stimuli such as LPS (63). BK has a very short half-life of less 

than 30 seconds, partly due to degradation by angiotensin-converting enzyme.
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Cross-talk and redundancy of host defense

The immune system is characterized by numerous different signaling pathways that constitute

a robust and redundant host defense. The innate immune responses serve not only as a 

forceful first line defense but initiate and serve as a bridge to the adaptive immune system (9).

In response to antigen presenting cells TLR signaling is important for promoting CD4+ and 

CD8+ T lymphocyte activation (64), and certain PRR-induced cytokines (IL-12 family) may 

polarize the T cell response (65). Downstream mediators of complement activation, such as 

iC3b and C3d, enhance B cell immunity via the complement receptor CR2, and different 

mechanisms for how complement regulates T cells are also described (66). It was recently it 

was shown that T cells deficient in C3aR and C5aR displayed a weak and limited allogeneic 

host response, and blockade of C5aR reduced morbidity in a relevant mice model of acute 

graft-versus-host disease (67).

Infections are likely to induce complement- and TLR activation at the same time, suggesting 

that these responses are interconnected. In fact, these pathways are closely related through an 

extensive cross-talk (65,68). Previously it was shown that CD14 and CR3 cross-talk and 

promote phagocytosis of mycobacteria (69), and furthermore that C5a and C3a enhance TLR-

induced formation of proinflammatory cytokines (70). Evidence suggests a reciprocal 

interaction between C5a and TLRs (71), implying that compensatory mechanisms obviously 

play an important role in host defense.

Sepsis

Definition

In 1992, an international consensus conference provided a conceptual framework describing 

systemic complications induced by infections, and defined sepsis as the presence of infection 

and systemic inflammatory response syndrome (SIRS) (72). Two out of four criteria fulfilled

the definition of SIRS: Temperature > 38 or < 36 ������
��
��������!���"�����
�#�
��	
$�

rate > 20 breaths/min or pCO2 < 4.2 kPa, WBC >12 x 109/L or < 4 x 109/L, or < 10 %  

immature forms. According to the severity of the disease sepsis was further categorized into 

severe sepsis and septic shock. Severe sepsis was defined as sepsis plus organ dysfunction, 

tissue hypoperfusion or hypotension, and septic shock as severe sepsis with hypotension but
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refractory to fluid resuscitation. These general definitions are widely used clinically and have

served as the basis for several clinical trials. They are, however, too sensitive and non-

specific; thus, randomized clinical trials are colored by heterogeneous patient populations 

(73). Later attempts to strengthen the sepsis criteria have been made, but no evidence has been 

found to change the definitions apart from an extended list of signs and symptoms (74). It is 

utterly important to reduce patient heterogeneity in future sepsis trials. This may be achieved 

by a different staging-system based on predisposition, insult, response and organ dysfunction 

(PIRO) (75). With respect to the biomarkers, their time course may be more reliable than the 

absolute values (76), and we definitely need more knowledge related to this dynamic process.

We still know too little about the different clinical phenotypes and associated biochemical 

profiles. This knowledge can only be achieved by large clinical trials (75).

Sepsis epidemiology

There is a relatively large variability associated with epidemiological data and sepsis. This is 

partly related to retrospective estimates and to the heterogeneous patient population. At the 

end of the last millennium the incidence of sepsis in the USA was estimated to 240 cases per 

100.000 (77), and that of severe sepsis to 95 per 100.000 (78). In two prospective studies, 

from Finland and from Australia and New Zealand, the incidence of severe sepsis was 

calculated to 38 per 100.000 adult per year and 77 per 100.000 adult per year, respectively

(79,80). The ICU mortality was found to be 15.5 % in the Finnish study, while 1-year 

mortality was 40.9 %. Other reports show a higher ICU-mortality, ranging from 26 % to 

above 50 % (80,81). The mortality reflects the severity of illness, which is clearly 

demonstrated in the large pan-European study, Sepsis Occurrence in Acutely Ill (SOAP), 

where the ICU-mortality was less than 20 % among patients with one organ failure and above 

60 % among patients with more than four organ failures (81). Different reports document that 

the proportion of patients with severe sepsis is increasing (78,82). This represents great 

clinical and economical challenges.

Pulmonary infection is the primary site of infection followed by intra-abdominal infections

(81,82). Isolation of Gram-negative bacteria is frequent and account for above 35 % of the 

isolates, and E. coli is one of the most frequent causative bacteria.
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Innate immunity and sepsis pathophysiology

The pathophysiology of sepsis is complex. The current view suggests that sepsis is unleashed 

by an infection-induced systemic inflammatory response (83,84). Under normal physiological 

conditions innate immune pathways are intended to work locally and serve host defense. By

contrast, a systemic activation of these immune defending systems may lead to a host-

threatening situation that induces a counterproductive and detrimental inflammatory response.

In other words, a systemic activation of the sensors of innate immunity, PPRs, implies loss of 

control, and a rapid and vast nonspecific response may harm the host. For instance, one of the 

primary roles of proinflammatory mediator release is to enhance leukocyte migration from 

within the blood to the site of infection. Successful activation and migration of neutrophils is 

dependent on a fine-tuned interplay with endothelial cells, involving upregulation of different 

adhesion molecules and their respective ligands (85). However, in sepsis sequestration of 

neutrophils also strikes organs not affected by infection due to impaired migration (86). As a 

consequence, neutrophil-mediated tissue injury with release of cytokines, reactive oxygen 

species, proteinases, and other cell-derived content also affects innocent or remote organs 

(87). The lungs are particularly susceptible, and impaired lung function correlates with the 

intensity of neutrophil infiltrates (88).

It is not possible to account for the complex network and myriads of mediators that play a part 

in the concert of sepsis. The picture is not uniform. In some studies the levels of 

proinflammatory mediators seem to correlate with the outcome of sepsis (89,90), and 

consumption of contact factors has been associated with a bad prognosis (91), indicating that 

septic patients are in a hyperinflammatory state. However, the heterogeneous pool of septic 

patients display different inflammatory profiles, and in some cases even a blunted response 

(92). This implies that some patients are in a hypo- rather than a hyperinflammatory state, 

reflecting the complex sepsis entity or syndrome. The release of C5a is thought to play a 

central role in the vast inflammatory drive, but generation of this anaphylatoxin is also 

associated with apoptosis of lymphocytes and other lymphoid cells (93). Although pro- and 

anti-inflammatory responses are activated initially, the proinflammatory responses are thought 

to predominate in the early phase of sepsis, whereas later phases of sepsis is featured by a 

predominant anti-inflammatory response (94). The immunosuppressive state of sepsis is 

characterized by increased susceptibility to acquiring secondary infections, as well as 

reactivation of otherwise harmless virus infections (94-96).
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From a clinical point of view, tissue hypoperfusion accompanied by multiple organ failure 

(MOF) is a key feature in severe sepsis and septic shock. Hypotension and capillary leakage

with loss of plasma fluids to the interstitial space lead to intravascular volume deficit and 

deteriorated circulation. Additionally, increased interstitial fluid accumulation and tissue 

edema negatively affect nutritional transport and oxygenation.

