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Aims 
The objective of this study is to identify genetic predictors for increased mammographic density, 

and by way of this contribute to the knowledge of breast cancer development from normal, 

healthy breast through the potentially premalignant condition of dense breast to breast cancer. 

  

1. Identify single nucleotide polymorphisms (SNPs) with putative impact on mammographic 

density and/or hormone levels. 

 

2. In combination with expression data, identify markers with regulatory effect associated 

with mammographic density and hormone levels. 

 

3. Apply original statistic analysis to compare mammographic density groups in order to 

identify genetic risk factors for increased mammographic density and breast cancer. 
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1 Introduction 
“We cannot hope to develop new, more effective strategies for cancer prevention if we do not 

understand how the factors that increase the breast cancer risk affect the development of the 

normal human mammary epithelium” 

     - Anderson, Clarke and Howell, 1998 -  [1] 

The breast is the most prevalent site of cancer in women. Early detection is key to improving 

therapy and prognosis, and as a result more focus is now placed on the development and 

understanding of the normal breast. The aim is to detect signs of cancer already in the first steps 

in the transition from a healthy to a malignant state.  

1.1 The breast 
1.1.1 Breast anatomy 

The breast is one of the few, if not the only, human organ that is not completely developed at 

birth [2], and unlike other ramiform organs most of the branching occurs during the adolescent 

years [3]. Central in the development of the breast are the female hormones, which play a key 

role from puberty through adulthood to menopause. The hormones exert their effect through local 

signaling cascades and stromal-epithelial interactions to elicit tissue reorganization, 

differentiation and specific activities that define each phase of development. The main function 

of the breast is milk production, and thus the breast has an “open” structure which ensures room 

for production and storage of milk during pregnancy and lactation (Figure 1). Structurally the 

mature female breast is made up of 1) adipose tissue, 2) connective tissue, 3) vasculature and 4) 

epithelial tissue [4]. The first three are included in the so-called microenvironment, while latter 

category includes the major functional mammary units, the lobules and ducts. The lobules, which 

are capable of producing milk, are drained by the ducts which transport milk to the nipple and the 

two are collectively referred to as the terminal duct lobular unit (TDLU) [5,6] (Figure 2). The 

area known as the TDLU was so called due to a disagreement between surgical and comparative 

pathologists. While the first claimed that breast cancers arose in the ducts, the latter saw that it 

originated in dilated lobulo alveolar units. Due to rigidity towards changing the basic concepts in 

surgical pathology, the area was politically correctly termed TDLU [5]. The TDLUs have gained 
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much attention due to the fact that they have been recognized as the site of origin of preneoplastic 

lesions such as atypical ductal hyperplasia, which may evolve to ductal carcinoma in situ (DCIS), 

which in turn may progress to invasive carcinoma [7]. 

 

Figure 1: Structural anatomy of the breast [8]. Netter Illustration from www.netterimages.com ©Elsevier inc. All rights reserved 

Although some refer to the TDLU as the equivalent of lobule type 1 [7], others [6] and also 

herein, the TDLU is defined as the duct and lobule combined, thus the structure of the TDLU 

varies depending on the different lobule stages 1 to 4 (Figure 2:B). According to studies by Russo 

and Russo, lobule type 1 is the least differentiated lobule with approximately 6-10 ductules, 

lobule type 2 evolves from the previous and is comprised of approximately 47 ductules which 

may progress to lobule type 3 with approximately 80 ductules [7,9]. Lobule type 4 is the final and 

most differentiated stage and is only reached in the event of pregnancy when the number of 

ductules increases further in addition to increasing in size [10]. Women who have never been 

pregnant (nulliparous) tend to have breasts mainly composed of lobule type 1 and 2, while parous 

women who have reached the most differentiated state have breasts mainly composed of lobule 

type 2 and 3 [10]. In the mammary gland, the lobules are separated by loose connective tissue 

(intralobular stroma) and are arranged in lobes each with their separate ductal system. The lobes, 

which can be seen as slightly triangular structures (Figure 1), are separated from each other by 

adipose and dense connective tissue (interlobular stroma) [6]. 
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1.1.2 Breast histology 

The TDLU is the major histological unit of the breast [1] and is made up of epithelial and 

myoepithelial cells and a basement membrane (BM) (Figure 2, C). The BM is the outermost layer 

that forms the physical barrier separating the myoepithelium from the intralobular stroma. 

Adjacent to the myoepithelial cells we find the epithelial cells which line the ductal and lobular 

lumen. Little focus has been given to the myoepithelial cells compared with the other cells in the 

breast, especially the luminal epithelial cells [11,12]. However, the myoepithelial cells are 

fundamental in maintaining homeostasis in the breast. Apart from producing the BM, the 

myoepithelial cells influence luminal epithelial cell differentiation, polarity and proliferation in 

addition to invasion and migration of adjacent luminal epithelial cells [13]. In the lactating breast 

the myoepithelial cells have contractile properties which enables the flow of milk through the 

treelike structure of the ducts [14] and contributes to milk secretion [15]. The luminal epithelial 

cells which can be subdivided in ductal and lobuloalveolar epithelium, line the ducts and the 

alveoli respectively. The epithelial cells located in the alveoli become milk-secreting cells during 

pregnancy [14]. 

At the tip of the TDLU the epithelial cells are less differentiated, and in addition to being 

responsible for most of the mammary growth and branching [16] these cells have been suggested 

to be progenitor cells or epithelial stem cells, [17,18] (for review see [19]). Although much is still 

unknown regarding stem cells, these epithelial stem cells are thought to give rise to both the 

mature luminal epithelium and the mature myoepithelium (Figure 3) [20]. Most of the knowledge 

on stem cells is derived from studies using cell culture or rodents, however the human mammary 

stem cell in situ are likely to be similar to those present in mice or rats [21]. Experiments 

performed on mice and rats have revealed “cap cells” as progenitors of the myoepithelium 

[16,22] and “body cells“ (Figure 2, C) as progenitors of the luminal epithelium [16] (for review 

see [23]). 

The breast is a dynamic organ, and in parallel with the rapid proliferation of stem cells forming 

epithelial and myoeptithelial cells, apoptosis takes place to form the ductal structures seen 

throughout the mammary gland (Figure 2). It has been suggested that cells in contact with the 

BM are protected from cell death signal whereas the cells in the centre of what is to become the 
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lumen undergo apoptosis [23]. Programmed apoptosis is also central during remodeling of the 

gland after pregnancy and at menopause. 

The luminal epithelial cells are most frequently reported as the origin of tumors, however, the 

myoepithelial cells are also capable of giving rise to tumors, reviewed in [12,24]. The potential to 

develop breast cancer may depend on high amounts of normal stem cells with mutation potential, 

or because replicating cells have started a malignant pathway [25]. 

 

 

Figure 2: A) Structure of the mammary gland, B) the lobular structures comprising the mammary gland. Lob:lobule, 
TEB: terminal end bud, C) diagram of a TDLU. Modified from [10,26]. 

 

The microenvironment 

“Tumor initiation and progression as well as response to therapy depend on the interplay 

between the cancer and its host - the microenvironment” 

    - Gonzales-Angulo, Hennessy and Mills, 2010 -  [27] 

 

Regulation of the proliferation, differentiation and survival of the epithelial cells of the mammary 

gland is provided by the stromal cells in which they are embedded [28]. Epithelium and stroma 

interactions have been suggested, due to the existence of indistinct boundaries between the 

epithelium and a very loose stroma at the tip of the TDLU [16]. The microenvironment 
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surrounding the TDLUs is made up of a distinct intralobular stroma [19] which is composed of a 

cellular component and an extracellular component/extracellular matrix (ECM). In the cellular 

component we find the loose connective tissue made up of fibroblasts, adipocytes, vasculature 

(endothelial cells) and immune and defense cells such as lymphocytes and macrophages. The 

ECM, which is a matrix of organic material or “ground substance”, is a semi fluid gel which is 

produced and maintained by the fibroblasts. Collagenous, reticular and elastic fibers are 

embedded in the ground substance which provide structural support [29]. By loosely binding 

tissue fluid, the ground substance provides a medium for passage and exchange of materials and 

metabolites throughout the connective tissue and with the circulatory system respectively [14].  

 

 

Figure 3: Suggested progression and regulation of a stem cell dependant on hormones, growth factors and transcription 
factors. Green: basal restricted stem cells (myoepithelial). Dark blue: luminal restricted progenitor cells. Violet: Alveolar 
restricted lineage in response of pregnancy [30]. 
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1.1.3 Normal breast development and physiology 

“The hormonal control of development, growth and differentiation in vivo of the human breast is, 

unfortunately, still an enigma “ 

     - Jean McManus & Clifford Welsch, 1984 -  [31] 

The breast is a hormonally responsive organ, and apart from the first trimester in the womb, the 

development of the breast is guided by steroid hormones from fetus to puberty, through 

adulthood and until menopause.  

 

From fetus to puberty 

The first formation of breast tissue starts already in the womb and at the 5th week of gestation in 

both males and females, and up to the 32nd week of pregnancy the process is independent of 

steroid hormones [9]. In brief, two parallel milkridges starting at the groin and ending in the 

armpit (axilla) form the primary mammary structures. Although most of these ridges fade away, 

small portions are left in the chest region to form the primitive nipples, with a mammary fat pad 

containing 15-20 strips of epithelium that will later become the secretory units of the mammary 

gland [32]. During the adolescent years leading up to puberty the development of the mammary 

gland is limited but keeps pace with the general growth of the body [33].  

Puberty and adulthood 

The female mammary gland undergoes substantial changes as a result of the onset of puberty and 

the consequent increase in female sex hormones. Cyclic changes in mammary morphology are 

observed due to changes in epithelial proliferation induced by the hormone production in the 

ovaries [1]. Both the epithelial tissue and stroma of the breast are influenced by the fluctuating 

levels of the sex steroid hormones estrogen and progesterone. Estrogen is the main driver of 

ductal differentiation in the breast while progesterone is the main driver of lobular development, 

reviewed in [34]. Both hormones are produced in the ovary and while estrogen is formed in the 

Graafian follicles (mature vesicular follicle), the progesterone is produced in the corpus luteum 

that is the remainder of the follicle after the release of the oocyte. Progesterone may induce 

changes in the breast epithelium on its own, however, the greatest changes in breast morphology 

are seen when the two hormones work together to stimulate full ductal-lobular-alveolar 
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development [35,36]. An increased complexity of the ductal-lobulo-alveolar structures is seen 

during each menses, nevertheless, the drop in both estrogen and progesterone levels at the start of 

each menses is accompanied by a regression in the development of the alveolar clusters. 

However, the mammary development reached in one cycle never completely returns to the 

starting point of the previous and thus each consecutive cycle, until approximately the age of 35, 

ensures a gradual accumulation of epithelial tissue [33,37].  

The hormones are the drivers of development and differentiation of the mammary gland in 

addition to local controls [16]. In the developed mammary epithelium the TDLU is the major 

hormone sensitive area [38,39]. Studies on terminal end buds (TEB), which are mouse analogs to 

human TDLU [5], showed that proliferation and regulation of the TEB cells, are regulated by 

systemic hormones such as estrogen, progesterone and growth hormone (GH), and also locally 

acting growth factors such as epidermal growth factors (EGF) transforming growth factor alpha 

and beta (TGF /TGF ) and insulin like growth factor 1 (IGF1), reviewed in [23]. Accordingly, 

the latter growth factors are suggested regulators of programmed cell death in the TDLU due to 

their ability to inhibit or initiate cell growth [23]. 

Additional hormones are involved in growth regulation and differentiation of the TDLUs of the 

breast during pregnancy and include placental lactogen, prolactin, glucocorticoids, growth 

hormone, insulin, chorionic gonadotropin, oxytocin and the sex hormones. During lactation, the 

hormone oxytocin induces milk ejection [26] through activation of the contractile properties of 

the myoepithelial cells [19]. Once the milk synthesis has begun the lactogenic hormones and milk 

proteins may directly regulate growth factors and epithelial proliferation in the breast. 

Involution 

There are two main types of involution; one is experienced during cessation of lactation and the 

other at menopause. Involution is programmed cell death, also termed apoptosis, which occurs as 

a result of the withdrawal of the steroid hormones from mammary epithelial cells. The result is a 

reduction in glandular tissue and an increase in stroma or adipose tissue in premenopausal or 

postmenopausal women respectively. 

Post-lactational involution is two-phased. The first phase starts when the weaning process reaches 

its final stages. At first there is an accumulation of milk in the lumen and little apoptosis of 
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epithelial cells. However after 1-2 days the process is irreversible with the major event being 

epithelial apoptosis. During the second stage the BM is degraded, alveoli collapse and 

macrophages infiltrate and the gland is restructured to a virgin-like state. At the end of the second 

stage 50-80% of the alveoli have been cleared [40] and the breast consists of 70-90% lobule type 

3 [9]. As a result of the post-lactational involution the breast tissue in the parous premenopasal 

women is remodeled and prepared for a new pregnancy [40]. The ducts are not involved in the 

aforementioned process, in contrast to the postmenopausal involution in which the number of 

both lobules and ducts is reduced [41]. 

 

 

Figure 4: The status of the ovary surrounding the menopause.    Illustration: WHO 

 

Involution by ageing occurs during the transition from premenopause to postmenopause which 

takes place over several years and includes the perimenopause and menopause (Figure 4). 

Perimenopause commences at the end of a woman’s reproductive period and includes the period 

before menopause and the year following menopause, at which point a woman is classified as 

postmenopausal. Menopause which is usually experienced by the average woman at the age of 

50, marks the withdrawal of 99% of the 400 000-700 000 ovarian follicles that are present in a 5 

month old female fetus [33,42]. At the time of menopause the ovaries have already had a reduced 

function for one or two years and according to Russo and Russo this event results in a regression 

of lobule structures type 2 and 3, and an increase in the number of lobule type 1 and adipose 

tissue in the mammary gland. The regression is more marked in parous women but is also 

observed in nulliparous women, and both groups will eventually have breasts mainly composed 

of lobule type 1 [7]. However, although the breasts of parous and nulliparous postmenopausal 

women may be at the same lobular stage, the hormonal and physiological changes in the 

mammary epithelium of parous women may have altered their risk for developing breast cancer 
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Biosynthesis of steroid hormones 

As depicted in Figure 5 the steroid hormones are synthesized from cholesterol. The cholesterol is 

synthesized from either acetate, from pools of cholesteryl esters in stereoidogenic tissue, or more 

commonly from low density lipoprotein taken up from diet. In premenopausal women the LDL is 

taken up into the ovarian follicles, a process which is facilitated by follicle stimulating hormone 

(FSH) and lutenizing hormone (LH). In the follicle the LDL is degraded enabling the release of 

the cholesterol. The synthesis of steroid hormones from cholesterol is dependent on one or 

several of six different cytochrome P450s, which are encoded by different cytochrome P450 

(CYP) genes. The CYP genes are expressed in a cell and tissue specific manner, enabling cell and 

tissue specific synthesis of steroid hormones. The ovarian cortex produce androgens, and as 

previously mentioned, estrogen is synthesized in the Graafian follicles, and progesterone in the 

corpus luteum. The synthesis of hormones is carefully regulated due to the fact that they cannot 

be stored in the body [44]. In circulation the steroid hormones are bound to the sex hormone 

binding globulin (SHBG), which serves to inhibit their functions through decreased 

bioavailability. In turn, the level of SHBG is decreased by high levels of androgen, insulin and 

insulin like growth factor 1, while high levels of estrogen and thyroxine increase SHBG levels. 

Other important factors for the levels of circulating hormones include the uridine 5’-diphospho-

glucuronosyltransferase (UGT) enzymes and the 3 beta-hydroxysteroid dehydrogenases 

(HSD3B) and the sulfotransferase family (SULT). The UGTs catalyze the glucoronidation of 

endogenous estrogens and androgens thus making them water soluble and more easily excreted 

from circulation. Likewise the members of the SULT family are enzymes located in the liver and 

adrenal gland and are seen to convert drugs and endogenous compounds into water soluble 

sulfate conjugates, thereby enabling their clearance from circulation. Enzymatic activity of the 

HSD3B is essential in the biosynthesis of all steroid hormones in which it catalyses several 

conversion processes [45].  

The hormones are divided into the estrogens; estrone (E1), estradiol (E2) and estriol (E3), the 

progestagens; progesterone and the androgens; androstenedione, dehydroepiandrosterone, 

dihydrotestosterone and testosterone (Figure 5). Estrone is synthesized from androstenedione, 

estradiol from estrone in premenopausal women and from testosterone in postmenopausal women 

and estriol is synthesized from estradiol. Estrone, which is a weaker estrogen than estradiol, is 

present in higher levels in postmenopausal women. Progesterone is derived from pregnenolone 
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and its activity is modulated by the progesterone receptors. Dependent on the receptor they bind 

the hormones may be grouped into; glucocorticoids, mineralcorticoids and the steroid hormones.  

Steroid hormone receptors 

Estrogen and progesterone exert their effects through the estrogen receptor (ER) and the 

progesterone receptor (PR). Both ER and PR belong to the nuclear receptor family (NR) and like 

other members of this family they are ligand-activated transcription factors that regulate gene 

expression [46]. Upon binding of the hormones to their respective receptors, two ligand-receptor 

complexes may dimerise. The result is increased phosphorylation of the receptors, subsequent 

binding of specific hormone responsive elements (HRE) in the promoters of the target genes and 

interaction with coactivatior proteins and transcription factors needed for the transcription of 

DNA to mRNA.  

The estrogen receptor consists of two proteins, namely ER  and ER  which are transcribed from 

the ESR1 and ESR2 genes respectively. In the presence of ligands the receptors may dimerise to 

form ER- , ER-  or ER-  receptor variants. Although the receptors have high structure 

homology they are expressed in various ratios depending on the tissue. ER  is expressed in bone, 

liver, normal breast and breast cancer cells, CNS, cardiovascular system and the urogenital tract, 

in addition to the endometrium and ovarian stroma cells. ER  is expressed in bone, kidney, 

breast, the brain, lungs, intestinal mucosa, prostate and endothelial cells. Due to differences in 

their transactivational domains the receptors may activate different genes. While ER  is targeted 

in cancer therapy, ER  may interfere with the anti-proliferative effects of antiestrogens on tumors 

and may enhance tumor aggressiveness (for an extensive review on the ER see [47]). 

Both estrogen and progesterone act through the ER to induce expression of the PR. Like the 

estrogen receptors the progesterone receptors may also dimerise in the presence of ligands and 

form the homodimers AA and BB or the heterodimer AB. In contrast to the ERs, the PRs are 

transcribed from a single gene (PGR) with two alternative promoters. Ratios of the different 

isoforms vary in response to developmental and hormonal status and also carcinogenesis, for an 

extensive review see [48]. While removal of PR-A show no effect on the mammary gland, 

removal of PR-B reduce pregnancy-associated mammary gland morphogenesis [48]. 
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Steroid hormone and growth factor crosstalk 

Extensive crosstalk has been reported between IGF and estrogens [49], which suggests that 

estrogens act through ER and induce expression of IGF1 and subsequent phosphorylation of 

IGF1R. In turn IGF1 initiates cascades which involve activation of the ER. In addition the serine 

/threonine protein kinase Akt and phosphatidylinositol 3 kinase (PI3K) are seen to play a key role 

in ER-IGF1 crosstalk with Akt mediating the effects of IGF1 [49]. In breast cancer cells E2 and 

IGF1 cooperate to stimulate cell cycle progression [50]. 

The IGF family of growth factors is, as the sex hormones, highly involved in the development of 

the breast, and has been suggested to be involved in the development of both MD and BC. The 

members of the IGF family include the insulin-like growth factor (IGF) ligands such as IGF1 and 

IGF2, insulin-like growth factor binding proteins (IGFBPs) that prolong the IGFs half-life in 

circulation such as the IGFBP1-6, and acid labile subunit (ALS) [51]. The insulin-like growth 

factor receptors (IGFRs) mediate the signals of the ligands that bind them. In mammary ductal 

morphogenesis the presence of insulin-like growth factor is necessary for the estrogen and growth 

hormone (GH)  induced ductal growth. While estradiol and IGF1 may independently provide 

some ductal branching normal TEB formation by estradiol and GH is dependent on IGF1 [52,53]. 

Other known effects of the IGF pathway include cell proliferation and inhibition of apoptosis 

[54] thus linking it to cancer development. High circulating levels of IGF1 are shown to be 

associated with increased risk of breast cancer amongst young women (<50) [55] while IGFR1 

may play a substantial role in the regulation of breast cancer cell growth [56,57]. Conversely, low 

levels of IGFBP3 are found associated with BC risk in premenopausal women [58]. 
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1.2 Single nucleotide polymorphisms 
On average the human genome of two individuals is 99.9% correlated [59]. However, variations 

in the DNA sequence can be detected approximately every 300 bp. These variations are usually 

on the single base level in the form of deletions, insertions or substitutions and are collectively 

referred to as single nucleotide polymorphisms (SNPs) (Figure 6, a). The human genome is 

estimated to encompass more than 11 million SNPs which renders them the most common form 

of genetic variation [60]. By definition, the difference between a SNP and a mutation is their 

population frequency, SNPs have a frequency of > 0.01 while mutations have a frequency of < 

0.01. Although most SNPs have no described biological consequence, the ones that do, make up 

the diversity seen among humans [61]. SNPs have gained increasing interest due to, amongst 

other things, their ability to influence protein folding and function through change in amino acid 

composition. SNPs may also influence mRNA expression through changed affinity of 

transcription factors to their binding site. 

Haplotypes 

A haplotype is a particular combination of alleles in a genomic sequence which is inherited 

together as one unit (Figure 6, b). These combinations may occur with varying frequency 

depending on recombination events and mutations. The human genome can be divided into 

blocks with limited variability in haplotypes [62]. Such haplotype blocks are useful in genetic 

studies since they allow for genotyping of a single SNP or a small group of SNPs, namely 

haplotype tagging SNPs (htSNPs) (Figure 6, c), for the identification of all the alleles within the 

given haplotype block. In theory, this means that the identification of a specific allele marks the 

presence of all the other alleles, thus reducing the list of SNPs required for genotyping and also 

the cost. The degree of allelic association within a haplotype may be estimated by calculating 

linkage disequilibrium (LD). LD does not designate linkage or lack of equilibrium, but rather 

refers to a “disequilibrium in a genetic linkage analysis” caused by the nonrandom association of 

SNPs at two or more loci. Combinations of SNPs in LD are referred to as a haplotype. If several 

haplotypes are in LD they are referred to as haploblocks On a genomic level LD reflects the rate 

of mutations, recombinations and natural selection during evolution and on a population-based 

level LD is indicative of the pattern of geographic subdivision and breeding system reflecting 

population history [63]. The most common measures of LD are r2 and D which both range from 0 

to 1. LD equal to 1 denotes SNPs in complete LD.  
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Figure 6: Schematic diagram of a) SNPs identified in samples from four individuals (1-4), b) The co-inheritance of SNPs in 
the four individuals resulting in haplotypes, c) The identification of htSNPs for the unique identification of haplotypes 
within the four individuals [64]. 

The International HapMap project 

The International HapMap project [65] has made a large contribution to the knowledge of 

common genetic variation in humans. The project started in 2002 and was a collaboration 

between scientists in six countries: Japan, The United Kingdom, Canada, China, Nigeria and the 

United States. The goal of the project was to genotype in three years, 1 million common SNPs in 

270 individuals for the identification of common genetic variations, such as SNPs and 

haplotypes, across chromosomes in ethnically different individuals. The individuals, who were 

selected to be a representation of the world population, were divided into the four categories; 

Nigerian from Yoruba (YIR), Japan from Tokyo (JPT), Han Chinese(CHB) and Utah residents 

with ancestry from northern and western Europe (CEPH). At the time of writing this thesis the 

HapMap project has genotyped 3.1 million human SNPs, representing 25-35% of the common 

SNP variations in the selected population [66]. 

1.2.1 SNPs in the estrogen pathway 

Due to the importance of the estrogen pathway in the development and diseases of the mammary 

gland it has been granted much interest. As a result, research concerning this pathway has been 

performed in studies of both the normal breast and diseases of the breast. An array of genetic 

variations such as SNPs representing genes of the estrogen signaling pathway have been found 

associated with conditions of the breast including increased mammographic density and breast 

cancer, and include amongst others, the estrogen receptor [67], UGT genes [68], SULT genes [69] 

and the HSD3B gene family [70,71] (Figure 5). 
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Figure 7: Diagram depicting the factors influencing BC risk. Red: genes and pathways, Blue: modifiable risk factors, 

Gray: reproductive life style events, Green: inherited and un-modifiable risk factors. From [72]. 
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1.2 Breast cancer 
“Tumors are wounds that never heal” 

- Harold Dvorak 1986 - [73] 

In general, cancer can be described as the uncontrolled growth of cells in the body, leading to 

lumps of cells or tumors that can disrupt tissues and organs in the body resulting in a lethal 

outcome.  

It has been known since 1896 that breast cancer (BC) is a hormonally dependent disease [74], and 

for a quarter of a century that cancer is a disease with dynamic changes in the genome [75] 

(Figure 7). During the last decades scientists have been working on understanding the molecular 

process that underlies cancer initiation and growth, and even though much is still unknown there 

has been great progress. Hanahan and Weinberg have defined the acquired capabilities of cancer 

into six parts: 1) self-sufficiency in growth signals, 2) insensitivity to anti-growth signals, 3) 

evading apoptosis, 4) limitless replication potential, 5) sustained angiogenesis, and 6) tissue 

invasion and metastasis. These capabilities may occur in parallel or successively and cause 

variation in time necessary for complete tumorigenesis [75]. 

 

Figure 8: Age-standardized breast cancer incidence rate per 100,000 among women worldwide in 2010 [76]. 
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1.2.1 Incidence and mortality 

Breast cancer is the most common cancer in women worldwide with 1.38 million new cases each 

year, accounting for 23% of all new cancer cases and 14% (458,400) of all cancer deaths in 2008 

[77] (Figure 8). Also in Norway it is the most predominant cancer among women with 2753 new 

cases registered in 2008, followed by colorectal and lung cancer. Breast cancer has the highest 

cumulative risk1 based on numbers from 2004-2008 and it is estimated that one in 12 Norwegian 

women will develop breast cancer by the age of 75. Of all cancers developed by women between 

the ages of 25 and 69, one out of every third will be diagnosed with breast cancer. In Norway, 

breast cancer is ranked as the third cause of cancer death in women, only surpassed by lung and 

colon cancer [78]. Increasing incidence indicates that the disease continues to be a serious 

problem for women’s health (Figure 9). The increase in western countries the last two decades is 

most likely due to a change in reproductive pattern and lifestyle in addition to postmenopausal 

hormone therapy use and increased detection due to screening [76]. The increased incidence seen 

in developing countries however is explained with a shift in reproductive patterns and a change 

towards a more western lifestyle [79]. 

 

 

 

 

 

 

 

 

Figure 9: A: Breast cancer incidence rates in Norwegian women (1953 - 2008), B: Age adjusted breast cancer incidence 
rate, Norwegian women (1953 - 2008) [80]. 

 
                                                 
1 Cumulative risk of breast cancer refers to the effect of age on breast cancer risk in which each additional year 
increases the risk. 
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1.2.2 Mammographic screening program 

The Norwegian mammographic screening program started in 1995/96 as a pilot project with the 

long-term goal of reducing breast cancer mortality among Norwegian women between the ages of 

50-69, and also to test the infrastructure needed for such a program. The pilot was successful and 

the mammographic screening program was implemented throughout all the Norwegian counties 

by the end of 2004. The goal of the program is to reduce breast cancer mortality [78].  

1.2.3 Breast cancer risk  

The epidemiology of breast cancer has been known since the 1970s [81]. The main risk factors 

for breast cancer include gender, age, reproductive factors, genetics, alcohol consumption [82], 

and mammographic density [82-87] (Figure 7 and Table 1). 

Age 

For most cancers a linear relationship is observed between incidence and age. The most likely 

explanation being that accumulation of non-reversible DNA damage over time causes genomic 

instability leading to cancer [88]. However for breast cancer, the relationship between age and 

incidence is not linear [89,90]. The model proposed by Pike and colleagues [91] explains this 

non-linear relationship as breast tissue aging due to hormonal exposure over time. The model 

includes the parameters age at menarche, first full term pregnancy (FFTP) and menopause 

(Figure 10). 

 

Figure 10: A) Pikes model on breast tissue aging. B) Age-specific breast cancer incidence rate. LMP: last menstrual 

period. FFTP: first full term pregnancy [91]. 
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Hormonal influences 

Reproductive life style events leading to increased breast cancer risk include nulliparity [10,92-

94], late full-term pregnancy, early onset of menarche [81,92,95] and late menopause [92]. 

However, a protective effect is observed with increased numbers of children [96]. Additionally, 

increased duration of lactation is protective for premenopausal BC risk [97]. The common 

denominator for these factors is that they all influence the ovarian hormones previously shown to 

be important for the development of the breast. The hormone dependency of breast cancer (BC) 

was first discovered by Beatson in 1896 who implemented removal of the ovaries to treat 

inoperable BC [74]. It is believed that the cumulative exposure of the breast tissue to hormones, 

especially the ovarian hormones estradiol and progesterone, plays a key role in determining their 

effect on breast cancer risk [91,98].  

Pregnancy may either promote or protect against BC dependent on the age at FFTP [99]. FFTP 

late in a woman’s life increases the risk of breast cancer [100-102], while earlier age at FFTP 

decreases the risk [93,96,100,102]. Increased parity decreases BC risk substantially, with each 

subsequent birth resulting in 10% reduction [96,103]. It has been suggested that the protective 

effect is predominantly mediated through the stroma [104]. It is reasonable to believe that the 

mammary epithelium has reached a development stage with an altered potential to develop BC 

[93], reviewed in [20], and that the protective effect is derived from fully differentiated mammary 

epithelial cells [105,106]. In addition a reduced number of mammary stem cells, an altered 

response to estrogen and reduced levels of circulating hormones may also play a role, for 

extensive review see [106].  

Early onset of menarche may lead to an earlier establishment of regular ovulatory menstrual 

cycles and a longer lifetime exposure to the endogenous hormones. In addition, early menarche 

leads to elevated levels of hormones throughout a woman’s reproductive years [107,108]. 

Similarly, a late menopause prolongs the duration of which these hormones exert their effect. The 

protective effect of parity was first described in 1926 [103] and later confirmed by a large 

number of studies reviewed in [109]. 

