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1 Abbreviations 
ACEi – angiotensin converting enzyme inhibitor 
AMPK – AMP activated kinase 
AP – action potential 
ATII – angiotensin II 
CaMKII – calmodulin dependent protein kinase II 
cAMP – cyclic AMP 
CHF – chronic heart failure 
CICR – calcium induced calcium release 
CK – creatine kinase 
CO – cardiac output 
CRP – C-reactive protein 
CS – citrate synthase 
EC-coupling – excitation contraction coupling 
ECM – extra cellular matrix 
EF – left ventricular ejection fraction 
HADH – 3-hydroxy acyl-CoA-dehydrogenase 
HF – heart failure 
IL – interleukin 
LD – lactate dehydrogenase 
EDP – left ventricular end diastolic pressure 
MDH – malate dehydrogenase 
MI – myocardial infarction 
MLC – myosin light chain 
MLCK – myosin light chain kinase 
MMP – matrix metalloproteinases 
MyBP-C – myosin binding protein C 
NKA – Na+-K+-ATPase 
NCX – Na+/Ca2+-exchanger  
NF-�B – nuclear factor-kappa B 
NO – nitric oxide 
PGC-1� – proliferator activated receptor gamma co-activator 1� 
Pi – inorganic phosphate 
PKA – protein kinase A 
PKC – protein kinase C 
PLB – phospholamban 
PPAR� – peroxisome proliferator-activated receptor � 
RAAS – renin angiotensin aldosterone system 
RBC – red blood cell 
RyR – ryanodin receptor 
Ser – serine 
SERCA – sarcoplasmic reticulum Ca2+ ATPase 
SOL – soleus muscle 
SR – sarcoplasmic reticulum 
Thr – threonine 
TnC – troponin C 
TnI – troponin I  
TnT – troponin T 
VO2max – maximal oxygen uptake 
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3 Introduction 

3.1 Muscle structure and function 

3.1.1 Muscle structure 
There are three types of muscle tissue in the human body: smooth, cardiac and skeletal 

muscle. Cardiac and skeletal muscle are commonly known as types of striated muscle 

because the strict organization of myofilaments in these muscles results in a characteristic 

striated pattern easily detectable through a standard light microscope. Smooth muscle lacks 

this striation and is found in several internal organs. Cardiac muscle is only found in the 

heart. Skeletal muscles move joints - giving rise to movement- and are voluntarily controlled. 

The remainder of this chapter will deal exclusively with skeletal muscle. . 

During the prenatal stage, primitive myoblasts merge together, forming muscle cells that 

are distinguished from most other cells by having several nuclei per cell. In skeletal muscle, 

the nuclei are peripherally located within the cells. There are 600-650 skeletal muscles in the 

human body, each consisting of bundles of roughly cylindrical muscle cells. Transverse 

tubules (t-tubules) are deep invaginations of the plasma membrane. These were described in 

a scientific paper as early as 1902, but the paper was not translated from Italian to English 

until 1961 (390). On either side of the t-tubules are the terminal sacs of the sarcoplasmic 

reticulum (SR), called terminal cisternae. A t-tubule and two flanking terminal cisternae 

(about 12 nm from the tubules) constitute the triad. 

Most of the cell volume consists of myofibrils, which are cylindrical protein networks with 

a repeating pattern of dark and light bands. Dark bands are called A bands and the light 

bands are named I bands. The smallest repeating unit in the myofibril is the sarcomere. 

Although a complex framework of proteins makes up the sarcomere, the principle elements 

are the two myofilaments actin, a thin filament, and myosin, a thick filament (Figure 1). 
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Thin filament associated proteins 

Actin (43 kDa) is a spherical molecule spun helically around the 6-900 kDa heavy protein 

nebulin. Neighboring actin monomers interact via subdomain 3 and 4, and one helical turn 

compromises 14 actin monomers repeating every 36 nm (16, 63). This thin filament starts at 

the Z-disc (Figure 1) and runs toward the M-line. The length of this filament is about 1 μm. 

Nebulin and other proteins such as tropomodulin and CapZ (63) are important in defining thin 

filament length. 
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Tropomyosin (TM) is a 66 kDa polypeptide located in the groove between the actin 

filaments, and was previously considered a backbone of the thin filament (182). TM is 

Figure 1. Selected proteins of the sarcomere. 

See text for details 
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associated with three interacting subunits: the troponins (Tn). Troponin C (TnC) is an 18 kDa 

Ca2+ binding subunit, while Troponin I (TnI) is a 21 kDa polypeptide that inhibits the 

actomyosin ATPase in a Ca2+-insensitive manner. The last subunit (Troponin T, TnT) has a 

molecular weight of 33 kDa and binds the other subunits to TM. The stoichiometry of TM, 

TnC, TnI and TnT is 1:1:1:1 (147, 148) and the complex repeats at every seventh actin 

monomer (1) along the thin filament. Neighboring TM overlaps from head-to-tail along the 

filament. Given that TM covers the binding site for myosin on actin, it became clear early on 

that TM/troponin could exert some control over contractile function (157). Interactions 

between TM, Tn subunits and actin are Ca2+ sensitive. As Ca2+ binds to TnC, the other 

subunits bind tighter to TnC and weaken the TnI-actin interaction (164). Additionally, TM 

moves azimuthally by about 25° along the actin surface. The precise amount of movement 

varies in different publications, ranging from 0° of movement to 60°. For illustrative 

reconstructions, see Xu et al. (412).  

Thick filament associated molecules 

Myosin is composed of two heavy chains (MHC) and four light chains (MLC). The two 

heavy chains (220 kDa each) are identical, and make up the head (subfragment 1, S1) and 

tail (S2) of the molecule. The C-terminal end of the tail is referred to as light meromyosin 

(LMM), and is essential for myosin polymerization. S2 connects the myosin head to the thick 

filament backbone, while S1 has ATPase activity that is activated upon binding to actin. 

Herein lays the basis for the sliding filament theory of muscle contraction, which will be 

described in more detail in section 3.1.3. There are two essential (ELC, “alkali” or MLC1) and 

two regulatory (RLC or MLC2) light chains, each about 20 kDa. These are located near the 

neck of the MHC molecule (Figure 1). A giant protein, titin (3-4 MDa), is thought to be a ruler 

for sarcomere architecture, as it runs through the whole length of a half sarcomere, from Z-

disc to M-line (63). Myosin binds to titin in a helical fashion so that two of these molecules 

are organized at an angle of 120 degrees to each other with three myosin molecules every 

14.3 nm (261). Consequently, there will be 43 nm between myosin heads projecting in the 
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same direction. With antibody labeling, seven to nine stripes, also with 43 nm spacing, are 

visible across the A band. These were named C-protein by Offer et al. (281), but later 

became known as myosin binding protein – C (MyBP-C, 140 kDa). Separate genes encode 

three isoforms of MyBP-C in adult muscle (387): slow (previously known as MyBP-X), fast 

skeletal, and cardiac isoforms. There are most likely three MyBP-C molecules per stripe in 

skeletal muscle (266). These are not always the same isoform (94). The C-terminal part of 

MyBP-C has both an LMM and a titin binding site and could thus be important in linking 

myosin to titin. Together with another myosin binding protein (MyBP-H), MyBP-C seems to 

be important in regulating thick filament assembly and length (35). In vertebrae, this length is 

set, rather precisely, to 1.6 μm. The cardiac isoform of MyBP-C can regulate cardiac muscle 

contraction (406), but the role of skeletal muscle MyBP-C remains unknown. 

Skeletal muscle fiber type 

In 1960, researchers histochemically identified (103) two different types of muscle fiber 

that displayed reciprocal activities of oxidative and glycolytic enzymes. The oxidative fibers 

were called type I fibers. They had a low level of myosin ATPase activity, while type II fibers 

(glycolytic) had high myosin ATPase activity. The type I fibers are recruited at lower exercise 

intensities, but at about 30% of VO2max the type II fibers are also activated (139). There are 

subgroups of type II fibers. Importantly, the different fiber types constitute important 

differences regarding other parameters such as fatigability (Table 1).  

Table 1. Characteristics of the different fiber types 
 Type I Type IIa Type IIx 
Contraction time Slow Moderately fast Fast 
Force production Low Medium High 
Mitochondrial density High High Medium 
Capillary density High Intermediate Low 
Myoglobin density High Intermediate Low 
Oxidative capacity High High Intermediate 
Glycolytic capacity Low High High 
Major storage fuel Triglycerides CrP, glycogen CrP*, glycogen 
Type of activity Aerobic Long-term anaerobic Short-term anaerobic 
Fatigue resistance High Intermediate Low 

* Fast twitch fibers contain 15-20% more CrP than slow twitch fibers (345) 
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3.1.2 Calcium handling 
The sarcoplasmic reticulum (SR) is the most important calcium store in skeletal muscle. 

The [Ca2+]SR has been measured to 1.5 mM (60), while the cytosolic concentration ([Ca2+]i) in 

a resting muscle fiber ranges from 100 to 250 nM (27). The concentration gradient over the 

SR membrane is therefore four orders of magnitude. Since the mid-1900s, it has been known 

that intracellular Ca2+ initiate skeletal muscle contractions (165, 170). It is therefore an 

important condition for the normal function of the muscle fibers that the cytosolic Ca2+ levels 

are tightly regulated. In resting conditions there are three main active transport mechanisms 

that keep [Ca2+]i at low levels: 

1) The SR ATP-dependent Ca2+ pump (SERCA). This single 110 kDa polypeptide spans 

the SR membrane 10 times (Reviewed by Inesi and Kirtley (186)), and is coded for by three 

different genes giving three isoforms (411). SERCA1 is exclusively found in fast twitch 

skeletal muscle, SERCA1a in adult and SERCA1b in neonatal cells. SERCA2 is present in all 

tissues, SERCA2a only in muscle (slow twitch fibers) and SERCA2b in smooth muscle and 

all non-muscular tissue. SERCA3 is present in many tissues but not in muscle tissue, except 

transiently and together with SERCA2a in early heart development (18). Two Ca2+ ions are 

transported over the membrane per ATP hydrolyzed (140). It has a high affinity for Ca2+ 

(KD � 0.5 μM). In cardiac and slow twitch skeletal muscle (not in rat cases (84)), SERCA2 is 

regulated by phospholamban (PLB), which inhibits the pump by reducing the Ca2+ affinity 

(337). PLB can be phosphorylated by protein kinase A or CaM kinase at Ser16 and Thr17 

respectively. Phosphorylation will cause phospholamban to dissociate from SERCA2, 

thereby eliminating the inhibition. SERCA function is also regulated by Sarcolipin (280), but 

since this protein is mainly active in cardiac atrial cells (288) it will not be discussed further. 

2) The plasmalemmal Ca2+ pump (PMCA). This pump comes in four different isoforms. 

PMCA1, 3 and 4 have been demonstrated in mammalian skeletal muscle (287). It pumps 

one Ca2+ over the membrane per ATP hydrolyzed, and is believed to regulate Ca2+ in the gap 

between the T-tubule and terminal cisternae of SR where the concentration of Ca2+ can be 
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large (mM range) (36). Compared to SERCA, PMCA has a much lower affinity to Ca2+ 

(KD � 0.1 mM), but in the presence of Ca2+:calmodulin, the affinity to Ca2+ is increased toward 

SERCA levels, implying boosted activity at elevated [Ca2+]i (140). 

3) The Na+/Ca2+ exchanger (NCX). There are three isoforms of the exchanger, NCX1, 2 

and 3, with NCX2 and 3 restricted to the brain and skeletal muscle (301). NCX exchanges 1 

Ca2+ per 3 Na+ ions and hence is electrogenic. Depending on the membrane voltage, NCX 

can move Ca2+ either out of or in to (“reverse mode”) the cell. The physiological role for NCX 

is different in the different skeletal muscle fiber types (214), and it has been speculated that 

the exchanger is involved in Ca2+ extrusion in slow twitch fiber, but not in fast twitch fibers 

(41).  
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Figure 2. Selected proteins involved in Ca2+ handling in skeletal muscle. 