Dysregulated coagulation is another typical feature characterized by disseminated 

intravascular coagulation (DIC) with consumptions of platelets and widespread formation of 

intravascular microthrombi (97,98). The endothelial system in particular is an important 

component to the microvascular dysfunction, as it enhances increased adhesion of platelets 

and leukocytes and promotes vasodilation by NO production (99). Evidence suggests an 

association between severe microvascular function and fatal outcome (100). Thus, to maintain 

adequate tissue oxygen delivery and to prevent MOF, resuscitation with fluids is essential in 

the treatment of septic patients (101), and targets for early goal-directed resuscitation are

therefore specifically recommended in the international guidelines for management of severe 

sepsis and septic shock (102).

Although microbial investigations are commonly negative in these patients, early broad-

spectrum antibiotic treatment and/or surgical control of the infected area is mandatory.

Further treatment is primarily supportive, with the goal of maintaining an adequate blood

pressure, oxygen content, blood glucose level, renal function, and acid-base balance in order 

to reach a reasonable homeostasis and sustain organ functions (102). Hydrocortisone is 

recommended as adjuvant when hypotension remains poorly responsive to fluid resuscitation 

and vasoactive medication. Drotrecogin alpha activated (recombinant human activated protein 

C), which prevents formation of thrombin and has profibrinolytic properties, was added to the 

list of adjunctive therapies, but has recently been withdrawn due to failure to demonstrate

efficacy (103). Apart from significantly more advanced intensive medical services the 

causative treatment of sepsis has in general remained unchanged for the last decades.
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AIM

The aim of this Thesis was to explore the efficacy of principally different target approaches in 

Gram-negative induced inflammation and sepsis. The sensors of innate immunity pathways 

and single mediators of inflammation were targeted goals. Preclinical models were used to 

study the inflammatory reaction and effects of inhibition, ex vivo, in human and pig whole 

blood, and, in vivo, during Gram-negative induced sepsis in pigs. 

Study I. To examine the significance of the traditionally regarded early cytokines TNF-� and 

IL-1�, compared to the central upstream arms of innate immunity, complement, and CD14, as 

mediators of and inhibitory candidates of E. coli-induced inflammation in humans. 

Study II. To investigate the efficacy of the B2 receptor antagonist, icatibant, in a porcine 

model of Neisseria meningitidis-induced sepsis.

Study III. To investigate the efficacy of the Ornithodoros moubata Complement inhibitor 

(OmCI) in pigs and humans by using an ex vivo whole blood model for both species and an in 

vivo porcine model of E. coli-induced sepsis.

Study IV. To investigate the effect on inflammation, hemostasis and hemodynamics of OmCI 

alone, and OmCI combined with anti-CD14, in a porcine model of E. coli-induced sepsis.
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MATERIALS AND METHODS

Introduction 

Gram-negative induced inflammation in human or pig whole blood, and Gram-negative 

induced sepsis in pigs, are central and important topics for all papers discussed in this Thesis.

Both these ex vivo and in vivo induced inflammatory processes imply liberation of countless

of mediators and the involvement of numerous reactions. It is important to be aware of the 

fact that the applied methods and analyses do not elucidate this picture completely, and that 

some questions are left unanswered as a result of the selection of topics that were examined. 

On the other hand, the methods and analyses that are used are well known and regarded as 

established and reliable. The following section provides an overview of methods and analyses

that were used, as well as some related considerations. For a more detailed description of 

equipment reagents and methods, see the material and methods sections in the individual 

papers.

Bacteria and complement activators

Ex vivo (paper I and III), heat-inactivated E. coli, strain LE392 (ATCC 33572) from the 

American Type Culture Collection (Manassas, VA), was used. Heat inactivation results in 

minor alterations to the bacterial membrane, leaving the biological activity preserved but 

preventing further dividing. These bacteria were counted by flow cytometry and stored at + 4

�� in batches of 1 x 109 E. coli/mL PBS. In vivo (paper III and IV), live E. coli of similar 

strain, LE392, was administered intravenously to pigs. They were stored at -&���������' used,

and could thereafter freely divide. The reference strain of N. meningitidis, 44/76, was used in 

paper II. This strain was originally isolated from a patient with fulminant meningococcal

septicemia in 1976. The bacteria were heat inactivated and stored at -&���� until used to 

induce meningococcal sepsis.

Heat-aggregated IgG (HAIGG) and zymosan, potent activators of the classical and 

lectin/alternative pathway, respectively, were used in study III to induce complement 

activation in whole blood.
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Inhibitors

In all papers, different inhibitors and respective isotype-matched or other suitable controls 

were used. Several of these were purchased, such as TNF-������!��	
�����
�#����d

infliximab, which bind specifically to soluble and membrane bound TNF-��������he IL-���

receptor antagonist anakinra (paper I). All three cytokine inhibitors are widely used as anti-

inflammatory therapeutics for different autoimmune disorders. The mouse anti-human CD14 

F(ab´)2 was used in paper I and III. The mouse anti-porcine CD14 monoclonal antibody clone 

MIL-2 has in previous experiments been proven to bind CD14 on porcine granulocytes and 

efficiently attenuate E. coli LPS-induced inflammation, both ex vivo and in vitro. This 

monoclonal antibody was used in paper III and IV. The selective B2 receptor antagonist, 

icatibant (paper II), has recently been made commercially available (Firazyr®), and was 

donated from Jerinin AG. Three different complement inhibitors were applied in the papers;

compstatin (paper I and III), which potently binds to and prevents cleavage of C3, eculizumab 

(Soliris®) (paper III), which is a humanized monoclonal IgG2/4k- antibody that binds to and 

prevents cleavage of the human complement factor C5, and finally the tick-derived 

Ornithodoros moubata Complement Inhibitor (OmCI) (paper III and IV), a small protein 

(16.8 kDa) that binds to and prevents cleavage of C5. The procurement of OmCI was 

particularly important, as it was demonstrated to be a very effective complement inhibitor in 

pigs and humans, and was importantly, delivered in large enough amounts to make it possible 

to carry out study IV.

Analyses

Enzyme immunoassay and multiplex technology 

Human cytokines were analyzed using multiplex technology. With this immunoassay a range 

of different biomarkers can be measured simultaneously. The technology is based on colored 

beads, each with a unique cytokine detection antibody. The beads are incubated with the 

samples, a secondary biotin-conjugated antibody is added, and finally a reporter molecule that

binds to biotin is added. The samples are run in a modified flow cytometer with two lasers, 

one that excites the beads, and one that excites the reporter molecule. In this way the beads 

are separated, and the amount of each of the cytokines can then be measured. 
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We did not have multiplex technology available for porcine cytokine analysis; instead these 

cytokines and plasminogen activator inhibitor-1 (PAI-1) were analyzed by standard individual 

commercial EIA kits. The availability of specific porcine kits is limited, making the repertoire 

of potential and interesting biomarkers restricted. However, thrombin activation in pig was 

measured in citrate plasma using a human thrombin-antithrombin (TAT) immunoassay kit 

that works for porcine plasma (104). In addition, the formation of TCC was analyzed by an 

enzyme immunoassay (EIA) previously developed in our laboratory (105). The test was 

designed for human complement activity, but was later shown to cross-react with pig (106).