Both oral contraception and hormone therapy (HT) use are linked to BC risk [110,111]. In 

premenopausal women, current use of oral contraceptives confers at most a slightly increased risk 

of BC which endures until approximately 10 years after termination of use [112,113]. 
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Postmenopausal hormone therapy (HT) use increases the risk of BC substantially [111,114], and 

while estrogen alone causes increased risk, combining estrogen with progesterone has shown to 

confer an even greater risk [115-117]. HT associated BC risk increases with duration of use and 

does not regress to baseline until 5 years after cessation [110]. Interestingly, a recent study 

reported favorable tumor characteristics and better survival among women with BC who had used 

HT before diagnosis [118]. 

Anthropometric factors 

Increased risk of breast cancer is associated with increased height [92,119], increased weight and 

BMI [92]. Increased BMI in older women increases breast cancer risk [119]. Most studies show 

that higher body fat/weight in adulthood is associated with an increased risk of post menopausal 

BC, but lower pre-menopausal BC risk. However, it is acknowledged that the relationship 

between BC risk and weight is complex and not completely understood [120]. 

Diet 

Because diet is modifiable, understanding the role of diet in cancer etiology is important. A 

change in diet could alter levels of endogenous hormones and growth factors, and also reduce BC 

risk through antioxidants. However, to date there is no consistent evidence of dietary involvement 

in cancer [121-123], with the exception of alcohol. Alcohol consumption has been reported to be 

associated with BC incidence, conferring increased risk with increased consumption [123,124]. 

Total fat intake has been given much attention in cancer research but most studies have not been 

able to confirm the hypothesis that increased fat intake presents a greater risk of BC [125]. 

Reactive oxygen species (ROS) also known as free radicals, have gained much attention due to 

their ability to cause oxidative stress resulting in cellular damage through reactions with protein 

and nucleic acids [126-128]. Due to accumulation of DNA damage, ROS may induce cancer 

[128]. Increased levels of ROS may arise from inflammation, infection, extreme exercise and 

environmental factors such as pollution, tobacco smoke and radiation, for review see [129]. 

Antioxidants such as vitamin A, C, E, beta-carotene, lycopene, and selenium, have been shown to 

protect against reactive oxygen species and reduce oxidative stress and DNA damage [127,129]. 

Accordingly, it has been suggested that taking supplements of zinc, beta carotene, vitamin C and 

E protects against breast cancer [130]. On the genomic level, genetic alterations in genes related 

to oxidative stress have been found associated with risk of BC [131]. 
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Table 1: Breast cancer risk factors. From [132] 
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Genetics: family and personal history of BC 

Having a personal or family history of BC elevates the risk substantially [133], the latter being a 

strong indication that BC is a genetic disease. High penetrant genetic mutations (high individual 

risk) in genes such as BRCA1 [134], BRCA2 [135], PTEN [136] and the tumor suppressor protein 

TP53 [137] have been identified to account for increased risk in predisposed individuals. 

Although, with the vast amount of research being performed, new tumor suppressor genes2 and 

oncogenes3 are still being identified. The known genetic mutations account for approximately 20-

25% of familial BC cases [138,139], suggesting that sporadic and lower penetrant genetic 

variations such as SNPs, together with environmental factors [140] are at play in determining the 

susceptibility to BC. The identification of SNPs conferring increased risk for a disease such as 

BC promise a better understanding, prevention, early detection and treatment of the disease. 

Numerous studies have identified SNPs associated with increased BC risk [141-149]. These 

include SNPs in the oxidative stress related genes CYBA, MT2A and TXN [131], genes related to 

the hormone biosynthesis pathway; CYP1A1, CYP3A4, CYP1B1, CYP17, CYP19, SULT1A1, 

AHR, HSD17B, GSTM1, GSTT1,GSTP1,GSTM, COMT [140,149] and CYP19A1 [150] and in the 

insulin-like growth factor gene family: IGF1 [151,152], IGFBP3[153] [154], IGF1R [155] 

Other SNPs with moderate to low-penetrance effect that are identified associated with BC risk 

include: TOX3, MAP3K1, LSP1, CASP8, FGFR2, 8q and 2q35 [156], XRCC1 [146], ICAM1, 

ICAM4 and ICAM5 [143], LRP1(lipoprotein receptor related 1) [144], CHEK2 1100delC; a 

checkpoint kinase resulting in a frameshift alteration [141], transcription growth factor beta 

(TGF ) [147], DPF3 [148], locus 9q31.2 (RAD2) )and ACTL7A, locus 6q25.1 (ESR1)[157]. Due 

to the power needed to detect low penetrant and low frequency SNPs a study of small sample size 

is not enough, thus a new trend is emerging in which several studies are assembled into one large 

study. The most frequently used approaches for SNP association identification include genome 

wide association studies (GWAS) and candidate gene studies. Recent GWA studies based on 

such large pooled studies have identified additional SNPs in genes which may contribute to the 

risk of BC. These genes include; RAD51L1 [158], locus 5p12 [159], FGFR2, TNR9, MAP3K1, 

LSP1 [139], CASP8 [160], thus confirming some of the findings previously mentioned. 

                                                 
2  A gene which protects a cell from acquiring the mutations required for tumor initiation 
3  A gene that might become cancer causing upon mutation. 
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Growth factors in the microenvironment 

“Changes in epithelial plasticity permit a dynamic cell migratory response dependent on the 

constitution of the cell, its gene expression and on input from the local environment. “ 

       Micalizzi et al, 2010   [161] 

 

The microenvironment does not only maintain tissue architecture, inhibit cell growth and revert 

malignant phenotype, but may also promote and induce cancer. As mentioned in section 1.1.2 the 

microenvironment provides a passage of materials and metabolites, which includes the 

endogenous hormones, and growth factors. The result is dynamic signaling produced and 

received by the cells in the microenvironment [15]. The development of the breast is dependent 

on, and regulated by, these signals during growth and differentiation (Figure 11) [15]. Albeit, the 

stimuli might also induce malignant growth and the circulating levels of endogenous steroid 

hormones [114] and growth factors such as the IGFs [162] have been implicated in BC.  

 
Figure 11: Schematic illustration depicting some of the signaling that occurs in the normal microenvironment of the 
mammary gland development [162,163]. AREG: amphiregulin, BM: basement membrane, CSF-1: colony stimulating 
factor-1, EGFR: epidermal growth factor receptor, ER: estrogen receptor, FGF: Fibroblast growth factor, Fib: mammary 
fibroblast, HGF: hepatocyte growth factor, IGF: Insulin-like growth factor, M : macrophage, MFG: milk fat globule, 
MSC: mammary stem cell, MYO: myoepithelial cell, PR: progesterone receptor, RANKL: receptor activator of NF- B 
ligand, TGF: transforming growth factor. 
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Epithelial-mesenchymal transition 

The epithelial cells of the breast are derived from progenitor cells (see section 1.1.2). During 

development, the progenitor cells are able to gain an epithelial cell phenotype and vice versa, a 

process referred to as mesenchymal-epithelial transition (MET) or epithelial-mesenchymal 

transition (EMT) respectively [161]. The EMT provides the flexibility required during 

development, in particular during embryogenesis, but also during remodeling due to wound 

healing and regeneration of fully differentiated tissues [164,165]. In normal breast development, 

EMT processes can be seen during ductal branching through regulation by the epidermal growth 

factor (EGF), hepatocyte growth factor/Scatter factor (HGF/SF) and proteases such as the matrix 

metalloproteinases (MMPs) [166]. EMT is also observed in breast cancer, where it contributes to 

cell plasticity and metastasis. The mesenchymal phenotype acquired by tumor cells permits local 

invasion and escape from the primary tumor [161]. In addition to regulating features of the tumor 

cells, the EMT also regulates the tumor cell-microenvironment interaction, including the immune 

cells. Interestingly, interleukin signaling profiles are observed in invasive cancers, moderately in 

cancers in situ and only weakly or not at all in normal tissue [167].  

Based on the dynamic nature of the normal breast, it is clear that there are numerous 

opportunities for the development of cancer through EMT related processes. Although breast 

cancer is known to mostly arise in the epithelial cells, it is becoming evident that also the tumor 

stroma and the microenvironment are involved in cancer progression. However, the mechanisms 

underlying their influence are still unknown. Finak et al investigated the gene expression 

signatures in stroma of cancer patients and found a stroma-derived prognostic predictor (SDPP) 

enabling stratification of disease outcome [168] and thus emphasizing the importance of stromal 

biology in breast disease.  
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Mammographic density 

“Mammographic density is perhaps the most undervalued and under-utilized risk factor in 

studies investigating the causes of breast cancer” 

        - Celia Byrne, 1997-  [169] 

Mammographic density (MD) was first proposed as a risk factor for breast cancer in 1976 by 

Wolfe [83,170], and is today accepted as an established risk factor for breast cancer [84,87,171-

175] for both premenopausal and postmenopausal women [176]. Studies on women with invasive 

breast cancer have shown that MD may also predict local recurrence [177]. The effect of MD is 

estimated to persist for 10 years subsequent of MD assessment [171]. Women with density 

comprising more than 75% of the total area of the breast have a 4-6 fold increased risk of BC 

compared to women with less than 5% breast density [85,87,171]. It is not completely understood 

how density of the breast parenchyma influences the risk of developing breast cancer. Although 

the question of a possible masking effect of MD on BC lesions was raised early [178], this effect 

has been found to be small [175,179] and cannot explain the association with breast cancer risk. 

Studies on the biology behind this link suggest there might be histological [180-182], 

environmental [183] or genetic factors (see section 1.3.2), or a combination of these (Figure 12). 

Most likely the latter is true. It has become increasingly evident that BC is a heterogeneous 

disease with several subtypes on the molecular [184], and pathological level, reviewed in [185]. 

Whether or not similar subtypes exist in MD, or if MD can affect risk of certain subtypes remains 

uncertain. However, as with BC, associations of MD with ER and HER2 status have been 

reported [176,186-189]. Association of MD with pathologically determined luminal A and triple 

negative breast cancers has been reported [86].  
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Figure 12: Hypotheses of BC risk associated with MD. (a) schematic summary of the underlying processes in MD that may 

lead to BC, mitogenesis is the disruptive effect on cell proliferation while mutagenesis is genetic damage by mutagens 

increasing genome instability (b) Diagram showing the biological hypothesis involving the tissue components responsible 

for MD (epithelial cells, stromal cells, collagen and adipocytes). From [190]. 
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1.3 Mammographic density 
Mammographic density (MD) is determined at mammography by evaluation of the radiological 

appearance of the tissues comprising the breast. While adipose tissue appears dark, the tissue 

referred to as “mammographically dense” is mostly comprised of stroma and epithelial tissue and 

appears white on exposure to x-rays (Figure 13). Breasts with increased density have been found 

to have greater numbers of epithelial and stromal cells compared with the less dense counterparts 

[180,191]. There are several methods for evaluating and classifying MD and depending on the 

method the variation in estimated BC risk is evaluated to be marginal [192-194]. 

1.3.1 Mammographic density classification 

Mammographic density can be estimated from either analogously or digitally obtained 

mammograms. Both methods are based on x-ray technology, and patients undergo the same 

procedure for both. However, analogue mammography uses film to produce a static fixed image 

while digital measurement uses detectors that change the x-rays into electrical signals. The 

electrical signals are converted to numbers in a digital receptor which also processes these 

numbers to generate an image that can be displayed. The latter method, although more expensive, 

has been shown to be more flexible and advantageous, and at the same time better at detecting 

cancers in mammographically dense tissue [195]. The mammograms are evaluated in accordance 

with one of several methods for determining BC risk by mammographic density, mainly these 

entail qualitative and quantitative methods. 

Qualitative methods 

Initial studies investigated the parenchymal patterns and texture in the mammography image. Of 

such methods Wolfe’s classification [83] was the one most commonly used [196]. Wolfe’s 

parenchymal pattern method classifies risk of BC from mammography images based on four 

groups; N1, P1, P2 and DY ranging from tissue mainly composed of fat to tissue with an 

increased density respectively [170,197]. Tabár’s method [198,198] is another quantitative 

method. Although it is not widely used, Tabár focuses on four “building blocks” in describing 

breast composition, nodular density, linear density, homogenous fibrous tissue and radiolucent 

adipose tissue. Depending on the individual involvement (%) of these four building blocks, a 

mammogram will be classified as having pattern: I, II, III, IV or V. The BIRADS (Breast 

Imaging Reporting and Data System) [199] method started out as a qualitative method by 
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classifying MD according to four categories (ACR1-4), but has later changed the classification to 

a quantitative-based method using percent density quartiles [194]. 

Quantitative methods 

A number of quantitative methods exist. The simplest involves a subjective classification 

approach in which a radiologist evaluates mammographic density based on predefined categories. 

One such method was developed by Boyd [84,85,200] who classifies the mammograms 

according to six class categories (SCC) according to percent density; Class1: 0%, Class 2: 0-10 

%, Class 3: 10-25%, Class 4:25-50%, Class 5: 50-75% and Class 6: 75-100% (Figure 13). As 

previously mentioned BI-RADS also has a quantitative approach. BI-RADS quantitative system 

uses percent density in 4 categories: < 25%, 25-50%, 51-75% and <75% density [199]. 

Additionally, computer-assisted methods exist which are the most widely used method for 

assessing MD in epidemiological studies [196]. Such computer-assisted methods include 

Cumulus [201,202] and Madena [203] and both entail the use of specially developed software 

and digital images to determine MD according to a given threshold [196]. The computer-assisted 

method with the use of the Madena method is described in detail in section 2.4.3. Briefly the 

method requires an experienced reader and computer software for the handling of the 

mammography image which is digital, or if analogue, digitized. For the purpose of studying 

mammographic density in relation to epidemiological and molecular factors, it is common to use 

MD as a continuous variable, either as absolute density (ABDEN) or as percent density (PDEN). 

ABDEN is the number of pixels within the area defined as dense while PDEN is the proportion 

dense tissue in relation to non-dense tissue (adipose) in the breast. 

Volumetric methods 

The methods described so far are based on two dimensional images. Volumetric methods offers a 

three dimensional view and may therefore improve BC risk estimates. Methods under current 

development include magnetic resonance imaging (MRI) [204] and ultrasound tomography [205] 

to mention some. 
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Figure 13: Images depicting mammographic density according to Boyd’s six-category system based on fibroglandular 

tissue content. a) 0%, b) <10%, c) 10-25%, d) 26-50%, e) 51-75%, f) >75% [206]. 

1.3.2 Causes of MD variation 

For the most part, the factors that influence breast cancer risk also cause variation in 

mammographic density. With regard to the reproductive factors, increased MD is seen with 

increased birth weight [207], premenopausal status [207,208], nulliparity, HT use [208-210], late 

age at first birth and no children [208]. The relationships are observed across ethnic groups [211]. 

Additionally, cyclic changes in the proliferation rate of breast epithelial cells are seen in 

premenopausal women due to the production and release of estrogen and progesterone from the 

ovaries [1]. Breast epithelial and stromal cells attenuate X-rays, and increased proliferation is 

positively associated with MD [180,191]. Hence, MD may be seen to change according to the 

menstrual cycle. 

Anthropometric factors also influence MD; increased MD is seen with increased height [212-

215] and while BMI is positively associated with breast cancer risk (in postmenopausal women) 

it is inversely associated with MD [208,216]. This suggests that BMI is a negative confounder of 
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the association between MD and breast cancer risk. High BMI implies a higher amount of 

adipose tissue which will appear translucent on the radiological examination and thus increase the 

area of non-dense tissue. This is mostly an issue when measuring PDEN as opposed to ABDEN, 

when a ratio between total breast area and dense area is reported using percentage compared to 

crude measurement of the dense breast area in pixels respectively. Additionally, in 

postmenopausal women most of the steroid hormones are derived from the adipose tissues, hence 

increased levels of hormones are found in postmenopausal women with high BMI. While 

estrogen levels are seen to increase BC risk slightly [217], it is inconsistently found associated 

with MD and while some find a positive association [87,218,219] others do not [220].  

Diet 

Diet may influence the level of MD and it is debated whether increased intake of fat may increase 

MD levels [221]. There is some [222,223] but not consistent evidence [224,225] that diets high in 

fat are associated with higher MD. While some have reported increased levels of MD with 

increased alcohol consumption [226,227] others have not [228]. High intake of vitamin D has 

been shown in some [229,230] studies to reduce MD while others see no association [231-233].  

Genetic influence 

In addition to the epidemiological factors, there is strong evidence of genetic influence in the 

development of MD based on results from studies on family history [234], familial aggregation 

[235] and twins [236,237]. Most of the genes responsible for MD are unknown, however genetic 

variation in the form of SNPs have been reported associated with MD levels.  

Polymorphisms in genes coding for the vitamin D pathway have been studied for association with 

MD and while some have been positive (VDR) [238] others have found no association (VDR, 

CYP27B1, DBP) [239]. 

As previously mentioned association of MD with the level of sex hormones has been reported 

and studies on polymorphisms residing in genes belonging to the estradiol pathway are 

numerous; SNPs in COMT were associated by some [240-242] but not all [243]. Associations of 

MD with estrogen-metabolism related SNPs residing in SULT1A1 [244], UGT1A [243,244], 

HSD17B1 [241], CYP1A2 [242], CYP1B1 [240,241], CYP19A1 and CYP1A1 [240] with MD 

have been reported. However, others have found no association between MD and the SNPs in the 
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genes; CYP1A1, CYP1B1 and CYP17 [242]. Other members of the estradiol pathway in which 

SNPs have been associated with MD include; ESR1 [240,245] and HSD3B1 [70,71]. Conversely, 

one study found no effect of 239 SNPs in 34 estrogen metabolic genes on MD [246], and no 

association has been seen between SNPs in the androgen receptor (AR) gene and MD [243].  

Due to its mitogenic and antiapoptotic effects the IGF pathway has also been of interest in BC 

and MD research and SNPs in the genes IGF1 [247-250], IGF1R [250], IGFBP1 [247] and 

IGFBP3 [251] have been found associated with MD to mention some. In addition, it is often seen 

that the levels of the respective gene products are also associated with MD [250,252]. In a more 

recent study, a meta-analysis of five GWAS studies revealed a SNP in ZNF365 associated with 

MD [253]. Consistent with being associated with BC risk the SNPs in LSP1, 8q, MAPK3K1, 

H19, CASP8 [254] and TOX3 [255] are associated with MD.  
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2 Materials and methods 

2.1 Sample population 
Table 2: Table describing the sample population, name of study, number of samples from healthy women and women with 

breast cancer, a short description of the material and which papers they appear in. 

 

 

2.1.1 TMBC 

The Tromsø Mammography and Breast Cancer study (TMBC) consists of samples collected from 

Norwegian women living in the municipality of Tromsø, Norway (Table 2) [192]. The samples 

were collected in the spring of 2001 and 2002 as part of the population-based Norwegian Breast 

Cancer Screening Program (NBCSP) at the University Hospital of North Norway. The women, 

between the age of 55-71 years, were all postmenopausal and healthy with no sign of cancer. At 

the time of mammography screening the women were interviewed by a trained nurse regarding 

reproductive and menstrual factors, previous history of cancer, and the use of HT and other 

medications. For women not currently using HT, serum levels were obtained for estradiol, 

testosterone, DHAE, Vitamin D and prolactin and glycoprotein SHBG. All women signed an 

informed consent. The study was approved by the National Data Inspection Board and the 

Regional Committee for Medical Research Ethics. 

2.1.2 MDG 

The Mammographic Density and Genetics (MDG) study consists of samples from women of 

Norwegian origin (Table 2) [256]. The samples were collected between 2002 and 2007 from 

women either recruited through the NBCSP or a breast diagnosis centre based on referral for a 

second examination due to irregularities. The women, 22-87 years of age, included both 

premenopausal and postmenopausal who were healthy or had breast cancer. To be eligible the 

Material name
N

(healthy)
N

(breast cancer) Description Paper
Tromsø Mammography and Breast Cancer study (TMBC)  964*/ 433** Healthy norwegian postmenopausal women in the age 

group 55-71 years.  Information on diet, menstrual and 
reproductive factors are obtained through an extensive 
questionnaire . All women have negative mammograms 
with no sign of cancer.

I* & III**

Mammographic Density and Genetics (MDG) 120 66 Norwegian pre- and postmenopausal women in the age 
group 22-87 years, with and without breast cancer. 
Information obtained on menstrual and reproductive 
factors, including serum hormone levels and 
mammographic density.

II& III
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women could not have breast implants, be pregnant or lactating or currently on anticoagulant 

therapy. Women who had a history of breast cancer but no current malignancy were included in 

the group of healthy women. However, for these women the biopsy was collected from the contra 

lateral breast. Mammography images were obtained for each woman in addition to information 

about weight, parity, HT use and family history of breast cancer. The study was approved by the 

Regional Committee for Medical Research Ethics, IRB approval number: S-02036. 

Genetic variations and mutation may reside in the inherited germline DNA or in somatic cells, 

and may be identified in blood and tissue respectively. For SNP genotyping we collected blood 

samples, and for gene expression analysis we used core biopsy samples from breasts of controls 

and cases. 

2.2 Blood samples and plasma analyses  
2.2.1 TMBC  

On the day of the mammographic screening non-fasting venous blood samples were drawn in two 

9 mL citrate vials for plasma extraction. The tubes were centrifuged at 3000 rpm for 15 minutes 

and deposited into 2 mL cryo tubes prior to storage at -70°C. 

The plasma samples were shipped to the Nutrition and Cancer Group at IARC4 in Lyon, France, 

who specialize in hormone assays. The levels of5 IGF1 and IGFBP3 were measured by Enzyme-

Linked Immunosorbent Assay (ELISA) [257]. Estradiol, estrone, androstenedione and prolactin 

were measured by direct double-antibody radioimmunoassay whereas testosterone and DHEAS 

were measured by direct radioimmunoassays. SHBG was measured by direct “sandwich” 

immunoradiometric assay. The general principles of radioimmunoassay are described in detail 

elsewhere [258]. For the women who had concentrations that were not detectable, the lower 

detection limits for the respective assays were recorded. 

 

                                                 
4 IARC: International Agency for Research on Cancer 
5 DHAE(S): Dehydroepiandrosterone (sulfate), SHBG: Sex Hormone Binding Globulin, LH: Luteinizing Hormone, 
FSH: Follicle Stimulating Hormone, IGF1: Insulin-Like Growth Factor 1, IGFBP3: Insulin-Like Growth Factor 
Binding Protein 3. 
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2.2.2 MDG 

Three blood samples were obtained from each woman. The blood was drawn in SST tubes with 

gel, which were left for 30 minutes before they were centrifuged at 2000 G for 10 minutes. The 

serum was subsequently aliquoted and stored at -20°C. The serum levels of estradiol, 

testosterone, progesterone, SHBG, LH, FSH and prolactin were measured with 

electrochemiluminescence immunoassay (ECLIA) at the Department of Medical Biochemistry, 

Oslo University Hospital Rikshospitalet, a laboratory accredited according to ISO-ES 17025. The 

levels of estradiol, LH and FSH were used in combination with information on HT use and age, 

in order to determine menopause status. 

2.3 Biopsy collection 
2.3.1 MDG 

The women participating in the MDG study had two biopsies taken with a 14 gauge needle. For 

the healthy women the biopsies were taken from an area with some mammographic density 

identified by ultrasound, to avoid biopsies consisting of purely adipose tissue. For the women 

with breast cancer the biopsy was taken from the tumor. Biopsies were collected at 6 hospitals 

with slightly varying methods. Oslo University Hospital (OUS) Radium Hospital snap froze 

biopsies which were subsequently frozen at -80°C. The other hospitals soaked one biopsy in 

RNA later and the other in 70% alcohol for RNA and DNA extraction respectively. Once the 

biopsies reached the Department of Genetics at OUS Radium Hospital they were stored at -20°C. 

2.4 Mammograms 
2.4.1 TMBC 

The mammograms were obtained at the NBCSP in Tromsø. For each woman two screens for 

each breast were performed, one craniocaudal (CC) and the other medio-lateral oblique (MLO) 

according to NBCSP manual [259]. The left breast was chosen because most women are right 

handed in which case the pectoralis muscle is more visible in the mammogram of the right breast. 

However, the concordance between the right and left breast has been found to be high [260]. For 

assessment the images were digitized using a Cobrascan CX-812 scanner. 
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2.4.2 MDG 

The mammograms were obtained from local radiologists according to routine practice. Up to two 

CC mammograms were obtained for each woman. In the cases where two mammograms were 

obtained, both were assessed and the average used. For assessment the images were digitized 

using a Kodak Lumisys 85 scanner (Kodak, Rochester, New York).  

2.4.3 Mammogram assessment 

For both the TMBC study and the MDG study the Madena computer-based threshold method 

developed at the University of California [203] was used to assess the mammograms. This 

method utilizes the digitized image which is viewed on a screen. In brief, the Madena program 

works as follows: with the use of an outlining tool an experienced reader defines the total breast 

area, which is then converted through calculations into a value in pixels. To assess density, a 

region of interest (ROI) is defined, which includes areas of density but excludes radiodense 

artifacts such as the pectoralis muscle, prominent veins and fibrous strands. The reader then uses 

a tinting tool to apply a yellow tint to dense pixels within the region of interest that has grey 

levels at or above some threshold X and below a pixel value of 255. The reader searches for the 

best threshold where all pixels X within the region of interest are considered to represent 

mammographic densities. The mammographic density may be presented as either absolute 

density (ABDEN), which is the total number of pixels in the ROI or as percent density (PDEN) 

which is the ROI (absolute density) divided by the total breast area multiplied by 100. The latter 

was the measurement used for subsequent analysis referred to as mammographic density (MD). 

For the MDG study the absolute density reproduction rate was 0.99, similarly, for the TMBC 

study the intra-reader agreement rate was 0.86, and the inter-reader agreement was 0.86. 

Box-Cox 

Statistical methods may require the data tested to conform to certain assumptions. Parametric 

methods assume that the data has a normal like distribution for the modeling of the relationship 

between variables. This might however not always be the case, which can be seen as a non-

linearity in scatter plots of the two variables, or as a heterogeneous variance. The solution to the 

problem is to transform the data to make it more normally distributed. Common methods involve 

log or power transformations or both used together known as Box-Cox transformations. The Box-

Cox transformation was developed by the statisticians George E. P. Box and Davis Cox in 1964 



 

36 
 

[261]. Briefly the method utilizes the parameter  as the variable exponent (eg X ). When =0 the 

log transformation is used. Different  values are applied to the data and one way to select  is to 

use the  that maximize the logarithmic of the likelihood function , or minimizes the sum of 

squares residuals. In paper I we performed a Box-Cox transformation of the mammographic 

density variable and the optimal  was estimated by solving non-linear least square problems. 

2.5 In silico analyses: candidate gene and SNP selection 
In paper III we used a candidate gene approach. Candidate gene approaches utilize the a priori 

knowledge of our phenotype of interest in order to select genes with an increased probability of 

affecting the phenotype. This type of approach ensures that a limited set of genes is tested and 

may thus limit the need for multiple testing correction and also reduce the cost. Due to the 

importance of estrogen in both the development of the normal breast and breast cancer we chose 

to focus on the estrogen pathway for the selection of the candidate genes. Subsequent to the gene 

selection, known genetic variations in the form of single nucleotide polymorphisms (SNPs) in or 

surrounding these genes were identified.  

2.5.1 Gene selection 

We searched the literature and molecular databases for candidate genes and SNPs. Entrez 

Pubmed was used for the literature search with the following key words: (1)“Estradiol and 

mammographic density“, (2)“Estradiol and ER”, (3)“SNPs and (1)&(2)”, (4) “Mammographic 

density”, (5) “Breast density”, and (6)“Single nucleotide polymorphism and 

Estrogen/Progesterone”. In addition we looked for genes in the estradiol and estrogen receptor 

pathway using CGAP [262] (provided by Biocarta), iPATHTM [263] and PathwayAssist/ 

PathwayStudio® [264] (licensed software by Ariadne Genomics). Through these processes a total 

of 281 genes were determined to be of interest, and carried over to the following SNP selection 

step. 

2.5.2 SNP selection 

SNPs residing in the 281 genes were identified using Ensembl [265] and SNPper [266]. These 

SNPs were analyzed in SIFT [267] (Sorting Intolerant From Tolerant) developed at Fred 

Hutchinson Cancer Centre in Seattle [268] to identify SNPs with impact on protein function 

based on sequence homology and amino acid property. HapMap [64] was also used to retrieve 
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SNPs from the candidate genes. We selected the European population for identification of SNPs 

within the candidate genes, since this population would resemble our study population the most. 

The SNP data obtained from HapMap was subsequently analyzed by De Bakkers “tagger”-test 

[269] which is implemented in the software Haploview [270]. The test returns information about 

the SNPs and their correlation or linkage disequilibrium (LD). If the SNPs are in LD, one SNP 

within a haplotype is chosen, often arbitrarily, and defined as the htSNP. With these approaches 

we selected a total of 1001 SNPs in the 281 genes for further analyses. (Figure outlining the gene 

and SNP selection process is presented in the supplementary of paper III). 

2.6 SNP genotyping 
Over the past decade there has been a rapid development in the genotyping field. From Botstein’s 

experiments on restriction fragment length polymorphisms in 1980 [271] to today’s whole 

genome wide association studies (GWAS) of up to 4,3 million SNPs [272]. SNP genotyping has 

become a widely used tool for the identification of genetic markers that may predispose for 

complex disorders [61,273] of which some have already been identified [274].  

2.6.1 Taqman real-time PCR genotyping 

The amplification of a selected piece of DNA is made feasible with the Polymerase Chain 

Reaction (PCR), a procedure developed in 1983 by Kary Mullis. All PCR rely on the same 

principles of DNA denaturation, primer annealing and primer extension/elongation steps. In the 

Taqman real-time PCR procedure fluorescent dyes are incorporated to detect DNA amplification 

while it occurs, rather than detecting total amplification product at the end of amplification as in 

conventional PCR. The method is described in detail elsewhere [275], in brief it works as 

follows: an oligonucleotide probe containing a reporter fluorescent dye on the 5’ end and a 

quencher dye on the 3’ end is constructed. Due to the close proximity, the quencher dye reduces 

the fluorescence from the 5’ reporter dye through fluorescence resonance energy transfer (FRET). 

The probe is designed to anneal downstream of the target DNA sequence. A primer specific for 

the DNA sequence attaches and elongates up to the site of the probe and as it elongates the probe 

is cleaved thus separating the reporter dye from the quencher dye and increasing the fluorescent 

signal from the reporter. In addition the probe is removed from the target DNA strand allowing 

the primer to continue to the end of the strand. For each cycle additional reporter dye molecules 
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are cleaved and thus the intensity of the fluorescence reflects the amount of amplicon produced 

[276]. 

