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AIMS OF THE STUDY 

The overall objective of this work was to search for prognostic biomarkers in colorectal cancer: 

1. To assess whether CEA and NCA-2 in bone marrow plasma were prognostic biomarkers 

in CRC 

2. To investigate miRNA expression in our CRC tumor panel and assess whether any 

miRNAs presented themselves as potential prognostic markers in CRC. 
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1. CANCER  

The first documented case of cancer was recorded on a papyrus roll in Egypt around 1500 B.C., 

but the term cancer appeared much later used by the Greek physician Hippocrates at around 

300 B.C. There have been many different theories through the ages as to what causes cancer; 

the Egyptians believed it was caused by the Gods, while the Greek physicians believed it was 

caused by black bile, one of the body’s four fluids. It wasn’t until the 17th century, after the 

discovery of the lymphatic system, that Hippocrates black bile theory was challenged, and other 

theories surfaced such as cancer being the result of trauma or parasites. In the late 19th century 

Rudolph Virchow recognized that cancerous cells were derived from other cells. Today the 

leading theory is that cancer is the result of both hereditary and environmental influences that 

change gene expression leading to uncontrolled cell growth. While the sequence in which 

a cancer cell acquires the necessary traits for tumor formation can vary, there are a number of 

mechanisms that are common to most, if not all, cancers. These are deemed “The hallmarks of 

cancer”; proliferative signaling, evading growth suppressors, avoiding immune destruction, 

enabling replicative immortality, tumor promoting inflammation, activating invasion and 

metastasis, inducing angiogenesis, genome instability and mutation, resisting cell death and 

deregulating cellular energetics (Figure 1) [1]. A single change is inadequate to upset the balance 

in the cell, so multiple processes need to be deregulated in order to cause cancer.  



10 
 

 

 

Figure 1. The Hallmarks of cancer, published with permission from Elsevier [1]. The outer boxes describe 
possibilities for therapeutic targeting. 
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2. COLORECTAL CANCER 

Cancers which arises in the colon or rectum have many features in common and are therefore 

referred together as colorectal cancer (CRC).  The development of CRC is a multistep process 

that involves accumulation of changes in expression levels in both oncogenes and tumor 

suppressor genes. These changes can be mutations in the genes themselves or silencing of gene 

expression by epigenetic mechanisms.  Most (~75%) CRCs arise sporadically, while the remaining 

25% of the patients have a family history, and only 5-6% of CRC cases are due to inherited 

conditions (Lynch syndrome previously Hereditary Nonpolyposis Colorectal Cancer; HNPCC) [2]. 

It is therefore suggested that the complex processes leading to CRC occur through interactions 

between genes, environmental factors and lifestyle [2-4]. The adenoma-carcinoma sequence 

refers to a traditional view on the progression of CRC from adenomatous polyps to invasive 

cancer. The stepwise progression of CRC was already suggested in 1974 [5], and some years 

later Vogelstein et al [6] described genetic alterations in several genes accompanying the 

stepwise progression from benign adenoma to malignant carcinoma where certain mutations, 

like APC, BRAF, KRAS, TP53, TGF-β and PI3K among others [7], were directly related to distinct 

stages of tumor development [8] (Figure 2).  Although there is evidence that cancer arises from 

adenomas, it is widely recognized that only a small proportion of adenomas progress to invasive 

CRC, and in large they appear to stabilize their progression and even regress [9]. It would be 

preferential to be able to distinguish the adenomas with a potential towards malignancies but  

there are no biomarkers available today to distinguish them from one another [10]. 
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Figure 2. Cancer progression adapted from Markowitz et al (2009) [7]. 

 

a)  Epidemiology 

CRC is one of the leading causes of cancer morbidity and mortality in the Western world and is 

equally distributed between the sexes. It is a disease that increases with age and about 90% are 

diagnosed after the age of 55. The incidence rate and mortality varies greatly between the 

different continents of the world due to difference in dietary factors, lifestyles [11] and ethnicity 

(Figure 3). In Norway the incidence rate has steadily increased in the past 50 years (Figure 4), 

but the mortality rate has subsided probably due to earlier detection and better treatments 

[12]. Intensified diagnostic surveillance, along with improved treatment strategies involving 

surgery, chemo- and radiotherapy have contributed to earlier detection and improved survival 
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from CRC. However, almost 50% of patients diagnosed with CRC will die of the disease, mainly 

because of metastasis development, most commonly in the liver and lungs. 

 

 

Figure 3. World incidence rate for CRC age-standardized incidence rate per 100.000 both sexes, all ages. 
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Figure 4. Incidence of CRC in Norway in both sexes (age adjusted incidence rates per 100.000) [12]. 

 

b) Classification 

CRC is commonly classified according to either Dukes’ [13] or to American Joint Committee on 

Cancer tumor-node-metastasis (TNM) staging system based on tumor growth in the bowel wall 

at diagnosis (T), the presence of regional lymph node metastasis (N) and the presence of distant 

metastasis (M) (Table 1) [14]. Either classification system can be based on clinical information 

such as physical examination, radiologic and other specialized imaging, as well as surgical and 

histopathological findings. The purpose of classification is to categorize tumors with the aim to 

predict prognosis and aid in the choice of treatment. However, utilizing only clinical,  
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radiological and pathological evaluation results in failure to identify high- and low-risk patients, 

and patients may receive either insufficient or unnecessary treatment [15].  

The staging system was in 2009 revised adding more subgroups. Whether the new additions are 

an asset or only make the classification for daily clinical use more complex is still debated [16]. 

 

TNM stage T N M Dukes Stage 

I T1, T2 N0 M0 A 

II A T3 N0 M0 B 

II B T4 N0 M0 B 

III A T1, T2 N1 M0 C 

III B T3, T4 N1 M0 C 

III C All T N2 M0 C 

IV All T All N M1 D 

 

Table 1. A table of the TNM stages with the corresponding Duke’s stages. Table is modified from AJCC [14]. 
T=tumor stage, N=lymph node metastasis, M=metastasis.  

 

c) Metastasis 

Metastasis is the process by which cancer cells spreads from the primary tumor to invade and 

grow in a distant organ. These metastatic tumor cells may progress at once or lay dormant for 

years after treatment for the original lesion. The cause of death for the vast majority of cancer 
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patients is the development of metastasis, and in Norway ~90% die of CRC metastasis [12].  CRC 

metastasizes mainly to the liver and lung and the metastatic tumors are heterogeneous, 

consisting of multiple subpopulations of cells making targeted treatment difficult resulting in 

poor treatment response. 

 

Already in 1889, Paget postulated the “seed and soil” theory based on his examination of 735 

autopsy records of women with breast cancer where he concluded that the metastatic process 

was not random but that the tumor cells (seeds) needed good growing conditions (soil) [17]. 

Later it was postulated that metastatic end-points were based on the vascular system and total 

blood flow [18] but this did not explain the reason why some tumors preferably metastasize to 

specific organs not in the vicinity of the vasculatory system [19]. Today the belief is that the 

metastatic location is more likely an interaction between the genetics of the patient, the tumor 

cells and the local microenvironment at the secondary site [20]. 

There are several criteria that must be fulfilled in order for metastasis to occur. First the tumor 

requires nutrients as it grows and therefore it needs to establish new blood vessels 

(angiogenesis). As the tumor grows it invades nearby tissue. Thereafter, the tumor cells must 

gain the ability to detach and enter the bloodstream (intravasation), where they must survive 

before exiting the blood vessels (extravasation) to enter and proliferate in the secondary organ 

and form metastasis (Figure 5).  The ability of a tumor cell to metastasize is dependent on a 

combination of growth factors, motility and angiogenic factors produced by the tumor cell itself 

and/or by the host cells in the distant organ [21].  
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Figure 5. The metastatic process from primary tumor to the development of angiogenesis, intravasation, traveling 

to distant organs, extravasation before developing metastasis. 

 

d) Treatment 

The main curative treatment modality for colon and rectal cancer is surgery. Treatment 

decisions are based on the extent of the disease at the time of diagnosis where staging plays an 

essential role. In addition to surgery rectal cancer patients receive a combination of 

chemotherapy and radiation (chemoradiotherapy), while selected colon cancer patients may 

receive chemotherapy. Chemotherapy can be given either before surgery (neo-adjuvant) or 

after surgery (adjuvant). The reason for giving chemotherapy before surgery may be to shrink 

the tumor to facilitate complete removal, but also in the hope of preventing metastasis 
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development. In some cases, rectal cancer patients receiving neoadjuvant chemoradiation 

achieve a complete clinical response where no tumor can be found on the clinical assessment 

before surgery. Some studies have therefore included a “watch and wait” policy with close 

clinical follow up where surgery is only given if local recurrence manifests, however no 

difference in 5-year survival between “waiting” and surgery has been found [22]. Also, 

chemoradiotherapy exhibits reduction in local recurrence rate and further clinical trials are 

ongoing [23, 24].  

After surgery, there is a potential risk for microscopic residual tumor cells remaining in target 

organs, and therefore some patients receive adjuvant chemotherapy with either 5 fluorouracil 

(5-FU) or 5-FU in combinations with Leucovorin (FLV regimen) or Oxaliplatin (FLOX regimen). 5-

FU is an inhibitor of thymidylate synthase (and therefore DNA synthesis) and since cancer cells 

are faster growing this drug affects cancer cells greater than normal cells. Several studies have 

shown that stage III colon cancer patients benefit from adjuvant chemotherapy; but this has not 

been proven for stage II patients, and is controversial in rectal cancer [14, 25-27]. Therefore only 

stage III patients receive adjuvant chemotherapy, although there are some stage II patients that 

get recurrence and probably would benefit from this treatment. Combinations of different drugs 

like 5-FU and leucovorin or oxaliplatin have been shown to improve disease free-survival (DFS) 

by ~3-4% in stage II and ~10% in stage III patients [27-29]. In metastatic CRC patients, different 

combinations of chemotherapeutic drugs have prolonged median survival from about 10-12 

months to > 20 months [30, 31].  
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Targeted therapy involves drugs designed to inhibit specific genes and disrupt certain biological 

pathways. A recent attempt to control malignant proliferation and spread included the 

inhibition of neoangiogenesis, the development of new blood vessels. The most successful anti-

angiogenic drug has focused on inhibiting vascular endothelial growth factor (VEGF), a protein 

which stimulates blood vessel formation. This drug is called bevacizumab and given in 

combination with drugs mentioned above increased median overall survival in metastatic CRC 

patients from 15.6 months to 20.3 months [32]. But like with any other drug, anti-VEGF 

treatment has severe side effects which include hypertension, bleeding, and vomiting, and 

several questions remain unanswered regarding the duration, which chemotherapy regiments 

to be used in combination and whether bevacizumab should be used as maintenance therapy, 

and/or in patients who are progressing on treatment. 

Epidermal growth factor (EGFR) is a transmembrane glycoprotein involved in signaling 

pathways, affecting cellular growth, proliferation, differentiation and programmed cell death. 

The receptor is present on the cell surface in up to 80% of tumors and overexpression has been 

associated with poorer prognosis in CRC [33, 34]. Cetuximab and panitumumab are drugs which 

inhibit EGFR, but only a subset of patients treated respond to the treatment, thus identification 

and characterization of molecular markers to predict tumor response have been an area of 

interest. CRC patients with KRAS mutations appear to be relative resistant to treatment with 

cetuximab and panitumumab, with lower response rates and poorer survival [12, 35, 36]. KRAS 

mutation status is used as a predictive biomarker in the clinic today and helps define a subset of 

patients who will derive benefit from treatment with EGFR. 
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It has become essential to identify high-risk subgroups of CRC patients who may benefit from 

adjuvant therapy to avoid a potentially toxic over-treatment and an unprofitable financial 

burden for the health care system [24]. The optimal sequence of administration of the above 

mentioned drugs remains under investigation in patients with metastatic CRC, but the success in 

prolonged survival of patients with metastatic disease is also translating to improve cure rates 

among patients with stage III disease. The goal of ongoing investigations of adjuvant trials is to 

further improve survival rates by the use of chemotherapeutic drugs. 

 

e) Early detection and screening 

The survival rate of patients decreases with increasing CRC stage pointing out the need to 

detect cancer at an early stage (Figure 6). However, the life-time risk of developing CRC in the 

Western world is only 5%, meaning that 95% will never develop the disease, which poses 

particular challenges regarding early detection and screening. Early detection can be achieved 

by assessing risk for developing the disease (in CRC the risk increases with increased TNM stage 

see Figure 6), recognition of the disease by increasing clinical awareness in the population 

(what signs to look for) and screening programs.  
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Figure 6. Associations between TNM stage and overall survival. TNM stage marked with survival in percentages for 

the individual stages. 5-year overall survival decreases with increased TNM stage. Survival numbers are taken from 

the Norwegian Cancer Registry [12]. 

 

Screening refers to the use of diagnostic tests across a healthy population in order to identify 

individuals who have the disease, but do not yet have symptoms. The strength of a screening 

test is based on its sensitivity and specificity [37]. The sensitivity of a clinical test refers to the 

ability of the test to correctly identify those patients with the disease, and this can be 

calculated as a percentage (Figure 7). A test with 80% sensitivity would detect 80% with the 

disease (true positives) and while 20% with the disease would go undetected (false negatives). 
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Figure 7. Calculation of sensitivity and specificity. True positives = the patient has the disease and tests positive, 

False negative = the patient has the disease but tests negative, True negative = the patient does not have the 

disease and tests negative, False positive = the patient tests positive but does not have the disease. 

 

A high sensitivity is clearly important when it comes to screening as it is preferable to detect as 

many positive patients as possible. The specificity of a clinical test refers to the ability of the 

test to correctly identify patients without the disease. A test with 80% specificity correctly 

reports 80% of patients without the disease as test negative (true negatives) but 20% patients 

without the disease are incorrectly identified as test positive (false positives) (Figure 7). The 

sensitivity and specificity are not dependent on the prevalence of the disease in the given 

population. To identify the strength of a screening test in a specific population, the positive 

predictive value and the negative predicted values are calculated. A positive predictive value 

determines how likely it is for a positive test result to actually be positive, while a negative 

predictive value determines how likely it is for a negative test result to be negative. Both 

positive and negative predictive values are dependent on the prevalence of the disease in the 

population of interest (Figure 8) [38].  
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Patients with metastasis   

Condition Positive Condition Negative 
 

CEA 
measurements 

in bone 
marrow 

plasma at time 
of surgery 

Test 
Outcome 
Positive 

(>= 5μg/l) 

True Positive False Positive Positive predictive 
value 

(TP) = 33 (FP) = 33 = TP / (TP + FP) 

    0,5 

    = 50% 

      

Test 
Outcome 
Negative 
(< 5μg/l) 

False Negative True Negative Negative predictive 
value 

(FN) = 50 (TN) = 149 = TN / (FN + TN) 

    0,75 

    = 75% 

Sensitivity Specificity 

= TP / (TP + FN) = TN / (FP + TN) 

0,38 0,81 

= 38% = 81% 

 

Figure 8. An example of how to calculate sensitivity, specificity, positive- and negative predictive value. Values 

are taken from Paper I. CEA measurements have been taken at time of diagnosis and the endpoint is metastasis. 

Total number of patients in the cohort = 265. Figure adapted from [37] 

 

The goal of screening for CRC is to detect early stage cancer thereby enabling early treatment 

and increasing survival [39]. The two most common forms of screening today are colonoscopy 

and Fecal Occult Blood Test (FOBT). FOBT is an over-the-counter test which detects occult blood 

in feces. The use of FOBT has been shown in different randomized trials to reduce cancer 

mortality [39] but their application in screening is still debated [40] as test from different 
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manufacturers has a variable sensitivity (40%-80%) resulting in many false negatives [41, 42]. 

