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Abstract 

My engagement in stem cell research started at the Norwegian Radium Hospital (1998-

2004). Our group focused upon the regulatory role of the microenvironment toward 

hematopoietic cells in the bone marrow. By applying traditional life science 

methodologies (genetic engineering and methods for identification, isolation and 

cultivation of cells), we wanted to map and evaluate multiple factors controlling 

stem/progenitor cells. These elements have potential relevance for tissue engineering and 

cancer treatment. 

Specifically, we were concerned with the nature of the supportive cells (“niche 

cells”) that are indispensable for maintaining control of the hematopoietic cells. From an 

immunohistochemical study of bone marrow biopsies, we found that all stages of human 

B-cell progenitors co-localise with slender CD10+VCAM+/- cells, indicating an essential 

role of this stromal phenotype (Article II). 

In our search for proteins mediating communication between B-cell progenitors 

and their microenvironment, we employed a cloning strategy for identifying proteins 

displayed by pro B-cells (known as a signal sequence trap, SST). Three candidate proteins 

were detected and one unknown protein was characterised (TMEM-9). However, this 

protein was localised to internal cell membranes (also trapped by the method) with no 

obvious role in cell communication (Article I). 

We also investigated Wnt signalling as a candidate pathway operating in the B-cell 

niche. This pathway has fundamental regulatory roles in hematopoiesis and other 

developmental processes. Human B-cell progenitors were found to transcribe essential 

molecules for conveying canonical Wnt signalling. Moreover, we observed that triggering 

of this pathway caused a characteristic intracellular event and a cease in cell 

differentiation and proliferation (Article III). This outcome was surprising, as the opposite 

result had been documented in the murine system. However, as Wnts are morphogens, 

they are likely to act in precise gradients to control cell behaviour in vivo. Hence, our 

current in vitro models may not provide physiological results. 

Given access to microfabrication facilities at the Department of Micro and Nano 

Systems Technology (IMST) at the Vestfold University College (2006), I was able to 

pursue research on stem cell niches from a completely new angle. I explored the laminar 
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motion of fluids in microchannels and realised its potency for unique manipulation of cell 

cultures, with respect to both cellular composition and chemical environment. I figured 

that such strategies may be used for making more representative in vitro models of the 

hematopoietic niches in the bone marrow. 

By implementing the soft lithographic process, I fabricated a platform for on-chip 

differentiation based on a published design. As a first step, I needed to test whether the 

microfluidic conditions were in accordance with normal cell behaviour. Differentiation of 

mesenchymal stem cells (MSCs) was chosen as a relevant test process, knowing that both 

undifferentiated MSCs as well as some of their specialised progeny are appropriate 

feeding layers for stroma-dependent hematopoietic cells. Substrate modifications were 

needed to obtain a device that accommodated MSCs in a healthy state during prolonged 

cultivation, as demonstrated by extensive adipogenic and osteogenic differentiation 

(Article IV). The successful management of MSCs cells on the microscale is an important 

preparation towards the aim for making artificial hematopoietic stem cell niches on a chip. 
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1 Introduction 

1.1 The stem cell concept 

Stem cells are immature, unspecialised cells with two unique features: 

1. They can mature into specialised cells with distinct “working tasks”. 

This process is called cell differentiation. 

2. They can make identical copies of themselves, thereby securing their continuation. 

This process is called self-renewal. 

Stem cells constituting the early embryo are the basis for the development of an entire 

new individual. In completed organisms, stem cells are critical for maintaining the body’s 

balance (homeostasis), as many specialised cells don’t replicate and have short life spans. 

These stem cells are called somatic stem cells1 and have less potency, as they normally 

only specialise into the cell types of the tissue from which they originated. They have been 

found in a variety of tissues, including bone marrow (BM), peripheral blood, brain, spinal 

cord, dental pulp, blood vessels, skeletal muscle, epithelia of the skin and digestive 

system, cornea, retina, liver and pancreas [1]. 

1.2 Developmental processes in the bone marrow 

1.2.1 Hematopoietic stem cells 

The red BM is an adult tissue with ongoing stem cell activity. This is the site2 for the 

production of new blood cells (hematopoiesis), a process that is vital throughout life. In 

fact, blood cells are among those with the shortest survival period, e.g. neutrophil 

granulocytes only live for a few days and platelets live for �10 days. Also, the adaptive 

immune system relies on a continuous production of immune cells with random 

specificity for being able to defeat unfamiliar pathogens. Remarkably, all blood cells 

originate from a single population of stem cells, called hematopoietic stem cells (HSCs), 

                                                 
1 Also called postnatal or adult stem cells. 
2 In cases of stress, hematopoiesis also takes place in spleen (extramedullary hematopoiesis). 
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thereby qualifying as multipotent stem cells.3 In fact, the ability of transplanted HSCs to 

rescue a mouse deprived of all its hematopoietic cells (by irradiation) is the gold standard 

for defining these cells (= reconstitution potential). Actually, a single HSC has been 

demonstrated to achieve this tremendous task [2]. Our ability to manage HSCs has great 

clinical impact; see Box 1, page 4. 

HSCs were recognised more than 40 years ago4 and are the most-studied type of 

adult stem cells. They are rare5 [3] and cycle very slowly [4]. Yet, the production of 

mature cells is enormous - billions of new blood cells are produced each day. These 

numbers are explained by substantial cell amplification during the hematopoietic process. 

The HSCs give rise to a cascade of intermediate cell stages that gradually differentiate, 

meaning they acquire the specific properties of a particular mature cell type. These cells 

are known as progenitors and precursor cells, of which some have a vivid proliferation. 

Concomitantly, the partly differentiated cells loose potency, denoting that they become 

more restricted to evolve into a specific cell type (lineage commitment). The 

differentiation processes and lineage decisions are driven by activation and inactivation of 

specific genes in a strictly regulated fashion. Thus, HSCs and blood cells at different 

differentiation stages can be identified by the presence and absence of genetic elements 

and surface markers, as well functional criteria and morphology6 (see section 1.4.1, page 

13). 

Studies on hematopoietic cells of different maturation levels give rise to 

“roadmaps” that describe anticipated hierarchical lineage commitments. A traditional 

overview is shown in Figure 1, assuming that the first differentiation step produce 

lymphoid and myeloid precursors [5, 6]. The lymphoid precursors give rise to B-cells, T-

cells and natural killer (NK) cells, whereas the myeloid precursors give rise to red blood 

cells, platelets, granulocytes, macrophages and osteoclasts. Dendritic cells (DC) seem to 

originate from both precursors. However, this classical road map for lineage commitment 

is regularly challenged by findings of progenitors with mixed potential [7-9]. Additional 

heterogeneity to the picture emerge from clonal analysis revealing that individual stem 

cells exhibit lymphoid/myeloid biases that are heritable through multiple rounds of 

                                                 
3 Multipotency: the ability of a cell to specialise (differentiate) into a limited number of cell types or into closely related 
family of cells. 
4 HSCs were postulated by Artur Pappenheim (1917), experimentally confirmed by Alexander Maximow (1924) and 
demonstrated by Till and McCulloch (1961). 
5  HSCs constitute approximately 1: 10 000 BM cells. 
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transplantation [10]. Finally, it is suggested that stemness is a biological function that 

degenerates over time but may be recruited within differentiated cells in particular 

contexts [11, 12]. 

Blood cells leave and enter the BM via an elaborate network of small, highly 

permeable blood vessels called sinusoids. T-cell precursors and immature B-cells 

continue their development in the thymus and spleen, respectively. 

 

Figure 1 Simplified model of hematopoiesis HSCs can be divided in Long-Term 
Repopulating (LTR)-HSCs and Short-Term Repopulation (STR)-HSCs, which can self-renew 
(indicated by red arrow). They give rise to multipotent progenitor cells, which differentiate to all 
blood cells via several progenitor cell stages of less potency. A “developmental tree” is 
perceived when the figure is rotated 90˚. The stem cell populations represent the stem of the 
tree, while progenitors and mature cells constitute branches and leaves. ErP, erythrocyte 
progenitor cell; GMP, Granulocyte-Macrophage Progenitor cell; MEP, Megakaryocyte-
Erythrocyte Progenitor cell; MkP, Megakaryocyte Progenitor cell; NK, Natural Killer. Modified 
from [13]. 

Obviously, the potent process of hematopoiesis must be tightly and dynamically regulated 

according to the changing needs of the organism. Self-renewal and differentiation of 

HSCs need precise tuning in order to maintain the stem cell pool while all the specialised 

blood cells are generated in right proportions. This demand leads focus towards the HSC 

microenvironment. 

                                                                                                                                                  
6 Morphological identification is only reliable for some mature cells. 
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Box 1 Realizing the potential of HSCs – a lesson from the clinic 

The central features of HSC are demonstrated by the symptoms and treatment of patients 

suffering from aplastic anaemia. In these patients, the HSCs fail to produce blood cells, 

resulting in anaemia, bruises and enhanced susceptibility to infections, due to low numbers 

of red blood cells, platelets and immune cells, respectively. The patients can be saved by a 

transplant of healthy HSCs from a compatible donor (notably after their own distorted 

hematopoietic system has been eradicated by irradiation or chemotherapy). The HSCs are 

injected into a peripheral vein and migrate to the BM (= homing) where they settle (= 

engraftment) and repopulate the hematopoietic system. This strategy is also used to fight 

blood cancers. [14, 15] 

 

1.2.2 Mesenchymal stem cells – relation to hematopoiesis 

In addition to hematopoietic cells, the BM tissue consists of a variety of cell types 

including adipocytes (fat cells), osteoblasts (bone forming cells), endothelial cells, 

fibroblasts and reticular cells [16]. Because the tissue is soft, containing little extracellular 

matrix, human BM cells are harvested by aspiration, commonly from the iliac crest. When 

the mononuclear cell (MNC) fraction of a BM aspirate is seeded the in vitro, the 

population of non-hematopoietic cells is revealed, being plastic-adherent. Studies on these 

cells started shortly after the discovery of HSCs. It was found that they contain a small 

fraction of undifferentiated cells having a fibroblast-like morphology and stem cell 

properties; 1) they were clonogenic7 and 2) they were able to differentiate; when 

individual clones were transplanted into a host animal (i.e. in vivo), they formed bony 

fragments [17, 18]. Importantly, the regenerated bone structures (originating from donor 

cells) were shown to encase hematopoietic cells of the host [18-20]. Also, when a sample 

of whole marrow was seeded in a culture dish (i.e. in vitro), a close association between 

hematopoietic and non-hematopoietic BM cells was observed. It was found that the non-

hematopoietic BM cells were necessary for growing cultures of HSCs and make them 

differentiate into to myeloid [21] and lymphoid [22, 23] cells. These and supportive 

studies have led to two important concepts [24]: 

                                                 
7 Clonogenic: ability to generate genetically identical cells, an ability shared by stem cells and committed progenitors 
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1. The BM contains non-hematopoietic stem cells that are multipotent, giving rise 

to various lineages, including osteoblasts, adipocytes and chondrocytes [25, 

26]. These cells are most commonly known as mesenchymal8 stem cells 

(MSCs, Box 2). 

2. The tissue formed by MSCs provides an adequate microenvironment for HSC 

homing and growth [27]. 

Thus, MSCs have a central role in both maintaining the structure of the BM tissue and 

support hematopoiesis. The heterogeneous population of MSCs and their progeny is 

called stromal cells9 (stroma is the Greek word for mattress) and the regulative roles of 

the microenvironment are presented below (see sections 1.3 and 1.4.2). The BM is the 

only known organ in which two separate and distinct stem cells and dependent tissue 

systems not only coexist, but functionally cooperate [20], see Figure 2. It has been 

speculated whether there is a common precursor in adult for mesenchymal and 

hematopoietic lineage cells, but this remains controversial [28, 29]. 

 

Figure 2 Developmental processes in bone marrow  Modified from [30] 

                                                 
8 Mesenchymal: originating from the mesoderm in the embryo, refers to cells that develop into hemaopoietic and 
connective tissue. However MSCs do not differentiate into hematopoietic cells. 
9 Stromal cells is a collective term for all the different supporting cells found in a given tissue, as distinguished from the 
functional elements of this tissue or organ (parenchymal cells). Confusingly, this term frequently refer to the MSC 
population alone (Box 2) 
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Box 2 MSC biology 

Nomenclature Dozens of names have been given to primitive populations of adherent BM 
cells, including: 

- colony-forming unit fibroblast (CFU-F)[19] 
- mesenchymal progenitor cells [31] 
- BM stromal stem cells[20] 
- BM derived multipotent mesenchymal stromal 
cells[29] 

- skeletal stem cells [32] 
- stromal precursor cells[33] 
- BM stromal cells [34] 
- BM osteogenic stem cells [35] 

A consensus statement suggests that the acronym MSC can be used in general, however, 

whether it refers to “mesenchymal stem cells” or “multipotent mesenchymal stromal cells” 

must be defined by each investigator [36, 37]. The self-renewing capacity of a MSC population 

(CD146+ CFU-Fs) has been demonstrated experimentally just recently [27], thereby crediting 

use of the “stem cell”-term for these cells. 

Identification criteria No marker is MSC specific, thus 3 criteria has been proposed to define 
MSCs [36]: 

1) Plastic adherence   

2) Phenotype: Positive for 
CD105, CD73, CD90 

Negative for CD45,CD34, CD14, 
HLA-DR or CD11b and 
CD79a or CD19 

3) In vitro differentiation to osteoblasts, adipocytes and chondrocytes, Figure 3 

More recently, CD146 is suggested as a MSC marker [27, 38]. However, the MSC phenotype is 

elusive, as it seems to be constantly changing in response to their microenvironment, both in 

vivo and in vitro [20, 39]. 

Developmental plasticity MSCs has been reported to differentiate into non-mesenchymal 

cells, e.g. pancreatic, liver and lung cells (endodermal) and neurons and skin cells 

(ectodermal). However these results may represent experimental artefacts [40] and are 

controversial [41, 42], Figure 3 

MSC numbers and distribution BM MSCs are rare, ranging from 1/104 to 1/105 BM MNC [43]. 

Cells with MSC characteristics are found in a variety of post-natal organs and tissues including: 

brain, spleen, liver, kidney, lung, BM, muscle, thymus, pancreas, blood vessels, fat, skin, as 

well as in fetal tissues [44-46] and circulate in peripheral blood in low number [29]. However, 

MSC from different sources are not considered equivalent. 
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Clinical interest Reports of transdifferention have suggested that MSCs could be used for the 

regeneration of almost any tissue. MSCs transplantation has been explored for a number of 

conditions, but the differentiation potential of MSCs has only been successfully exploited to 

treat bone disease [47, 48]. However, MSCs have a crucial immunomodulatory role, which 

contributes to reducing inflammation and inducing regeneration, thus showing potential for 

treating conditions like graft-versus-host disease, GVHD [47]. Recently, BM stromal cells (i.e. 

MSC progeny) have been implicated in regulation of immunological memory, by organizing 

defined numbers of dedicated survival niches for plasma and memory T-cells in the BM [49]. 

 

 
Figure 3 MSCs; sources, self renewal and differentiation potential 

Dotted lines indicate uncertainty. From [41]. 

 

1.3 The hematopoietic microenvironment. Stem cell niches 

In recent years, the discovery of “stem cell niches” has led special focus towards the 

cellular microenvironment, Box 3. However, the niche concept was established already in 

1978 [50]. Experiments indicated that HSCs suffered from a loss in “immortality” when 

transplanted outside the BM (e.g. the spleen). Thus, an explanation was sought to 

understand why some stem cells are allowed to self-renew, while others propagate to the 

differentiation programs. It was postulated that stem cells reside in specialised anatomic 

sites of limited size (niches) where they are sheltered from differentiation signals, thereby 

ensuring their self-renewal. Nevertheless, the existence of stem cell niches was not 
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revealed until the turn of the millennium, when they were demonstrated in the invertebrate 

model Drosophila [51, 52]. Later, stem cell niches have been located in the BM, the 

epidermis, the intestinal epithelium, the neural system and the gonads (reviewed in [53]). 

Box 3 The cellular microenvironment 

The realisation of a cell’s potential (proteome) depends as much on the cell environment as 

on the genetic material of the cell itself [54]. In the body, the different cells are surrounded 

and influenced by distinct systemic and local components that are carefully maintained. 

Included in each cell’s specific microenvironment may be parts of the blood, lymphatic and 

nerve systems, other cells, ECM and interstitial fluid. The microenvironment varies in time 

and space and is essential for regulating cell behaviour; apoptosis, proliferation, 

differentiation and migration. The regulation is executed by mechanical and chemical stimuli. 

The chemical stimuli are transferred via diverse signalling substances, ranging from soluble 

molecules (endocrine, paracrine and autocrine signals) to insoluble molecules (ECM-

components and membrane-bound proteins on neighbouring cells). 

Microenvironment = - Signalling molecules (e.g. cytokines) 
     - Extracellular matrix (ECM) 
     - Cell-cell contact 
     - Mechanical stimuli 
     - Physical parameters (gas, nutrients etc.) 

1.3.1 HSC niches 

Endosteal HSC niche Many studies drew attention to the bone forming cells, osteoblasts 

as a potential niche cell for HSC. Since 1975, many rodent studies had shown that HSCs 

locate close to the inner surface of the bone cavity (endosteum) - which is lined with 

osteoblasts [55-57]. Moreover, human osteoblasts could support HSCs in vitro (by 

production of cytokines; including Granulocyte Colony stimulating Factor (G-CSF), 

Granulocyte/Monocyte Colony Stimulating Factor (GM-CSF) and Leukemia Inibitory 

Factor, LIF [58, 59]) and in vivo; co-injection of osteoblasts improved HSC engraftment 

during transplantation [60]. Also, mouse mutants made unable to develop osteoblasts (and 

hence bone) had no BM, indicating that osteoblasts are required to initiate BM 

hematopoiesis [61]. 
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In 2003, two mouse models served to demonstrate that osteoblasts do provide niches for 

BM HSCs and regulate their numbers dynamically. These mice had genetic 

modifications10 making it possible to expand their osteoblast numbers. This was done 

either by over-expressing the receptor for parathyroid hormone (PTH11) [62], or by 

inactivating the receptor for bone morphologic protein 1 (BMPR1A) [63]. In both models, 

HSC numbers increased in parallel with osteoblast numbers. Another adult mouse model 

showed the opposite; when developing osteoblasts were induced to die, there was a loss of 

hematopoietic cells in the BM [64]. Interestingly, ablation of more mature osteoblasts had 

no effect on hematopoiesis, indicating that niches comprise immature osteoblasts [65]. 

Immunohistochemistry revealed that the HSCs were located together with Osteoblasts 

that had N-cadherin on their surface and a Spindle shaped morphology; SNO-cells [63, 

66] see Figure 2, page 5. 

Vascular HSC niche Other indications pointed towards endothelial cells as 

candidate HSC niche cells. As HSCs are able to mobilise into the blood stream12 within 

minutes [67], they should be closely associated with the sinusoids. Also, endothelial cells 

were found to support HSCs in culture [68, 69]. Endothelial HSC niches were 

acknowledged in 2005, when the majority of immunostained BM HSCs was shown to be 

in contact with the endothelium of the sinusoids. The BM tissue sections were taken from 

a mouse in steady-state, undermining the argument that the HSC-endothelial interaction 

was transient. These stainings were facilitated by the discovery that murine HSCs could 

be identified by a limited set of markers, due to their specific expression13 of Signalling 

Lymphocyte Activation Molecule (SLAM) family receptors, i.e. they are CD150+CD48-

CD41- [70]. 

Relation between HSC niches HSC states. Phenotyping and assays measuring 

cell division (label retaining assays14) have implied that HSCs harbouring the endothelial 

niche are more activated than those in the endosteal niche [71]. This finding favours the 

hypothesis that HSCs situated near the sinusoids serve to respond rapidly to the need for 

new blood cells (conveyed by blood-born factors), while the endosteal niche represent a 

                                                 
10 Some genetic modifications are incompatible with normal development. However if they are made inducible, their 
effects can be studied in adult animals (conditional mutants). 
11 PTH is a clinically approved drug for the treatment of osteoporosis in humans 
12 HSC mobilisation is induced by G-SCF. Enables collection of transplantable BM HSCs from blood. 
13 The differentiated expression of SLAM receptors in HSC and MPP was found by comparing gene expression 
profiles. 
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“storage” niche. A quiescent nature of HSCs located in the endosteal niche has been 

supported by the finding that HSCs can be enriched from bones. HSCs isolated by 

enzymatic treatment of grinded bones were shown to possess a higher reconstitution 

potential than HSCs flushed from the central marrow [58, 72]. High reconstitution 

potential is a property linked to the most immature, nondividing HSCs, in contrast to 

those being more active and primed for differentiation. These populations are known as 

long-term populating HSCs (LTR-HSC) and short-term repopulating HSCs (STR-HSCs), 

see Figure 1, page 3. Initially, HSC quiescence in endosteal niches was believed to be 

mediated by N-cadherin on both HSC and osteoblasts, linking them together by 

homophilic adhesions [66, 73]. The presence of N-cadherin on HSC has been questioned 

[74], but a recent study detects intermediate and low levels on LT-HSCs and suggests that 

“reserved” HSCs express intermediate levels, while cells primed towards STR-HSCs 

express low levels [75]. 

Unifying links between the endothelial and the endosteal niche have been 

revealed. First, immunostainings showed that HSCs in both locations are in contact with 

reticular cells, a cell type that was top ranked in terms of CXCL1215 secretion. (Such co-

localisation applies to the most immature B-cell progenitors as well, see last paragraph, 

page 50). This chemokine binds to its receptor, CXCR416 on HSC, providing homing and 

essential support. The reticular cells were named CAR cells, for CXCL12 Abundant 

Reticular cells and supposed to be of osteogenic lineage [76, 77]. Second, there is a high 

chance for the two niches to be in close proximity, as red BM is highly vascularised. 