Some proteins important in setting membrane potential are also outlined. See text for details. 
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Also worth mentioning here is the 12 kDa protein parvalbumin (PA). PA is found only in 

cytosol of fast twitch skeletal muscle (285) and binds two Ca2+ with high affinity. There is a 

positive correlation between PA and relaxation rate (175), indicating that increased 

concentration of the protein could increase the rate of relaxation in contracting fast twitch 

muscle fibers. 

The mitochondria (274) and the cell nucleus (201) can take up and release Ca2+, but it is 

not known whether these stores contribute to the cycling of calcium during muscle 

contraction and relaxation. 

Calcium in the sarcoplasmic reticulum 

Calsequestrin (Csq) is located inside the terminal cisternae (283), probably positioned 

here by either triadin, junctin, or both (57, 188). These are anchoring systems that could link 

Csq to important Ca2+ handling proteins (DHPR and RyR, discussed later). Csq has a high 

capacity for low affinity Ca2+ binding (36). Most of the Ca2+ buffering capacity of SR is due to 

Csq (234). Of the total calcium in SR (43.75 mM) only about 3.5% (1.5 mM) is in free form 

(140). Recent publications suggest that Csq can be phosphorylated. This both enhances 

Ca2+ binding capacity and promotes the association with junctin (28). The level of Ca2+ in SR 

is higher in fast twitch than in slow twitch fibers (230). This could explain some of the 

differences we see between the two main types of skeletal muscle (Table 1). 

Release of Ca2+ from SR 

At excitation of the muscle cell membrane, sodium flows into the cell through specific 

channels. In turn, sodium influx alters membrane potential, which is sensed by voltage 

sensors in the t-tubule (325). These sensors are specialized L-type Ca2+ channels called 

dihydropyridine receptors (DHPR). It is believed that they are mechanically coupled with the 

ryanodine receptor (RyR) in a strictly ordered fashion (36, 135), distinguishing the skeletal 

from cardiac muscle, where there is no such connection (140). At first this mechanical link 
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was hypothesized only on a functional basis (325) but later also confirmed experimentally 

(267). 

There are three RyR isoforms, where RyR1 is the dominant in skeletal muscle. A low 

amount of RyR3 is also detected in slow twitch skeletal muscle (73). The RyR density is 

higher in fast fibers (83). Each RyR consists of four 565 kDa subunits and 50% of these 

homotetrameres are located in close proximity to the DHPR (134, 300). This arrangement 

was nicely illustrated by Block et al as early as in 1988 (43). Ca2+ itself affects RyR in a dose-

dependent fashion, so that low concentrations activate the channel and higher 

concentrations inhibit it. Ca2+ free calmodulin (CAM) activates and Ca:CAM inhibits RyR 

(311). Calstabin1 (FKBP12) binds to RyR in a stoichiometry of four to one (382) and 

stabilizes the closed state of the channel (50), while PKA phosphorylation of RyR dissociates 

calstabin1 from the channel and increases activity (309). PKA is anchored to RyR via 

mAKAP (309), together with the phosphodiesterase PDE4D3 that degrades cAMP locally 

and thereby regulates RyR activity (212). Another anchoring protein, spinophilin, links PP1 to 

the release channel (33). PP1 dephosphorylates RyR (314). 

3.1.3 Cross-bridge theory and force generation 
History 

Before the sliding filament hypothesis was put forward independently by two groups in 

the 1950s (156, 179, 181), it was believed that folding or coiling of long protein filaments 

formed the basis for muscle contraction. Both lactic acid and CrP were thought to bring about 

these conformational changes. The idea that myosin crosses bridges to actin, and undergoes 

a conformational change before it “rows” on actin, was hypothesized in 1969 (183). Although 

modified several times, this hypothesis is now more or less uniformly accepted as the model 

for skeletal muscle force production, even though several problems with the theory exist 

(178). It is apparent from the literature that the multiple steps and different configurations of 

myosin and actin involved in the force-producing process are hypothetical, but several 

researchers have tried to create a simplified scheme of what are thought to be the most 
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important steps in the cycle. The original model was proposed in 1971 (232) and has been 

modified several times (55, 74, 75, 305). A simplified version of the different steps that make 

up the cross-bridge cycle theory will be discussed in the next section. See Figure 3, or 

reviews (74, 75, 143). 
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Figure 3. Simplified view of the cross-bridge cycle. 

M – Myosin, A- Actin. Pi – Inorganic phosphate. Blue and red colored circle denotes low and high force 

generation configurations of the myofilaments, respectively. See text for details. 

Hydrolysis of ATP (1, Figure 3) 

A premise for myosin and actin interaction is the presence of Ca2+. When this ion binds to 

TnC, TM uncovers the myosin binding site on actin. Hydrolysis of ATP bound to myosin to 

form M·ADP·Pi is favored by a factor of 10 compared to if ATP is not bound to myosin. The 

complex both before (M·ATP) and after (M·ADP·Pi) hydrolysis forms weak bonds to actin 
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(A·M·ATP and A·M·ADP·Pi). Importantly, hydrolysis is associated with a movement of the 

myosin neck region, so that the configuration returns to the pre-power stroke configuration. 

The ATP cleavage is 30 times faster when myosin is not bound to actin, compared to if 

myosin is bound to actin (399), favoring rearrangement of the myosin molecule in the 

unbound state. 

Release of Pi (2, Figure 3) 

The rate of Pi release is 50 times faster if released from A·M·ADP·Pi compared to 

M·ADP·Pi. This is important because the release of Pi causes a strong cross bridge to form 

between actin and myosin (168), and favors a high force generation at the same time (173, 

284). To complicate matters, there are reports of strong actin binding prior to Pi release due 

to isomerization, and that the release of Pi stabilizes this binding (85, 257). Isomerization is 

probably regulated by Ca2+ (233). Various studies appear to agree that after release of Pi the 

actin myosin interaction is high force generating (A·M·ADP), and that this step is rate limiting 

in the myofibrillar ATPase cycle (223). The high force states are thought to be dominant 

during isometric contraction, while only 5% of cycle time has cross-bridges in this 

configuration during isotonic shortening (367).  

The power stroke (3, Figure 3) 

The power stroke probably occurs over several steps, with the neck region of myosin 

operating as a lever arm (227, 381). The neck region changes its angle about 70° (99, 174) 

during the power stroke. As ADP is cleaved off, the binding between actin and myosin (A·M) 

generates even higher force, called the rigor state (74). The shortening velocity of the muscle 

is highly dependent on the ADP release (336).  

ATP binding of myosin (4, Figure 3) 

The affinity of myosin for ATP is even higher than the affinity for actin. Therefore myosin 

dissociates from actin and binds to this nucleotide (M·ATP). If Ca2+ is still present, the 

contractile apparatus can repeat the cycle in Figure 3. If not, TM will block the myosin binding 
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site on actin, and filament sliding will stop. In addition to Ca2+, also ATP needs to be 

available. The effect of one cross-bridge cycle is hydrolysis of one ATP molecule and 

displacement of thick and thin filament relative to each other, about 10 nm (130, 184). 

Elastic components contribute to force production? 

An elastic component of the cross-bridge was hypothesized over 50 years ago by A.F. 

Huxley (180). Such an elastic component also provides an explanation for some 

experimental data (130). Following from the previous section, myosin can be regarded as an 

active force generator. Elastic elements are passive force generators (209). Elasticity could 

be a property of the myosin molecule itself (131, 185). It could also be part of other 

sarcomere proteins, like titin (222, 258), but the alternatives are not mutually exclusive. How 

these elastic, springlike qualities of the thick filament behave during a cross-bridge cycle, and 

how much they contribute to force production, is not fully understood. 

3.2 Integrated view of the normal skeletal muscle function 
Contraction of skeletal muscle is triggered by activity in somatic neurons, ultimately 

depolarizing the skeletal muscle cell membrane. This leads to a conformational change in 

DHPR that induces an opening of RyR. Ca2+ is released from the SR through the open RyR 

and the cytosolic concentration rises sharply. Ca2+ binds to TnC and cross-bridge formation 

and force production can occur. 

The amount of Ca2+ that enters cytosol upon stimulation is dependent on the stimulation 

frequency in the motoneuron. A high stimulation frequency will allow more Ca2+ to enter 

cytosol and consequently more extensively activate the myofilaments, compared to a lower 

frequency, where only a limited amount of Ca2+ will enter cytosol. As a result, the skeletal 

muscle force production will be higher at higher stimulation frequencies in comparison to 

lower. 
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As the motoneuron activity terminates, the DHPR returns to the resting configuration and 

RyR closes. Ca2+ dissociates from TnC due to removal of Ca2+ from cytosol, and TM blocks 

further attachment of myosin to actin. Due to this, the force generation drops. 

Several consequences of muscle activity need immediate attention both during and after 

muscle stimulation. Firstly, Ca2+ needs to be removed from cytosol. This is done mainly by 

SERCA. Further, the balance of ions over the cell membrane must be reestablished. This is 

primarily taken care of by the NKA. Next, the amount of energy that was used (foremost to 

remove Ca2+ from cytosol and by movement of myosin heads) needs to be rebuilt. Different 

muscle fiber types differ as to which cellular machinery is preferred in this process (Table 1). 

Lastly, products from skeletal muscle metabolism need to be removed, and potential 

alterations in proteins need to be reversed. 

During activity, a lag or dysfunction in any of the processes mentioned above can 

potentially limit skeletal muscle function and cause skeletal muscle fatigue. This will be 

discussed further in the following sections. 

3.3 Skeletal muscle fatigue 
The transition from rest to exercise increases energy demand more than 100-fold (317). 

Depending on the intensity, nature and duration of the exercise, the skeletal muscle will have 

decreased function after exercise. The common perturbations in muscle performance include 

reduction in maximal force, shortening velocity and power and prolongation of relaxation. 

This phenomenon is known as fatigue and have been reviewed numerous times (11-14, 75, 

125, 126). Skeletal muscle fatigue has been most recently defined as “any decline in muscle 

performance associated with muscle activity” (13). Muscular fatigue is reversible by rest (2), 

which distinguishes fatigue from muscle weakness or damage. The causes of these changes 

can be many, and the relative importance of particular factors remains controversial. The 

field is in constant flux as old, well-known factors seem to lose significance and other 

possible candidates enter the field. The picture is additionally obscured by the fact that 
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different kinds of exercise (i.e. high intensity vs. low intensity, isometric vs. dynamic/isotonic) 

will influence different types of muscle fiber in varying ways. Thus, there is no clear cut 

picture which can elucidate all aspects of skeletal muscle fatigue. 
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Figure 4. Potential sites of central (1-4) and peripheral (5-8) fatigue. 

1. Excitatory input to higher motor centers; 2. Excitatory drive to lower motor neurons; 3. Motor neuron 

excitability; 4. Neuromuscular transmission; 5. Sarcolemmal excitability; 6. Excitation-contraction 

coupling; 7. Contractile mechanisms; 8. Metabolic energy supply and metabolite accumulation (39). 

Bigland-Ritchie hypothesized 8 potential sites of fatigue (39). These are illustrated in 

Figure 4. Central fatigue (Figure 4, 1-4) denotes a nervous basis for the muscle fatigue. The 

highly motivated athlete will be less susceptible to central fatigue compared to a jogger on an 

exercise run (120). Most experimental studies investigate peripheral fatigue (Figure 4, 5-8) 

and often subdivide these steps further, as Fitts and Metzger (127) do, for example. Only 

peripheral fatigue will be dealt with in the following and central fatigue will not be described 

further. Some of the assumed causes of fatigue will be briefly described in the following.  
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3.3.1 Alterations in electrolytes and Ca2+ handling 
Associated with the action potential (AP) is a Na+ current into the muscle cell and a K+ 

current out. Repeated activation will lead to a net K+ efflux from the cell (64, 172), increasing 

the extracellular [K+] from 4 mM in resting conditions to 9 mM in high intensity working 

muscles, possibly reaching 10 mM in localized regions (329). The K+ accumulation is 

probably higher in the t-tubules because the membrane surface is large and combined with a 

small volume (13). The shift in electrolyte balance over the sarcolemma alters membrane 

polarization, which could cause the DHPR to become unresponsive (7). During activity 

magnesium concentration could rise from 1 to about 2 mM (13). This could have implications 

on Ca2+ release rate from SR (see next section). 