2.6.2 Sequenom technology and genotyping 

The genotypes analysed in paper II and III were generated using the Sequenom [277] 

MassARRY® platform and iPLEX genotyping assays [278]. Briefly the iPLEX genotyping 

technology works as follows. The first step involves up amplification of the sample DNA using 

PCR to enable SNP detection. During the amplification, special pre-designed MassExtend 

primers anneal up to the polymorphic site and extend dependent on the polymorphism. Either a 

one or two base extension is incorporated, although, since the masses that separate these bases are 

small an additional mass modified terminator is incorporated. The nucleotide molecular weight 

differences make it possible to distinguish them on the mass spectrometer utilized in the 

MassARRAY platform (Figure 14). 

 

Figure 14: The detection of homozygote or heterozygote genotype with the iPLEX genotyping assays using allele specific 
primers. The product consists of either a one or a two base extension. From [277]. 
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The underlying technology of the MassARRY® platform is matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In brief this 

technology works as follows: an ionization source pulses laser onto the amplified sample DNA 

which is embedded in a crystalline structure called the matrix which in turn is deposited on a 

conductive chip often made of metal. We used the spectro-CHIP spotted with matrix in a 384 

format. The sample which is in vacuum and under the influence of a strong electric current will, 

due to the laser, evaporate into gas. The plume drifts through the electric field and passes a mass 

analyzer before it reaches the detector. The mass analyzer separates and resolves the ions in the 

plume based on their mass/charge ratio and their time of flight through the electric field. Lighter 

ions travel faster than heavier ions and will be detected first. The last step is the detector which 

transforms the ion current into a mass spectrum through determination of the abundance and 

mass of the components in the sample. The sequenom genotyping method is recognized as cost-

effective, high throughput, flexible and for producing high quality data with a high level of 

reproducibility [279].  

Genotype processing: quality control 

SNP genotyping quality control involves removal or flagging of SNPs or samples that have not 

passed the quality control threshold specified. In paper II and III SNPs that were estimated not to 

be in Hardy Weinberg equilibrium (HWE) were flagged. HWE has similarities with Linkage 

Equilibrium (D=0), the opposite of LD (D=1), in that it implies that SNPs at different loci are 

randomly associated [63]. HWE is a rarely obtained ideal which implies that the genotype 

frequency in a population remains constant, or in equilibrium, from generation to generation. 

Deviation from HWE is due to disturbing factors such as mutations, selection, random genetic 

drift, inbreeding or genotyping error [63]. Small populations, however, are seen to have genotype 

frequencies that are not in line with the expected frequencies defined by HWE [280]. 

Additionally, SNPs with a call rate of less than 80% (more than 20% missing) and a minor allele 

frequency of less than 5% were removed. Similarly, samples with more than 30% missing 

genotypes were removed. 

 



 

40 
 

2.7 Microarray technology 
With the introduction of DNA microarray technology, genome wide scans have been made 

possible which means that up to 105 to 106 genomic loci can be tested simultaneously in one 

sample from a single individual [281]. Currently arrays for the detection of a variety of genetic 

variations exist and in paper II and III we used gene expression and SNP array technology. 

2.7.1. Gene expression 

In paper II and III we used the Agilent Human Whole Genome Oligo Microarrays 44K (G4110A) 

from Agilent technologies to obtain gene expression from biopsies obtained in the MDG study. 

The micro array is a two colored array (Figure 15) spotted with oligonucleotides of 60-mer 

length, referred to as probes. A two-colored array has a reference DNA placed on the array along 

with the sample. We used a common reference on all the arrays and to ensure a general 

background for the test samples a commercially available reference made from 10 different cell 

lines was chosen. In the experiment the reference and the samples are labeled differently (red and 

green fluorescence) before they are mixed in solution and placed on the microarray slide. During 

12 hour hybridization incubation the reference sample and test sample compete for hybridization 

to the 60-mer probes on the array. Thus, if there is equal expression of a gene in both, this will be 

seen as approximately equal binding to the probes. However, if the test sample has regions that 

are deleted only the fluorescent dye of the reference will be present at the spots representing these 

loci and vice versa. 
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Figure 15: Schematic diagram of a two colored gene expression array, A is the test sample, and B is a control/reference 

sample. Both sample A and B are up-amplified and labeled with Cy5 or Cy3 making their detection on the micro array 

feasible. From [281] 

Gene expression data processing: normalization and imputation 

Gene expression data are obtained from a set of microarrays, and one sample or more are 

analyzed per array. However, since not all samples will fit on one array, several are run. This 

gives rise to batch effects and other artifacts dependent on the environment in which a given 

array was processed. Additionally, differences between samples may be observed due to 

differences in sampling and RNA quality. To be able to analyze the gene expression data from 

the arrays together the expression data needs to be modified to account for these intra- and inter- 

gene expression differences. This is referred to as normalization of microarrays. Locally 

weighted scatterplot smoothing (Lowess) [282] was used for this purpose. The Lowess method 

fits simple regression models to local subsets of the expression data and point by point builds up 

a function to describe the variation in the whole dataset. A constant defined by the regression 

models is subtracted from the original data giving rise to new normalized values. 
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2.7.2 GWAS 

In paper II we used a genome wide SNP genotyping array from Illumina to perform a genome 

wide association study (GWAS). We used Illuminas Human 1 Genotyping Beadchip which 

contained assays for 109,365 SNPs (Figure 17). As described elsewhere [283], the array utilizes 

the following technologies: a) whole genome amplification (WGA); b) hybridization of sample 

DNA to a specific and sensitive oligonucleiotide probe array; c) array-based enzymatic SNP 

scoring assay and; d) sensitive signal amplification, enabling readout (Figure 16). 

 

Figure 16: The Illumina 109K array for whole genome genotyping [283]. a) The amplified sample DNA is fragmented by 
enzymes prior to b) hybridization to the specific and sensitive oligonucleotide probes on the BeadArray. c) Allele specific 
bead types are used to discriminate against allele A and allele B. The probes are only different in the 3’ end which enables 
allelic discrimination during polymerase extension following hybridization to a perfectly matched allelic target. The 
intensity ratio of the two bead types determined the genotype of a given sample. Illustration from [283]. 

 

Figure 17: Pie chart depicting the categories of the SNPs included 
on the Illumina 109K Human 1 genotyping Beadchip array. The 
SNP selection on the array is based on two approaches; a direct 
approach and an indirect approach [61]. The direct approach 
involves SNPs that are located in promoter or coding regions 
while the indirect approach features htSNPs that are evenly 
spaced throughout the genome. 

From www.illumina.com. 
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2.8 Statistics 
2.8.1 ANOVA 

In its simplest form, Analysis of Variance (ANOVA) is a statistical method that tests a null 

hypothesis (H0) of no difference in means between two or more groups. When comparing two 

means, ANOVA is a generalized form of a t-test which utilizes the student’s t-distribution in 

order to compare 2 groups with respect to the mean. However, when two or more groups/means 

are tested at one time it is referred to as an F-test which utilizes the F-distribution. This one-way 

ANOVA (one factor) can test whether there is an influence of the factor of interest on the 

phenotype, thus leading to a conclusion for the whole factor. The differentiation of the groups 

and possibly pair wise post-hoc tests need to be performed in order to specify the structure of the 

factor levels. In paper II a two-tailed t-test was used while in paper III a one-way F-test was used 

to analyze the significance of the association between SNPs and MD. The aforementioned tests 

are so-called parametric tests which assume normal distribution of the variable analyzed.  

2.8.2 Correlation 

A correlation analysis tests for association between two continuous variables. Pearson’s partial 

correlation was used in paper III. The advantage of partial correlation is the ability to adjust for 

covariates which may influence the observed relationship between our two variables of interest 

[284]. 

2.8.3 Chi-square and Fishers exact test 

When testing the association of categorical variables, chi-squared and Fishers exact tests are 

suitable. In a chi-square test the data is placed in a two-way frequency table. A test statistic X2 is 

calculated based on the observed and expected frequencies, the latter is estimated from the data 

[284]. The H0 is that there is no difference between the (treatment) groups. When the sample size 

is too small or has low cell counts the Fisher exact test should be used. This test keeps the 

marginal frequencies fixed and generates all possible table frequencies that would result in such 

totals. A probability for each table is calculated under the assumption of a true H0. The overall 

probability is subsequently calculated for the observed data based on these probabilities [284]. 

Chi-squared and Fishers exact test were used in paper II. 
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2.8.4 Gene expression analysis: SAM  

Significant Analysis of Microarray (SAM) [285] is a statistical test to identify genes significantly 

expressed in a set of microarray data. In paper II we used Quantitative SAM for the identification 

of differentially expressed genes according to MD as a continuous variable. Briefly, the method 

entails the identification of genes with significant changes in expression through a set of gene 

specific t-tests. A score is given to each gene based on the change in gene expression relative to 

the standard deviation obtained from repeated measurements of that gene. According to a set 

threshold the score is used to determine the significance of the gene. Due to the fact that analysis 

of microarrays entails testing a large number of genes and thus increases the chance of detecting 

false positives, multiple-testing correction is necessary. The FDR method for multiple-testing 

correction is incorporated in SAM and applied to data permutated from the original data. In paper 

II we performed 500 permutations. Based on the FDR threshold the size of the gene sets vary 

from small to large [285]. To test the robustness of the results obtained in SAM analysis, 

regression analyses were performed on selected probes with MD as the response variable.  

2.8.5 SNP analysis: haplotype estimation 

SNP data does not tell us the phase, but haplotypes can be estimated by different approaches like 

E-M-algorithm and PHASE [286]. Using haplotypes for association testing can be more powerful 

than testing each single SNP [287]. In paper I we looked at haplotypes associated with levels of 

MD. Since the data was collected at the SNP level the haplotypes had to be estimated. For this 

purpose we used the SAS/GENETICS and the PROC HAPLOTYPE procedure. The 

implemented expectation maximization (EM) algorithm [288] estimates the maximum likelihood 

of the haplotypes and their frequencies in a given population with the assumption that they are in 

HWE. The level of LD between SNPs within the haplotypes was tested through generation of a 

likelihood ratio test with the null hypothesis of no association between SNPs. In brief the method 

works as follows; the two locus haplotypes are first estimated, the ones that have a lower 

frequency than a given threshold are discarded, and then the remaining haplotypes are expanded 

to the next locus by formation of all possible three locus haplotypes. As the number of loci 

increases the number of possible haplotypes grows exponentially. We used a haplotype frequency 

cutoff threshold of 0.05, which meant that haplotypes with a lower frequency in our population 

were not carried through to the next haplotype trend regression analysis in SAS 9.1.  
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2.8.6 Regression analysis 

Regression analyses were used in all the papers in different forms. Regression is in its simplest 

form a straight line and is referred to as a linear model, representing the relationship between a 

dependent variable and an independent variable. The equation for a dependent variable Y as a 

linear function of the independent variable X is given by: 

Yi =  + Xi + i 

Where  is the intercept,  is the slope of the line, i is the individual residual error term and i is 

the individual sample. For example, the genotype for an i’th individual is given by Xi, and 

explains the changes in the i’th individual’s MD which is given by Yi, when assuming the 

additive model. 

SAS genetics 

In paper I we used SAS® 9.1 programming software and SAS/GENETICS in combination with 

the SAS/STAT procedure PROC REG for haplotype-trend regression for the association analysis 

of SNPs and MD. In SAS/GENETICS the estimated haplotypes are processed and formatted so 

they can be used in the regression procedure in SAS/STAT. The haplotype trend regression was 

performed using the PROC REG procedure which used the data obtained on the estimated 

haplotypes for association analysis of each haplotype and our response variable MD. In addition 

to the analyses of the haplotypes, single SNPs were analyzed for association with MD using 

general linear models (PROC GLM). All analyses were adjusted for age and BMI due to their 

importance for MD and results were rendered significant if the p-values were < 0.05. 

eQTL 

In paper II we used the programming software R 2.9.0 and the package “eMAP” v1.1 for the 

expression quantitative trait loci (eQTL) analysis. The package has the option of analyzing 

associations of distant SNP and expression probes (in trans) as well as SNPs and probes within a 

limited distance of each other (in cis). In cis analyses were performed which meant that the SNP 

and gene probe analyzed had to lie within 106 base pairs of each other. From the equation above 

the gene expression is given by Y, and the SNPs are given by X. The genotypes were coded into 

0, 1and 2 (major homozygote, heterozygote, minor homozygote) and analyzed for a linear 

relationship with the gene expression probes, also referred to as the additive inheritance model. 
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Although a time-consuming analysis, the eMAP package is written in the programming language 

C and implemented in R which makes it faster and more efficient than many other methods. 

SNPassoc 

In paper III, R 2.10.1 programming software was used with the package “SNPassoc”. The 

inherent function WGassociation utilizes generalized linear models to estimate the association 

between SNP and MD under five different inheritance patterns (Figure 18): dominant, recessive, 

additive, overdominant and codominant. In addition to the analyses involving SNP and MD, we 

modified the program to be able to run SNPs and gene expression data and thus performing an 

eQTL analysis. For comparison, the previously mentioned regression analyses so far have only 

involved analyses under the additive model. 

 

 

Figure 18: The five inheritance models applied in WGassociation in SNPassoc. Phenotype on the y-axis. 

Multivariate analysis 

In addition to the previously mentioned univariate analyses, a multivariate analysis was applied 

to the SNPs in paper III. The approach somewhat resembles a haplotype analysis in that it 

analyses a predefined set of SNPs according to a response variable, however, that is where the 

similarities end. The multivariate analysis does not assume that SNPs in a given set of SNPs are 

in LD, hence, SNPs that reside on different chromosomes and with great distance between them 

can be placed in the same group. The purpose is to determine if the SNPs in combination can 

influence the phenotype at a greater magnitude than each SNP alone. This type of analysis is 

useful when testing specific pathways of interest and groups of genes such as those from a cluster 

analysis. The multivariate analysis was performed in R 2.12.0 with the package “Globaltest” 

[289]. The equation for a multivariate regression model fits several variables and is given by: 

Yi =  + 1X1i + 2X2i + 3X3i + ··· + nXni + i 
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However, the multivariate approach may hold more power than a simple univariate analysis, and 

unless many groups of markers are tested the multiple testing correction problem is 

circumvented. 

2.8.7 FDR multiple testing correction 

With the increasing amount of genetic markers being tested in genetic studies, there is an 

increased probability of detecting false positives (type 1 error). This has established the need for 

multiple testing correction procedures, to correct the level at which we define a result as 

significant. A p-value threshold may be used to define the statistical significance of a test, that is, 

the probability of observing the test statistic or one that is more extreme given that the null 

hypothesis of no association is true. Hence, theoretically, by using the common threshold 0.05 

suggested by Fisher in 1925 [290], we expect that 5% of our results are false positives. This does 

not pose a major problem in relatively small studies when 10-20 markers are tested, in which one 

would expect 1 significant result to be a false positive. However, larger studies and whole 

genome scans testing 105-106 markers are becoming increasingly common and the amount of 

false positives increases linearly with the number of markers tested. To correct for this 

phenomenon a variety of statistical methods have been developed. The most common methods 

control the family wise errors rate (FWER) or the false discovery rate (FDR). FWER is the 

probability of making one or more false discoveries, while FDR is the expected proportion of 

false positives among all significant discoveries [291]. FDR is thus considered a less conservative 

method than the FWER methods (e.g. Bonferroni) which may result in an increased amount of 

false negatives. FDR was used in paper II and III.  

2.9 Gene ontology databases 
2.9.1 DAVID 

In the SAM analysis conducted in paper II a list of genes was identified as potentially significant. 

To investigate the biology behind the gene list, Database for Annotation, Visualization and 

Integrated Discovery (DAVID) [292-294] was used. This database provides information about 

genes in the form of molecular function, biological processes and pathway visualization, amongst 

others. The inherent pathway visualization is offered by Kyoto Encyclopedia of Genes and 

Genomes (KEGG) [295].  
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3 Results in brief 
We studied SNPs from selected pathways for involvement in MD development in paper I, II and 

III, while in paper II we also used SNPs from a whole genome analysis approach. Additionally, 

gene expression data was integrated with SNP analyses in paper II and III to further investigate 

the molecular background in MD. 

Paper I 
Genotypes and haplotypes in the insulin-like growth factors, their receptors and binding 

proteins in relation to plasma metabolic levels and mammographic density 

(Biong et al. BMC Medical Genomics 2010) 

The development of the breast and MD are both influenced and increased by various growth 

factors. In this paper we focused on the influence of the insulin-like growth factor genes on MD. 

The IGFs have previously been reported to be of importance for normal mammary growth, MD 

and also cancer of the breast. The ability of IGF1 and IGF2 to stimulate cell proliferation and 

inhibit cell death, may account for the reported implication of IGF1 in several cancers and MD. 

Insulin-like growth factor binding proteins (IGFBPs) are as the name implies proteins that bind 

IGFs and prolong their half-life; IGFBP3 is the principal carrier of IGF1 and IGF2. The resultant 

complex may bind an acid labile subunit (ALS). The addition of ALS to the binary complex 

creates a tertiary complex which prolongs the half life of IGFs from 30-39 minutes to more than 

12 hours. IGF1 and IGF2 exert their growth promoting effects through their receptors, and while 

both may bind to insulin growth factor receptor 1(IGF1R), only IGF2 binds to insulin growth 

factor receptor 2 (IGF2R). 

In paper I, selected SNPs (n=24) harboring the genes; IGF1, IGF2, IGFBP3, IGFALS, IGF1R 

and IGF2R were analyzed in a population of 964 Norwegian postmenopausal women. Both 

single SNPs and haplotypes were analyzed with respect to MD, IGF1 and IGFBP3 serum levels, 

using linear regression methods. The results from the single SNP analysis revealed one SNP in 

IGF1R associated with the plasma level of IGFBP3 while three other SNPs in the same gene 

were associated with MD. Two SNPs in IGF2R were associated with both the level of IGF1 and 
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IGFBP3. One SNP in IGFALS and one in IGFBP3 were both associated with serum levels of 

IGFBP3, the latter indicating association in cis.  

Haplotype analysis revealed the existence of haplotypes in each gene. Analysis of these 

haplotypes revealed an association of a haplotype variant in IGF1 with MD, however, after 

stratification by HT it was no longer significant. A rare haplotype in IGF2 was associated with 

increased levels of IGF1 and IGFBP3. Two haplotypes in IGF2R were found associated with 

decreased levels of IGF1, although one association was no longer significant after HT 

stratification. The two haplotypes in IGFBP3 were both associated with the levels of IGFBP3, 

giving more power to the results found in analysis of the single SNPs. HT stratification revealed 

that most of the significant results remained significant either for HT users or non-users but 

seldom both groups. 

We conclude that there are haplotypes in the studied genes and that four of in total six haplotypes 

were associated with serum levels of the gene products studied and/or MD. Of special interest 

were the results from analyses of SNPs and haplotype variants in IGFBP3 which were found 

associated with serum levels of IGFBP3, presenting a strong indication of regulatory properties 

of these SNPs in cis.  

Paper II 
Expression levels of uridine 5’diphosphoglucoronosyltransferase genes in breast tissue from 

healthy women are associated with mammographic density. 

(Haakensen, Biong et al. Breast Cancer Research 2010) 

Gene expression technology holds promise of a better understanding of the molecular 

underpinnings of diseases that have so far not been sufficiently explained through other methods. 

Breast cancer is one such disease and although the causative agents have been identified for some 

variants of this disease (i.e. BRCA1/2 mutation) most are unidentified. Detection of early events 

in breast cancer development is important for good prognosis and for this purpose MD has been 

suggested used as a proxy phenotype. In paper II we aimed at elucidating the nature of the 

difference in gene expression pattern seen in healthy breasts with low and high MD, which may 

explain the relationship between MD and BC risk. Gene expression data was analyzed 
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statistically using the method quantitative Significant Analysis of Microarrays (SAM) in 

combination with linear regression. Additionally, involvement of SNPs on expression pattern was 

also estimated through expression quantitative trait loci (eQTL) analysis. 

Of the 9767 expression probes analyzed, 25 probes representing 24 genes were differentially 

expressed between two groups consisting of healthy women with high and low MD. Upon 

analysis of these genes with the gene ontology tool DAVID, no terms or pathways were 

overrepresented in a significant manner. However, of particular interest it was noted that three 

genes from the UGT gene family (UGT2B11, UGT2B10 and UGT2B7) were represented in four 

of the 25 probes. The UGT gene family is involved in detoxification of toxic compounds 

including hormones by clearing them from circulation, thereby protecting tissues from the growth 

promoting effects. These particular UGT genes were seen to be down-regulated in the samples 

with the highest MD, which was found to be the case for the tumor samples as well. Upon 

stratification for hormone therapy use and age it was revealed that the association remained 

significant for young women <50 and women >50 currently using HT. Thus, decreased UGT 

expression in breasts of women currently under the influence of steroid hormones may increase 

MD and possibly also BC risk. Genotypes and expression were subsequently analyzed for the 

identification of eQTLs. Only associations in cis were considered which resulted in the 

identification of one SNP (rs1828705) in UGTB10 associated with two expression probes in 

UGT2B10 and UGT2B7 respectively. This suggests that variations on DNA level may influence 

the associations made on the mRNA level. 

In summary, a set of genes was identified to be differentially expressed with regards to whether 

the biopsies were taken from breast with high or low MD. The nature of certain genes, such as 

the UGTs, within this list could greatly influence estrogen metabolism in healthy women who are 

under the influence of female hormones. The fact that the UGT genes were significantly down-

regulated in women under the influence of steroid hormone (premenopausal or user of HT) with 

high MD, indicates that these two parameters may act together and give rise to high MD. 
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Paper III 
Candidate SNP analysis integrated with mRNA expression and hormone levels reveal 

influence on mammographic density and breast cancer risk 

(Biong et al. submitted to Cancer Epidemiology Biomarkers and Prevention) 

There is a growing need for the identification of genetic markers that can predict whether a 

woman will develop breast cancer at some stage in her life. Mammographic density is a well-

established risk factor for breast cancer, but the biology underlying MD is complicated. MD is 

influenced by reproductive life style factors, diet, age, growth factors and genetics. The genetic 

component of MD is estimated to be between 30-60%.  

Based on this we set out to identify SNPs with potential impact on MD which may also be used 

as early markers of BC. The estradiol pathway was chosen for the selection of candidate genes, in 

which candidate SNPs were selected. A total of 257 candidate SNPs were analyzed with regard to 

MD and serum hormone levels. In addition we obtained mRNA expression in biopsy from non-

diseased breast tissue which was added to the genotype analyses. With the addition of the mRNA 

to the genotypes we aimed at gaining power to identify low-penetrant SNPs and also possible 

mediation effects. 

Two independent sample materials made a discovery/verification approach feasible. The SNPs 

were analyzed univariately under different inheritance models using regression method. 

Multivariate analyses of the SNPs were also performed with the use of Globaltest to reveal sets of 

SNPs associated with MD. Univariate analysis results revealed associations of 28 SNPs with the 

levels of MD of which seven SNPs were also associated with gene expression transcripts in cis. 

SNPs harboring or in the vicinity of genes which are directly influencing the estradiol pathway 

were of special interest such as the uridine 5’diphosphoglucoronosyltransferase (UGT), 

sulfotransferase (SULT) and hydroxysteroid dehydrogenase (HSD) gene members. These gene 

families were represented by six of the 28 SNPs which were associated with MD in healthy 

postmenopausal Norwegian women. In paper II we discovered an association of the expression of 

UGT family members with MD, an association confirmed at the DNA level in the current paper. 

We also confirmed the association of the HSD3B1 SNP (rs1047303) which is previously 

associated with MD in several other independent studies. Also SNPs in other interesting genes 
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such as the matrix metalloproteinase 2 (MMP2) and breast cancer antiestrogen resistance 1 

(BCAR1) were found associated with MD. The multivariate globaltest analysis was run on sets of 

SNPs defined from univariate analysis results. Based on HT use and two defined p-value 

thresholds, six SNP sets were analyzed. Of these six, two sets consisting of 7 and 35 SNPs 

respectively were significantly associated with MD. 

The findings in this paper are based on studies of small sample size and their statistical 

significance is based on replication and not on multiple testing corrections. However, the nature 

of the genes and the importance of the estradiol pathway in MD and BC warrant their further 

investigation. 

 

 

 

 

 

 

 

 

 

 

 



 

53 
 

4 Discussion 

4.1 Discussion of main findings 

4.1.1 Involvement of hormone and growth factor pathways in MD 

The interaction between mammographic density and genetic variation in members of the insulin 

like-growth factor pathway were analyzed in paper I while members of an extended estradiol 

pathway were analyzed in paper III. The interrelation between these two pathways is illustrated in 

Figure 11 and Figure 19.  

Main findings in estradiol pathway 

In papers II and III several members of the estrogen pathway were identified associated with MD, 

and included SNPs in UGTs, SULT2A1 and HSD3B1 as well as the gene expression of UGTs and 

ESR1. As previously mentioned these may all be important in determining the level or action of 

estrogens in the breast tissue. As a consequence these are often targeted in studies regarding 

abnormalities of the breast.  

In paper II we found a set of 24 genes differentially expressed according to MD in breast tissue of 

healthy pre- and postmenopausal women. Amongst these genes three UGT genes were identified 

(UGT2B11, UGT2B10 and UGT2B7). These UGTs were inversely associated with MD levels. 

Interestingly, comparing the women with low MD, high MD and women with BC showed that 

the two latter groups had similar expression of these UGTs, suggesting that these two groups are 

more alike than the counterpart with low MD. Additionally, stratifying on age and HT use 

revealed that women older than 50 years currently using HT where the only group were UGT 

genes were still differentially expressed according to MD. Confirming these results in regression 

analyses using stepwise regression resulted in UGT2B10 being the only one remaining in the 

model. The association remained significant for women aged <30 and women aged >50 and 

currently taking HT when stratifying the regression analysis according to age and HT use. This 

suggests that low expression of UGTs in an environment with high levels of female hormone may 

increase MD and possibly also BC risk. Further studies would be needed to determine if the 

UGTs confer an independent risk of BC or if the risk is mediated by MD. 
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Due to the strong evidence of heritability in MD we set out to investigate the genetic variability 

in the UGT genes whose expression was found associated with MD. One study has so far 

reported an association of SNPs in UGT genes associated with MD [244]. Upon analysis of SNPs 

we identified one UGT SNP associated with the expression levels of two UGT transcripts 

differentially expressed according to MD. However upon analyzing SNPs and expression 

transcripts in paper III, the association of UGT SNPs with UGT transcripts did not hold. There 

might be several reasons for this, with the main reasons being that the UGT genes analyzed in 

paper II were represented by SNPs derived from both GWAS and candidate gene study in which 

none of the UGT SNPs were represented on both in addition to low power due to few samples. In 

paper III only SNPs from the candidate gene approach were analyzed. The analysis approach in 

the papers also differed. In paper II we selected to only study UGT SNPs according to UGT 

transcripts while in paper III we investigated a larger set of SNPs according to a larger set of 

transcripts utilizing a verification approach. In paper III we identified SNPs in UGT genes 

(UGT2B28, UGT2A1, UGT2B15) associated with MD, and two of these (UGT2B28, UGT2B15) 

were associated with transcription factors in cis that were also associated with MD. The findings 

of SNPs in these UGT genes through validation analyses with an independent sample set 

strengthen the finding in paper II. However, larger epidemiological studies with the appropriate 

power would be needed to verify these findings. Also, of special interest is the association of a 

SNP in UGT2B15 with the expression of H2AFJ. As part of the histone H2A superfamily H2AFJ 

may play a role in transcription regulation, DNA replication and repair and chromosome stability 

[45]. The amplification of H2AFJ in breast tumors has led to the suggestion that this gene is an 

oncogene [296]. We observed a relationship between the expression of H2AFJ and MD in both 

papers II and III, suggesting that the expression levels of this gene influence the levels of MD.  

In paper III we found a SNP in HSD3B1 associated with MD which is supportive of previous 

reports [70,71]. This is an interesting finding due to the involvement of the HSD3B family in the 

estrogen metabolism. Also, the fact that we managed to verify this association suggests that our 

study approach may provide enough power to detect causative alleles. In paper II we observed an 

association of increased ESR1 expression with decreased MD - a finding inconsistent with 

previous reports and opposite of what one would expect. ER  which is encoded by ESR1, is able 

to set off signaling cascades involved in the growth of hormone responsive organs such as the 

breast and is therefore suggested to be involved in the development of increased MD. However, 
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reports of such an association have been inconclusive [297]. This raises the question as to what 

extent MD level is influenced by non-hormonal factors.  

Steroid hormone and growth factor cross talk 

As previously mentioned there is a crosstalk between members of the estrogen pathway and IGF 

pathway. The microenvironment is the primary compartment for exchange of growth related 

signaling. The developmental stages and growth of the mammary gland is directed by these 

signals which may be in the form of growth factors, hormones, cell-cell or cell-basement 

membrane interactions [15]. The metabolites and hormones are transported in the ground 

substance directed to or from target cells. The crosstalk between hormones and growth factors 

may be prominent for the achievement of signaling induced growth and differentiation of the 

epithelium comprising the ducts and alveoli. 

In paper I we identified one haplotype in IGF1 and three SNPs in IGF1R associated with MD. 

This suggests that, in addition to circulating levels, genetic variation in the IGF signaling 

pathway may also play a role in development of MD. In the normal breast IGF1R is found 

expressed in the cytoplasm of breast epithelial cells but not the BM, and increased expression 

confers an increased risk of BC [298]. Additionally, IGF1R is and anti-apoptotic agent found to 

be highly over expressed in malignant tumors, enhancing survival [299]. Recently it was 

discovered that IGF1 and IGF1R were involved in the early transformation of mammary cells 

[300,301]. In paper III we used the same sample material as in paper I, in addition to an 

independent verification study to analyze the estradiol pathway. In paper III we found a SNP in 

AKT3, a member of the AKT family, associated with the levels of MD. The AKT family is 

involved in cell proliferation, differentiation, apoptosis and tumorigenesis amongst others and 

upon activation by IGF1, AKT3 may play a role in cell survival [45]. Akt is the downstream 

mediator of PI3K, often referred to the PI3K/Akt signaling pathway due to the many extracellular 

signals they mediate, and is a pathway that is often dysregulated in human cancers [302].  