Indeed, it has been suggested that osteoblasts and endothelial cells collectively form the 

HSC niche [78]. Recently, this proposal was supported by a microanatomical 

investigation of the BM inside the murine scull. 3D visualisation17 showed that over 90% 

of the BM is within 20 um of a blood vessel. This finding suggests that HSCs being on the 

endosteal surface are simultaneously influenced by vascular/perivascular cells, i.e. that the 

endosteal nice is perivascular. Impressively, transplanted HSCs were tracked over time in 

living mice, enabling the first observations of mammalian stem cell proliferation [79]. 

                                                                                                                                                  
14 Slowly proliferating cells are visualised in situ by pulse labelling of their DNA (e.g.BrdU) and chase after month or 
more. This detection requires cell fixation, precluding subsequent functional analysis. 
15 CXC-chemokine (CXC) ligand 12. Also known as stromal cell-derived factor 1 (SDF-1), or pre-B-cell-growth 
stimulating factor (PBSF) 
16 CXC-chemokine (CXC) receptor 4.  Entry receptor for HIV-1. 
17 3D visualisation was enabled by multiple images acquired at 1 um steps 
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Other cells influencing the HSC niche(s) Adipocytes are very abundant in BM. 

They appear when hematopoiesis is initiated, both in vitro (own observations) and in vivo 

(during reconstitution regime) [80], indicating a significant role during this process. 

Adipocytes produce several cytokines that are critical to hematopoiesis (IL-6, IL-8, 

prostaglandin, leptin) [80] and are one of the stromal cell populations that produce 

adiponectin, a recently defined HSC growth factor [81]. Murine mutants lacking the 

adiponectin receptor have no HSC proliferation, implying an essential role of adiponectin. 

Other BM cells reported to regulate the HSC niche includes chondrocytes [82], nerves 

[78] and hematopoietic cells, such as monocytes and their derived osteoclasts [83]. 

Osteoclasts are specialised bone resorbing cells that derive from the myeloid lineage of 

hematopoietic cells. 

Regulatory factors in HSC niches A range of molecules are responsible for 

organising the HSC niches, i.e. attract HSCs to the niche cells (chemokines), make them 

dock there (adhesion molecules) and receive the fate-determining signals. In concert, 

these factors allow stem cells to amplify or differentiate in adequate numbers, Figure 4. 

The following factors have been implicated in the functional dialog between HSC and 

their niche (incomplete list) [78, 80, 84, 85]: CXCL-12/CXCR4, N-Cadherin [75], 

osteopontin [86], multiple signalling pathways; Notch, Hedgehog [87, 88], 

Tie2/Angiopoietin-1 [89] and Wnt (section 1.5.2), as well as a number of cytokines, such 

as interleukin (IL)-3, IL-6, IL-11, FMS-like tyrosine kinase 3 ligand (Flt3L), 

thrombopoietin (TPO, [90]), G-CSF, GM-CSF, stem cell factor (SCF) and transforming 

growth factor-�1 (TGF-�1). Additionally, factors regulating the niche cells may affect 

HSC indirectly (e.g. effect of BMP and PTH on osteoblast numbers). Oxygen tension is a 

physical parameter that has been related to HSC function. It is suggested that HSCs reside 

at the lowest end of an oxygen gradient and that hypoxia regulates vital cell functions and 

limits oxidative stress [80, 91]. 
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Figure 4 Niche signalling To maintain physiological homeostasis the niche 
orchestrates a myriad of signals to achieve a delicate balance between HSC self-renewal and 
differentiation. Depicted here are some of the various extrinsic regulatory factors originating 
from the niche, or more generally the BM microenvironment. Some ligands may have distinct or 
multiple or sources. From [92]. 

1.3.2 MSC niches 

Several studies suggest that MSCs reside in a perivascular niche in almost all adult 

tissues. In fact, it has been suggested that MSCs may be identical to the pericytes (also 

known as adventitial cell, Rouget cells or mural cells)18, according to data on common 

localisation, markers, differentiation potential and multipotency maintenance [39, 41]. 

Results in line with this view suggest that CD146 is a useful MSC-marker [27, 38, 93]. A 

perivascular localisation facilitates migration of MSCs to local or distant tissues in 

response to injury or pathogenesis [41]. 

                                                 
18 Mural cells wrap around blood vessels and are contractile cells which regulate vessel diameter and consequently 
blood flow. On large vessels they are multi layered and referred to as smooth muscle cells. Mural cells on smaller 
vessels are more sparse and is usually referred to as pericytes 
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1.4 Early B-lymphopoiesis 

Formation of immature lymphocytes in the BM is called early lymphopoiesis. Further 

maturation takes place in the periphery and requires the presence of specific antigen. 

The below presentation has a slightly practical perspective, as central 

characteristics of human B-cell development are provided by focusing on how B-cell 

progenitors are identified and cultivated. This knowledge is essential for pursuing 

investigation on early B-cell lymphopoiesis. Without knowing the cellular phenotype 

(what the cells look like), or which factors they depend upon, they cannot be identified, 

nor isolated or kept alive outside the body (ex vivo/in vitro) for functional studies. The 

spotlight is on human B-cell progenitors (according to Article I-III), including some 

comparisons to the murine system. 

1.4.1 How to identify B-cell progenitors 

B-lymphocytes protect us against pathogens by producing antibodies (Abs). These 

molecules are also known as immunoglobulins (Igs) and serve by binding to specific sites 

(antigen epitopes) on the surface of a pathogen. This “tagging of the enemy” favours its 

destruction by other immune cells (T-cells, macrophages). In our genome, we have several 

gene segments for the different chains of an Ig molecule; V, D and J segments in the H 

chain locus and V and J gene segments in the L chain loci. During development, each B-

cell combines and link these genes (combinatorial rearrangement) [94]. If successfully 

processed, the cell ends up19 producing functional Ig molecules with the ability to bind a 

unique epitope. This “gene-shuffling” takes place a-priori to pathogen confrontation and 

equips us with a population of mature B-cells (plasma cells) which harbour an Ab- 

repertoire that can fight all potential enemies. 

The Ig-gene loci are rearranged during the early stages of B-cell development, 

while the cells are staying in the BM. Hence, the configuration of Ig genes serves to 

define several sub-populations of B-cell progenitors, each at different developmental 

stages [95]. These stages are further characterised by the presence or absence of multiple 

surface and nuclear markers. Altogether, the developmental stages of B-cell precursors 

can be identified by the molecules categorised in Table 1 below. Box 4 shows the 

                                                 
19 Only B cells that achieve successful gene rearrangements survive. 
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markers used in this study for phenotyping HSCs and B-cell stages and includes a 

technical consideration. 

Recently, B-cells at different developmental stages have been subjected to large 

scale mRNA profiling [96]. Investigation of the presence/absence of mRNA species in 

distinct B-cell subpopulations enables the identification of new candidates for stage-

specific markers as well as factors with potential impact upon the developmental process. 

Table 1 Characteristic molecules for identifying and staging B-cells 

Nuclear molecules 

1 Ig-gene configuration. 

2 Transcription factors, such as the Pax-5 protein, being one of at least 10 factors 

governing the early stages of B-cell development [97], see Box 5 

3 Enzymes specific to developing lymphocytes; such as: 

 
� TdT; Terminal Deoxynucleotidyl Transferase, an enzyme contributing to Ig-

gene diversity by adding nucleotides, and 

 
� RAG-1 and RAG-2 protein, originating from Recombination Activating Genes, 

enzymes that are essential for the gene rearrangements. 

Surface molecules 

4 Ab molecules pre BCR and BCR20 (“preliminary” and “final” B-cell receptor) The ligand 

binding part of BCR is a membrane-bound IgM or IgD molecule. 

5 CD molecules, such as CD19 and CD20 [98]. 

 

                                                 
20 The pre-BCR consists of � H chains and a surrogate L chains (composed of �5 and VpreB proteins) whereas the final 
BCR consists of � H chains and L chains. 
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Box 4 Identifying markers on HSCs and B-cell progenitors 

 

Technical consideration When sorting living cells for the purpose of functional assays, 

the method used for cell isolation must maintain the cellular membranes intact. This premise 

precludes identification of specific cell populations by immunolabelling of intracellular 

markers. Because of their molecular size, the Abs used for detection cannot pass the plasma 

membrane unless this barrier has been ruptured by a fixation regime. Thus, living B-cell 

progenitors are identified by their specific expression pattern of surface markers. In contrast, 

fixed cells or cryo-sectioned tissue can be searched for all markers as these preparations 

expose all molecules; those bound to the plasma membrane as well as those situated in the 

cytoplasma or nucleus. 

 

 

Box 5 B-cell transcription factors 

The transcription factors act in concert to control B-cell differentiation, as demonstrated by 

murine knock-out experiments. Ikaros and PU-1 promote commitment into the lymphoid 

lineage, while E2A and EBF co-act to initiate expression of many B-cell specific genes, 

including the master gene Pax5. Its product, the Pax 5-protein (formerly BSAP) emerges at 

the pre-pro B-stage and is present in all B-cell stages except at the final plasma cell stage. By 

dictating the expression of about 170 genes, Pax5-protein controls B-cell development and 

function (e.g. B-cell signalling, adhesion and migrating of mature B-cells). Also, the Pax 5-

protein is considered to repress genes giving rise to other blood cells; when Pax-5 is deleted 

from pro B-cells, they can develop into other blood cells (at least in vitro). Thus, Pax5 has 

been called the “guardian of B-cell identity and function” [97-101]. 
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1.4.2 How to cultivate B-cell progenitors 

B-cell progenitors from adult human BM, as well as the most immature progenitor cells, 

LTC-IC21 are not easily kept in culture. This finding substantiates our understanding of 

their intricate dependency on a balanced combination of environmental factors in the 

body. No one has been able to identify a cytokine-cocktail that alone supports these cells 

properly in culture [102, 103]. However, assisted by growth factors (see below), they can 

be successfully grown on a feeder layer of stromal cells that provides uncharacterised 

stimuli, see right panel of Figure 15, page 45. Thus, it is likely that critical stimuli are 

mediated by both soluble factors and adhesive interactions with the microenvironment 

(stromal cells and their ECM products). The importance of adhesive interactions is 

supported by poor progenitor survival when physically separated from the feeder layer by 

the use of a membrane [104]. Stromal cells may also function as a “docking station” 

facilitating homotypic interactions between hematopoietic cells [105].  

Empirically, the potency of hematopoietic stem/progenitor cells is inversely related 

to age, and cells originating from unborn individuals have been maintained in less 

complex systems. Using progenitors harvested from human fetal liver, B-lymphopoiesis 

has been achieved in serum-deprived, stroma-free cultures [106]. Conversely, a fetal 

system, has allowed human HSCs to differentiate into immature B-cells using stromal 

cells solely (no serum, no cytokines added). However, no proliferative expansion was 

obtained, suggesting some missing factors [107]. 

Stromal phenotypes The first cultivations showed that murine B-lineage cells (as 

well as HSCs) could be supported by adherent cells from the same BM sample [21, 22]. 

This strategy applies to human B-lineage cells as well. Effective stromal supporters 

include human endothelial cells (HUVEC) and murine cell lines of different origins; e.g. 

AFT024 [108], MS-5 [109], S17 [110] and OP-9 [111]. Recently, primary MSCs and two 

MSC cell lines (hTERT-MSC and iMSC#3)22 have qualified as B-lineage supporters 

[112, 113] and own observations. Also, osteoblasts have been shown to support B-

lymphopoiesis in vitro [114]. 

                                                 
21 LTC-IC: Long-Term Culture Initiating Cells. The LTC-IC assay quantifies primitive hamatopoietic cells 
(Coulombel, Oncogene, 2004.  23, p 7210). 
22 both immortalized with telomerase reverse transcriptase (hTERT). They display an MSC-like morphology and have 
maintaidned ability to differentiate to osteoablasts, adipocytes and chondrocytes. 
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Not surprisingly, various stromal populations support B-lineage cells and other 

hematopoietic cells with different efficacies and different clones may even show different 

support towards different stages of B-cells [115]. Investigations of different stromal 

populations have not resulted in a clear consensus on the phenotype of the “B-cell-

supporting stromal cell(s)”. A subtractive gene expression strategy has revealed that stem 

cell-supporting stromal cell lines selectively express hundreds of gene products. 

Evaluation of these products suggests that the stromal cells are immature, sessile and 

highly reactive after binding to integrin ligands and cytokines [116]. However, similar to 

what applies to HSC niches, it is likely that B-cell progenitors in their native BM 

microenvironment may receive signals from various cell types (see section 4.4, page 48). 

Factors regulating B-cell progenitors When cultivating adult human B-cell 

progenitors, cytokines are normally supplied in addition to the stromal feeding layer. 

These factors act alone or in synergy to enhance cell survival, proliferation and 

differentiation. Factors reported to influence the generation of human B-lineage cells are 

listed in Table 2. Additionally, Notch signalling determines the fate decision of 

lymphocyte precursors; low doses favour B-lineage differentiation whereas high doses 

favour T lineage differentiation [111, 117]. For the effect of Wnt signalling, see page 22. 

Table 2 Factors influencing the generation of human B-cell progenitors 

B-cell factor Stromal factor Effect 

c-kit (CD117) kit-ligand/ SCF ↑[109] 

Flt3 (CD135) Flt3 L ↑[118, 119] 

G-CSF R G-CSF ↑[109] 

IL-7 R (CD127) IL-7 0 [107, 120] 

↑[119, 121] 

IL-3 R (CD127) IL-3 ↑[122] 
↓[123] 

CXCR4 (CD184) CXCL12 (SDF-1) Localisation/Growth [124] 

VLA4 (CD49D) VCAM-1 (CD106) Localisation/ Growth 
[125-127] 

TSLP-R TSLP ↑[125] 
0 [98, 119] 

BMP-R BMP-6 ↓[128] 

↑: promoting effect, ↓ negative effect. See references for precise action (i.e. on 
proliferation, differentiation or survival). Full names are given in Acronyms. 
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Although murine B-lineage cells are commonly co-cultivated with stromal layers, their 

demands are better characterised and murine B-lymphopoiesis can even be performed 

without stromal cells and serum, given the presence of three cytokines; IL-7, Flt3L and 

SCF [102]. Such a protocol enables direct evaluation of culture manipulations (e.g. 

addition of other factors). 

1.5 Wnt signalling 

According to their phenotype, cells are equipped with specific receptors on their surface, 

making them receptive to certain signals present in their microenvironment (Figure 4, 

page 12). Typically, the binding of a given signalling molecule to its designated receptor 

results in transcription of dedicated genes, thereby directing cell behaviour. However, the 

path towards this end is commonly controlled by a range of molecules, forming a cellular 

pathway. Moreover, different pathways usually interact in signalling networks. Such 

complexity is certainly demonstrated in Wnt signalling, which has been studied 

intensively over the last years.23 

Wnt signalling has fundamental instructive roles in both development and 

maintenance of an organism by governing vitals such as polarity and cell fates 

(proliferation, differentiation and apoptosis). Thus, malfunction of this signalling can lead 

to cancer and degenerative diseases [129, 130]. The molecules involved in the pathway 

(Figure 6, Table 3) are highly conserved between species, demonstrating their 

significance in evolution [131]. Triggering of the pathway is initiated by Wnt molecules, 

which are characterised as morphogens, see Box 6. 
 [135] 

The human genome has a broad repertoire of both Wnt molecules (n=19) and their 

Frizzled receptors (n=10) and their specificities are partially promiscuous [136]. Wnts are 

glycoproteins harbouring lipid modifications being essential to their function [137]. 

Hence they have limited solubility and tend to act locally. They are able to activate several 

signalling cascades in the cell, known as the “canonical” pathway and different “non-

canonical” pathways. Hence, they have been categorised according to which pathway they 

were thought to activate. But, as one single Wnt protein seem to have the capacity to 

activate multiple pathways, the receptors are more likely to determine the outcome of the 

Wnt activity [138]. The canonical Wnt pathway controls cell differentiation, proliferation, 
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and apoptosis by regulating expression of a high number of target genes [139]. The non-

canonical pathways have traditionally been considered to control cell movement and 

tissue polarity [140]. However, the picture is highly complex at many levels as the Wnt 

proteins may interact with other factors in the extracellular space [141] and have receptors 

other than Frizzled [136]. Furthermore, the Wnt pathways cross talk both with each other 

[142] as well as other pathways [144, 145] and the intracellular pathway molecules can 

have multiple functions [146]. For instance, β-catenin is both involved in cell adhesion 

and nuclear events, see below and Figure 17, page 52. 
  

Box 6 Morphogens 

A morphogen is a signalling molecule that 

elicits different cellular responses depending 

on its concentration, thus governing tissue 

morphology. Morphogens spread from 

localised sites of production by diffusion. 

Distinct morphogen concentrations stimulate 

target cells to transcribe different 

combinations of the responsive genes, which 

in turn specify cellular fate. A cell's 

perception of morphogen concentration is 

thought to be determined by the number of 

active receptors [132, 133]. The concept of 

morphogens was originally defined by the 

mathematician A.M Turing in 1952 [134]. 

 
Figure 5 Morphogen concept 

 From [135] 

  

1.5.1 The canonical Wnt pathway 

The canonical Wnt pathway (also known as the Wnt/β-catenin pathway) is the one best 

understood. It can be described in short as follows. At the cell surface, a Wnt molecule is 

recognised by a receptor complex, consisting of Frizzled and LPR. The receptor-ligand 

interaction allows for cytosolic accumulation of the key player β-catenin in a process 

                                                                                                                                                  
23 Discovered nearly 20 years ago, Wnts are mentioned in nearly 5000 journal articles listed on PubMed, over half of 
which were published in the past 3 years (Gordon, Journal of Biological Chemistry, 2006, 281, p22429). 
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thought to involve Dvl. β-catenin molecules pass through the nuclear membrane and 

stimulate transcription of the Wnt target genes [139] by binding to the transcription 

factors LEF-1 or TCF and replacing the repressor Groucho. 

In absence of a Wnt signal, unbound β-catenin molecules in the cytosol are 

constantly targeted for degradation. Facilitated by scaffolding proteins (APC and Axin), 

β-catenin is first phosphorylated (by the kinases GSK3β and CK1), and then ubiquitinated 

(by a ligase complex, containing β-TRCP). Consequently, β-catenin is degraded by the 

proteasome and cannot stimulate transcription. 

Additional control of the Wnt pathway is mediated by soluble inhibitors. Dkk-1 is 

able to block the Wnt receptor signal by interfering with the LPR co-receptor. WIF-1 and 

sFRPs (secreted forms of Fzd) can bind and confiscate Wnt proteins. 

 

Figure 6 The canonical Wnt pathway. Right panel: A Wnt signal at the cellular surface 
is conveyed by β-catenin into transcription of Wnt target genes. The ligand-bound receptor 
inactivates the factors responsible for β-catenin degradation. Left panel: Without Wnt present, 
β-catenin is degraded and cannot stimulate transcription. Drawing from [130]. 
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Table 3 Molecules involved in the canonical Wnt pathway 

Molecule Full name Action 

Roles in activation of Wnt target genes 

Wnt ligands (From Wingless and INT-1) Bind Fzd receptors 
and activate Dvl 

Fzd (or Fz), Frizzled Bind Wnt ligands 

LRP, 
(variants) 

Low density Lipoprotein 
Receptor-related Protein 

and activate Dvl 

Dvl (or Dsh) Disheveled Inactivates GSK3β 

β-catenin  Stimulates transcription when 
complexed with TCF/LEF-1 

TCF 
(variants) 
 LEF-1 

T Cell-specific Factor 
Lymphoid Enhancer-binding 
Factor 1 

Stimulate transcription 
when complexed with β-catenin 

Roles in repression of Wnt target genes 

GSK3β 
CK1 

Glycogen Synthase Kinase 3β 
Caseine Kinase 1 

Phosphorylate β-catenin 

APC 
Axin 

Adenomatous Polyposis Coli Facilitate β-catenin phosporylation 

β-TrCP β-Transducin repeat-
Containing Protein 

Ubiquitinates β-catenin 

Groucho  Represses transcription by binding 
to TCF/LEF-1 

Dkk-1 Dickkopf Binds to LRP, 
paninhibitor of canonical pathway 

sFRP Secreted Fzd-Related 
Peptides 

Sequesters Wnt protein 

WIF-1 Wnt Inhibitory Factor-1 Sequesters Wnt protein 

1.5.2 Effect of canonical Wnt signalling on hematopoietic stem cells 

Wnt ligands are produced by both hematopoietic and microenvironmental cells [147, 

148]. Many studies have followed up initial reports indicating that Wnt-signalling has a 

mitogenic effect in HSCs/early progenitor cells [147, 148]. Although somewhat 

controversial, Wnt signalling is believed to contribute to HSC self-renewal. The canonical 

pathway has been experimentally stimulated in cultivated HSCs and has in some settings 

resulted in elevated cell pools as judged by phenotype and function (reconstitution 

potential) [137, 149, 150]. Pathway triggering was done either by Wnt-exposure or by 
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forcing β-catenin expression (“gain of function”) using retroviral vectors. However, 

similar in vivo manipulations of HSCs have resulted in fatal effects [151, 152]. This 

outcome may have been caused by a β-catenin “overdose”, urging the need for fine tuning 

of the pathway. Accordingly, an opposite strategy, deleting β-catenin in HSCs (“loss of 

function”) was shown to impair stem cell renewal [153]. Another deletion strategy has 

recently demonstrated a vital role for Wnt3A in stem cell renewal during fetal 

hematopoiesis [154]. 

Confusingly, there are conflicting reports. Normal in vivo hematopoiesis has been 

recorded even after disabling β-catenin in HSCs [155]. Moreover, similar results were 

obtained from deletion of both β-catenin and its homolog γ-catenin (also known as 

plakoglobin), excluding the possibility of catenin redundancy [156]. Yet, a role for the 

canonical pathway may apply after all, as an unidentified Wnt signalling tranducer has 

been suggested. Using a reporter assay, HSCs were shown to convey canonical Wnt 

signals into transcription in the combined absence of the known catenins, and these HSCs 

were found to function normally [157]. 