Both high H+ and Pi reduce maximal isometric force (76). The effect could have impact on 

the number of cross-bridges in the high force state or on the force per cross-bridge. It has 

also been shown that Pi decreases myofilament Ca2+ sensitivity (256). H+ was also a 

candidate for reducing Ca2+ sensitivity by competing with Ca2+ on binding to TnC (40), but the 

Ca2+ affinity to SERCA is also reduced at lower pH. In sum, elevated H+ probably increases 

the amount of Ca2+ available for TnC binding (13). Westerblad et al (13) argues that the 

modest increase in tetanic [Ca2+]i seen at the early phase of fatigue could be due to the 

effects Pi has on RyR and SERCA. Elevated Pi increases SR Ca2+ release (22) through RyR 

and inhibits (355) or even reverses Ca2+ pumping by SERCA (105). It is, however, not 

completely clear what effect Pi will have on RyR as an inhibitory effect that is larger at higher 

[Mg2+] is also reported (106). The proposed precipitation of Ca2+-Pi in SR during later stages 

of fatigue is controversial (109). If this occurs, the pool of releasable Ca2+ in SR will decrease 

and contribute to the reduction in force. 

3.3.2 Alterations in metabolites
ATP is utilized (ATP � ADP + Pi) mainly by the myosin ATPase and SERCA during 

muscle stimulation. The creatine kinase reaction (CrP + ADP � ATP + Cr) restores the ATP 

level. Nevertheless, during intense fatigue ATP declines from 7 to 1.2 mM and CrP from 30 
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to 2.5 mM. The decrease in CrP is matched by a stoichiometric increase in Pi (205), so this 

metabolite can increase from about 2 to 30 mM, while ADP increases from 10 to 200 μM 

(13). Intracellular lactate concentration may reach 30 mM (316) from resting values of about 

2 mM. Intracellular pH can get as low as 6.2 from 7.05 in resting muscle (405), but a typical 

pH change in marked fatigue is 0.5 units (88). 

ADP will increase force but slow down velocity by impeding the detachment of cross-

bridges (77, 86) (see Figure 3). Acidic pH lowers Ca2+ affinity of SERCA contributing to 

elevated [Ca2+]i (409) that also could be important in explaining prolongation of the relaxation 

commonly seen in fatigued muscle. [Mg2+] in the mM range will decrease Ca2+ release from 

SR (253), but the pump is most inhibited by combining increased [Mg2+] and [ADP] with 

reduced [ATP] (42, 110). Lower pH will also reduce velocity (255), as ADP does, but the 

molecular basis for this effect has not been established. 

3.3.3 Reactive Oxygen Species 
Active muscle produces ROS (97, 307) and a number of studies have suggested that 

elevated concentrations of ROS contributes to fatigue. There is no consensus about the 

major sources of ROS production (13) but one presumable contributor is mitochondria that 

produce superoxide relative to O2 consumption (350). Activity can boost O2 consumption 

100-fold (61) and thereby produce ROS quite extensively. Further, a blockade of the 

mitochondria electron transport chain reduces superoxide production to zero (384), 

substantiating the mitochondria’s position as ROS producers during activity. Experiments 

done were skeletal muscle are exposed to ROS or ROS scavengers suggest that ROS has 

an effect on force production, Ca2+ sensitivity and Ca2+ handling (264, 296, 322), but the 

main effect of ROS on skeletal muscle is still unclear. 
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3.3.4 Posttranslational modifications 
Myosin Light Chain 

Modulations of the structural components of the sarcomere are not part of the battery of 

cellular changes during activity that traditionally are thought to contribute to the development 

of fatigue. Over the recent years a growing body of evidence points to regulation of myosin, 

or more specifically phosphorylation of MLC (mandatory for contraction in smooth muscle 

(161, 190)), as important in regulating contractions as well as in skeletal muscle. In 

particular, it is proposed that MLC phosphorylation explains twitch tension potentiation (358), 

especially since mice lacking MLCK only have a tiny potentiation (417). Phosphorylation of 

MLC moves the myosin head closer to actin (366), increasing both force and contraction and 

relaxation rates (146). Because it has been reported that MLC phosphorylation increases 

50% after sustained activity (366), and during fatigue can rise even more (385), it is 

hypothesized that MLC phosphorylation could be of importance in fatigue. Recently, Cooke 

et al found that MLC phosphorylation inhibits contraction velocity in conditions that mimic 

fatigue (133, 192). It seems, however, that MLC modifications play a greater physiological 

role in fast twitch skeletal muscle than in slow (80, 265), maybe due to lower MLCK and 

greater phosphatase activity in slow isoform (265). Also what happens to MLC 

phosphorylation status during shortening contractions is not known. 

Myosin binding protein - C 

MyBP-C is located as a “loop” around myosin in the A band (Figure 1). The protein can 

be phosphorylated, and regulation of the protein could alter its positioning relative to actin. In 

cardiac muscle, MyBP-C is phosphorylated by PKA and to a lesser extent by CaMKII (162). 

Phosphorylation moves myosin cross-bridges closer to heavy chain backbone, reducing 

likelihood of cross-bridge formation and force production (71). Despite structural differences, 

both the fast and slow skeletal muscle isoform of MyBP-C are phosphorylated by CaMKII 

(128). The skeletal isoforms has only one phosphorylation site while the cardiac has three 

(56). There are only limited reports about the physiological significance of MyBP-C regulation 
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in skeletal muscle, but it is intriguing to consider that phosphorylation of this structural protein 

could work in concert with MLC phosphorylation, and thus have implications for skeletal 

muscle function during activity. 

Additional candidates with implications for the development of fatigue

Titin could function as a biological spring (189) and contribute to “passive force 

enhancement” (167). TnI and TnT are also intriguing candidates for explaining skeletal 

muscle alterations seen during activity. It is known that regulation of these proteins could 

have both beneficial and negative effects on cardiac muscle function (346). Most likely a 

myriad of proteins are regulated. Each of them may have limited effects on function, but put 

together they might have the ability to tilt function in either a positive or negative direction. 

3.4 Heart failure 
One commonly-used definition of heart failure (HF) states that it is a condition where the 

heart no longer is able to supply the metabolizing tissue with sufficient amounts of 

adequately oxygenated blood, or can do so only by increasing ventricular filling pressure 

(48).  

Heart failure is one of the largest public health problems in Western countries. In Europe, 

HF is evident in about 2-3% of the population (98). It is the leading cause of hospitalization in 

people older than 65 years (204). A study of HF in the Scottish population showed that 

hospital discharge rates for HF increased by almost 60% between 1980 and 1990 (251). The 

incidence of HF rises sharply at about 75 years of age (191, 250, 310). The median age of 

the European population is estimated to rise from 30 years in the 1950s (when 8% of the 

population was above 65 years) to 45 years in 2030 (with 22% of the population above 65 

years) (297, 298). Therefore, a higher proportion of elderly people can probably account for 

some of the increased incidence of HF. The mortality of HF is similar to aggressive malignant 

diseases (354), so the long term prognosis is poor (79). It is estimated that 50% of patients 

with HF will die within four years, and within one year if the HF is severe (310). Patients 
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diagnosed with HF report a low quality of life (354). In fact, they report a lower quality of life 

than sufferers of other major chronic illnesses, like diabetes and arthritis (87). The HF 

patients also represent a great cost on the society. Between 1-2% of total annual health care 

budget in western industrialized countries is related to the care of these patients (159), 

mostly due to the cost of hospital admissions. Economic analyses from both Sweden (315) 

and the Netherlands (252) suggest that this portion is rising. 

Several diseases are associated with an increased risk of developing HF. Most significant 

is hypertension, accounting for about 40% of HF events in men and 60% in women. 

Myocardial infarction (MI) accounts for 34% in men and 13% in women, and valvular disease 

stands for a little less than 10% (191, 216). Although the exact prevalence is uncertain, 

cardiomyopathy – a disease of the myocardium leading to deterioration of heart function – is 

also considered an important risk factor for HF, and is the number one indication for heart 

transplantation worldwide (302). 

Treatment; Non-pharmacological management 

In daily life there are several parameters the HF patients can influence to control the 

severity of HF. These include weight and diet control, restricted fluid intake and reduced 

consumption of alcohol and tobacco (98). Physical activity and exercise training are also 

important, and these will be discussed in more detail. 

The common belief prior to the late 1970s was that a HF patient should remain inactive, 

and not unnecessarily stress their failing heart. About this time, it became evident to 

physicians that HF patients tolerated physical activity quite well, and even seemed to benefit 

from it (72, 211, 215, 224). We now know that physical inactivity accelerates the severity of 

heart failure (194, 270). Exercise reduces mortality, hospitalization episodes and increases 

quality of life (3). The single best predictor of cardiac deaths among patients with 

cardiovascular disease is maximal oxygen consumption (VO2max) (194, 270), and systemic 

exercise training elevates VO2max in these patients (see section 3.7), potentially reducing 
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morbidity and mortality (68). For most patients, training will also increase quality of life (31, 

69, 407), although this effect is not as pronounced in all patients (144), perhaps because 

different training regimes affect the individual HF patient differently. It is, in fact, not clear 

what kind of exercise yields optimal effect (129). A recent study found that exercise intensity 

was an important factor in reversing some of the HF-associated skeletal muscle alterations 

(407). They found that aerobic interval training was superior to moderate continuous training. 

Four minute intervals at 95% of the peak heart rate were well tolerated in the HF group, 

without adverse effects. Recent case studies seem to be in agreement with these results 

(275), but there still does not exist a consensus on what kind of physical activity HF patients 

will benefit the most from. It is not unlikely that the future will show that individually tailored 

training regimes are most beneficial. 

Treatment; Pharmacological management 

Over the last decade, the model used to explain heart failure has changed, from merely a 

“failure to pump” in the 1950s to a more complex model involving both neurohumoral and 

cardioinflammatory factors. Every explanation model for HF is associated with its own 

treatment regime. Over time, numerous randomized, placebo-controlled trials have been 

carried out, each yielding hope for the possibilities of newer medication or old medications 

with altered administration regimes. In effect, physicians find themselves in a 

pharmacological jungle when it comes to treatment of the HF patient. The existing guidelines 

for the American College of Cardiology recommends that CHF routinely should be managed 

with a combination of three classes of drugs, ACEi, �-blockers and diuretics. Recently The 

European Society of Cardiology (ESC) published their guidelines (98) which stand more or 

less in agreement with the American guidelines when it comes to treatment. 

ACEi is a blocker of the Renin-Angiotensin-Aldosterone-system (RAAS). It has been 

shown to reverse remodeling of the failing myocardium (193), and prevent apoptosis (145). 

Significantly, it has also been shown to have effects in skeletal muscle (see below). ATII 

receptor blockers are alternate drugs for those that do not tolerate ACEi. Some studies 
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indicate that ATII receptor blockers are not as effective as ACEi in reducing mortality, while 

others argue that for some patients a combination of both drugs might reduce the number of 

hospitalization days (310). The beneficial effect of �-blockers has been documented in a 

number of randomized trials (177). It is, however, worth noting that the advantageous 

consequence of �-blockers is not a class-effect, in that some �-blockers have failed to show 

the same effect as bisoprolol, carvedilol and metoprolol (370). It has been shown that 

blockage of the overactive sympathetic nervous system has several favorable effects: �-

adrenoceptor blockers reverse HF specific alterations in gene expression and inhibit the 

proapoptotic and pronecrotic effect of �-adrenoceptor stimulation. �-blockers also improve 

cardiac energy balance in HF (241), and are known to partly normalize the heart muscle 

cellular Ca2+ handling (295). This probably explains some of their antiarrythmic effect (364). 