The wells were coated with the mAb aE11, which is specific for a C9 neoepitope in TCC. A 

biotinylated monoclonal anti-C6 was used as detection Ab. A commercial kit was used to test

the functional activity of the CP, LP, and AP in human and pig serum. Formation of C5a in 

human plasma was analyzed by a commercial EIA. Despite several efforts with several 

different kits, we did unfortunately not manage to measure C5a in pig serum or plasma.

Leukotriene B4 (LTB4) was measured in pig and human using the same kit. 

Flow cytometry

In pig whole blood, granulocytes are clearly discriminated from mononuclear cells, but 

lymphocytes and monocytes cannot be separated by a forward/side scatter dot plot. Therefore,

the expression of tissue factor (TF) (paper IV) was measured on granulocytes, which is a bit 

unfortunate since it would have been even more interesting to look at this expression on 

monocytes. The expression of wCD11R3 (the pig ortholog to human CD11b) was measured 

on granulocytes, whereas human expression of this cell surface molecule was measured on 

granulocytes and monocyres in paper I, but only on granulocytes in study III. In study I,

oxidative burst was measured using a commercial kit.

When analyzing the expression of a surface marker on an activated cell it is important to take 

into account that the background activity can be increased. This may affect the result, 

especially for markers that are expressed at low values, which was the case for TF. In all 

analysis we used isotype controls to adjust, so that the increased expression observed is 

reliable.
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Determination of BK1-5 level and icatibant

BK is an extremely short-lived effector molecule and is rapidly metabolized to inactive 

products (107). A reasonable approach for exploring its pathophysiologic role is therefore to 

measure one of its stable metabolites, BK1-5, comprising the first five amino acids of BK

with a half-life around 90 minutes (108). Blood was drawn into a plastic syringe and 

immediately added to chilled ethanol to denature kallikrein and kinases. After one hour, the 

samples were centrifuged and the supernatant stored at -&����* The samples were spiked with 

the internal standard BK1-6 and thereafter eluated, before high-performance liquid 

chromatography technique was used to determine the content of BK1-5 and icatibant.

Histopathological evaluation 

In study IV biopsies from lung and liver were formalin-fixed, and thereafter cut into thin 

sections, deparaffinized, and stained by haematoxylin/eosin (H&E) and saffron. A pathologist 

evaluated these sections in a blinded manner according to how it is described in paper IV.

The Models

Ex vivo whole blood model

In study I and III a unique ex vivo whole blood model was used. This model is extensively 

studied in human whole blood (109) and has been proven to work in pig whole blood as well 

(110,111). When developing this model, the main goal was to keep all functional effector 

systems functional and able to interact, and at the same time avoid coagulation. Commonly 

used anticoagulants, such as EDTA and citrate, inhibit complement activation, whereas 

heparin enhances complement activation at low concentrations and inhibit such activation in 

high concentrations (112). By using the specific thrombin inhibitor lepiruidin (Refludan®) no

adverse effects on complement activation were seen (109). Although the experiments 

performed in study I and III obviously lack the complexities that arise in a living organism, 

they have been performed under conditions reflecting a reliable method for studies of 

inflammatory cross-talk, where all inflammatory mediators in whole blood, except thrombin, 

are able to interact mutually (109).
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In vivo models

A large proportion of former sepsis research has been based on endotoxin models, reflecting

the fact that LPS has been recognized as a key molecule in pathogenesis of sepsis. There are 

limitations to this approach. LPS is essential to virtually all Gram-negative bacteria, and is a 

typical archetype of conserved microbial structure inducing innate immune responses. LPS 

comprises three covalently linked regions; a lipid A moiety, a core oligoisaccharide structure,

and an O-antigen polysaccharide chain. The biosynthesis of the lipid A structure varies among 

different organisms and determines the biological activity and pathogenicity of LPS (113).

LPS is known as the most potent molecule of N. meningitidis, but LPS-mutant meningococci 

strain has been shown to induce inflammation and increase mortality in a mouse model (114).

By using the same sepsis model as used in study II, our group recently demonstrated that N. 

meningitidis completely lacking LPS, induced cardiovascular and hematological changes 

comparable to those induced by an intact LPS-sufficient strain, though a 10–20-fold higher 

dose of the LPS-deficient mutant was required (115). Ex vivo experiments have revealed 

different effects of anti-CD14 and CyP (Cyanobacterial Product – which derives from blue 

green algae and inhibits TLR4/MD2), depending on whether whole blood was activated by 

whole bacteria (E. coli) or by ultrapure LPS (110,111). The effect of both inhibitors was less 

pronounced by E. coli-induced cytokine formation. Thus, the use of whole bacteria models 

encompasses apparently greater biological diversity as compared to pure endotoxin models,

and is more relevant in reflecting the magnitude of danger signals to which the host is 

exposed.

Pigs are suitable animals to use and have served as an important biomedical model for 

humans for decades, not least because several of the applied disease models using pigs are 

more relevant for the human condition. An example is the pig atherosclerosis-model, which 

facilitated analysis of disease progression and evaluation of different medications (116). The 

size of the pig allows us to use standard monitoring equipment and enables repeated blood 

sampling for comprehensive analysis. The size also makes it possible to take biopsies during 

an experiment and detailed tissue samples after euthanasia. Compared to rodents, pigs have 

the advantage of displaying relatively closer anatomical and physiological relations to 

humans, and, importantly, the pig genome has high sequence and structure homology with 

humans (117). As compared to mice, the immune parameters in pigs show closer resemblance 

to humans in more than 80 % of analyzed parameters, whereas mice show closer resemblance 

in less than 10 % (118).
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In study II, III, and IV different models of experimental induced sepsis in pigs were used. In 

study II a model of porcine meningococcal sepsis was used in the main protocol (119).

According to the procedure, the intravenous infusion rate of Neisseria meningitidis was 

doubled every 30 minutes to mimic the generation time of live Neisseria in the human 

disease. This forceful pathogenic model, expressed by a substantial plasma leakage and an 

increase in a broad specter of inflammatory parameters, parallels the changes that are 

observed in patients (119). Additionally, and as part of a supplementary project to this study, 

two pigs underwent cecal ligation and puncture (CLP)-induced sepsis, and two other pigs

underwent E. coli-induced sepsis. The polymicrobial sepsis induced by CLP was a 

modification of a previously described model (120), in which autologous feces was aspired 

from cecum, suspended in saline, and spread to all parts of peritoneum. The E. coli-induced 

sepsis model was also used in study III and IV. The model is well described and reflects an 

acute sepsis with early and rapid increase of inflammatory and hemostatic biomarkers (121).

Sepsis was induced with an increasing intravenous infusion of E. coli, and each pig received a 

total of 1.075 x 108 E. coli/kg, corresponding to 1.1 x 106 bacteria/mL blood. The E. coli that 

was used came from the same batch and was infused exactly at the same rate as when we 

previously examined the effect of anti-CD14 alone (122).

The insertion of a PiCCO catheter was implemented in all models described above. This 

thermodilution catheter enables continuous measurements of stroke volume variation (SVV),

which is a dynamic variable of fluid responsiveness and currently one of the most reliable 

hypovolemia predictors (123). The pigs were further extensively monitored. Blood gases were

regularly taken, and respirator settings adjusted to maintain a pH of 7.40, and the pigs were 

monitored with ECG, artery line, central venous catheter, and pulmonary artery catheter. The 

latter is important since pigs have resident macrophages in the lungs, closely resembling 

human Kupffer cells (124), and are extremely vulnerable to pulmonary vasoconstriction 

(125). Increased pulmonary artery pressure (MPAP) is a typical early feature of porcine sepsis 

that is probably caused by local release of a broad spectrum of endogenous metabolites (125).