The importance of Wnt signalling in stem cell renewal has been confirmed by an 

approach acknowledging the potency of the microenvironment. Osteoblasts were 

manipulated to secrete Dkk-1 (canonical pan-inhibitor) in vivo. Whereas hematopoietic 

cell numbers were close to normal, this way of blocking the Wnt signal caused HSCs to 

suffer from a loss of function (impaired reconstitution potential) [158]. 

It has been suggested that Wnt does not primarily stimulate replication, but instead 

control dedifferentiation, thereby controlling a reflux process that may sustain stem cell 

self-renewal and differentiation potential [159]. Additionally, Wnt can act on 

hematopoietic cell through non-canonical pathways [143]. 

1.5.3 Effect of canonical Wnt signalling on B-cell progenitors 

Besides an influence on HSC renewal, the canonical Wnt pathway may have a role in 

HSC commitment and fate of early hematopoietic progenitor cells. 

Reconstitution experiments using Wnt3a-treated murine HSCs indicated a bias 

toward B-lymphopoiesis [137, 149] and the first experiments on B-lineage cells coincided 

with the contemporary consensus that canonical Wnts in general lead to proliferation of 

stem/progenitor cells. When pro B-cells from a fetal mouse were exposed to Wnt3a in 

culture, they were found to proliferate through a LEF-1 dependent mechanism (i.e. Wnt 
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pathway) [160]. Accordingly, abnormal B-lymphopoiesis was observed in mice lacking 

LEF-1 or Fzd 9, and this phenotype was interpreted as a consequence of an impaired Wnt 

response [160, 161]. Of note, effects of LEF-1 absence does not necessarily relate to an 

impaired Wnt signalling, since LEF-1 have Wnt-independent functions. These are based 

on LEF-1 interaction with co-activators other than β-catenin [162] and its repressor 

activity when paired with Groucho. Later, a more differentiated picture has evolved 

regarding the role of Wnt in B-lymphopoiesis. A murine study found that Wnt3a reduced 

B-lymphopoiesis, but only when the cultures were supported by a stromal feeder layer. 

Hence, a negative Wnt effect appeared to be mediated via the stromal cells [163]. A 

stroma-based approach was also used in a later study, providing evidence that distinct 

Wnt ligands regulate the early events in murine hematopoiesis differently. Expression of 

Wnt family proteins was forced in stromal cells and Wnt3a was found to inhibit B-

lymophopoiesis while Wnt5a stimulated this process [164]. Wnt5a acts through a non-

canonical pathway and has previously been reported to oppose canonical signalling [165] 

and to suppress B-lymphopoiesis in a fetal system [166]. 

The role of canonical Wnt signalling in malignant pre B-cells is also controversial, 

as opposite effects on survival and proliferation are reported [167-169]. 

1.6 Use of microfabricated tools for cellular studies 

For over a century, cell culture technology has essentially been synonymous with growing 

cells on a large, planar and homogeneous surface immersed in a homogeneous fluid 

medium. Clearly, the inability to grow stem cells under conditions mimicking their native 

habitat (complex and three-dimensional) hampers both their clinical potential and the 

physiological relevance of in vitro stem cell research. 

Microfabrication technology enables manufacturing of components and devices 

with micrometer resolution and creates new opportunities for experimental research [170-

173]. Culture systems that are more in vivo -like can be produced, both with respect to 

geometry (topographical structures [174, 175]) and protein surfaces (substrate patterning 

[176]). Also, patterned co-cultures for the study of cell-cell interactions have been 

achieved [177]. Importantly, by controlling the fluid flow in the microscale environment it 

is possible to regulate transport of fluids and soluble factors (microfluidic delivery). In 

particular, the phenomenon known as laminar flow allows functionalities not achievable 

in macrosystems. Because there is no turbulence in a microchannel, the fluid flows in 
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parallel layers and will not mix except by diffusion. This flow pattern enables a 

differential stimulation of a culture, e.g. a given stimulus can be administered in one or 

several specific layers. Using this principle, microfluidic cell cultures have been 

stimulated focally [178, 179] or by a stable gradient [180]. Gradients of signalling 

molecules are crucial for the establishment of polarities in stem cell niches in vivo [181-

183]. The ability to mimic this signalling characteristic may contribute importantly to the 

imitation of stem cell niches in the laboratory and thus represents a new tool for stem cell 

research. However, microfluidic conditions are very different from those provided by 

classical cultivation, as they involve factors like shear stress and high Surface Area to 

Volume ratios, SAVs [184, 185]. Thus, the study design must be customised accordingly. 

 
Figure 7 Laminar flows in microchannels can be used for making cultures that are 
heterogeneous with respect to chemical environment and/or cellular composition. Left panel: 
dyed solutions demonstrating laminar flows in a cell-free microsystem. The cell chambers 
receive a gradient (a, b) or focal streams (c, d). Middle panel: use of laminar flow for sequential 
seeding of distinct stromal cells at different locations (middle and lower picture show the same 
culture imaged with phase contrast and fluorescence respectively). Right panel: use of laminar 
flow for localised trypsination and re-seeding. The trypsination regime also enables the culture 
to be harvested/analyzed at different time intervals during an experiment. See also Figure S1, 
page 61. 
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1.7 Advanced methods 

This study applied two methods not mainstream in stem cell research; a signal sequence 

trap (SST) for identification of cell surface and secreted proteins (Article I) and soft 

lithography to produce microsystems for cell cultivation (Article IV). Below is a glance at 

these methods, providing concepts and some details. 

1.7.1 Signal Sequence Trap by Retroviral EXpression (SST-REX) 

Membrane-bound and secreted proteins have a hydrophobic signal peptide in their N-

terminal region. This “label” serves to direct the proteins through the secretory pathway 

(involving endoplasmatic reticulum, Golgi apparatus and vesicles) before they are 

launched to the periphery. As indicated by their name, SST methods are designed to 

identify such proteins. The methods are based on a cDNA library, which contains 

complementary DNA molecules synthesised from mRNA molecules in a cell population, 

thus reflecting those genes being expressed at the harvesting time. 

We employed a variant called Signal Sequence Trap by Retroviral EXpression, 

SST-REX, Figure 8, which is based on a retroviral vector for cDNA library construction, 

pMX-SST [186]. Downstream to the vector’s cDNA insertion site is a segment encoding 

a cytokine receptor that is constitutively active (without ligand binding), but importantly, 

its signal sequence is missing. Thus, only those cDNAs containing a signal sequence, in 

reading frame with the receptor, allow for a translated product that can reach the cell 

surface and be functional. Screening for such cDNAs is done by expressing a retroviral 

library in a cytokine-dependent cell line at cytokine-free conditions. The cDNAs 

containing a signal sequence will rescue their host cells and can be harvested from 

growing clones. Finally, they are identified by PCR-amplification, sequencing and 

comparison with reported sequences in public databases. 

Technically, the construction and expression of the retroviral cDNA library was 

enabled by 1) electroporation of the plasmid cDNA library into competent bacteria for 

amplification, 2) transfecting of the plasmid cDNA library into a virus packing cell line 

(Phoenix Eco) for virus production, and 3) use of the virus containing supernatants for 

infection of the screening cell line (Ba/F3). Parallel control experiments were enabled by 

control vectors, expressing green fluorescent protein (pMX-GFP), the cytokine receptor in 

frame with a signal sequence (pMX-SP) or a corresponding variant devoid of a signal 

sequence (pMX-ΔSP). 
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Figure 8 Schematic drawing of SST-REX procedure. MPLm: truncated 
thrombopoietin receptor, *: activating mutation in transmembrane domain. Scissors indicate 
BstX1 insertion sites, > 400 bp indicate a purification step of cDNA fragments longer than 400 
base pairs (using a SizeSep 400 spin column). SS: signal sequence.  
 

1.7.2 Soft lithography, photolithography and bonding 

Soft lithography is a convenient, effective and low-cost method for manufacturing of 

micro and nanostructures in an elastomeric (“soft”) material, see Figure 9 and a 

schematic outline of the procedure in section 6.2, page 66. It was developed in the late 

90ies and can be used for applications additional to what is described here [187]. The 

method is based on photolithography, a technique originally used to fabricate the 

integrated circuits inside computers. The result of the photolithographic process is a relief 

pattern, called master, or master mold. This pattern is inversely replicated in a silicon 

rubber; Poly Di Methyl Siloxane (PDMS) in a process called replica molding. 

Such a PDMS replica can be used for different purposes, such as a stamp for 

printing of micropatterns [176]. Alternatively, the PDMS replica can be bonded to a flat 

substrate to realise a microsystem [188]. As evident from Article IV, a microsystem of 

PDMS microchannels bonded to polystyrene (PS) serves as an appropriate platform for 
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microfluidic cell cultures. The steps used for fabrication of such devices are described 

briefly in order to inform a general life science researcher, being unfamiliar with 

microfabrication. 

 
Figure 9 Mold, replica and microchannel system; Schematic cross-sections and 
images. The width of the main channel is 1,5 mm. 

In photolithography, a photosensitive material (photoresist) is spun on a thin disk of 

silicon (wafer), serving as a carrier. The photoresist is then exposed to light trough a 

mask, thereby changing its properties in illuminated areas. Depending on the choice of 

photoresist, the light will either enable polymerisation of the photoresist (applies to resists 

known as negative) or make it prone to dissolvement (applies to photoresists known as 

positive). Accordingly, treatment of the partly exposed photoresist with a developer 

results in selective removal of material, and the desired features are left behind. Thus, the 

resulting pattern is either a positive or negative copy of the mask used for illumination. 

Photolithography is performed in a cleanroom with appropriate lightening, as light and 

particles will destroy the microstructure being produced. The processing is conducted 

within a fume hood, due to the volatile nature of unprocessed photoresists and their 

developers. 
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SU-8 photolithography Masters for replica molding are commonly made by SU-8 

photolithography. SU-8 is a negative, epoxy-based photoresist, Figure 10. It has low 

optical absorption, allowing light to readily penetrate the material. Thus, it is possible to 

produce “thick” (0,5 to > 0, 25 mm) layers with near vertical side walls. SU-8 is supplied 

in different formulations, each optimised for a certain range in layer thickness. Plastic 

transparencies of high resolution are used as masks. The processing steps are given in Box 

7 below, based on own experience and guidelines provided by the manufacturer 

(MicroChem Corp, US). The final features of the pattern are evaluated by a microscope 

and a profilometer (measuring thicknesses). 

PDMS replica molding PDMS is a silicon-based organic polymer which has 

properties amenable for fabrication of microscale cell culture chambers, see Box 8 below. 

The variant used in soft lithography (Sylgard 184, Dow Corning) is supplied in two 

components; a curing agent and a base. They are mixed together in a 1:10 ratio 

(weight/weight) and poured onto the master. The liquid pre-polymer conforms to the 

shape of the master with high fidelity. Bubbles formed by the mixing are removed by 

degassing in a vacuum chamber. Curing occurs when vinyl groups (-CH=CH2) present in 

the base react with silicon hydride (S-H) groups in the curing agent to form a cross-linked 

solid, Figure 11. This reaction is accelerated in an oven (65�C, overnight). The cured 

polymer is very elastic and has low surface energy due to the highly flexible siloxane 

backbone and low forces between the methyl groups (Dow Corning). These properties 

enable the cured PDMS replica to be removed from the master without harm to either 

party, thus allowing the master to be reused. Yet, the release is facilitated by coating the 

master mold surface prior to the first molding with a fluoro-containing silane 

(trichloro(1H, 1H, 2H, 2H-perfluorooctyl)-silane). 

Bonding of PDMS replica to substrate PDMS seals spontaneously and 

reversibly to most flat surfaces by van der Waals forces. This bonding is watertight, but 

cannot withstand pressures greater than �5 psi [188]. Permanent bonding to glass or 

another PDMS surface can be obtained by exposing the two surfaces to oxygen plasma 

and bring them in conformal contact. The plasma treatment is thought to introduce silanol 

groups (Si-OH) at the expense of methyl groups (Si-CH3). This modification both makes 

the PDMS surface hydrophilic and able to make covalent Si-O-Si bonds with another 

surface in a condensing reaction. The plasma treatment also serves to sterilise the 

materials [190]. 
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Box 7 SU-8 Processing 

Wafer pre-treatment. This step ensures good adhesion between the photoresist and the wafer. The 

wafer may be cleaned (by chemical solutions or plasma, not crucial when applying new wafers). Just 

prior to use, moisture is eliminated from the wafer surface by heating. 

Photoresist application and coating. SU-8 photoresist is manually dispensed onto the wafer. Due to 

high viscosity, care must be taken to avoid air bubbles. By the use of a spinning device (spin coater), 

the resist is subjected to two spin cycles; the first cycle serves to spread the resist uniformly onto 

the whole wafer surface, and the final cycle defines the final thickness of the resist layer. (Actually, 

this parameter depends on the amount of resist applied as well as the spinner settings).  

Pre-baking. Heat is used for evaporation of solvent in the photoresist, making it denser. A hot plate 

is preferred, as a convection oven will cause a “crust" on the SU-8 surface, reducing further 

evaporation. A two-step procedure (with a lower initial bake temperature) allows the solvent to 

evaporate at a more controlled rate. 

Masking and Exposure. The appropriate wavelength (365 nm) is provided by an illuminating 

instrument (“photo-aligner”) and results in formation of a strong acid in illuminated areas. The 

optimal exposure dose depends on the wafer material (its reflective properties) and the thickness 

of the resist layer. 

Post-baking. Initiated by the acid (produced by the exposure step), the elevated temperature 

results in selective cross-linking of the resist in illuminated areas.  

Development. The wafer is submerged in the developer (1-Methoxy-2-propanol acetate), making 

the non-illuminated SU-8 dissolve into solution. Actual dissolution rates can vary widely as a 

function of agitation rate, temperature and resist processing parameters. 

Other remarks The wafer is kept levelled at all 

times, as gravity can affect the flatness of the SU-8 

layer. Optimum cross-link density is realised by 

adjustments of the exposure and baking regimes. 

For instance, a low UV dosage will provide 

insufficient amounts the catalytic acid, resulting in 

slow cross-linking. After the baking steps, the resist 

needs to cool slowly to room temperature before 

further processing. This thermal relaxation reduces 

internal stress and is crucial for survival of the mold 

[189] 

 
Figure 10 SU-8 polymer Drawing 
from Technical University of Denmark. 
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Box 8 PDMS; properties and cross-linking process 

� Conforms to submicron 
features 

� Gas permeable 

� Biocompatible and non-toxic 

� Transparent 

� Non-fluorescent 

� Stable, chemically and 
thermally 

� Easily bonded 
- Spontaneous and reversible 
to many surfaces, 
- Induced and irreversible to 
itself, glass or silicon nitride 

� The hydrophobic surface can 
be made hydrophilic by 
exposure to oxygen plasma 

 
Figure 11 PDMS crosslinking Drawing from 
University of Wisconsin.  
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2 Aims of the study 

The hematopoiesis process is an example of the dynamic regulation of stem/progenitor 

cells by the microenvironment. According to the changing needs of the organism, the BM 

microenvironment tunes self-renewal as well as differentiation of HSCs. In this way the 

stem cell pool is maintained while all the specialised cells found in the blood are 

generated.  

Early B-lymphopoiesis provides an experimental model for understanding the 

communication between stem/progenitor cells and the microenvironment for several 

reasons: 

� This process depends critically on the microenvironment, 

� It can be imitated in vitro, notably in the presence of microenvironmental 
supportive cells, i.e. stromal cells of various origins, 

� The primitive HSCs and the different B-cell maturation stages can be identified 
by a broad spectrum of markers, 

� The role of different stromal phenotypes can be tested, including the use of 
mesenchymal stem cells that can be controllably differentiated. 

This study was designed to explore the hematopoietic environment that controls early B-

lymphopoiesis by: 

1) Search for proteins displayed by human B-cell progenitors that may mediate 
their communication with the microenvironment (Article I). 

2) Determine the localisation of B-cell progenitors in human BM and search for 
concomitant stromal factors (Article II). 

3) Develop cultivation methods for analysing human B-lymphopoiesis in vitro and 
investigate whether this process is affected by triggering of the canonical 
Wnt pathway (Article III). 

4) Develop a microfluidic system for long-term cell cultivation with the prospects 
of making more advanced models of stem cell niches in the BM (Article IV). 



E. Tenstad: Human hematopoietic microenvironments, in vivo, in vitro and on chip 

 32 

3 Summary of articles 

Article I  

Characterization of the novel human transmembrane protein 9 (TMEM9) that 

localises to lysosomes and late endosomes. 

We implemented the SST-REX method as we wanted a systematic approach to search for 

candidates that may contribute to the B-cell progenitor-stromal interaction. This method is 

used for cloning secreted and membrane bound proteins of a given cell population. The 

leukemia cell line BV173 was chosen as a representative B-progenitor cell, based 

phenotype and ability to interact with stromal cells in culture, both physically and 

functionally. 

One novel clone was selected for further characterisation, based on the nature of 

its potential open reading frame, indicating a transmembrane type 1 protein. Northern blot 

analysis revealed a wide-range expression in different tissues. Likewise, expression was 

demonstrated in multiple hematopoietic cell lines of B, T, myeloid and erytrhoid origin, 

with no correlation to maturation level. The putative protein coding part (PCR-amplified 

from another cDNA library) was transfected into COS-1 cells for translation. Western blot 

characterisation revealed a 26 kilodalton core product and 3 possible glycosylation 

variants. Immunohistochemical studies indicated a cellular localisation within 

“permanent” cytosolic membranes, a position that is also defined by a signal peptide. This 

localisation indicated a function in intracellular transport and precluded an obvious role in 

intercellular communication. The protein was named transmembrane protein 9 (TMEM9). 

Article II 

CD10+ stromal cells form B-lymphocyte maturation niches in the human bone 

marrow. 

We wanted to display the distribution of B-cell progenitors in human BM and investigate 

whether their interaction with stromal cells could be visualised. Numerous sample target 

cells were ensured by selecting biopsies from patients with high rates of normal 

lymphopoiesis (i.e. non-specific reactive BM). The benign nature of the samples was 
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confirmed by the absence of clonal clusters and a normal phenotypic distribution (Pax 5+, 

CD20+, CD34+, TdT + cells).  

Pax-5 immunolabelling enabled visualisation of the total B-lineage population, 

demonstrating scattered cells throughout the BM tissue, with no relation to bone 

fragments. A closer inspection revealed a non-random distribution of B-cell progenitors at 

the cellular scale; the majority of Pax-5+ cells were organised in rows, suggesting a linear 

regulatory element. 

Two-colour immunohistochemistry disclosed that all B-lineage cells was in 

contact with slender CD10+ VCAM+/- cells (body or extensions), indicating an essential 

role of this stromal phenotype. Furthermore, the use of double and triple immunoassays 

demonstrated that B-cell maturation was oriented towards the sinusoids, appropriately for 

loading the end product into circulation. 

About 50% of the hematopoietic CD34+ population co-localised with the CD10+ 

stromal population, a reasonable finding due to their fraction of stroma-independent cells, 

i.e. committed progenitors of non-B-lineages. Similarly, only random association with 

CD10+ stromal cells applied for other cells not depending on stromal contact, i.e. 

developing red cells and myeloid cells, as well as infiltrating B-cells (malignant or 

benign). 

In conclusion, this was the first evidence that human BM B-cell progenitors 

receive specific support from a CD10+ population of stromal cells and that B-cell 

maturation proceeds in well-organised directional arrangements towards the sinusoids. 

Article III 

Wnt expression and canonical Wnt signalling in human bone marrow B 

lymphopoiesis. 

We wanted to examine whether B-progenitor and stromal cells in the human BM harbour 

the molecular machinery necessary to drive the canonical Wnt pathway. Finding this 

premise fulfilled, we further investigated how triggering of this pathway affected early B-

lymphopoiesis. 

RT-PCR analysis revealed that B-cell progenitors express mRNA encoding central 

Wnt pathway proteins: i.e. multiple Wnt receptors (Fzd), and co-receptors (LRP5 and 
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LRP6), the key intracellular signalling molecule (β-catenin) and its homolog (γ-catenin24), 

and the nuclear activators (LEF-1 and TCF7L225) that induce transcription of Wnt target 

genes. The screening also detected mRNA coding for pathway antagonists (sFRP, WIF1, 

Dkk) as well as Wnt ligands. Some of these mRNA species were quantitated by Real-time 

PCR and showed distinct expression levels in B-cell progenitors at different maturation 

stages. These results suggest that canonical Wnt signalling regulate early B-lymphopoiesis 

and indicate both autocrine loops and fine-tuning of the pathway by antagonists. However, 

a complex picture emerged, as this pathway is also active in BM stromal cells. 

The presence of a functional Wnt pathway was confirmed by Western blotting, 

demonstrating stabilisation of β-catenin in B-cell progenitors after short-term exposure to 

Wnt3a in culture. The long-term consequence of pathway triggering was tested by two 

different cultivation assays, both depending on stromal feeder layers for survival of 

hematopoietic cells. The B-lymphopoiesis assay demonstrated that Wnt3a reduced the 

production of B-lineage cells from HSCs (CD133+CD10- population). The B-progenitor 

maintenance assay demonstrated that Wnt3a lowered the number of rescuable B-

progenitor cells (CD10+) after 2 weeks in culture, an outcome explained by a slowed cell 

proliferation (measured by CFSE tracking). 

Due to the presence of Wnt-responsive stromal cells in both assays we concluded 

that canonical Wnt signalling acts directly or indirectly to repress human early B-

lymphopoiesis in vitro. 

Article IV 

Extensive adipogenic and osteogenic differentiation of patterned human 

mesenchymal stem cells in a microfluidic device. 

In preparation towards fabrication of stem-cell niche models on-chip, we wanted to 

develop a suitable microscale system. Thus, we used soft lithography for fabricating a 

microfluidic platform reported to comply with long-term cell cultivation. As MSCs and 

their progeny can support stroma-dependent hematopoietic cells, MSC differentiation was 

chosen as a relevant test process for evaluating whether the microscale conditions were in 

accordance with normal cell behaviour. 