The European guidelines suggest that ATII blockers should be administered to HF-patients 

that remain symptomatic despite optimal treatment with ACEi and �-blockers. A diuretic drug 

should be administered to patients who display signs of water and salt retention. It has also 

been proven favorable to add an aldosterone receptor antagonist, but since oral potassium 

supplements are less effective in maintaining stable potassium levels during diuretic 

treatment (115), this requires a monitoring of the patients’ serum K+ values. 

3.5 Heart failure and skeletal muscle function 
There is no general agreement as to how and to what degree the skeletal muscle of heart 

failure patients is dysfunctional. The variability in reported results might be due to several 

factors. Patients vary in HF etiology, in what kind of medication they use and in their daily 

activity level. In experimental studies, different research groups induce MI and define HF 

differently. There is also no gold standard when it comes to which muscle groups are being 

investigated and the intensity of exercise performed and how skeletal muscle function should 

be assessed also varies. In the following sections, the main findings from human and 

experimental studies are presented. 
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3.5.1 Human studies 
A major complaint of heart failure patients is increased fatigability. One obvious 

explanation is limited perfusion of the exercising muscle due to reduced cardiac output. This 

may in particular contribute to fatigue development when engaging a large muscle mass. 

However, several studies report a poor correlation between resting haemodynamic indexes 

of cardiac function (such as ejection fraction (EF)) and exercise intolerance. Furthermore, 

interventions that improve central haemodynamics, such as dobutamine infusion, have no 

effect on exercise duration, oxygen extraction or pH in the exercising muscle (240, 404) and 

the reduced exercise capacity seems to persist even after cardiac transplantation (357). 

Thus, the reduced fatigue resistance could reside locally, maybe in the muscle itself. In 

fact, numerous studies report increased fatigability in CHF patients when engaging only a 

small muscle mass. The muscle mass in these studies is so limited that even a failing heart 

will be able to increase CO to meet their metabolic demand (Table 2). When larger muscle 

mass is engaged, however, as in whole-body exercise, it could be that oxygen demand 

exceeds the CO of the failing heart, leaving the working skeletal muscle under-perfused 

(213, 363). This effect will then be experienced in addition to the intrinsic skeletal muscle 

dysfunction.  

The most common findings from human studies will be discussed in more detail in the 

following section. Morphology, metabolites and electrolytes are the most commonly 

investigated aspects of muscle health. Note that results regarding Ca2+ handling in the 

skeletal muscle of human heart failure patients are lacking. 

Table 2. Controlled studies assessing fatigue in small muscle groups of CHF patients 
Reference Muscle studied 

(unilaterally) 
HF etiology 
N: CHF/contr 

Fatigue parameter Main findings in CHF 
patients 

Brassard et al., 
2006 (47) 

Knee extensors 

 

IHD, ICM 
NYHA:	 II 
N: 25/18 

Time to exhaustion during isometric 
contraction at 60% of MVC 

Reduced isometric 
endurance 

Schulze et al., 
2004 (328) 

Knee extensors IHD, CM 
NYHA: II(1), 
III(10), IV(6) 
N: 17/12 

Decrease of force during 20 s 
maximal isometric contraction 

Increased fatigability of 
maximal isometric 
contractility  
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Table 2. Controlled studies assessing fatigue in small muscle groups of CHF patients 
Reference Muscle studied 

(unilaterally) 
HF etiology 
N: CHF/contr 

Fatigue parameter Main findings in CHF 
patients 

Sunnerhagen et
al., 1998 (365) 

 

Knee extensors 
Plantar flexors 

IHD, ICM, VHD 
NYHA: II(10), 
III(6) 
N: 16/112 

 

Knee extensors - 
Isometric endurance; time to hold 
40% of MVC 
Isokinetic endurance; Fall in peak 
torque 
Plantar flexors - 
Standing heel rise test 

Knee extensors - 
Increased isometric and 
isokinetic fatigability 
Plantar flexors - 
Increased fatigability 
during dynamic work 

Massie et al., 
1996 (247) 

Knee extensors 

 

IHD, CM 
NYHA: I(2), 
II(7), III(7), IV(2)
N: 18/8 

Reduction in peak torque from the 
first 3 to the last 3 of 15 maximal 
isokinetic knee extensions 

Increased fatigability 
during dynamic work  

Harridge et al., 
1996 (160) 

Plantar flexors 

Knee extensors 

 

IHD, CM 
NYHA: II(5), 
III(1) 
N: 6/6 

 

 

Knee extensors - 
Fatigue index = Peak torque from 
the 3 best of the first 5 / peak torque 
from the 3 best of the last 5 of 50 
consecutive maximal concentric 
contractions 
Plantar flexors (Electrical 
stimulation) - 
Fall in peak torque from the first 3 to 
the last 3 isometric contractions  

Knee extensors - 
Increased fatigability 
during dynamic work  
Plantar flexors - 
No difference 

Magnusson et
al., 1996 (236) 

Knee extensors 

 

Not specified 
NYHA: II(8), 
III(3) 
N: 11/11 

Fatigue index = Peak torque from 
the 3 best of the first 5 / peak torque 
from the 3 best of the last 5 of 50 
consecutive maximal concentric 
contractions 

Increased fatigability 
during dynamic work 

Yamani et al., 
1995 (415) 

Knee extensors IHD, CM 
NYHA: I-IV 
N: 11/10 

1. Time to reach 60% of MVC during 
a sustained voluntary maximal 
isometric contraction 
2. The number of isokinetic 
contractions required for peak 
torque to decline to 60% of its initial 
value 

1. Reduced isometric 
endurance in the CHF 
group 
2. Increased fatigability in 
the CHF group during 
isokinetic work  

Minotti et al., 
1992 (259) 

Foot dorsiflexors IHD, CM 
NYHA: I(1), 
II(3), III(5) 
N: 9/8 

1. Time to reach 60% of MVC during 
a sustained voluntary maximal 
isometric contraction 
2. Number of contractions to reach 
60% of MVC during intermittent 
isometric contractions  

Increased fatigability both 
during sustained isometric 
contractions and during 
intermittent isometric 
contractions  

Buller at al., 
1991 (54) 

Knee extensors 
Adductor pollicis 

 

IHD 
NYHA: Not 
specified 
Mild/moderate 
(5), Severe (5) 
N: 10/5 

Knee extensors - 
MVC after 20 min of intermittent 
isometric contractions as a 
percentage of the initial MVC 
Adductor pollicis - 
Decline in isometric force during 
repetitive supramaximal tetanic ulnar 
nerve stimulation, both with and 
without circulatory occlusion 

Knee extensors - 
Increased isometric 
fatigability in a 
subpopulation of CHF 
patients (severe heart 
failure)  
Adductor pollicis - 
No differences between 
groups, with or without 
circulatory occlusion.  

CM = Cardiomyopathy; ICM = Idiopathic cardiomyopathy; IHD = Ischemic heart disease; VHD = 
Valvular heart disease; NYHA = New York Heart Association classification of clinical signs of CHF. 

(Cont.) 
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Morphology and Metabolism 

Several studies report reduced oxidative capacity in the skeletal muscle of CHF patients 

as compared to controls (102, 245, 320, 361). Increased atrophy (239, 260), increased 

apoptosis (5, 124, 221, 393) and a fiber type switch towards a less fatigue resistant 

phenotype (320, 361, 400) have also been described, along with a reduced number of 

capillaries per muscle fiber (101, 107, 108, 236, 320, 361, 400). However, studies estimating 

the ratio of capillaries to cross-sectional fiber area found no difference between CHF patients 

and healthy subjects (225, 361, 400), although reduced (102) as well as increased (238) 

ratios also have been reported. Deconditioning can undoubtedly contribute to decreased 

exercise tolerance, but several researchers point to important changes in muscle 

performance which may originate in the muscle itself (239, 245, 260, 340) and thus 

distinguish the heart failure-associated skeletal muscle dysfunction from deconditioning. 

First, the enzymatic and mitochondrial abnormalities in heart failure skeletal muscle is also 

established in the diaphragm (which in fact has an increased load in CHF) (89), while disuse 

affects only postural muscles (38). Furthermore, while energy transfer through CK in skeletal 

muscle is limited in heart failure (102), it is preserved in deconditioning (38). Stroke patients 

who have atrophy due to immobilization have a fiber type switch toward type I fibers (391). 

Although these patients were bed-bound for over a year, and thus perhaps not 

representative for deconditioning in CHF, the fiber type switch is qualitatively different from 

CHF patients who have a switch toward faster fiber types. It has been proposed that 

neurohumoral or neuromuscular signals might contribute to the fiber type switch (360). This 

suggests that heart failure per se causes different changes in the fiber type composition than 

the alterations that mainly result from inactivity and deconditioning. 

Changes in muscle metabolism may clearly contribute to increased fatigability. The 

amount of work needed to reach the same level of CrP depletion is noticeably reduced in 

CHF patients (243), even though resting levels of CrP and ATP are similar in CHF and 

healthy controls (321). Increased glycolytic metabolism (246) and decreased oxidative 
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metabolism have also been reported, along with an early increase in blood lactate (62). 

Similar results have also been reported by Wilson et al (403), but several researchers show 

less lactate accumulation and CrP depletion at peak exercise in CHF patients compared to 

controls (321, 362). Increased glycolytic enzyme activity also fails to be unanimously 

reported (236, 238). One problem faced in interpreting these results is that both digitoxin 

(lower oxidative enzyme activity (320)) and ACEi (increase LD (319) and other enzyme 

systems (418)) seem to modulate skeletal muscle metabolic status. In addition, both the ATII 

receptor blocker (Losartan) and ACEi (Enalapril) can partly reverse the fiber type switch 

associated with heart failure (396). 

To sum up, deconditioning can contribute to the reduced exercise capacity in CHF, but 

there are skeletal muscle changes in these patients that cannot be explained by 

deconditioning alone. Since heart failure patients as a group are heterogeneous, and 

because drugs used only by some patients seem to have direct effects locally on the skeletal 

muscle, it is hard to speculate how much of the observed fatigability is due to the failing 

heart. It seems, however, that alterations in metabolism exist in these patients, which led 

Ventura-Clapier to suggest the term “metabolic myopathy” (389) to describe these changes. 

Electrolytes 

Membrane excitability is highly dependent on the tight regulation of electrolytes across 

the cell membrane, especially the active transport of Na+ and K+, most importantly by the 

NKA (66). The importance of an optimal ion regulation is demonstrated by Green et al, who 

found that NKA concentration correlated with CHF patients’ ability to perform exercise (149). 

However, the literature is equivocal when it comes to the question of whether CHF patients 

have a reduced number of pumps. Some find a reduction in number of pumps (276, 293) 

while others do not (149). Another notable aspect of the NKA is that diuretics and digitoxin 

(both drugs commonly used by HF patients) can affect the pump concentration negatively 

(100, 324). Deficiencies in both Mg2+ and K+ have been noted in human patients (132, 226), 

and this could decrease NKA concentration (277). �-adrenergic stimulation usually increases 
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NKA pump activity (65). Increased sympathetic nerve activity in heart failure (244) could 

desensitize the �-response, as reflected in decreased NKA pump concentration (293). 

Regardless of NKA concentration, reduced K+ and increased Na+ are the most prominent 

findings in skeletal muscle biopsies, while K+ in plasma is reduced in CHF patients (52, 111, 

112, 398). Neurohumoral activation in HF (increased activation of the RAAS system and 

levels of circulating catecholamines) could account for some of these changes, but the same 

changes are found experimentally in rats treated with furosemide (45) – a diuretic often used 

in the treatment of HF – suggesting that also drugs could alter electrolyte status in these 

patients. At the same time these changes could be a reason for increased fatigability seen in 

patients. 