The advantages and disadvantages for colonoscopy and FOBT are listed in Table 2.  

 

 

Table 2. Advantages and disadvantages of FOBT and colonoscopy. 

 

There are two types of FOBT tests; one that measures guaic fecal occult test (gFOBT) or 

immunohistochemical test (iFOBT) [43]. iFOBTs have shown to have a higher sensitivity 

compared to gFOBT, but they are more expensive and no randomized trials have investigated 

the effect on incidence or mortality.  

Other fecal tests include fecal DNA tests which detect mutant or abnormal DNA shed from 

neoplastic CRC lesions excreted in feces [43]. Examining two DNA markers; hypermethylated 

vimentin gene (hV) and a two site DNA integrity assay (DY), the training set demonstrated high 

 Advantages Disadvantages 

Fecal occult 

blood test 

Relatively simple to perform 

Inexpensive 

Confirmed reduced mortality 

Low sensitivity  

Certain foods give false positives 

Not efficient at detecting precursor lesions. 

Colonoscopy Sensitive and Specific 

Able to detect precursor  lesions 

Possible to remove polyps 

Expensive 

Invasive; requires bowel  

Requires educated personnel  

Complications like bleeding in the bowel may occur 
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sensitivity (88%) for CRC with a specificity of 82% [44]. Other DNA markers include methylations 

in APC, KRAS and TP53 among others [45]. The downside with these methods is that DNA is 

easily degradable in feces and requires buffer application for stabilization [46]. 

Mutations in the tumor suppressor gene APC is considered to be one of the most common early 

events in development of CRC and is present in most sporadic forms of CRC [47]. When 

occurring in germline cells APC mutations give rise to Familial Adenomatous Polyposis (FAP), an 

inheritable cancer-predisposition where hundreds of polyps may develop and the risk of CRC by 

the age of 40 is almost 100% [48]. The protein encoded by APC is part of a degradation complex 

that among other things regulates β-catenin, a protein that initiates transcription in the Wnt 

signaling pathway [49]. Without the regulation of β-catenin  Wnt target genes are constantly 

activated leading to increased proliferation [47]. The high frequency and inability of segregating 

patients into subgroups makes APC mutations unsuitable as a prognostic marker, but the high 

frequency in CRC coupled with the absence of APC mutations found in a study on fecal makers 

in healthy people implicate this as a potential early detection marker [50]. 

Since FOBT is not specific for CRC, a positive test is always followed by bowel visualization 

technique like colonoscopy. Colonoscopy is a complete endoscopic examination of the colon 

with the ability to remove detected polyps and obtain biopsy samples. This method may require 

sedation of the patient and bowel preparation [51]. In case-control studies, colonoscopy is 

associated with reductions in the incidence of and mortality from CRC [52-54] with a 10-year 

follow up. 



26 
 

CRC is a good candidate for a screening program as the disease is quite common, it is mainly 

contained within an age group and early detection, and therefore earlier treatment, is 

associated with increased survival.  

 

 

f) Prognostic biomarkers 

Poor survival is associated with increased TNM stage in CRC, and the TNM staging system 

remains the gold standard of prognostic factors in CRC (Figure 6). However, patients within the 

same TNM subgroups may have different prognosis and respond differently to therapy, making 

it a suboptimal system. New biomarkers which can distinguish molecular subtypes and predict 

the patient prognosis are needed. Although in the recent years a huge amount of research has 

been devoted to finding prognostic biomarkers, none have emerged that are clearly better than 

existing ones and the search continues. Nevertheless, there have been many promising 

biomarker candidates within mutational phenotypes like chromosomal instability (CIN) and 

microsatellite instability (MSI), methylation in CpG island promoters (CIMP) mutations in single 

genes, and dysregulation of proteins like EGFR, RAS/RAF, PI3K and TP53. A short overview of a 

selection of promising biomarker candidates is given below. 

 

Chromosomal instability (CIN) 

CIN is the most common type of genomic instability observed in cancer and occurs in 80%-85% 

of CRC. It causes numerous changes in chromosomal copy number either by chromosomal gains 

or losses, substitutions and rearrangements, but the cause of this form of genetic instability 
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remains unknown [55]. It is not the mere accumulation of events that causes the progression to 

cancer, but rather the specific combinations of chromosomal abnormalities that increase with 

tumor progression [56, 57]. A promising prognostic biomarker is the loss of chromosome 18q, 

where among other genes the tumor suppressor gene “deleted in colorectal carcinoma” (DCC) is 

located. DCC has structural features in common with certain types of cell-adhesion molecules 

and may participate with other proteins in cell-cell and cell-matrix interactions, and loss of this 

gene might contribute to tumor growth and invasion [58]. Loss of the long arm on chromosome 

18q has been associated with poor prognosis [59]. However, numerous methods have been 

used among the different studies and although they agree that loss of 18q is associated with 

poor survival the estimates of the prognostic value have varied considerably [60, 61] therefore 

improved consistency within methodology is needed to precisely quantify its effect and role in 

patients with stage II-III disease. 

 

Microsatellite instability (MSI) 

Nucleotide repeats (microsatellites) are distributed all over the DNA and are prone to DNA 

slippage during replication, requiring the mismatch repair system (MMR) to correct such errors. 

Microsatellite instability (MSI) is associated with the loss of function of the DNA MMR (by 

methylation) and occurs in about 15%-20% of patients with sporadic CRC and >95% of patients 

with Lynch syndrome [62]. Patients with MSI have a generally favorable prognosis, and MSI 

could be used as a marker to identify patients who might benefit from surgery alone, but the 
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low abundance of MSI patients leaves an uncertainty of the usefulness of MSI as a prognostic 

biomarker [60].  

 

CpG island methylator phenotype (CIMP) 

Methylation of gene promoters can mimic genetic deletions by silencing expression of tumor 

suppressor genes thereby promoting malignant progression. The CpG island methylator 

phenotype (CIMP) [63] has been implicated as a possible prognostic biomarker, but there 

remains controversy whether this is  due to the phenotype itself or because this phenotype is 

associated with other factors known to affect prognosis in CRC [64-66]. Different subgroups of 

CIMP phenotype also show MSI, BRAF, KRAS and TP53 mutations and there is speculation if the 

relationship between CIMP and prognosis is actually a relationship between KRAS/BRAF 

mutation and prognosis [67].  

 

Dysregulation of gene and protein expression 

Gene signatures 

There have been attempts at generating prognostic DNA gene- signatures based on microarray 

gene expression measures using mRNA. Studies with gene signatures ranging from 23-43 genes 

resulted in 78%-90% accuracy [68-71], but these gene signatures need validation in large CRC 

cohorts. Another study  based the prognostic stratification test on a smaller gene signature of 

only 7 genes, called ColoGuidePro, could seemingly predict prognosis, tumor stage and other 
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clinicopathological parameters [72], but there is still some way to go before this can be applied 

in the clinic. 

 

EGFR 

One important pathway affected in CRC is the endothelial growth factor receptor (EGFR) 

pathway. EGFR is a transmembrane protein that phosphorylates and activates other intracellular 

proteins mediating cellular growth, differentiation, and proliferation through the activation of 

two major pathways; the RAS/RAF mitogen activated protein kinase (MAPK) pathway and the 

phosphatidyl inositol 3-kinase (PI3K) pathway [73]. EGFR has been implicated in CRC 

tumorigenesis, tumor progression and metastasis but the prognostic relevance remains 

controversial [74, 75].  

 

RAS/BRAF 

The RAS-RAF-MAPK signaling pathway lies downstream of EGFR and is a major pathway for 

tumor cell proliferation in CRC. BRAF and KRAS mutations tend to be mutually exclusive events 

in tumors [76]. Oncogenic mutations in RAS are seen in a large array of human cancers, but 

absolute specificity towards a single type of cancer has not been observed. Overexpression of 

KRAS is present in about 40%-50% of CRC cases and is believed to be an early event, but its 

presence also plays a role for the ability of cells to metastasize [35]. KRAS mutations are also 

responsible for lack of response to EGFR targeted treatment, but the prognostic value of KRAS 

mutations remains inconclusive [36, 77]. BRAF mutations occur more frequently in 
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Microsatellite instable (MSI) than in Microsatellite stable (MSS) tumors [78] and is also tightly 

associated with the CIMP phenotype[79], however BRAF mutations are only associated with a 

worse survival in MSS [80]. 

 

PI3K 

PI3K is a family of enzymes involved in cellular functions such as cell growth, proliferation, 

differentiation, motility, survival and intracellular trafficking. PIK3CA, which encodes the p110α 

subunit of PI3K, is often mutated in CRC and by binding with KRAS it activates the AKT pathway 

which in turn enhances cell proliferation and survival. The prognostic role of PI3KCA is still under 

investigation but mutation in PI3KCA has been proposed as a marker for poor overall survival 

[81].  

 

TP53 

TP53 is a tumor suppressor gene which codes for the protein p53 and is located at chromosome 

17p which is frequently deleted in CRC [82]. P53 induces apoptosis or programmed cell death 

when damage to DNA occurs, but when p53 is altered or mutated apoptosis does not occur and 

this may lead to unregulated cell growth and accumulation of mutated cells. Both alleles are 

usually inactivated by a combination of mutation and chromosome deletion. TP53 mutation has 

been investigated as both prognostic factor and predictor of response to therapy, but despite 

multiple studies the prognostic value of TP53 mutation remains undetermined [83, 84].   
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With an increasing understanding of tumor biology more prognostic marker candidates emerge, 

and validation in large cohorts will follow. Validation of new biomarkers may enable clinicians in 

the future to select patients with a worse prognosis for further tailored specific treatment, 

maximizing the drug efficacy and minimizing the severe side effects. 

 

g) Predictive biomarkers 

The improvement of therapeutics in the last 20 years has improved survival, however these new 

therapeutics are expensive and have potential toxic side effects. This has instigated an interest 

in elucidation of predictive biomarkers with the intention to improve outcome by predicting 

response or resistance to specific therapies and to identify patients who are likely to develop 

severe toxic side effects. Patients with high levels of microsatellite instability  (MSI-H) have in 

many studies been associated with a favorable prognosis, but it is however not clear if this is 

because MSI-H tumors are less aggressive or if they are more sensitive to chemotherapy (5-FU) 

treatment [85, 86]. TP53 mutations have shown to reduce therapeutic response in 5-fluorouracil 

(5-FU) studies, but the potential predictive value of TP53 mutations needs to be further 

investigated [83, 87].  

A predictive biomarker which is used in the clinic today is the presence or absence of KRAS gene 

mutations which can determine the benefit of using epidermal growth factor receptor (EGFR) 

inhibiting antibodies [73, 75, 76, 88-93]. The inhibition of EGFRs was found to have antitumor 
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activity and a synergy with chemotherapy and radiotherapy [73, 75, 92, 93]. However, 

mutations in KRAS resulted in failure of anti-EGFR treatment [76, 89-91]. Therefore, mutant 

KRAS has been considered a predictive marker for anti-EGFR therapy resistance in metastatic 

CRC and implemented into clinical use [88].  

In the future, there will probably be an increase in individual targeted therapy dependent on the 

patient’s tumor characteristics, and not based upon the generality of the disease. Although 

there are immense potential implications, clinicians are currently unable to use these data in 

clinical practice for decision making because of a lack of definition, adequate validation, and 

easy implementation. 
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3. CEA 
 
Carcinoembryonic antigen (CEA), a 180 kDa glycoprotein, remains the oldest and most widely 

used biomarker in patients with CRC [94]. It is a member of the immunoglobulin super-family 

and comprised of 29 genes/pseudogenes which are divided into two branches, defined as 

CEACAM and PSG (pregnancy-specific glycoprotein) [95] . CEACAM is further divided into 

subclasses CEACAM 1, 3, 4 which are generally anchored to the cell surface by cytoplasmic 

domains, and CEACAM 5-8 which are anchored through glycophospatidylinositol lipid moieties 

[96]. The definite role of CEA in normal colon is still unclear but it is suggested that CEA may play 

a role in protecting the colon from microbial infection [97]. 

CEA is present at elevated levels in tumor tissue and in addition it is released into the blood 

stream and increased levels are detectable in serum or plasma of many patients with CRC. 

Serum levels of CEA are often low in early stages of CRC making it an insensitive test for 

screening and early detection [98, 99]. Even though many CRC patients do not have elevated 

levels of CEA at diagnosis, there exists a correlation between increased CEA levels and CRC stage 

[100]. Today serial serum measurements are used in the clinic to detect CRC recurrence with a 

specificity and sensitivity of 80% and 70%, respectively [101-104]. Its specificity as a biomarker is 

limited as elevated levels of CEA are also found in smokers, benign diseases (perforated ulcer 

and liver disease) as well as in patients with epithelial tumors of non-intestinal origin [94, 97], 

and sensitivity is affected by heterogeneous CEA tumor expression, as for instance some poorly 

differentiated tumors may not express CEA [99, 105, 106]. Several proteins have been tested 
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together with CEA in an attempt to improve the prognostic accuracy, but this has not proven 

useful [107, 108].  

CEA assays have been established by several groups and it became evident that the presence of 

cross-reacting antigens led to discrepancies between the results when using different antibodies 

[109]. The discovery of one such molecule, the non-specific cross-reacting antigen 2 (NCA-2, a 

truncated version of CEACAM 5) resulted in several studies examining the cross reactivity to 

CEA. NCA-2 is a 160 kDa homologue of CEA which is transcribed from the same gene as CEA. It 

was first isolated from meconium in 1973 [110] and has since then been described as cross-

reacting to CEA and never on its own merit [111]. NCA-2 and CEA are identical in the amino 

terminal sequence [112] and both are highly glycosylated, but they differ in glycosylation 

patterns [113, 114] which might influence conformational stability and protease resistance [113, 

114]. Studies on the cross reactivity of NCA-2 has resulted in improved CEA assays that do not 

recognize NCA-2 [115] but still little is known about the specificity of NCA-2 antibodies in 

different experimental settings, and it has as far as we know not been explored for clinical 

associations in a large patient cohort [116-118]. 
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4. MICRORNA 

MicroRNAs (miRNAs) are small (20-22 nucleotides long) non-coding RNA sequences, 

evolutionary conserved, which post-trascriptionally regulate gene expression by binding to a 

target messenger RNA (mRNA) [119, 120]. MiRNAs were first discovered in genes that control 

timing of larval development in C.Elegans and have later been found to be involved in fine 

tuning many biological processes, like cell proliferation, differentiation, apoptosis and 

metabolism, but it is their involvement in cancer that has sparked their increased study [121]. 

There are today ~1500 human miRNA annotated in the miRNA registry called miRBase [122, 

123], and although discovery of new miRNAs has increased exponentially in recent years, mRNA 

target identification has been a slow process. 

 

a) MiRNA biogenesis and function 

MiRNA genes are located within exons and intergenic regions but are mainly found within 

introns of coding or noncoding genes [124, 125]. MiRNAs are initially transcribed as longer 

precursors by RNA polymerase II. MiRNAs primary transcripts, called pri-miRNA, are processed 

by a ribonucleoprotein complex, Drosha/DGCR8, into a 70-100 nucleotide long sequence called 

pre-miRNA, with a hairpin stem-loop structure (Figure 9). This pre-miRNA structure is 

recognized by the nuclear export protein, Exportin 5, and exported in to the cytosol [126, 127] 

where it is further processed by the RNase III enzyme Dicer [128]. The pre-miRNA consists of 

two miRNA strands complementary to one-another, where one is called 3-p and the other one 
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5-p. The strand most abundant (which can be either 3-p or 5-p) is called the mature strand and 

is transferred into an Ago protein, whereas the other strand (determined the star (*)-strand) is 

usually degraded [129]. The miRNA strand selected, similar to single stranded RNA (siRNA) is 

defined by the base pair stabilities at the 5’ end of the duplex [130].The strand selection and 

RNA-induced silencing complex (RISC) assembly is accomplished by a complex that contains 

Dicer, Ago and Transcription binding protein (TRBP) [128]. Not all precursor miRNA are 

processed to mature miRNA and the explanation for this still remains unclear. Most likely this 

event is an accumulation of several processes like reduced nuclear transport, processing by 

Drosha and Dicer or other specific factors which might promote or interfere with transport or 

processing [131, 132].  
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Figure 9. MiRNA biogenesis. 