                                                 
24 γ-catenin is denoted plakoglobin in article III 
25 TCF/L2 is denoted TCF-4 in article III 
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The initial system was composed of PDMS microchannels bonded to a glass substrate and 

did not allow for consistent MSC differentiation. This anomaly was possibly due to cells 

spreading out in the chip, thereby obstructing the channels used for medium supply. 

Hence, cell spreading was prohibited by making the perfusion areas non-supportive to cell 

growth. A new and convenient patterning method based on a polystyrene substrate (PS) 

was developed for this purpose and showed to be compatible with MSC differentiation. In 

the revised microsystems, on-chip differentiation of MSCs to adipocytes and osteoblasts 

was superior to previous documentation and correlated with results obtained by traditional 

cultivation. The change from a glass substrate to a polystyrene substrate may have 

contributed to a better microscale environment. The revised systems were operated by a 

size-effective “flip-chip” set-up that compensated for the less robust PDMS/PS bonding 

(compared to PDMS/glass).  

In conclusion, the reported system shows compatibility with normal cell behaviour 

on a long-term basis. The system allows for unique manipulation of the culture by the use 

of laminar flow and is a candidate platform for fabrication of complex models of 

hematopoietic niches and other tissue engineering purposes. 

The article was featured as the main story on the journal’s homepage (in April) 

and was reviewed online (on 29th Mars 2010) by “Highlights in Chemical Biology”, 

which is another publication by the same publisher (Royal Society of Chemistry), see 

section 6.3, page 67. Artwork from this article will be featured on the “Lab on Chip” 

inside front cover in May 2010 (the preliminary version is placed in front of Article IV). 
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4 Discussion 

4.1 Why study stem/progenitor cells and their microenvironment? 

Research on stem cells and early progenitor cells seeks to provide basic understanding of 

how cell behaviour is regulated, both in embryogenesis and in tissue maintenance. Such 

knowledge may ultimately lead to clinical control of tissue regeneration. Additionally, 

stem cell research is of utmost importance in order to understand and fight 

tumourigenesis. The cancer stem cell concept has gained strong focus, implying that 

cancer may originate from cancer stem cells, which are dysfunctional stem cells and/or 

malignant cells that have acquired stem cell properties. This understanding explains how 

cancer cells can escape current therapies [191]. 

These research areas converge in the need for identifying the microenvironmental 

elements and mechanisms that dynamically regulate stem cell behaviour. Conceivably, 

aplasia (insufficient production of new cells for replenishment) may be the result of a non-

functional microenvironment, and cancer the consequence of aberrant stem cell activity 

outside of their normal environment [192]. Although the complex interactions between 

stem cells and the microenvironment are far from determined, similarities between 

embryogenesis, adult stem cell differentiation and cancer development can be noted as 

these processes are dictated by several of the same genetic pathways, e.g. BMP, TGF-β, 

Wnt, fibroblastic growth factor (FGF), Notch and Sonic Hedgehog Homolog (SHH)-

pathways [193]. 

 

 
Figure 12 Relevance Research on stem/progenitor cells and their regulation by 
microenvironmental cues is relevant in multiple research branches. 



E. Tenstad: Human hematopoietic microenvironments, in vivo, in vitro and on chip 

 37 

4.2 Methodological considerations 

4.2.1 “Evolution” in methodology 

In science (and in general), some methods can hardly be imagined to come out of date, 

e.g. microscopy. Others are replaced by strategies being superior in various ways, due to 

informational value, safety, cost & time consumption. Additionally, new methods are 

adopted in parallel to conventional variants. Such an “evolution” in methodology is 

evident from the methods used in this study. Regarding gene screening, the signal 

sequence trap methods have stepped aside in favour to more rational gene profiling 

methods using microarrays. In contrast, use of microfabricated tools for manipulation of 

cell behaviour is a field likely to progress in the future. 

4.2.2 Implementation of the SST-REX methodology 

Motivation Signal sequence traps (SST) serve to identify extracellular proteins based on 

their characteristic signal sequence. The SST-REX variant was reported as more efficient 

than previous SST methods, due to incorporation of longer cDNA fragments and a 

sensitive functional selection (a single step selection for factor-independent growth) 

[186]. Long cDNA fragments ensure safe gene identification and reduce the risk of 

random hydrophobic sequences operating as “false” signal sequences. These capabilities 

and access to a new virus laboratory at DNR encouraged us to implement SST-REX and 

replace a previous, non-viral variant [194]. 

The implementation of this methodology was an interesting challenge due to its 

many facets, Figure 8, page 26. Molecular engineering techniques were needed to 

prepare the initial plasmid library and identify the finial screening products. Intermediate 

cultivation steps, using bacterial and mammalian cells respectively, were needed to 1) 

amplify the plasmid library, 2) transform it into a retroviral library and 3) perform the 

growth based screening. These cultivation steps coincided with three different principles 

for introducing nucleic material into cells; 1) electropolation, 2) transfection and 3) 

infection. 

Outcome Obviously, a successful outcome of a multistep procedure depends on 

proper performance of each single step. Construction of cDNA libraries is a demanding 

task, but was mastered by other members at our lab. Aided by their experiences I 

produced an adequate BV173 library (containing 1,4 x 106 cfu/µg DNA with an average 



E. Tenstad: Human hematopoietic microenvironments, in vivo, in vitro and on chip 

 38 

insert size of 750 base pairs). However, we had no experience with eukaryotic retroviral 

expression. It turned out that I needed to optimise all steps; hence implementation of the 

total procedure seized one full year’s work. Basically, it was necessary to eliminate a 

range of non-effective materials Table 4. In addition, a variant infection procedure was 

implemented, involving cell centrifugation during infection, as opposed to regular static 

conditions Figure 13.  

Table 4 Optimisation of SST-REX procedure. 

Parameter Original regime / Problem  New regime / Benefit 

Packaging cell line � Bosc 23 

Unstable genotype; 

A low cell fraction keep the 
genes necessary for virus 
packaging 

� Phoenix Eco 

 More stable genotype, 

Incorporation of viral genes can 
be monitored by flow cytometry 

Transfection agent � Calcium phosphate, or 

� Lipofectamin 

Low efficiency;* 

� viral titer =  0,1 x 106 

� Fugene 

 
High efficiency;* 

� viral titer =  0,9 x 106 

BaF3 cell line stock � Donated 

Mycoplasma infected 

� Infection resistant 

� Quality controlled (DSMZ**) 

Mycoplasma free 

� Susceptible to infection 

Infection 
procedure 

� Static 

� Low infection efficiency 

� Spin infection 

� High infection efficiency 

 * Viral titer depends on both transfection efficiency and on the cells’ health. 
** German collection of microorganisms and cell cultures. 

The spinning procedure does not sediment viral particles, but “it is thought that virus on 

membrane fragments is spun onto cells in a manner which effects greater infection” (G. 

P. Nolan, Stanford University, provider of Phoenix packaging cells). The spin-infection 

efficiency was found to depend on the G-force, time and the cell/virus ratio, Figure 13. 

In contrast, repeated additions of viral supernatant had negligible effect (not shown). For 

the final infection of the retroviral library we used 4 cells/virus and 500g for 1h, resulting 

in 10% infection efficiency. This regime resulted in multiple viral integrations in 11% of 

the surviving BaF3 clones, which was acceptable. (In contrast, 33% of the clones had 
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multiple integrations when using 1000g for 2h and same cell/virus ratio). Clones with 

multiple integrations were discarded as they preclude identification of the cDNA insert 

responsible for BaF3 survival. 

Proteins identified by SST-REX methodology are presented in Table 6, page 46. 

Additional “false” clones had inserts that were out of reading frame with the cytokine 

receptor, an inverted cDNA insert (3’ to 5’), or lacked a signal sequence. 

 
Figure 13 Infection procedures Conditions tested for adjusting the percentage of BaF3 
cells infected with a retroviral library. Four cell/virus ratios were tested (see label) at static 
conditions and three different cell centrifugation regimes (variable G-force and time, as 
indicated). Spin-infected samples were run in duplicate. Error bars indicate standard deviation 
(SD). 

Perspective In spite of efficient microarray analysis, there are still recent reports based on 

SST-REX screening for identifying cell surface molecules [195, 196]. Methodological 

improvements include the use of distinct insert sites for cDNA integration into the pMX-

SST vector, ensuring a directional cloning. Also, the BaF3 clones are passaged several 

times before clone rescuing, a strategy likely to reduce the number of false positives 

[195]. Unlike other gene analysis techniques, SST-REX can be used for obtaining both 

genetic information and recombinant proteins simultaneously. Because post-translation 

modifications of a mammalian type are preserved (involving sugar and fatty acid chains), 

this method is well-suited for development of monoclonal antibodies by using a BaF3 

clone as immunogen.26 Likewise, the eukaryotic expression system has potential for 

improving the readout of SEREX technology (serological identification of tumour 

                                                 
26 SST-REX is core technology for the company named ACTGen (actgen.co.jp) 

Cells / virus 
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associated antigens by recombinant expression cloning), by allowing for identification of 

postranslationally modified antigens [197]. 

4.2.3 Hematopoietic assays 

Cell source Functional studies on early B-cell lymphopoiesis are mainly performed in the 

murine system. This is not only explained by the fact that human cells are more 

troublesome to provide, but also reflects the experience that human B-cell progenitors are 

more demanding to cultivate (see section 1.4.2, page 16). By focusing our research on 

primary cells of human origin, we went for the gold standard in studies aiming for 

therapeutic translation. Arguments against two other obvious options are: 

� Continuous cell lines are valuable research tools, but unfortunately they do not 
always recapitulate the behaviour of their cognate primary cells. This 
deviation may be due to their lack of growth control and/or genetic drift over 
time. 

� Murine systems have provided important basis for our general understanding of 
hematopoiesis and allows for flexible experimental in vivo designs. 
However, significant differences between species cannot be ruled out. 

The reviewer of Article III acknowledged our choice, stating “It is important that more 

differentiation studies are done in human systems, as this is the only way to ensure that 

basic knowledge is applied to clinical problems” 

Cell management ex vivo The value of primary cells in functional assays depends 

on whether we can maintain them in a representative state, both during isolation and 

subsequently during cultivation. Isolation of primary hematopoietic subsets is time-

demanding, as the initial harvesting step is followed by several types of purification. We 

routinely used combinations of a) density gradient centrifugation, b) Dynabeads®-based 

isolation c) magnetic cell sorting (MACS) and fluorescence activated cell sorting (FACS). 

Such multistep procedures are likely to stress the cells and induce apoptosis. Our 

preventative measures to limit cell stress included the use of a) buffered media, for 

keeping cells nourished and at pH 7.4, b) low temperature when applicable, to minimise 

cell metabolism, and c) protein supplements for physical stabilisation (bovine serum 

albumin, BSA or fetal calf serum, FCS). 

Having the cells successfully isolated, the next challenge is to provide them with a 

proper environment in culture, which is a problem of the “hen and egg” category. 
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Information on their requirements in the body may guide us in optimising the culture 

conditions. Vice versa, factors necessary for survival in culture indicate their demands in 

native environments. Moreover, the optimal conditions may depend on the cell maturation 

level. Whereas experiments on B-cell subsets must meet with their stage-specific 

requirements, investigation on the earliest differentiation process must also accommodate 

the multilineage precursors. 

Based on the literature, we implemented a method for co-cultivating HSC on a 

pre-seeded layer of MS-5 cells, Figure 15 (page 45, right panel). This murine cell line 

was reported to favour HSC differentiation towards the B-lineage cells [109]. MS-5 was 

also kept as a standard feeder layer for maintenance of B-cell progenitors, due to more 

reproducible results than obtained by another murine alternative (S17 cell line). 

Occasionally, primary human stromal cells were used for comparison. Later, the 

development of an iMSC cell line (iMSC#3, Ola Myklebost and co-workers) equipped us 

a stromal cell line of human origin. The MSC population is an important candidate for 

contribution to the hematopoietic microenvironent (see page 50). 

We performed several tests for evaluating the role of each assay component. Our 

aim was to determine a set of parameters giving “base-line” readout (i.e. CD19+ cell 

number), thus allowing us to detect a potential effect of any given agent. Regarding the B-

lymphopoiesis assay, we tested several medium compositions, with variant serum 

concentrations and cytokine combinations and dosages (SCF, G-CSF, IL-3). The final 

assay included the same components as previously described [109], but we reduced the 

concentrations of supplements. In contrast to the use of CD34+ cells as a seeding 

population [109], we seeded CD133+ hematopoietic cells (HSC/progenitor cells), thereby 

avoiding pro B-cells (being CD34+) 

Parameters in functional assays Cell behaviour is directed by signalling 

pathways that are complex by themselves and further complexity is added by their 

interactions with other pathways in regulatory networks (e.g. Wnt signalling). Thus, a 

number of non-intended influences may direct the functional readout of a given test agent. 

Especially when using complex models, it is challenging to control all parameters. Our 

cultures of hematopoietic cells included two obvious non-defined components; FCS (at 

reduced amounts) and stromal cells, which may both lead to biased cell responses. 

Results showing similar trends indicate that experiments are reproducibly 

performed. Nevertheless, it is important to remember that they are a product of the 
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experimental test system. Hence, caution about their physiological relevance is necessary. 

Furthermore, when evaluating observations made by different research groups, one should 

consider the experimental design, including the following parameters: 

� Source of test-agent (e.g. conditioned media or recombinant molecule) 

� Cell source (species, tissue type & developmental stage, cell maturation level), 

� Medium components and 

� Timing. 

The significance of ontogeny is emphasised by a recent study, showing that IL-7 is 

essential to B-cell progenitors developed from BM progenitors, but not to those originated 

from cord blood (CB) progenitors [119]. 

Precision This study dealt with low cell numbers, both in cultivation assays as 

well as in Real-time PCR analysis. Hence, robust quantitation methods were required. 

Regarding cell quantitation by flow cytometry, precise cell counts were obtained by 

adding a known number of beads to the samples, see section 6.1.3, page 65. A similar 

strategy has later been termed single bead-enhanced cytofluorimetry (SBEC) [198]. 

Regarding PCR-quantitation, much work was put in by Guri Døsen to determine a 

suitable endogeneous control (i.e. phosphoglycerate kinase 1, PGK1), allowing for 

comparison of different samples. Normalisation is necessary due to variability between 

samples, caused by different concentrations/degradation of mRNA and variable 

efficiencies during cDNA synthesis and PCR. 

4.2.4 Fabrication of microfluidic devices & substrate modifications 

The soft lithographic method is well described in the literature and was implemented 

without major technical difficulties. The process parameters were slightly adjusted to 

meet with the equipment at our laboratory. Given precise performance of each step, 

functional microfluidic devices were produced, Figure 9, page 27). 

In contrast, a reliable definition of cell-supportive and non-supportive areas within 

the devices was more demanding to obtain. The literature describes several cell patterning 

techniques, but these methods are typically time-consuming and some involve the use of 

hazardous chemicals [199]. Thus, I explored more convenient and safe strategies, as 

summarised in Table 5 below. Reversibly bonded PDMS masks were used for selective 

treatment of exposed areas. The performance of the surface-modified substrates was 

tested by conventional cell cultivation, using the cell line iMSC#3. 
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Using approach A, a FN solution was drawn into PDMS microchannels for 

deposition on the glass surface, followed by mask removal and BSA blocking of the 

remaining area (result shown in Figure S2, page 62). 

The other approaches were based on the use of Pluronic as a blocking agent and 

depended on pre-prepared hydrophobic areas, a prerequisite for Pluronic adsorption, see 

Box 9. For this purpose, approach B and C used selective deposition or removal of chloro 

or fluoro-containing silans (allyltrichlorosilane or trichloro (1H, 1H, 2H, 2H-

perfluorooctyl)-silane). Although distinct hydrophobic/hydrophilic areas were obtained 

(as demonstrated by the sessile drop technique), these strategies were ineffective for the 

purpose of iMSC patterning (not shown). 

Approach D used an inverse strategy. Based on a hydrophobic PS substrate 

(bacteriological grade), an oxygen plasma was applied for creating cell supportive areas. 

The remaining area was subsequently blocked by Pluronic, binding to hydrophobic areas 

only. This simple strategy provided stable, long-term patterning of iMSC#3 (>3 weeks) 

and allowed for adipogenic and osteogenic differentiation. The protocol is swift, operator-

friendly, of low cost and does not produce harmful waste. 

Table 5 Surface modifications tested for cell patterning 

Strategy A B C D 

Material glass glass glass polystyrene 

Step 1 - - Silan deposition,  
liquid phase 

- 

Step 2 PDMS masking for selective treatment of different regions 

Step 3 Deposition of FN, 
Fluid phase 

Silan deposition,  
vapour phase 

Silan removal by 
plasma etching 

Plasma oxidation 

Step 4 Demasking 

Step 5 BSA blocking Pluronic blocking Pluronic blocking 

Step 6 - Conditioning with FN - 

Step 7 Cell seeding and attachment 

Patterning Ineffective Ineffective Initial efficiency Stable patterning 
(>3 weeks) 

Cell 
condition 

Cells alive Cells alive Cell death Compatible with 
differentiation 

Strategies using a glass substrate (A-C) were ineffective, while successful patterning was 
obtained using a PS substrate. 
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Box 9 Pluronics 

Pluronics is a series of commercially available non-ionic surfactants. They are triblock 

copolymers, consisting of a central block of poly (propylene oxide) flanked by one block of poly 

(ethylene oxide) on each side, as described by the generic formula; (PEO)x-(PPO)y-(PEO)x. Given 

a hydrophobic surface immersed in an aqueous medium, the central PPO-block will adsorb 

spontaneously to the surface by hydrophobic 

interactions, while the hydrophilic tails (PEO-blocks) will 

extend into the medium and prevent protein adsorption 

and cell adhesion [200, 201].  

Figure 14 Pluronic adsorption to hydrophobic surface 
Drawing from Uppsala University 

4.3 Proteins displayed by the BV173 pro B-cell line 

Motivation & Strategy Our aim was to identify proteins produced by B- progenitor cells 

that may serve to mediate their communication with stromal cells and/or other 

microenvironmental factors. To narrow in the possible candidates, we aimed for detecting 

those proteins being displayed outside the cell, i.e. membrane and secretory proteins. 

Thus, we employed a method for cloning and expression of cDNA encoding such proteins 

based on their characteristic signal sequence (a hydrophobic, surface-directing “label”). 

We chose a variant based on retroviral expression (SST-REX) as this method was 

reported to be more efficient than previous methods. 

Material We planned to subject primary B-cell progenitors to SST-REX 

screening, but we started off using a cell line for convenience (i.e. material access). The 

human cell line BV173 was selected to represent progenitor B-cells, based on evidence 

that these cells interact physically and functionally with stromal cells. When BV173 cells 

are grown in monoculture, they grow in suspension (free-floating) like any other 

hematopoietic cell line. In contrast, when co-cultivated with the stromal cells (MS-5 or 

BM MNC adherent cells), a fraction of the BV173 cells was found attached to the stromal 

layer, where they grew in the cobblestone-like pattern characteristic for stroma-interacting 

hematopoietic cells [202], Figure 15. Such an arrangement has been reported earlier 

[203]. 
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Interestingly, we noted that the adherent BV173 cells had a slower proliferation rate than 

the non-adherent fraction (determined by CFSE tracking, unpublished). Moreover, 

phenotypic analyses by flow cytometry indicated that adherent cells were induced to 

proceed along their differentiation pathway. The BV173 cell line is at an early stage of B-

cell differentiation [204], as demonstrated by expression of the pre BCR-component 

VpreB (Table 6, page 46) and CD34. Accordingly, neither monocultured BV173 nor the 

non-adherent BV173 cell fraction expressed IgM, belonging to the BCR. However, a 

fraction of the cells in the adherent population was IgM+ and CD37+, hence indicating 

maturation towards immature B-cells. However, an abnormal developmental progression 

was noted, as these cells co-expressed CD34. A hint of these results is mentioned in the 

discussion part of Article I, justifying the use of SST-REX on BV173 cells. 

 
Figure 15 Hematopoietic-stromal interactions in culture Coloured pictures are 
fluroescent images, non-coloured pictures are phase contrast images. Upper right picture is a 
merge of the two types of imaging. Right panel: HSCs crawl beneath stromal cells in culture 
(pseudoemperipolesis) and form cobblestone areas of flat, phase-dark cells. This process is 
mediated by the stromal products CXCL12 (chemokine) and VCAM-1 (adhesion molecule), which 
cause attraction and binding of CXCR4+/VLA-4+ hematopoietic cells [202]. After cultivation for 2 
weeks, some of the HSC progeny express TdT (red, upper right image). Cells on top of the 
stromal layer appears bright, as they remain spherical and thus refractile. Left panel: The pro B-
cell line BV173 showed similar interaction with the stromal layer (MS-5 cells). 
Immunocytochemistry revealed heterogeneity in BV173 phenotype, as the cells (CD19+, red 
plasma membranes) expressed variable levels of TdT (green, nuclei). Unpublished images, Ellen 
Tenstad. 
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The scope of this study would have matched with a further investigation of this cell line-

based co-culture system, including an evaluation of its suitability as a convenient 

screening tool for identifying factors involved in the hematopoietic-stromal interaction. 

Factors exerting negative or positive influence on the observed scenario (adhesion and 

partial differentiation) would likely play a regulatory role in stroma-dependent B-

lymphopoiesis. 

Outcome Table 6 presents BV173 cDNAs that were identified by the SST-REX 

methodology. 