In paper II we analyzed gene expression for association with MD. Amongst other findings we 

saw that the gene PIK3R5 was differentially expressed according to MD. PIK3R5 stands for PI3-

Kinase regulatory subunit 5 and is thus a subunit of PI3K. The PI3Ks are divided into three 

classes; I, II, and III of which PIK3R5 is class I which is the only class involved in oncogenesis 

[303]. Among the 257 SNPs in paper III we analyzed one SNP residing in the gene PI3KC2B but 
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found no association. This gene however is part of class II [45] and may therefore not hold the 

same potential as the class I kinases or the SNP had no causative effect. However, mutations in 

PIK3CA (class II) are frequent in BC and are associated with ER gene expression, lymph node 

metastasis and poor survival. A SNP within the PIK3CA was found to be associated with breast 

cancer risk in two large studies but failed to be verified in a third, suggesting that this common 

variation may confer some risk but does not have a strong influence [304].  

As previously mentioned the expression of ESR1 was significantly down-regulated in women 

with high MD, a finding contrary to what one would expect. However, due to crosstalk between 

the growth factors and steroids, interaction between the signaling pathways may occur at several 

levels to increase proliferation. As previously suggested, in the loss of steroid receptors, one 

could hypothesize that increased cellular expression of other signaling molecules would provide 

sufficient signal through the growth factor stimulated pathways [305]. 

 
Figure 19: Crosstalk between estrogen and IGF pathway signaling. ER : Estrogen receptor alpha, GH: Growth hormone, 
GHRH: Growth hormone releasing hormone, IGF1: Insulin-like growth factor 1, IGFBP3: Insulin-like growth factor 
binding protein 3, IGF1R: Insulin-like growth factor receptor 1, IRS1: Insulin receptor substrate 1, PI3K: 
phosphatidylinositol 3 kinase. From [306]. 
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The propagation from dense tissue to BC might be induced by the microenvironment.  

In paper III we found an association of a SNP in matrix metalloproteinase 2 (MMP2) with MD. 

This suggests that in addition to the crosstalk of hormones and growth factors, there might be an 

involvement of stromal matrix proteins in MD. MMP2 has the ability to degrade the extracellular 

matrix and is involved in tissue remodeling and metastasis [45]. Studies on the involvement of 

growth factors and stromal matrix proteins in MD have revealed that women with higher 

mammographic densities compared to their counterparts, had larger areas that were stained for 

IGF1 and the metalloproteinase TIMP3, the latter is an inhibitor of MMP2 [181]. Matrix 

metalloproteinases ensures proper branching morphogenesis by loosening the extracellular matrix 

(ECM) and clearing the path for the growing TDLU [26]. Women with higher stromal ECM 

density in the breast also have a stiffer matrix, due to greater deposition of the ECM [307]. As 

established in paper III involvement of the MMPs and SNPs in MMPs in cancer have been 

reported which makes them interesting candidates in studies on BC risk involving MD. The 

MMP2 SNP would need to be analyzed in larger sample sets to conclude its involvement in 

density of the breast. 

4.1.2 Integrated analyses and complex diseases 

Our results suggest that it is imperative to not only test SNPs in coding regions and that 

collectively SNPs may together cause variability in phenotype. This was also seen in paper III 

upon performing multivariate analysis (Globaltest) of selected SNPs. It signifies the importance 

of interactions between loci. These interactions are postulated to hold the answer as to which 

genes underlie complex diseases, which has been suggested to be an average of 40 genes [308]. 

The hypothesis is that the function of a genetic factor is mediated through complex mechanisms 

involving other genes and also environmental factors. Accordingly, the effect of the genetic 

factor might be missed by isolating it from the system [309]. Several methods and software 

packages aim to reveal these interactions, and aim to either increase power to detect effect or 

detect statistical interactions between loci to explain the biology underpinning complex disease. 

With our analysis approach we aimed to achieve both in paper III in which we used candidate 

genes /SNPs, discovery-verification and inclusion expression data. In papers II and III we 

verified the association of UGT genes with MD on both the SNP level and the mRNA level, 

further strengthening the hypothesis that the integrated analysis may contribute to identification 

of associations.  
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4.2 Methodological considerations 

4.2.1 Heterogeneity within and between studies. 

Study heterogeneity is a problem because it causes variation among the samples which influences 

the statistical analysis. One might argue that the MDG study is heterogeneous because it contains 

samples from women who have attended follow-up screening due to suspicious findings. Hence 

the study may be enriched for women whose BC risk is not linked with MD. McCormack et. al. 

performed a meta analysis and reported that the association between breast density and breast 

cancer risk only holds when the control group represents an asymptomatic population, and that 

underlying breast disease might result in inconsistency in findings [175]. The inclusion of 

controls with suspicious findings in the MDG study raises the question as to whether or not these 

samples completely conform to an asymptomatic population. In addition, women in the MDG 

study who had previously had cancer were labeled as healthy in the clinical file. For biopsy of the 

breast this might be sufficient but for germline mutations it could potentially introduce noise. 

That is, if a woman who has a history of cancer has low MD, the main cause of BC can be 

assumed not to be linked with the MD level. However, of these women only one was included in 

the analyses and we conclude that the potential noise from this sample among the other 50 

samples included from MDG is minimal and that our results are not affected substantially. TMBC 

on the other hand is a study of only healthy women, with no sign of disease. The combination of 

TMBC and MDG could therefore add noise to our analyses, resulting in no associations. 

However their differences could also be a strength. If we hypothesize that the samples in the 

MDG study lie closer to our trait of interest (BC) it could enforce our attempt of finding the 

specific SNPs with risk for increased MD which confer BC risk. On the other hand, all the 

women in the TMBC study have breast densities ranging from low to high density, and we cannot 

exclude the possibility that also some of these women may also have some irregularities. The 

difference between the studies is in the inclusion criteria, but in the end, the studies might not be 

too different. We know too little about BC progression to safely say that the samples are healthy 

just based on the mammographic image. As we have seen there may be many factors on the 

molecular level that come into play during tumor initiation and progression. A longitudinal study 

is needed to investigate all of these factors at the time of good health and after a woman has 

developed BC.  
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4.2.2 Study selection bias 

Selection bias is an issue caused by the selection of subjects for the study and as a result the 

associations made in the study are dependent or biased by the participants. The women 

participating in the TMBC study were picked from the Norwegian breast cancer screening 

program (NBCSP), but only those who responded to the questionnaires could be included. Thus 

our samples could represent a selection bias. However, the TMBC study is a subset of a large 

nationwide screening program and there was a high attendance rate in both the NBCSP (78%) 

[310] and the TMBC. Of all participants attending the NBCSP during the recruitment period of 

TMBC, 80% were eligible to attend TMBC and of these, 70% participated [311,312]. In order for 

this to lead to selection bias, the associations of SNPs and gene expression with MD must be 

systematically different among those who did not participate and those who did. We find this 

unlikely. The women participating in the MDG study have purposely been selected due to 

suspicious findings and can thus introduce bias in the associations and also result in poor 

generalizability. The degree of difference between the TMBC and the MDG study is uncertain 

and hence also the effect of the bias that is potentially introduced by the MDG study. 

4.2.3 Assessment of menopausal status 

Assessment of the menopausal status was performed in the MDG material which was analyzed in 

article II and III. Due to the importance of estrogen in both MD and BC development this 

evaluation is critical due to differences in hormone levels in pre and postmenopausal women. To 

get the menopausal status as accurate as possible the circulating levels of follicle stimulating 

hormone (FSH), Lutenizing Hormone (LH), FSH/LH ratio and estrogen in addition to age, were 

used to determine a women as pre- or postmenopausal. The assessment was performed by 

clinicians with a good knowledge of the field. Thus we conclude that the categorization is an 

improvement to the self-reported menopause status. For the TMBC study women were classified 

as postmenopausal if they were 56 years or older reporting no menstruation during the last 12 

months, or had a FSH level above 20 IU/L. 
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4.2.4 MD measurement 

The measure of MD is influenced by several factors as it is measured in two dimensions and 

variability may arise from positioning, compression and x-ray exposure, in addition to the 

subjectivity of the radiographer [313]. Additionally the reader assessing the mammography 

images may also introduce bias. However, in both studies the reader was blinded to the 

characteristics of the women and thus the reader was not influenced by pre-conceived notions. In 

the TMBC study the intra-reader agreement rate was 0.86, and the inter-reader agreement was 

0.86 (both Pearson correlation coefficient) and for the MDG study the test-retest reliability was 

0.99 for absolute density. The MD readings were performed by the same person in both studies, 

or someone trained by her (GU), and therefore differences in the quantification should be 

minimal. Hence, the results should not be notably influenced by bias introduced at the MD 

assessment level. In addition, the scanners used for the TMBC and the MDG differ which might 

also have introduced noise. By comparison the cobrascan used for scanning the images in the 

TMBC study produces darker images. Hence the absolute density measurements from the two 

studies may not be completely comparable. 

4.2.5 Blood vs Tissue 

The use of blood to detect common genetic variation is advantageous in that it does not matter 

when the sample is taken and may therefore be used as a prognostic tool. In addition blood is 

easier and less invasive to sample than tissue. Tissue on the other hand is advantageous in that the 

area of interest is sampled and the local environment can be analyzed. Tissue samples can thus 

elaborate on the local involvement of signaling pathways or hormone receptor status affecting our 

phenotype. Such tools are already in use in the diagnosis and treatment of BC based on receptor 

status of ER and PR. Analyzing healthy tissue from women with varying MD, may give clues as 

to what the initiating steps of tumorigenesis are and be used for early detection of women at risk 

of BC. In paper I we used blood to study SNPs, while in paper II and III we used both blood and 

tissue to study SNPs and gene expression respectively. 

The downside of using blood for SNP analyses is the potential unspecificity it holds and due to 

the vast amount of SNPs in the genome many markers must be tested to elucidate association 

important for our phenotype. As a result, a large sample size that can accommodate all these tests 

is necessary. Tissue may provide more specific clues as to what pathways/ genes are at play 
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locally, and may therefore be used with SNP analysis to direct the focus to the disease causing 

genes. We applied such an approach in paper II and III where we selected SNPs with a potential 

effect on MD through mutual selection of SNPs from eQTL analysis with gene expression, and 

association analysis of SNPs with MD.  

4.2.6 SNP quality control 

The SNP quality control for the SNPs genotyped in the candidate gene study was performed at a 

genotyping facility. In addition to this we chose to exclude SNPs with a lower population 

frequency than 5% which meant that 105 SNPs was excluded from the analysis. The initial 

candidate SNPs were chosen to have a frequency of >1%, hence the number of SNPs analyzed 

was greatly reduced compared to the number of SNPs genotyped. It is important to acknowledge 

that this is not due to poor genotyping quality but rather an artifact of SNP quality control.  

4.2.7 SNP analysis 

Low penetrance genetic variants. 

Most study groups are now aiming at collecting large sample sets for the detection of SNPs with 

low frequency and low penetrance. There is reason to believe that most of the low hanging fruits 

have been discovered (eg BRCA1/2, TP53), thus, we are now in need of new approaches to 

discover the low frequent, moderate frequent and common low penetrance genetic variations. 

Three classes of breast cancer susceptibility alleles with different risk and prevalence have 

emerged; rare high-penetrance alleles, rare-moderate-penetrance alleles and common low-

penetrance alleles [314]. Using a candidate gene approach in combination with htSNPs we aimed 

to identify members belonging to the latter class in paper III. The challenge in studying such 

SNPs lies in the power to detect the small effects they generate. A study of large sample size may 

provide substantial support for their detection but this is often not obtained. In paper II and III we 

aimed at performing a variety of analyses to best search our data for loci associated with the level 

of MD.  

Using GWAS to detect common low penetrant SNPs 

The whole genome is estimated to encompass more than 11 million SNPs. The current GWAS 

arrays only cover a small fraction of that. In order to detect the effect of common low penetrant 

SNPs with GWAS a large sample set is required. Unfortunately, as the number of tests increase, 
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so does the probability of committing a type 1 error, hence reporting false positives. To tackle 

this issue a multiple testing correction is often applied. Such correction may involve adjusting the 

p-value level at which one determines the test as statistically significant. In these cases 

Bonferroni is commonly used. With the use of Bonferroni the common threshold of 0.05, 

becomes 4,6 x10-7 when a 109 K SNP array is analyzed and the 10-7 threshold is often referred to 

as the GWAS significance threshold. The Bonferroni method is known as a conservative method, 

hence in paper II and III we chose to use the FDR method described in section 2.8.8. Still, FDR 

only tells you about the fraction of falsely rejected H0 within all rejected H0, i.e. the proportion of 

false positives among the correct positives. In paper II we analyzed only selected SNPs from the 

109K array and hence the multiple testing problem is less prominent. Since we were searching 

for common low penetrant genetic variations we chose additional integrated analyses approaches, 

hoping that they in combination could strengthen our findings. 

The candidate gene approach  

The candidate gene approach is beneficial for studies where a known set of genes, genetic 

variants or as shown in paper III, a pathway of interest is tested. Compared with a genome wide 

approach a candidate gene approach may have more power to detect relatively small effects in 

addition to being more cost efficient and also provide flexibility in the choice of markers to be 

tested. The downside is that a candidate gene approach is heavily reliant on the a priori 

knowledge of the phenotype of interest and biological intuition. And although the right gene is 

selected it is still a question of testing the right SNP. The probability of selecting both the right 

gene and the right SNP is potentially very small [315]. To limit this problem we used the benefits 

of LD in selecting SNPs which not only represented itself but “tagged” other SNPs in the 

vicinity. At the most 65 SNPs were tested by one SNP. Additionally, the genes selected to be part 

of the estrogen pathway were many and thus included genes that were not solely in the estradiol 

pathway but branched into other pathways of potential interest. Another limitation prone in a 

candidate gene study is the software used. The technology is advancing fast and the tools are 

much better now than some years ago when these genes and SNPs were selected. However, there 

will always be a limitation to what information these databases hold because they are heavily 

reliant on being updated with current findings and on how the information is extracted and 

interpreted. In our candidate gene and SNP selection process we utilized several commercial and 
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free databases with the aim of detecting all known candidates possible at that time. For 

comparison, a GWAS approach is less affected and biased by such trends.  

HapMap 

The populations within the HapMap project are assumed to be representative of their respective 

ethnic groups, and were used in our selection of SNPs in paper III. However, we cannot 

underestimate the power of testing the causative allele. Only by sequencing the genome of all 

samples in a selected study population would it be possible to obtain true estimates of SNPs in 

LD and htSNPs for that exact population, but then the htSNPs would be redundant. Also, using 

the common LD threshold of 0.8, does not ensure LD across all samples in the study, thus the 

htSNP approach misses some samples and by that it is inaccurate. This approach is widely used 

and is currently one of the best options available. The issue of both power and transferability of 

htSNPs has been addressed by de Bakker [269,316], who concluded that the power was not 

compromised and that htSNPs could be used in populations with great diversity [316]. 

Discovery verification approach 

The problems we face in GWA studies regarding sample size and multiple testing corrections 

also apply for small studies such as the candidate gene study performed in paper III. However, 

when looking for common low penetrant SNPs in smaller sample sets, the use of conventional 

multiple testing procedures is discouraging. We acknowledge that the sample sets analyzed are 

small, thus providing limited power to detect causative alleles. Thus in paper III we opted for a 

discovery/verification approach to test the validity of our results through verification. We used a 

p-value threshold of 0.1 in the discovery phase aiming at including potential causative SNPs 

while eliminating MD irrelevant SNPs from further testing. In addition this reduced the multiple 

testing problem somewhat. In the subsequent verification step we used the conventional p-value 

threshold 0.05, although several of the associations had p-values >0.01. Hence, in the discovery 

phase we chose to use an unconventional liberal p-value. However, the use of the p-value 0.05 is 

somewhat arbitrary and does not take the power of our experiment into account. We argue that by 

using the conventional p-value 0.05 in a small study with limited or unknown power it is easy to 

conclude that there are no significant results and therefore keep the H0. This way of thinking is 

only applicable in experiments that are powerful enough and when the possibility of committing 

a type II error (retaining a wrong H0) is unlikely [317]. The strength in our study lies in our 
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samples. The MDG with the biopsies from healthy women provide a rare opportunity to 

investigate the local environment in the breasts of women with a range of MD and holds great 

potential for shedding light on MD as an intermediated step to BC. TMBC is valuable in that it is 

a subset of a population screening and therefore represents the general population. However, our 

sample size is still small and to further empower our results we added gene expression data to our 

SNP data to facilitate an integrated analysis approach.  

4.2.8      Integrated analysis 

In paper II and III we use both expression and SNP data to elucidate the phenotype. As more 

markers are being tested more samples are needed. An integrated analysis approach may be the 

answer to this growing problem, the hypothesis being that one association is enforced or modified 

by another association at another molecular level. In the case of our SNP and expression analysis 

the theory is that variations in SNPs are mediated through gene expression, causing variation in 

our phenotype, MD. In paper II and III we analyzed the SNP profiles with the gene expression 

levels by performing eQTL analysis and separately these two were tested for association with the 

phenotype. Hence we tested the hypothesis that analysis on different genomic levels should point 

in the same direction when the same phenotype is analyzed. The current method involves a three- 

step analysis approach and the downside to this method is that even though the three results point 

towards the same association it might not be real. The abundance of SNPs and gene transcripts 

tested means that by chance we could pick up coherent associations. To deal with this issue we 

are currently developing a method that includes all variables in one analysis with the aim of 

excluding associations without relevance to the hypothesis. 
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5 Main conclusion and future perspectives 
With a variety of analysis approaches we conclude that there is support for a role of genetic 

variation in the steroid hormone pathway and the IGF-pathway in MD and that these two 

combined may create steroid growth-factor crosstalk. The addition of associations with 

microenvironment specific factors supports the hypothesis that the environment in the breast 

could contribute to MD and ultimately BC. Increased research in the field of low-penetrant 

genetic variants is needed to shed light on complex diseases such as breast cancer. This work has 

already begun and as more groups collaborate to increase power to detect associations one could 

expect to see great advances in molecular medicine in the near future. 

5.1 Integrated analyses  

The future holds great promise for advances in systems biology with integrated analyses 

becoming a major part. As a result of the great advances being made in the field of technology, 

increasing information on the DNA, mRNA and protein level is being obtained. There are many 

modifying steps in going from DNA to mRNA and from mRNA to protein, hence an association 

seen on one level might be either silenced or amplified in the next. Therefore, the search for 

association of genetic variability with a given phenotype is likely to require information from 

each level. Additionally, interactions within a level are also of importance since they may reveal 

novel crosstalk signaling. Currently most studies are performed on either a single level or 

possibly two. The challenge and rate limiting step being the lack of methods and computer power 

needed to analyze all the levels at once in a systematic way in order to reveal biological 

interaction. The advantages of integrated analyses are many, the most prominent being the 

application in treatment of disease and personalized medicine. 
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5.2 Translation into the clinic 

Currently the clinic use mammographic images solely for tumor detection. The vast amounts of 

information that lie within the images are thus not used unless they are used for research purposes 

such as the ones presented in this thesis. However knowledge concerning MD is growing fast due 

to its strong association with BC risk. The potential use of mammographic density in a clinical 

setting is not straight forward due to the complexity behind the association of MD with BC. Not 

everyone who has high mammographic density will develop BC suggesting that there are more 

factors to be considered. Genetic markers are important in this setting. Once the genetic markers 

of increased MD which may influence BC risk are established, and there are most probably 

many, they may be coupled with MD for determination of BC risk. The combination of such 

information may also be used to advise women with increased BC risk to take protective 

measures. The addition of such information into an already well-functioning screening program 

would be very beneficial. MD has been suggested added to the Gail model which is used to 

predict BC risk upon increasing prediction accuracy from 0.607 to 0.642 [318]. Interestingly, 

with the addition of seven SNPs associated with BC the concordance statistic increased to 0.632 

[319].  

5.3 Over diagnosis 

With the introduction of mammographic screening programs there is an increased chance of 

detecting tumors that would have otherwise gone unnoticed due to lack of symptoms or health 

issues conferring a risk of a woman’s life. Tumors that have previously been too small to be 

detected are being detected with x-ray technology. Some of these tumors are slow growing and 

would never be detected or cause disease. However, clinicians are unable to differentiate the 

slow-growing from the aggressive and thus treat all. Not only is this a great cost financially, it is 

a great personal cost for the woman diagnosed and treated for BC when it is not needed. The 

addition of genetic tests in the clinic that could differentiate the aggressive cases from the slow 

growing and less aggressive counterparts would greatly benefit the patient. Also, the 

improvement of screening devices could aid in a more precise diagnosis. The future holds great 

promise for the incorporation of molecular markers in screening and in treatment. 
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Abbreviations 
ABDEN: Absolute density 
ANOVA: analysis of variance 
BC: Breast Cancer 
BIRADS: Breast Imaging Reporting and Data System 
BM: basement membrane 
BMI: Body Mass Index 
CC: craniocaudal 
DHAE(S): Dehydroepiandrosterone (sulfate) 
DNA: Deoxyribonucleic acid 
E1: Estrone 
E2: Estradiol 
E3: Estriol 
ECM: extracellular matrix 
ELISA: Enzyme-Linked Immunosorbent Assay 
EMT: epithelial-mesenchymal transition 
eQTL: expression quantitative trait loci 
ER: Estrogen receptor 
FDR: False Discover Rate 
FFTP: First full term pregnancy 
FSH: Follicle Stimulating Hormone 
FWER: family wise error rate 
GH: Growth hormone 
GWAS: genome wide association studies 
HT: postmenopausal hormone therapy 
HWE: Hardy Weinberg Equilibrium 
IARC: International agency for research on cancer 
IGF1: Insuline-Like Growth Factor 1 
IGFBP3: Insulin-Like Growth Factor Binding Protein 3 
LD: Linkage Disequilibrium 
LH: Lutenizing Hormone 
MD: Mammographic density 
MDG: Mammographic Density and Genetics (study) 
MLO: medio-lateral oblique 
MMP: matrix metalloproteinase 
NBCSP: Norwegian breast cancer screening program 
PDEN: Percent density 
PR: Progesterone receptor 
ROI: region of interest 
ROS: Reactive oxygen species 
SAM: significant analysis of microarray 
SHBG: Sex Hormone Binding Globulin  
SNP: Single nucleotide polymorphism 
TDLU: terminal duct lobular unit 
TEB: Terminal end bud 
TMBC: Tromsø Mammographic and Breast Cancer (study) 
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Errata 
 
Reference 158:  
Was originally: 
Figueroa JD, Garcia-Closas M, Humphreys M, Platte R, Hopper JL, Southey MC et 
al.: Associations of common variants at 1p11.2 and 14q24.1 (RAD51L1) with 
breast cancer risk and heterogeneity by tumor subtype: findings from the Breast 
Cancer Association Consortium. Hum Mol Genet 2011, %20.. 
 
Changed to: 
Figueroa JD, Garcia-Closas M, Humphreys M, Platte R, Hopper JL, Southey MC et 
al.: Associations of common variants at 1p11.2 and 14q24.1 (RAD51L1) with 
breast cancer risk and heterogeneity by tumor subtype: findings from the Breast 
Cancer Association Consortium. Hum Mol Genet 2011, Dec 1;20(23):4693-706. 
 
Figure 8: 
Was originally: 
Figure 1: Age-standardized breast cancer incidence rate per 100,000 among women 
worldwide [77]. 
 
Changed to: 
Figure 2: Age-standardized breast cancer incidence rate per 100,000 among women 
worldwide in 2010 [77]. 
 
Page 29, para 1, last sentence: 
Was originally: 
Additionally, cyclic changes in MD are seen in premenopausal women due to the 
production and release of estrogen and progesterone from the ovaries [1] 
 
Changed to: 
Additionally, cyclic changes in the proliferation rate of breast epithelial cells are seen 
in premenopausal women due to the production and release of estrogen and 
progesterone from the ovaries [1]. Breast epithelial and stromal cells attenuate X-rays, 
and increased proliferation is positively associated with MD [180,191]. Hence, MD 
may be seen to change according to the menstrual cycle. 
 
Page 29, para 2, line 2: 
Was originally: 
 “…and while BMI is associated with breast cancer risk…”  
 
Changed to: 
“…and while BMI is positively associated with breast cancer risk…” 
 
Page 59, section 4.2.3: 

Was originally: 
For the TMBC study however this was not an issue since being postmenopausal was a 
prerequisite to be eligible to participate, hence excluding pre- or perimenopausal 
women. 
 
 



Changed to: 
For the TMBC study women were classified as postmenopausal if they were 56 years 
or older reporting no menstruation during the last 12 months, or had a FSH level 
above 20 IU/L. 
 
Additions to abbreviations list: 
ANOVA: analysis of variance 
BIRADS: Breast Imaging Reporting and Data System 
BM: basement membrane 
BMI: Body Mass Index 
CC: craniocaudal 
DNA: Deoxyribonucleic acid 
E1: Estrone 
E2: Estradiol 
E3: Estriol 
ECM: extracellular matrix 
EMT: epithelial-mesenchymal transition 
eQTL: expression quantitative trait loci 
ER: Estrogen receptor 
FFTP: First full term pregnancy 
FWER: family wise error rate 
GH: Growth hormone 
GWAS: genome wide association studies 
HT: postmenopausal hormone therapy 
IARC: International agency for research on cancer 
MLO: medio-lateral oblique 
MMP: matrix metalloproteinase 
NBCSP: Norwegian breast cancer screening program 
PR: Progesterone receptor 
ROI: region of interest 
ROS: Reactive oxygen species 
SAM: significant analysis of microarray 
TDLU: terminal duct lobular unit 
TEB: Terminal end bud 
 
Table 2 
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Abstract

Background: Increased mammographic density is one of the strongest independent risk factors for breast cancer.
It is believed that one third of breast cancers are derived from breasts with more than 50% density.
Mammographic density is affected by age, BMI, parity, and genetic predisposition. It is also greatly influenced by
hormonal and growth factor changes in a woman’s life cycle, spanning from puberty through adult to menopause.
Genetic variations in genes coding for hormones and growth factors involved in development of the breast are
therefore of great interest. The associations between genetic polymorphisms in genes from the IGF pathway on
mammographic density and circulating levels of IGF1, its binding protein IGFBP3, and their ratio in postmenopausal
women are reported here.

Methods: Samples from 964 postmenopausal Norwegian women aged 55-71 years were collected as a part of the
Tromsø Mammography and Breast Cancer Study. All samples were genotyped for 25 SNPs in IGF1, IGF2, IGF1R,
IGF2R, IGFALS and IGFBP3 using Taqman (ABI). The main statistical analyses were conducted with the PROC
HAPLOTYPE procedure within SAS/GENETICS™ (SAS 9.1.3).

Results: The haplotype analysis revealed six haploblocks within the studied genes. Of those, four had significant
associations with circulating levels of IGF1 or IGFBP3 and/or mammographic density. One haplotype variant in the
IGF1 gene was found to be associated with mammographic density. Within the IGF2 gene one haplotype variant
was associated with levels of both IGF1 and IGFBP3. Two haplotype variants in the IGF2R were associated with the
level of IGF1. Both variants of the IGFBP3 haplotype were associated with the IGFBP3 level and indicate regulation
in cis.

Conclusion: Polymorphisms within the IGF1 gene and related genes were associated with plasma levels of IGF1,
IGFBP3 and mammographic density in this study of postmenopausal women.

Background
Increased mammographic density is one of the strongest
independent risk factors for breast cancer [1-8]. The
risk of developing breast cancer is four to six times
higher in women with dense breast tissue compared to
women with less dense tissue[2]. It has been estimated

that breasts with more than 50% mammographic density
give rise to one third of breast cancer cases[2]. Mammo-
graphic density is thus a stronger cancer risk factor than
the most traditional risk factors such as nulliparity[1],
age at first birth, age at menarche, age at menopause,
use of postmenopausal hormone therapy (HT) and alco-
hol consumption. Mammographic density is influenced
by age[2], body mass index (BMI)[2], parity[2], meno-
pause status[2], HT[1,9], IGF1[10,11] and genetics[2].
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Exposure to endogenous and exogenous steroid hor-
mones and growth factors has been linked to both
increased mammographic density and breast cancer risk.
It has been estimated from twin studies that as much

as 65% of the variation in mammographic density may
be due to hereditary factors[12,13]. The genetic factors
that influence mammographic density might be the
same as the ones involved in the development of breast
cancer[14,15]. The identification of the genes coding for
these factors may therefore provide a better understand-
ing of the genetics and the biology of the breast. Of par-
ticular interest are the insulin-like growth factor 1 and 2
(IGF1/2), which both have the ability to stimulate cell
proliferation and inhibit cell death in many tissue types
[16]. IGF1 is a mitogen predicted to be involved in the
development of several human cancers, including breast
cancer. In addition some studies have shown an associa-
tion between circulating levels of IGF1 and increased
levels of mammographic density [17-21]. In the blood-
stream IGF1 binds to several IGF binding proteins
(IGFBPs) which prolong its half-life and contribute to
its delivery to target tissues[22]. IGFBP3, the principal
carrier of IGF1 and IGF2[23], is mainly regulated by
growth hormone (GH). IGFBP3 itself has the ability to
promote apoptosis[24], thus it is sometimes referred to
as an anticancer protein. The levels of IGF1 and
IGFBP3 combined may be associated with breast cancer
by stimulating proliferation of breast epithelial cells[22].
IGF1 bound to IGFBP3, may bind an acid-labile subunit
(ALS) to form ternary complexes[25]. ALS is synthesized
in the liver upon regulation of growth factors such as
GH. By forming a ternary complex, ALS prolongs the
half-lives of circulating IGFs from 10 minutes (free
form), and 30-39 minutes (binary complex) to more
than 12 hours. As a result, the reservoir of serum IGF1
levels in human adults can reach ~1000 fold that of
insulin[26]. IGF1 and IGF2 both bind to the IGF1 recep-
tor (IGF1R) to exert their growth promoting effects[27].
IGF2 may also bind to the IGF2 receptor (IGF2R) upon
which it is internalized and degraded. Together, envir-
onmental and genetic factors determine the circulating
levels of IGFs and their binding proteins[28]. Previous
studies on polymorphisms/haplotypes in IGFI, IGFBP3
and IGFALS and their association to breast cancer sus-
ceptibility [25,29-31] and circulating levels of both IGFI
[32] and IGFBP3[31] have been reported making them
interesting targets in mammographic density studies.
Tamimi et al. found positive correlation between com-
mon genetic variants in IGF1 and mammographic den-
sity[11]. Since variation in specific genes affects the
levels of IGF1 and IGFBP3 and may influence mammo-
graphic density as well as breast cancer susceptibility,
we set out to analyze 24 SNPs in IGF1, IGF1R, IGF2,
IGF2R, IGFBP3 and IGFALS and their association with

mammographic density and plasma levels of IGF1 and
IGFBP3 among 964 postmenopausal women.