 

MiRNAs can bind to mRNA with partial complementarity, therefore one miRNA may 

downregulate several mRNAs making the study of downstream applications challenging. 

Nucleotides 2-8 of the miRNA are particularly important for pairing with the target mRNA. This 
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motif is referred to as the miRNA seed sequence [129]. Tools for predicting mRNA targets use 

different lengths of this seed sequence in their predictions.  Most of the miRNA target sites 

reside in the 3’UTR of mRNA but functional binding sites in the 5’UTR as well as in the open 

reading frame have also been reported [133, 134]. Depending on the recognition site, the 

binding of miRNA complex to mRNA can have two different outcomes; target silencing or target 

degradation [135]. MiRNAs may degrade the mRNA using different mechanisms. One is by the 

miRISC which cleaves and degrades the mRNA transcript, another is removal of the mRNA poly-

A tail by a deadenylase complex such as CCR4-NOT [136-138]. This tail shortening leads to the 

removal of the mRNA 5’ cap. Uncapped mRNAs are rapidly removed from the cell by 5’ to 3’ 

exoribonucleases such as Xrn1 [139]. It looks as if target degradation is the predominant mode 

of regulation by miRNAs in mammalian cell cultures [140, 141]. Mechanistic details of miRNA-

mediated repression are starting to emerge, but a comprehensive picture of the inhibition, and 

particularly the effects on mRNA translation, is still lacking. 

 

b) MiRNA and cancer 

MiRNA genes are frequently located at fragile sites, as well as in minimal regions of loss of 

heterozygosity, minimal regions of amplification or common breakpoint regions causing 

deletions and mutations leading to dysregulation of miRNAs [142, 143]. The first miRNA 

discovered in humans was let-7 [144]. This miRNA has tumor suppressor activity and among its 

targets is the oncogene RAS. Initially, changes in miRNA expression levels in cancer was 

discovered in B-cell chronic lymphocytic leukemia (CLL) and since then large profiling studies 
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have been published showing that miRNA have different profiles in cancer cells compared to 

normal cells in various tumor types  [145-147]. Alterations seen in cancer cells that express 

miRNAs consist of both overexpressed and downregulated miRNAs, and it is postulated that 

over 60% of all genes may be regulated by miRNAs [148].  

MiRNA expression patterns have also been shown to be associated with diagnosis and prognosis 

in several tumor types [149-154]. An interesting study showed that miRNA expression levels 

could accurately identify cancer tissue origin from metastatic tumors based on a miRNA 

expression library consisting of 48 miRNAs from 22 different cancer types thereby implicating 

that miRNAs are tissue specific [155].  

 

c) MiRNA in colorectal cancer 

Since the discovery that miRNA play a role in human pathogenesis, several groups have used a 

variety of methods to show that miRNA expression patterns are indeed altered in CRC compared 

to normal tissue [146, 147, 156-158] (Table 3).  

The first miRNAs discovered in CRC were miR-143 and miR-145 which showed reduced 

expression levels in tumors compared to normal tissue [159], and these miRNAs were later 

found to have tumor suppressor activity in CRC [157, 160, 161]. Spectrums of dysregulated 

miRNAs have since then been identified to be associated with CRC genesis, progression and 

therapeutic response [162-164]. Nevertheless there are some discrepancies between studies 

that may be explained by different factors like tumor location or genetic background including 
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different MSI and CIMP tumors [161, 165]. MiRNAs and their potential value as biomarkers in 

CRC early detection, prognosis and therapy will be discussed below. 
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d) MiRNA as early detection biomarkers in serum, plasma and 

feces 

Although therapeutic strategies have greatly improved over the last years, surgery is still the 

only curative form of treatment in CRC. As discussed above, early detection improves survival 

and therefore, the search for early detection biomarkers is highly warranted. In addition to 

being found in tissue, miRNAs have also stably been detected in feces, serum, plasma and urine 

making them potential good biomarkers [180-185]. Therefore, researchers have been looking at 

miRNAs from either feces or blood as a possible minimal invasive strategy to improve early 

detection methods for CRC. 

Mutations in the APC gene, leading to reduced expression, are defined as an early event in CRC. 

MiR-135a and miR-135b are both overexpressed in adenomas and adenocarcinomas and one of 

their target is APC, implying that the up regulation of miR-135 is an early event in CRC and might 

be used as an early detection biomarker [186]. 

Ng and colleagues examined miRNA in plasma from 25 CRC and 20 healthy controls and found 

that higher levels of miR-17-3p and miR-92 were detected in CRC patients compared to healthy 

controls [173]. By measuring miR-92 in plasma it was possible to distinguish CRC from healthy 

controls with 70% specificity and 89% sensitivity. This was the first evidence that miRNA 

measurement could be used as a minimally invasive test for detecting CRC. The presence of miR-

92a together with miR-29 was in a different cohort proven to be able to distinguish CRC patients 

from healthy individuals with 83.0% sensitivity and 84.7% specificity [175].  
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MiRNAs have been found to be conserved in feces, most likely shed from tumors in the colon. 

The levels of miR-21, miR-92a, miR-106a, miR-144* and miR-34b/c have been found to be 

elevated in fecal samples, indicating that miRNA can also be collected from this kind of material 

[183, 184, 187, 188] and might be an indicator of CRC. Additional studies will have to reexamine 

these findings and determine the specificity and sensitivity of such assays. 

It was long speculated how miRNAs could be conserved in environments such as blood and 

feces. Microvesicles, or exosomes, are extracellular membrane-enclosed vesicles that have been 

shown to contain miRNA. They provide a protective membrane that in the harsh environments 

increases the stability of its contents [189, 190]. MiRNA are in this manner protected from 

RNases and can mediate communication between cells [191]. Explanations on the role of 

exosomes remains limited but the accumulating evidence suggests that they might be applied in 

cancer therapeutics in the future  as a delivery system for miRNAs [192].  

 

e) MiRNA as prognostic biomarkers 

The search for prognostic biomarkers in CRC has in recent years been extended to evaluating 

the potential value of analyzing expression of single or multiple miRNAs in tumor tissue. There 

are several interesting candidates, but the varying results make it difficult to draw definitive 

conclusions.  

  

Several studies have utilized large scale miRNA panels in the search for possible prognostic 

biomarkers. Some of these studies have found similar results while others have not, and the 
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reason for these discrepancies remains elusive. One example is the overexpression of miR-21 

which has been associated with poor overall survival (OS) in three separate studies [158, 166, 

178]. MiR-21 is among the most highly expressed miRNAs in CRC and is considered to be an 

oncogene [193-195]. One of the proposed mechanisms by which miR-21 might promote tumor 

invasion and metastasis is through downregulation of its target Pdcd4, a 64kDa protein that 

inhibits tumor progression by interacting with translation initiation factors eIF4A and eIF4G 

[196-198]. At first glance, miR-21 shows great potential as a prognostic biomarker in CRC, but 

there are issues to address. First, several exploratory studies performed on CRC cohorts failed to 

identify miR-21 as a prognostic biomarker, but instead other miRNAs, such as  miR-17, miR-18a, 

miR-133b, miR-185, miR-22, miR-200c , miR-141, miR-221 and miR-150 were associated with 

overall survival [168, 169, 176, 199-201] [202, 203]. Secondly, miR-21 is not tissue specific, as it 

is found to be overexpressed in several cancers including breast, lung and kidney [204-206].  

Although overall survival is an important endpoint it is not the only useful endpoint in the search 

for biomarkers. Among clinicopathological features, increased expression of miR-31 has been 

associated with increased TNM-and pT stage [157, 160][Schee et al. submitted] and low 

expression of miR-106a was found to correlate with advanced disease stage [167]. MiR-21 

overexpression has been associated with lymph node metastasis and distant metastasis [166]. 

MiRNAs have also been found to be differentially expressed in microsatellite stable (MSS) 

groups compared to microsatellite instable (MSI) in addition to subgroups (MSI-high and low) in 

CRC [161, 207]. As stated earlier, MSI tumors have a favorable prognosis compared to MSS 

tumors and the identification of these patients might influence treatment decisions. Members 

of the 17-92 cluster were upregulated in CRCs with MSS compared to MSI-H, while miR-92, miR-
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223, miR-155, miR-196a, miR-31 and miR-26b were differentially expressed in MSI subgroups 

[170, 208]. In another study, a different set of miRNA expression profiles, consisting of three 

miRNAs (miR-622, miR-362-5p and miR-486-5p) could classify the tumor based on MSI 

subgroups.  

 

There is no question that miRNA are differentially expressed between tumor tissue and normal 

tissue, the challenge lies in the interpretation of miRNA expression data, particularly when 

trying to use the data to explain clinical tumor progression. There is no clear indication why 

these results vary and further validation is needed to determine their prognostic value and 

whether or not they can be incorporated into routine oncological practice.  

 

f) MiRNA as predictive biomarkers 

A major concern in the management of CRC patients is prediction of therapeutic efficacy. 

Chemotherapy is becoming an increasingly important treatment modality, but drugs have 

significant side effects and treatment is costly, making biomarkers an important tool in 

determining individualized treatment.  

MiRNA expression patterns have been shown to change when tumor cells are exposed to 

chemotherapeutic agents. For example, in sub clones of CRC cell lines HT29 and HT116, 19 

miRNAs were upregulated and 3 downregulated when exposed to 5-FU compared to untreated 

cells [209]. However, as expected, not all changes in miRNAs expression were consistent with 

the anti-tumor effects of the drug. For example, miR-21 remained upregulated after treatment. 
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On the other hand, miR-200b, which is normally upregulated in tumors, was downregulated 

after 5-FU treatment. MiR-200b suppresses a gene that codes for a protein tyrosine 

phosphatase, PTPN12 that inactivates products of oncogenes such as c-ABL, Scr or RAS resulting 

in decreased proliferation. Thus, although miR-21 remained upregulated after 5-FU treatment, 

downregulation of miR-200b may have contributed to the anti-tumor effects of the drug. 

Anti-EGFR treatment has been shown to be less efficacious when KRAS mutations are present. 

There are, however, patients harboring KRAS mutations that still benefit from anti-EGFR 

treatment, but the underlying mechanisms have not been determined. One of the let-7a targets 

is KRAS and patients with KRAS mutations and high let-7a expression have shown increased 

survival benefit from anti-EGFR therapy [210, 211]. Let-7a may therefore be a predictive 

biomarker for subgroups of patients receiving anti-EGFR therapy. MiR-143 has among its targets 

DNA methyl transferase 3A (DNMT3A), KRAS and extracellular signal-regulated kinase-5 (ERK5) 

[212-214]. As would be expected, the loss of miR-143 resulted in increased KRAS expression, 

while overexpression of miR-143 caused reduction of KRAS protein levels, thereby reducing cell 

proliferation, suggesting that loss of miR-143 expression is a critical step in CRC progression. 

Overexpression of miR-143 has also shown to impair CRC growth in xenografts with induction of 

apoptosis [215]. 

 

Several individual miRNAs have also been suggested to be of importance for drug sensitivity in 

CRC. MiR-192 has been shown to downregulate the anticancer target dihydrofolate reductase 

(DHFR) that participates in a cycle feedback loop together with thymidylate synthase (TS) and is 
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involved in DNA and RNA synthesis [216]. One of the mechanisms of 5-FU is that it blocks TS, 

and therefore miR-192 might indirectly sensitize cells for 5-FU treatment. Other miRNAs that 

may sensitize cells for 5-FU treatment are miR-140 and miR-143. MiR-143 is downregulated in 

CRC, and introduction of miR-143 in HCT116 cells resulted in reduced cell viability and increased 

apoptotic cell death upon 5-FU exposure [217]. MiR-140 has been show to be upregulated in 

osteosarcoma xenografts, HCT 116 cells and stem-like populations of HCT116, and all were 

shown to be resistant to 5-FU treatment [218]. Therefore, it has been proposed that 

transfection of anti-miR-140 might be used to sensitize cells for 5-FU treatment. The 5-FU 

analog, S-1, is used as a component of fluoropyrimidine-based adjuvant chemotherapy. Studies 

on RNA isolated from formalin fixed paraffin embedded samples, from 46 patients that were 

treated with S-1 showed that reduced expression of let-7g and miR-181b was associated with 

favorable response but no association with patient survival was observed [171].  

Several miRNA have emerged as predictive biomarker candidates, but the use of miRNA as 

predictive biomarkers is still in its infancy and verification of targets in clinical panels is 

necessary to assess the potential value of the above mentioned candidates. 

 

g) MiRNA as therapeutic targets 

One miRNA may target several mRNAs, thereby influencing a cascade of biological pathways. 

This makes miRNA interesting potential therapeutic targets, but herein also lies the challenge in 

determining the range of possible side effects. Although no miRNAs are used as therapeutic 

targets in CRC today, there are several promising candidates. MiRNA used in treatment would 
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either have to restore miRNA expression or silence overexpressed miRNAs. Restoring miRNA 

expression may be done by introducing miRNA in form of a miRNA oligo mimic (which comprises 

of the same nucleotide sequence as an endogenous miRNA, and is designed to target the same 

mRNAs as that miRNA), introducing the miRNA gene by a DNA vector or reverse epigenetically 

silenced miRNA [219]. Inhibition of miRNAs is performed with antagomirs (anti-miRs), which are 

oligonucleotides complementary to the target miRNA and has been shown to inhibit miRNA for 

several days [220]. The challenge is devising a specific, effective and stable delivery system, and 

of course in finding a miRNA with the desired downstream effects on the biological system. 

Advances have been made using small interfering RNA (siRNA) for cancer therapy through local 

or targeted administration in vivo, and the similarity between the miRNA and siRNA systems in 

silencing mRNA makes the findings applicable to both [221].  

 

To summarize, several potential therapeutic miRNA candidates have been described in CRC, as 

mentioned in the preceding chapters. For instance, introduction of miR-143 might e.g. inhibit 

tumor proliferation, lowering the expression of miR-21 might counteract tumor progression and 

metastasis while lowering let-7g and miR-181b could improve response to S-1 treatment. There 

is still a lot to learn about miRNA targets and the downstream effects they have in CRC, but 

future experiments will continue to improve our understanding of this disease and hopefully the 

end result will provide novel therapeutic candidates to aid in the treatment of CRC. 
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SUMMARY OF PAPERS 

Paper I 

Investigation of nonspecific cross-reacting antigen 2 as a prognostic biomarker in bone 

marrow plasma from colorectal cancer patients. 

Schee K, Flatmark K, Holm R, Boye K, Paus E. 

 

CEA is one of the most widely used biomarkers in the clinic today and is mainly used to monitor 

recurrence in CRC patients. Although CEA has been used for the past 30 years the clinical 

relevance is still debated, and its use as a biomarker is limited by poor sensitivity and specificity. 