Table 6 cDNAs expressed by B-cell progenitors (BV173 cell line) 
as identified by SST-REX methodology 

No cDNA encoding Loc # NCBI ref 

Known proteins 

1 VpreB PM 1 NM_007128 
2 HLA-DRb1 PM 2 V00522 
3 HLA-DRb3 PM 3 U66825 
4 Bone marrow stromal cell antigen 2, 

BST2 (CD317) 
PM 4 NM_004335 

5 Extracellular matrix metalloprotease inducer, 
EMMPRIN (CD147) 

PM 1 NM_001728 

6 Plasminogen activator urokinase receptor, 
PLAUR (CD87) 

PM 1 XM_009232.1 

7 Glucose transporter 10 (SLC2A10) PM 1 NM_030777 
8 Tumor rejection antigen 1 (gp 96) PM/ER 1 NM_003299 
9 Nucleobindin 1 Secreted 2 NM_006184 

10 GM-CSF Secreted 1 M11220 
11 Ribophorin 1 ER 1 NM_002950 
12 Heat shock 70kDa protein 5, HSPA5 ER 1 X87949 
13 Oxygen related protein (ORP150) ER 1 NM_006389 
14 Cytochrome oxidase I MT 1 NC001807 

Novel proteins 

15 TMEM9 LE 1 NM_016456 
16 Hu cDNA sequence from clone RP5-836N17 Unknown 1 AL049539 
17 Uncharacterised protein KIAA0090 Unknown 1 XM_043712 
18 BV105 Unknown 1 - 

Loc: location, #: number of clones, Acc. No: NCBI Reference sequence, PM: plasma 
membrane, ER: endoplasmatic reticulum, MT: mitochondria, LE: late endosomes. 
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Characterisation of the TMEM9 protein showed localisation in intracellular membranes, 

thus excluding an obvious role in cell communication. However, intracellular proteins 

may also influence the extracellular environment. The closest homolog to TMEM9, 

named TMEM9B (also lysosomal), has been found to represent an essential module 

shared by inflammatory signalling pathways, i.e. the TNF, IL-1β and Toll-like receptor 

(TLR) pathways. Activation of these pathways results in the production of pro-

inflammatory cytokines, and TMEM9B was found necessary for this process [205]. 

In 2003, TMEM9 cDNA was detected in a large-scale project called Secreted 

Protein Discovery Initiative. This project aimed for identifying novel secreted and 

transmembrane proteins for better understanding of intercellular communication, thus 

providing basis for new therapeutic strategies [206]. 

From the list of identified BV173 cDNA clones we suggest three candidate 

proteins for contributing to the hematopoietic-stromal interaction; CD317, CD147 and 

CD87. Of note, the two latter are both involved in ECM degradation, a process necessary 

for tissue reorganisation. Both factors recruit Matrix MetalloProteases (MMPs), which are 

enzymes that can digest extracellular proteins (extracellular matrix and cell adhesion 

molecules) and thereby release cell-cell contacts and ECM-bound growth factors. For 

instance, MMP-9 can unleash membrane-bound SCF and promote HSC differentiation 

and mobilisation [207]. It might be speculated that normal B-cell progenitors need these 

factors for survival and proper migration/allocation within the BM tissue. 

Bone marrow stromal cell antigen 2 (BST2, CD317) This protein is expressed on 

multiple cell types, including stromal cells and developing B-cells. It is reported to be 

preferentially over-expressed in multiple myeloma cells [208]. Interestingly, fibroblasts 

induced to express BST2 showed enhanced supporting capacity towards a stroma-

dependent murine pre B-cell line (DW34), an argument for a stimulatory role of BST2 in 

pre B-cell growth [209]. 

Extracellular matrix metalloprotease inducer (EMMPRIN, CD147) This 

glycoprotein belongs to the Ig superfamily. It is widely expressed and appears at 

especially high levels on human tumour cells. It is a pleiotropic molecule with roles in 

fetal development, T-cell activation and neurological processes. Originally, CD147 was 

identified as a tumour cell product that stimulated neighbouring fibroblasts to produce 

MMPs, thus possibly facilitating tumour invasion. CD147 has also been suggested to 

stimulate cell proliferation, endothelial growth factor (VEGF) production and tumour cell 
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glycolysis. An effect on multi-drug resistance, MDR is also reported. On this basis, 

CD147 is suggested as a potential therapeutic target in cancer [210, 211]. 

Plasminogen activator urokinase receptor (PLAUR, CD87) The receptor is a key 

molecule in the plasminogen activation system. This is an enzymatic cascade that results 

in ECM proteolysis. The process is initiated when CD87 binds urokinase (acronyms: 

PLAU, uPA), which in turn cleaves plasminogen, generating the active protease plasmin. 

Importantly, the cellular receptors involved restrict plasmin production to the immediate 

vicinity of the cell membrane. Additionally, CD87-integrin interactions can activate 

intracellular signalling, thus influencing cell adhesion, proliferation and differentiation 

[212, 213]. 

4.4 B-cell maturation niches in human BM.  

Motivation This study was initiated thanks to interdepartmental exchange of knowledge 

and experience at DNR. Dr. Emina Torlakovic at the Department of Pathology challenged 

our literature-based understanding of HSCs being localised at the endosteal surface. 

According to her observations, no such relation was apparent in the human BM. In 

collaboration we wanted to investigate the distribution of B-cell progenitors within the 

BM and search for a relation to stromal elements. 

Strategy & Methodology Stem cells/early progenitor cells are rare and difficult to 

discern in steady state conditions. In order to maximise the number of target cells, we 

selected reactive BM biopsies, originating from patients having increased hematopoietic 

demands due to environmental stress (e.g. infection or Hodgins disease). Importantly, the 

non-neoplastic nature of the BM samples was confirmed, excluding the possibility that 

our observations represented aberrant cell behaviour of malignant cells. Additionally, 

relevant findings were reproduced using BM biopsies from normal donors, ensuring their 

validity in normal hematopoiesis. Actually, malignant B-cell localisation was shown to 

deviate from the normal pattern. 

Regular double-staining was performed, using two chromogen solutions. 

Additionally, we were able to perform triple immunoassays using the same two 

chromogens, due to a) use of markers with specific nuclear or cell surface localisation and 

b) mutually exclusive expression of markers that were stained by the same colour. E.g. 

brown colour was used to stain TdT and CD20; markers that are expressed in the nucleus 

and the plasma membrane respectively and never appear in the same cell (Box 4, page 15 
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and table and figure below). Technically, the antigens were labelled sequentially to 

exclude any possibility of nonspecific binding. 

Table 7 Co-visualisation three antigens using two chromogens; 
brown and red, as indicated. 

Staining Nucleus Plasma 
membrane 

 

“Triple 1” TdT CD20 Pax-5 (nucleus) 

“Triple 2” Pax5 VCAM-1 CD10 (Plasma 
membrane) 

Outcome Pax-5 labelling of all developing B-lineage cells enabled us to demonstrate a 

peculiar spatial cell arrangement in marrows with numerous target cells. Accumulated 

BM B-cell progenitors were organised in strings. A similar finding had been reported in 

the mouse [214], but the authors did not indicate any relation to microenvironmental cells. 

Excitingly, we found that the B-cell strings coincided with the slender extensions of 

CD10+ stromal cells. Furthermore, cell-stage specific markers showed a gradient in B-cell 

maturation towards the sinusoids. At steady state conditions, scarce B-cells also co-

localised with CD10+ cells, but a display of directed maturation was not possible due to 

low B-cell numbers. The results are interpreted as visualisation of stromal-dependent B-

lymphopoiesis, Figure 16. This conclusion is strengthened by the finding that less 

stroma-dependent cells had no relation to CD10+ stromal cells, i.e. other hematopoietic 

lineages, mature B-cells and malignant B-cells. 

Figure 16 
B-cell maturation in BM is 

supported by CD10+ stromal 

cells and oriented towards the 

sinusoids. Conceptual drawing, 
summarising findings in Article II. 
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Cultivation studies have not given any clear consensus on what kind of cell(s) that support 

B-cell development in the body (see section 1.4.2, page 16). Our findings qualify slender 

CD10+ cells as important niche cells for B-cell progenitors. Of note, CD10 expression has 

previously been detected on human fetal BM stromal cells [107]. Unexpectedly, we 

detected only partially expression of Vascular Cell Adhesion Molecule-1 (VCAM-1), 

which is reported to mediate B-cell support, Table 2, page 17. In contrast, the VCAM-1 

marker defined another population of stromal cells, having a different morphology, no 

CD10 expression and no relation to B-lineage cells. 

Perspective Further studies should characterise the slender CD10+ stromal cells in 

more detail with respect to phenotype and expression of regulatory factors (Table 2 and 

e.g. Wnt). Their spatial relation to HSCs should be evaluated (e.g. by CD133/CD10 co-

staining), as HSC-supportive and B-supportive stromal cells seem related. Also, their 

relation to MSCs should be investigated (e.g. by CD146/CD10/Pax-5 co-staining). Even if 

stromal cells are commonly referred to as MSC descendants, the MSC population itself is 

an important candidate. Notably, MSCs are CD10+ [39] and they are isolated from 

primary cultures similar to those used as feeder layers. In a comparative study, the 

fibroblast fraction (probably including MSCs, own comment) was found to sustain 

survival of immature B-cells as efficiently as the mixed population of adherent BM cells 

(i.e. fibroblasts, macrophages, endothelial cells and adipocytes) [126]. A recent review 

points out that the classical BM stromal cells have not been evaluated for differentiation 

capacity [215]. However, early observations (1989) lead to the conclusion that “bone 

marrow stromal cells may thus represent at type of multipotent MSC, capable of further 

differentiation into adipocytes and possibly osteoblastic cells” [216]. Recently, MSCs has 

successfully served as feeder layers for hematopoietic cells [217]. Our own indications 

promoting MSCs as B-cell supportive are: 1) The iMSC#3 cell line can serve as a feeder 

layer for cultivated B-cell progenitors [218] and 2) stromal cells lines (MS-5, OP9 and 

iMSC#3) differentiate spontaneously into adipocytes when left unpassaged. 

Of important note, MSCs have been hypothesised to be identical to CXCL12+ 

adventitial reticular (CAR) cells (see section 1.3.2, page 12). Precisely these CAR cells 

have been implicated as niche cells for the most immature B-cell progenitors in the 

murine system. In contrast, more mature stages (pro B and pre B-precursors) were in 

contact with another stromal population (IL-7-producing) [77, 219], possibly enforced by 

the stromal cell derived galectin-1 [220]. The final immature B-cell stage had no relation 
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to these stromal cells. Thus, stage-specific B-cell niches have been suggested in the 

murine BM. 

In contrast, our observations on human BM indicate that a single stromal 

population is involved in support for all B-cell maturation stages, at least during increased 

hematopoietic demands. At such conditions, the linear arrangement allows for interactions 

between the developing B-cells. Homotypic interactions are less likely in steady state 

conditions, where B-cells appear individually (as estimated from the two-dimensional 

tissue section format). Although the results suggest that developing B-cells depend on 

docking to CD10+ stromal cells, they may still receive mediators secreted from 

neighbouring cells of other phenotypes. Similar to what applies to HSC niches, it is likely 

that B-cell progenitors is influenced by various cells, both hematopoietic (e.g. 

macrophages) and non-hematopoietic. A recent cultivation study implements osteoblasts 

as a key component of the BM B-cell niche [114]. The finding that the BM anatomy 

allows stem/progenitor cells to receive simultaneous influences by endosteal and 

vascular/perivascular cells [79] may elucidate why no relation to bone was detected. 

4.5 Effect of Wnt3a on human early B-lymphopoiesis 

Motivation Contemporary murine studies suggested an important role of the canonical 

Wnt signalling in HSC renewal (see section 1.5.2, page 21) and also in B-lymphopoiesis 

[160]. Hence, we wanted to pursue this research in the human system. During the course 

of our investigation, this decision was promoted by microarray studies at our department, 

showing that normal and malign B-lineage cells of human origin had regulated expression 

of central Wnt pathway molecules (i.e. distinct expression levels at different maturation 

stages) [96]. 

Strategy & Methodology The first logical step was to determine whether BM B-

lineage cells harboured the necessary “machinery” to elicit Wnt signalling, e.g. receptors 

and intracellular pathway molecules. Also, determination of Wnt sources would reveal 

whether the signalling was of autocrine or paracrine character. As few antibodies are 

available for detection of Wnt pathway molecules (due to evolutionary conservation), we 

were only able to detect and quantify expression at the mRNA level. The presence of 

mRNA is only indicative for protein expression, because of translational regulatory 

mechanisms. Hence, the most significant evidence of an operational pathway was 

provided by functional effects. The use of Wnt 3a as the triggering factor was again a 
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result of necessity, being the only factor commercially available at the time. Due to their 

limited solubility, Wnt proteins are difficult to produce and purify [137]. 

Outcome Transcripts encoding central Wnt pathway molecules were detected in 

primary B-cell progenitors and stromal cells (RT-PCR analyses). Further, the pathway 

was shown to operate in both cell populations. When subjected to Wnt3a in culture, the 

cells responded by stabilization of β-catenin, the key event necessary for transcription of 

Wnt-responsive genes, Figure 6, page 20. This was first demonstrated by Western 

blotting of lysates from primary BM B-cell progenitors (Article III). Later, 

immunocytochemistry confirmed that β-catenin accumulated in the nucleus of Wnt3a-

responding cell lines, of both B-lineage and stromal origin, Figure 17 and [167]. 

 
Figure 17 Nuclear β-catenin accumulation in cells exposed to Wnt3a in culture. At 
control conditions (left panel), β-catenin is localised to the cell membrane(red staining), where it 
plays a part in cell adhesion and is protected from degradation [221]. After Wnt3a exposure 
(100 ng/ml, 3h), β-catenin molecules accumulate in the nuclei (middle), as shown by red nuclear 
staining. TdT expression (green, nuclear) identifies leukemia cells, i.e. BV173 cells (representing 
pro B-cells) and Nalm-6 cells (representing pre B-cells, [222]). Yellow/orange staining appears 
when green and red staining co-localise. Wnt3a (100 ng/2 weeks) inhibited the spontaneous 
adipogenesis of MS-5 cells (upper right images, red staining identifies adipocytes). This effect 
was reversed by Dkk-1 (canonical inhibitor, not shown). BM tissue shows similar staining as 
control cultures, however two cells, likely of hematopoietic origin, display nuclear β-catenin 
(arrows, right image). Unpublished images, Ellen Tenstad. 
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Despite somewhat conflicting reports, canonical Wnt signalling is believed to help 

maintaining “stemness” of HSCs, restricting differentiation while allowing a degree of 

replication [164]. This view is compatible with our findings in Article III, where B-cell 

lymphopoiesis was repressed in the presence of recombinant Wnt3a. In fact, we observed 

that Wnt3a inhibited all hematopoietic differentiation (both myeloid and lymphoid) as 

well as adipogenic differentiation of stromal cells, see below. The inhibiting effect of Wnt 

on B-lymphopoiesis was substantiated by the following findings (unpublished): 

� The effect was reproduced by another Wnt source 
(conditioned medium from L-cells transfected with Wnt3a). 

� The effect was mimicked by LiCl 
(a Gsk3-inhibitor/β-catenin-stabiliser that serves as a canonical Wnt 
substitute). 

� We observed a dose-dependent response  
(100 ng/ml Wnt3a reduced B-cell numbers more than a dose of 10 ng/ml). 

� A similar trend was shown by analyses of the more immature TdT+ progeny 
(cultures were harvested after 2 weeks instead of 3 weeks), and  

� Similar results were obtained using a variant HSC/progenitor phenotype as the 
seeding population (CD34+, CD38- BM cells). 

A proliferative Wnt3a effect on the earliest progenitors was unlikely, as cobble-stone 

forming cells were typically scarce in treated cultures (unpublished). 

Reversion of the Wnt3a effect by the use of inhibitors (sFRP/Dkk-1) confirmed its 

specific effect on B-cell progenitors (Article III). In contrast, these inhibitors were unable 

to rescue normal levels of B-cell differentiation in our B-lymphopoiesis assay 

(unpublished), opening up the possibility that Wnt3a may act upon HSC/progenitor cells 

via non-canonical pathway(s). Non-canonical signalling by Wnt3a has been reported 

previously [223]. It not unlikely that Wnt3a may act via several pathways and/or have 

distinct bioactivities on different developmental cell stages. 

We did not test the sole effect of Wnt inhibitors in our cultures, an experiment that 

is worthwhile, knowing that both hematopoietic cells and stromal cells express Wnt 

protein transcripts. Such an experiment represents a “loss of function” strategy, similar to 

the one performed in vivo [158]. 
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It has been suggested that Wnt may even reverse cellular differentiation [164], but this 

effect was not evident from our experiments. When added to B-cell progenitors in culture, 

Wnt3a did not affect maturation, which proceeded over time (day 0-14, as estimated by a 

reduction in CD34 expression), but had an inhibitory effect on cell proliferation (both pro 

B and pre B-cell stages), Article III. 

Wnt signalling is functional in MSC and stromal cells, Figure 17 and [224-226]. 

In our cultures, Wnt3a eradicated completely the spontaneous adipogenesis finding place 

in control wells (unpublished). Thus, the inhibitory Wnt-effect on B-lineage cells may 

have been a consequence of impaired support from Wnt-influenced stromal cells, as 

earlier suggested from murine studies [163]. As we were unable to maintain cultures 

without feeder layers, we could not determine whether Wnt acted directly or indirectly via 

stromal cells to reduce B-lymphopoiesis. 

Perspective When submitted, our findings stood in sharp contrast to previous 

studies in the mouse performed by renowned laboratories. They were unexpected as 

Wnt3a was generally thought to lead to proliferation of stem/progenitor cells. 

Discrepancies may relate to different cell sources applied; we used primary progenitors 

from adult humans, while previous reports were based on more potent cells, i.e. murine 

fetal cells [160] and cells harvested from transgenic mice expressing the anti-apoptotic 

protein Bcl2 [137]. 

Due to the complexity of Wnt-related proteins and signalling pathways, we need 

much more information to decipher how they are involved in various processes. Lately, 

there has been a rising appreciation that Wnt signalling regulates hematopoietic cells in a 

context and dosage dependent way, as apparent from investigations of Wnt effects on 

HSC self-renewal. It is clear that the hematopoietic system is regulated by a complex set 

of regulatory molecules, which must be precisely balanced in order to keep homeostasis, 

Figure 4, page 12. Oversupply of single factors may cause unphysiological cell 

behaviours. As current in vitro assays are far from reflecting native microenvironments, 

there is a need for more advanced models. Specifically, acknowledgement of the 

morphogenic nature of important molecules (such as Wnts and Hedgehog) calls for 

strategies for obtaining controlled gradients in culture. Herein, microfluidic systems may 

come in useful (see next section). 

Actually, we did some experiments on BM tissue cultures, containing fragments 

from BM aspirates. Here, B-cell progenitors resided in a more in-vivo like environment 
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and gradients could possibly form. CFSE-labelling and tracking were performed, aiming 

for detection of a shift in CFSE-distribution when comparing differentially treated 

samples. However, such analyses were disturbed by the experience that CFSE-labelling is 

not stably integrated, presumably due to catabolism of CFSE bound proteins [227]. 

4.6 Hematopoietic microenvironments on-chip 

Motivation Several cell types and signalling molecules are believed to co-operate in BM 

niches where they are likely to form restricted spatial patterns (see section 1.3, page 7 and 

Figure 4). Use of microfabricated tools for localising cells and fluids may enable 

fabrication of stem cell niches and other tissue units with higher physiological relevance, 

thereby providing more realistic cell behaviour. Similar directions have been proposed in 

the literature [172, 228]. Microfluidic methods for exposing cells to gradients or isolated 

fluidic environments were initially used for studies on chemotaxis [180, 229] and neural 

axon growth [230, 231]. Lately, the use of gradients and other conditions enabled by 

microfabricated tools is being appreciated as promising strategies for emulating stem cell 

environments [232-235], like I envisioned when preparing my PhD project application in 

2006. Potentially, a more in vivo-like environment may allow HSCs to maintain stemness, 

and progenitors to differentiate and multiply adequately. These properties have been 

difficult to conserve in current cultivation systems. Insufficient HSC numbers is a 

technical barrier that limits the use of stem cells for therapeutic transplantation [84]. 

Strategy We wanted to fabricate and evaluate a microfludic system that was able 

to sustain cells on a long-term basis, which is necessary for cell differentiation studies. 

Further, we wanted a system equipped with channels for creating heterogeneous laminar 

flow, thereby allowing for unique manipulation of the culture (see section 1.6, page 23). 

Thus, we implemented a published system meeting with these demands [236, 237]. 

Microcultivation using iMSC#3 cells was initiated, as both undifferentiated MSCs and 

their progeny serve to support stroma-dependent hematopoietic cells [27, 113, 114, 238]. 

Induction of adipogenic and osteogenic differentiation was performed for two purposes; 

1) to test whether the system was compatible with normal cell behaviour, and 2) with the 

prospects of producing distinct hematopoietic microenvironments on-chip. 

Outcome Two variant microfluidic systems based on PDMS microchannels 

bonded to a glass substrate was successfully fabricated. Experiments exploiting the 

channels for creating laminar flows demonstrated their capacity to provide for 
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heterogeneous conditions, both with respect to chemical environment and cellular 

composition, Figure 7, page 24. 

However, these PDMS/glass systems did not allow for consistent differentiation of 

iMSC#3. We noted that the homogeneous substrate allowed cells to spread out in the 

chip, as they did not differ between areas designated for cultivation and those designed for 

perfusion. Cells astray are likely to cause a suboptimal environment over time by blocking 

the channels used for medium supply (these are kept narrow to allow slow perfusion). The 

problem was solved by making the perfusion areas non-supportive to cell growth, using 

selective surface activation and passivation. This modification involved the use of a PS 

substrate, as sustainable MSC#3 patterning was not obtained on glass (being the classical 

microfluidic substrate for PDMS systems), Table 5, page 43. The PDMS/PS systems 

maintained iMSC#3 healthy for more than 3 weeks - as demonstrated by a Live/Dead 

viability assay and normal differentiation processes. This outcome is superior to previous 

documentation of on-chip MSC differentiation, all using systems based on unpatterned 

glass substrates [239-242]. Thus, there is a need for re-evaluating the properties of 

microfluidic cultivation substrates. 