3.5.2 Experimental heart failure studies 
Heart failure patients constitute a heterogeneous group which could make experimental 

data difficult to interpret. Therefore, one important rationale for using animals in research on 

skeletal muscle function in heart failure is that there are less confounding factors in animal 

models compared to humans. For example, animals do not use drugs, they are not engaged 

in any organized training, and have the same diet. Also, in animals, heart failure can be 

induced in a standardized manner, whereas in humans the pathophysiological etiological 

behind the heart failure condition varies. Heart failure can be induced in several ways in 

animals; by coronary artery ligation (377), by aortic banding (90), spontaneously in 

hypertensive rats (290), by rapid atrial pacing (402), by feeding salt to salt-sensitive rats (81) 

and finally by monocrotaline injections (395). However, there are limitations to some of the 

models, such as the monocrotaline model.  Monocrotaline is a poison that is injected into the 

circulation and has toxic effects on the pulmonary artery (326). Pulmonary hypertension 

develops, along with right sided heart failure (208, 394). However, the possibility that the 

skeletal muscle also is influenced by monocrotaline cannot be ruled out. 
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In many studies the degree of heart failure in the animals is important to assess. E.g., in 

post MI models it is important to separate the failing animals from those who simply have MI 

without HF. Three parameters have proven useful in making this distinction; EDP > 15 mmHg 

(231), left atria dilatation and reduced posterior wall shortening as evaluated in M-mode 

echocardiography (343). In addition, common post-mortem findings in animals with both MI 

and HF include pleural effusion and increased heart and lung weight. 

Skeletal muscle morphology  

Researchers disagree on whether skeletal muscle from HF patients is atrophied or not. 

Some report decreased muscle weight suggesting increased atrophy (290) and cross-

sectional area of muscles (197) while other report unchanged skeletal muscle morphology 

(413). Six weeks following coronary artery ligation, Perrault et al (289) did not find any 

atrophy of EDL, but 8 weeks after ligation, Simonini et al (339) demonstrated significant 

reductions in plantaris and soleus muscle mass. Possibly, atrophy only occurs  late in the 

development of HF. Apoptosis and elevated concentrations of proinflammatory cytokines 

have not been found in coronary artery ligation models of heart failure, although reported in 

monocrotaline studies (82, 208). The shift from slow to fast fiber type, however, is a common 

finding across different HF models (90, 93, 208, 392). This is similar to the skeletal muscle 

phenotype shift following denervation (187) and muscle unloading (38). This could imply, 

again, that muscle alterations simply are a detraining phenomenon. To test this, rats’ activity 

levels were been monitored, finding neither differences between CHF animals and controls 

(229) nor correlation between EDP or infarct size and activity (341). Skeletal muscle 

alterations are thus probably a part of heart failure pathophysiology and not only due to 

inactivity or deconditioning (369). 

Blood flow 

Nusz et al found decreased vascular rarefaction and endothelial apoptosis in a coronary 

artery ligation model of heart failure. They hypothesized that this may contribute to the 

skeletal muscle abnormalities (278). Following this line of thought, reduced skeletal muscle 
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blood flow were measured in HF rats running on a treadmill (268). Treadmill running engages 

large muscle masses, and blood flow will probably be compromised because of the reduced 

CO of the failing heart. This was also noted by the authors, as they found that the reduction 

of blood flow was dependent on MI size. However an in situ model demonstrated both a 

lower microvascular O2 pressure and a more rapid lowering of this pressure after contraction 

(29). It could be, then, that limitation in blood flow when smaller muscle masses are engaged 

also contributes to increased fatigability. The flow abnormalities could result from 

sympathetic vasoconstriction or by increased levels of ROS that could influence NO 

synthase (26, 371, 378). It has been shown that administration of agents that reduce NO 

compromises blood flow in sham animals, but that this effect was blunted in CHF animals 

(171). Even though blood flow and the number of capillaries perfused can be reduced in 

working skeletal muscle relative to the mass of the muscle working, Kindig et al found that 

this can be compensated for by a reduction in RBC velocity, allowing a more complete 

oxygen extraction by the skeletal muscle (197). Consequently, there is no clear agreement if 

blood flow and oxygen delivery to working skeletal muscle really is limited in CHF when small 

muscle mass is used. 

Metabolism 

Glycolytic capacity is frequently reported as maintained in skeletal muscle from CHF 

animals (19, 53, 93). Nevertheless, several groups have also reported a reduced oxidative 

capacity (particularly a reduction in CS (53, 342), but also in MDH and HADH (93, 291)) and 

altered mitochondrial regulation (90). This reduction is seen in all fibertypes (93), but is 

dependent on the degree of HF with no alteration in animals with MI without failure (53). 

These energetic abnormalities could be due to reduced mitochondrial gene transcription. 

PGC-1� seems to be an important modulator (136). Although there are no differences in 

resting concentrations of ATP, CrP, Pi, pH and lactate in skeletal muscle from CHF animals 

compared to both sham and MI (59, 373), there is increased breakdown of CrP during 

stimulation in skeletal muscle from the CHF animals compared to control. It is also shown 
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that CrP concentration has a prolonged recovery for both MI and CHF animals compared to 

sham operated animals (53, 373), which further strengthens the hypothesis that CHF animals 

have a reduced mitochondrial capacity. CK expression is also altered in skeletal muscle in a 

fiber type-specific manner (90) and could clearly contribute to the “metabolic myopathy” seen 

in heart failure. 

Ca2+ handling and Electrolytes 

Studies have been conducted to uncover alterations in SR function and Ca2+ handling but 

the results are not conclusive. Some report increased Ca2+ uptake and release (348, 401) 

while others find a reduced release and reduced rate of removal (229, 289) in muscles 

consisting predominantly of fast twitch fibers. These alterations could be due to alterations in 

SERCA, SR storage or RyR. In addition, NKA is important for Ca2+ homeostasis. This pump 

is essential in restoring and maintaining membrane potential, so adjustments in pump 

function could have implications on muscle function. It is also indirectly important to other 

transport systems in the cell, for example NCX. A reduction in NKA concentration in skeletal 

muscle is reported in some studies (269, 276, 293) whereas other report no changes (230). It 

remains a possibility that the reason for literature disagreement on pump concentration in 

both human and experimental studies is based on muscle type heterogeneity (in human 

studies) and the variety of examined muscle (in experimental studies), as recent findings 

suggest that alterations in the NKA is muscle-specific and property-specific (25). 

The Dhalla group showed that SERCA activity in skeletal muscle was reduced in severely 

failing animals following coronary artery ligation (8, 9, 333). This was later confirmed by 

others (290). Reduction in both protein and mRNA expression of SERCA2a (338) and 

SERCA1 (290) has been reported, but there are contradictory findings also. Spangenburg et

al did not find any differences in either isoform SERCA1 or SERCA2a in failing animals, 

using the same HF model as Dhalla et al (348). Others yet have reported elevated levels of 

SERCA in skeletal muscle from HF animals (230). It is probable that the rats in this study 
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were only moderately failing, and with this in mind it is interesting that it has been suggested 

that alterations in SERCA are dependent on the severity of heart failure (333). 

RyR regulation by PKA could be defective in heart failure, thus contributing to the 

decreased fatigue resistance. PKA activation leads to hyperphosphorylation of the RyR 

complex (309, 397) and is thought to lead to “leaky” channels attenuating Ca2+ release. Also 

of interest is myofibrillar Ca2+ sensitivity, and one recent study suggests that modulation of 

sensitivity could contribute to increased fatigability (230). The same group also reported that 

Ca2+ handling properties in single skeletal muscle fibers from failing animals during exercise 

seemed to be different compared to single fibers from sham operated animals. 

In conclusion, Ca2+ handling in skeletal muscle is probably altered in HF, but no clear 

understanding has emerged from experiments so far. 

3.6 Triggers of skeletal muscle dysfunction 
Skeletal muscle fails when the heart fails (37), suggesting a connection between the two 

organs. It could be a humoral factor produced in the heart, or some other signal, like hypoxia 

or malnutrition, constantly maintaining the dysfunctional skeletal muscle. Training of one 

muscle group has beneficial effects on skeletal muscle function (see below). Restoring ideal 

nutrition does not have the same beneficial effect (51). This indicates that oxygen delivery 

and/ or inactivity contributes to the skeletal muscle dysfunction while limited nutrient supply 

plays a minor role in the pathophysiology. Heart transplantation does not reverse skeletal 

muscle dysfunction (357), which could imply that an initiating factor triggers a self-containing 

vicious circle within the skeletal muscle, independent of further stimulation from the 

circulation. Results from in situ experiments indicate that skeletal muscle dysfunction is not 

dependent on external stimuli. If this is the case, the task of identifying the initial signal is 

even harder, simply because it may not be there anymore. 

Heart failure is characterized by elevated plasma levels of several pro-inflammatory 

cytokines, for example, TNF-�, IL-6 and IL-18 (138, 202, 271), among others. Since plasma 
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levels of cytokines correlates with both disease severity (96) and the magnitude of muscle 

apoptosis (207), it is likely that the cytokines not only are important in heart failure 

pathogenesis but also play a role in skeletal muscle function. Cytokines produced in the 

heart could act as humoral signalling molecules, thereby affecting the skeletal muscle. In 

murine models, TNF-� seems to depress maximal force by blunting myofilaments’ response 

to Ca2+ activation (308) as well as inducing muscular protein loss and reactive oxygen-

mediated NF-�B activation (220). Furthermore, cytokine production possibly increases in the 

skeletal muscle in response to cytokine signals from the failing heart. If so, skeletal muscle 

cytokine production might have a negative impact both on the heart (58, 332, 408) and on 

the skeletal muscle itself (6, 137, 327), creating a vicious cycle. Interestingly, the term 

“myokine” has now been introduced in the literature (286) reflecting the growing belief that 

skeletal muscle is a cytokine-producing organ (10, 352, 353). 

Based on the observation that muscle fibers from CHF animals appeared more fragile 

than muscles from sham animals (229), Schiøtz Thorud et al reported increased MMP 

activity in muscle from CHF rats (323). MMPs control ECM turn-over, modulate immune 

responses and may also influence the bioavailability of cytokines. Although increased MMP 

activity also could change ECM composition, and thereby the muscle’s mechanical 

properties, no direct evidence of such an effect has been reported. Similarly, triggers of 

increased MMP activity and possible alterations of major structural components and 

signalling molecules in the ECM have not been identified. 

3.7 Beneficial effects of training on skeletal muscle in HF 
As mentioned before, prior to the mid-1980s, heart failure patients were advised to live 

sedentary lives. Today, however, it is known that physical activity slows down the severity of 

heart failure (194, 270), reduces number of admissions to hospital and mortality (294) and is 

thus feasible for patients (67). Quite clearly, physical activity should be part of the treatment 

regime for such patients. But why is training advantageous? 
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Systemic training 

Many of the studies in heart failure patients are done systemically (Table 3). Cycling, stair 

climbing or bilateral knee extensor training consistently leads to a higher VO2max in CHF 

patients (32, 137, 155, 318). Several factors may account for this improvement (Table 3), 

and again, improved oxidative capacity is a candidate factor (4, 137, 154, 379, 407). This 

type of training also reduces oxidative stress and the level of inflammatory cytokines in the 

skeletal muscle (138, 221), and results in skeletal muscle hypertrophy (32, 380) and reduced 

apoptosis (221). Training has also been reported to induce a fiber type shift towards a more 

fatigue resistant phenotype (153), but the result was not confirmed in later studies (151, 158, 

196, 380). The same ambiguity is true for capillarization, as one study reported increased 

capillary to fiber ratio after training (318) whereas others did not (32, 195, 196).  