Hence, the search for new biomarkers is warranted. NCA-2 is a truncated version of CEA, 

transcribed from the same gene and has been proposed as a biomarker. However, its relevance 

has not been investigated in a large cohort of CRC patients, and previous studies on NCA-2 have 

focused on its cross-reactivity with CEA. Examining 277 bone marrow plasma samples from CRC 

patients by immunofluorometric assay, we found that both CEA and NCA-2 were associated with 

advanced tumor stage at diagnosis and adverse patient outcome. Expression of CEA above 5μg/l 

exhibited, as expected, associations with poor outcome. NCA-2 was expressed at much lower 

concentrations than CEA, but apart from that NCA-2 showed the same trends as CEA, but no 

additional prognostic information was gained. Specific NCA-2 expression was observed in the 

immunofluorometric assay but when exposed to common fixation chemicals, cross reactivity 

with CEA was observed. This is most likely attributable to the presence of epitopes in CEA which 

are masked in its native form that are made accessible during conformational changes due to 

chemical processing by the different fixation chemicals. 
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The results from this study indicate that NCA-2 is probably not a useful prognostic biomarker in 

CRC and furthermore, underline the issue of antibody specificity when investigating CEA species 

molecules. 

 

Paper II 

Clinical relevance of miR-21, miR-31, miR92a, miR-101, miR-106a and miR-145 in colorectal 

cancer. 

Schee K, Boye K, Abrahamsen T.W, Fodstad Ø, Flatmark K. 

 

MicroRNAs (miRNAs) are short non-coding RNAs (~22nt) that regulate gene expression post-

transcriptionally by either inhibiting or degrading mRNA. They are chemically stable and can be 

detected in a broad range of clinical samples acting as oncogenes or tumor suppressors. Based 

on the literature we selected six miRNAs (miR-21, miR-31, miR-92a, miR-101, miR-106a and miR-

145) and analyzed for associations between expression in tumor tissue and clinicopathological 

data and patient outcome. We performed qRT-PCR on the six selected miRNAs in our cohort 

consisting of 196 CRC curatively resected tumors. Our results revealed detectable and highly 

variable levels of five of the six miRNAs in the tumor panel. MiR-21 exhibited the highest 

expression while miR-101 was hardly expressed relative to the reference (RNU44). Increased 

expression of miR-31 was associated with increased pT stage and with poorly differentiated 

tumors. Both miR-92a and mIR-106a were associated with differentiation, as higher median 

expression levels were found in intermediately differentiated tumors than in well and poorly 
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differentiated tumors. In addition, miR-31, miR-92a and miR-106a were associated with tumor 

localization as miR92a and miR-106a exhibited higher levels in rectal tumors while miR-31 had 

higher expression in colon tumors. Although both miR-21 and miR-106a had in previous studies 

showed association with overall survival, none of the selected miRNAs in our cohort showed any 

such associations. These results emphasize the importance of validating potential targets in 

individual large clinical panels, and indicate that the potential prognostic role of miRNAs in CRC 

is still unclear and needs further evaluation. 

 

Paper III 

Deep sequencing the microRNA transcriptome in colorectal cancer. 

Schee K, Lorenz S, Molton Worren M, Günther C-C, Holden M, Hovig E, Fodstad Ø, Meza-Zepeda 

L, Flatmark K. 

 

Colorectal cancer (CRC) is a leading cause of cancer related deaths in the Western world and the 

search for biomarkers which might aid in treatment decisions is warranted. MiRNAs are short 

non-coding RNAs which regulate gene expression and have previously been shown to be 

possible biomarkers in CRC. Deep sequencing is a new method allowing for detection of a global 

miRNA expression with a wide expression range. 90 CRC tumor samples were deep sequenced 

and associations with clinicopathological parameters and outcome were assessed. In our cohort, 

523 known miRNAs were expressed. The five most highly expressed miRNAs (miR-10a-5p, miR-

21-5p, miR-22-3p, miR-143-3p, and miR-192-5p) accounted for ~54% of the total amount of 

reads in the cohort. Pathway analysis was performed for the top five miRNA, and the predicted 
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targets included genes involved in cancer-related pathways, including the CRC pathway. In the 

CRC pathway, the identified genes included oncogenes (K-RAS), tumor suppressors (APC and 

TGFRβII), and DNA repair genes (hMSH6), suggesting that the top five most highly expressed 

miRNAs may regulate the expression of highly cancer-relevant proteins.  

When examining associations between miRNA expression and clinicopathological parameters, 

high expression of miR-10b was found to be associated with tumors located in the colon relative 

to the rectum and with poor tumor differentiation. Among the five most highly expressed 

miRNAs, low expression of miR-192 was associated with high pT stage and poorly differentiated 

tumors.  No associations were found between miRNA expression and outcome. MiRNA 

expression, analyzed by hierarchical clustering, revealed relatively constant expression across 

the patient samples for most of the expressed miRNAs. Given the low variability observed 

between samples, it is not surprising that very few associations with clinical parameters was 

detected and that no miRNAs emerged as prognostic biomarker candidates.  
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METHOLOGICAL CONSIDERATIONS 

a) Clinical samples - sample size and origin 

A crucial component when planning a clinical study is defining the number of participants 

needed in order to reliably answer the proposed question. Including too many patients will 

waste time and money, while too few may not be enough to obtain the statistical power 

needed. In addition, the composition of the cohort should be representative of the patient 

group with respect to clinicopathological parameters such as tumor stage, age and localization. 

Our studies were based on a cohort of 316 patient samples collected from 5 different hospitals 

in the Oslo region in between 1998-2000. The cohort was collected with the aim of examining 

possible biomarkers in CRC. The patients were included at the time of primary surgery for 

assumed or verified colorectal cancer [222]. The samples collected were assessed by routine 

histopathology and additional tumor tissue was snap frozen in liquid nitrogen in the operating 

theatre. Thirty-one patients were excluded from further analysis for the following reasons: not 

invasive cancer (25), histology other than adenocarcinoma (5) and unknown stage of disease (1). 

In addition, sections were not obtainable in eight cases (Figure 8). Thus the cohort comprised of 

277 patient samples of tumor tissue and bone marrow plasma with diverse clinicopathological 

parameters. As these samples were collected by the year 2000, long-term follow-up is available 

for the patients, which makes this a suitable cohort in the search for biomarkers. This cohort has 

previously been used in several studies examining tumor expression of protein markers such as 

S100A4, EMMPRIN and B7H3 and their association with different clinicopathological parameters 

and outcome in CRC [223-226]. 
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For papers I, II and III different selections from the CRC cohort were used and the basis for this 

selection is depicted in Figure 10.  

 

Figure 10. Patient cohorts analyzed in papers I, II and III. 

 

The colorectum is a heterogeneous organ with many different cell types which are influenced by 

lifestyle and genetics, albeit, many miRNA studies utilize normal tissue taken from adjacent 

colon from CRC patients and use this as a normalization factor. It is difficult to assess how 
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miRNA expression in normal tissue might influence the miRNA expression in cancer tissue as 

very few studies report their normal miRNA expression profiles. A microarray study performed 

on 40 normal tissues revealed differentially expressed miRNAs within the tissues represented, 

however only one sample from colon was included making it difficult to draw any further 

conclusions as to the global miRNA expression pattern [227]. It can be argued that miRNA 

expression in colon from healthy individuals varies considerably and is therefore not ideal to 

normalize against. In addition, it is debatable whether colon taken adjacent from cancer can be 

denoted normal. Studies performed on normal colon alone to establish a baseline for miRNA 

expression are lacking and the few publications that show normal miRNA expression levels, 

relative to cancer, show great variation in expression of the individual miRNA [200, 212]. In a 

study performed on CRC tissue samples where miRNA expression was reported to be 

upregulated in tumor tissue as opposed to normal adjacent tissue, a significant proportion of 

normal samples actually had higher expression levels than in tumor tissue: 33% for miR-15b, 

37.5% for miR-191, 4% for miR-181b and 21% for miR-200c (Figure 11) [169]. This implies that 

the expression varied greatly between normal tissue and tumor tissue among miRNAs. 

Moreover, the figure also illustrates that expression of individual miRNAs varied considerably 

between normal samples.  
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Figure 11. MiRNA expression in normal and tumor tissue adapted from  Xi et al. [169]. Relative Quantities 

(performed with RT-PCR) of four selected miRNAs from 24 CRC tumor and adjacent normal tissues. The miRNAs 

have been described as overexpressed in tumor tissue relative to normal tissue. The “normal higher than tumor” 

describes the percentage of patients in the cohort with higher miRNA expression in normal as opposed to tumor 

tissue. 

 

It would be interesting to explore what causes the differences between these matched 

normal/tumor samples. Some studies have instead of normalizing against matched normal 

tissue, pooled normal tissue from several different patient samples together. Normalizing 

against values derived from analyzing a pool of samples as opposed to corresponding adjacent 
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normal tissue will most likely result in different miRNA expression outcome. Exploring miRNA 

expression in the normal colorectum and determining a baseline is an important task that 

requires more research. Whether this may account for some of the discrepancies observed 

between different miRNA studies is only speculation at this time but the few examples shown 

do imply that normal tissue has highly variable miRNA expression patterns. 

 

 

b) Antibody specificity 

In the studies used to assess the expression of CEA and NCA-2 immunological detection 

methods were utilized, and consequently, antibody specificity is an essential issue. In paper I we 

used monoclonal antibodies (MAb) which consist of a homogenous pool of antibody molecules 

specific for a single epitope on the immunogen.  The NCA-2 antibody (O-22) is not commercially 

available and was established at our institution [228], anti-CEAtotal (12-140-10) was also 

established in our lab, while anti-CEAspec (T84.66) was bought from ATCC. Antibodies, bought or 

self-established, should prior to utilization be properly examined with respect to sensitivity and 

specificity for the application planned. The anti-CEAtotal antibody has been extensively 

investigated in collaborative epitope screening projects [97, 229], and has been subject to 

studies of differential CEA antibody specificity, and cross-reactivity with other antigens like NCA, 

and NCA-2 has also been extensively examined [115, 230, 231]. The T84.66 antibody was shown 

to be specific for full-length CEA, not recognizing the shorter, C-terminally truncated versions 

[229]. No cross reactivity was observed between the anti-NCA-2 antibody and full-length CEA in 

the native form in our investigations. The proposed binding site for anti-CEAtotal antibody is in 
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the N-terminus which would explain why it recognizes both full-length CEA and NCA-2 as they 

are believed to share this part of the sequence. The binding site of the anti-CEAspec antibody is 

believed to be in the C-terminal end which is absent in NCA-2 and NAC-2 is therefore not 

recognized by this antibody.  

 

In our experiments we observed inconsistencies in NCA-2 expression when using different 

detection methods such as the immunofluorometric assay (IFMA), Western Immunoblot (WB) 

and immunofluorescence. NCA-2 was found with the same high expression as was found when 

staining with anti-CEA with respect to both signal intensity and distribution. 

Immunohistochemical staining performed on gastric tissue in a previous study, where NCA-2 

was pre-absorbed with NCA and CEA, did not exhibit equally high signal intensity and 

distribution and therefore this discrepancy of what was previously reported together with the 

discrepancies between our IFMA-and immunohistochemistry results led us to question the 

specificity of our NCA-2 antibody [232]. A hypothesis was that this could be caused by the 

presence of epitopes that were usually masked in the native form, that were made available for 

antibody binding when fixation chemicals conformational changes in the protein in the different 

detection methods [233, 234]. This theory was tested in paper I by exposing rhCEA to different 

chemicals and probing with anti-NCA-2 (Figure 12), which showed that the read-out of the IFMA 

changed depending on the fixation chemical the recombinant protein was exposed to. 
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Figure 12. Relative expression of rhCEA exposed to different fixation chemicals probed with anti-NCA-2. Figure from 

paper I [235]. 

 

Although our results indicated that the apparent cross reactivity was related to differences in 

epitope availability dependent on protein conformation, questions were raised regarding the 

purity of the immunogen used to establish the NCA-2 antibody. To examine this, the NCA-2 

immunogen (purified from human meconium) and rhCEA were separated by SDS-PAGE with and 

without prior deglycosylation (Glycoprofile II, enzymatic in-solution N-deglycosylation kit, Sigma 

-Aldrich), and silver staining was performed to visualize bands. Distinct bands were detected at 

appropriate levels (Figure 13) suggesting that successful deglycosylation was achieved, and 

confirming the slightly smaller size of NCA-2. 
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Figure 13. Silver staining gel of; 1: NCA-2 de-glycosylated, 2: NCA-2 native, 3: CEA de-glycosylated, 4: CEA native The 

red squares indicate which protein bands were excised from the gel for mass spectrometry analysis. 

 

The bands were excised, in-gel digestion with trypsin was performed and peptides were 

extracted and subjected to mass spectrometric (MS) analysis. Detected peptide sequences were 

matched against the theoretical trypsination spectra of CEA. In the rhCEA sample, 10 peptides 

were detected that unequivocally identified CEA. Two of these peptides were observed as 

distinct peaks, and these were located in the C-terminal end of the CEA molecule (that according 

to theory should be absent from NCA-2). In the NCA-2 sample, 4 peptides corresponding to the 

N-terminal part of CEA were detected, but the two C-terminal peptides could not be detected in 

this sample (Figure 14). The results were relatively similar for native and de-glycosylated 

samples.  
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In conclusion, our results show that specific detection of CEA and NCA-2 was possible in native 

samples, such as bone marrow plasma, whereas the specificity of the anti-NCA-2 antibody was 

lost when the samples were exposed to any of the tested fixation chemicals. Antibody specificity 

should constitute an important consideration whenever an immunologic assay is being used.   



62 
 

 

Figure 14. Mass spectrometry of CEA and NCA-2. a. CEA de-glycosylated.Two peaks were detected in CEA located 

in the C-terminal end. b. NCA-2 de-glycosylated In NCA-2 the peaks corresponding to the C-terminal end of CEA 

could not be detected.  
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c) MiRNA quantitative RT-PCR and normalization 

The most commonly used method for analyzing expression of individual miRNA is quantitative 

reverse transcription polymerase chain reaction (qRT-PCR) which allows for sensitive, specific 

and reproducible quantification of nucleic acids [236]. The limited length of the miRNA and the 

sequence homology to pre- and pri-miRNA pose several challenges for correct reverse 

transcription, a challenge manufacturers have solved differently [237], with no indications that 

one method is preferentially better. There are two methods primarily used for reverse 

transcription of miRNAs today; miRNA specific and universal reverse transcription. In the specific 

reaction each miRNA is individually reverse transcribed with the help of a stem-loop primer 

designed to be complementary to the known 3’ end of the miRNA. The second method uses a 

universal primer to reverse transcribe all miRNAs in the sample. This approach is especially 

useful if many miRNAs need to be analyzed from a small sample amount. The specificity and 

sensitivity of qPCR assays are dependent upon primer design. The binding affinity of the primers 

determined by the sequence and the GC content of a miRNA determines the Tm (melting point) 

against complementary sequences [237].  

To be able to compare miRNA expression across different samples normalization is needed. This 

is performed by normalizing the target gene value against values obtained for a reference gene 

in the same sample. There are, however, no universally accepted reference genes identified for 

normalization of miRNA expression. Several candidates of small non-coding and small nucleolar 

RNAs have been suggested, such as RNU44, RNU6B, U24 and U26. In our studies, we examined 

RNU44 and RNU6B in a pilot study composed of 30 cases, and analyzed the results using 

geNORM, which is an algorithm that determines the most stable reference in a given sample 
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panel. Both miRNA were stably expressed in our samples, and for further analyses we chose to 

use RNU44 as a reference gene [238]. 

 

d) Deep sequencing and genome mapping. 

Global expression analysis of miRNAs has most often been performed using microarrays. 

Microarrays utilize fluorescent probes to detect miRNA expression in a sample using signal 

intensities. Deep sequencing, or next generation sequencing as it is also called, is a novel 

approach to discover new miRNAs as well as characterizing expression levels of annotated 

miRNAs [239]. One advantage of using deep sequencing opposed to microarrays is the ability to 

get absolute quantitative measurements instead of relative signal intensity [240]. There is 

however some disagreement on what is the optimal method [241].  