In PDMS/PS microfluidic systems, normal MSC differentiation was obtained 

under constant flow conditions, even though perfusion is reported to affect MSCs [243]. 

Caution should be exercised regarding the use of laminar flows for localised cell 

treatment, due to potential shear stress effects on cells. In preliminary experiments, 

iMSC#3 was subjected to long-term and repeated exposures of laminar streams (i.e. 

overnight x 7), for the purpose of inducing adipogenic and osteogenic differentiation in 

separate regions. The cells survived, but differentiation was not achieved. However these 

results may relate to the use of the non-optimal PDMS/glass systems. Nevertheless, it may 

be that localised cell treatment by laminar streams is only suitable for processes that can 

be induced by pulse stimulations. 

Immediate prospects The microfluidic system developed is ready for future 

manipulation of the cellular environment by heterogeneous laminar flow, taking the above 

precautions in use. A strategy for circumventing problems due to shear stress involves the 

integration [244] of a cell-supportive microporous membrane into the system, thus 

separating the cultivation chamber into two floors. In such an arrangement, cells can be 

grown on top of the membrane and at static conditions, while the underlying compartment 

can provide localised signals (obtained by heterogeneous flow and transmitted via the 
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membrane) [245]. Alternatively, other microchannel designs may be implemented for 

producing gradients that inflict minimal shear stress upon cells [246, 247]. 

A membrane-separated two-compartment system may also provide a strategy for 

determining whether stroma-supported hematopoietic cells are directly or indirectly 

affected by an agent. Stromal cells and hematopoietic cells can reside in different 

compartments while interacting via membrane pores [248, 249], for the purpose of 

exposing them to different chemical environments. In this case, flow must prevail, to keep 

diffusion from equalising the chemical difference between compartments. 

A natural further development includes exploration of methods for obtaining 3D 

cell cultures, thus adding further authenticity to the system [250-253]. 

Interestingly, cell shape and cytoskeletal tension can modulate MSC 

differentiation, as shown when MSCs are forced to adapt certain patterns. When grown in 

a mix of adipogenic and osteogenic factors, adipogenesis was shown to occur in a) central 

areas of the pattern, and b) when the area was minimised, making the cell stay spherical. 

Correspondingly, osteogenesis was shown to occur at a) peripheral areas of the pattern, 

and b) when cell spreading was allowed [254, 255]. Notably, the presence of osteoblasts 

in outer areas and adipocytes in central areas resembles a section of a long bone. Using 

these principles, variant heterogeneous cultures of osteoblasts and adipocytes can be 

fabricated and tested for ability to support stroma-dependent hematopoietic cells. The 

swift cell patterning method developed in Article IV can facilitate the production of such 

cultures and keep the cells in place for a sufficient time period, which is an improvement 

as compared with a previous method applied to achieve MSC patterning [255]. 

Future prospects Conclusions drawn from models are only as valid as the models 

themselves. Microfabricated tools for making advanced hematopoietic beds may provide 

basis for better understanding of the basic processes regulating the niches, knowledge that 

is important in medicine and tissue engineering. By exploiting unique microscale features, 

one can eventually imagine a future microsystem that provides the characteristic spatial 

arrangement of the niche/niche borderline elements; produced by co-patterning of stromal 

cells of different phenotypes and differentiated treatment with soluble signals, including 

gradients of regulatory factors. If achieved in a way that sufficiently mimics the in vivo 

environment, the natural behaviour of stem cells may be reproduced; stem cell 

quiescence, self-renewal and differentiation, Figure 18. In the future, engineered niches 

may be used for stem cell amplification, drug-testing and toxicological screening. 
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Figure 18 Use of niche technology to produce niches. Conceptual drawing of a HSC 
niche on a chip. Lower part is simplified from [256]. The focal streams may be exchanged with a 
gradient. 
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5 Conclusions 

Proteins displayed by a human B-progenitor cell line (BV173) were successfully cloned 

by implementation of a signal sequence trap based on retroviral expression (SST-REX). 

One unknown protein was characterised and named transmembrane protein 9 

(TMEM-9). However, this protein was localised in intracellular membranes and has thus 

no obvious role in intercellular communication. We suggest three proteins as candidates 

for investigation of a possible role in stroma-dependent B-lymphopoiesis; bone marrow 

stromal cell antigen 2 (BST2, CD317), extracellular matrix metalloprotease inducer 

(EMMPRIN, CD147) and plasminogen activator urokinase receptor (PLAUR, CD87). 

EMMPRIN and PLAUR are both involved in degradation of ECM. Thus, they are able to 

facilitate cell migration and the release of immobilised growth factors. 

 

The localisation of B-cell progenitors in human BM was determined by double and 

triple immunoassays. Visualisation of cell-stage levels showed a maturation gradient 

towards the sinusoids, but no relation to endosteal surfaces. Importantly, all benign B-cell 

progenitors harboured a niche formed by a population of slender CD10+ stromal cells. 

Further investigation should characterise the phenotype of these stromal cells further and 

determine their contribution to stroma-dependent hematopoiesis. Diagnostic BM 

pathology may benefit from the ability to distinguishing between benign, stroma-attached 

B-cells and malign B-cells with no spatial stromal relation. 

 

Human B-cell progenitors were shown to express Wnt pathway molecules on the 

transcriptional level, and activation of the canonical pathway was demonstrated by 

Wnt3a-induced accumulation of β-catenin. Functional cultivation assays showed that 

Wnt3a reduced both proliferation of B-cell progenitors and the production of B-cells from 

HSC. In our cultivation models, we conclude that Wnt3a acts as a negative regulator on 

B-lymphopoiesis, directly or via stroma. However, cells in their native hematopoietic 

microenvironment are likely to receive a delicate balanced combination of signals and 

may respond differently. 
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Microfluidic devices for cell cultivation were produced by soft lithography. MSCs were 

unable to differentiate properly in the original system, which was based on a 

homogeneous glass substrate. Hence, a PS-based system with a spatially defined 

cultivation area was developed. A well suited long-term environment for MSCs was 

obtained in the revised system, as shown by extensive adipogenic and osteogenic on-chip 

differentiation. The patterning strategy developed is more operation-friendly and efficient 

than previous methods. The device can be used for future stem cell research and enables 

manipulation of the cellular environment by heterogeneous laminar flow. 

5.1 Concluding remarks 

This study exemplifies how different methodologies complement each other when 

approaching a scientific problem. Manipulation of adult cells in culture allows for 

experimental flexibility and does not involve any ethical problems; however the results 

must be evaluated in terms of their context. Retroviral expression is a powerful tool for 

forcing eukaryotic cells to express foreign genes and may be further applied for genetic 

manipulation of hematopoietic cells, which is difficult to achieve by other methods. 

However great attention must be paid to safety issues. Immunohistochemistry permits 

investigation of cells in their native habitat and gives authentic and informative 

“snapshots”. However, its applicability in human studies is restricted by limited 

opportunities for manipulating human beings. The use of microfabricated tools for 

obtaining completely new cell cultivation conditions is promising for performing “out-of-

the-box” type experiments. Interdisciplinary communication will be crucial for making 

biologists appreciate the possibilities of this technology [257]. In general, future progress 

in research is likely to benefit from, and even depend on information flow across 

traditional barriers, thereby facilitating new concepts and technological solutions. 
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6 Supplements 

6.1 Supplementary results 

6.1.1 Supplementary information, Article IV 

 
Figure S1 Alternative flow patterns By the use of dyes, two separate flow patterns in 

the microfluidic device are visualised. These are achieved by operating different 
sets of channels and are determining the composition of fluids in the cell 
cultivation chamber. Heterogeneous flows (a) for localised application of agents 
are obtained by feeding the upper inlets with different fluids and applying suction 
to the lower port, using a syringe pump. Perfusion flow (b, I-III are progressive 
images) for culture maintenance is performed by siphoning, using the distal ports 
(see text). Flow directions are indicated in the overview image (upper left). 
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Figure S2 MSC localization is not restricted by BSA boundaries Progressive images of 

iMSC#3 cultivated in serum containing medium on a glass substrate that was 
coated alternately with FN (�) and BSA (	) by the use of microchannels. Although 
cells initially adhered to FN coated regions only (a, 1h after seeding), they 
migrated out of these areas (b) and appeared unpatterned the next day (c). 

 

 

 
Figure S3 Simultaneous adipogenesis and osteogenesis on patterned PS substrates 

Dark field images showing one conventional (upper panel) and one microfluidic 
(lower panel) culture of iMSC#3 after 3 weeks in a 50:50 mixture of adipogenic 
and osteogenic medium. Adipocytes were stained by Oil Red-O (left panel) and 
subsequent staining of the same culture with Alizarin Red S revealed calcium 
produced by osteoblasts (right panel). The device top layer was removed for 
better end-point evaluation of the microfluidic culture, (d, dotted lines indicate 
former wall position) due to calcium deposition on the PDMS channel. 



E. Tenstad: Human hematopoietic microenvironments, in vivo, in vitro and on chip 

 63 

 
Figure S5 Conceptual figure in content pages (Lab Chip journal). Caption: We 

demonstrate the use of a microfluidic platform for long-term cultivation (3 weeks) 
of human mesenchymal stem-like cells (MSCs), a cell population of high interest 
for tissue engineering. 
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6.1.2 Perceptions of mold and microfluidic system in 3D 

 
Figure S6 Green colour indicates cell-supportive areas and red colour indicates non-

supportive areas. Drawings are not to exact scale. By Amund Tenstad (age 13). 
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6.1.3 Cell quantiation by flow cytometry 

 
Figure S7 Proof of concept experiment for cell quantitation method. The numbers of 

aliquoted cells and rescued cells from each well are matching at all tested cell 
densities. 

 
 
Protocol 

Beads: Flow Cytometry Absolute Count Standard (Bangs laboratory Inc.) 

Procedure & Estimation: A known number of beads is added to a cell sample*. A part of 
this sample is then analyzed by flow cytometry. The cells/beads fraction in the two sample 
parts remains identical (homogeneity is ensured by mixing before withdrawal and flow 
analyses).  
 

Cells recovered (unknown)  =  Cell count by flow 
Single-beads added   Single-bead count by flow 

 

Some aggregation of beads occurred. The number of single beads added was determined 
by the following equation: 
 
*Single-beads added = 
 % single beads (estimated by flow)/100 x [bead concentration**] x bead solution volume 
 
** stated by the manufacturer 



E. Tenstad: Human hematopoietic microenvironments, in vivo, in vitro and on chip 

 66 

6.2 Soft lithography procedure 

Schematic outline of photolithography, replica molding and bonding of PDMS to glass. 
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6.3 News piece on Article IV 
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6.4 News piece on project 

 
In newsletter from Department of Micro and Nano Systems Technology (IMST), 

March 2010. 

By Ellen Tenstad 
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6.5 Project Chart 2009 

In ”Vestfold College Research summery, Institute for Microsystem technology” 
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6.6 Popular Science Poster 

Event: Norwegian Science Week, Høgskolen i Vestfold, 2009. 
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6.7 Scientific Poster 

Conference: “Signal Transduction Determining the Fate of Stem Cells”, 
Montana State University, Bozeman, Montana, 2003  
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6.8 For fun; a non-hematopoietic bed for developmental purposes 
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Abstract
Background: The early B lymphopoiesis in mammals is regulated through close interactions with
stromal cells and components of the intracellular matrix in the bone marrow (BM)
microenvironment. Although B lymphopoiesis has been studied for decades, the factors that are
implicated in this process, both autocrine and paracrine, are inadequately explored. Wnt signaling
is known to be involved in embryonic development and growth regulation of tissues and cancer.
Wnt molecules are produced in the BM, and we here ask whether canonical Wnt signaling has a
role in regulating human BM B lymphopoiesis.

Results: Examination of the mRNA expression pattern of Wnt ligands, Fzd receptors and Wnt
antagonists revealed that BM B progenitor cells and stromal cells express a set of ligands and
receptors available for induction of Wnt signaling as well as antagonists for fine tuning of this
signaling. Furthermore, different B progenitor maturation stages showed differential expression of
Wnt receptors and co-receptors, �-catenin, plakoglobin, LEF-1 and TCF-4 mRNAs, suggesting
canonical Wnt signaling as a regulator of early B lymphopoiesis. Exogenous Wnt3A induced
stabilization and nuclear accumulation of �-catenin in primary lineage restricted B progenitor cells.
Also, Wnt3A inhibited B lymphopoiesis of CD133+CD10- hematopoietic progenitor cells and
CD10+ B progenitor cells in coculture assays using a supportive layer of stromal cells. This effect
was blocked by the Wnt antagonists sFRP1 or Dkk1. Examination of early events in the coculture
showed that Wnt3A inhibits cell division of B progenitor cells.

Conclusion: These results indicate that canonical Wnt signaling is involved in human BM B
lymphopoiesis where it acts as a negative regulator of cell proliferation in a direct or stroma
dependent manner.

Background
In mammals, the early antigen independent phase of B
lymphopoiesis takes place in the intersinusoidal spaces in

the bone marrow (BM). Here, the B cell progeny mature
from hematopoietic stem cells (HSC) via early lymphoid
progenitors (ELP, comprising common lymphoid progen-
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itors and early B), pro-B, pre-B and immature B develop-
mental stages characterized by successive steps in the
rearrangement of immunoglobulin genes and consecutive
expression of cellular markers [1-3]. Using immunohisto-
chemical doublestaining we have revealed earlier that all
developmental stages of the B cell lineage in human BM
tissue are in close contact with slender CD10+ stromal
cells or their extensions [4]. This finding correlates with
the consensus that B lymphopoiesis is tightly regulated by
signals provided by mesenchymal stromal cells and com-
ponents of the intracellular matrix in the BM microenvi-
ronment in vivo [4-6]. However, the elements of this
signaling are yet inadequately identified; stromal factors
like IL 7, Flt3 ligand [7], IL-3 [8,9] and SDF1 [10,11] are
essential, but not sufficient for BM B lymphopoiesis [2].
Clearly, there is a need for further characterization of both
the stromal phenotype as well as the autocrine and para-
crine factors that participate in the regulation of BM B
lympopoiesis.

Wnt proteins belong to a large and highly conserved fam-
ily of secreted, cystein-rich glycoprotein signaling mole-
cules, consisting of 19 members. They are likely to act
locally because of their limited solubility [12] and ten-
dency to associate with the cell surface extracellular matrix
[13]. Signaling is initiated by Wnt proteins binding to
receptors of the Frizzled family (Fzd) on the cell surface.
This binding is promiscuous and the ligand/receptor spe-
cificities are not yet properly determined. Depending on
particular Wnt/Fzd combinations, at least three signaling
cascades may be activated. Most studied is the canonical
Wnt pathway, which is activated by members of the Wnt1
class (such as Wnt1, Wnt2, Wnt3 and Wnt8) [14]. A key
regulatory molecule in this pathway is �-catenin, which in
the absence of a Wnt signal is kept low through continu-
ous phosporylation by glycogen synthase kinase-3� (GSK-
3�), resulting in a subsequent proteasome dependent
destruction of �-catenin. Binding of Wnt ligands to Fzd
receptors and coreceptors LRP5/6, leads to inactivation of
GSK3� and thereby accumulation of nonphosphorylated
�-catenin, which enter the nucleus. Here, �-catenin acts as
a coactivator of members of the lymphoid enhancer fac-
tor-1 (LEF-1)/T-cell factor (TCF) family of transcription
factors to stimulate transcription of Wnt target genes [15].
Activation of Wnt signaling can be inhibited by soluble
antagonists, including the Dickkopf (Dkk) family and the
soluble Fzd related proteins (sFRP) [16].

Recently, Wnt proteins have drawn attention as a set of
factors operating in embryonic development, growth reg-
ulation of adult tissues and cancer formation [15,17-20].
Moreover, Wnt signaling plays a central role in the com-
munication between HSC and stromal cells [21] as well as
in several other stem cell niches [22,23]. Several observa-
tions have established direct roles for Wnt signaling in the

maturation process where hematopoietic stem cells lose
their pluripotency and commit to specific lineages [24-
26]. LEF-1 and Fzd9 knockout mice show defect B lym-
phopoiesis [24,27] and Wnt signaling seems to be
involved in development of leukemia [28-30] and malig-
nant myeloma [31]. Moreover, in murine B lymphopoie-
sis this signaling pathway has a stimulatory effect on pro-
B cells from fetal liver [24]. As early B lymphopoiesis in
mice and humans to a certain extent shows distinct factor
dependency [32], and since fetal and adult lymphopoiesis
takes place in different maturation niches, the aim of the
present study was to investigate Wnt signaling in human
BM B lymphopoiesis in more detail. We have examined
which Wnt signaling pathway molecules that are
expressed in B progenitor cells and stromal cells from
human BM, and analyzed the regulated expression of sev-
eral Wnt receptors (Fzd and LRP), �-catenin and pla-
koglobin as well as the central transcription factors LEF-1
and TCF-4 during the early B lymphopoiesis. Further-
more, we have investigated the effect of recombinant
Wnt3A on progenitor B cells. We found that Wnt3A
induced �-catenin stabilization and inhibited in vitro B
lymphopoiesis in a coculture with stromal cells by sup-
pression of initial cell proliferation. Thus, canonical Wnt
signaling may be involved in human BM B lymphopoie-
sis.

Results
A distinct set of Wnt ligands, Fzd receptors and Wnt 
antagonists is expressed in B progenitor cells and stromal 
cells from human BM
Previous work has demonstrated expression of Wnt5A,
Wnt2B and Wnt10B in pooled human BM populations
[26]. However, the expression pattern of Wnt ligands, Fzd
receptors and Wnt antagonists in human B lineage cells
has not been explored. In the absence of available anti-
bodies to detect these large families of proteins, we per-
formed conventional RT-PCR on RNA isolated from FACS
sorted B progenitor cells (CD10+IgM-CD45+) pooled from
three different donors, using primers designed specifically
to detect mRNA expression of all known Wnt ligands and
Fzd receptors as well as the Wnt antagonists Dkk1, Dkk4,
sFRP1-4 and WIF1 (fig. 1 and table 1). In B progenitor
cells, Wnt 2B, 5B, 8A, 10A and 16 mRNAs were readily
detected. Interestingly, the Wnt16 PCR product had two
bands of 520 bp and 233 bp, respectively (fig. 1). The 520
bp band represents the full-length form and the 233 bp
band represents a possible splice variant lacking exon 3,
potentially giving rise to a truncated Wnt16 form. In addi-
tion, expression of several other Wnt mRNAs was detecta-
ble, however, less readily (table 1). The Fzd receptors
showed on average much higher mRNA expression levels
than the Wnts, where Fzd2, 3, 4, 5, 6 and 9 mRNAs were
easily detectable in the B progenitor population, as dem-
onstrated by strong PCR bands. Fzd1 and Fzd7 mRNA
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mRNA expression analyses of Wnt ligands, Fzd receptors and Wnt antagonistsFigure 1
mRNA expression analyses of Wnt ligands, Fzd receptors and Wnt antagonists. RT-PCR detection of mRNAs for 
Wnt ligands, Fzd receptors and Wnt antagonists in BM B progenitor cells. The + and - symbols indicate the presence and 
absence of reverse transcriptase in the reaction mix, respectively. One representative of two experiments is shown. Amplicon 
sizes: Wnt2B: 328 bp, Wnt5B:279 bp, Wnt8A: 400 bp, Wnt10A: 296 bp, Wnt16: 520 bp, Fzd2: 306 bp, Fzd3: 622 bp, Fzd4: 605 
bp, Fzd5: 197 bp, Fzd6: 300 bp, Fzd9: 210 bp, sFRP4: 243 bp, WIF1: 200 bp, Dkk1: 235 bp, Dkk4: 241 bp. M: Size marker 1 kb 
Plus DNA ladder (Invitrogen, USA). Where two different bands are detected, an arrow marks the correct band.
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expression was also demonstrated, but at lower levels
than the other Fzds (table 1). We also detected expression
of the Wnt antagonists Dkk1, Dkk4, sFRP4 and WIF1
mRNAs in the BM B progenitor cells (fig. 1 and table 1).
Of these, sFRP4 mRNA was most readily detectable, sug-
gesting the highest expression level. sFRP2 and sFRP3
mRNAs were variably detected (table 1), suggesting low
expression levels.

RT-PCR performed on RNA from BM stromal cells showed
expression of Wnt2B, Wnt5A, Wnt5B and Wnt8B. mRNA
expression of Wnt9B was also demonstrated in these cells,
although at a lower levels. Moreover, Fzd3, 4 and 6
mRNAs were detected in BM stromal cells, as well as
expression of the Wnt antagonists Dkk1, sFRP2 and sFRP3
mRNAs (table 1).

Regulated expression of Wnt receptors, �-catenin, 
plakoglobin, LEF-1 and TCF-4 mRNAs during human BM B 
lymphopoiesis
Identification of differential expression of Wnt signaling
molecules during the B lymphopoiesis may reveal at
which window in the process Wnt signaling is active.
Thus, using quantitative real-time PCR, we examined the
expression of a selection of Wnt receptors, �-catenin, pla-
koglobin and transcription factors in FACS sorted human
BM B lineage cells representing different maturation lev-
els; ELP cells (CD10+CD34+CD19-, also tested to be
CD38+), pro-B cells (CD10+CD34+CD19+CD20-IgM-),
large pre-B cells (CD10+CD34-CD19+CD20dimIgM-),

small pre-B (CD10+CD34-CD19+CD20-IgM-) and imma-
ture B cells (CD10+CD34-CD19+CD20+IgM+). Due to lim-
ited number of cells, expression analysis in ELP cells was
restricted to seven out of ten mRNAs.