Table 3. Effects of systemic exercise training on skeletal muscle of CHF patients 
Reference Patient characteristics Endpoints to 

evaluate 
Effect of training 

Wisløff et al., 2007 
(407) 

IHD 
NYHA: 2.5 (mean) 
N: 27, of which 9 served as 
controls 

PGC-1�  
Ca2+ handling 

Increased PGC-1� in response to 
interval training 
Increased rate of Ca2+ reuptake in 
response to interval training 

Harjola et al., 2006 
(158) 

IHD, ICM 
NYHA: I(2), II(7), III(5) 
N: 17, of which 9 served as 
controls 

Fiber type distribution Not altered by training 

Gielen et al., 2005 
(137) 

IHD, ICM 
NYHA: II(18), III(2) 
N: 20, of which 10 served as 
controls 

Systemic aerobic capacity 
Oxidative capacity 

Increased VO2max 
Reduced iNOS and nitrotyrosine 
content paralleled by an increased 
Cytochrome c oxidase activity 

Hambrecht et al., 
2005 (155) 

IHD, ICM 
NYHA: II(16), III(2) 
N: 18, of which 9 served as 
controls 

Systemic aerobic capacity 
IGF-1 

Increased VO2max 
Increased IGF-1 and reduced IGF-1 
receptor levels 

Linke et al., 2005 
(221) 

IHD, ICM 
NYHA: II(20), III(3) 
N: 23, of which 11 served as 
controls /12 

Systemic aerobic capacity 
Local inflammation 

Increased VO2max 
Reduced oxidative stress and 
apoptosis 
Red. expression of TNF� and IL1�  

Keteyian et al., 
2003 (195) 

Not specified aetiology 
NYHA: II-III 
N: 15 

Systemic aerobic capacity 
Capillarization 
Oxidative capacity 
Fiber type distribution 

Increased VO2max in men (- in women)
No change in endothelial cell/muscle 
fiber ratio 
Unaltered enzyme activity 
Increased MHC1 in men (- in women) 

Gielen et al., 2003 
(138) 

IHD, ICM 
NYHA: II(18), III(2) 
N: 20, of which 10 served as 
controls /10 

Systemic aerobic capacity 
Local inflammation 

Increased VO2max 
Red. mRNA level of TNF-�, IL-1� and 
IL-6  
Red. iNOS expression both in mRNA 
and protein level 
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Table 3. Effects of systemic exercise training on skeletal muscle of CHF patients 
Reference Patient characteristics Endpoints to 

evaluate 
Effect of training 

Larsen et al., 2002 
(210) 

Not specified aetiology 
NYHA: II-III 
N: 15/15 

Fiber type size, area and 
distribution  

Trend towards increased thickness 
for all fiber types 
Trend towards an increase in type IIb 
and decrease in type I fiber area  

Ennezat et al., 2001 
(119) 

IHD, “non-ischemic” heart 
disease 
NYHA: III(14) 
N: 14, of which 4 served as 
controls 

Antioxidant enzyme-related 
genes 

Upregulation of genes encoding 
copper zinc superoxide dismutase 
and glutathione peroxidase 

Kiilavuori et al., 
2000 (196) 

IHD, ICM 
NYHA: II(15), III(12) 
N: 27, of which 15 served as 
controls 

Rate limiting metabolic 
enzymes  
Fiber type distribution 
Capillarization 

PFK activity increased; Key aerobic 
enzymes unaltered 
No change in fiber type distribution 
Unaltered capillary/fiber ratio 

Scarpelli et al., 
1999 (318) 

IHD, ICM 
NYHA: II(5), III(4) 
N: 9 

Systemic aerobic capacity 
Capillarization 

Increased VO2max and exercise 
tolerance  
Increased capillary/fiber ratio 

Tyni-Lenne et al., 
1997 (380) 

IHD, ICM 
NYHA: II(9), III(7) 
N: 16, of which 8 served as 
controls 

Fiber type distribution 
Fiber size 

No effect on fiber type distribution 
Increased cross sectional area of all 
fiber types  

Hambrecht et al., 
1997 (153) 

IHD, ICM 
NYHA: II(10), III(8) 
N: 18, of which 9 served as 
controls 

Fiber type distribution 
Mitochondrial ultrastructure 

Increase in type I fibers; Decrease in 
type II fibers 
Increased surface density of 
cytochrome c oxidase positive 
mitochondria, inner mitochondrial 
membrane and mitochondrial cristae  

Tyni-Lenne et al., 
1997 (379) 

IHD, ICM 
NYHA: II(9), III(7) 
N: 16, of which 8 served as 
controls 

Oxidative capacity Increased activity of CS and LDH 
Increased VO2max during bilateral 
knee extension 

Belardinelli et al., 
1995 (32) 

IHD, ICM 
NYHA: II(17), III(10) 
N: 27, of which 9 served as 
controls 

Systemic aerobic capacity 
Capillarization 
Fiber size 

Increased VO2max despite unaltered 
peak cardiac output  
Unaltered capillary/fiber ratio 
Hypertrophy of type I and type II 
fibers 

Hambrecht et al., 
1995 (154) 

IHD, ICM 
NYHA: II(12), III(10) 
N: 22, of which 10 served as 
controls 

Systemic aerobic capacity 
Oxidative capacity 

Increased VO2max 
Increased volume density of 
mitochondria  
Increased cytochrome c oxidase-
positive mitochondria 
Increased maximal leg oxygen 
consumption 

Adamopoulos et al., 
1993 (4) 

IHD 
NYHA: II(7), III(5) 
N: 12/15 

Oxidative capacity Reduced CrP depletion during 
exercise 
Reduced CrP recovery half-time  
Decreased ADP during exercise 
Increased exercise tolerance  

CM = Cardiomyopathy; HT = Hypertension; ICM = Idiopathic cardiomyopathy; IHD = Ischemic heart 
disease; NYHA = New York Heart Association classification of clinical signs of CHF; VHD = Valvular 
heart disease. 

 

(Continued) 
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Training of one muscle group 

Skeletal muscle dysfunction could be part of the heart failure pathophysiology 

independent of reduced CO and limited local blood supply. Therefore, studies should be 

designed so that the pump capacity of the heart does not limit exercise (as it will in systemic 

training). These conditions have been met in five studies (142, 151, 235, 282, 356) (Table 4). 

Training of one muscle group increases peak work load (235) and endurance (142, 356). 

Oxidative capacity of the muscle is also improved, as reflected either by increased activity of 

key aerobic enzymes (142, 151, 235) or by an increase of intracellular pH and PrC levels, 

both at rest and during work (282, 356). Magnusson et al also reported an increased 

capillary-to-fiber ratio, as well as an increased peak work rate during one-legged knee 

extensions (235). 

Table 4. Effects of local exercise training on skeletal muscle of CHF patients 
Reference N: CHF (healthy 

controls/ baseline 
comparison) 

Endpoints to 
evaluate 

Effect of training 

Gustafsson et al., 
2001 (151) 

IHD, ICM, HT 
NYHA: II(4), III(4) 
N: 8 

Fiber type distribution 
Oxidative capacity  
VEGF 

Unaltered fiber type distribution 
Increased CS activity. Anaerobic 
enzymes unaltered 
mRNA and protein level of VEGF 
increased 

Ohtsubo et al., 
1997 (282) 

ICM 
NYHA: II(6), III(1) 
N: 7/7  

Oxidative capacity Increase in intracellular pH and CrP 
level without changes in blood flow  

Magnusson et al., 
1996 (235) 

IHD, ICM 
NYHA: II(5), III(5), IV(1) 
N: 11 

Oxidative capacity 
Capillarization 

Increased activity of CS and HAD. PFK 
unaltered 
Increased VO2max and peak work load 
during one-legged exercise 
Increased capillary/fiber ratio 

Gordon et al., 1996 
(142) 

IHD, ICM, HT 
NYHA: II(8), III(8) 
N: 16 

Oxidative capacity Increased CS activity; PFK unaltered 

Stratton et al., 1994 
(356) 

IHD, ICM, VHD 
NYHA: I(2), II(7), III(1) 
N: 10 

Oxidative capacity Increased intracellular pH, both during 
rest and work 
Reduced CrP utilization during exercise
Increased CrP resynthesis rate  
Increased exercise duration 

CM = Cardiomyopathy; HT = Hypertension; ICM = Idiopathic cardiomyopathy; IHD = Ischemic heart 
disease; NYHA = New York Heart Association classification of clinical signs of CHF; VHD = Valvular 
heart disease. HAD = Hydroxyacyl-CoA dehydrogenase PFK = Phosphofructokinase. VEGF = 
Vascular endothelial growth factor. 

None of the studies on the effects of exercise training on skeletal muscle of CHF patients 

have a control group for any other possible confounding elements other than baseline 
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characteristics. Also, this field lacks results regarding Ca2+ handling in human skeletal 

muscle. This is discussed further in Paper 4. 

4 Problems addressed in the thesis 
Skeletal muscle fatigue has been studied extensively in both humans and in animal 

models. Although shortening contractions (muscle shortens during activation) have been 

used to investigate fatigue in humans (316), this method is not commonly used on animals 

(15). Here, muscles are most often stimulated isometrically and at room temperature. This 

means that the fatigue mechanisms known from animal models are mostly obtained in 

muscles that did not shorten upon stimulation. This is surprising, since locomotive muscles 

usually shorten when they are stimulated. Fatigue mechanisms could be different in an 

isometric contracting muscle compared to a shortening muscle. Consequently, it is not 

necessarily possible to conclude which are the most important determinants of fatigue in 

shortening human muscle based on isometric experimental studies alone. Furthermore, it is 

unknown what role posttranscriptional regulation of proteins plays in the development of 

fatigue through the shortening of slow-twitch muscle. 

Several researchers report that skeletal muscle from HF patients has increased 

fatigability. There are, however, limited reports on how skeletal muscle from HF patients 

differs from normal skeletal muscle regarding Ca2+ handling. This is unexpected considering 

the large number of articles pointing to altered Ca2+ handling as a key player in the 

development of skeletal muscle fatigue. The trainability and potential reversal of dysfunction 

with training is also scarcely investigated.  
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5 Aims 
Main aims: 

- Investigate the skeletal muscle function of heart failure animals and patients 

- Explore fatigue mechanisms in skeletal muscle from normal rats and rats with heart 

failure 

- Investigate the effect of training of one muscle group on skeletal muscle in heart 

failure patients 

Specific aims: 

- Investigate the fatigue development following shortening contractions in slow twitch 

rat skeletal muscle 

- Explore cellular mechanisms contributing to fatigue development in shortening slow 

twitch rat skeletal muscle 

- Elucidate development of fatigue in rat slow twitch skeletal muscle during shortening 

contractions in experimental heart failure 

- Uncover whether CHF patients have altered skeletal muscle Ca2+ homeostasis 

compared to healthy peers 

- Explore effects of local skeletal muscle training on Ca2+ handling in CHF patients and 

healthy peers 
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6 Methods 

6.1 Animal model 
The experimental work (Paper 1 and 2) used male Wistar Hannover rats (Taconic, Lille 

Skensved, Denmark). These rats are outbred and therefore have an undesired genetic 

variability but were still used for several reasons: First, our institute has extensive experience 

with this rat, and our experiments were to a large extent based on previous physiological and 

pathophysiological results from this strain. Second, it has a suitable homogeneity in the 

soleus muscle (SOL), consisting of about 94% type I fibers (347). Lastly, these rats have a 

favorable size and price. All animals were caged one week prior to surgery. They were 

housed in standard cages (12/12 hr day/night light cycle, temperature: 22 ± 2°C, humidity: 

55 ± 5 %) with access to rat food and water ad libitum. The experimental procedures 

conformed to the European Convention for the Protection of Vertebrate Animal Used for 

Experimental and other Scientific Purposes, and protocols were approved by the Norwegian 

Animal Research Authority. 