An abrupt increase in MPAP was observed regularly, sometimes so severe that it was 

necessary to use norepinephrine for resuscitation. Although both the N. meningitidis and the

E. coli models showed biochemical and clinical similarities, the observed increase in MPAP is 

a feature we do not find in patients, at least not to this extent.
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Statistical considerations 

In this Thesis, several experiments revealed obvious biological effects that speak for 

themselves. One may wonder whether statistical calculations in these cases actually provided 

any more information, apart from meeting the medical scientific requirements. I therefore find 

it wise to emphasize that a statistical test can either reject or fail to reject a null hypothesis, 

but never prove that it is true. 

Parametric statistics were applied in the experiments performed in paper I, II, III, and IV. The 

results in paper I and III were statistically compared by one-way analysis of the variance 

between groups (ANOVA) with Bonferroni or Dunnet’s post-test analysis. The post-hoc 

analyses are required for comparison of three or more means, but these tests are conservative,

implying that the likelihood of making a type 1 error (rejecting the null hypothesis) decreases.

In paper II and IV the data were examined with a repeated-measures 2-way analysis of 

variance (ANOVA) followed by Bonferroni’s correction for multiple tests. In addition, a two-

sample t-test for independent samples was applied in paper II, whereas the non-parametric 

test, Kruskal-Wallis one-way analysis of variance, was used to analyze histopathological lung 

changes in paper IV. Results with a p-value <0.05 were considered as statistically significant. 

The GraphPad Prism version 5 (GraphPad Software, San Diego, CA) was used for all 

statistical analyses.

To avoid type II error and falsely maintain the null hypothesis, performing power analyses to 

predict the numbers needed to be included in a study is highly recommended. For different 

reasons we did not do this prior to the in vivo studies described in paper II and IV. The 

numbers of animals included in the different groups were defined by several factors, including 

the available amount of inhibitors, costs, logistics, and animal ethical perspectives. The latter 

is important. The purpose of using animals is to improve our understanding of biological or 

medical questions related to human or animal health, but efforts should focus on keeping the 

use of animals down to a minimum, which we have done.
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SUMMARY OF THE MAIN RESULTS

Paper I

The effect of pure rhTNF-� and rhIL-1ß as inflammatory inductors in fresh human whole 

blood was explored. A modest but dose dependent increase of IL-1ß, IL-6, IL-8, MIP-1�, and 

IL-1ra was induced by rhTNF-�, while the effect of rhIL-1ß was limited to a modest increase 

of TNF-� and IL-8. The inflammatory significance of E. coli was substantially broader and 

more potent compared to pure recombinant TNF-� and IL-��* As potential candidates for 

inhibition of E. coli-induced inflammation, the TNF-� inhibitors, etanercept and infliximab, 

and the IL-1 receptor antagonist, anakinra, were explored. Etanercept and infliximab,

specifically binding TNF-�, dose-dependently neutralized 10 ng/mL of rhTNF-� added to 

whole blood. Complete neutralization was obtained by 200 μg/mL and 0.5 μg/mL whole 

blood, respectively. Anakinra does not bind IL-��, and functional inhibition was measured 

using IL-8 as readout. The IL-8 concentration induced by 1 ng/mL of rhIL-�� was dose-

dependently decreased by anakinra and completely inhibited by 1 μg/mL whole blood.

However, inhibition of TNF-� or the receptor ligand to IL-���did not have any impact on 

oxidative burst or production and release of other cytokines, nor upregulation of the cell 

surface marker wCD11b. By contrast, combined inhibition of C and CD14 virtually abolished 

all measured inflammatory mediators induced by E. coli.

Paper II

The infusion of BK to anesthetized pigs caused an immediate and dose-dependent drop in 

MAP and SVRI. One μg and 100 μg of BK reduced MAP with 15 % and 48 %, respectively. 

CI increased, whereas HR and MPAP remained constant. All hemodynamic effects of 

different concentrations of BK (100, 1000 and 20 000 μg) were completely blocked by a prior 

infusion of icatibant, which is a highly selective competitive B2 receptor antagonist. The 

effect of icatibant was then investigated in a blinded randomized controlled study model of 

Gram-negative induced sepsis in pigs. N. meningitidis was infused intravenously without any 

pretreatment (n = 8), or to pigs pretreated with icatibant (n = 8). Negative controls received 

saline only. The icatibant treated group developed the same degree of severe sepsis as did the 
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positive controls. Both groups had massive capillary leakage, leukopenia, and excessive 

cytokine release.

Measurement of BK1-5 was first conducted in vitro. BK1-5 levels corresponded closely to the 

amount of exogenous BK that was added to whole blood. In vivo, after giving increasing 

bolus doses of BK greater than 100 μg, increasing amounts of BK1-5 were detected. In the 

blinded randomized controlled study of N. meningitidis-induced sepsis, BK1-5 was not 

measurable in baseline samples, but increased to an average level 1.4 + 0.8 ng/mL at 4 hours 

of sepsis. However, no differences in BK1-5 level were found between pigs receiving only 

saline, only bacteria or bacteria and icatibant. As part of a supplementary project to this study, 

two pigs underwent cecal ligation and puncture (CLP)-induced sepsis, and two pigs 

underwent E. coli-induced sepsis. BK1-5 was not detected in any of these pigs. 

Paper III

OmCI dose-dependently inhibited all three complement activation pathways similarly, and the 

inhibition was complete at a dose of 0.64 μM OmCI in both pig and human. The inhibitory 

effect of OmCI in pig and human was further demonstrated in different setups and readouts. 

OmCI dose-dependently inhibited E. coli-induced formation of TCC in whole blood. HAIGG-

and zymosan-induced TCC formation in serum was completely inhibited at 0.64 μM OmCI. 

E. coli-induced upregulation of the cell surface marker CD11b and the pig ortholog 

wCD11R3 on granulocytes were in both species dose-dependently inhibited by OmCI. In 

humans, the upregulation of CD11b was reduced by > 60 %, and in pigs the wCD11R3 was 

completely abolished at 0.32 μM OmCI. E. coli-induced IL-8 formation was inhibited in pig 

and human whole blood by OmCI alone, whereas IL-���was inhibited in human whole blood

only. By using OmCI and different specific complement inhibitors this study demonstrates 

that the E. coli-induced LTB4 formation is complement dependent. However, it is known that 

OmCI captures LTB4 within an internal binding pocket, making it difficult to determine 

whether the reduced concentration of LTB4 is conditioned to direct binding or reduced 

production. Thus, increasing doses of OmCI was added to a pig and human LTB4-enriched 

plasma. OmCI dose-dependently decreased the signal in the assay, consistently with covering 

of epitopes on the leukotriene preventing it from being detected in the assay. Finally, the 

effect of OmCI on complement activity was evaluated in an E. coli sepsis model in pigs of 15 

kg. All pigs received a similar continuous infusion of OmCI (0.5 mg OmCI/h), whereas 
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different bolus doses of OmCI were tested. A bolus dose of 0.5 mg/kg completely ablated the 

classical, lectin, and alternative pathways immediately after administration and remained 

effective throughout the experiment. 