The results showed regulation of several of the important
Wnt-signaling molecules, and different expression pro-
files were recognizable (fig. 2). mRNA levels for the
plasma membrane receptors LRP5, LRP6, Fzd5 and Fzd6
dropped considerably as the cells develop from small pre-
B cells into immature B cells. Furthermore, Fzd5 mRNA
levels were strongly up-regulated as the cells commit to
the B lineage (from ELP to pro-B), with a further up-regu-
lation as the cells differentiate to pre-B cells. Fzd2 and
Fzd9 mRNA levels, on the other hand, seemed to increase
somewhat throughout the differentiation, with highest
levels in small pre-B and immature B cells. In small pre-B
cells, the mRNA levels of LRP5 and Fzd9 were about two-
fold higher than in the large cycling pre-B cells. The
expression levels of all receptors were low compared to
the expression levels of e.g. LEF-1 and �-catenin, indicat-
ing relative low mRNA expression levels. Fzd3 and Fzd4
mRNAs were not detectable with the amount of RNA tem-
plate used in these assays.

The mRNA expression of �-catenin and plakoglobin
showed little variation as the cells differentiate. �-catenin
mRNA was evenly expressed in ELP, pro-B, large pre-B and
immature B, with a small increase (near two-fold) in small
pre-B cells. Plakoglobin mRNA levels, in contrast,

Table 1: mRNA expression of Wnt ligands 1–19, Fzd receptors 1–10, Wnt antagonists sFRP1-4, WIF1, Dkk1 and Dkk4

BM B 
progenitor cells

BM stromal 
cells (BMS)

Human fetal 
brain

BM B progenitor 
cells

BM stromal cells 
(BMS)

Human fetal brain

Wnt1 +/- - + Fzd1 +/- - -
Wnt2 - - + Fzd2 + - +
Wnt2B + + + Fzd3 + + +
Wnt3 - - + Fzd4 + + +
Wnt3A +/- - - Fzd5 + - +
Wnt4 +/- - + Fzd6 + + +
Wnt5A +/- + + Fzd7 +/- - +
Wnt5B + + + Fzd8 ND - ND
Wnt6 ND - ND Fzd9 + - +
Wnt7A - - + Fzd10 - - -
Wnt7B - - + Dkk1 + + +
Wnt8A + - + Dkk4 + - -
Wnt8B ND + ND sFRP1 - - +
Wnt9A +/- - + sFRP2 +/- + +
Wnt9B +/- + + sFRP3 +/- + +
Wnt10A + - - sFRP4 + - +
Wnt10B +/- - + WIF1 + ND +
Wnt11 +/- - +
Wnt16 + - +

Genes expressed (+), not expressed (-), variably expressed between experiments(+/-), not determined (ND). N = 2. BM B progenitor cells: 
CD10+IgM-CD45+ cells sorted by FACS and pooled from three different donors. Total RNA from human fetal brain was used as control.
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Real-time PCR analysis of relative mRNA expression levels of Wnt pathway molecules in BM B progenitor sub-populationsFigure 2
Real-time PCR analysis of relative mRNA expression levels of Wnt pathway molecules in BM B progenitor sub-
populations. The sub-populations ELP, pro-B, large pre-B, small pre-B and immature B (imm.B) were isolated by FACS sort-
ing. The relative mRNA expression levels of Wnt receptors and co-receptors, �-catenin, plakoglobin, LEF-1 and TCF-4 were 
quantified by real-time PCR analysis. Calculations of the expression levels were performed using the standard curve method 
and then normalized to the expression of PGK1 mRNA. mRNA levels in pro-B cells were used as calibrators. The bars repre-
sent the mean of 3–5 experiments ± SEM.
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decreased 2-fold as the cells became large pre-B cells (fig.
2).

LEF-1 and TCF-4 mRNA expression is highly regulated
during the early B lymphopoiesis, as shown previously by
microarray analysis (Hystad ME et al, manuscript in prep-
aration and [33]). Our results showed a strong up-regula-
tion of LEF-1 mRNA as the cells commit to the B lineage,
and the expression was kept continuously high until the
cells become immature B cells, where the level was
reduced to the same as in uncommitted progenitors. Here,
low LEF-1 expression was further confirmed by the
absence of LEF-1 protein in B lymphocytes from periph-
eral blood (results not shown). The relative TCF-4 mRNA
levels, on the other hand, were high in both ELP and pro-
B, and decreased (up to 5-fold) as the cells passed through
Ig rearrangement (pre-B – immature B cells) (fig. 2). It
should be noted that the LEF-1 mRNA expression was
detected 5–8 cycles earlier than the TCF-4 mRNA expres-
sion, indicating that LEF-1 mRNA is much more abundant
than TCF-4 mRNA.

Wnt3A induces �-catenin stabilization and accumulation 
in BM B progenitor cells
Our data demonstrated that human BM B progenitor cells
express a set of central players in the canonical Wnt sign-
aling pathway, potentially allowing a Wnt signal to be
conveyed. To further examine whether B progenitor cells

could respond to treatment with Wnt proteins, we looked
for the stabilization and subsequent accumulation of the
vital signaling molecule �-catenin in CD10+ B progenitor
cells. When these cells were treated with Wnt3A, the
amount of �-catenin increased substantially compared to
the very low levels in untreated cells (fig. 3). Although
there were some donor variations, the results showed that
the B progenitor cells are able to receive and communicate
a signal from the Wnt pathway.

Wnt3A inhibits human in vitro B lymphopoiesis
Having identified expression of central molecules in the
canonical Wnt pathway in BM B progenitor cells, we per-
formed two variants of B lymphopoiesis assays to investi-
gate whether Wnt signaling (using recombinant Wnt3A)
had a functional effect on B lymphopoiesis in vitro. Both
assays were based on coculture with the murine stromal
cell line MS-5. In assay 1 hematopoietic progenitor cells
(HPC) were tested for their capacity to develop into B lin-
eage cells, whereas in assay 2 B progenitor cells were meas-
ured for survival and expansion. At the endpoint of the
assays, each sample was subjected to quantitative flow
cytometry and the total number of cells positive for the
pan B cell marker CD19 was measured. In assay 2, analysis
of the differentiation marker CD34 was included.

Initial analyses demonstrated that Wnt3A had an inhibi-
tory effect when BM HPC (CD133+CD10-) were grown on
stromal cells for 3 weeks at conditions that favored B lym-
phopoiesis (assay 1). The number of CD19+ cells in the
samples treated with Wnt3A was 5 times less than the
number measured in the control samples (fig. 4A). The
inhibited B lymphopoiesis could result from Wnt3A sup-
pressing differentiation of the HSC pool found in the HPC
population [34], an indirect effect mediated by the stro-
mal cells [35], or, alternatively, Wnt3A could target more
committed lymphoid progenitor cells. To examine the lat-
ter possibility in more detail, we tested whether Wnt3A
acted on later stages of in vitro B lymphopoiesis. BM B pro-
genitor cells (CD10+) were grown on stromal cells in the
presence of Wnt3A or medium only for 2 weeks (assay 2).
In accordance with the results from the assays using HPC,
it was demonstrated on average near 50% reduction in the
total number of CD19+ cells in samples treated with
Wnt3A compared with control (fig. 4B). When added
every third day, both sFRP1 and Dkk1 were able to coun-
teract the effect of Wnt3A almost completely, demonstrat-
ing a specific effect of Wnt3A on in vitro B lymphopoiesis
(fig. 4B). Similar results were obtained using Wnt3A pro-
tein from another source; Wnt3A conditioned medium
(table 2). Moreover, the effect was independent of the
source of stromal cells as the use of primary human BM
stromal cells (BMS) as supportive layer did not change the
outcome of the experiment (table 2).

Wnt3A induces �-catenin stabilization in BM B progenitor cellsFigure 3
Wnt3A induces �-catenin stabilization in BM B pro-
genitor cells. Western blot analysis of �-catenin levels in 
BM CD10+ B lineage progenitor cells stimulated with Wnt3A 
(100 ng/ml) or vehicle (PBS with 0.1% detoxified BSA) for 3 
hours. The blots were incubated with an Ab against �-cat-
enin, followed by an Ab against �-actin to ascertain equal 
loading in the wells. The same results were found in cells 
from 4 out of 5 different donors, indicating some degree of 
donor variation in the response to Wnt3A.
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Wnt3A inhibits in vitro B lymphopoiesisFigure 4
Wnt3A inhibits in vitro B lymphopoiesis. BM CD133+CD10- HPC (A: assay 1) or CD10+ B progenitor cells (B: assay 2) 
were cocultured with a confluent layer of the murine stromal cell line MS-5 for 3 or 2 weeks, respectively, while treated with 
Wnt3A (100 ng/ml), Wnt3A + sFRP1 (2 �g/ml), Wnt3A + Dkk1 (500 ng/ml) or medium only. The number of resulting CD19+ 

B lineage cells in each sample was determined by quantitative flow cytometry. The percentage of CD34+ cells among the 
CD19+ cells were measured before and after culturing, with and without treatment with Wnt3A (C). The bars represent the 
mean of N experiments performed in duplicate, ± SEM. A) N = 6. B) Cells treated with control medium or Wnt3A: N = 11, 
Wnt3A + sFRP1: N = 3, Wnt3A + Dkk1: N = 2. C) day 0: N = 7, day 7: N = 3, Day 14: N = 8. *p � 0.01, Wilcoxon Signed 
Ranks Test.
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To check whether Wnt3A affected distinct early B subpop-
ulations differently, the cells in assay 2 were additionally
analyzed for expression of the CD34 differentiation
marker to distinguish between pro-B and pre-B cells. The
relative frequency of CD34+ cells (pro-B) decreased from
38 % before culturing (day 0), to approximately 30 % and
15 % after one and two weeks of culturing, respectively.
This decrease was independent of treatment with or with-
out Wnt3A (fig. 4C). Furthermore, separation of the pre-B
population into large cycling and small resting pre-B cells
by surface expression of CD20 [33] revealed inhibitory
effect of Wnt3A on all subpopulations (results not
shown). Thus, we conclude that Wnt3A does not affect the
relative proportions of different BM B subpopulations,
but has a general inhibitory effect on pro-B, pre-B and
immature B cells in a stroma coculture.

Wnt3A inhibits BM B progenitor cell division in vitro
The inhibitory effect of Wnt3A on in vitro B lymphopoiesis
could be explained by increased apoptosis, an inhibitory
effect on proliferation, or both. However, measurements
of apoptosis in cells cultured without stromal cells for 1,
2 or 3 days showed no effect of Wnt3A (results not
shown), suggesting an effect on proliferation only. To ver-
ify this, we used high-resolution cell division tracking to
study the initial effects of Wnt3A on B progenitor cells
grown on a stromal layer. Sorted CFSE labeled CD10+ B
progenitor cells were cocultured with MS-5 for 3 days in
the presence of Wnt3A or medium only, and examined for
the number of cell divisions by flow cytometry as well as
the surface markers CD34 and CD19. The data clearly
demonstrated that Wnt3A inhibited the initial divisions
of B progenitor cells taking place in the coculture (fig. 5A).
When gating for pro-B cells (CD34+CD19+) and pre-B
cells (CD34-CD19+) separately, we found that Wnt3A
inhibited proliferation of both these populations in a
dose-dependent manner (fig. 5B). This effect was blocked
by the Wnt antagonist sFRP1 (fig. 5B).

Discussion
Several studies have identified the canonical Wnt pathway
as a regulator of the homeostasis of human and murine
HSC and hematopoietic progenitor cells [26,34,36]. Fur-
thermore, knockout studies (LEF-1 and Fzd9) in mice
have indicated a central role for Wnt signaling in B lym-
phopoiesis [24,27]. The Wnt pathway also seems to be
involved in development of leukemia [28-30]. In the
present work, we wanted to study in more detail the
implications of canonical Wnt signaling in human BM B
lymphopoiesis. Here, we describe that a set of Wnt lig-
ands, Fzd receptors and Wnt antagonists is expressed in
BM B progenitor cells, allowing a Wnt signal to be con-
veyed and modulated in these cells. We demonstrate reg-
ulated expression of several Wnt receptors, �-catenin and
plakoglobin as well as the transcription factors LEF-1 and
TCF-4 mRNAs during early differentiation steps in the B
cell lineage, supporting the hypothesis that Wnt signaling
is active in BM B lymphopoiesis. Furthermore, we show
that canonical Wnt signaling, as measured by the accumu-
lation of �-catenin levels, is induced in human BM B pro-
genitor cells. Finally, we demonstrate that Wnt3A inhibits
human stromal dependent B lymphopoiesis and that this
effect is a consequence of decreased cell proliferation.

We show that CD10+ human B progenitor cells express a
set of Wnt ligand mRNAs (2B, 5B, 8A, 10A and 16), of
which Wnt16 is of particular interest, since this gene is
activated by the E2A-Pbx1 translocation in some cases of
acute lymphocytic leukaemia (ALL) [28]. However, sev-
eral pre-B leukemia cell lines studied [28] do not express
Wnt16, suggesting a distinct role for this factor in early B
lymphopoiesis that is turned off during leukemiagenesis,
except in cases where Wnt16 is aberrantly activated by the
E2A-Pbx1 fusion protein. Further, we demonstrate that
primary BM stromal cells express mRNA of several Wnt
ligands, including Wnt2B, Wnt5A, Wnt5B, Wnt8B and
Wnt9B. This is partly in accordance with previous studies
[24,26]. Taken together, these results show that both

Table 2: Number of CD19 cells after two weeks of culturing BM CD10+ cells on stromal cells

Exp. No. (with MS5) Control-CM Wnt3A-CM Inhibition Index*

1 2182 ± 427 184 ± 91 0.08
2 9440 ± 1953 2652 ± 721 0.28
3 7292 ± 1928 2524 ± 475 0.35

Exp. No. (with BMS) Medium rmWnt3A Inhibition Index*

1 1746 ± 300 920 ± 64 0.53

BM CD10+ cells were cultured on a layer of the murine stromal cell line MS-5 in the presence of Wnt3A-conditioned medium (Wnt3A-CM) or 
control-conditioned medium (control-CM), or on a layer of human bone marrow stromal cells (BMS) in the presence of rmWnt3A or control 
medium. The numbers in the table represent the mean of duplicate wells ± SD. *Number of CD19+ cells in wells containing Wnt3A divided by 
number of cells in wells containing control-medium.
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Wnt3A inhibits the initial phase of stromal supported cell division of BM B progenitorsFigure 5
Wnt3A inhibits the initial phase of stromal supported cell division of BM B progenitors. Highly purified BM 
CD10+CFSEmean cells were grown on a confluent layer of MS-5 and treated with Wnt3A (25–400 ng/ml) or medium only. After 
three days, the cells were analyzed on a FACScan flow cytometer for the number of cell divisions of CD19+ cells. A) Tracking 
histograms of cell divisions of CFSE-labeled BM B progenitor cells in the presence or absence of Wnt3A (100 ng/ml) One rep-
resentative experiment of six is shown. B) Dose dependent inhibition of cell division of CD34+ pro-B cells and CD34- pre-B 
cells by Wnt3A (closed circles). The inhibitory effect of Wnt3A was blocked by Wnt antagonist sFRP1 (2 �g/ml) (open circle). 
Data are shown as percentage of cells that had gone through one or more cell divisions, as determined by cell division tracking 
with CFSE. One representative experiment of two is shown, except for Wnt3A (100 ng/ml) and Wnt3A + FRP1 (2 �g/ml) 
where one representative experiment of six is shown (*p < 0.05, Wilcoxon Signed Ranks Test, n = 6).
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hematopoietic cells and the supporting stromal cells may
produce Wnt ligands. Different Wnt ligands may have dis-
tinct effects during early B lymphopoiesis, which is a topic
for future investigations.

So far, only scarce knowledge is available about both lig-
and specificity and tissue-restricted expression of the Fzd
receptors. In our studies we found expression of a wide
range of Fzd receptor mRNAs, including Fzd2, 3, 4, 5, 6
and 9, in BM B progenitor cells. Compared to the Wnt
mRNAs, these are more readily detectable, indicating
higher expression levels, which suggests that Wnt-signal-
ing is important for B progenitor cells. Real-time PCR
assays demonstrated differential expression of several Fzd
receptor mRNAs, including Fzd5 and Fzd6, which are
strongly down-regulated as the cells become immature B
cells. Notably, LRP5 and LRP6 mRNAs showed a similar
down-regulation. Furthermore, both Fzd5 and Fzd9 are
up-regulated as the cells commit to the B cell lineage and
go through differentiation. Interestingly, Fzd9-/- mice
show a depletion of developing B cells in the BM, particu-
larly in the cycling pre-B population [27]. In contrast to
this, our results show that the large cycling pre-B cells
express lower levels of LRP5, LRP6, Fzd6, Fzd9, �-catenin
and plakoglobin than the small resting pre-B cells.
Although one should be cautious in trying to predict func-
tional consequences from mRNA expression data, this
trend suggests that Wnt signaling is not likely to be
involved in a positive regulation of cycling of the large
pre-B cells after Ig heavy chain rearrangement. And even
though the absolute expression levels of the receptor
mRNAs are low, these data suggest that during a narrow
window of the development comprising pro- and pre-B
cells, B progenitor cells might be target for Wnt signaling
through these receptors.

To be able to convey a Wnt-signal, the cells have to express
either of the two important molecules, �-catenin or pla-
koglobin. Our results show that levels of �-catenin mRNA
change little during the differentiation. Although it has
been demonstrated that levels of cytoplasmic �-catenin
protein may vary throughout the development of thymo-
cytes [37], these variations may not necessarily be
reflected by the mRNA levels. In fact, as �-catenin is
needed both for signaling purposes as well as for adhesion
purposes, the mRNA levels may have to be kept relatively
stable. Plakoglobin mRNA, on the other hand, decreases
after the pro-B differentiation level. This corresponds to
the observations made in developing murine thymocytes
[37], where plakoglobin is down-regulated at the level of
immature single positive thymocytes, suggesting that pla-
koglobin may play a central, but hitherto unexplored role
in conveying a Wnt signal during lymphopoiesis. In fact,
the lack of effect of knocking down �-catenin in early
hematopoiesis, including B and T lymphopoiesis [38],

prompted the authors to suggest that plakoglobin may
stand-in for �-catenin in this respect.

The LEF-1/TCFs are directly activated by canonical Wnt
signaling, and LEF-1 knockout mice show defects in pro-B
cell proliferation and survival [24]. However, it cannot yet
be ruled out that this effect might be a result of abolish-
ment of the repressive functions or other non-Wnt related
activities of LEF-1 [15]. Here, we have verified microarray
data showing regulation of LEF-1 and TCF-4 during B lym-
phopoiesis (Hystad ME et al, manuscript in preparation
and [33]). Interestingly, it has been reported that LEF-1 is
a target gene for the B lymphopoiesis key transcription
factor Pax-5 [39]. Moreover, LEF-1 interacts with Pax-5
and c-Myb to activate the Rag-2 promoter [40], but the
accurate role of LEF-1 in B lymphopoiesis is still elusive.
In contrast to LEF-1, we found TCF-4 mRNA levels to be
high in ELP and pro-B cells, and lower in the more mature
pre-B and immature B populations. Although expressed at
lower levels, one could speculate that TCF-4 steps in for
LEF-1 in the earliest lymphoid progenitors before LEF-1 is
properly switched on, potentially in conveying a Wnt sig-
nal or, alternatively, in acting as a transcription repressor
of B lineage genes before commitment. These are topics
for further studies.

Wnt antagonists play important roles in preventing or fine
tuning the Wnt signal [16]. Our data show expression of
the Wnt antagonists Dkk1, Dkk4, sFRP4 and WIF1
mRNAs in B progenitor cells. Dkk1, sFRP2 and sFRP3
were expressed in bone marrow stromal cells. Of these fac-
tors, Dkk1 in particular is known to be involved in a feed-
back loop to adjust or shut down canonical Wnt signaling
[41]. It is likely that these factors are important in adjust-
ing the incoming Wnt signals in the bone marrow micro-
environment, where several cell types are able to express a
wide range of ligands and Wnt receptors.

The inhibitory effect of Wnt3A on the generation and cell
division of B progenitor cells in vitro, both with regard to
pro- and pre-B cells, is in contrast to several reports on the
functional effects of canonical Wnt signaling in mice.
Both in murine HSC [34], developing thymocytes [25]
and a wide range of cancer cells [31,42], elevated levels of
�-catenin lead to increased cell proliferation. Further-
more, in fetal murine pro-B cell [24], Wnt3A conditioned
medium leads to increased BrdU incorporation. Our
divergent results may be due to different species, microen-
vironments and/or cell context. For instance, murine and
human B lymphopoiesis require to a certain extent differ-
ing factor dependency [32]. However, by culturing murine
BM B progenitor cells, we have not been able to demon-
strate increased cell proliferation in the presence of
Wnt3A (results not shown). Thus, we suspect the Wnt
response to be different in fetal and adult B progenitor
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cells, potentially affected by the cellular microenviron-
ment and/or context. Indeed, the fetal pro-B cells are
exposed to the microenvironment of the liver and this is
very different from that of the BM. For instance several
regulators of the Wnt pathway are more highly expressed
in fetal liver stroma than in BM stroma [43], which sug-
gest that Wnt signaling might be regulated in a different
manner and have a different role in the fetal liver than in
the BM. Another important aspect that has to be taken
into consideration, is that different Wnt ligands, although
able to activate canonical Wnt signaling, indeed show dis-
tinct activities [44]. In addition there may also be species
and location differences. However, as mentioned above,
Cobas et al have demonstrated a lack of an essential role
for �-catenin in BM hematopoiesis, including prolifera-
tion of B lymphocytes [38]. Thus, in contrast to findings
in the fetal liver, our results may very well represent a
physiological situation in the adult organism, where Wnt
signaling via �-catenin is not essential for B lymphocytes,
but may be used to fine tune the delicate balance between
proliferation, differentiation and apoptosis taking place
during early BM B lymphopoiesis.

In support of our data on an inhibitory effect of Wnt3A on
cell division, it has been reported that canonical Wnt sig-
naling hampers fibroblast cell proliferation through cell
cycle blocks, potentially mediated via p53 [45]. Moreover,
Wnt signaling inhibits proliferation and regulates cell-
cycle arrest at distinct stages of development in Dro-
sophila wing development [46]. Thus, it is likely that the
cellular context, in some cases represented by the ability of
a central regulatory molecule like p53 to respond, will
affect how the cells react to vital stimuli like Wnt. It has
been speculated that aberrant p53 is necessary to convey
the strong tumor promoting effect of abnormal Wnt sign-
aling seen in colon cancer [47,48]. It is also interesting
that Wnt5A has been found to inhibit B cell proliferation
and can function as a tumor suppressor in hematopoietic
tissue, albeit via the non-canonical Wnt/Ca2+ pathway
[49].