Post infarction rat model 

A coronary artery ligation model was used as a model of acute human MI to induce CHF. 

Weighing about 300 g (70 days old) the rat was put in a chamber and anaesthetized with a 

mix of 30 % O2, 70 % N2O and 5 % isoflurane (Forene®). After anaesthesia the rat was 

intubated and placed on a respirator (Zoovent, Triumph Technical Services LTD, London, 

UK). The anaesthesia gas mixture was the same except that isoflurane content was reduced 

to 2 – 2½ %. The ligation and induction of MI has been described by Tønnessen et al (377), 

but in short, the pericardium is opened and the heart gently exteriorized after a left sided 

thoracotomy. Although no arteries were visible, a ligation was made using a silk suture, 3-

4 mm from the base of the left artery on the posterior wall of the heart. The heart was then 

replaced and the thorax closed. Heart exteriorization was also done on sham animals, but 

without ligation. The animals were given 0.2 mg*kg-1 buprenorphine (Temgesic®, Schering-



45 
 

Plough, NJ, USA) postoperatively. During the six weeks from primary to secondary 

operation, the animals were kept under daily surveillance. Survival rate was about 80%. 

A recent study argues that the coronary ligation model may be less biologically useful 

than previously assumed to investigate the mechanisms of skeletal muscle fatigue relevant 

for CHF patients (306). Indeed, there are several problems with this method: MI is induced in 

young and otherwise healthy animals, whereas MI in humans typically strikes the elderly. 

Since the coronary occlusion is acutely introduced in rats, and in humans the development is 

gradual, one could speculate that compensatory mechanisms found in human CHF will be 

absent in rats. Of particular interest are signals produced in early stages of HF, maybe during 

long-standing ischemia. These could be, for instance, cytokines that could affect skeletal 

muscle negatively. Frequently, heart failure patients also have several risk factors for 

developing HF. In the Framingham study, 57% of patients with coronary artery disease as 

the primary cause of HF also had a history of hypertension (163). Lastly, MI is an unnatural 

condition for a rat of any age. Thus, the coronary ligation model does not ideally reflect 

human CHF, but in rats it is probably as close to the pathophysiology we can get. 

Both unoperated animals (Paper 1) and operated animals (Paper 2) were used in the 

exercise protocol. To assess whether the induced MI had developed into CHF, a pressure 

sensitive catheter was used (Cardiovascular catheter SPR-407, Millar Instruments, Houston, 

TX, USA). It was led retrograde from right carotid artery, past the aortic valves and 

positioned in the left ventricle. As described by Sjaastad et al. (343), a cutoff at 

EDP > 15 mmHg discriminates well between MI rats with and without HF. In Paper 2 only 

sham animals and animals with EDP > 15 mmHg were used. 

In situ muscle preparation 

A rat weighing about 380 g (100 days old) was anaesthetized and intubated as described 

above, and placed on a heated (37°C) operating table (modified version of Model 806A In

situ Rat Test Apparatus, Aurora Scientific, Ontario, Canada). The gas mixture was the same 
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as during artery ligation, with isoflurane content at 2 – 2½ %. The right leg was skinned from 

the knee and down. Connective tissue covering the muscle groups on the leg was split both 

on medial and lateral side, starting distally between the Achilles tendon and crus going 

almost up to the knee. Triceps surae was isolated and a suture was placed in the distal end, 

just proximal to the calcaneus bone. A smaller portion of calcaneus was cut, loosening 

triceps surae’s distal attachment. The thin fascia covering this muscle group was carefully cut 

on either side of the soleus muscle (SOL), making it feasible to tie a 3.0 surgical thread 

between gastrocnemius and SOL, isolating it. Great care was taken not to damage or pull the 

blood supply coming from gastrocnemius entering the SOL near the middle of the belly of the 

soleus muscle. Except for its continued connection to the blood supply, and the 

accompanying nerves surrounded by thin connective tissue, the SOL was dissected and cut 

completely free of adjacent tissue (Figure 5) and left attached only proximally to tibia and 

fibula. 

Figure 5. Soleus separated from nearby tissue. Note that the blood supply is intact. 

Soleus, male Wistar rat (375 gram)

Gastrocnemius

Blood supply

Soleus, male Wistar rat (375 gram)

Gastrocnemius

Blood supply

5 mm
© Munkvik, 2007
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The thread used to separate the SOL from gastrocnemius was tied tightly to the lever 

arm of a combined force and length transducer (model 305B, Aurora Scientific, Ontario, 

Canada). The lever arm was positioned so that the SOL was parallel to the tibia. This ensue 

a physiological movement of the fibers upon stimulating. Platina electrodes were placed 

proximally and distally on the muscle. Since the SOL is 5° pennated (44) and has rather long 

aponeurosis in both ends, electrodes were carefully placed on muscle fibers and not on the 

connective tissue, ensuring proper propagation of current. The muscle was kept moist and 

warm by constantly bathing it with preheated (39°C) 0.9% NaCl solution. Entering laterally on 

the thigh, the sciatic nerve (or the tibial and common peroneal nerve) was identified and cut. 

The free nerve endings were isolated with water-free vaseline to prevent retrograde 

transmission of current during stimulation of the SOL. 

Dynamic fatiguing protocol 

Before starting the protocol, the ideal sarcomere length was identified as the length 

associated with highest developed force when stimulated at 1 Hz. Stimulation voltage was 

adjusted accordingly, thus identifying the voltage that resulted in the highest developed force. 

Stimulation voltage was set one volt higher than this identified voltage during experiments 

(8V). Increasing it at any time during exercise did not lead to increased force production or 

shortening. Pulse duration was 1 ms. Maximal isometric force (Fmax) was obtained, and 

during the dynamic protocol a load corresponding to 1/3 of Fmax was used as afterload. It was 

chosen because the muscle works most effectively at this load (331). SOL is a postural 

predominantly slow twitch muscle and the motoneuron firing rate probably rarely exceeds 

30 Hz (166). Therefore, this stimulation frequency was used. The muscle was stimulated for 

one second, followed by one second of rest, for 15 minutes. Force, shortening, blood 

pressure and superficial muscle temperature were displayed and sampled at 2000 Hz by a 

custom-made LABview program. Analysis of tracings was performed on a MATLAB program 

(MathWorks Inc., Natick, MA, USA), except for analysis of the time constant of isometric 

relaxation. This analysis was done in the first contraction cycle, after 100 s, 5 min and 
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15 min. Two time constants were estimated by fitting the tracings to a double exponential 

decay curve (y=a+b*exp(-x/c)+d*exp(-x/e)) using SigmaPlot (Systat software, Norway, 2006). 

Constant c and e from the equation were defined as tau1 and tau2, respectively. 

Slack test 

Despite the fact that skeletal muscle rarely shortens against zero loads, a slack test, 

introduced by Edman in 1979 (113), is the method of choice to evaluate maximal shortening 

velocity (V0). The SOL was isolated and mounted as described above. Starting from optimal 

sarcomere length, the muscle was stimulated at 100Hz (8V, 1 ms pulse duration), fully 

saturating the myofilaments with Ca2+. After reaching maximal isometric, the length of the 

muscle was abruptly reduced (2-6 mm) at a speed greatly exceeding the muscle’s own 

shortening velocity, so that developed force dropped. As the muscle was continuously 

stimulated, the force picked up again. Initially, the redevelopment of force rose discreetly and 

it was hard to identify objectively exactly when it started. A custom-made Matlab program 

was used to identify the start of rise and the time from the force dropped due to shortening till 

the force begun to rise was plotted vs. shortening. This plot was fitted to the linear equation y 

= ax + b. The rise of this line (a) was used as the muscle’s unloaded shortening velocity 

(mm*ms-1). 

6.2 Procedures on human test subjects 
Three groups of human test subjects have been used in Paper 4; 1) Heart failure patients 

(CHF), 2) Patients with coronary artery disease (CAD) but with normal heart function and 

3) Healthy controls (HS). All the CHF patients had post infarction heart failure, and the CAD 

group was included to have a control group that also used medication. The two patient 

groups were recruited from the Department of Cardiology at Ullevål University Hospital, Oslo, 

Norway, either by searching journals or results from echocardiography, or meeting candidate 

patients in the out-patients' department. Healthy subjects were recruited through charitable 

organizations. All subjects were informed about the nature of the research project. They 

received a written information leaflet, and were informed prior to agreeing to participate that 
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leaving the project was possible at all times without any consequences. The human studies 

were approved by the regional ethics committee. 

Spirometry

VO2max was measured (Vmax 229, SensorMedics, Yorba Linda, CA, USA) with test 

subjects on an ergometer bicycle (Schiller ERG911, Baar, Switzerland). Sampling was done 

every 20 s. The heart failure patients started to cycle on 50 W. The two other groups started 

at 100 W. The load increased 10 W/min. All subjects were verbally encouraged to work hard, 

and the test was terminated at exhaustion. For the test to be valid a Borg score 	 18 at 

exhaustion was required. Work was also stopped at angina suspect chest pain or at ECG 

alterations indicating ischemia. 

To ensure that a reduced lung capacity was not limiting the VO2max measurements, all 

subjects tested maximal voluntary ventilation (MVV) by breathing as fast and heavily as 

possible for 12 s. MVV values were extrapolated from these recordings. 

Echocardiography 

Echocardiography examination was done using a Vivid 7 echocardiograph (GE-VingMed, 

Horten, Norway) with 1.7MHz probe (M3S9) in second harmonic mode. Left ventricular 

ejection fraction (EF) was calculated ad modum Simpson (351). This method uses combined 

measurements from two two-dimentional planes, both running through apex and the mitral 

ostium, to calculate a three dimensional volume with acceptable accuracy. The calculation of 

EF is highly dependent on the operator. This is part of the reason why all but a few subjects 

had EF evaluated by the same physician. Additionally, all patients needed to meet the 

inclusion criteria (described in Paper 3). 

Computer tomography of the quadriceps muscle 

CT scans were performed on a HiSpeed or a LightSpeed scanner (General Electric, 

Paris, France). Tube voltage was 120 kV and the current 150-230 mA. The examination was 
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a helical scan with a 5 mm collimation and a table movement of 30 mm per rotation, from 

spina iliaca anterior inferior through patella on both thighs. The rotation time was 0.7 s and 

0.8 s for the HiSpeed and LightSpeed scanner respectively. 5 mm slices were reconstructed 

every 5 mm. For reconstruction a standard algorithm and a 512 X 512 matrix were used and 

the scan field of view was 35-47 cm, resulting in a pixel size of 0.47 – 0.84 mm2. Skeletal 

muscle has an average density of 30-80 HU but different studies have used different 

thresholds for HU (254, 262). However, when taking into account noise and streaky artifacts 

from the adjacent femoral bone, a threshold of -29 to150 HU has been found to agree best 

with skeletal muscle (262). The quadriceps muscle volume was calculated using an 

Advantage Workstation (General Electric, Paris, France). The muscle was outlined manually 

on selected slices and automatically interpolated on the interspaced slices by the software. 

The outlining was then corrected and confirmed by the operator. The calculated volume can 

be recalculated to weight by multiplying with the specific weight of muscle (1.049 kg/l). 

Skeletal muscle biopsy 

Percutaneous needle biopsy of the vastus lateralis part of the quadriceps muscle was 

done in sterile conditions. After anaesthetizing the skin locally (Xylocain adrenaline, 10 mg/ml 

+ 5 μg/ml, AstraZeneca), a 10 mm long incision was made laterally on the thigh where the 

muscle belly was largest. A 6 mm Pelomi needle (Albertslund, Denmark) with manual suction 

was used to take the muscle samples in three different directions (proximally, distally and 

medially). The biopsy mass varied greatly between the test subjects, approximately 30 to 

150 mg per biopsy. The biopsies were rinsed as quickly as possible in saline. Fat and 

connective tissue were carefully removed. Muscle samples for immunohistochemistry were 

frozen in isopentane on dry ice, while handling of samples for preparation of SR vesicles for 

measurements of Ca2+ uptake and release are described in section 6.5. All preparations 

were stored at -80°C until analysis. After the procedure the incision was compressed and 

taped. 
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The vastus lateralis musculature is not homologous, and there is various fiber type 

composition in different parts of the muscle (217). Other qualities are also probably unevenly 

distributed. This is an important limitation, as different analyses are done on tissue from 

different locations. 