Paper IV

This study explored the effect of OmCI alone and combined with anti-CD14 on the early 

inflammatory, hemostatic, and hemodynamic responses in porcine E. coli-induced sepsis. 

Thirty pigs were randomly allocated to a negative control group (n=6), a positive control 

group (n=8), or one of two intervention groups receiving either OmCI (n=8) or OmCI and 

anti-CD14 (n=8). The OmCI dosing regimen completely ablated complement activation and 

significantly decreased the level of LTB4 in septic pigs. Granulocyte tissue factor expression, 

formation of thrombin-antithrombin complexes (p<0.001), and formation of TNF-� and IL-6

(p<0.05) were efficiently inhibited by OmCI alone, and abolished or strongly attenuated by 

the combination of OmCI and anti-CD14 (p<0.001 for all). Additionally, the combined 

therapy attenuated the formation of PAI-1 (<0.05), IL-1�, and IL-8, increased the formation 

of IL-10, and abolished the expression of wCD11R3 and the fall in neutrophil cell count 

(p<0.001 for all). Interestingly, OmCI combined with anti-CD14 delayed the increases in 

heart rate by 60 min (p<0.05) and mean pulmonary artery pressure by 30 min (p<0.01).

Histopathology revealed a non-significant median 60 % inhibition of lung inflammatory 

changes in the OmCl group.
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DISCUSSION

The four papers included in this Thesis explore and elucidate the significance of different 

target approaches in Gram-negative induced inflammation and sepsis. The ex vivo study 

presented in paper I, draws a clear line between inhibition of traditionally regarded early and 

central proinflammatory cytokines, versus inhibition of complement and CD14, in Gram-

negative induced inflammation. Paper II is an example of single agent intervention using 

icatibant to inhibit the effects caused by BK, recognized as an immediate mediator of 

inflammation. Paper III and IV are closely interconnected and are follow-ups of paper I. The 

data from these preclinical ex vivo inflammation studies and in vivo sepsis studies display 

clear differences, and reveal a significant distinction between the efficacies of upstream 

versus downstream inhibition of the inflammatory response.

Upstream and downstream 

Severe sepsis and septic shock are life-threatening conditions characterized by a whole-body 

inflammatory state and homeostatic imbalance (92). With early intervention one may reduce 

the companion organ failure and gain time by attenuating the detrimental inflammatory 

response. This has been and still is a major task in sepsis related research. From a historical 

perspective, much attention has been directed toward the early-appearing central 

proinflammatory cytokines. Due to their potential ability to cause endogenous harmful 

systemic effects they have been regarded as upstream mediators, but, in my opinion they 

belong to the downstream mediators of inflammation. 

Downstream inhibition

Tumor necrosis factor-alpha (TNF-�) was regarded as the most important proinflammatory 

cytokine, and different observations and experimental results connected the role of TNF-�

directly to the pathogenesis of sepsis. The level of TNF-� correlated with the outcome of 

sepsis (89,90), administration of TNF-� to animals created both cardiovascular alterations and 

inflammatory responses similar to what was seen in septic patients (126-128), and inhibition 

of TNF-� protected animals against lethal effects induced by experimental sepsis (129,130).

These promising results were followed by several small and large clinical trials, but in general 

they failed to demonstrate the utility of anti-TNF-����
�#$�����#�����������(92,131,132). An 
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additional lack of effect was also observed when trying to inhibit the effect of IL-���

(133,134).

Why? This can partly be explained by a mismatch between experimental data largely obtained 

from animal research and the human course of sepsis. In mice challenged with intravenous 

infusion of LPS, an increased formation of TNF-��Q�����X
�'�Y	'����	�#�
���	�\����

was observed in clinically more relevant mouse-CLP models (135). Experiments further

showed that mice subjected to CLP-induced sepsis did not achieve improved survival by anti-

TNF-���
������(135,136). In humans, certain forms of sepsis, such as meningococcal 

disease, demonstrate high levels of TNF-�, whereas low levels are observed among patients 

with less severe forms of sepsis (137). Evidence suggests a correlation between the severity of 

global hypoperfusion and TNF-��'X'�(138). This fact underscores a crucial problem related 

to running clinical sepsis trials characterized by a nonhomogenous patient population, and can 

partly explain why anti-TNF-��treatment failed to that extent. In this context it is reasonable 

to note that one of the largest trials, including over 2500 patients and treated with afelimobab 

(F(ab)2 monoklonal anti-TNF-��Y
�^���_, significantly reduced 28-days mortality by 5.8 % 

among patients stratified as IL-6 positive (139).

Paper I demonstrates that TNF-������`{-�� are inferior inducers of inflammation compared to 

E. coli. In addition, selective inhibition of these cytokines failed to attenuate E. coli-induced 

inflammatory responses in human whole blood, whereas a profound inhibitory effect was 

observed by anti-CD14 and compstatin. There is therefore reason to presume that the rather 

disappointing effect seen by the mediator-directed therapy, i.e. proinflammatory cytokine 

inhibition, was due to the fact that the inflammatory network is broadly activated by upstream 

molecules related to recognition, limiting the effect of neutralization of single downstream 

mediators.

Upstream inhibition

The sensors of innate immunity, expressed as PRRs, are as far upstream in the inflammatory 

network as possible. As explained in the introduction they act as danger sensors, thereby 

initiating the first inflammatory stimuli, which subsequently lead to downstream cascade 

reactions. TLR-signaling is dependent on or facilitated by several accessory molecules (50).

Both MD2 and CD14 are important molecules facilitating TLR4-signaling. CD14 is an 
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archetype of an upstream recognition molecule, and has the ability to bind different microbial 

products, such as LPS, peptidoglycan and DNA (48). In addition, is also implicated as an 

accessory molecule in relation to TLR2, TLR3, TLR5, TLR7 and TLR9 (48). Thus, the 

properties of CD14 as a promiscuous upstream molecule make it an ideal target for inhibition.

The recognition molecules of complement activation, C1q, MBL, and ficolins, are selectively 

not suitable targets for a global inhibitory effect of complement. All complement pathways 

converge toward the central complement factor C3, but they do not contribute equally to 

downstream effects. The AP amplification plays a predominant role for the effects initiated by 

both the CP and the LP, being responsible for more than 80 % of TCC release in the fluid 

phase (140,141). Inhibition of the alternative pathway by targeting factor D, thereby leaving 

the CP and LP functionally preserved, is an interesting therapeutic approach. A combined 

inhibition of factor C2 and factor D to block all three initial complement pathways, or 

inhibition of C3, are methods for achieving a profound and almost complete inhibition of the 

complement system (37,142). In addition to the key role that C3 plays in the complement 

cascade, it can be regarded as a recognition molecule. Through spontaneous hydrolysis or 

tickover of C3, traces of C3b may attach to nearby target surfaces with the consequence that 

subsequent amplification of C3b deposition takes place in the absence of complement 

regulatory proteins (143). Thus, inhibition of C3 represents an ideal upstream inhibition 

target.