Methods
Study Population
The Tromsø Mammography and Breast Cancer Study
[21,33-37] was conducted among postmenopausal
women, ages 55 to 71 years, residing in the municipality
of Tromsø, Norway, and attending the population-based
Norwegian Breast Cancer Screening Program at the
University Hospital of North Norway. The women were
recruited in the spring of 2001 and 2002. After the
women had undergone their mammographic screening,
they were interviewed by a trained research nurse about
reproductive and menstrual details, previous history of
cancer, smoking status, and use of postmenopausal hor-
mone therapy and other medications. The participants
had their height measured to the nearest centimeter and
their weight measured to the nearest half kilogram. The
women had blood samples drawn and were given a
questionnaire to be completed at home. The question-
naire elicited information on demographics, additional
menstrual and reproductive factors, as well as lifestyle
and dietary factors. All women signed an informed con-
sent. The National Data Inspection Board and the
Regional Committee for Medical Research Ethics
approved the study. Altogether, 1,041 women were
included in the study. This accounted for 70.1% of the
women attending the Norwegian Breast Cancer Screen-
ing Program during the recruitment period[37].
We excluded 22 women because of a previously (n =

16) or newly (n = 6) diagnosed breast cancer and one
woman because of ongoing chemotherapy treatment.
Women who were 56 years or older or who reported no
menstruation during the last 12 months, or whose
serum follicle-stimulating hormone level was above 20
IU/L, were classified as postmenopausal. By these cri-
teria, three women were equivocal for menopausal sta-
tus and excluded. We further excluded 11 women
whose mammograms were unreadable for technical rea-
sons. Seventeen women with missing blood samples and
23 women due to missing SNP analysis values were also
excluded, leaving 964 women for analysis. More details
are described elsewhere. http://uit.no/density

Mammographic classifications
Left craniocaudal mammograms were digitized using a
Cobrascan CX-812 scanner (Radiographic Digital Ima-
ging, Torrance, CA) at a resolution of 150 pixels/in. Per-
cent and absolute mammographic densities were
determined using the Madena computer-based threshold
method, developed at the University of Southern Cali-
fornia[38]. Briefly, the method was as follows: The digi-
tized mammographic image was viewed on a computer
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screen. A reader (trained by GU) outlined the total area
of the breast using a computerized tool, and the soft-
ware then counted the number of pixels within the out-
line. Mammographic density was then assessed (by GU)
by first identifying a region of interest that incorporated
all dense areas except those representing the pectoralis
muscle and other scanning artifacts, and then applying a
yellow tint to all pixels within the region of interest
shaded at or above a threshold intensity of gray. The
software then counted the tinted pixels, which represent
the area of absolute density (ABDEN). Percent density
(PDEN) equals the amount of absolute density divided
by the total breast area.
The reader of the mammograms did not have any

information of the characteristics of the study partici-
pants. More details are given elsewhere[33].

Peptide Assays
Nonfasting venous blood samples were obtained from
the study participants at the day of mammographic
screening. After centrifugation, plasma samples were
stored at -70°C.
IGF1 and IGFBP3 levels were measured in ng/ml with

the use of ELISA from Diagnostic Systems Laboratories,
Inc. (Webster, TX). The IGF1 assays included an acid-
ethanol precipitation to extract IGF1 from its binding
proteins. Measurements were performed on previously
never-thawed plasma samples.
All IGF1 and IGFBP3 assays were conducted at the

laboratory for hormone analyses (Nutrition and Cancer
Group, IARC, Lyon, France). The mean intrabatch coef-
ficients of variation were 5.1% for IGF1 and 6.1% for
IGFBP3. The interbatch coefficients of variation were
10.6% for IGF1 and 9% for IGFBP3.
The IGF1/IGFBP3 molar ratio was calculated as a pos-

sible indicator of IGF1 bioavailability. More details are
described elsewhere[21].

DNA extraction
Peripheral blood from healthy women was collected in
EDTA-tubes. The DNA was isolated by phenol/chloro-
form extraction followed by ethanol precipitation using
the Applied Biosystems Model 340A Nucleic Acid
Extractor and stored in TE-buffer at 2-8°C. The sample
concentrations were measured by UV/Vis spectrophot-
ometer (Nanodrop ND-1000).

Genotyping methods
5 ng of lyophilized sample DNA was used to perform a
5 ul Taqman (5’ nuclease assay) reaction. Reactions
were set up using 2.5 ul of the 2× Universal Master Mix
(Applied Biosystems, Foster City, CA) and assay-specific
concentrations of primers and probes. All reactions
were set up in a 384 (96*4) well plate and heat-sealed

using an ABgene ALPS 300 heat sealer and clear heat
sealing film (ABgene, Rochester, NY). Reaction plates
were thermocycled, and endpoint reads were conducted
on the ABI 7900HT sequence detection system. Cluster
Analysis was conducted on the scatter plot of Allele
1 Rn versus Allele 2 Rn. Genotypic segregation was
displayed in the allelic plot, containing four distinct
clusters, which represent the NTCs (no template
controls) and three possible genotypes clusters along the
horizontal, vertical and diagonal axes, which represent
the Allele 1, Allele 2 and Allele 1/Allele 2 respectively.
The data were exported in text format for further analy-
sis. The sequences of the respective probes are given at
http://snp500cancer.nci.nih.gov upon search for each
SNP (rs number).

Statistical analysis
Simple descriptive statistics and other analyses were per-
formed on the final study population with the use of
SAS® 9.1.3 software. For each SNP within the haplotype
regions evaluated, we calculated the allele and genotype
frequencies using programming algorithms written in
Base SAS®.
The haplotype analyses were performed in SAS/

GENETICS using the PROC HAPLOTYPE procedure.
This procedure utilizes the Expectation Maximization
(EM) algorithm to predict the maximum likelihood esti-
mates of the haplotype frequencies assuming Hardy-
Weinberg equilibrium. The standard errors and the con-
fidence intervals are estimated, by default, under a bino-
mial assumption for each haplotype frequency estimate.
In addition, the linkage disequilibrium (LD) option in
PROC HAPLOTYPE was specified which generated a
likelihood ratio test for linkage disequilibrium testing a
null hypothesis of no association between the SNPs
within a given haplotype region. The null hypothesis
was rejected for all haplotype regions evaluated in this
paper; the haplotype frequency estimates from the alter-
native hypothesis are reported here. The haplotype fre-
quency threshold was set to 0.05, and haplotypes with a
lower frequency were not included in the subsequent
haplotype-trend regression analysis done in SAS®.
We applied the programming algorithms for haplo-

type-trend regression as developed by SAS/GENETICS;
these methods also utilize the SAS/STAT procedure
PROC REG for the regression models[39,40]. Haplo-
type-trend regression models [41] were used to assess
whether haplotypes were associated with absolute mam-
mographic density and percent mammographic density
in square centimeters, in addition to the levels of IGF1,
IGFBP3 measured in ng/ml and their molar ratio IGF1/
IGFBP3. Box-Cox transformations were applied to abso-
lute mammographic density and percent density to
more closely approximate a normal distribution in this
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study population [42]. The optimum power parameters
of the Box-Cox transformation were obtained by the
Dynamic programming called the Symplex method[43]
and the code was written in R. All analyses were
adjusted for age and BMI. The haplotypes within a gene
were included individually in a model for comparison to
the other haplotypes within the same gene [11].
For each haplotype region a model with haplotypes

with frequencies >= 0.05 and the covariates age and
BMI was compared to a model with age and BMI
alone; the procedure computed the F statistic and
the two-tailed significance probability for these models.
In addition, all of the above-specified models were
stratified by current HT users versus never and past
HT users.
We also conducted additional analyses stratified by

age and BMI and analyzed with general linear models
using Box-Cox transformed values of mammographic
density as the outcome.
We conducted further analyses of the association

between individual SNPs in the haplotype regions and
each of the outcome measurements. We assessed least
square mean mammographic density by genotype
adjusting for age and BMI using generalized linear mod-
els (PROC GLM). We estimated trend statistics by run-
ning separate models including genotype as an ordinal
variable. For all the above-mentioned analyses we
defined the results as statistically significant if the
p-values were below 0.05.

Results
Characteristics of the Tromsø Mammographic and Breast
Cancer Study
Shown in Table 1 are the selected characteristics of the
participants. The median percent mammographic den-
sity was 9.6% (0.0-69.2%) with a mean of 12.7%
(± 12.2%). The median absolute mammographic density
was 14.8 cm2 (0.0-155.2 cm2), with mean of 19.3 cm2

(± 20.3 cm2).

Haplotype analysis
The allele and genotype frequencies for all studied SNPs
in the genes IGF1, IGF1R, IGFBP3, IGF2, IGF2R and
IGFALS are provided in Table 2.
The estimated common haplotypes (frequency higher

than 5%) for the 6 genes and their association to the
parameters studied are shown in Table 3. Haplotypes in
four of the six studied genes were found significantly
associated with the plasma levels and/or mammographic
density (Table 3). One haplotype variant TG in IGF1
was significantly associated with an increase in absolute
mammographic density (p = 0.0334). However, upon
stratification by current and past/never use of HT (See
Additional files 1 and 2) this association was no longer

significant (p = 0.1439 and p = 0.1271, respectively). In
IGF2 the rare common haplotype variant CA was asso-
ciated with increased levels of both IGF1 (p = 0.0014)
and IGFBP3 (p = 0.0181), with significant global associa-
tion for these parameters p = 0.0138, p = 0.0408, respec-
tively. After stratification by HT, the association
between this haplotype and IGF1 levels was still statisti-
cally significant (p = 0.0011), and the association with
IGFBP3 levels was borderline statistically significant (p =
0.0730), for women currently taking HT. For women
who were past or never users of HT the association was
no longer significant (p = 0.1261 and 0.2194 respec-
tively). Haplotypes 1 and 5 in the IGF2 receptor (IGF2R)
were found associated with decreased levels of circulat-
ing IGF1, p = 0.0397 and 0.0455, respectively. In addi-
tion, the global p-value of 0.0524 indicated an overall
borderline association of all seven listed haplotypes in
IGF2R with the IGF1 level. Stratification by HT status
also revealed a significant association between haplotype
1 and IGF1 levels in never/past HT users (p = 0.0353),
but not in current users (p = 0.7907). On the other
hand, the association between haplotype 5 and IGF1
levels was no longer statistically significant in never/past
HT users (p = 0.2031) but borderline significant in cur-
rent HT users (p = 0.0637).

Table 1 Selected characteristics of the 964 participants.

All

Mean

Age at screening, y 61.4 (± 4.6)

Age at menarche, y 13.3 (± 1.4)

Age at first birth*, y 22.9 (± 3.7)

Number of children* 2.9 (± 1.3)

Education, y 9.8 (± 3.4)

Age at menopause, y 48.6 (± 5.1)

BMI, kg/m2 27.3 (± 4.8)

Frequency (%)

Ever Oral Contraceptive use 51.1

Parous 92.6

Ever postmenopausal hormone therapy use 43.4

Current postmenopausal hormone therapy use 26.0

Past postmenopausal hormone therapy use 17.3

Never postmenopausal hormone therapy use 56.6

Breast cancer in first degree relative 8.3

Median

Percent mammographic density, % 9.6 (0-69.2)

Absolute mammographic density, cm2 14.8 (0-155.2)

Non-dense mammographic area, cm2 147.0 (21.6-448.9)

IGF1 (ng/ml) 28.7 (2.2-104.6)

IGFBP3 (ng/ml) 151.2 (52.17-241.5)

*Among parous women only.

Data collected as part of the Tromsø Mammography and Breast Cancer(TMBC)
study in Tromsø, Norway in 2001-2002, presented as mean (± standard
deviation), frequency (%), and median (range).
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Table 2 Allele and genotype frequencies of the 964 participants.

Gene Gene ID SNP ID Allele 1 frequency
Allele 2 frequency

A1/A1 N = (%)
A1/A2 N = (%)
A2/A2 N = (%)

IGF1 1 IGF1-02 rs6220 T = 0.66703
C = 0.33297

C/C = 104 (11.2)
T/C = 410 (44.2)
T/T = 414 (44.6)

2 IGF1-04 rs2162679 G = 0.16772
A = 0.83228

G/G = 22 (2.3)
G/A = 275 (28.9)
A/A = 654 (68.8)

IGF2 1 IGF2-02 rs734351 T = 0.62393
C = 0.37607

C/C = 129 (13.8)
T/C = 443 (47.5)
T/T = 360 (38.6)

2 IGF2-03 rs3213216 G = 0.61645
A = 0.38355

A/A = 131 (14.0)
G/A = 456 (48.7)
G/G = 349 (37.3)

IGF1R 1 IGF1R-05 rs2137680 G = 0.70768
A = 0.29232

A/A = 92 (9.7)
G/A = 372 (39.1)
G/G = 487 (51.2)

2 IGF1R-18 rs2175795 G = 0.70952
A = 0.29048

A/A = 90 (9.5)
G/A = 369 (39.0)
G/G = 486 (51.4)

3 IGF1R-06 rs907806 G = 0.09201
A = 0.90799

G/G = 15 (1.6)
G/A = 145 (15.2)
A/A = 791 (83.2)

4 IGF1R-04 rs3743258 G = 0.72569
A = 0.27431

A/A = 71 (7.5)
G/A = 377 (39.9)
G/G = 498 (52.6)

5 IGF1R-26 rs3743259 G = 0.30765
A = 0.69235

G/G = 86 (9.1)
G/A = 407 (43.3)
A/A = 448 (47.6)

6 IGF1R-03 rs2272037 C = 0.57354
T = 0.42646

T/T = 171 (18.1)
C/T = 464 (49.1)
C/C = 310 (32.8)

7 IGF1R-01 rs2229765 G = 0.56019
A = 0.43981

A/A = 184 (19.4)
G/A = 465 (49.1)
G/G = 298 (31.5)

8 IGF1R-07 rs2016347 T = 0.52784
G = 0.47216

G/G = 202 (21.2)
T/G = 495 (52.0)
T/T = 255 (26.8)

IGF2R 1 IGF2R-05 rs1570070 A = 0.63097
G = 0.36903

G/G = 132 (14.0)
A/G = 432 (45.8)
A/A = 379 (40.2)

2 IGF2R-01 rs894817 G = 0.68873
A = 0.31127

A/A = 97 (10.6)
G/A = 375 (41.0)
G/G = 442 (48.4)

3 IGF2R-02 rs998075 G = 0.49840
A = 0.50160

G/G = 235 (25)
G/A = 467 (49.7)
A/A = 238 (25.3)

4 IGF2R-11 rs998074 C = 0.50211
T = 0.49789

T/T = 235 (24.8)
C/T = 474 (50)
C/C = 239 (25.2)

5 IGF2R-04 rs629849 G = 0.86456
A = 0.13544

A/A = 21 (2.2)
G/A = 211 (22.6)
G/G = 702 (75.2)

6 IGF2R-07 rs2282140 C = 0.89504
T = 0.10496

T/T = 6 (0.6)
C/T = 187 (19.7)
C/C = 755 (79.6)

7 IGF2R-03 rs1803989 T = 0.09746
C = 0.90254

T/T = 10 (1.1)
T/C = 164 (17.4)
C/C = 770 (81.6)
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Both haplotype variants identified in IGFBP3 were sig-
nificantly associated with IGFBP3 plasma levels with a
global p-value of 0.0009. Haplotype variant 1 was asso-
ciated with lower IGFBP3 levels (p = 0.0009) whilst hap-
lotype 2 was associated with increased IGFBP3 levels (p
= 0.0008). After stratification by HT, these associations
were still significant in the group that were never/past
HT users (p = 0.004 and 0.003 for haplotypes 1 and 2
respectively) but not among current HT users (p =
0.3833 and 0.4220).
None of the common haplotypes within the IGF1

receptor (IGF1R) haplotype or IGFALS haplotype were
found significantly associated with any of the parameters
studied. There was a borderline association between
IGFALS haplotype 1 and 3 and IGFBP3 levels (p =
0.0582 and 0.0769 respectively). After stratification by
HT, haplotype 1 was significantly associated with the
IGFBP3 level (p = 0.0309), while haplotype 3 was still
borderline significant (p = 0.0639) in the never/past HT
group.

Stratified analysis by age and BMI
We examined if the significant association found
between IGF1 haplotype 4 and absolute mammographic
density was specific to groups of age or BMI, and strati-
fied the analysis by tertiles of age and tertiles of BMI
(see Additional file 3). Women within the age groups
> = 59 to < 64, and > = 64 years (Tertile 2 and 3) carry-
ing the haplotype 4 variant had a trend towards higher
levels of mammographic density (p = 0.0976, p =
0.0879). Stratification by BMI, revealed a trend towards
higher levels of mammographic density (p = 0.0989) for
the women in BMI tertile 2.

Single SNP analysis
In the six abovementioned genes we had 24 SNPs that
were analyzed for association to the levels of IGF1,
IGFBP3 and mammographic density (see Additional

file 4). Eight of the 24 SNPs were found to be signifi-
cantly associated with one or more of the parameters
studied. In IGF1R, rs907806 was found to be signifi-
cantly associated with the levels of IGFBP3 (p-trend =
0.0111). SNP rs3743259 was found to be significantly
associated with mammographic density measured as
both percent (p-trend = 0.0328) and absolute (p-trend =
0.0389) mammographic density. SNP rs2229765 and
rs2016347 were significantly associated with mammo-
graphic density measured as both percent and absolute
mammographic density, p-trend = 0.0265 and 0.0100,
and, p-trend = 0.0434 and 0.0160 respectively. In IGF2R,
rs998075 and rs998074 were found significantly asso-
ciated with IGF1 (p-trend = 0.0072, p-trend = 0.0083)
and IGFBP3 levels (p-trend = 0.0359, p-trend = 0.0320).
In IGFALS, rs9282731 was found significantly asso-

ciated with the levels of IGFBP3 (p-trend = 0.0205). In
IGFBP3, rs2471551 was found significantly associated
with the levels of IGFBP3 (p-trend = 0.0009), denoting
an association in cis.

Discussion
This population-based cross-sectional study shows an
association between a common genetic haplotype in
IGF1 and absolute mammographic density in postmeno-
pausal women after adjustment for age and BMI.
Although not statistically significant, stratification by age
and BMI revealed that the upper age tertiles and middle
BMI tertile increased the mammographic density level.
One haplotype in IGF2 was associated with the levels of
both IGF1 and IGFBP3, while two haplotypes in the
IGF2R gene were associated with the levels of IGF1.
Within the IGFBP3 gene, two haplotypes were found
associated with the IGFBP3 level indicating a regulation
in cis.
The strength of our study is the large sample size and

the fact that the samples were collected as part of a
population-based screening project with high attendance

Table 2: Allele and genotype frequencies of the 964 participants. (Continued)

IGFALS 1 IGFALS-05 rs9282731 T = 0.00105
C = 0.99895

T/T = 0 (0)
T/C = 2 (0.2)
C/C = 946 (99.8)

2 IGFALS-01 rs17559 T = 0.09057
C = 0.90943

T/T = 13 (1.4)
T/C = 145 (15.4)
C/C = 786 (83.3)

3 IGFALS-02 rs3751893 T = 0.21186
C = 0.78814

T/T = 41 (4.3)
T/C = 318 (33.7)
C/C = 585 (62.0)

IGFBP3 1 IGFBP3-05 rs9282734 C = 0.00317
A = 0.99683

C/C = 0 (0)
C/A = 6 (0.6)
A/A = 941 (99.4)

2 IGFBP3-04 rs2471551 G = 0.17766
C = 0.82234

G/G = 27 (2.9)
G/C = 280 (29.8)
C/C = 633 (67.3)
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Table 3 Associations of the common haplotypes with IGF1, IGFBP3 and mammographic density levels.

IGF1 level IGFBP3 level IGFratio PDENa ABDENb

IGF1

Haplotype Frequency p-value p-value p-value p-value p-value

1. CG 0,1185 0.5553 0.9493 0.6462 0.2337 0.2693

2. CA 0,21486 0.1424 0.5075 0.4549 0.5147 0.6701

3. TA 0,61718 0.7733 0.7103 0.9016 0.4486 0.8462

4. TG 0,04947 0.1683 0.7237 0.2713 0.1737 0.0334

Global association 0.3342 0.924 0.6641 0.3069 0.1167

IGF2

Haplotype Frequency p-value p-value p-value p-value p-value

1. TG 0,34537 0.2769 0.9845 0.1648 0.2297 0.4051

2. CG 0,27102 0.6093 0.1440 0.3058 0.5776 0.7190

3. TA 0,27821 0.7660 0.9920 0.5860 0.5254 0.6165

4. CA 0,10541 0.0014 0.0181 0.0974 0.8518 0.9403

Global association 0.0138 0.0408 0.2712 0.6353 0.8313

IGF1R

Haplotype Frequency p-value p-value p-value p-value p-value

1. GGAGATGT 0,09532 0.8216 0.6761 0.7512 0.8689 0.9008

2. GGAGATAG 0,07847 0.1245 0.0885 0.5697 0.1153 0.1678

3. GGAGACGT 0,12829 0.8324 0.9646 0.9343 0.4403 0.6585

4. GGAAGCAG 0,05028 0.4479 0.6971 0.4485 0.7200 0.8879

5. GGAGACAG 0,10502 0.8550 0.9531 0.8820 0.1567 0.2125

Global association 0.5384 0.5162 0.8893 0.3016 0.4638

IGF2R

Haplotype Frequency p-value p-value p-value p-value p-value

1. GAATACC 0,06242 0.0397 0.1228 0.2853 0.2140 0.0784

2. AGGCGCC 0,27961 0.2376 0.3324 0.5912 0.7018 0.6786

3. GAGCGTC 0,06251 0.7378 0.8651 0.9925 0.9465 0.7463

4. GAATGCC 0,11233 0.4057 0.4787 0.9129 0.7414 0.5293

5. AGATGCC 0,2451 0.0455 0.0631 0.4429 0.7105 0.8569

6. AGATACC 0,07038 0.4484 0.3361 0.8486 0.9180 0.8191

7. GAGCGCT 0,06327 0.5430 0.4985 0.6552 0.0575 0.0622

Global association 0.0524 0.1619 0.8720 0.5036 0.2659

IGFals

Haplotype Frequency p-value p-value p-value p-value p-value

1. CTC 0,08951 0.8055 0.0582 0.2993 0.4069 0.5648

2. CCC 0,69765 0.2290 0.6156 0.3095 0.8880 0.9099

3. CCT 0,21171 0.1412 0.0769 0.6082 0.6291 0.7605

Global association 0.3387 0.0523 0.4678 0.6624 0.8261

IGFBP3

Haplotype Frequency p-value p-value p-value p-value p-value

1. AG 0,17767 0.1630 0.0009 0.1595 0.5689 0.2204

2. AC 0,81917 0.1635 0.0008 0.1531 0.5551 0.2302

Global association 0.1630 0.0009 0.1595 0.5689 0.2204

All associations are adjusted by age and BMI. Significant p-values (< 0,05) are marked in bold italics.
aPDEN: Percent Density.
bABDEN: Absolute Density, measured in cm2.
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rate[37]. Highly experienced personnel that were blinded
to the characteristics of the women performed the read-
ing and measurements of both the mammographic den-
sity and hormone levels. Also, we had information on
age, BMI and HT use and were able to both adjust and
stratify for these variables when necessary.
The limitation of our study is that the associations

made with the polymorphisms within IGF2R were diffi-
cult to interpret due to the lack of measurements of its
ligand IGF2. The women in the study were all postme-
nopausal, and some were taking HT, which could influ-
ence the circulating levels of IGF1 and IGFBP3.
Furthermore, HT is demonstrated to have an impact on
mammographic measurements, increasing the density.
However, as HT cannot have influenced genotype, it is
not technically a confounder, and as in most other ana-
lyses of mammographic density, we adjusted for age and
BMI. We did however, stratify for HT, predominantly
because of the possibility that HT use could be an effect
modifier, i.e. have modified the effect of genotype on
mammographic density.
Mammographic density is reduced by successive preg-

nancies and menopause, as well as with advancing age.
Furthermore, mammographic density may reflect the
cumulative exposure to hormones and growth factors
that stimulate cell division and growth in the breast.
Pike and colleagues proposed a model, stating that the
effects of hormone exposure throughout life and the
accumulation of genetic damage may cause an increased
probability of breast cancer later in life [44]. The age-
specific absolute risk of breast cancer caused by mam-
mographic density is not yet determined, and it is
unknown whether interventions that reduce cumulative
exposure to density will reduce risk of breast cancer [2].
Because of the role of the IGF pathway in breast devel-
opment and cellular proliferation, genetic variation
within this pathway is of interest. Similar to mammo-
graphic density, IGF1 levels are related to age [22], BMI
[45], and menopause status[21] and young women tend
to have higher IGF1 levels than women in their postme-
nopausal years[22].
A positive association of IGF1 and IGFBP3 levels in

relation to mammographic density in premenopausal
women was found in most[17-20,32]but not all [46-48]
previous studies. In postmenopausal women however
the results are less consistent [18-21,47]. Data already
published from this study were positive[21], suggesting
an association between IGF1 and mammographic den-
sity. Our finding of a common haplotype in IGF1 asso-
ciated with mammographic density is in agreement with
previously published findings of an association with
IGF1 levels and density. Associations of genetic variants
in IGF1 and mammographic density in postmenopausal
women can potentially better reflect the lifetime

exposure of IGF1[11] compared to the IGF1 level mea-
sured at a certain time point, at a late stage, in a
woman’s life.
Other studies [18-20,46,47] such as the one of Dos

Santos Silva et al. found no association between postme-
nopausal mammographic density and levels of IGF1,
IGF2 or IGFBP3, nor the ratio of IGF1/IGFBP3,
although, there was an association between the mammo-
graphic lucent area and IGFBP3 serum levels[47]. In
summary, many studies have looked at variations in the
IGF genes and their relationship with IGF plasma levels
and mammographic density, but the results remain
inconclusive, emphasizing the need for more studies.
The incidence of breast cancer has been associated

with levels of IGF1 and IGFBP3 in premenopausal
women in most [22,49-53], but not all studies [54,55].
Hankinson et al. performed a nested case-control study
and found that IGF1 levels were higher among preme-
nopausal women who developed breast cancer before
age 50 than among age matched women who remained
cancer free. For the postmenopausal women in the
study no such association was established[22]. In post-
menopausal women the findings are less clear and posi-
tive association of either IGF1, IGFBP3 or both with
breast cancer [49,50,56] has been reported while other
studies are negative[22,54,57]. The use of HT by post-
menopausal women is known to lower both IGF1 and
IGFBP3 levels significantly; thus the IGF1-associated
increase in mammographic density seen in the non-HT
users, may be difficult to observe in the HT users[21].
Nevertheless, one study reported an increased risk of
breast cancer with increasing IGF1 levels also for post-
menopausal HT-users (>55 years)[54]. Despite lowering
the IGF1 levels, HT increases the mammographic den-
sity for most women and the age related decrease in
mammographic density around the age of 55-64 does
not commence in these women [58]. These findings
support an emerging model of crosstalk between IGF1
and estrogens, suggesting that estrogens act through
their receptor (ER) and affect the IGF1 expression[59].

IGF1 haplotypes
Variation in mammographic density due to polymorph-
isms in the IGF1 gene has been reported in both pre-
and postmenopausal women, but the association
between genetic variants in IGF1 and mammographic
density in breast tissue in postmenopausal women has
been inconclusive [11,17,46].
Among the common haplotypes analyzed in IGF1 the

least frequent haplotype was statistically significantly
associated with an increase in ABDEN levels. This hap-
lotype consists of the major allele of rs6220 and the
minor allele of rs2162679. Other studies have reported
an association between the minor allele of rs6220 and
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mammographic density in premenopausal women[17,60]
but to our knowledge, no other study has looked at this
SNP in relation to postmenopausal mammographic den-
sity. Separately, the SNPs comprising this haplotype
have been reported to be associated with IGF1 levels
and breast cancer risk. The polymorphism rs6220 has
also been correlated with elevated IGF1 levels whereas
homozygosity G/G of rs2162679, has been associated
with reduced breast cancer risk as well as reduced levels
of IGFBP3[25]. This is in agreement with our observa-
tion of increased mammographic density for haplotype
4, given that low levels of IGFBP3 and high levels of
IGF1 have been reported to increase mammographic
density[19].
It is surprising to find the IGF1 haplotype associated

with increased mammographic density most strongly in
women with higher BMI at an older age. However, since
postmenopausal production of estrogens takes place
predominantly in the adipose tissue, an increase in BMI
would hypothetically result in increased estrogen levels.
In turn estrogens may increase cellular IGF1 through
crosstalk, and IGF1 may up-regulate the receptor
response to estrogens[61]. This haplotype has a fre-
quency of 0.04947 in the population studied which
equal to 45 women and could be said to have little
power. However, similar results have been reported by
Muti et al. who reported that heavier postmenopausal
women (BMI>26) had IGF1 levels associated with breast
cancer risk [61]. Analysis of the SNPs in IGF1 did not
reveal any significant associations with any of the para-
meters studied (IGF1, IGFBP3, IGFratio or mammo-
graphic density), and thus we were unable to verify the
previous findings regarding these SNPs and association
to IGF1 levels and breast cancer risk. However, this is
an indication that the aforementioned association of the
IGF1 haplotype 4 with mammographic density is depen-
dent on the co-occurrence of these two SNPs.

IGFBP3 haplotypes
Several associations of IGFBP3 polymorphisms and
levels of IGFBP3 have been reported [25,46,47,62,63]
one example is the -202(rs2854744) polymorphism asso-
ciated with increased levels of IGFBP3 [46,47,62]. The
-202 SNP has been associated with levels of IGF1 [60],
IGFBP3 [46,47,60] and premenopausal mammographic
density [46] but not with postmenopausal mammo-
graphic density [46,47]. The present study examined
SNPs in the surrounding area of the -202 polymorphism
which is an area suggested to be in strong LD[25,64].
The two IGFBP3 haplotypes analyzed here were found

to be significantly associated with the levels of IGFBP3
suggesting a putative regulatory effect in cis. The C
allele of SNP rs2471551 of the IGFBP3 haplotype has
previously been associated with increased levels of

IGFBP3 in combination with surrounding SNPs[25].
Upon single SNP analysis we found a significant trend
of SNP rs2471551 with the level of IGFBP3 indicating
that having two copies of the frequent allele C increase
the least square mean of IGFBP3 compared to having
two copies of the rare allele G, confirming the finding of
Canzian et al. 2006. In the haplotype analysis we found
that the AC haplotype was associated with higher levels
of IGFBP3 than the AG haplotype and can thus confirm
the result published by Canzian et al. that SNP
rs2471551 is associated with increased IGFBP3 levels
[25]. In addition, these haplotypes signify a trend of
association with low levels (AG) and high levels (AC) of
mammographic density (Table 3). These findings are
consistent with the review of Fletcher et al. in which
most reports agree on increased breast cancer risk with
high levels of IGFBP3[65]. This may most strongly apply
to premenopausal women, in whom the IGF levels are
higher than in postmenopausal[22], and where the IGF
axis is postulated to have an increased role because of
involvement of the sex hormones[52]. The emerging
belief that higher levels of IGFBP3 may decrease mam-
mographic density and may decrease the risk of cancer
[22,25,66] through low IGF1/IGFBP3 ratio must be
further substantiated.