MiRNAs are processed by enzymes through multiple steps from a precursor sequence into 

mature sequences. These mature sequences are complementary to each other and are denoted 

-3p and -5p. Usually one of the strands is selected for the microRNA induced silencing complex 

(miRISC) while the other one is degraded, but in some instances both miRNA strands are equally 

utilized. Although thermodynamic asymmetry of the duplex ends appears to play a role in which 

strand is selected, the mechanisms behind the strand selection is still unclear [242, 243]. With 

microarrays, the probes have to be pre-selected, and the array is size limited, while with deep 

sequencing it is possible to detect both strands. 

The result from the sequencing is a data file which contains all the detected sequences from the 

analyzed samples, called reads. In order to denote which miRNAs the reads represent in the 

different samples, the reads have to be mapped to the genome. In the mapping process it is 
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possible to set several different criteria beforehand, among them the number of mismatches 

tolerated, amount of overlap required and whether miRNAs are allowed to map multiple places 

in the genome [244]. There are both advantages and disadvantages by choosing different 

criteria. Not allowing for multiple mapping may result in losing miRNA expression represented 

by miRNA families, but allowing for multiple mapping may result in either increased or 

decreased miRNA expression depending on how multiple mappers are counted. MiRNAs that 

map multiple places in the genome can either be counted as one hit per place it maps to or it is 

possible to divide the expression among all the possible mapped locations. This will give 

different expression patterns of the expressed miRNA. As miRNAs are short sequences which 

may vary with only one nucleotide the different amounts of mismatches allowed when mapping 

may give rise to different miRNA results. In our deep sequencing study, multiple mapping was 

allowed where when two miRNAs shared a given number of multiple mapped reads, we 

identified the ratio of unique reads between these two miRNAs. This ratio was applied to divide 

the number of multiple mapped reads and assign them. If multiple hits were found to be 

perfectly mapped to one genomic region and mapped with mismatch to another one, only the 

perfect matches were considered.  

 

These different settings all have an impact on the mapping results and because deep sequencing 

is a new method there are a multitude of challenges with finding standardized methods within 

genome mapping, normalization and the underlying statistic.  
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RESULTS AND DISCUSSION 

Bone marrow plasma from patients with CRC was utilized to measure the presence of CEA and 

NCA-2, and associations between plasma levels and clinicopathological parameters and 

outcome were analyzed, to investigate these proteins as possible prognostic biomarkers in CRC. 

As bone marrow plasma is not a conventional material to use, levels of CEA detected in bone 

marrow plasma were compared to preoperative serum measurements performed as part of the 

routine preoperative work-up. The levels seemed to correlate well (CEA linear R2= 0.838, 

p<0.001) making this a suitable material for our study. Examining plasma samples from 273 CRC 

patients with immunofluorometric assay (IFMA) we found that NCA-2 behaved similar to CEA 

with respect to associations with clinicopathological parameters however no additional 

associations were found. NCA-2 concentrations were lower compared to CEA, and the cut-off 

level for statistical calculations was determined to be 2μg/l (as opposed to 5μg/l for CEA). 

CEA concentrations in plasma were, as expected, associated with poor overall and metastasis-

free survival. Our analysis of the specificity and sensitivity for CEA with endpoint metastasis 

were 81% and 38%, respectively, while the calculated specificity and sensitivity for NCA-2 with 

endpoint metastasis was 82% and 36%, respectively, showing that these two proteins 

performed relatively similarly as prognostic biomarkers. This indicates that both CEA and NCA-2 

are poor prognostic biomarkers as there are >60% of patients with metastases which would not 

be detected with this analysis.  In addition, both positive predictive value (PPV) and negative 

predictive value (NPV) were relatively similar between the two proteins with PPV 50% for CEA 

and 45% for NCA-2, and NPV 75% for CEA and 74% for NCA-2 respectively. 
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MiRNA research on CRC has increased exponentially during the working years of this thesis 

(Figure 15). When this work was started in 2008, we decided to evaluate the research done on 

the potential prognostic relevance of miRNAs in CRC which resulted in a review article on the 

topic [245].  

 

 

Figure 15. Number of publications in PubMed for miRNA and cancer in the years 2008-2011. 

 

Based on this work, six miRNAs (miR-21, miR-31, miR-92a, miR-101, miR-106a and miR-145) 

were selected for their promising association with clinicopathological parameters and outcome 

in CRC and their expression in tumor tissue were explored with qRT-PCR in our CRC cohort 

(Paper II).  All of the miRNAs, except miR-101, which was hardly detectable in our samples, 

exhibited variable expression in the tumor samples. Surprisingly, few associations were found 

between expression levels and age, gender, tumor stage, differentiation, localization, vascular 

invasion, perineural infiltration and lymphocytic infiltration.   
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Increased expression of miR-31 was associated with both poorer differentiated tumors and with 

increased pT-stage which is in concordance with previous results [157, 160, 166]. There are 

however discrepancies in the previous results reported on miR-31 and its associations with pT-

stage and differentiation. In the study where miR-31 is associated with differentiation, no 

association with pT-stage was found, and in the studies where association with pT-stage was 

found, no association with differentiation was detected. This implicates that results may vary, 

and that it is important to examine such associations in different cohorts.  

 

MiR-92a was included because of its potential as an early detection biomarker in plasma and 

feces and we wished to examine whether it could be associated with clinicopathological 

parameters or outcome [173, 183].  The expression levels of miR-92a did not increase with 

tumor stage nor show any other differential expression within other clinicopathological 

parameters as would be expected for a potential early detection biomarker. We did not detect 

any association with overall or metastasis-free survival, but miR-92a was associated with 

differentiation where median expression was higher in intermediately differentiated tumors 

compared to well or poorly differentiated tumors.  

 

MiR-21 is a highly studied oncogenic factor that targets several tumor suppressor genes in 

various model systems and has been found to be overexpressed in at least 18 malignancies 

indicating that altered expression of miR-21 is a common mechanism in carcinogenesis [193, 

204-206]. MiRNA-21 is the most studied miRNA in CRC and was included in our study for its 

proposed association with advanced tumor stage and survival [158, 166]. In our cohort miR-21 
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showed both high and varied expression, but we did not find any association with 

clinicopathological parameters or outcome. As with miR-31, there are discrepancies between 

studies on miR-21 expression among the ones that have found an association with outcome and 

the ones that have not [168, 169, 176, 199, 200]. What may cause the discrepancies is difficult 

to say whether they are caused by biological differences in the cohorts, sample size, 

normalization methods or other factors is only speculation at this time.   

 
Downregulation of miR-145 has been identified as an early event in CRC, which might explain 

why it was not associated with any clinicopathological parameters in our advanced tumor panel 

[91, 246]. Overexpression of miR-145 has shown to suppress cancer growth and inhibit 

metastasis [247, 248] thereby implicating as a possible therapeutic target [161, 194, 249]. 

MiR-106a has previously been shown to be upregulated, relative to normal colon, and has in 

addition to tissue been found in fecal samples and therefore proposed as a possible early 

detection biomarker [91, 184, 250]. This miRNA has also been associated with survival although 

we did not find any such associations [158, 167]. MiR-106a, like miR-92a, was associated with 

differentiation where median expression was higher in intermediately differentiated tumors 

compared to well or poorly differentiated tumors. 

 

Alternatively to searching for possible prognostic biomarkers among single miRNAs, a global 

miRNA expression search was undertaken. 90 samples from our CRC cohort were analyzed by 

deep sequencing, which revealed the global expression pattern of all known miRNAs annotated 

in miRBase to date (release 18, November 2011). A total of 523 mature miRNAs were detected 
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with expressions ranging from less than 10 reads up to ~500.000 reads in a single patient, 

showing the broad detection range of the deep sequencing technology. 

The five most highly expressed miRNAs (miR-10a-5p, miR-21-5p, miR-22-3p, miR-143-3p and 

miR-192-5p) represented ~54% of the total miRNA counts in all the patient samples, indicating 

that some miRNAs are more abundantly expressed in the tumor compared to the rest. In a study 

on peripheral blood the expression of the let-7 family contributed to 77% of the global 

expression thereby supporting that few individual miRNAs account for a large part of the global 

expression [251]. It is difficult to say whether the abundance of a few miRNA is more important 

than the absence of others, as the biological pathways that these miRNAs affect might be 

equally important. Pathway analysis of the target genes from the five highly expressed miRNAs 

revealed targets relevant in cancer pathways, including colorectal cancer pathway. Targets 

within the CRC pathway included K-RAS, APC, TGFRβII, and DNA repair genes which are involved 

in important signaling networks. Further evaluation of the proposed target genes could 

elucidate the implication of these highly expressed miRNAs. 

 

Increased expression of miR-10b-5p was associated with tumors located in the colon relative to 

rectum and poorly differentiated tumors. MiR-10b-5p has previously been associated with 

increased pT stage in CRC [252]. Examining the top five highly expressed miRNAs for association 

with clinicopathological parameters revealed that reduced expression of miR-192-5p was 

associated with increased pT stage and poorly differentiated tumors. Reduced expression of 

miR-192 has previously been associated with MSI status in CRC while overexpression of miR-192 

exhibited reduced cell proliferation by targeting cell cycle progression [207, 208, 253, 254].  
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The expression patterns represented by hierarchical clustering reveal that the miRNAs were 

relatively uniformly expressed across all the patient samples thereby supporting the lack of 

associations between miRNA expression and clinicopathological parameters or outcome. 

Although, LASSO and Cox regression analysis, with either endpoint metastasis or survival, 

revealed six miRNAs, adjusting for multiple testing none of these remained significantly 

associated with outcome.  

 

Examining expression on both single miRNA candidates and global expression in CRC patients, 

and looking for associations with clinicopathological parameters or outcome revealed few 

associations. Our results, together with the varying results from previous studies on miRNAs as 

possible prognostic biomarkers in CRC, imply that there does not appear to be a definite miRNA 

prognostic biomarker candidate. However, the miRNA target prediction from our deep 

sequencing study, together with increasing evidence of validated targets with relevance in CRC,  

suggest that miRNA may be used as therapeutic targets in the future. 
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CONCLUDING REMARKS AND FUTURE PROSPECTS 

In this work, the prognostic biomarker potential of CEA and NCA-2 was investigated in plasma 

samples from 273 CRC patients. High levels of CEA and NCA-2 were associated with 

clinicopathological parameters and outcome, but although NCA-2 exhibited interesting 

prognostic potential, it was not superior to CEA which is used in the clinic today. Furthermore, 

important issues regarding the specificity of the NCA-2 antibody were explored, the results 

clearly underlining the importance of verifying antibody specificity for each experimental 

setting. The development of anti-NCA-2 variants which do not cross react with CEA during 

denaturing conditions would be necessary in order to further explore the biological importance 

of NCA-2.  

 

Increasing evidence suggests that miRNAs play important roles in colorectal carcinogenesis, 

cancer progression and metastasis development, and these molecules are being explored as 

potential diagnostic, prognostic, and predictive biomarkers, as well as therapeutic targets [255-

260]. In the present work, miRNA expression in primary tumors from patients with CRC was 

explored to examine their potential as prognostic biomarkers in this disease. The exploration of 

miRNA expression identified several miRNA that were of relevance in CRC but few associations 

were found with clinicopathological parameters and outcome. Taken together with the variable 

results reported in previous studies, no specific miRNAs can at present be identified as 

prognostic biomarker candidates.  
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Research technologies and approaches are still being established and perfected, and tools which 

were unavailable when this thesis was started are available today. MiRNA isolation, 

amplification and detection have become easier and faster with improved isolation kits and 

probes. In addition, complete qRT-PCR arrays with cancer pathways are easily accessible and 

can be run and compared to our miRNA expression levels to look for associations with known 

pathways within cancer.  

Our deep sequencing results were based on mapping to known miRNAs, but we do have the 

opportunity to further examine these results and look for unknown miRNAs where new and 

possible important biomarkers might be found. As the technology becomes less expensive, deep 

sequencing will most likely be used to explore miRNA expression patterns in a similar fashion as 

microarrays are used today. An advantage of deep sequencing is the ability to re-analyze data at 

a later date when new versions of databases are released. In addition, these data may be 

explored in a multitude of different ways and promising single miRNAs candidates can be 

further examined to look for possible targets and cancer relevance. Predicted targets among the 

highly expressed miRNAs from our deep sequencing study included K-RAS which, when 

mutated, has been shown to influence EGFR therapy. It would be interesting to explore the K-

RAS expression for our patient cohort and compare this to the miRNA expression levels from the 

deep sequencing.  

 

We believe that the work presented in this thesis has shown the importance of validating 

possible findings in independent large cohorts and also laid the groundwork for future research. 
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Abstract 

Background: MicroRNAs (miRNAs) regulate gene expression by binding to mRNA, and can 

function as oncogenes or tumor suppressors depending on the target. In this study, using RT-

PCR, we examined the expression of six miRNAs (miR-21, miR-31, miR-92a, miR-101, miR-106a 

and miR-145) in tumors from 193 prospectively recruited patients with colorectal cancer, and 

associations with clinicopathological parameters and patient outcome were analyzed. The 

miRNAs were chosen based on previous studies for their biomarker potential and suggested 

biological relevance in colorectal cancer.  

Results: MiR-101 was hardly expressed in the tumor samples, while for the other miRNAs, 

variable expression levels and expression ranges were observed, with miR-21 being most 

abundantly expressed relative to the reference (RNU44). In our study cohort, major clinical 

significance was demonstrated only for miR-31, as high expression was associated with 

advanced tumor stage and poor differentiation. No significant associations were found between 

expression of the investigated miRNAs and metastasis-free or overall survival.  

Conclusions: Investigating the expression of six miRNAs previously identified as candidate 

biomarkers in colorectal cancer, few clinically relevant associations were detected in our patient 

cohort. Our results emphasize the importance of validating potential tumor markers in 

independent patient cohorts, and indicate that the role of miRNAs as colorectal cancer 

biomarkers is still undetermined.  

 

Keywords: miRNA, colorectal cancer, prognostic biomarker 
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Background 

MicroRNAs (miRNAs) are a class of small, non-coding RNAs (19-22 nucleotides) that function as 

posttranscriptional gene regulators by binding to the 3’UTR of mRNA, and one miRNA may 

potentially down-regulate multiple mRNA targets. More than 1500 human miRNAs are currently 

annotated in the miRBase [1], and it has been predicted that as many as 30% of protein-

encoding genes may be regulated by miRNAs [2]. The discovery that miRNAs may function as 

oncogenes or tumor suppressors depending on the target mRNA, has instigated intensive 

research to determine the role of these molecules in cancer. MiRNAs are chemically very stable, 

and can be detected by a range of high-throughput detection methods in tissue, serum and 

plasma as well as in urine and feces, and are for these reasons considered to have great 

potential as cancer biomarkers.  

In colorectal cancer (CRC), treatment decisions are still based essentially on anatomical extent 

of disease at diagnosis, and the search for better biomarkers is warranted. Several miRNAs with 

potential biological and clinical relevance have been identified and are being explored as 

diagnostic, prognostic and predictive biomarkers [3-6]. Based on previous studies and our 

recent review of this topic, six candidate miRNAs, miR-21, miR-31, miR-92a, miR-101, miR-106a 

and miR-145 (Table 1), were chosen for analysis in a cohort of 193 prospectively recruited 

patients receiving curative surgery for CRC [7-13]. Expression of the miRNA was determined by 

RT-PCR and associations with clinicopathological parameters and outcome were analyzed.  