By targeting the terminal step in the complement pathway, C5 or its receptor(s) has a vast 

anti-inflammatory potential due to the important biologic role of C5a, and does not affect 

immunoprotective and immunoregulatory functions of upstream C3 activity (144). Although 

C5 is regarded as downstream in the complement cascade, targeting this molecule may

represent upstream inhibition. C5 is not a pattern recognition molecule but is closely 

connected to recognition, and a crucial molecule for downstream effects.

The individual sensor and effector pathways described above act as partly independent 

branches of pattern recognition. However, as mentioned in the introduction, evidence 

indicates a considerable cross-talk, implying that they can either compensate, synergize, or 

antagonize each other. Although the efficacy of selectively targeting one of these branches 

may induce a profound anti-inflammatory effect, real upstream inhibition is achieved by a 

combined inhibition due to the effect of the redundancy in host defense (68).
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Single-mediator inhibition

The historical anti-TNF-���������are already referred to as insufficient examples of single-

mediator intervention. Recently, eritoran tetrasodium (anti-TLR4) and drotrecogin alfa 

(activated protein C) were added to the list of unsuccessful single-mediator interventions, as 

both treatment regimens have failed to demonstrate improvement in clinical randomized trials 

(103,145).

Capillary leakage and vasodilatation are cardinal features of sepsis, and lead to intravascular 

volume deficit, hypotension, tissue edema, and deteriorated nutritional transport and tissue 

oxygenation. Attenuating the capillary leakage is a tempting approach, and BK has been a 

relevant candidate target. First, among numerous effects BK promotes capillary leakage (60);

second, evidence suggests that sepsis activates the contact system, thereby releasing excess of

BK (146-148); and third, the highly selective antagonist of the B2 receptor, icatibant 

(Firazyr®), has been proven to effectively attenuate the capillary leakage induced by 

hereditary angioedema (149).

Paper II challenges the current view of bradykinin (BK) as an important mediator of edema 

shock and inflammation in sepsis. The stable metabolite of BK, BK1-5, did not increase in 

any of the pigs subjected to either meningococcal-, E. coli-, or CLP-sepsis. In healthy 

individuals the plasma concentration of BK is reported to be 2.2 fmol/mL (150) and thus very 

low. However, in patients suffering from the deficiency disorder of C1-inhibitor, hereditary 

angioedema, BK has been measured to increase 12 times the upper limit of normal level

during attacks (150). Concerning sepsis, previous reports indicate excess BK release during 

sepsis, but these estimations are based on indirect measurements, which only state that contact 

activation has taken place. We do not have any exact data about the BK-level in septic 

conditions, but given the plethora of articles describing contact activation in sepsis we have a 

clear notion that sepsis induces BK release. It is therefore astounding that we did not find any 

increased level of BK1-5 among the septic pigs. The possibility that the measurements of 

BK1-5 were not reliable is present. Shortage of sample material from pigs entailed that we 

used human blood as surrogate matrix, which may have affected the chromatographic analysis 

and increased lower detection limit of BK1-5. Furthermore, a thorough stability test was not 

performed, which may reflect the relatively low sample yield we observed. Finally, for 

technical reasons several of the validation samples were frozen while waiting to be analyzed.

Despite this, we still have reason to suggest that the analyses were valid. Icatibant was clearly 
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demonstrated in the icatibant group only. More important, all samples taken from the pig 

receiving exogenous BK showed BK1-5 levels as expected. Similarly, the in vitro experiment 

demonstrated that the BK1-5 level corresponded closely to the amount of exogenous BK 

added to whole blood. Still, this reflects an uncertainty, and it seems imperative to proceed 

with studies and elucidate this field more closely, and, in that connection, also include 

samples from septic patients. 

If we assume that BK is generated during sepsis, paper II demonstrates no effect of blocking 

the bradykinin 2-(B2) receptor. Based on theoretical estimates, we claim that the 

concentration of icatibant given was high, also causing a 65 % to 85 % blockage of the B1 

receptor. Did we give too much icatibant? In a previous LPS-induced sepsis study on pigs, it

was found that solely inhibiting the B2 receptor increased survival (p=0.052), and improved 

all hemodynamic parameters, including a reduction of pulmonary artery pressure (151).

Interestingly, inhibition of both B1 and B2 receptors led to a worse outcome compared to the 

inhibition of the B2 receptor only. This implies that we may have masked beneficial effects in 

our own study by giving too much icatibant. However, the interplay or relation between the 

B1 and B2 receptors is complicated and difficult to penetrate, and there are indeed conflicting 

results which, are partly discussed in paper II.

Notably, the significance of BK as an important mediator in capillary leakage may easily have

been drowned out by the massive inflammation induced by the meningococcal shock.

Although BK is an immediately generated mediator in the inflammatory process, it is only 

one of many. The missing effect of icatibant joins the ranks of other interventional single 

agent studies, which in general can refer to disappointing results.

Complement inhibition and pigs

It has been challenging to find a functional complement inhibitor that could be used large-

scale in pigs. In a previous study our lab tested several candidate complement inhibitors; the 

synthetic serine protease inhibitor FUT-175, anti-factor B mAb, anti-factor D mAb, and the 

recombinant protein Vaccinia virus Complement control Protein (VCP) (152). All these 

candidates inhibited porcine complement activation to various degrees. For instance, factor B 

efficiently inhibited zymosan- and HAIGG-induced complement activation, but E. coli-

induced complement activation was insufficiently inhibited. Factor D incompletely inhibited 
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all types of complement activation. VCP was the only candidate that efficiently inhibited all

activators of complement, and was therefore found to be promising for in vivo studies.

However, the absence of large-scale supplies has prevented these experiments. Our lab has

also tested the C5 inhibitor, eculizumab (Soliris®), and the C3 inhibitor, compstatin, and 

found that none of these complement inhibitors work in pigs. The arrival of OmCI was 

therefore encouraging, particularly since we were able to use it on a large scale.

Paper III documents that OmCI efficiently inhibits all complement pathways in pigs and 

humans. As briefly discussed in paper III and IV, the effects obtained by OmCI cannot 

exclusively be attributed to complement-inhibitory effects of OmCI, since this molecule has 

bifunctional properties. Unpublished data demonstrate that the binding activities of OmCI are 

independent, and that the binding of C5 and LTB4 occurs on opposite faces of OmCI (Miles 

Nunn, personal observation). Hence, OmCI has the properties to circumvent the effects of 

TCC, C5a, and the effects of the LTB4. The arachidonic acid derived LTB4 is of vital 

importance in the early inflammatory reaction, and its action includes neutrophil chemotaxis, 

cytokine and chemokine production, secretions of granules, phagocytosis, and induction of 

oxidative burst (20,153). Evidence suggests that activities of both LTB4 and C5a are 

reciprocally enhanced. In a mice tumor protocol study, neutrophil recruitment by C5a 

required amplification via LTB4 (154), and by contrast, another mice study evaluating the 

effect of C5a receptor-inhibition on intestinal injury revealed reduced formation of LTB4 

(155). Although it seems quite obvious that the overall inflammatory power of C5a exceeds 

that of LTB4, the OmCI results from both paper III and IV are influenced by an unknown 

LTB4-inhibitory effect. In the context of attenuating the inflammatory response, this is 

presumably an advantage. 