IGF2 haplotypes
Even though it is known that the circulating IGF2 con-
centration is much higher than that of IGF1, there is
limited evidence on its mitogenic activity in relation to
breast cancer and disease[47,49,56], thus implications of
IGF2 on breast cancer risk are inconclusive. Studies on
genetic variants of IGF2 in relation to breast disease are
few, and to our knowledge, the present study is the first
to look at IGF2 polymorphisms in relation to levels of
mammographic density, IGF1 and IGFBP3. The finding
of a common haplotype (4, Table 3) significantly asso-
ciated with higher levels of both IGF1 and IGFBP3 may
be explained by a decrease in clearance of IGF1 due to
potentially lower levels of IGF2. IGFBP3 is the principal
carrier of both IGF1 and IGF2 and the possibility of a
regulatory feedback of IGF1 and IGFBP3 through poly-
morphisms in IGF2 cannot be excluded. However, we
did not have measurements of IGF2 and could therefore
not test this. The association with haplotype 4 was no
longer seen in analyses of the single IGF2 SNPs and
thus there is reason to believe that the association is
dependent on the combination of the two SNPs com-
prising this haplotype. After stratifying the analysis by
HT the association was still significant for the women
currently taking HT, implying that HT could be an
effect modifier of this association. The sex hormones
play an important role in the IGF axis and could be the
reason why the association is stronger in these women.
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IGF1R haplotypes
The IGF1 receptor (IGF1R) sets off a complex cascade
of signals upon binding of its ligands, IGF1 and IGF2
[67]. IGF1R functions as an anti-apoptotic agent by
enhancing cell survival, and has been found expressed in
most breast cancer cell lines[68] and highly over-
expressed in most malignant tissues[69]. In a study on
genetic variation and breast cancer survival, Deming et
al. [64] found SNP rs951715 within the IGF1R gene
associated with breast cancer survival in postmenopausal
women, whereas SNP rs2229765 included in the present
study, was not[64]. SNP rs2229765 results in a silent
mutation, and has thus far not been found associated
with any epidemiological traits. In the haplotype analysis
none of the IGF1R haplotypes were found significantly
associated with any of the studied parameters. The sin-
gle SNP analysis revealed significant association of SNP
rs2229765 with both percent and absolute mammo-
graphic density, increased numbers of the G allele
increased the least squares means of mammographic
density. In addition the SNPs rs3743259 and rs2016347
were also significantly associated with percent and abso-
lute mammographic density, and in both cases increased
number of the most frequent allele increased the least
square mean of mammographic density. Functional stu-
dies are needed to investigate if these SNPs influence
the affinity to IGF1 and IGF2 increasing their growth
promoting effects and possibly mammographic density.

IGF2R haplotypes
IGF1 and IGF2 send their mitogenic and antiapoptotic
signals through a common thyrosine kinase receptor,
the IGF1R. Modulation of the mitogenic pathway occurs
in part via the M6P/IGF2R, which functions in the
internalization and degradation of IGF2[27]. IGF2R is
also important in the activation process of TGFb, which
amongst other properties has the ability to inhibit cell
growth. Loss of heterozygosity (LOH) of the M6P/
IGF2R has been linked to liver and breast cancers,
whereas somatic mutations of the M6P/IGF2R have
been found in cancers of the prostate, lung, endome-
trium, brain, stomach and colorectum[27]. Chen et al.
found that decreased ribosomal expression of the recep-
tor leads to increased proliferation of MCF7 cells by a
IGF2 related mechanism, mediated through IGF1R [27].
These findings have led to the suggestion that IGF2R is
a tumor suppressor gene. Our results show that two of
the IGF2R haplotypes are significantly associated to
decreased levels of IGF1. For haplotype 1 the association
was still significant after stratification for HT, in women
that are never or past users of HT. Postmenopausal
women that are not under the influence of hormones
potentially have lower IGF1 levels. Analysis performed
on the individual SNPs supports this finding, with a

significant association of two IGF2R SNPs and the levels
of IGF1, in addition they are also significantly associated
with the levels of IGFBP3. IGF1 which is produced in
the liver is influenced by several factors such as growth
hormone and insulin, and its bioavailability is regulated
by IGF2, IGFBPs and Als (acid-labile protein subunit)
[65]. It is well known that IGF2 can act through IGF1R,
in contrast IGF1 does not act through IGF2R, and to
our knowledge no association between IGF2R and IGF1
levels have been described. IGF2R is able to degrade
IGF2 and thereby regulates the circulating concentration
of IGF2, in turn IGF2 clearance has the ability to regu-
late the level of IGF1. Thus, a possible explanation for
the association of the two haplotypes and the SNP
within IGF2R with IGF1 levels could be a change in
clearance of IGF2 levels leading to decreased production
of IGF1 through a regulative feedback loop. Whether or
not such an interaction is present between IGF2 and
IGF1 levels is impossible to confirm, due to lacking
measurements of circulating IGF2.

IGFALS haplotypes
Despite being an important member in IGF regulation,
few studies have looked at this protein and variations
within it in regards to breast cancer[25,64]. Canzian
et al. [25] studied three SNPs within exon 2 of IGFALS
in regards to breast cancer risk, two of which are
included in the IGFALS haplotype of our study
(rs3751893, rs17559), and found that homozygous
carriers of SNP rs3751893 were associated with reduced
circulating levels of IGF1. Deming et al. conducted a
study on IGFALS promoter SNPs in relation to meno-
pausal status but found no association [64].
The IGFALS haplotypes in this study were not signifi-

cantly associated with neither the levels of IGF1,
IGFBP3, their ratio nor mammographic density. Stratifi-
cation by HT of the haplotype analysis revealed a signifi-
cant association of the never/past HT group with the
level of IGFBP3, in addition the SNP analysis revealed
significant association of SNP rs9282731 with the level
of IGFBP3. Increased number of the C allele increases
the IGFBP3 level compared to the rare allele G. One
hypothesis could be that the C allele modifies the
IGFALS and reduces either its affinity or reduces its
level causing increased level of free IGFBP3. Although
the SNP analysis is based on low frequencies, functional
studies could to be done to verify such a hypothesis.
Further investigation into the role of this protein is
needed to establish its involvement in the development
of mammographic density and breast cancer.

Conclusion
In conclusion, haplotypes were defined for each of the
six genes from the IGF pathway studied here. Four
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genes had common haplotype variants (>5%) signifi-
cantly associated with the metabolic levels of the gene
products and mammographic density. One haplotype
variant in IGF1 was found associated with mammo-
graphic density. In IGF2 one haplotype variant was asso-
ciated with the level of both IGF1 and IGFBP3. Two
haplotype variants and two SNPs in IGF2R were asso-
ciated with the levels of IGF1. Both variants of the
IGFBP3 haplotype and one SNP were associated with
IGFBP3 level, indicating a regulatory function in cis.

Additional file 1: Haplotype analysis stratified by current HT use.
Associations of the common haplotypes with IGF1, IGFBP3 and
mammographic density levels stratified by current HT use.

Additional file 2: Haplotype analysis stratified by never/past HT use.
Associations of the common haplotypes with IGF1, IGFBP3 and
mammographic density levels stratified by never past HT use.

Additional file 3: IGF haplotype association stratified by age and
BMI. Significant association of IGF1 haplotype 4 with ABDEN stratified by
age and BMI tertiles.

Additional file 4: Associations of single SNPs with IGF1, IGFBP3
levels, IGFratio, and mammographic density. PDEN-Percent Density,
ABDEN-Absolute density. LSMEANS-Least squares Means. Measurements
of mammographic density are boxcox transformed.
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Current HT users  IGF1 level IGFBP3 level IGFratio PDENboxcox ABDENboxcox
IGF1
Haplotype Frequency p-value p-value p-value p-value p-value
1. CG 0.09490 0.1219 0.3873 0.1913 0.6427 0.9555
2. CA 0.22268 0.4679 0.0968 0.1782 0.8978 0.9776
3. TA 0.63014 0.5387 0.7018 0.0565 0.9660 0.5053
4. TG 0.05228 0.4944 0.2504 0.9214 0.4535 0.1439
Global association 0.3976 0.2876 0.2518 0.8522 0.5117
 
IGF2
Haplotype Frequency p-value p-value p-value p-value p-value
1. TG 0.33323 0.0112 0.8501 0.0052 0.9663 0.8901
2. CG 0.28817 0.7290 0.2706 0.2614 0.5640 0.3282
3. TA 0.30190 0.2844 0.7782 0.5182 0.4749 0.2534
4. CA 0.07670 0.0011 0.0730 0.0648 0.7246 0.5542
Global association 0.0048 0.2282 0.0394 0.8848 0.6262

IGF1R
Haplotype Frequency p-value p-value p-value p-value p-value
1. GGAGATGT 0.11012 0.6563 0.8098 0.5256 0.4780 0.4310
2. GGAGATAG 0.10101 0.0772 0.6412 0.0936 0.4562 0.6239
3. GGAGACGT 0.11925 0.7626 0.6978 0.5733 0.5906 0.6480
4. GGAAGCAG 0.05133 0.4913 0.7193 0.3297 0.8369 0.7753
5. GGAGACAG 0.08880 0.8123 0.4810 0.3479 0.2996 0.5989
Global association 0.3637 0.9029 0.2485 0.7580 0.9147

IGF2R
Haplotype Frequency p-value p-value p-value p-value p-value
1. GAATACC 0.07013 0.7907 0.3831 0.2320 0.5556 0.4664
2. AGGCGCC 0.27946 0.1284 0.8579 0.0649 0.8623 0.8078
3. GAGCGTC 0.06144 0.8951 0.4026 0.6172 0.9766 0.7003
4. GAATGCC 0.11360 0.1035 0.0917 0.5339 0.4646 0.6433
5. AGATGCC 0.25907 0.0637 0.3975 0.1730 0.4472 0.4238
6. AGATACC 0.07700 0.0468 0.0746 0.7336 0.6399 0.9008
7. GAGCGCT 0.05188 0.2023 0.7381 0.3635 0.8605 0.9104
Global association 0.0931 0.3578 0.5098 0.9606 0.9672

IGFals
Haplotype Frequency p-value p-value p-value p-value p-value
1. CTC 0.07513 0.9466 0.8964 0.9862 0.9928 0.8924
2. CCC 0.70523 0.1870 0.5946 0.2548 0.3173 0.4770
3. CCT 0.21738 0.1734 0.7706 0.1383 0.2099 0.3217
Global association 0.3857 0.9452 0.3275 0.4515 0.6125

IGFBP3
Haplotype Frequency p-value p-value p-value p-value p-value
1. AG 0.17080 0.9717 0.3833 0.5014 0.2985 0.3816
2. AC 0.82306 0.9656 0.4220 0.5814 0.4115 0.5423
Global association 0.9717 0.3833 0.5014 0.2985 0.3816

Additional file 1: Haplotype analysis stratified by current HT use. Association of the common haplotypes
with IGF1, IGFBP3 and mammographic density levels stratified by current HT use.



Never/past HT users  IGF1 level IGFBP3 level IGFratio PDENboxcox ABDENboxcox
IGF1
Haplotype Frequency p-value p-value p-value p-value p-value
1. CG 0.12673 0.7721 0.8803 0.9686 0.3266 0.2583
2. CA 0.21224 0.1749 0.8104 0.0935 0.4752 0.6031
3. TA 0.61245 0.6206 0.9348 0.3911 0.4133 0.5658
4. TG 0.04858 0.2537 0.6457 0.1912 0.2820 0.1271
Global association 0.4683 0.9705 0.2971 0.4656 0.2818
 
IGF2
Haplotype Frequency p-value p-value p-value p-value p-value
1. TG 0.35104 0.8659 0.9345 0.9613 0.1648 0.3001
2. CG 0.26352 0.6899 0.3343 0.6472 0.3728 0.3659
3. TA 0.26845 0.4284 0.9350 0.3122 0.9405 0.7504
4. CA 0.11698 0.1261 0.2194 0.4518 0.3689 0.3842
Global association 0.2786 0.4505 0.6651 0.5398 0.6419
 
IGF1R
Haplotype Frequency p-value p-value p-value p-value p-value
1. GGAGATGT 0.09271 0.5184 0.3785 0.9830 0.4638 0.5384
2. GGAGATAG 0.07590 0.3968 0.0660 0.7267 0.3592 0.4056
3. GGAGACGT 0.13436 0.9310 0.7015 0.6464 0.7911 0.9179
4. GGAAGCAG 0.04894 0.9523 0.5311 0.8849 0.6729 0.8562
5. GGAGACAG 0.10686 0.9469 0.9057 0.8972 0.3545 0.2963
Global association 0.8757 0.3048 0.9970 0.5721 0.6319
 
IGF2R
Haplotype Frequency p-value p-value p-value p-value p-value
1. GAATACC 0.05947 0.0353 0.0162 0.6714 0.2321 0.0852
2. AGGCGCC 0.27986 0.6724 0.1855 0.5560 0.7252 0.7431
3. GAGCGTC 0.06317 0.8761 0.6086 0.8140 0.8361 0.7588
4. GAATGCC 0.11287 0.8820 0.6460 0.6785 0.5531 0.4353
5. AGATGCC 0.24032 0.2031 0.1104 0.8861 0.3359 0.7428
6. AGATACC 0.06749 0.8584 0.9716 0.6940 0.7871 0.9058
7. GAGCGCT 0.06651 0.9600 0.5990 0.9363 0.0192 0.0266
Global association 0.2256 0.0641 0.9940 0.2558 0.1752
 
IGFals
Haplotype Frequency p-value p-value p-value p-value p-value
1. CTC 0.09452 0.9784 0.0309 0.1889 0.3988 0.6116
2. CCC 0.69535 0.4304 0.7848 0.5236 0.4818 0.6116
3. CCT 0.20935 0.3723 0.0639 0.8156 0.8464 0.8129
Global association 0.6680 0.0291 0.4218 0.6651 0.8364

IGFBP3
Haplotype Frequency p-value p-value p-value p-value p-value
1. AG 0.18006 0.0925 0.0004 0.2294 0.9920 0.3924
2. AC 0.81781 0.1027 0.0003 0.1880 0.8599 0.3203
Global association 0.0925 0.0004 0.2294 0.9920 0.3924

Additional file 2: Haplotype analysis stratified by never/past HT use. Associations of the common 
haplotypes with IGF1, IGFBP3 and mammographic density levels stratified by past HT use.



Haplotype rs6220 rs2162679 Tertile Age p-value BMI p-value
1 <59 0.8158 <24.9158 0.9698
2 >=59 to <64 0.0976 >=24.9158 to <28.7805 0.0989
3 >=64 0.0879 >=28.7805 0.1073

IGF1 ABDEN

4 T G

Additional file 3: IGF1 haplotype association stratified by age and BMI.
Significant association of IGF1 haplotype 4with ABDEN stratified by age and BMI tertiles.
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Expression levels of uridine 5′-diphospho-
glucuronosyltransferase genes in breast tissue
from healthy women are associated with
mammographic density
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Abstract

Introduction: Mammographic density (MD), as assessed from film screen mammograms, is determined by the
relative content of adipose, connective and epithelial tissue in the female breast. In epidemiological studies, a high
percentage of MD confers a four to six fold risk elevation of developing breast cancer, even after adjustment for
other known breast cancer risk factors. However, the biologic correlates of density are little known.

Methods: Gene expression analysis using whole genome arrays was performed on breast biopsies from 143
women; 79 women with no malignancy (healthy women) and 64 newly diagnosed breast cancer patients, both
included from mammographic centres. Percent MD was determined using a previously validated, computerized
method on scanned mammograms. Significance analysis of microarrays (SAM) was performed to identify genes
influencing MD and a linear regression model was used to assess the independent contribution from different
variables to MD.

Results: SAM-analysis identified 24 genes differentially expressed between samples from breasts with high and low
MD. These genes included three uridine 5′-diphospho-glucuronosyltransferase (UGT) genes and the oestrogen
receptor gene (ESR1). These genes were down-regulated in samples with high MD compared to those with low
MD. The UGT gene products, which are known to inactivate oestrogen metabolites, were also down-regulated in
tumour samples compared to samples from healthy individuals. Several single nucleotide polymorphisms (SNPs) in
the UGT genes associated with the expression of UGT and other genes in their vicinity were identified.

Conclusions: Three UGT enzymes were lower expressed both in breast tissue biopsies from healthy women with
high MD and in biopsies from newly diagnosed breast cancers. The association was strongest amongst young
women and women using hormonal therapy. UGT2B10 predicts MD independently of age, hormone therapy and
parity. Our results indicate that down-regulation of UGT genes in women exposed to female sex hormones is
associated with high MD and might increase the risk of breast cancer.
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Introduction
Breast cancer is a common disease in women. Knowl-
edge about the first steps in tumour initiation is impor-
tant for early detection. However, the exact mechanisms
of tumour initiation are still unknown.
Mammographic density (MD), captured on film screen

mammograms, refers to the content and architectural
structure of the adipose, connective and epithelial tissues
in the female breast [1]. In epidemiological studies, a high
percentage of MD confers a four to six fold elevated risk
of developing breast cancer [1-3] and has been proposed
as a possible surrogate marker for the disease [4]. The
relative risk associated with MDs remains at this magni-
tude even after adjustment for all other known breast can-
cer risk factors. Breasts with high MD have greater tissue
cellularity and more tissue collagen [5]. Still, little is
known as to how MD confers the increased breast cancer
risk. MD is to a large degree an inherited trait, although it
is also influenced by environmental factors, hormone ther-
apy being an evident example [6]. The genetic factors
determining the inheritability are largely unknown.
In order to elucidate how MD increases the risk of

breast cancer; we searched for the biological correlates
to MD. Gene expression analysis on biopsies from
breasts of healthy women with varying degrees of MD
was performed. The gene expression profiles represent
the gene activity of the different cell types in the biopsy,
producing a fingerprint of the breast tissue within the
biopsy of that particular woman.
The breast is an oestrogen-sensitive organ. MD varies

with levels of female hormones, and is reduced after

menopause. The uridine 5′-diphospho-glucuronosyl-
transferase (UGT) genes encode enzymes inactivating
several endogenous and exogenous compounds, includ-
ing sex hormones (Figure 1) [7]. UGT1A1 is known to
be responsible for the glucuronidation of bilirubin, but
is also shown to glucuronidate catechol oestrogens [8,9].
Polymorphisms in this gene have previously been linked
to MD in premenopausal women [10]. UGT2B7 is
known to conjugate oestrone, one of the active oestra-
diol metabolites. This enzyme has previously been found
to be down-regulated in tumour tissue compared with
non-malignant tissue, leading to the conclusion that
UGT expression could lead to the promotion of carcino-
genesis [11] but there are no reports on this gene in
relation to MD in the literature. Less is known about
the other UGT2B genes, although there is extensive
structural homology. We will use the UGT genes as a
term describing three UGT2B genes significantly down-
regulated in our analyses (UGT2B7, UGT2B10 and
UGT2B11). Other UGT genes are specified in the text.
In this study we analysed biopsies from breasts of
healthy women and found genes whose expression is
associated with MD.

Materials and methods
Subjects
The women included in this study had all attended one
of six breast diagnostic centres in Norway that are part
of the governmentally funded National Breast Cancer
Screening Program between 2002 and 2007 [12].
Women were eligible if they did not currently use

Figure 1 UGTs conjugate oestrogen-substrates into biologically inactive oestrogen glucuronides. The figure gives a schematic view with
focus on glucuronidation and not a complete picture of oestradiol metabolism. Androgens are also inactivated by uridine 5’-diphospho-
glucuronosyltransferases (UGTs), but are not included in this illustration.
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anticoagulants, did not have breast implants and were
not currently pregnant or lactating. A total of 186
women were recruited to the study; 120 healthy women
with no malignant disease but some visible density in
the mammograms, referred to here as healthy women,
and 66 women with a newly diagnosed breast cancer. Of
these, quality tested expression data were obtained from
biopsies from 79 healthy women and 64 breast cancer
patients.
The women were either referred to a breast diagnostic

centre for a second look due to some irregularity of the
initial screening mammogram (n = 69) or due to clinical
findings (n = 83). For 34 women the type of referral was
unknown.
The women provided information about height,

weight, parity, hormone therapy use and family history
of breast cancer. Two breast biopsies and three blood
samples were collected from each woman. All women
provided signed informed consent. The study was
approved by the local ethical committee and local
authorities (IRB approval no S-02036).

Core biopsies
Two breast biopsies were obtained from each woman
with a 14 gauge needle, for RNA- and DNA-extraction.
In healthy women, the biopsies were taken from an area
with no visible pathology, but with some MD to ensure
that the biopsies did not contain only fatty tissue, which
yields little RNA. The sampling was guided by ultra-
sound. At one hospital, six of the biopsies from breasts
of healthy women were collected from a benign lesion
(mostly fibroadenomas). For the cancer patients, all
biopsies were taken from the tumour. The tissue was
either fresh-frozen at -80°C or soaked in ethanol and
RNAlater (Ambion, Austin, TX, USA), transported and
subsequently stored at -20°C.

Pathology
The haematoxylin eosinofil sections from the tumours
of the breast cancer patients were evaluated locally and
then re-evaluated by one pathologist (YC). Information
about tumour size, histological grade and type, oestro-
gen and progesterone receptor status, human epidermal
growth factor receptor (HER) 2 status and sentinel node
status was recorded and entered into a database mana-
ged by the Office for Clinical Research at Oslo Univer-
sity Hospital, Radiumhospitalet. Pathology evaluations
were not available for the biopsies from breasts of
healthy women.

RNA-expression analysis
Homogenisation, cell lysis and RNA extraction were
performed using the RNeasy Mini Protocol (Qiagen,
Valencia, CA, USA). RNA quality was controlled by

Agilent 2100 Bioanalyzer (Agilent Technologies, Palo
Alto, CA, USA) and concentration was determined
using NanoDrop ND-1000 spectrophotometer (Thermo
Scientific, Wilmington, DE, USA). A total of 40 samples,
mostly from normal breast tissue, were excluded from
further analyses due to a low RNA amount (< 10 ng) or
poor RNA quality. RNA was then amplified and labelled
using the Agilent Low RNA input Fluorescent Linear
Amplification Kit Protocol. Amplified tumour RNA was
labelled by Cy5 (Amersham Biosciences, Little Chalfont,
England, UK) and amplified RNA from Universal
Human total RNA (Stratagene, La Jolla, CA, USA) was
labelled by Cy3 (Amersham Biosciences, Little Chalfont,
England, UK). RNA from the remaining 146 biopsies
was further hybridised on Agilent Human Whole
Genome Oligo Microarrays (G4110A) (Agilent Technol-
ogies, Santa Clara, CA, USA). Three arrays had to be
excluded due to poor quality leaving data from 143 sub-
jects (79 healthy individuals and 64 breast cancer
patients) for further analysis. Of the 79 biopsies from
healthy women, 5 had been obtained from a benign
lesion. By ultrasound and mammography these 5 were
described as fibroadenoma (n = 4) or microcalcification
(n = 1).

RNA-data processing
The microarrays were scanned by an Agilent scanner
(Agilent Technologies, Santa Clara, CA, USA) and
processed in Feature Extraction 9.1.3.1 (Agilent Tech-
nologies, Santa Clara, CA, USA). Locally weighted scat-
terplot smoothing (lowess) was used to normalise the
data. The normalised and log2-transformed data were
stored in the Stanford Microarray Database [13] and
retrieved from the database for further statistical ana-
lyses. Flagged spots were treated as missing values. The
dataset now counted 40,791 probes. Clone IDs with 20%
or more missing values were excluded. Gene filtering
was performed to include only probes with variation
across samples, so that probes with less than three
arrays being at least 1.6 standard deviations from the
mean were excluded. For the 79 healthy women, this
probe filtration resulted in an expression dataset of
9,767 probes and 79 arrays each representing one indivi-
dual. For the breast cancer women, a dataset of 64 arrays
and 10,153 probes were obtained after filtration, and for
both groups combined, a dataset of 143 arrays and
13,699 probes were obtained. Missing values were
imputed in R using the method impute.knn in the
library impute [14].

Genotyping
Blood DNA was extracted by phenol/chloroform extrac-
tion followed by ethanol precipitation (Nuclear Acid
Extractor 340A; Applied Biosystems, Foster City, CA,
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USA) according to standard procedures. UGT genotype
data was retrieved from two sources: genome wide asso-
ciation studies (GWAS) using the Human-1 109K Bead-
Chip (Illumina Inc, San Diego, CA, USA) and candidate
gene-based study using iPlex, Sequenom. For the
GWAS, each sample was subject to whole genome
amplification using Illumina proprietary reagents [15].
The amplified DNA was fragmented and hybridised
according to the protocol. The BeadArray reader
(Illumina Inc, San Diego, CA, USA) with the BeadScan
software (Illumina Inc, San Diego, CA, USA) was used
to image the beadchips. Non-polymorphic probes and
probes with more than 20% missing values and were
excluded and data processed as described previously
[16]. The candidate gene single nucleotide polymorph-
ism (SNP) analyses were performed using the iPLEX
assay in conjunction with the Sequenom MassARRAY
platform. Multiplexing was performed in 384 plates
using 1 ul DNA per well with one well containing up to
29 reactions. The technology is described in detail on
the sequenom web-page [17].

Mammograms
Routine descriptions of mammograms by local radiolo-
gists were collected. Craniocaudal mammograms of both
breasts were digitised using a high-resolution Kodak
Lumisys 85 scanner (Kodak, Rochester, NY, USA). Den-
sity was quantified using the University of Southern
California Madena assessment method [18]. In brief, the
method works as follows: a reader (trained by GU) out-
lines the total area of the breast using a computerised
tool, the software then counts the number of pixels.
This represents the total breast area. MD is assessed (by
GU), first by identifying a region of interest that incor-
porates all dense areas except those representing the
pectoralis muscle and scanning artifacts, and then by
applying a yellow tint to all pixels within the region of
interest shaded at or above a threshold intensity of gray.
The software then counts the tinted pixels, which repre-
sents the area of absolute density. The percent density is
the absolute density area divided by the total breast area
and is the value used for these analyses. Test-retest
reliability was 0.99 for absolute density.

Statistical analysis
Clustering was performed using MatLab (version
R2007b) (The MathWorks Inc., Natick, MA, USA) with
Ward linkage and Euclidean distances. Before clustering,
the data were gene centred, that is, for every probe the
mean expression across all samples was calculated and
was subtracted from the log2-ratios for that gene. This
was performed for visualisation purposes only, clustering
with uncentred data returns the same clusters. Signifi-
cance analysis of microarrays (SAM, Stanford University,

CA, USA) (version 3.02) [19,20] for Excel (Microsoft,
Redmond, WA, USA) was used for analysis of differen-
tially expressed genes between two groups of data. The
data were not gene centred for the SAM analysis. A
total of 500 permutations were used. Quantitative SAM
analysis was used to identify genes differentially
expressed according to MD as a continuous variable.
Statistical significance tests and regression analysis were
performed in R 2.9.0 [21]. To test for difference in the
mean of phenotypic variables (MD, age, body mass
index (BMI)) in different clusters of women, we used
two-sided t-tests (assuming equal variance in the
groups) and analysis of variance (ANOVA) for continu-
ous variables and chi-squared/Fisher’s exact tests for
categorical variables [22]. To investigate the similarities
of distributions of UGT genes between tumour samples
and normal samples with low MD and high MD respec-
tively, Kullback-Leibler distances between normalised
distributions of the histograms of the data were calcu-
lated by use of MatLab (The MathWorks Inc., Natick,
MA, USA). The cancer samples in our study were
grouped into subtypes and assigned a risk group using
the PAM50 gene list published by Parker et al [23].
SNP-analysis was performed using R 2.9.0 [21]. The
association between gene expression and SNPs was
assessed using expression quantitative trait loci (eQTL)
[24]in cis (106 bp on each side of the gene) using the R
package eMap v1.1 [25]. Comparing the akaike informa-
tion criterion for different models predicting MD, the
lower criterion singled out a linear regression model as
the model fitting the distribution of the data best. A lin-
ear regression model was fitted in R 2.9.0 with MD as a
continuous response variable and the following covari-
ates: UGT2B7, two probes for UGT2B10, UGT2B11,
ESR1, age, BMI, current hormone therapy, age at first
birth and parity. Gene expression, age, age at first birth
and BMI were entered into the model as continuous
variables. Stepwise variable selection was performed,
starting with all variables included in the model. For
every step, the variable with the highest P value was
rejected from the model and the model was refitted.
This was repeated until all variables included in the
model had a P value less than 0.05. To correct for
the influence of age, this variable was forced to stay in
the model. A sensitivity analysis was performed exclud-
ing extreme ages (30 years or younger) to check the
robustness of the data. We also fitted linear regression
stratified on age (younger or older than 50 years of age)
and current use of hormone therapy. Gene ontology
analysis was performed by the use of DAVID Bioinfor-
matics Resources 2008 from the National Institute of
Allergy and Infectious Diseases, NIH [26]. Functional
annotation clustering was applied and the following
gene ontology categories were selected: biological
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processes (all), molecular function (all) and the KEGG
pathway database. We included gene ontology terms
with a P value (false discovery rate (FDR)-corrected) of
less than 0.01 containing between 5 and 500 genes.
The normalised, log2-transformed data are available in

Gene Expression Omnibus with accession number
[GEO:GSE18672]. The data are not gene centered or
gene filtered.