 

Materials and Methods 
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Patient cohort 

316 patients, recruited from five hospitals in the Oslo region between the year 1998 and 2000 

[31], were prospectively included in the study at the time of primary surgery for assumed or 

verified colorectal cancer. The study was approved by the Regional Ethics Committee (Health 

Region II, Norway) and informed consent was obtained from the patients. At surgery, resected 

specimens were routinely processed for histopathological assessment and additional tumor 

tissue was sampled and snap-frozen in liquid nitrogen. A number of cases were excluded from 

statistical analysis for the following reasons: not invasive cancer (25), histology other than 

adenocarcinoma (5), distant metastasis at the time of surgery (34, tissue samples not available), 

preoperative chemoradiotherapy (2), inadequate surgical margins (7), unknown stage of disease 

(1), freshly frozen tissue samples not obtainable (46), and high Ct-values (>37; n=3). The study 

population thus consisted of 193 patients in TNM stage I-III (Table 2). Follow-up data was 

obtained from the participating hospitals and from the general practitioners (for the patients 

not attending scheduled controls). Metastasis was verified by radiological examination and 

survival data was obtained from the National Registry of Norway and updated by October 1st 

2008 with the cause of death registered and classified as death from colorectal cancer, death of 

other cause or death of unknown cause.  
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MiRNA selection 

MiRNA selection was based on previous studies and our literature review [11], identifying 

miRNA with proposed clinical relevance in CRC, including published articles leading up to the 

year 2009. We wished to examine selected miRNAs in our CRC cohort and their relevance with 

clinicopathological data and outcome parameters (Table 2). The following six miRNAs were 

chosen for analysis; miR-21, miR-31, miR-92a, miR-101, miR-106a and miR-145 [7-13].  

 

Sample preparation and RNA isolation 

Biopsies were sampled and snap frozen in liquid nitrogen and stored at -80 °C. The biopsies 

were sectioned using a cryostat microtome and hematoxylin-eosin stained slides were 

evaluated for tumor content by a pathologist (median tumor content in the samples was 50%, 

range 30 - 80%).  The tumor tissue was sliced into 10 μm sections using a cryostat microtome, 

aliquoted into 1.5 ml Micro tubes (Sarstedt, Nümbrecht, Germany) and stored at -80 °C. RNA was 

isolated from the tumor tissue using TriReagent (Ambion Inc, TX) according to the manufacturer’s 

protocol and the total RNA concentration was measured by Nanodrop (ND-1000). 

 

RT-PCR  

Total RNA from 196 patients was used to reversely transcribe miRNAs using TaqMan MicroRNA 

assays (Applied Biosystems, Foster City, CA). Each reverse transcriptase reaction contained 10 

ng of total RNA (5μl), 0.15 μl dNTP (100 mM total), 1.0 μl Multiscribe RT enzyme (50 U/μl), 1.5 μl 

10X RT buffer, 0.19 μl RNase Inhibitor (20 U/μl) , 4.16 μl nuclease free water (Sigma-Aldrich, 

Ayshire, UK) and 3.0 μl 5X RT Primer. The 15 μl reaction volumes were incubated in 8-well PCR 
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strip tubes (Sarstedt) in a GeneAmp PCR System 9700 thermal cycler (Applied Biosystems) as 

follows; 30 min at 16 °C, 30 min at 42 °C, 5 min at 85 °C. Real-time PCR was performed using 

Applied Biosystems 7500 real-time PCR system. The reversely transcribed miRNAs were diluted 

1:20 before adding 1.3 μl to 10 μl 2X Universal PCR Master Mix (no AmpErase UNG), 7.7 μl 

water and 1.0 μl 20X MicroRNA Assay. A total volume of 20 μl per reactions was incubated in 

96-well MicroAmp plates (Applied Biosystems) for 10 min 95 °C followed by 40 cycles of 15 sec. 

95 °C and 60 sec. 60 °C. All samples were run in duplicates. 

RNU6B and RNU44 were tested as potential reference genes and performed equally well, and 

RNU44 was selected for further analysis [32]. Each miRNA was normalized against RNU44 and 

the relative expression was calculated using 2-dCt method. 

 

Statistical analysis 

All statistical analyses were performed using SPSS version 18.0 (SPSS Inc., Chicago, MO) and P-

values < 0.05 were considered to be statistically significant. Associations between miRNA 

expression and clinicopathological variables were explored using Mann-Whitney U and Kruskal-

Wallis test as appropriate. Survival was estimated using the Kaplan-Meier method and 

compared using the log-rank test. Overall and metastasis-free survival was calculated from date 

of surgery until date of death or diagnosis of metastasis.  

 

Results  

MiRNA expression in tumor samples 
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The most abundantly expressed miRNA relative to the reference was miR-21, and it also 

exhibited the widest expression range among the examined candidates (median relative 

expression ratio was 7.7; range 0.4-61.0). In contrast, miR-101 was hardly detectable in any of 

the samples (0.02; 0-0.13), and miR-31 exhibited low expression but a wider expression range 

(0.04; 0-2.6). The remaining three miRNAs, miR-92a (1.9; 0.04-24.4), miR-106a (1.0; 0.1-18.1), 

and miR-145 (0.5; 0.04-29.8) exhibited intermediate expression levels and variability between 

samples (Figure 1).  

 

MiRNA expression and associations with clinicopathological parameters 

To explore the clinical significance of these findings, associations with clinicopathological 

variables were investigated. Somewhat surprisingly, few significant associations were detected 

between expression of miR-21, miR-92a, miR-101, miR-106a and miR-145 and 

clinicopathological variables, including age, gender, tumor stage, differentiation, localization 

and specific histomorphologic characteristics such as vascular invasion, perineural infiltration 

and lymphocyte infiltration (Table 2). MiR-92a and miR-106a were associated with 

differentiation, as higher median expression levels were found in intermediately differentiated 

tumors than in well and poorly differentiated tumors (p=0.003 and p=0.01, respectively). Also, 

some associations were found between miR-31, miR-92a and miR106a expression and tumor 

localization, as miR-31 exhibited higher expression in colon tumors while miR-92a and miR106a 

had higher expression levels in rectal tumors (p=0.02, p=0.05 and p=0.05, respectively).  
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For miR-31, an association with tumor stage, and in particular with pT stage was found, as 

relative median expression of miR-31 increased with pT stage (0.015, 0.02, 0.05, and 0.14 for 

pT1, pT2, pT3, and pT4, respectively; p=0.004, Kruskal-Wallis test) (Figure 2 and Table 2). High 

miR-31 expression was also associated with poorly differentiated tumors, as relative mean 

expression was 0.2, 0.04 and 0.02 for poor, intermediate and well differentiated tumors, 

respectively (p=0.001, Kruskal-Wallis test), which is also in accordance with previous findings 

[12].  

 

MiRNA expression and associations with patient outcome 

To analyze associations with outcome, survival was estimated using the Kaplan-Meier method 

and compared using the log-rank test. As there are no generally recognized cut-off values for 

the miRNAs analyzed in this work, different values were explored to arrange data (including 

mean, median and tertiles). Regardless of the cut-off value used, we found no significant 

associations between expression of any of the analyzed miRNAs and metastasis-free (Figure 3) 

or overall survival. Similar results were obtained using univariate Cox regression analysis with 

miRNA expression levels as continuous variables (data not shown). 

 

Discussion 

Although miR-31 was expressed at relatively low levels compared with some of the other 

candidates, high expression was associated with advanced tumor stage at diagnosis, and 
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particularly with pT-stage, in accordance with previous results [9, 10]. There are multiple 

predicted targets for miR-31, but few have been fully validated at present. One proposed target 

of miR-31 that has been experimentally investigated is Special AT-rich Binding protein 2 (SATB2), 

which is involved in transcriptional regulation and chromatin remodeling [14]. In an 

immunohistochemical study performed in 146 colorectal tumors, low expression of SATB2 was 

associated with metastasis development and poor prognosis [15]. Another target that has been 

shown to be regulated by miR-31 is the T lymphoma Invasion And Metastasis gene 1 (TIAM1), 

which is a guanidine exchange factor for Rac GTPase and when over-expressed, it prevents TGF-

β and TNF-α dependent motility and invasion in CRC cell lines [16]. The postulated effects of 

miR-31 on SATB2 and TIAM1 are consistent with the associations between miR-31 expression 

and advanced tumor stage, observed by us and others, but clearly, the regulatory activity of 

miR-31 is still incompletely understood in CRC.   

MiR-92a was included in the analyses because it has been proposed as an early-detection 

biomarker in plasma and stool [13, 17]. In general, one would expect an early-detection 

biomarker to be ubiquitously expressed in the tissue of interest, and although several tumors in 

our study had relatively high levels of miR-92a, low levels were found in a substantial proportion 

of the samples. Also, over-expression of miR-92a has been found in other cancer types, such as 

hepatocellular carcinoma and leukemia [18, 19], which suggest that further evaluation is 

necessary to determine its specificity and sensitivity as an early-detection biomarker. Although 

miR-92a was not primarily included in this study for its prognostic relevance, it was recently 

proposed as a key oncogenic component of the miR-17-92 cluster through targeting and down-
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regulating the proapoptotic protein Bim in CRC, suggesting that the functional role of miR-92a in 

CRC should be further elucidated [20]. 

MiR-21 is one of the more extensively studied miRNAs in CRC and was included in our study 

because of its proposed association with advanced tumor stage and outcome in CRC  [12, 21]. In 

the present work, miR-21 exhibited the highest relative expression and the widest expression 

range of the examined candidates, but no significant associations with clinicopathological data 

or outcome were found. Although some investigators have identified this miRNA as clinically 

relevant, other exploratory studies of miRNA expression in CRC have not been able to verify 

these findings [22-24]. It has been speculated that discrepancies might be explained by the 

composition of patient cohorts, particularly regarding tumor localization, as the association 

between miR-21 and survival has primarily been documented in colon cancer [25]. However, in 

our cohort no differences were found when comparing the clinical relevance of miR-21 

expression in colon and rectum cancer. In most of the previous studies, miR-21 expression was 

reported relative to paired normal tissues, whereas only tumor tissue was available from our 

patients, which might influence interpretation of results. However, among the reports that did 

not identify miR-21 as relevant for outcome in CRC, both analysis of tumor tissue alone and 

paired tumor and normal samples were used, suggesting that this may not be the only 

explanation for the discrepancies.  

When the primary objective is to identify cancer specific molecules, the inclusion of normal 

tissues is necessary, whereas, in the current project the aim was to evaluate previously 

identified potential biomarkers, which is a different setting. Importantly, normal tissue is often 
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not obtainable for analysis, and expression of molecular targets in normal tissues might vary 

considerably between patients, and not necessarily in concert with the corresponding tumor 

sample. Thus, it is probably both practicable and necessary to develop assays that are 

independent of normal tissue. Another related challenge concerns the definition of biologically 

relevant cut-off levels, which have not been determined for specific miRNA in different tissues. 

We explored multiple cut-off levels, but associations with clinicopathological parameters and 

outcome for all the candidates remained relatively similar.  

MiR-101, miR-145 and miR-106a have previously been associated with cancer-relevant 

biological processes, such as growth, proliferation and inhibition of apoptosis, or with clinical 

outcome in CRC [7-9], but few associations with clinicopathological parameters or outcome 

were found in our cohort. MiR-101 was hardly detectable in tumor samples, which is in 

accordance with its proposed function as a tumor suppressor that is lost during tumorigenesis. 

Interesting recent findings in pancreatic cancer suggest miR-101 as a key regulator of stem cell 

protein markers; its loss favoring the stem cell phenotype and its re-expression constituting a 

possible therapeutic strategy [26]. Down-regulation of miR-145 was also identified as an early 

event in CRC carcinogenesis, which might explain why associations with clinical variables in 

invasive tumors were absent in our tumor panel. The biological relevance of miR-145 in CRC has, 

however, been repeatedly confirmed, and this miRNA is also being explored as a therapeutic 

target [27, 28]. MiR-106a was in a recent review identified as consistently up-regulated in CRC 

(relative to normal colon) which would be in agreement with our findings [29]. It has also been 

identified in stool samples in CRC patients, and has been suggested as an early detection 
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biomarker [30], but even if extensively studied in several cancer forms, its function and clinical 

relevance remain unclear.  

 

Conclusions 

It has become evident over the last decade that miRNAs contribute to the pathogenesis of a 

broad variety of human disease, including cancer. Their relatively small number combined with 

large potential downstream regulatory effects and unique chemical stability make these 

molecules interesting biomarker candidates. Although the miRNAs analyzed in the present study 

were chosen on the basis of biomarker potential and biological relevance in CRC, major clinical 

significance could only be confirmed for miR-31 in our study cohort. It seems clear that the role 

of miRNAs as colorectal cancer biomarkers is still undetermined, emphasizing the need for 

further investigations in the exploratory setting and to validate potential biomarkers.  
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Figure legends 

Figure 1 - MiRNA expression in tumor samples. 

Boxplot showing the relative expression distribution of miR-21, miR-31, miR-92a, miR-101, miR-

106a and miR-145. RT-PCR was performed and Ct values for each miRNA was normalized against 

RNU44 and the relative expression was calculated using 2-dCt method. Circles represent outliers 

while stars represent extreme outliers. 

 

Figure 2 - MiR-31 expression according to pT-stage at diagnosis. 

Boxplot showing qRT-PCR relative quantities (using the 2-dCt method) of miR-31 according to pT-

stage, indicating that expression of miR-31 increased with increasing pT stage (p=0.004, Kruskal-

Wallis test). Circles represent outliers while stars represent extreme outliers. 

 

Figure 3 - MiRNA expression and metastasis-free survival  

Kaplan-Meier survival plots of metastasis-free survival for the six selected miRNAs. The 193 

patients were divided into low and high expression of the respective miRNA based on the 

median value (low expression n=97 and high expression n=96). 
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Tables 

Table 1 - Mature sequence, miRBase accession number and proposed clinical relevance for 

the six chosen miRNAs. 

 
 
 
 
  

miRNA name Mature microRNA sequence 
miRBase 
Accession number 

Proposed clinical 
relevance Comment Reference 

hsa-miR-21 UAGCUUAUCAGACUGAUGUUGA MIMAT0000076 Overall survival 
High expression 
associated with poor OS [21] 

hsa-miR-31 AGGCAAGAUGCUGGCAUAGCU MIMAT0000089 
Tumor stage/ 
differentiation 

High expression 
associated with 
advanced tumor stage 
and poorly 
differentiated tumors [10] 

hsa-miR-92a UAUUGCACUUGUCCCGGCCUGU MIMAT0000092 Plasma marker 

Elevated levels as a 
possible diagnostic 
marker [13] 

hsa-miR-101 UACAGUACUGUGAUAACUGAA MIMAT0000099 
Increased 
invasiveness  

Decreased expression 
associated with 
invasiveness [8] 

hsa-miR-106a AAAAGUGCUUACAGUGCAGGUAG MIMAT0000103 
Disease free and 
overall survival 

Down-regulation 
associated with poor 
disease free and overall 
survival. [7] 

hsa-miR-145 GUCCAGUUUUCCCAGGAAUCCCU MIMAT0000437 Tumor size 

Low expression 
associated with large 
tumor size [9] 
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Table 2 - Median expression levels of the six selected miRNAs and associations with 

clinicopathological data. 