Differential roles of complement and CD14

An unconditional comparison between paper I, III, and IV is difficult as the results reflect ex

vivo and in vivo data, and, importantly, are based on different species, human and pig. For 

instance, E. coli-induced upregulation of wCD11R3 in pig whole blood was completely 

abolished by OmCI (paper III), implying that this cell surface molecule was complement-

dependent. By contrast, no effect was observed with respect to OmCI when pigs were 

challenged with E. coli-induced sepsis (paper IV). Common to all three studies was the strong 

dependence on CD14, especially those effects related to E. coli-induced formation of 
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cytokines. Ex vivo, anti-CD14 alone significantly and profoundly attenuated pig and human 

cytokines. The efficacy of complement inhibition was less pronounced, though several of the 

individual cytokines were significantly reduced. Combined inhibition of complement and 

CD14 essentially abolished the formation of all cytokines. In vivo (paper IV), the anti-

inflammatory effects of OmCI alone and the combined effects of OmCI and anti-CD14 

mirrored to a large extent the ex vivo observations. An additional treatment arm, exclusively 

with anti-CD14, would have improved the study by revealing the impact of anti-CD14 alone.

Due to a lack of access to anti-CD14 this could unfortunately not be done. However, historical 

data reflecting the effects of anti-CD14 alone (122) reveal effects on cytokine formation 

comparable to the ones observed by the combined treatment group (OmCI + anti-CD14). This 

gives reason to suggest that the effect of OmCI in this group was partly overwhelmed by the 

effect of anti-CD14. At the same time OmCI alone strongly reduced thrombogenicity and 

exerted pronounced anti-inflammatory effects. Despite the fact that the model was featured by 

a particularly strong dependence on CD14, this underscores the significance of complement 

and redundancy of host defense. 

Different roles of complement in E. coli- and N. meningitidis-induced inflammation have 

been comprehensively elucidated in a human ex vivo whole blood study (156). This study

demonstrated that several cell adhesion molecules and granulocyte enzyme release were 

mostly complement dependent, whereas the majority of the proinflammatory cytokines were

primarily dependent on CD14. Recently, the significance of complement was also 

demonstrated in a model of E. coli-induced sepsis in baboons, as complement inhibition 

displayed broad anti-inflammatory effects, partially reversed microcirculatory dysfunction,

and prevented systemic blood pressure falling (157).

Notably, complement may be relatively more important in other sepsis models or other types 

of experimentally induced inflammation. For instance, the significance of C5a has been 

broadly uncovered in polymicrobial sepsis in rodents, induced by CLP (cecal ligation and 

puncture) (93). Inhibition of C5a or one or both of its receptors are all target-strategies that 

have been demonstrated to reduce inflammation and increased survival among rodents 

subjected to this type of abdominal sepsis (158,159). Preliminary data from our own lab 

suggest that the efficacy of complement inhibition of Gram-positive induced inflammation is

to some extent more pronounced compared to Gram-negative induced inflammation.
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Tissue ischemia is a central component of several conditions such as myocardial infarction, 

stroke, organ transplantation, and vascular surgery. Fast restoration of adequate blood flow to 

the jeopardized tissue is the primary treatment goal, however, reperfusion of ischemic tissue 

may paradoxically exacerbate tissue injury (160). Numerous reports document that 

complement inhibition attenuates ischemia-reperfusion injury, indicating that complement 

plays a pivotal role in this tissue-pathogenesis (160-162). It may be argued that the models of 

Gram-negative induced inflammation and sepsis used in this Thesis are less suitable in 

demonstrating the significance of complement, as compared to other models. Nevertheless, 

paper I, III, and IV elucidate a central role of complement in the applied models that cannot 

be ignored.

The in vivo models and intervention principle

Lacking concordance between animal studies and clinical trials is regularly observed (163).

Concerning preclinical sepsis models the picture is probably even worse. Due to the intrinsic 

complexity that arises in relation to the human syndrome of sepsis, it has been stated that 

“there is no single ideal model of shock or sepsis” (75). Nevertheless, among several 

researchers the polymicrobial model induced by CLP has been regarded as the most preferred, 

as it better mimics the human sepsis progression, including the hypo-inflammatory or 

immunosuppressive “second” state of sepsis (164). The latter is important, as modulation of 

the blunted immune response is an interesting target for intervention (165). However, the 

model of N. meningitidis-induced sepsis, which was used in this Thesis, mirrors to a large 

extent the human meningococcal disease and displays clear translational properties (119), and 

could not be replaced by a CLP-model. Besides, there are also several limitations with the 

CLP-model, not least concerning the inaccuracy with respect to controlling the magnitude of 

sepsis (164). In addition, the majority of these studies have been performed using rodents,

which do not share the same degree of similarities with humans as pigs do (see Material and 

methods.)

The applied sepsis-models of either E. coli or N. meningitidis have both definite strengths.

They are forceful in vivo models, particularly suitable for studying the initial phase of Gram-

negative shock, and demonstrate an important combined investigation of inflammation,

hemostasis, and physiology. Although the time frames in both models were compressed, they 

displayed time-dependent dynamics characteristic of shock development. Furthermore, the 
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models are well characterized and standardized, implying that the interpretation of the data 

can be integrated into a larger context. This is of significant value, and has been stated to be 

an explicit challenge with regard to preclinical models (166).

There are several limitations with the in vivo models, which should carefully be considered. 

The pigs subjected to E. coli-induced sepsis in paper IV had an average weight of 15 kg, and 

are thus comparable to small children in the clinic. The data might therefore reflect pediatric 

sepsis more than adult sepsis. In both paper II and IV the administration of inhibitors or 

treatment was given prior to the challenge of sepsis and inflammation. A prophylactic 

treatment regimen limits the clinical utility, of course. Although prophylactic treatment as 

such is widely used in modern medicine, not least antibiotics in relation to surgical procedures 

(167,168), a prophylactic treatment for sepsis is not yet an issue. Theoretically, one can 

imagine the usefulness of providing a prophylactic sepsis regimen. The combined inhibition 

of complement and CD14/TLRs was also initially proposed as a treatment strategy to the 

patients at risk (68). The challenge, however, is to determine how we identify these patients.

As already mentioned in the introduction, we do not have the tools to identify the patients at

risk, despite the availability of a large number of biomarkers (75,169). In addition, a

prophylactic treatment regimen that profoundly attenuates central arms of innate immunity 

must be provided with caution, and it necessitates a secure identification of the patients at 

risk. Thus, a prophylactic treatment regimen remains a question for the future. 

When it comes to judging the usefulness of the prophylactic treatment, we must remember 

that the primary goals of the included studies belong to the field of science exploring the 

proof of concepts. The different studies try to answer the scientific questions regarding 

whether the molecules C5, CD14, TNF-�, IL-1�, and BK are involved, and to what extent 

they are involved, in Gram-negative induced inflammation and/or sepsis. As part of a

preclinical investigation of sepsis and the study of the underlying mechanisms, this is of great 

importance and a prerequisite for further investigation that may explore the effect of 

postinsult inhibition or treatment (166). Interestingly, delayed administration of anti-C5a 

antibody to mice subjected to CLP-sepsis, showing obvious clinical signs of sepsis, has 

shown to increase the survival rates (158). These encouraging results should be confirmed in 

future experiments with larger animals such as pigs, thereby providing better preclinical 

evidence and information about a therapeutic window. 
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The translational advantage of the in vivo models

The close relation between inflammation and coagulation (21) was clearly demonstrated in

paper IV. The combined inhibition of C5 and CD14 had a striking anti-inflammatory effect,

totally ablated TF expression, and prevented neutropenia. OmCI alone significantly attenuated 

the formation of TNF-������`{-6, reduced the expression of TF with more than 40 %, and

dampened sepsis-induced histopathological lung changes. These effects are particularly

interesting and demonstrate the remarkable and potent effect of upstream inhibition of PRRs. 