Results
Gene expression and mammographic density
To identify genes differentially expressed according to MD
we performed quantitative SAM with MD as a continuous
variable using gene expression data from the normal biop-
sies. Of 9,767 probes, only 25 probes, representing 24
genes, were differentially expressed according to MD, with
reduced expression associated with higher MD (FDR <
25%; Table 1) [see Additional file 1]. Gene ontology analy-
sis revealed no significant terms and we found no pathway
associated with this gene set. The UGT genes and oestro-
gen receptor gene (ESR1) were among the genes signifi-
cantly down-regulated in breasts with high MD. The
percentage of samples with low UGT expression was
higher in tumour samples than in normal samples with

low MD, whereas the percentage was more similar
between tumour samples and normal samples with high
MD [see Figure S1 in Additional file 2]. The function of
UGT-enzymes in oestradiol metabolism is illustrated in
Figure 1. In healthy women, the expression of the different
UGT genes was highly correlated with each other and the
four probes clustered together [see Figures S2 and S3 and
Table S1 in Additional file 2].
MD was lower in women with BMI of 25 or more com-

pared with those with BMI of less than 25 (P = 0.01), but
unrelated to other epidemiological variables. UGT
expression was not significantly associated with age, BMI,
age at first birth or current hormone therapy use in the
healthy women [see Table S2 in Additional file 2].
To dissect the impact of age and hormone therapy

use, we performed SAM analyses to identify differen-
tially expressed genes according to MD, whereas strati-
fying for age and postmenopausal hormone therapy
use. For healthy women younger than 50 years of age,
the UGT genes were not significant at a FDR of 25%.
For healthy women aged 50 years or older, 49 probes
were significantly down-regulated in breasts with MD
of 30% or higher (FDR < 25%). Of these, 17 were over-
lapping with those significantly down-regulated among
healthy women in the unstratified analysis. The UGT
genes were not in this list. We then stratified the
women aged 50 years or older on current hormone
therapy use. When only those currently using hormone
therapy were included in the analysis, UGT2B7 and
UGT2B11 were among the six genes differentially
expressed with an FDR less than 10E-5 and UGT2B28
with FDR less than 25%. For healthy women above 50
years of age and not currently using hormone therapy,
several of the 24 genes were differentially expressed
according to MD with an FDR of less than 25%, but
again the UGT genes were not in this list [see Addi-
tional file 3].
These analyses were confirmed fitting a linear regres-

sion model. Although the other variables were excluded
from the model with insignificant P values, age was kept
in the model to control for the age-effect. After stepwise
variable selection, the only significant variables remain-
ing in the model were UGT2B10 (A_23_P7342)(P =
0.005) and BMI (P = 0.015). Sensitivity analysis exclud-
ing extreme ages (30 years and younger) did not alter
the results (UGT2B10 P = 0.003, BMI P = 0.016) and
indicates the robustness of the results. ESR1 was border-
line significant in both these analyses. These results
were not significantly altered when MD was log2-trans-
formed. For further stratification see Table 2.
Unsupervised hierarchical clustering of the 79 samples

from healthy women showed two main clusters. MD
was not significantly different between these two clus-
ters [see Figure S3 in Additional file 2].

Table 1 Genes differentially expressed according to
mammographic density in non-cancer samples

Gene symbol Agilent ID Cytogenetic band

729641 A_24_P932736 8p21.1

FLJ10404 A_23_P427472 5q35.3

VPS18 A_24_P18802 15q15.1

UGT2B10 A_23_P7342 4q13.2

CABP7 A_24_P177236 22q12.2

CD86 A_24_P131589 3q13.33

UGT2B11 A_23_P212968 4q13.2

580687 A_23_P152570 17p11.2

DIAPH2::RPA4 A_23_P254212 Xq21.33

LMOD1 A_32_P199824 1q32.1

UGT2B10 A_24_P521559 4q13.2

PIK3R5 A_23_P66543 17p13.1

ATG7 A_32_P107994 3p25.2

LRRC2 A_23_P155463 3p21.31

RBL1 A_23_P28733 20q11.23

NPY1R A_23_P69699 4q32.2

810781 A_23_P144244 3q13.33

593535 A_32_P80016 15q26.1

H2AFJ A_23_P204277 12p12.3

666399 A_32_P35668 20p12.3

Transcribed A_24_P640617 2p25.2

Transcribed A_32_P20997 20q13.13

UGT2B7 A_23_P136671 4q13

ESR1 A_23_P309739 6q25.1

SAPS1 A_23_P119448 19q13.42
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In the breast cancer group, MD was significantly asso-
ciated with age and BMI, with higher MD in the
younger women and in those with BMI less than 25.
Both MD and UGT expression tended to be higher in
women with receptor positive tumours, but this was not
significant for any type of receptor. UGT-expression in
tumours was unrelated to age, BMI, age at first birth
and current hormone therapy (data not shown). There
was a higher proportion of oestrogen receptor positive
tumours among the breast cancer patients with high

MD (≥ 30%) compared with low (< 30%) MD (10 of 10
vs 36 of 40, Fisher’s = 0.001). There was no significant
association between tumour subtype and level of MD as
assessed by ANOVA. There was no indication that
degree of MD was associated with the risk of relapse as
assessed by the method of Parker et al [23] [see Figure
S4 of Additional file 2].
Nine probes were differentially expressed according to

MD in cancer samples (FDR < 25%; Table 3). None of
these were overlapping with the 24 genes differentially

Table 2 Linear regression analysis of factors predicting mammographic density in all women and stratified for age
and hormone therapy use

Women in model N Variables Beta value P value

All women 76 UGT2B101) -0.6 0.902

UGT2B7 1.8 0.631

UGT2B11 4.8 0.275

ESR1 -3.8 0.055

UGT2B102) -5.6 0.005

BMI -1.5 0.015

age -0.4 0.074

50 years or older 46 UGT2B11 0.2 0.987

UGT2B101) 1.0 0.946

UGT2B7 3.5 0.486

UGT2B102) -3.7 0.073

BMI -1.4 0.052

ESR1 -6.0 0.016

age -0.9 0.061

50 years or older, currently on hormone therapy 11 UGT2B101) 7.2 0.771

UGT2B11 -5.8 0.695

BMI -2.9 0.103

UGT2B7 6.8 0.418

UGT2B102) -27.0 0.000

ESR1 -8.1 0.011

age -0.9 0.103

50 years or older, never used hormone therapy 28 UGT2B11 -0.7 0.948

UGT2B101) 3.3 0.809

UGT2B7 3.1 0.555

UGT2B102) -1.4 0.607

BMI -0.9 0.348

ESR1 -6.0 0.033

Age -1.5 0.004

Younger than 50 years 30 UGT2B7 0.4 0.950

UGT2B101) -1.2 0.866

ESR1 -0.9 0.835

UGT2B11 8.4 0.225

BMI -1.4 0.216

UGT2B102) -6.2 0.040

Age -0.3 0.610

1) A_24_P521559, 2) A_23_P7342

Factors predicting mammographic density (MD) after stepwise exclusion of non-significant factors are shown. Variables listed in the order of exclusion from the
model. P value from the last equation including the variable is shown. Age is forced to stay in the model. UGT2B10 (A_23_P7342) is a significant, independent
predictor of MD in all analyses with a majority of women under influence of female hormones; women younger than 50 years of age and women currently on
hormone therapy. BMI, body mass index.
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expressed in the samples from the breasts of healthy
women.

Genetic polymorphisms
In order to identify genetic determinants of the expression
of the UGT genes found to be associated with MD, we
performed eQTL analyses of SNPs in these genes as avail-
able from an array based GWAS study and a candidate
gene study. Twenty one SNPs in UGT genes were present
on the 109 K array from Illumina, and 9 SNPs from the
candidate gene analysis. Of these, 5 SNPs were associated
with the expression of UGT genes or other genes in their
vicinity at P = 0.05 [see Additional file 4]. Two of these
SNPs, both located in UGT2B10 (rs1828705, rs1828705),
were significantly associated with gene expression of
another UGT gene (UGT2B7 and UGT2B28).

Discussion
Previously, whole genome expression profiling of normal
breast tissue (all cell types included) has been performed
to a limited extent [27,28]. Yang et al recently per-
formed a study of cancer-free breast tissue obtained
from mastectomies in breast cancer patients with high
and low MD [29]. They identified a list of 73 genes dif-
ferentially expressed between high and low MD samples.
Specifically, this included the down-regulation of several
transforming growth factor (TGF) b-related genes in
samples with high MD. In the present study we analysed
breast biopsies from 79 healthy women and tumours of
64 women with breast cancer. Twenty-four genes were
differentially expressed according to MD in the healthy
samples. In breast tumours, none of these 24 genes were
found differentially expressed according to MD.
Tumour-specific deregulation of a large number of
mRNA transcripts may be expected to overshadow the
MD signature. In addition, the sample size is limited
and the two sample sets (cases and controls) are not
directly comparable with respect to MD [see Figure S5
in Additional file 2].

In our study, three UGT genes (UGT2B11, UGT2B10
and UGT2B7) were differentially expressed according to
MD in the breasts of healthy women. All these three
enzymes had decreased expression in dense breasts. Pre-
vious knowledge links the UGT enzymes to the metabo-
lism of female hormones known to influence the
mammary glands (Figure 1). The over-representation of
UGT genes on the list of significant genes along with a
biological link makes these genes particularly interesting.
In a linear regression model with age as a confounding
factor, BMI and one of two probes for UGT2B10 were
the only significant variables independently predicting
MD, with ESR1 as a borderline significant covariate.
The expression of these three UGT2B genes is highly
correlated to each other and as expected only one probe
remained in the regression model as an independent
predictor of MD. BMI is known to be the strongest and
most consistent epidemiological predictor of MD, and is
expected to remain in the model. It is noteworthy that
one of the UGT genes has an independent predictive
value of a greater significance and magnitude than BMI.
MD is determined by multiple factors. In a study of lim-
ited sample size, we can only expect to identify the
strongest predictors.
UGT2B7 is postulated to protect the breast tissue

from oestrogen metabolites locally [30], and this is con-
sistent with our findings that breasts with higher MD
have reduced expression of this gene. The main metabo-
lites of oestradiol and oestrone (hydroxyl- and methoxy-
oestrogen compounds) bind to the oestrogen receptor,
but with a reduced affinity compared with oestradiol.
UGT2B10 and 11 are not yet reported to be associated
with MD or breast cancer, but UGT2B10 is involved in
the metabolism of tobacco-related nitrosamines [31].
Less is known about UGT2B11. The different UGT2B
genes are located close to each other on chromosome 4
and there is great homology between the genes [see Fig-
ure S6 in Additional file 2]. UGT1A1, previously linked
to MD and breast cancer [32], is not represented on the
microarray used in this study.
We have identified a set of genes differentially

expressed according to MD. Interestingly, the UGT
genes seem, to a greater extent than the other genes, to
be more similarly expressed between tumour samples
and normal samples from breasts with high MD as com-
pared with normal samples from breasts with low MD
[see Table S4 and Figure S7 in Additional file 2]. The
other differentially expressed genes generally express the
same levels in the tumours and in the biopsies from the
healthy women with low MD. We cannot exclude that
the UGT genes confer risk for breast cancer develop-
ment through increasing MD, but further studies would
be needed to investigate this.

Table 3 Genes differentially expressed according to
mammographic density in cancer samples

Agilent ID Gene name FDR (%)

A_32_P171923 730402 0.00

A_32_P480177 TNN 0.00

A_23_P200298 AGL 0.00

A_24_P87036 TMEM16A 0.00

A_23_P312150 EDN2 14.87

A_23_P83388 EPPK1 14.87

A_32_P60065 F2RL2 19.82

A_32_P158272 MRNA 19.82

A_23_P105012 HRASLS2 19.82

FDR, false discovery rate.
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We found the UGT genes to be differentially
expressed in young women and women over 50 years of
age currently on hormone therapy. SAM analysis of MD
in women younger than 50 years did not give any differ-
entially expressed genes with an FDR of less than 25%.
However, several UGT-probes are on the top of the list
of genes down-regulated in samples from breasts with
high MD. The lack of significance could be due to low
sample size (n = 30). As UGT enzymes conjugate oes-
tradiol metabolites, its effect will be greater when there
is an increased level of oestradiol present, whether the
oestradiol is endogenous or exogenous. The linear
regression analysis showed that UGT2B10 was predict-
ing MD independent of age in all women, younger
women and women older than 50 years currently using
hormones. This leads to the hypothesis that decreased
UGT expression in the breast of a woman with
increased levels of female hormones confers an
increased MD and possibly an increased risk of breast
cancer.
The biology in breasts with high and low MD may dif-

fer, partly due to differences in proportion of fatty tis-
sue. Therefore, we looked for differentially expressed
genes in a subset of samples including only samples
from breasts with MD of more than 20%. The fact that
the UGT2B gene family is so strongly represented
among the down-regulated genes (six probes represent-
ing five different UGT2B genes are the only genes differ-
entially expressed with an FDR < 10E-5) indicate that
reduced UGT expression is of greater significance in
breasts with higher MD and lower content of fatty
tissue.
We find that ESR1 is down-regulated in biopsies from

healthy women with high MD compared with those
with low MD. This is not consistent with previous find-
ings [33] and contrary to what one would expect
because ESR1 induces transcription and epithelial
growth and high MD may contain increased amounts of
epithelial cells [34,35]. However, increased levels of oes-
tradiol have been shown to decrease levels of ESR1 in
breast cancer [36], and in normal breast tissue in mon-
keys [37] and in mice [38]. Increased levels of oestradiol
may increase MD. Elevated expression of ESR1 is com-
mon postmenopausally [37] and represents non-prolifer-
ating cells. The association between reduced levels of
ESR1 and high MD may reflect high levels of oestradiol.
We found that ESR1 was only a borderline significant
predictor of MD in models with stepwise exclusion of
covariates. In a model including ESR1 with only age or
age and UGT2B10, ESR1 was significantly predicting
MD. The independent contribution of ESR1 in predict-
ing MD was significant in older women, where the effect
of UGT2B10 was not present. There could be a link
between UGT-expression and ESR1-expression in that

reduced metabolism of oestradiol-metabolites increases
the levels of ESR1-ligands (oestradiol metabolites) and
hence reduces ESR1-levels. The UGT-enzyme activity
may be the cause of the alterations leading to increased
MD by this mechanism. Reduced ESR1 is only border-
line significant in predicting MD and could also be an
intermediate factor.
MD is the result of complex biological processes with-

out any single determining factor. BMI is the single
most important factor found to date, and is also signifi-
cant in this study. Age seems to have its effect mainly
through hormonal influence, except for in postmeno-
pausal women not taking hormones, where age has a
significant, independent effect on MD. MD is not signif-
icantly different between the two main clusters from
unsupervised hierarchical clustering of the samples from
healthy women. MD is hence not related to the main
variation in the normal samples.
The genes whose expression we have found to be

associated with MD do have a fairly high FDR in a SAM
analysis and are not significant in all stratified analyses,
suggesting that they may play a role in only subsets of
individuals and other factors also have a significant con-
tribution. Despite this, in linear regression models
UGT2B10 is an independent predictor of MD along
with BMI.
There is a substantial heritable proportion of MD.

SNPs in UGT genes with influence on the UGT expres-
sion have been described [8,39]. We identified two
UGT-SNPs associated with the expression of other UGT
genes. Due to their homology and co-localisation on the
chromosome, they may share common control loci that
affect the expression of multiple UGT genes. It remains
to be investigated in larger and better powered epide-
miological studies whether any of these SNPs are asso-
ciated to MD per se.
We do not know enough about the variability of

gene expression within normal breasts to know if the
genes relevant for MD are adequately represented by
one biopsy taken from an area with some MD. It is
previously shown that two biopsies from the same
breast tumour, before and after chemotherapy, cluster
together [40]. The tumours may, however, be more
homogenous than normal breast tissue. Variability in
gene expression within each breast will make it diffi-
cult to detect genes with only a minor influence on
MD so that only the strongest factors are identified. In
an unpublished dataset we found no significant differ-
ence between UGT-expression in tumours and normal
adjacent tissue tested by paired t-test [see Table S5 in
Additional file 2]. This is merely an indication that the
expression in one breast might be similar for different
locations in the breast and hence be used to look for
associations with MD.
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In this study, healthy individuals had higher MD than
the breast cancer patients. The women recruited in the
study had been referred to a breast diagnostic centre for
a second look. As high MD confers an increased risk for
breast cancer and mammograms with high MD are
more difficult to interpret, they most likely had a higher
MD. In addition, the inclusion criterion of some visible
MD for biopsy may have influenced the mean MD of
the study population. The two populations are not
directly comparable with respect to MD and related
parameters. This lack of comparability on MD does not
affect the analyses of gene expression among the healthy
women only.
We obtained good quality microarrays from only 79 of

120 healthy women and from 64 of 66 breast cancer
patients. This was due to low mRNA-yield or low
mRNA-quality. The biopsies from healthy women con-
sistently yielded less mRNA than the tumour samples.
There is significantly higher MD in the breasts of
healthy women with successful microarrays than in
those with unsuccessful microarrays (37% vs 29%, P =
0.03). As samples from breasts with low MD are under-
represented in the microarray study, it is more difficult
to identify genes that are differentially expressed
between breast tissue with high and low MD. Despite
these limitations, we have identified differentially
expressed genes. These genes might have a greater sig-
nificance than shown in this study.
Normal breast tissue yields less RNA than tumour tis-

sue. The biopsies in this study were small and in agree-
ment with the pathologist, all tissue from normal
breasts was prioritised for RNA-extraction rather than
histological evaluation. Imprint was not in routine use
in the hospitals where we started this study. In order to
make it possible for the staff to include women in this
study in a busy schedule we had to use procedures
already established. We do therefore not have any infor-
mation about the cell types of the normal biopsies.
Knowledge about the cell types present in the biopsies
would have facilitated the analysis.
The two UGT2B10-probes behave differently in our

dataset. Both probes map to the 3′end of the UGT2B10-
gene by BLAT (98.4% homology for A_23_P7342 and
100% homology for A_24_P521559). The discrepancy in
UGT2B10-expression detected by the two probes may
be due to the fact that they both also share substantial
sequence homology with other, but different UGT2B-
genes.

Conclusions
We have identified a set of genes that are differentially
expressed according to MD in breast samples from
healthy women. Some of these genes are known to
influence MD and breast cancer, such as ESR1 and

UGT2B7. Two less described UGT genes, UGT2B10 and
UGT2B11, are also differentially expressed. The expres-
sion of the three UGT genes is reduced in samples with
high MD and also in tumour samples, but does not vary
between different tumour subtypes or risk groups. The
UGT enzymes are known to conjugate active oestrogen-
metabolites. We show that UGT2B10 expression and
BMI are independent predictors of MD. The influence
of reduced UGT expression was strongest in women
under exposure of female hormones. Two candidate
SNPs are associated with the UGT gene expression in
cis. We hypothesise that reduced expression of UGT
genes in women exposed to female sex hormones,
increase MD and that this may be associated with an
increased risk of breast cancer. Further studies of these
genes are needed to test the hypothesis that the gene
products from these genes protect the breast from the
oestrogen-induced MD and thereby reducing the risk of
breast cancer.

Additional material

Additional file 1: Healthy SAM MD. Significance analysis of microarrays
(SAM) for genes differentially expressed according to mammographic
density (MD).

Additional file 2: Figures and tables. A collection of figures and tables
describing the data set and the uridine 5’-diphospho-
glucuronosyltransferase (UGT) genes. The main text refers to individual
figures and tables in this file.

Additional file 3: Healthy SAM MD stratified. Significance analysis of
microarrays (SAM) for genes differentially expressed according to
mammographic density (MD) stratified on age and use of hormone
therapy.

Additional file 4: eQTL. Expression quantitative trait loci (eQTL) analysis
of single nucleotide polymorphism (SNPs) affecting the expression of
uridine 5’-diphospho-glucuronosyltransferase (UGT) genes in cis.
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Additional file 1: SAM MD, healthy women.

Quantitative
FALSE

0.1128214
0

standard
standard

FALSE
500

Automatic choice
10

1234567

0.9931402
0.0010565

0
50.528184

Row Gene ID Gene Name Score(d) Numerator(r) Denominator(s+s0) q-value(%)
4650 A_24_P756494 LOC730057 2.86058017 0.015237575 0.005326743 34.05051997
8807 A_24_P329065 BTN3A1 2.828849448 0.011028004 0.003898406 34.05051997
9112 A_24_P311917 BTN3A3 2.760141709 0.009885918 0.00358167 34.05051997

Row Gene ID Gene Name Score(d) Numerator(r) Denominator(s+s0) q-value(%) FDR<25
6760 A_24_P932736 729641 -2.939794306 -0.024561301 0.008354769 0
6129 A_23_P427472 FLJ10404 -2.898093839 -0.017947299 0.006192794 0
9647 A_24_P18802 VPS18 -2.874371883 -0.020756984 0.007221398 0
4530 A_23_P7342 UGT2B11 -2.870323551 -0.020651449 0.007194816 0
6993 A_24_P177236 CABP7 -2.86828496 -0.025243675 0.008800965 0
9508 A_24_P131589 CD86 -2.834444103 -0.025353336 0.00894473 0
2950 A_23_P212968 UGT2B11 -2.791516519 -0.029177501 0.010452204 0
3485 A_23_P152570 580687 -2.743200198 -0.020483623 0.007467054 0
7883 A_23_P254212 DIAPH2::RPA4 -2.687939803 -0.020478069 0.0076185 8.276168049
8366 A_32_P199824 LMOD1 -2.675114954 -0.023358045 0.008731604 8.276168049
7637 A_24_P521559 UGT2B10 -2.656354673 -0.023386251 0.008803889 8.276168049
2978 A_23_P66543 PIK3R5 -2.655411884 -0.017592155 0.006625019 8.276168049
6371 A_32_P107994 ATG7 -2.590985913 -0.021891741 0.008449193 8.276168049
5506 A_23_P155463 LRRC2 -2.573213695 -0.0191423 0.007439063 15.68116051
4399 A_23_P28733 RBL1 -2.537519034 -0.009506857 0.003746516 15.68116051
1537 A_23_P69699 NPY1R -2.536481879 -0.025025147 0.009866086 15.68116051
8728 A_23_P144244 810781 -2.511297337 -0.018143577 0.007224783 15.68116051
4605 A_32_P80016 593535 -2.5104764 -0.019578524 0.007798728 15.68116051
4562 A_23_P204277 H2AFJ -2.505132635 -0.011727729 0.00468148 15.68116051
5316 A_32_P35668 666399 -2.481846445 -0.016741092 0.006745418 15.68116051
6564 A_24_P640617 Transcribed -2.434158993 -0.016788046 0.006896857 18.91695554
6272 A_32_P20997 Transcribed -2.418337293 -0.011416998 0.004721011 21.59000361
2288 A_23_P136671 UGT2B7 -2.403406049 -0.029123074 0.012117417 21.59000361
3534 A_23_P309739 ESR1 -2.388785868 -0.017363723 0.007268849 21.59000361
2471 A_23_P119448 SAPS1 -2.365047597 -0.016885621 0.007139654 23.83536398

List of Significant Genes for Delta = 0.113

Positive genes (3)

Negative genes (54)

Seed for Random number generator

Computed values

Estimate of pi0 (proportion of null genes)
Exchangibility factor s0
s0 percentile
False Discovery Rate (%)

Number of neighbors for KNN

Current settings

Input parameters

Data type?
Arrays centered?
Delta
Minimum fold change
Test statistic
Regression method
Are data are log scale?
Number of permutations
Input percentile for exchangeability factor s0



9547 A_24_P125894 PPM1F -2.329501946 -0.013607624 0.005841 26.73838908
8792 A_24_P180243 UGT2B28 -2.294362745 -0.023268398 0.010142 28.37543331
7921 A_24_P693448 ZNF552 -2.292709794 -0.014196218 0.006192 28.37543331
9066 A_24_P36890 RAP1GAP -2.277257711 -0.014689339 0.00645 30.82159135
9523 A_24_P287664 PLCB2 -2.264592578 -0.013955797 0.006163 33.1046722
7706 A_24_P178834 LOC132205::LOC2854 -2.251631636 -0.010829326 0.00481 33.1046722
3043 A_23_P256033 EEF1A2 -2.245056305 -0.00961755 0.004284 33.1046722
4986 A_24_P17691 UGT2B17 -2.191409165 -0.017356122 0.00792 40.26243916
2186 A_23_P90273 CHST8 -2.184547528 -0.011603115 0.005311 40.26243916
3978 A_23_P436284 OSTbeta -2.173318271 -0.015594705 0.007176 40.26243916
6354 A_24_P844100 710943 -2.154978079 -0.010025909 0.004652 40.74421193
8645 A_24_P734406 CDNA -2.139040689 -0.011402345 0.005331 40.74421193
8396 A_24_P913847 797019 -2.126742515 -0.013371348 0.006287 40.74421193
4352 A_32_P163469 NFE2L1 -2.122614145 -0.008279792 0.003901 40.74421193

27 A_32_P149404 537146 -2.121890923 -0.011735979 0.005531 40.74421193
8825 A_24_P8721 HIST2H2AC -2.116853263 -0.007737682 0.003655 40.74421193
9195 A_24_P315014 825337 -2.103838237 -0.011041271 0.005248 44.13956293
2652 A_32_P59549 GFRA1 -2.089580714 -0.010791871 0.005165 44.13956293
9608 A_24_P585430 837185 -2.089248101 -0.008927945 0.004273 44.13956293
9565 A_24_P575267 835938 -2.085134242 -0.01329088 0.006374 44.13956293
4339 A_23_P55616 SLC14A1 -2.080633257 -0.010976489 0.005276 44.13956293
3525 A_23_P14072 KRT8 -2.073510618 -0.008600155 0.004148 44.13956293
5841 A_24_P171043 DKFZP547L112 -2.072368793 -0.014787908 0.007136 44.13956293
6833 A_23_P102071 A_23_P102071 -2.066516081 -0.012184098 0.005896 44.13956293
1659 A_23_P428184 HIST1H2AD -2.062725933 -0.009282874 0.0045 44.13956293
2325 A_23_P40761 OSTalpha -2.060190729 -0.009576087 0.004648 44.13956293
6618 A_23_P73526 CITED1 -2.048192347 -0.014631918 0.007144 47.8512989
7156 A_24_P46484 RBM22 -2.039381041 -0.015274032 0.00749 48.770276
7002 A_23_P384816 SLC45A4 -2.021143562 -0.012840954 0.006353 50.52818388

Estimated Miss rates for Delta=0.112821421147983
Quantiles Cutpoints Miss Rate(%)
0 -> 0.05 -2.012 -> -1.228 0
0.05 -> 0.1 -1.228 -> -0.969 3.49
0.1 -> 0.15 -0.969 -> -0.783 0
0.15 -> 0.2 -0.783 -> -0.633 0
0.2 -> 0.25 -0.633 -> -0.5 0
0.25 -> 0.75 -0.5 -> 0.533 0.44
0.75 -> 0.8 0.533 -> 0.654 8.29
0.8 -> 0.85 0.654 -> 0.807 0.71
0.85 -> 0.9 0.807 -> 1.002 0.76
0.9 -> 0.95 1.002 -> 1.254 11.81
0.95 -> 1 1.254 -> 2.505 0
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Additional file 2 - Figures and tables 

Figure S1: The percentage of samples with low expression of UGT
genes (<-0.5) within tumour samples and healthy women with high 
( 30%) or low (<30%) MD. 
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Figure S2: Clustering of the genes significantly down regulated in high MD samples. 
The three UGT genes cluster separately and tightly together. Samples are sorted 
according to MD. 
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Figure S3: The expression of the different UGT genes is highly 
correlated. Expression of the four probes representing UGT-transcripts (y-
axis) for each sample (x-axis) for A) healthy women and B) breast cancer 
patients respectively

Table S1: Correlation between the expression of different UGT genes 
A_23_P136671 A_23_P212968 A_23_P7342 A_24_P521559
UGT2B7 UGT2B11 UGT2B10 UGT2B10

A_23_P136671 UGT2B7 0.92 0.91 0.90
A_23_P212968 UGT2B11 0.92 0.93 0.94
A_23_P7342 UGT2B10 0.91 0.93 0.90
A_24_P521559 UGT2B10 0.90 0.94 0.90
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Table S2: MD and expression of UGT genes in samples from healthy women  

MD

A_23_P136671
UGT2B7
expression

A_23_P7342
UGT2B10
expression

A_24_P521559
UGT2B10
expression

A_23_P212968
UGT2B11
expression

age mean <50 (n=31) 40.4 0.83 0.15 0.74 0.07
mean 50 (n=45) 35.2 0.68 0.22 0.70 0.07
p value 0.25 0.72 0.78 0.92 0.99

BMI mean <25 (n=49) 41.2 0.84 0.12 0.77 0.11
mean 25 (n=27) 30.0 0.57 0.31 0.63 0.02
p value 0.01 0.53 0.45 0.66 0.73
mean <25 (n=38) 31.5 0.66 0.25 0.60 0.03Age at first

birth mean 25 (n=18) 39.0 0.64 0.22 0.48 0.00
p value 0.14 0.96 0.93 0.77 0.95
mean yes (n=64) 46.5 0.97 0.12 1.04 0.50
mean no (n=12) 35.6 0.71 0.24 0.64 0.01

Current
hormone
therapy p value 0.07 0.65 0.25 0.35 0.30
MD and expression of UGT genes in samples from healthy women in relation to 
epidemiological factors. All p-values are from two-sided t-tests not corrected for multiple 
testing.
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Figure S3: Unsupervised hierarchical clustering showed two main 
clusters. MD was not significantly different between these two clusters.

MD, p=0.86 ( 2)
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Figure S4: MD in relation to tumour subgroups 
a) Boxplot of MD vs subtypes 

a) Boxplot of MD for each pam50 risk group (1=high, 3=medium, 5=low risk).  
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Figure S5:  Distribution of MD in a) all samples (mean=), b) healthy 
women (mean=37%) and c) breast cancer patients (mean=16%)
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Figure S6: Localisation of UGT genes on chromosome 4: 

Table S4: Gene expression in samples from healthy women with 
differing MD compared with tumour samples.  
A) MD < 30% vs MD>30%: The mean expression of all four probes representing 
UGT genes is not significantly different between tumour samples and normal 
samples from breasts with high MD. For three UGT probes, mean expression is 
significantly different between tumour samples and normal samples from breasts 
with low MD. This is not the case for most other genes.  