  
Number 
(percent) miR-21 miR-31  miR-92a miR-101 miR-106a miR-145 

Gender               
Female 81 (42) 7.78 0.07 1.64 0.02 1.16 0.43 
Male 112 (58) 7.53 0.03 2.12 0.02 0.93 0.48 
p-value  0.45 0.14 0.52 0.78 0.43 0.99 

TNM              
I 35 (18) 5.22 0.02 2.41 0.02 1.24 0.34 
II 97 (50) 7.67 0.06 2.09 0.02 1.10 0.48 
III 61 (32) 7.78 0.07 1.59 0.02 0.85 0.51 
p-value  0.23 0.02 0.80 0.86 0.54 0.30 

pT              
1 4 (2) 7.90 0.02 2.51 0.02 1.16 0.36 
2 36 (19) 5.15 0.02 2.45 0.02 1.26 0.36 
3 133 (69) 7.67 0.05 1.74 0.02 0.88 0.46 
4 20 (10) 8.50 0.14 2.58 0.02 1.33 0.58 
p-value  0.37 0.004 0.61 0.76 0.52 0.70 

pN              
0 132 (68) 7.53 0.04 2.12 0.02 1.15 0.44 
1 39 (20) 7.67 0.05 1.73 0.02 0.89 0.46 
2 22 (11) 8.47 0.09 1.39 0.02 0.82 0.59 
p-value  0.82 0.31 0.60 0.95 0.54 0.63 

Differentiation              
Well 6 (3) 3.58 0.02 1.09 0.01 0.38 0.24 
Intermediate 167 (87) 7.67 0.04 2.14 0.02 1.16 0.45 
Poor 20 (10) 6.83 0.20 0.95 0.02 0.70 0.69 
p-value  0.28 0.001 0.003 0.33 0.01 0.12 

Tumor localization              
Colon 129 (67) 7.52 0.07 1.62 0.02 0.87 0.43 
Rectum 64 (33) 7.77 0.02 2.58 0.02 1.27 0.67 
p-value  0.50 0.02 0.05 0.32 0.05 0.08 

Lymphocyte infiltration             
High 26 (14) 7.93 0.09 1.96 0.02 0.88 0.63 
Intermediate 125 (65) 7.78 0.03 2.14 0.02 1.01 0.51 
Low 40 (21) 6.91 0.08 1.46 0.02 1.04 0.33 
p-value  0.47 0.19 0.49 0.82 0.37 0.14 

Vascular invasion              
Present 38 (20) 7.73 0.07 1.54 0.02 1.17 0.59 
Absent 155 (80) 7.36 0.04 2.01 0.02 0.98 0.43 
p-value  0.30 0.23 0.43 0.27 0.94 0.05 

Perineural invasion              
Present 16 (8) 8.60 0.16 1.68 0.02 1.05 0.35 
Absent 177 (92) 7.54 0.04 1.95 0.02 0.98 0.48 
p-value  0.42 0.43 0.60 0.29 0.83 0.49 

Perinodal growth*              



21 

 

Present 38 (62) 8.09 0.11 1.46 0.02 0.81 0.52 
Absent 23 (38) 7.36 0.03 2.01 0.02 1.10 0.36 
p-value   0.77 0.36 0.30 1.00 0.18 0.49 

 

 

*Associations between miRNA expression and clinicopathological variables were explored using 

Mann-Whitney or Kruskal-Wallis test as appropriate; p-values are given in italic. Total number of 

patients included in the analyses was 193, median age was 73 years.  

** Perinodal growth was only assessed in the lymph node positive patients 
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Abstract 

Colorectal cancer (CRC) is one of the leading causes of cancer related deaths and the search for 

prognostic biomarkers which might improve treatment decisions is warranted. MicroRNAs are 

short non-coding RNA molecules involved in regulating gene expression and have been 

proposed as possible biomarkers in CRC. In order to characterize the miRNA transcriptome, 90 

CRC tumors with long-term follow-up were deep sequenced. 523 mature miRNAs were 

expressed in our cohort, and they exhibited largely uniform expression patterns across tumor 

samples. Few associations were found between clinical parameters and miRNA expression, 

among them, increased expression of miR-10b-5p was associated with tumors located in the 

colon relative to rectum and poorly differentiated tumors, while decreased expression of miR-

192-5p was associated with increased pT stage and poorly differentiated tumors, and no 

prognostic biomarker candidates emerged. Examination of the five most abundantly expressed 

miRNAs (miR-10a-5p, miR-21-5p, miR-22-3p, miR-143-3p and miR-192-5p) revealed that their 

collective expression represented 54% of the detected miRNA sequences. Pathway analysis of 

the top five highly expressed miRNAs uncovered targets within the CRC pathway including Wnt, 

MAPK and p53 thus suggesting that the top five highly expressed miRNAs are cancer relevant.  
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Introduction 

MicroRNA (miRNA) are evolutionary conserved small (20-22 nt long), non-coding RNAs that 

regulate gene expression by binding to the 3’UTR of mRNA, thereby inhibiting translation [1]. 

They can bind with partial complementarity to mRNA to potentially downregulate several 

mRNAs. This makes the downstream studies somewhat challenging with multiple potential 

targets for each miRNA. Today there are approximately 1500 miRNAs annotated in the 

microRNA database (miRBase) [2] and it is estimated that up to 60% of protein coding genes 

may be regulated by miRNAs [3]. MiRNAs are essential for normal mammalian development and 

are involved in fine-tuning many biological processes, such as cell proliferation, differentiation, 

apoptosis and metabolism, and their involvement in cancer has sparked increased interest in 

miRNA biology  [4-6]. They have been proposed as possible biomarkers because of their 

regulatory functions, chemical stability and the possibility of measuring miRNA in serum, 

plasma, stool and tissue samples [7-10]. 

 

Colorectal cancer (CRC) is one of the most common cancer forms in Western countries and a 

leading cause of cancer related deaths. It is a heterogeneous disease characterized by 

accumulation of genetic and epigenetic events, and influenced by lifestyle [11, 12]. Treatment 

decisions are still essentially based on the anatomical extent of disease at diagnosis, and the 

search for better biomarkers is warranted. MiRNAs have been examined for their potential role 

as prognostic, diagnostic and therapeutic biomarkers in CRC using hybridization based array 

technologies and quantitative RT-PCR (qRT-PCR) [13-16]. Using expression microarrays, 
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expression of a large amount of pre-selected miRNAs may be detected, and the miRNA 

detection is based on signal intensities and is not directly quantifiable. Relative expression can 

be calculated using qRT-PCR, but when expanding to multiple parallel analyses, the number of 

miRNAs possible to analyze and RNA quantity may represent limitations. Deep sequencing has 

emerged as an attractive approach for global miRNA analysis, advantages including pooling of 

samples for high-throughput purposes, a wide detectable expression range, the ability to 

analyze expression of all annotated miRNAs and the possibility of detecting novel miRNAs.  

 

In this work, deep sequencing was used to determine miRNA expression in 90 CRC tumor 

samples, and associations between expression levels and clinicopathological data and outcome 

were analyzed. 

  

MATERIALS AND METHODS 

Patient cohort and sample preparation 

Between the year 1998-2000, 316 patients were recruited from five hospitals in the Oslo region 

[17], and prospectively included in the study at the time of primary surgery for assumed or 

verified colorectal cancer. The study was approved by the Regional Ethics Committee (Health 

Region II, Norway) and informed consent was obtained from the patients. Resected specimens 

were routinely processed for histopathological assessment at the time of surgery and additional 

tumor tissue was sampled and snap-frozen in liquid nitrogen. 120 cases were not included in the 

study for the following reasons: not invasive cancer (25), histology other than adenocarcinoma 
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(5), distant metastasis at the time of surgery (34), preoperative chemoradiotherapy (2), 

inadequate surgical margins (7) and unknown stage of disease (1). In addition, frozen tissue 

samples were not obtainable in 46 cases. From the 196 samples in TNM stage I-III, 90 tumor 

samples were randomly selected for deep sequencing. After sequencing two samples from the 

cohort were deemed (degraded/unsuitable) and were removed from further studies leaving a 

sample cohort of 88 patients (Table 1). Follow-up data was obtained from the participating 

hospitals and from the general practitioners (for the patients not attending scheduled controls). 

Metastasis was verified by radiological examination and survival data was obtained from the 

National Registry of Norway and updated by October 1st 2008. 

 

RNA isolation and deep sequencing 

RNA was isolated from tumor tissue using TriReagent (Ambion Inc, TX) according to the 

manufacturer’s protocol and the total RNA concentration was measured by Nanodrop (ND-

1000). The quality was assessed on an Agilent 2100 Bioanalyzer. Small RNA sequencing libraries 

were created following the Illumina®TruSeqTM Small RNA Sample Preparation protocol. In brief, 

3` and 5` RNA adapter, specifically modified to target the ends of small RNA molecules, were 

ligated to 1 μg of high quality total RNA.  Reverse transcription was performed to generate 

cDNA libraries and PCR was used to amplify and add unique index sequences to each library. 

Small RNA libraries were pooled and 32 bases were sequenced for each cDNA molecule using an 

Illumina® Genome Analyzer IIx. Indexes were sequenced in order to identify the source of each 

read. Two independent sequencing runs were performed to produce a sufficient amount of 

reads for each sample. The data for both runs (run 1 and run 2) were combined for downstream 
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expression analysis, as well as analyzed separately to determine the technical reproducibility of 

the experiments. 

 

Sequencing data analysis 

Real-time analysis, base calling and filtering of low quality reads were done by Illumina’s 

software packages (SCS2.9/RTA1.9 and Off-line Basecaller v1.9). Novoalign (V2.08.01 Novocraft 

2010; www.novocraft.com) was used to cut remaining adapter sequence and map the reads to 

the reference human genome (hg19). All reads mapping to 10 or more genomic regions were 

excluded from further analysis. The mapped reads were annotated using known databases. The 

miRBase data base release 18 (November 2011) was used to identify miRNAs, the NCBI build 

“Homo_sapiens.NCBI.36.58” to identify other small RNA species and mRNA.   

To calculate the read count for miRNAs, the reads that mapped uniquely within a mature miRNA 

sequence with a maximum of one mismatch were considered hits. The reads mapping to more 

than one mature miRNA sequence were assigned according to the frequency of uniquely 

mapped reads found for these miRNAs. That means when two miRNAs shared a given number 

of multiple mapped reads, we identified the ratio of unique reads between these two miRNAs. 

This ratio was applied to divide the number of multiple mapped reads and assign them. If 

multiple hits were found to be perfectly mapped to one genomic region and mapped with 

mismatch to another one, only the perfect matches were considered.  

For normalization of read counts, four different approaches were tested. We calculated the 

normalization factor for all samples by dividing the total number of reads, the number of reads 

aligned to the genome, allowing multiple hits or that map uniquely, or the number of reads 
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mapped to annotated mature miRNAs with 1 million. The normalized expression values for each 

miRNA were generated by dividing the read count of the miRNA with the according 

normalization factor. The normalization methods gave very similar results when comparing the 

mean change calculated by the difference in percent for each miRNA readcount per miRNA 

(data not shown).  

 

Quantitative Real Time-PCR 

Total RNA from 88 patients was used to reversely transcribe miRNAs using TaqMan microRNA 

assays (Applied Biosystems, Foster City, CA) as described in the protocol. All samples were run in 

duplicates. Ct values for miRNAs were normalized against RNU44 and the relative expression 

was calculated using 2-dCt method [18]. 

 

Statistical analysis 

Normalized sequence data was log2-transformed and filtered by excluding miRNAs for which all 

individuals had read counts below 20 (before normalization).  Overall and metastasis-free 

survival was calculated from date of surgery until date of death or diagnosis of metastasis. To 

identify miRNAs associated with overall and metastasis-free survival univariate Cox proportional 

hazard regression was applied to each miRNA, testing for associations with metastasis-free or 

overall survival.  Then, for all the miRNAs simultaneously, the LASSO method in the Cox 

proportional hazards model [19], as implemented previously [20], was used to discover a set of 

miRNAs associated with the endpoints. A p-value less than 0.01 in the univariate Cox analysis or 
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a coefficient different from 0 in the LASSO analysis were necessary to consider a miRNA as 

significantly associated with an outcome parameter.  To account for multiple testing, adjusted 

p-values were calculated by controlling the false discovery rate (FDR), using the Benjamini-

Hochberg procedure [21]. 

 

For individual miRNAs, survival was additionally estimated using the Kaplan-Meier method and 

compared using the log-rank test. Data was arranged into high and low values based on the 

median gene expression, and associations with overall and metastasis-free survival were 

examined. Associations between miRNA expression values and clinicopathological variables, 

including TNM, pT, pN, lymphocyte infiltration, vascular invasion, neural invasion, 

differentiation, tumor localization and perinodal infiltration were tested using two-tailed 

Fisher’s exact test or linear-by-linear association chi-square test. These analyses were 

performed using SPSS version 18.0 (SPSS Inc., Chicago, MO) and p-values < 0.05 were 

considered to be statistically significant. 

 

Hierarchical clustering and SAM analysis 

Hierarchical clustering was performed to visualize expression patterns of all miRNAs and 

significance analysis of microarrays (SAM) [22] was used to identify miRNAs associated with 

clinicopathological parameters, using J-Express (2012 version) [23]. The normalized expression 

values were log2 transformed and unsupervised two-way hierarchical clustering was performed 

using Euclidean distance and weighted average linkage (WPGMA) to cluster miRNAs and 
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samples simultaneously. The input for SAM was also normalized and log2 transformed 

expression values and clinicopathological parameters were used as response variables. Ten 

thousand repeat permutations of the data were used to determine if the expression of any 

miRNAs were significantly related with one of the parameters. The following clinicopathological 

parameters were analyzed: TNM, pT, pN, lymphocyte infiltration, vascular invasion, neural 

invasion, differentiation, tumor localization and perinodal infiltration. The false discovery rate 

expressed as q-values of 0.05 was used to evaluate statistical significance.  

 

RESULTS 

Small RNA sequencing and annotation 

The length of the detected sequences varied between 13 and 29 nucleotides after removal of 

the adapter sequence. The main portion of reads, 97.9%, were between 19 and 23 bases 

(Supplementary; size distribution plot). In average, 2.6 million reads mapping to the human 

genome were obtained per tumor sample. We identified the frequencies of reads falling into 

different classes of small RNA or other genomic regions and calculated the median frequencies 

comparing all 88 tumor samples (Figure 1). The frequency of reads mapping to miRNAs ranged 

from 37 to 77% in the libraries and gave a median of 61% (Figure 1B).  For intronic/intergenic 

regions a median read frequency of 33% was found (Figure 1D), for premature miRNAs and 

snoRNAs the median read frequencies were 4% and 2%, respectively (Figure 1C). In addition a 

small fraction of reads mapped to snRNA, miscRNA, tRNA, rRNA, and mRNA together comprising 

a frequency of ~0.05% (Figure 1E). MiRNAs with less than 10 reads across all patient samples 

were considered not expressed. In total, 523 miRNAs were expressed in the data set. 
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Normalization and technical replicates  

In general, to compare expression values between samples it is necessary to normalize against 

the read count by calculating a normalization factor. 48 samples were deep sequenced twice, 

denoted run 1 and run 2, and these data sets were used to compare the expression from the 

separate runs, and also to evaluate the impact of the different normalization methods. 

Assuming a good reproducibility of the data in run1 and run2, normalized read counts should be 

very similar for each miRNA. Figure 2 shows the distribution of normalized and non-normalized 

miRNA read count (“Readcounts”) for run1 compared to run2. All tested normalization methods 

generated quite similar normalized read counts for the majority of miRNAs when comparing the 

two runs. The results also demonstrated a very good correlation between the technical 

replicates.  The normalization using the read counts mapped to annotated mature miRNAs was 

used for further evaluation.  

 

The five most highly expressed miRNAs 

The five most abundantly expressed miRNAs in this cohort were miR-10a-5p, miR-21-5p, miR-

22-3p, miR-143-3p and miR-192-5p (Figure 3). The read counts for these miRNAs accounted for 

53.6% of the total number of miRNA sequences detected in the patient samples, while the top 

20 miRNAs accounted for 80.3% of the reads. The remaining 503 miRNAs represented only 

19.3% of the reads.  Of the top five miRNA, miR-192-5p had the highest median expression 
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(156,413 reads) while miR-22-3p had the lowest (35,284 reads). The sum of all reads in the top 

five varied with 10 mill reads from the highest, miR-192-5p with 13,338,186 reads, to the 

lowest, miR-22-3p with 3,052,128 reads. 