The global effects were multifaceted and attenuated some core features of sepsis; 

inflammation (138), thrombogenicity (170), neutropenia, and tissue (lung) injury (171). The 

model's ability to show these dynamic relations is a strength and indeed of translational value.

The effects of OmCI parallel those observed in a newly published report according to which 

complement inhibition partially reversed sepsis-induced leucopenia, thrombocytopenia, DIC,

and inflammatory response, and provided a substantial organ-protection (157). It is well 

established that complement promotes coagulation and thrombosis by upregulation of TF on 

neutrophils, monocytes and endothelial cells (21,40). It was recently shown that E. coli-

induced TF functional activity in plasma microparticles was primarily dependent on C5aR

(172). This may be of great importance, since the formation of microparticles seems to reflect 

the severity of DIC (97). In accordance with our observation demonstrating a total ablation of 

TF-expression by the combined inhibition of CD14 and complement, evidence also suggests 

that upregulation of TF is dependent on TLR4/MD2-signaling (173). However, other reports 

maintain that either CD14 or LPS is important for TF upregulation (172,174), suggesting that 

this must be further elucidated. I have previously commented on the anti-inflammatory effect 

of OmCI alone and the tremendous effect provided by combined inhibition by anti-CD14 and 

OmCI. The vast anticoagulant effect of the combined treatment regimen may have reinforced 

this anti-inflammatory effect due to reduced amount of coagulation/fibrinolysis proteases and 

thereby cleavage of complement factors (175).

Interpretation of the histopathological findings in paper IV appears to be somewhat difficult. 

OmCI alone seemed to reduce the sepsis-induced lung changes markedly, though these results 

were not statistically significant, whereas no similar trend was observed in the combined 

treatment group. Reduced thrombogenicity and inhibited LTB4-dependent effects would in 

both groups partially induce the same protective effects. Attenuation of wCD11R3 by the 

combined treatment regimen should presumably have a tissue-protective effect, as this 
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integrin molecule plays a critical role in sequestering neutrophils from the circulation (85).

Furthermore, the adhesions molecules VCAM and ICAM, which are important for neutrophil 

extravasation and inflammation, are upregulated on respiratory epithelium upon LPS-

stimulation (176). The question as to why we did not see any lung-protective effect of the 

combined treatment regimen, remains unanswered and a subject of speculation. Neither the 

increased numbers of neutrophils observed in this group nor a side effect conditional on the 

administration of anti-CD14 can be excluded. 

The abrupt increase in MPAP forced us to give norepinephrine as rescue medication, which 

certainly biased the hemodynamic data. It is therefore tempting to speculate that the increased

HR and MPAP observed in the combined treatment group would be further delayed or only 

limitedly increased if we had used a less forceful model. 

Thus, this in vivo study demonstrates that combined inhibition of key molecules belonging to 

the main system of recognition has the propensity to act broadly on the numerous biomarkers 

and reveal pronounced effects on downstream mediators far beyond what is achievable from 

ex vivo studies. With regard to sepsis, several authors have correctly claimed that single-

mediator directed therapy insufficiently exerts effects, or hardly exerts any effects at all, on

the complex network of mediators (177-179). This Thesis supports this notion. The ex vivo

experiments performed in paper I confirm the downstream properties of proinflammatory 

cytokines, in addition, paper II questions the significance of BK in sepsis and suggests that 

this one is of minor importance. In contrast, upstream inhibition of central pathways of innate 

immunity, complement and CD14, appears to be more of a pluri-mediator directed therapy

(Figure 3). Careful interpretation should always be made when evaluating preclinical and 

experimental data (180), however, the findings from the Thesis provide valuable insight into

the inflammatory pathways, which will guide further science. 
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Figure 3. A proposed approach for upstream target intervention of innate immunity to 

attenuate inflammation.

Future perspectives 

Administration of LPS to healthy humans induces differential expression of 3714 unique 

genes (181), reflecting the enormous complexity of the innate immune response. At the same 

time, the expression of innate immune responses seems to be regulated through a relatively 

small number of pathways, which is encouraging. In the continuing work it seems imperative 

to elucidate the efficacy of postinsult or rescue-inhibition of Gram-negative induced 

inflammation and sepsis, and explore the possibility of a potential therapeutic window. In 

principle this may be achieved by ex vivo experiments, but obviously needs further 

examination in vivo. Using a polymicrobial model induced by CLP in pigs would indeed have 

been tempting, but source demanding with respect to finances, time, and logistics. Still, I 

believe there is no way around it we are to continue down this path, and we need a more 

realistic or disease-like model for this purpose. In addition, it seems crucial to reveal the 

significance of complement and CD14 in inflammation induced by other pathogens than E. 

coli, especially Gram-positive bacteria that are the cause of a large portion of the infectious 

diseases. Although infections by microbes potently activate an inflammatory response, the 

endogenous derived inducers of inflammation may trigger a similar harmful response via the 
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same inflammatory pathways. As already mentioned with regard to complement, studies 

suggest that the TLR receptor family is implicated in myocardardial ischemia-reperfusion 

injury, especially TLR4 and TLR2 (182,183). We have established a relevant pig model of 

myocardial infarction suitable for exploring the significance of the independent branches of 

pattern recognition, complement, and CD14. In future projects, it will therefore be interesting 

to explore the efficacy of the combined inhibition of complement and CD14 in this model, but 

also in other relevant inflammatory disease models of endogenous origin.
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CONCLUSION

This Thesis clearly demonstrates a significant difference between inhibition of upstream 

versus downstream mediators of Gram-negative induced inflammation. Central 

proinflammatory cytokines such as TNF-�, IL-�, and IL-6, although early in the cytokine 

response, belong to the downstream actors of inflammation as compared to upstream 

mediators of recognition systems such as complement and CD14/TLRs. The tick-derived C5 

inhibitor, OmCI, was comprehensively evaluated in pigs and humans, and the data 

demonstrate an effective and comparable potency of OmCI in both species. In a preclinical 

model of Gram-negative sepsis in pigs, pretreatment with OmCI combined with anti-CD14 

displayed vast anti-inflammatory properties, reduced thrombogenicity, and delayed 

hemodynamic changes. Despite the model’s apparent dependency on CD14, OmCI alone 

markedly reduced thrombogenicity and formation of central proinflammatory cytokines. 

Although there is still a long way to go, combined inhibition of complement and CD14 

represents a potential treatment regimen in Gram-negative sepsis. Importantly, this treatment 

regimen may be an interesting treatment approach in other systemic inflammatory conditions, 

of exogenous as well as endogenous origin, as well.
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