We show expression of Wnt2B, 5B, 8A, 10A and 16 in BM
CD10+ cells and of Wnt2B, Wnt5A, Wnt5B, Wnt8B and
Wnt9B mRNAs in human primary BMS cells. Further we
demonstrate that Wnt3A acts directly on B progenitor cells
by increasing the levels of �-catenin, suggesting that the
microenvironment may use Wnt signaling to regulate the
fate of developing B lymphocytes. Yet, we cannot exclude
that the functional effect of Wnt3A on in vitro B lym-
phopoiesis is indirect and mediated via the stromal cells,
as observed for in vitro hematopoiesis [35]. The BM micro-
environment is composed of a heterogeneous population
of cells including fibroblasts, adipocytes, endothelial cells
and osteoblasts, all derived from a common mesenchy-
mal precursor [50]. In particular, the role of Wnt signaling

in adipogenesis may be relevant here, as it has been dem-
onstrated that Wnt10B [51,52] inhibits adipogenesis, and
there seems to be a positive correlation between adipo-
genesis and hematopoiesis [52]. This emphasizes the
complexity of the interactions in the B lymphopoiesis
maturation niche and opens for the possibility that B pro-
genitor cells may manipulate the stromal support via
these Wnt factors. However, it is not uncommon in devel-
opmental niches that morphogenic signals have the
potential to act on several cells in the microenvironment.
Therefore, it has been suggested that Wnt signaling might
influence the HSCs both directly and indirectly by main-
tenance of the cellular elements of the stem cell niche
[21]. In line with this theory, several studies have demon-
strated expression of multiple Wnt mRNAs in thymocytes
and the thymic microenvironment. It is likely that partic-
ular Wnts serve distinct roles, thus, cell specific effects may
be achieved by "playing the Wnt repertoire" as well as
through combinations with other signaling events.

Conclusion
In this study, we have demonstrated mRNA expression of
several Wnt ligands, Fzd receptors and Wnt antagonists in
human BM B progenitor cells and regulated expression of
Fzd receptors and co-receptors, �-catenin, plakoglobin,
LEF-1 and TCF-4 mRNA in these cells during differentia-
tion. Furthermore, we find that Wnt3A induced an accu-
mulation of �-catenin in the BM B progenitor cells and
inhibition of in vitro B lymphopoiesis. These results sug-
gest the Wnt/�-catenin pathway as a negative regulator of
human stromal dependent B lymphopoiesis. This is in
contrast to observations on Wnt effects in fetal murine
pro-B cells, and may represent a distinction between the
fetal liver and adult BM microenvironments.

Methods
Reagents and antibodies for FACS and western blot 
analysis
Recombinant murine (rm) Wnt3A, recombinant human
(rh) secreted frizzled related protein 1 (sFRP1), rh Dick-
kopf 1 (Dkk1), rh interleukin (IL)-7, rh IL-3 and rh Flt3
ligand (FL) were purchased from R&D Systems (Great
Britain). The following monoclonal antibodies (mAbs)
were used for flow cytometry: anti-CD34 PE, anti-CD10
APC, anti-CD10 PE-Cy7 and anti-CD20 APC from Becton
Dickinson, Biosciences Pharmingen (San Jose, CA, USA),
anti-CD19 PE-Cy5 and anti-CD34 PE-Cy5 from Immu-
notech (Marseille, France) and anti-CD19 PE, anti-CD45
PE and anti-IgM Fitc from Dako Cytomation (Denmark).
Irrelevant isotype matched Abs were used as controls. The
following Abs were used in western blot analysis: anti-�-
catenin (Mouse IgG1, BD Transduction Laboratories),
anti-�-actin (Goat polyclonal IgG, Santa Cruz Biotechnol-
ogy), rabbit anti-mouse IgG1-HRP and rabbit anti-goat
IgG-HRP (Dako cytomation, Denmark).
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Primary cells and cell lines
BM aspirates were from the iliac crest of normal adult vol-
unteers (approved by the Regional Ethical Committee).
Mononuclear cells (MNC) were separated by Ficoll-
Hypaque density gradient centrifugation (Lymphoprep,
Nycomed, Norway). CD10+ B progenitor cells (ELP, pro-B
and pre-B cells) were isolated from BM MNC using Dyna-
beads®M-450 Epoxy (Dynal, Oslo, Norway) directly
coated with anti-CD10 mAb (clone RFAL-3, Sigma-
Aldrich, UK) followed by detachment using CD4/CD8
DETACHaBEAD (Dynal, Norway) according to the pro-
ducer 's protocol. The CD10+ cells were of 90–95% purity,
they were CD45+ and contained 4–7% IgM+ cells (imma-
ture B cells). CD34+ and CD19+ cells were isolated in a
similar manner from MNC using Dynabeads®M-450 con-
jugated with anti-CD34 or anti-CD19 mAb, respectively,
and CD34 or CD19 DETACHaBEAD (Dynal, Norway),
respectively. CD133+CD10- cells (HPC) were isolated
from the CD10- fraction of BM MNC (see above) using the
MACS system (Magnetic cell sorting of human cells) and
a CD133 Cell Isolation Kit (Miltenyi Biotec, Germany).
Briefly, the mononuclear cells were magnetically labeled
with CD133 MicroBeads and separated on a column,
which was placed in the magnetic field of a MACS Separa-
tor. The magnetically labeled CD133+ cells were retained
in the column while the unlabeled CD133- cells passed
through. After removal of the column from the magnetic
field, the magnetically retained CD133+ cells were eluted
as the positively selected cell fraction. The CD133+ cells
were typically of 97–98% purity. In monoculture, the cells
were kept in X-VIVO 15™ (BioWhittaker, Walkersville,
USA) with 0.1% detoxified BSA.

The murine stromal cell line MS-5 [53] was cultured in �-
MEM with 10% FCS and 100 �g/ml of penicillin and
streptomycin (PAA Laboratories, Pasching, Austria) and
was passaged twice a week. Cultures of human BM stro-
mal (BMS) cells were established as previously described
[54]. Briefly, total BM MNC cells depleted of CD34+ cells
were seeded into 75-cm2 tissue culture flasks in RPMI-
1640 with 10% FCS, penicillin and streptomycin. Non-
adherent cells were washed off after 2 hours at 37°C, and
the adherent cells were cultured in EX-CELL 610 (JRH Bio-
sciences, USA) with 10% FCS, penicillin and streptomy-
cin. The BMS cells were passaged twice before they were
used for experiments.

The human ALL cell lines Reh (no ACC 22, DSMZ) and
Nalm-6 (no ACC 128, DSMZ) (Hurwitz et al, 1979) were
kept in X-VIVO 15™ supplemented with 100 �g/ml of
penicillin and streptomycin.

FACS analysis and cell sorting
Cells were stained with anti-CD19 PE Ab for 30 min at
4°C before analysis on FACSCalibur flow cytometer

(argon-ion laser tuned at 488 nm; Becton Dickinson).
Quantitative analysis of CD19+ cells in cocultures was per-
formed using Flow Cytometry Absolute Count Standard,
from Bangs Laboratories Inc., (Fishers, IN 46038 USA).
Data acquisition and analysis were performed using CEL-
LQuest software (Becton Dickinson).

Highly purified (98–99%) B progenitor cells for RT-PCR
analysis of Wnt, Fzd and Wnt antagonist mRNA expres-
sion were obtained by sorting of BM CD10+CD45+IgM- B
progenitor cells using a FACSDiVa flow cytometer (Becton
Dickinson, USA) after staining of BM CD34+ and CD19+

isolated cells with anti-CD45 PE, anti-CD10 APC and
anti-IgM FITC Abs. Highly purified BM cell populations
for real-time PCR were obtained by staining BM CD34+

and CD19+ cells with anti-CD10 PE-Cy7, anti-CD34 PE,
anti-CD19 PE-Cy5, anti-CD22 APC and anti-IgM Fitc Abs
and the following subpopulations were sorted using a
FACSDiVa flow cytometer: ELP (CD10+CD34+CD19-IgM-

), pro-B (CD10+CD34+CD19+CD20-IgM-), large pre-B
(CD10+CD34-CD19+CD20dimIgM-), small pre-B
(CD10+CD34-CD19+CD20-IgM-) and immature B
(CD10+CD34-CD19+CD20highIgM+). Separation of large
and small pre-B cells was based on both CD20 expression
and size (forward scatter, FSC).

PCR analysis
Total RNA from freshly isolated and sorted BM
CD45+CD10+IgM- cells was isolated using Absolutely
RNA™ RT-PCR Mini-prep kit (Stratagene Europe, Amster-
dam, Netherland) according to the manufacturer's
instructions. RNA from human fetal brain was purchased
from BioChain Institute, Inc., USA. cDNA was synthesized
from 1 �g total RNA primed with random hexamers in a
50 �l reaction using TaqMan Reverse Transcription Rea-
gents (Applied Biosystems, Foster City, CA, USA). Control
reactions lacking reverse transcriptase were always
included. RT-PCR of 20 ng of total RNA was performed
with a titanium polymerase (BD Biosciences, USA) in a 25
�l reaction for 37 cycles at 95°C for 30 seconds, 60°C for
30 seconds, and 68°C for 30 seconds. The primer
sequences used to identify Wnt, Fzd and Wnt antagonist
gene expression are listed in Table 3. The primer
sequences was partly designed specifically for this work
and partly copied from previous expression analyses [55].
For all mRNAs expressed, the amplified products have
been sequenced and confirmed to represent the correct
target gene.

Real-time PCR
Total RNAs from 5–20 000 freshly isolated and sorted BM
B progenitor cells (ELP, pro-B, large pre-B, small pre-B and
immature B cells) were purified using Absolutely RNA™
RT-PCR Micro-prep kit (Stratagene Europe, Amsterdam,
Netherland) according to the manufacturer's instructions.
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Table 3: Primer sequences used for mRNA expression analyses of Wnt ligands, Fzd receptors and Wnt antagonists

Primer Sequence Amplicon (bp)

Wnt1 F-5' TAG CCT CCT CCA CGA ACC TG-3' 239
F-5' CAG CCT CGG TTG ACG ATC TTG-3'

Wnt2 F-5' TGG TGG TAC ATG AGA GCT ACA GGT G-3' 297
R-5' CCC TGG TGA TGG CAA ATA CAA C-3'

Wnt2B F-5' TCA TGC TCA GAA GTA GCC GAG A -3' 328
R-5' TGG CAC TTA CAC TCC AGC TTC A -3'

Wnt3 F-5' CTG GCT ACC CAA TTT GGT GGT-3' 225
R-5' CAT CTA TGG TGG TGC AGT TCC A-3'

Wnt3A F-5' AAG CAG GCT CTG GGC AGC TA-3' 234
R-5' GAC GGT GGT GCA GTT CCA-3'

Wnt4 F-5' GAG GAG ACG TGC GAG AAA CTC AA-3' 346
R-5' ATC CTG ACC ACT GGA AGC CCT GT-3'

Wnt5A F-5' ATC CTG ACC ACT GGA AGC CCT GT-3' 358
R-5' GGC TCA TGG CGT TCA CCA C-3'

Wnt5B F-5' CAG CTT CTG ACA GAC GCC AAC T-3' 279
R-5' GCC TAT CTG CAT GAC TCT CCC A-3'

Wnt6 F-5' GCT CCA GCC ACA GCA AGG-3' 378
R-5' CAG CCT GCC CGC CTC GTT-3'

Wnt7A F-5' CCT GGG CCA CCT CTT TCT CAG-3' 573
R-5' TCC AGC TTC ATG TTC TCC TCC AG-3'

Wnt7B F-5' TTT CTC TGC TTT GGC GTC CT-3' 391
R-5' TGG TTG TAG TAG CCC TGC TTC TC-3'

Wnt8A F-5' TCC CAA GGC CTA TCT GAC CTA C-3' 400
R-5' CCG GCC CTG TTG TTG TGA-3'

Wnt8B F-5' GCC CAG AGT GGT ATT GAA GAA TG-3' 266
R-5' TTG TCA CTG CAG CCT CCC-3'

Wnt9A F-5' AAG TAC AGC AGC AAG TTC GTC AAG G-3' 538
R-5' GCA CTC CAC ATA GCA GCA CCA AC-3'

Wnt9B F-5' AGT TTC AGT TCC GGC ATG AGC-3' 340
R-5' TTC ACA GCC TTG ATG CCC A-3'

Wnt10A F-5' ACA CAG TGT GCC TAA CAT TGC C-3' 296
R-5' AGG CCT TCA GTT TGC CCA G -3'

Wnt10B F-5' CCT CGC GGG TCT CCT GTT C-3' 563
R-5' GGT TAC AGC CAC CCC ATT CC-3'

Wnt11 F-5' ACA ACC TCA GCT ACG GGC TCC T-3' 394
R-5' CCC ACC TTC TCA TTC TTC ATG C-3'

Wnt16 F-5' CTG TGC AAG AGG AAA CCG TAC CTG-3' 520
R-5' CAG CAC AGG AGC CGG AAA CT-3'

Fzd1 F-5' CTC TAC TTC TTC AGC ATG GCC A-3' 230
R-5' TCC ACG TTG TTA AGC CCC A-3'

Fzd2 F-5' CCA TCC TAT CTC AGC TAC AAG TTT CT-3' 306
R-5' GCA GCC CTC CTT CTT GGT-3'

Fzd3 F-5' TCC CCT CTG CCT GTA TGT GGT AGT-3' 622
R-5' GCT GCT CAC TTT GCT GTG GA-3'

Fzd4 F-5' CTC GGC TAC AAC GTG ACC AAG AT-3' 605
R-5' AAT ATG ATG GGG CGC TCA GGG TA-3'

Fzd5 F-5' GTG CCC ATT CTG AAG GAG TCA C-3' 197
R-5' TCC ATG TCG ATG AGG AAG GTG-3'

Fzd6 F-5' ACT CTT GCC ACT GTG CCT TTG-3' 300
R-5' GTC GAG CTT TTG CTT TTG CCT-3'

Fzd7 F-5' CAA GAC CGA GAA GCT GGA GAA G-3' 248
R-5' TGC CGA CGA TCA TGG TCA T-3'

Fzd8 F-5' GGA CTA CAA CCG CAC CGA CCT-3' 407
R-5' ACC ACA GGC CGA TCC AGA AGA C-3'

Fzd9 F-5' TCA AGG TCA GGC AAG TGA GCA-3' 210
R-5' AGC TTC CAG AGG AAC GCA ACA-3'

Fzd10 F-5' CAG GTG TGC AGC CGT AGG TTA A-3' 212
R-5' AAG CAC CAC ATC TTA GCT CCG G-3'

WIF1 F-5' ACG GAC CTC ACT GTG AGA AAG C-3' 200
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cDNAs were synthesized from total RNA primed with ran-
dom hexamers using TaqMan Reverse Transcription Rea-
gents (Applied Biosystems, Foster City, CA, USA). LEF-1
and TCF-4 (gene name TCF-7L2) mRNA expression was
analyzed by real-time quantitative RT-PCR using Taqman
technology according to the manufacturers procedure
(Applied Biosystems). Predeveloped assay reagents
including primers and probes for LRP5
(Hs00182031_m1), LRP6 (Hs00233935_m1), Fzd2
(Hs00361432_s1), Fzd5 (Hs00361869_g1), Fzd6
(Hs00171574_m1), Fzd9 (Hs00268954_s1), �-catenin
(CTNNB1, Hs00170025_m1), plakoglobin (JUP,
Hs00158408_m1), LEF-1 (Hs00212390_m1) and TCF-4
(Hs00181036_m1) mRNAs as well as the endogenous
control phosphoglycerate kinase 1 (PGK1)
(Hs99999906_m1) were supplied by Applied Biosystems
and the PCR reactions were performed according to the
manufacturer's instructions using Taqman Universal PCR
Master Mix. Each measurement was performed in dupli-
cate and the expression level for each gene was calculated
using the standard curve method for relative quantitation
of gene expression as described by the manufacturer (ABI
Prism 7700 Sequence Detection System, User Bulletin 2,
PE Applied Biosystems, Foster City, CA). Total RNA from
the ALL cell lines Reh and Nalm6 as well as total RNA
from human fetal brain were used for standard curves.
Expression values for PGK1 mRNA, initially determined
to be a suitable endogenous control for BM populations,
were used for normalization of the expression levels. The
expression level of the different genes in pro-B cells was
used as a calibrator, and the expression of the other pop-
ulations were calculated relative to the expression in pro-
B cells.

Western blot analysis
The cells were treated with Wnt3A or vehicle only (PBS
with 0.1% detoxified BSA) for 3 hours and total cell
lysates were analyzed by Western blot using 10% SDS
polyacrylamide gels from Pierce (Rockford, USA) as
described earlier [56]. The filters were pretreated with PBS

containing 0.1% Tween-20 (PBS-T) and 5% dry milk,
incubated overnight with anti-�-catenin Ab or 1 hour with
anti-�-actin Ab and then washed 2 × 15 min in PBS-T. The
filters were then incubated with the secondary Ab rabbit
anti-mouse IgG1-HRP Ab or rabbit anti-goat IgG-HRP Ab,
respectively, for 60 minutes at room temperature and
washed 2 × 15 min in PBS-T before the proteins were vis-
ualized using ECL+ Western Blotting Detection Reagents
from Amersham Biosciences (Piscataway, NJ, USA).

Hematopoietic cell-stromal cell coculture
Assay 1: HPC (CD133+CD10-) were cultured in 24 well
tissue plates (2000 cells/well) pre-seeded with MS-5 (2.5
× 104 cells/well). Assay 2: B progenitor cells (CD10+) were
cultured in 96 well tissue plates (8000 cells/well) pre-
seeded with MS-5 (1 × 104 cells/well). Both sets of cocul-
tures were in �-MEM containing 1% FCS, 100 �g/ml of
penicillin and streptomycin, and supplemented with
cytokines (for HPC: SCF, 25 ug/ml and G-CSF, 2,5 ug/ml,
for B progenitor cells: IL-7, 50 ng/ml, IL-3, 20 ng/ml and
FL, 50 ng/ml). In one additional experiment, the wells
were pre-seeded with BMS (1 × 104 cells/well) in EX-CELL
610 with 1% FCS, 100 �g/ml of penicillin and streptomy-
cin and cytokines (IL-7, 50 ng/ml, IL-3, 20 ng/ml and FL,
50 ng/ml). Where indicated, Wnt3A (10–100 ng/ml),
Dkk1 (500 ng/ml) or sFRP1 (2 �g/ml) were added to the
cultures. 50% of the medium was replaced weekly. After 3
(HPC) or 2 (B progenitor cells) weeks of culturing, single
wells were harvested by trypsination and the B progenitor
cells were immunophenotyped using the pan B cell
marker CD19 as well as the CD34 differentiation marker
and subjected to quantitative analyses (see above). Wnt3A
conditioned medium and control medium were collected
from L-Wnt3A cells and control nontransfected L-cells,
respectively (purchased from American Type Culture Col-
lection (ATCC), Manassas, USA), according to the manu-
facurer's procedure.

R-5' GCT GAT TTC ACA CTG CTC TCC C-3'
sFRP1 F-5' GGT CAT GCA GTT CTT CGG CT-3' 206

R-5' TCC TCA GTG CAA ACT CGC TG-3'
sFRP2 F-5' ACC GAG GAA GCT CCA AAG GTA T -3' 259

R-5' TCA TCT CCT CAC AGG TGC ACT G -3'
sFRP3 F-5' CTC ATC AAG TAC CGC CAC TCG TG-3' 210

R-5' CCG GAA ATA GGT CTT CTG TGT AGC TC-3'
sFRP4 F-5' GCA CAT GCC CTG GAA CAT CAC-3' 243

R-5' ATC TTC ATG AGG GGC TCG CAG T-3'
Dkk1 F-5' ACC ATT GAC AAC TAC CAG CCG T -3' 235

R-5' TGG TTT CCT CAA TTT CTC CTC G -3'
Dkk4 F-5' CGT TCT GTG CTA CAT GTC GTG G-3' 241

R-5' TCT TGT CCC TTC CTG CCT TGT-3'

Table 3: Primer sequences used for mRNA expression analyses of Wnt ligands, Fzd receptors and Wnt antagonists (Continued)
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High-resolution cell division tracking
BM CD34+ and CD19+ cells were labeled with 5- and 6-
carboxyfluorescein diacetate succinimidyl ester (CFSE;
Molecular Probes, Eugene, OR, USA) as described earlier
[57]. To allow unbound dye to diffuse from cells, labeled
cells were seeded on a confluent layer of MS-5 and incu-
bated for 18–24 hours at 37°C in �-MEM with 1% FCS.
Subsequently, the cells were stained with CD10 APC mAb
and CD10+CFSEmean cells were sorted on a BD FACSDiVa
flow cytometer (Becton Dickinson). Sorted cells (1.5–2 ×
104/well) were cultured in 48 well tissue plates pre-seeded
with MS-5 (2 × 104 cells/well) supplemented with IL-7 (50
ng/ml) and FL (50 ng/ml) and treated with Wnt3A (25–
400 ng/ml), Wnt3A + sFRP1 (2 �g/ml) or medium only.
IL-3 was left out of these cultures, because earlier experi-
ments showed that IL-7 and FL were sufficient to support
survival and proliferation of the B progenitor cells (data
not shown). After three days the cells were harvested by
trypsination and analyzed on a FACSCalibur flow cytom-
eter for the number of cell divisions as well as expression
of the cell surface markers CD34 and CD19.

Statistical analysis
The statistical significance of differences between groups
was determined using the paired two-tailed Wilcoxon's
nonparametric test, by applying SPSS 11.5 software.
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