Agilent ID SYMBOL
mean
t

mean n
MD
<30%

mean n
MD>30%

ttest t vs
MD<30%

ttest t vs
n
MD>30%

A_23_P119448 SAPS1 0.87 0.98 0.13 0.693 0.000
A_23_P136671 UGT2B7 1.00 0.21 1.24 0.005 0.402
A_23_P144244 810781 1.16 1.12 0.28 0.889 0.000
A_23_P152570 580687 1.53 1.78 0.87 0.430 0.003
A_23_P155463 LRRC2 1.39 1.60 0.65 0.478 0.001
A_23_P204277 H2AFJ 1.62 1.20 0.79 0.047 0.000
A_23_P212968 UGT2B11 0.43 0.77 0.50 0.003 0.768
A_23_P254212 DIAPH2::RPA4 1.50 1.62 0.68 0.705 0.000
A_23_P28733 RBL1 0.90 0.77 1.12 0.306 0.010
A_23_P309739 ESR1 2.32 1.96 1.32 0.282 0.000
A_23_P427472 FLJ10404 1.21 1.44 0.51 0.466 0.002
A_23_P66543 PIK3R5 0.89 0.95 0.07 0.833 0.000
A_23_P69699 NPY1R 1.42 2.01 1.35 0.267 0.902
A_23_P7342 UGT2B10 0.16 0.79 0.13 0.010 0.054
A_24_P131589 CD86 1.57 1.93 0.79 0.305 0.002
A_24_P177236 CABP7 1.63 1.95 0.68 0.378 0.000
A_24_P18802 VPS18 1.44 1.64 0.69 0.510 0.000
A_24_P521559 UGT2B10 0.70 0.07 1.08 0.072 0.148
A_24_P640617 Transcribed 0.97 1.04 0.18 0.801 0.000
A_24_P932736 729641 1.55 1.68 0.59 0.714 0.000
A_32_P107994 ATG7 1.51 1.78 0.74 0.413 0.001
A_32_P199824 LMOD1 1.55 1.91 0.77 0.320 0.002
A_32_P20997 Transcribed 0.25 0.56 0.10 0.008 0.092
A_32_P35668 666399 1.31 1.51 0.62 0.499 0.001
A_32_P80016 593535 1.59 1.72 0.75 0.676 0.000
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able S4 cont B) MD<20% vs MD>40%: The mean expression of all four 

ean

%

T
probes representing UGT genes is not significantly different between 
tumour samples and normal samples from breasts with high MD, as 
opposed to most other probes. There is no significant difference in m
expression between tumour samples and normal samples from breasts 
with low MD. Contrary to most other probes, the mean expression of the
UGT genes in tumours is more similar to the mean expression in normal 
samples from breasts with high than low MD.

MD <20% vs >40

Agilent ID SYMBOL
mean

mean n mean n
ttest t test t

t n |t n t n t
se

t
MD
<20%

MD
>40%

vs n
MD
<20%

t
vs n
MD
>40%

low
MD

low
MD|

high
MD

clo r
to

A_23_P119448 0.87 31 8 3 1 4SAPS1 1. 0.1 0.2 0.0 0.4 0.44 0.69 low
A_23_P136671 UGT2B7 1.00 0.39 1.22 0.22 0.52 0.61 0.61 0.21 high
A_23_P144244 810781 1.16 1.46 0.37 0.42 0.00 0.31 0.31 0.79 low
A_23_P152570 580687 1.53 2.12 0.98 0.13 0.04 0.59 0.59 0.55 high
A_23_P155463 LRRC2 1.39 1.78 0.72 0.29 0.01 0.39 0.39 0.67 low
A_23_P204277 H2AFJ 1.62 1.18 0.73 0.11 0.00 0.44 0.44 0.89 low
A_23_P212968 UGT2B11 0.43 0.24 0.52 0.15 0.75 0.66 0.66 0.09 high
A_23_P254212 DIAPH2::RPA4 1.50 1.98 0.75 0.23 0.01 0.48 0.48 0.76 low
A_23_P28733 RBL1 0.90 0.70 1.15 0.18 0.01 0.20 0.20 0.26 low
A_23_P309739 ESR1 2.32 1.89 1.21 0.32 0.00 0.43 0.43 1.12 low
A_23_P427472 FLJ10404 1.21 1.70 0.53 0.24 0.01 0.49 0.49 0.68 low
A_23_P66543 PIK3R5 0.89 1.14 0.17 0.51 0.01 0.25 0.25 0.72 low
A_23_P69699 NPY1R 1.42 2.21 1.26 0.25 0.73 0.78 0.78 0.16 high
A_23_P7342 UGT2B10 0.16 0.50 0.15 0.20 0.07 0.34 0.34 0.30 high
A_24_P131589 CD86 1.57 2.26 0.87 0.10 0.02 0.68 0.68 0.70 low
A_24_P177236 CABP7 1.63 2.25 0.77 0.17 0.01 0.62 0.62 0.86 low
A_24_P18802 VPS18 1.44 1.88 0.77 0.23 0.01 0.44 0.44 0.67 low
A_24_P521559 0UGT2B1 0.70 0.38 1.14 0.52 0.17 0.32 0.32 0.44 low
A_24_P640617 Transcribed 0.97 1.25 0.32 0.42 0.01 0.28 0.28 0.65 low
A_24_P932736 729641 1.55 2.10 0.64 0.19 0.00 0.55 0.55 0.91 low
A_32_P107994 ATG7 1.51 2.07 0.83 0.17 0.02 0.57 0.57 0.68 low
A_32_P199824 LMOD1 1.55 2.22 0.84 0.12 0.02 0.67 0.67 0.71 low
A_32_P20997 Transcribed 0.25 0.69 0.15 0.00 0.28 0.44 0.44 0.10 high
A_32_P35668 666399 1.31 1.71 0.71 0.28 0.02 0.41 0.41 0.60 low
A_32_P80016 593535 1.59 2.02 0.82 0.26 0.00 0.42 0.42 0.78 low
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Figure S7: The Kullback-Leibler divergence between UGT expression in 
tumours and healthy samples with high and low MD respectively. Small 
divergence means more similar distribution in the two populations tested. 
For three of four UGT probes, the distribution in tumour samples is more 
similar to the distribution in healthy individuals with high-MD than with low-
MD. (The first UGT2B10-probe is A_23_P7342, the probe that is significant 
in the GLM-analysis, the second is A_24_P521559). 
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Table S5: Gene expression of UGT2B10 in tumour samples (T) and 
normal adjacent samples (N) from the same breast in an unpublished 
dataset. There is no significant difference in mean expression by pair wise 
t-test.

A_23_P7342 A_23_P7342
UGT2B10 UGT2B10 

CM  1N 9.75 CM  1T 7.52
CM  9N 8.62 CM  9T 8.49
CM 10N 8.77 CM 10T 7.27
CM 11N 9.26 CM 11T 6.65
CM 13N 10.32 CM 13T 7.43
CM 18N 10.69 CM 18T 8.79
CM 19N 9.12 CM 19T 9.11
CM 26N 8.78 CM 26T 7.31
CM 31N 8.00 CM 31T 8.07
CM 32N 7.73 CM 32T 7.23
CM 38N 10.96 CM 38T 7.32
CM 41N 9.07 CM 41T 11.71
CM 46N 8.74 CM 46T 11.21
CM 47N 11.08 CM 47T 8.00
CM 54N 7.80 CM 54T 13.14
CM 56N 7.92 CM 56T 17.48
CMG24N 6.66 CMG24T 13.89
CMG43N 8.24 CMG43T 10.59
CM 44N 8.89 CM 44T 7.75
average 8.97 average 9.42
p-value 0.60 (pair wise t-test) 

Table S6: Range of MD in the breasts of healthy women  
max 77.3133466
min 1.28417454
mean 28.1668549
median 23.5504612
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Supplemental discussion

Gene expression microarray analyses using tissue adjacent to a breast tumour have 
previously been done [1,2]. The expression profile in these normal samples will be 
influenced by the neighbouring breast tumour [3]. Breast reduction mammoplasties have 
also been used in analysis of healthy breast tissue [4]. These samples are generally 
collected from large breasts with a higher than average proportion of fatty tissue which 
may also skew the analyses to some extent.  Our study analysed a population more 
representative of the population of women at risk for developing breast cancer, since we 
have studied normal breast tissue from women with no malignant disease and not 
undergoing breast reduction mammoplasties.
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Additional file 3: SAMMD, Healthy women, stratified

Healthy women MD 20+ Healthy women age <50
n= 61 n= 30
Down regulated in high MD Down regulated in high MD
Gene ID Gene Name Score(d) q value(%) Gene ID Gene Name Score(d) q value(%)
A_23_P212968 UGT2B11 2.77969 0 A_23_P31816 DEFA1 2.42047 108.98
A_24_P521559 UGT2B10 2.70433 0 A_24_P945408 A_24_P945408 2.10504 108.98
A_24_P180243 UGT2B28 2.49195 0 A_23_P28485 GCA 2.09072 108.98
A_24_P17691 UGT2B17 2.49119 0 A_23_P133606 SLC12A2 1.96186 108.98
A_23_P7342 UGT2B11 2.43767 0 A_23_P155666 ASAHL 1.85119 108.98
A_23_P136671 UGT2B7 2.39515 0 A_24_P521559 UGT2B10 1.85097 108.98
A_24_P575267 835938 2.22042 16.58061 A_23_P57961 PLXNB1 1.85011 108.98
A_23_P309739 ESR1 2.11901 29.01607 A_23_P251002 A_23_P251002 1.75684 108.98

A_24_P180243 UGT2B28 1.73066 108.98
Healthy women age 50+ A_24_P682550 805257 1.73046 108.98
n= 43 A_24_P926053 EEF1D 1.73024 108.98
Down regulated in high MD A_24_P234732 MXD4 1.71981 108.98
Gene ID Gene Name Score(d) q value(%) A_23_P7342 UGT2B10 1.71718 108.98
A_24_P932736 729641 2.84599 0 A_23_P218144 LTBP2 1.67917 108.98
A_23_P102071 A_23_P102071 2.79848 0 A_23_P136671 UGT2B7 1.67406 108.98
A_24_P131589 CD86 2.73066 0 A_23_P55616 SLC14A1 1.66802 108.98
A_24_P18802 VPS18 2.68478 0 A_24_P649357 LOC153561::SMA3 1.65662 108.98
A_23_P144244 810781 2.63993 0 A_24_P105913 660721 1.63813 108.98
A_23_P427472 FLJ10404 2.58166 0 A_23_P1833 B3GAT1 1.6233 108.98
A_23_P254212 DIAPH2::RPA4 2.54627 0 A_23_P66481 RTN4RL1 1.61872 108.98
A_32_P199824 LMOD1 2.54021 0 A_24_P942694 C10orf118 1.6163 108.98
A_32_P107994 ATG7 2.51581 0 A_23_P212968 UGT2B11 1.61244 108.98
A_24_P111096 PFKFB3 2.49518 0
A_32_P35668 666399 2.47058 0 Healthy women currently using HT
A_23_P152570 580687 2.42633 0 n=11
A_32_P133840 TMCC2 2.40001 5.212564 Down regulated in high MD
A_24_P375205 MKL2 2.39587 5.212564 Gene ID Gene Name Score(d) q value(%)
A_23_P69699 NPY1R 2.36047 5.212564 A_23_P150979 SBEM 2.02043 0
A_24_P177236 CABP7 2.35609 5.212564 A_23_P8702 PIP 1.99379 0
A_32_P80016 593535 2.34829 5.212564 A_23_P136671 UGT2B7 1.76847 0
A_24_P693448 ZNF552 2.34813 5.212564 A_23_P393099 TFF3 1.73037 0
A_23_P155463 LRRC2 2.31267 5.212564 A_24_P701582 755742 1.71496 0
A_23_P366376 TDGF3 2.28853 5.212564 A_23_P212968 UGT2B11 1.70231 0
A_23_P66543 PIK3R5 2.24972 5.212564 A_24_P180243 UGT2B28 1.61254 14.85761091
A_24_P640617 Transcribed 2.24753 5.212564
A_24_P913847 797019 2.21721 5.212564 Healthy women 50 not currently using HT
A_24_P46484 RBM22 2.21441 5.212564 n= 32
A_23_P204277 H2AFJ 2.15817 7.217396 Down regulated in high MD
A_32_P111996 MGC39584 2.155 7.217396 Gene ID Gene Name Score(d) q value(%)
A_23_P39095 CGB::CGB1 2.12366 8.796201 A_23_P39095 CGB::CGB1 2.30668 13.41
A_23_P119448 SAPS1 2.11473 8.796201 A_24_P131589 CD86 2.24301 13.41
A_32_P20997 Transcribed 2.11014 8.796201 A_23_P102071 A_23_P102071 2.24149 13.41
A_24_P287664 PLCB2 2.10975 8.796201 A_32_P199824 LMOD1 2.16352 13.41
A_32_P77416 554489 2.106 8.796201 A_24_P932736 729641 2.13709 13.41
A_24_P919640 CD44 2.10298 8.796201 A_23_P144244 810781 2.11942 13.41
A_24_P125894 PPM1F 2.08066 11.03837 A_24_P640617 Transcribed 2.10214 13.41
A_24_P349633 FLJ32679::GOLGA8F 2.07426 11.03837 A_24_P18802 VPS18 2.094 13.41
A_23_P116694 RPS26 2.0591 11.03837 A_23_P366376 TDGF3 2.07299 13.41
A_23_P436284 OSTbeta 2.01381 13.03141 A_23_P436284 OSTbeta 2.06873 13.41
A_24_P315014 825337 2.00604 13.03141 A_24_P111096 PFKFB3 2.06416 13.41
A_24_P36890 RAP1GAP 1.98816 14.81466 A_23_P254212 DIAPH2::RPA4 2.0602 13.41
A_23_P44663 SERPINA1 1.93374 16.41958 A_32_P80016 593535 2.05224 13.41
A_32_P149404 537146 1.92918 16.41958 A_23_P152570 580687 2.04327 13.41
A_32_P79313 FLJ45244 1.91531 18.30754 A_23_P155463 LRRC2 2.03448 13.41
A_24_P110601 834483 1.90173 18.30754 A_24_P913847 797019 2.02459 13.41
A_23_P414793 CP 1.90022 18.30754 A_23_P66543 PIK3R5 1.99902 13.41
A_23_P38732 CDH2 1.89132 20.39699 A_24_P919640 CD44 1.98346 13.41
A_24_P82880 TPM4 1.88579 20.39699 A_32_P133840 TMCC2 1.97499 13.41
A_32_P147241 PKM2 1.88028 20.39699 A_32_P107994 ATG7 1.97384 13.41
A_32_P168431 RPS26 1.85413 23.45654 A_32_P149404 537146 1.88689 20.43
A_23_P428184 HIST1H2AD 1.84698 23.45654
A_24_P719081 786677 1.83241 24.89265



Additional file 4: eQTL

UGT transcripts the expression of which is associated to SNPs in their own or other UGT genes in cis

Probe_ID Gene exp SNP_rs SNP_gene b1_p Probe_ID Gene exp SNP_rs SNP_gene b1_p
A_23_P41553 Ncaml rs1828705 UGT2B10 0.01 A_24_P521559 UGT2B10 rs1131878 UGT2B4 0.48
A_24_P575267 835938 rs1828705 UGT2B10 0.02 A_23_P136671 UGT2B7 rs1560605 UGT2A1 0.48
A_23_P136671 UGT2B7 rs1828705 UGT2B10 0.04 A_24_P521559 UGT2B10 rs903446 UGT2B4 0.49
A_23_P41553 Ncaml rs941389 UGT2B4 0.05 A_24_P575267 835938 rs10026603 UGT2A1 0.49
A_24_P180243 UGT2B28 rs1828705 UGT2B10 0.05 A_23_P41553 Ncaml rs13139888 UGT2B4 0.50
A_24_P180243 UGT2B28 rs2288741 UGT2A1 0.07 A_23_P212968 UGT2B11 rs4554145 UGT2B4 0.51
A_23_P7342 UGT2B11 rs2288741 UGT2A1 0.08 A_23_P212968 UGT2B11 rs2045100 UGT2B15 0.51
A_23_P58407 UGT2B15 rs1828705 UGT2B10 0.08 A_24_P575267 835938 rs4694211 UGT2B4 0.51
A_24_P180243 UGT2B28 rs4554145 UGT2B4 0.08 A_23_P58407 UGT2B15 rs1513559 UGT2B10 0.55
A_24_P575267 835938 rs4554145 UGT2B4 0.08 A_23_P212968 UGT2B11 rs4557343 UGT2B4 0.57
A_24_P575267 835938 rs13139888 UGT2B4 0.08 A_24_P521559 UGT2B10 rs7439366 UGT2B7 0.59
A_23_P41553 Ncaml rs4557343 UGT2B4 0.08 A_23_P58407 UGT2B15 rs7668258 UGT2B7 0.59
A_23_P7342 UGT2B11 rs1560605 UGT2A1 0.09 A_23_P58407 UGT2B15 rs4521414 UGT2B7 0.59
A_24_P180243 UGT2B28 rs1560605 UGT2A1 0.09 A_23_P136671 UGT2B7 rs13139888 UGT2B4 0.59
A_23_P212968 UGT2B11 rs1828705 UGT2B10 0.10 A_23_P136671 UGT2B7 rs4557343 UGT2B4 0.60
A_24_P575267 835938 rs3775782 UGT2A1 0.10 A_23_P7342 UGT2B11 rs7668258 UGT2B7 0.60
A_24_P180243 UGT2B28 rs10026603 UGT2A1 0.11 A_23_P7342 UGT2B11 rs4521414 UGT2B7 0.60
A_24_P575267 835938 rs2288741 UGT2A1 0.13 A_23_P136671 UGT2B7 rs2045100 UGT2B15 0.61
A_24_P180243 UGT2B28 rs1432329 UGT2A1 0.13 A_24_P180243 UGT2B28 rs7439366 UGT2B7 0.62
A_24_P575267 835938 rs1560605 UGT2A1 0.15 A_23_P136671 UGT2B7 rs941389 UGT2B4 0.62
A_24_P180243 UGT2B28 rs3775782 UGT2A1 0.15 A_24_P575267 835938 rs4148279 UGT2A1 0.63
A_23_P58407 UGT2B15 rs1454254 UGT2B15 0.16 A_24_P17691 UGT2B17 rs1513559 UGT2B10 0.63
A_24_P575267 835938 rs1131878 UGT2B4 0.16 A_24_P575267 835938 rs1513559 UGT2B10 0.64
A_24_P521559 UGT2B10 rs10026603 UGT2A1 0.16 A_23_P136671 UGT2B7 rs1432329 UGT2A1 0.64
A_23_P7342 UGT2B11 rs1432329 UGT2A1 0.19 A_24_P575267 835938 rs7668258 UGT2B7 0.65
A_24_P575267 835938 rs1432329 UGT2A1 0.20 A_24_P575267 835938 rs4521414 UGT2B7 0.65
A_23_P7342 UGT2B11 rs10026603 UGT2A1 0.21 A_24_P575267 835938 rs4235126 UGT2B28 0.65
A_24_P180243 UGT2B28 rs13139888 UGT2B4 0.21 A_23_P136671 UGT2B7 rs4694211 UGT2B4 0.66
A_24_P180243 UGT2B28 rs1131878 UGT2B4 0.21 A_23_P212968 UGT2B11 rs13139888 UGT2B4 0.67
A_23_P212968 UGT2B11 rs2288741 UGT2A1 0.23 A_23_P136671 UGT2B7 rs1131878 UGT2B4 0.67
A_23_P212968 UGT2B11 rs1560605 UGT2A1 0.23 A_24_P17691 UGT2B17 rs1454254 UGT2B15 0.68
A_23_P7342 UGT2B11 rs1828705 UGT2B10 0.23 A_23_P7342 UGT2B11 rs7439366 UGT2B7 0.68
A_24_P521559 UGT2B10 rs2288741 UGT2A1 0.24 A_24_P17691 UGT2B17 rs844342 UGT2B10 0.69
A_24_P180243 UGT2B28 rs4557343 UGT2B4 0.25 A_23_P7342 UGT2B11 rs4148279 UGT2A1 0.69
A_23_P7342 UGT2B11 rs4557343 UGT2B4 0.25 A_24_P521559 UGT2B10 rs4694211 UGT2B4 0.70
A_24_P521559 UGT2B10 rs1560605 UGT2A1 0.28 A_23_P7342 UGT2B11 rs844342 UGT2B10 0.70
A_23_P7342 UGT2B11 rs3775782 UGT2A1 0.29 A_24_P521559 UGT2B10 rs7668258 UGT2B7 0.71
A_24_P521559 UGT2B10 rs1828705 UGT2B10 0.29 A_24_P521559 UGT2B10 rs4521414 UGT2B7 0.71
A_24_P521559 UGT2B10 rs4554145 UGT2B4 0.29 A_24_P521559 UGT2B10 rs844342 UGT2B10 0.72
A_23_P7342 UGT2B11 rs4554145 UGT2B4 0.30 A_23_P212968 UGT2B11 rs1131878 UGT2B4 0.73
A_24_P17691 UGT2B17 rs1828705 UGT2B10 0.31 A_23_P41553 Ncaml rs4235126 UGT2B28 0.73
A_23_P41553 Ncaml rs3775782 UGT2A1 0.31 A_24_P180243 UGT2B28 rs4235126 UGT2B28 0.73
A_24_P521559 UGT2B10 rs4235126 UGT2B28 0.33 A_24_P180243 UGT2B28 rs844342 UGT2B10 0.74
A_23_P212968 UGT2B11 rs7668258 UGT2B7 0.34 A_23_P7342 UGT2B11 rs903446 UGT2B4 0.74
A_23_P212968 UGT2B11 rs4521414 UGT2B7 0.34 A_24_P521559 UGT2B10 rs941389 UGT2B4 0.75
A_23_P41553 Ncaml rs1513559 UGT2B10 0.35 A_23_P136671 UGT2B7 rs4235126 UGT2B28 0.75
A_23_P212968 UGT2B11 rs10026603 UGT2A1 0.35 A_24_P521559 UGT2B10 rs2045100 UGT2B15 0.76
A_24_P575267 835938 rs4557343 UGT2B4 0.36 A_24_P575267 835938 rs7439366 UGT2B7 0.77
A_23_P212968 UGT2B11 rs7439366 UGT2B7 0.36 A_23_P7342 UGT2B11 rs941389 UGT2B4 0.77
A_23_P41553 Ncaml rs844342 UGT2B10 0.37 A_24_P575267 835938 rs844342 UGT2B10 0.78
A_23_P136671 UGT2B7 rs4554145 UGT2B4 0.38 A_24_P180243 UGT2B28 rs7668258 UGT2B7 0.78
A_23_P212968 UGT2B11 rs3775782 UGT2A1 0.38 A_24_P180243 UGT2B28 rs4521414 UGT2B7 0.78
A_23_P136671 UGT2B7 rs10026603 UGT2A1 0.38 A_23_P136671 UGT2B7 rs4148279 UGT2A1 0.78
A_24_P180243 UGT2B28 rs4694211 UGT2B4 0.40 A_23_P7342 UGT2B11 rs4235126 UGT2B28 0.79
A_24_P521559 UGT2B10 rs3775782 UGT2A1 0.41 A_23_P212968 UGT2B11 rs4694211 UGT2B4 0.79
A_24_P521559 UGT2B10 rs1432329 UGT2A1 0.41 A_23_P41553 Ncaml rs1131878 UGT2B4 0.79
A_23_P7342 UGT2B11 rs13139888 UGT2B4 0.41 A_24_P575267 835938 rs1454254 UGT2B15 0.80
A_23_P136671 UGT2B7 rs3775782 UGT2A1 0.42 A_23_P7342 UGT2B11 rs1513559 UGT2B10 0.80
A_23_P136671 UGT2B7 rs2288741 UGT2A1 0.44 A_23_P58407 UGT2B15 rs7439366 UGT2B7 0.80
A_23_P41553 Ncaml rs1454254 UGT2B15 0.44 A_23_P41553 Ncaml rs7439366 UGT2B7 0.82
A_23_P41553 Ncaml rs4554145 UGT2B4 0.44 A_23_P41553 Ncaml rs7668258 UGT2B7 0.83
A_23_P7342 UGT2B11 rs1131878 UGT2B4 0.45 A_23_P41553 Ncaml rs4521414 UGT2B7 0.83
A_24_P575267 835938 rs2045100 UGT2B15 0.45 A_24_P521559 UGT2B10 rs4557343 UGT2B4 0.83
A_24_P180243 UGT2B28 rs2045100 UGT2B15 0.46 A_23_P58407 UGT2B15 rs844342 UGT2B10 0.83
A_23_P212968 UGT2B11 rs1432329 UGT2A1 0.46 A_23_P41553 Ncaml rs4694211 UGT2B4 0.83
A_24_P521559 UGT2B10 rs13139888 UGT2B4 0.47 A_23_P7342 UGT2B11 rs2045100 UGT2B15 0.84
A_23_P58407 UGT2B15 rs2045100 UGT2B15 0.47 A_23_P212968 UGT2B11 rs903446 UGT2B4 0.84



Probe_ID Gene exp SNP_rs SNP_gene b1_p Probe_ID Gene exp SNP_rs SNP_gene b1_p
A_23_P212968 UGT2B11 rs4235126 UGT2B28 0.84 A_23_P110234CSN1S1 rs4521414 UGT2B7 0.86
A_23_P212968 UGT2B11 rs844342 UGT2B10 0.84 A_23_P110234CSN1S1 rs10026603 UGT2A1 0.88
A_24_P180243 UGT2B28 rs1454254 UGT2B15 0.85 A_23_P362694C4orf7 rs4557343 UGT2B4 0.89
A_24_P180243 UGT2B28 rs903446 UGT2B4 0.87 A_23_P41365 SMR3A rs2288741 UGT2A1 0.90
A_23_P212968 UGT2B11 rs1513559 UGT2B10 0.87 A_23_P41365 SMR3A rs10026603 UGT2A1 0.91
A_23_P136671 UGT2B7 rs844342 UGT2B10 0.88 A_23_P362694C4orf7 rs13139888 UGT2B4 0.92
A_24_P180243 UGT2B28 rs4148279 UGT2A1 0.90 A_23_P110234CSN1S1 rs903446 UGT2B4 0.92
A_24_P521559 UGT2B10 rs4148279 UGT2A1 0.90 A_23_P41365 SMR3A rs1560605 UGT2A1 0.94
A_24_P521559 UGT2B10 rs1513559 UGT2B10 0.90 A_23_P41365 SMR3A rs4235126 UGT2B28 0.96
A_23_P41553 Ncaml rs903446 UGT2B4 0.90 A_23_P110234CSN1S1 rs4148279 UGT2A1 0.98
A_23_P136671 UGT2B7 rs7668258 UGT2B7 0.90
A_23_P136671 UGT2B7 rs4521414 UGT2B7 0.90
A_23_P212968 UGT2B11 rs941389 UGT2B4 0.91
A_24_P521559 UGT2B10 rs1454254 UGT2B15 0.93
A_23_P7342 UGT2B11 rs1454254 UGT2B15 0.93
A_23_P212968 UGT2B11 rs1454254 UGT2B15 0.94
A_23_P41553 Ncaml rs2045100 UGT2B15 0.95
A_24_P17691 UGT2B17 rs2045100 UGT2B15 0.95
A_24_P180243 UGT2B28 rs1513559 UGT2B10 0.96
A_23_P136671 UGT2B7 rs903446 UGT2B4 0.96
A_24_P575267 835938 rs941389 UGT2B4 0.97
A_23_P136671 UGT2B7 rs1454254 UGT2B15 0.98
A_23_P7342 UGT2B11 rs4694211 UGT2B4 0.98
A_23_P212968 UGT2B11 rs4148279 UGT2A1 0.98
A_23_P41553 Ncaml rs2288741 UGT2A1 0.98
A_23_P136671 UGT2B7 rs1513559 UGT2B10 0.99
A_23_P136671 UGT2B7 rs7439366 UGT2B7 0.99
A_24_P180243 UGT2B28 rs941389 UGT2B4 1.00
A_23_P362694 C4orf7 rs903446 UGT2B4 0.01
A_23_P41365 SMR3A rs941389 UGT2B4 0.06
A_23_P362694 C4orf7 rs7439366 UGT2B7 0.10
A_23_P362694 C4orf7 rs4148279 UGT2A1 0.10
A_23_P362694 C4orf7 rs7668258 UGT2B7 0.14
A_23_P362694 C4orf7 rs4521414 UGT2B7 0.14
A_23_P110234 CSN1S1 rs3775782 UGT2A1 0.18
A_23_P110234 CSN1S1 rs13139888 UGT2B4 0.18
A_23_P110234 CSN1S1 rs1131878 UGT2B4 0.19
A_23_P362694 C4orf7 rs1131878 UGT2B4 0.22
A_23_P362694 C4orf7 rs4554145 UGT2B4 0.23
A_23_P110234 CSN1S1 rs4554145 UGT2B4 0.24
A_23_P41365 SMR3A rs3775782 UGT2A1 0.27
A_23_P362694 C4orf7 rs4235126 UGT2B28 0.33
A_23_P110234 CSN1S1 rs4694211 UGT2B4 0.34
A_23_P41365 SMR3A rs4557343 UGT2B4 0.40
A_23_P362694 C4orf7 rs4694211 UGT2B4 0.43
A_23_P110234 CSN1S1 rs1432329 UGT2A1 0.49
A_23_P362694 C4orf7 rs3775782 UGT2A1 0.52
A_23_P41365 SMR3A rs13139888 UGT2B4 0.52
A_23_P362694 C4orf7 rs2288741 UGT2A1 0.58
A_23_P110234 CSN1S1 rs4557343 UGT2B4 0.58
A_23_P41365 SMR3A rs903446 UGT2B4 0.61
A_23_P41365 SMR3A rs4554145 UGT2B4 0.64
A_23_P110234 CSN1S1 rs4235126 UGT2B28 0.68
A_23_P41365 SMR3A rs4148279 UGT2A1 0.70
A_23_P110234 CSN1S1 rs941389 UGT2B4 0.75
A_23_P362694 C4orf7 rs1432329 UGT2A1 0.75
A_23_P362694 C4orf7 rs941389 UGT2B4 0.78
A_23_P110234 CSN1S1 rs1560605 UGT2A1 0.78
A_23_P110234 CSN1S1 rs2288741 UGT2A1 0.79
A_23_P41365 SMR3A rs1131878 UGT2B4 0.81
A_23_P110234 CSN1S1 rs844342 UGT2B10 0.81
A_23_P362694 C4orf7 rs10026603 UGT2A1 0.81
A_23_P41365 SMR3A rs4694211 UGT2B4 0.84
A_23_P110234 CSN1S1 rs7439366 UGT2B7 0.85
A_23_P41365 SMR3A rs1432329 UGT2A1 0.85
A_23_P362694 C4orf7 rs1560605 UGT2A1 0.85
A_23_P110234 CSN1S1 rs7668258 UGT2B7 0.86
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