Many miRNA genes are located in close proximity to other miRNA genes in gene clusters, and 

two of the top five most highly expressed miRNAs are part of such clusters, and expression 

levels of miRNAs belonging to these clusters are depicted in Figure 4.  No co-expression was 

apparent for the miRNAs belonging to these gene clusters, which is in concordance with 

previous results [24]. 

 

Pathway analysis for the five most highly expressed miRNAs 

To investigate the biological influence of the most highly expressed miRNAs, target genes were 

identified using TarBase6.0 [25]. This database contains target genes experimentally verified in 

addition to sequence-based target predictions. In total, 1490 target genes were identified as 

potentially regulated by miR-10a-5p, miR-21-5p, miR-22-3p, miR-143-3p and miR-192-5p. The 

gene identities were uploaded into the web-based DAVID functional annotation tool for 

pathway analysis using the KEGG database [26, 27]. The pathway analysis showed that a high 

number of the identified genes are involved in cancer related pathways, specifically the 

“Colorectal Cancer Pathway”, including the Wnt, MAPK and ErbB signaling networks.  The top 

ten pathways with the most significant gene-enrichment are shown in Table 2. Focusing on the 

CRC pathway we found that genes regulated by the top five most highly expressed miRNAs 
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included oncogenes (K-Ras), tumor suppressors (APC and TGFβRII), and DNA repair genes 

(hMSH6) (Figure 5). 

 

Hierarchical clustering 

The miRNA expression patterns observed with hierarchical clustering are shown in Figure 6 with 

miRNAs are on the vertical axis and patient samples on the horizontal axis. Most of the miRNAs 

exhibited very similar expression levels among patient samples.  In areas of the plot, some 

miRNAs appeared to be differentially expressed, but these were almost exclusively located 

among the miRNA that had very low expression.  

 

Correlation between qRT-PCR and deep sequencing data 

Expression values for six miRNA miR-21, miR-31, miR-92a, miR-101, miR-106a and miR-145, was 

previously determined using qRT-PCR (Schee et al, under revision BMC cancer). The miRNA 

expression measured by qRT-PCR was compared to the deep sequencing data using linear 

regression analysis of normalized Ct values (qRT-PCR) and log2-transformed deep sequencing 

data. The R2 values for the 6 miRNAs tested were 0.06, 0.38, 0.10, 0.001, 0.03, and 0.28 for miR-

21, miR-31, miR-92a, miR-101, miR-106a, and miR-145, respectively. The sum of total expression 

levels was also calculated for these miRNA for each method, and the relative levels are shown in 

Figure 7. The relative expression between individual miRNAs was reasonably consistent 

between methods for four of the miRNAs (miR-21, miR-31, miR-92a and miR-106a), whereas 
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there were clear discrepancies for miR-101 and miR-145. MiR-101 was hardly detectable with 

qRT-PCR, but exhibited detectable expression values with deep sequencing, while miR-145 was 

detected by qRT-PCR and hardly detected using deep sequencing.  

 

Associations between miRNA and clinicopathological parameters 

SAM analysis of the expression data and the clinicopathological parameters revealed that high 

expression of miR-10b-5p was associated with tumors located in the colon (q < 0.001) compared 

with tumors located in the rectum (Figure 8). The expression of this miRNA showed a twofold 

increase (log2 fold change = 2.1) for tumors in the colon with median normalized read counts of 

34193 and 15395 in colon and rectum, respectively.  MiR-10b-5p was also associated with 

poorly differentiated tumors (p = 0.007), but this value did not retain significance when 

correcting for multiple testing. Analyzing associations between the top five most highly 

expressed miRNA and clinicopathological parameter using linear-by-linear chi-square test 

showed that low expression of miR-192-5p was associated with high pT stage (p = 0.007) and 

poorly differentiated tumors (p = 0.034) (Table 3).   

 

Associations between miRNA expression and outcome 

In the LASSO and univariate Cox analysis, with metastasis development as endpoint, 5 miRNAs 

(miR-339-5p, miR-7-1-3p, miR-365b-3p, miR-454-3p, miR-194-3p and miR-15b-3p) emerged, 

although none of these remained significantly associated with metastasis development after 

adjusting for multiple testing. When overall survival was used as the endpoint in the LASSO and 
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univariate Cox analysis, only one miRNA (miR-101-5p) was identified. The miRNAs obtained 

from the LASSO and Cox analysis with endpoints for both metastasis and overall-free survival 

were in addition analyzed with Kaplan-Meier plots and none were found to have a p-value 

<0.05.  

 

DISCUSSION 

In the present work, deep sequencing was used to quantify miRNA expression in CRC tumor 

samples. This approach may contribute potential advantages in global miRNA expression 

analysis, but also entails new challenges regarding data analysis, as the amount of data 

collected after deep sequencing contains millions of reads which need to be mapped to genome 

and normalized [28]. In the 88 CRC patients successfully analyzed, 523 mature miRNAs were 

detected. Other small RNA sequences were also detected, but the low detection frequencies of 

other RNA classes and genomic regions showed that selection for miRNAs had been  successful, 

and in accordance with previous results [24, 29]. In addition, the excellent agreement observed 

between technical replicates suggested adequate reproducibility the deep sequencing results. 

 

The five miRNAs most abundantly expressed in the examined CRC cohort were miR-10a-5p, miR-

21-5p, miR-22-3p, miR-143-3p and miR-192-5p, and all of these have previously have been 

shown to be dysregulated in CRC [30-36]. These miRNAs were also among the most highly 

expressed miRNAs in a previous study performed with deep sequencing of CRC [37]. 

Interestingly, the top five most highly expressed miRNAs accounted for as much as 54% of the 
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total number of miRNA sequences detected. This is in concordance with a previous deep 

sequencing study performed on peripheral blood samples, in which the let-7 family accounted 

for 77% of the total miRNA read counts [24]. The relative importance of high versus low miRNA 

expression is difficult to interpret, since the absence or abundant presence of miRNAs may 

represent equally important biological regulatory signals. However, overrepresentation of a 

small number of miRNAs may imply that these miRNA play important roles as negative 

regulators of downstream targets and the biological pathways affected by these targets. The 

predicted targets of the top 5 most highly expressed miRNAs were associated with cancer-

relevant pathways, including the CRC pathway. Among the predicted targets in the CRC pathway 

were oncogenes, tumor suppressors and DNA repair genes which are involved in several 

important signaling pathways including Wnt, MAPK, cell cycle, TGF-β, and p53. Predicted targets 

were also involved with downregulating DNA repair genes affecting microsatellites and are 

thereby involved in microsatellite instability pathway. These results suggest that the identified 

top five most highly expressed miRNA are cancer relevant, and probably relevant in CRC but 

further investigation is necessary to validate the targets is needed and to assess downstream 

effects. 

 

When comparing miRNA expression levels between samples, the most apparent finding was the 

low variability, clearly illustrated in Figure 6, showing the outcome of hierarchical clustering. 

Several specific miRNAs have previously been reported to be differentially expressed in CRC. In 

most cases these results were obtained using expression microarrays or RT-PCR, and often, 

normalization against normal tissue expression was performed [16, 38, 39]. One of the 
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supposed advantages of deep sequencing compared to microarray analysis and qRT-PCR is 

improved specificity and sensitivity, suggesting that this method would return more correct 

measurements of each miRNA than the other methods. When comparing our previous results, 

measuring expression of six miRNA using qRT-PCR with deep sequencing data, correlation on 

the individual sample level was poor for all the miRNAs examined. Deep-sequencing is often 

validated by qRT-PCR, but comprehensive comparisons between the two approaches have not 

been performed. In a deep sequencing study on 9  bladder cancer samples, selected miRNAs 

from deep sequencing were validated by qRT-PCR, and reported to correlate well when 

analyzed  by  fold expression differences in a bar plot [40]. In another study performed on 10 

neuroblastoma samples, correlation coefficients between 0.1 and 1 were found when 

comparing the sum of miRNA expression from RT-PCR and deep sequencing [41]. Thus, it seems 

unclear whether qRT-PCR can be used for validation purposes, since qRT-PCR and deep 

sequencing data are generated with different methods and appear on different scales with 

variable expression ranges, making it difficult to compare the two datasets on a patient-to 

patient basis.  

 

One of the aims of this study was to investigate associations between miRNA expression and 

clinicopathological parameters and outcome. Given the low variability observed between 

samples, it is not surprising that very few such associations were detected. Using the Cox 

regression and LASSO analysis, only a small number of miRNA were found to be associated with 

metastasis development and overall survival, and none of these remained significant after 

correction for multiple testing. Increased expression of miR-10b was associated with tumors 
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located in the colon relative to the rectum and with poorly differentiated tumors. MiR-10b has 

previously been reported to be downregulated in CRC and increased expression was associated 

with increased pT-stage [42]. We did, however, not observe association with pT stage. Among 

the five most highly expressed miRNAs, low expression of miR-192 was associated with high pT 

stage and poor tumor differentiation. MiR-192 has previously been reported to be 

downregulated in CRC compared to normal mucosa [43, 44] and increased expression has been 

associated with inhibition of cellular proliferation in colon cancer cell lines containing wild-type 

p53 [31]. The significant associations with tumor differentiation and pT stage at diagnosis may 

thus represent biologically relevant findings, although no associations were found with 

metastasis-free or overall survival.   

 

Differential expression analysis of miRNAs using  deep sequencing has previously been 

performed in a small cohort of  8 CRC samples [37]. In this study, 37 miRNAs were dysregulated 

relative to corresponding normal tissue (19 downregulated and 18 upregulated), and 16 miRNA 

had not previously been reported to be associated with CRC. Previous studies of miRNA 

expression in CRC have reported quite variable results, both with respect to expression levels 

and associations with clinicopathological parameters and outcome [39]. Whether these 

discrepancies result from variations in the methods used, differences between the clinical 

cohorts analyzed or biological variance are unclear. A contributing explanation to the observed 

discrepancies may be that many investigators have normalized tumor miRNA expression values 

against normal samples, using either paired samples or a mixed “normal cohort”, in order to 

compare samples. The colorectum is a heterogeneously composed organ, consisting of multiple 
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cell types which all may be affected by genetic predispositions and external influences.  MiRNA 

expression in different cell types in the normal colorectum has not been characterized and in 

addition, the miRNA transcriptome from different “normal” samples have not been extensively 

compared. The few studies which show miRNA expression in normal colon tissues reveal that 

the expression is highly variable and in many cases not consistent between individuals [45]. 

Exploration of miRNA expression in normal tissue and establishing a baseline is needed to 

establish the relevance of using this normalization strategy.  

 

In the present work, deep sequencing was performed to characterize the miRNA transcriptome 

of CRC, using tumor samples from a large patient cohort with long-term follow-up.  Deep 

sequencing was technically successful, and a total of 523 mature miRNA were expressed in the 

samples. Most of the miRNAs exhibited relatively uniform expression between tumor samples, 

and only few associations were found between expression of specific miRNA and clinical 

parameters. Specifically, no miRNA emerged as a prognostic biomarker candidate, which in our 

opinion is in agreement with the highly variable results obtained in similar studies in CRC. The 

five most highly expressed miRNAs, representing 54% of the detected miRNA sequences, have 

been predicted to regulate targets involved in cancer pathways, and may represent interesting 

candidates for future studies of the role of miRNAs in CRC development and progression.    
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FIGURE LEGENDS 

Figure 1. Frequencies of different RNA classes and genomic regions present in the small RNA 

libraries. A Number of reads that mapped to human genome (hg19) for each sample. B and C 

Frequencies of reads mapping into annotated mature miRNAs (B) and premature miRNAs (C) for 

the different samples using the microRNA database (miRBase release 18). The fractions of reads 

that did not map to any annotated sequence are illustrated in D (intronic/intergenic regions). An 

overview about the median frequencies of all different RNA classes found in the data set is given 

in E.  

 

Figure 2. Comparison of the normalization methods and the technical replicates. We tested 

four different methods to calculate the normalization factor for each sample using either the 

total number of reads (green), the number of reads mapped to the genome (blue), mapped to 

annotated miRNAs (light blue) or number of reads only mapped uniquely (1 place) in the 

genome (purple). Un-normalized read counts are shown in black. 

 

Figure 3. Boxplot of the top five most highly expressed miRNAs. 

The five most abundantly expressed miRNAs in our CRC cohort, total number of reads in log2 

scale. The circles represent outliers and the stars represent extreme outliers. 

 

Figure 4. Two of the top five highly expressed miRNAs shown with miRNAs from their 

respective gene clusters. A. MiR-192-5p is more highly expressed than miR-1994-5p which is 
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found in the same gene cluster. B. MiR-143-39 is found in the same gene cluster as miR-145-5p, 

but is more highly expressed. 

 

Figure 5. The colorectal cancer pathway. Pathway analysis of the top five highly expressed 

miRNAs and which targets they inhibit. Illustration is taken from KEGG.  

 

Figure 6. Heat maps of the expression levels of 88 colorectal cancer samples. The normalized 

expression values were log2 transformed and analyzed by hierarchical clustering using weighted 

average linkage (WPGMA). The global map contains all expressed miRNAs shown vertically and 

all the patient samples horizontally.  

 

Figure 7. Comparison between deep sequencing data and qRT-PCR. Sum of the total 

expression of each miRNA from deep sequencing and PCR (n= 88 CRC tumors) for the following 

miRNAs; miR-21, miR-31, miR-92a, miR-101, miR-106a and miR-145. 

 

Figure 8. Boxplot of miR-10b expression (log2) between colon and rectum. Increased 

expression of miR-10b was associated with tumor localized in the colon relative to the rectum (p 

< 0.01). 
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TABLES  

Table 1. Clinical and histopathological characteristics of the investigated patient cohort (n=88). 

Sex Male 36 
 Female 52 
 
TNM 1 10 
 2 51 
 3 27 
 
pT 1 2 
 2 10 
 3 70 
 4 6 
 
pN 0 61 
 1 16 
 2 11 
 
Tumor localization   
 Colon 63 
 Rectum 26 
Differentiation Poor 10 
 Intermediate 76 
 Well 2 
 
Perinodal infiltration No 70 
 Yes 18 
 
Vascular invasion No 69 
 Yes 19 
 
Neural infiltration No 82 
 yes 6 
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Table 2. Pathway analysis of the predicted targets of the top ten highly expressed miRNAs. 

The number of proteins present in their representative KEGG pathway with respective p-values. 

Term Number of proteins p-value 

Pathways in cancer 55 3.3 x 10-7 

Cell cycle 28 2.2 x 10-6 

Colorectal cancer 21 1.0 x 10-5 

Pancreatic cancer 19 1.4 x 10-5 

Prostate cancer 20 8.4 x 10-5 

Bladder cancer 12 4.3 x 10-4 

Wnt signaling pathway 26 5.1 x 10-4 

Chronic myeloid leukemia 16 9.7 x 10-4 

TGF-beta signaling pathway 17 1.7 x 10-3 

ErbB signaling pathway 17 1.7 x 10-3 

 

Table 3. Associations between miRNA expression and clinicopathological parameters.  

Parameter  Total nr miR-192-5p  
median expression (range) 

miR-10b-5p  
median expression (range) 

Differentiation Poor  10 81392 (7188, 219191) 47179 (35309, 65812) 
 Intermediate  76 158384 (7120, 325277) 20627 (3998, 203299) 
 Well  2 206945 (174026, 239864) 25680 (19396, 31964) 
   - 
pT 1  2 256044 (211076, 301012) - 
 2  10 188341 (59803, 307865) - 
 3  70 153743 (7120, 325277) - 
 4  6 17813 (7187, 162816) - 

Tumor Colon  63 - 34193 (6518, 203299) 
localization Rectum  25 - 15396 (3998, 43504) 
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