Training protocol 

One-legged dynamic knee extensor exercise was done on an ergometer, designed 

according to Andersen et al. (17) and modified by Hallén et al. (152). This setup restricts 

contractions to the quadriceps muscle unilaterally (17), leaving the other leg as a control. 

Also, the limited muscle mass engaged will not increase CO, so that a reduced CO that 

characterizes the heart failure patients does not limit the localized muscle training (237). High 

intensity (HI) exercise was defined to the workload where the test person was exhausted 

after 20 min of exercise. Low intensity (LI) exercise (~70% of HI) consisted of 60 min 

exercise while moderate intensity (MI; ~80% of HI) consisted of a 20 min warm up at LI 

followed by a 40 min exercise at MI. Both these workloads led to tiredness, but not 

exhaustion. The 20 min of exhausting exercise at HI was initiated by 10 min warm-up and 

concluded with 10 min cool down, both at LI. Two LI and one MI and HI exercise sessions 

were done on a weekly basis. All exercise was performed at 60 rounds per minute, with 

visual feedback provided on a computer screen. 

Voluntary work is to a large extent dependent on peer response. All test subjects were 

verbally encouraged during the test situation, but it is of course possible that all subjects did 

not receive the same amount of cheering, or that daily motivation for individual subjects were 

low. This could lead to seemingly poorer performance. 

Peak torque and peak power 

In Paper 4, maximal voluntary isokinetic strength (peak torque) was tested before and 

after the training period on an isokinetic dynamometer (REV9000, Technogym®, Italy). The 

range of motion was set to a knee angle from 20º to 90o, and the angle speed to 60o s-1. 
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Warm up was done on an ordinary cycle ergometer (50 W, 10 min). Peak torque was defined 

as the highest torque from the 3 trails. 

Peak power was tested on both the trained and untrained leg on the knee extension 

ergometer already described. The tests were performed after the 6 week exercise period on 

two consecutive days. A stepwise incremental protocol was used and start load was 

individually adjusted to cause exhaustion between 4 to 10 min after the start of testing. The 

load was increased by 2 W*min-1 until exhaustion. A physician was always present during the 

testing of CHF patients. At exhaustion researchers registered the time period of how long the 

last load was sustained, and included this information when peak power was calculated. 

It is not customary to use one leg only on an ordinary cycle ergometer, and there is a 

great deal of learning involved the first several times it is done. This could represent a 

problem, but the subjects in Paper 4 were well acquainted with this kind of exercise from the 

practice built into the exercise protocol. Also, the trained and untrained leg was tested one 

after the other alternately on the first day. 

6.3 Metabolites 
In the soleus muscle from rats, the muscle content of ATP, ADP, AMP, NAD, CrP Pi and 

lactate were analyzed (Paper 1 and 2). Muscle tissue was pulverized in a mortar cooled with 

liquid N2, as described by Lowry and Passonneau (228). Metabolites were extracted from the 

muscle powder by incubation in ice cold 3 M perchloric acid (PCA). After being neutralized 

with KHCO3, the samples were stored at -80°C before enzymatic analysis or analysis by 

high-performance liquid chromatography (HPLC). 

Using a fluoremetric method on micro titer plates, lactate was determined in the neutral 

extract by measuring increase in NADH fluorescence when incubating the sample with an 

excess amount of NAD+ and lactate dehydrogenase: 
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To pull the reaction to the right, a second step is added: 

�
HPLC was used to quantify muscle ATP, ADP and CrP content. This method, described 

by Sellevold et al. (330), is used for separation and quantification of a wide variety of 

substances and utilizes a column that holds chromatographic packing material (stationary 

phase). The sample is injected into the flowing stream of liquid (mobile phase) that sweeps 

the sample through the stationary phase. Substances bind to the stationary phase with 

different affinity as the mobile phase continues to flow through the column. The period before 

the different substances in the sample reach a detector showing the retention time varies in 

length depending on the interactions between the stationary phase and the molecules being 

analyzed. The different metabolites are represented by individual peaks on the 

chromatography. 

Breakdown of CrP leads to a stoichiometric increase in Pi (205). The relative increase in 

Pi in exercised muscle can thus be calculated by estimating the reduction in CrP in the 

exercised leg relative to the resting contralateral control muscle. By assuming a [Pi] in resting 

slow twitch skeletal muscle, the actual concentration of Pi can be estimated in the exercised 

muscle. In Paper 1 this concentration was set to 9.98±0.47 mmol*kg-1 dry weight (104). In a 

series of experiments (n=18) the water content in SOL was estimated to 75.48±0.82%. This 

fraction was used to determine the Pi concentration in wet muscle. 

6.4 Citrate synthase activity 
Enzyme activity was determined according to an established spectrophotometric assay 

(349). Human vastus lateralis biopsies (Paper 4) were homogenized in 0.5 ml 50 mM Tris-

HCl at pH 8.1. 20 μl 10% Triton X-100 was added in the homogenization process. 10 μl 
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20 mM DTNB (5,5'-ditiobis-(2-nitrobenzoacid)) was also added before the reaction was 

initiated by adding 5 μl 10 mM acetyl-CoA and 5 μl 100 mM oxaloacetat. 

 

The added DTNB reacts with the sulfhydryl group in CoA-SH (335), producing a free 

mercaptide ion that was measured at 412 nm. 

6.5 Ca2+ uptake, release and leak 
Measurements were done on crude homogenates from human vastus lateralis (Paper 4), 

based on methods originated by O’Brien (279), and modified by Li et al. (219). After quickly 

removing fat and connective tissue, the muscle was weighted and homogenized (Polytron 

1200, Kinematica AG, Luzern, Switzerland) in an ice cold buffer (1:10 w wt/ vol, pH 7.9) 

containing sucrose (300 mM), sodium azide (NaN3, 5 mM), EDTA (1 mM), L-histidine 

(40 mM) and Tris HCl (40 mM) at 25000 rpm for 3 x 20 s with a 20 s break between bursts. 

The buffer was supplied with a phosphatase inhibitor (P2850, Sigma-Aldrich, Oslo, Norway). 

The Ca2+ uptake and release were measured in an assay buffer, pH 7.0 containing KCl 

(165 mM), Hepes (22 mM), oxalate (7.5 mM), NaN3 (11 mM), TPEN (5.5 μM), MgCl2 

(4.5 mM) and Tris HCl (9 mM). Ca2+ fluxes were monitored using the Ca2+-binding dye indo-1 

(pentapotassium salt, Molecular Probes, Eugene, OR, USA). Indo-1 is a ratiometric indicator, 

meaning that [Ca2+]i can be determined from the ratio of two emission wavelengths. 

Fluorescence was measured using a luminescence spectrometer (LS50B, Perkin Elmer Ltd, 

Beaconsfield, Buckinghamshire, United Kingdom). Heated (37°C) assay buffer (2.2 ml) was 

added to a plastic cuvette. 1.3 μM indo-1 was added after 80 μl of just-thawed vortexed 

homogenate. The mix was illuminated by a xenon lamp with light at 349 nm. Emitted light 

was measured at 405 and 495 nm. The 405 to 495 nm ratio was sampled at 25 Hz, 

smoothed using Savitzky-Golay (approx. 0.7%), splined (order:3, knots:10) (Figure 6) 
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(TableCurve 2D, version 5.01, Systat Software Inc, San Jose, CA, USA) and then used to 

calculate [Ca2+] from the following equation (150): 

[Ca2+] = Kd ((R - Rmin)/(Rmax - R)) (Sf2/Sb2) 

where Kd is the dissociation constant of indo-1 and Sf2/Sb2 is the ratio measured fluorescence 

intensity at 495 nm when indo-1 is Ca2+ free or saturated respectively. Rmin is the ratio at very 

low [Ca2+]i and Rmax is the ratio at saturating [Ca2+]i, obtained by adding 3.3 mM EGTA and 

4.8 mM CaCl2 respectively to the cuvette at the end of each experiment. 1.0 μm free Ca2+ 

and 1.1 mM MgATP were added to initiate Ca2+ uptake by SERCA, and 1.5 μM thapsigargin 

was used to block the pump after uptake had leveled off. 5.5 mM 4-chloro-m-cresol (4-CmC) 

initiated Ca2+ release through RyR. The 405 to 495 nm ratio recordings between the addition 

of thapsigargin and 4-CmC were fitted to the linear equation y = ax + b (TableCurve 2D, 

version 5.01, Systat Software Inc, San Jose, CA, USA) and the slope of this line represented 

the leak of Ca2+ from a fully loaded SR vesicle. The derived [Ca2+] curve after adding MgATP 

and 4-CmC was the Ca2+ uptake and release rates respectively. Ca2+ uptake was calculated 

as rate at [Ca2+]i = 0.3 μM and release as maximal rate. 

 

Figure 6. Ca2+ handling. Ratio in black and grey from a typical trial. 

Ratio was smoothed using Savitzky-Golay (red) and spline estimation (green). See text for details. 
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The fluorophore indo-1 was chosen because it has a Kd in the range of interest 

([Ca2+] = 130 nM (375). Widely used Ca2+ indicators, like Fluo-3 and Fluo-4, were not used. 

This is partly because their Kd is somewhat higher than optimal (about [Ca2+] = 350 nM for 

both), and because there are no filter sets that correspond to the emission qualities of these 

indicators and fit with the luminescence spectrometer that was used. Another ratiometric 

indicator, fura-2, has both an acceptable Kd ([Ca2+] = 224 nM (150)) and can be analyzed 

with the luminescence spectrometer, but was not used either. Indo-1 and fura-2 are generally 

considered to be interchangeable, so indo-1 was chosen mainly because the institute has 

experience in using this fluorophore. 

With this method, there is no good way to ensure that you have a similar amount of SR 

vesicles. Differences in rates and leak can thus be due to different SR vesicle content. 

However, each sample analyzed contains an identical mass of protein, probably with the 

same SR density. Furthermore, the left and right leg before exercise showed no differences 

in any parameter measured with this method, thus confirming its accuracy. 

6.6 Protein immunoblot 
This is a semi-quantitative method that makes use of selective antibodies which bind to 

their corresponding antigen on a specific protein. Proteins are first separated by sodium-

dodecyl-sulphate (SDS)-polyacrylamide gel electrophoresis (PAGE) before being blotted 

over to a membrane and then incubated with the desired antibody (see Table 5). The amount 

of antibody binding was determined by the binding of an enzyme-linked secondary antibody 

that gave rise to a luminescent product detectable by a light sensitive video camera (LAS-

1000 or LAS-4000, Fujifilm, Stockholm, Sweden). Density and area of the bands or spots 

were calculated using commercial software (ImageQuant, GE Healthcare, Oslo, Norway). 

Some methodological considerations regarding protein immunoblot include the following: 

1. Antibody-antigen affinity is specific to each antibody, so the amount of protein loaded 

on the gel must be adjusted adequately for each antibody used. 
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2. The appearance of a single band indicates a high specificity of the antibody since 

other proteins are not labeled. 

3. It is not usually possible to calculate protein concentrations; however, relative 

amounts can be compared in two groups. 

4. Comparisons should always be made on the same blot due to large blot-to-blot 

variability. 

5. Small changes in immunolabelling should be interpreted with care. 

Table 5. Primary and secondary antibodies used for protein immunoblot 
Antibody Product nr Producer 

Primary antibodies 
anti-SERCA1 MA3-912 Affinity Bioreagents, CO, USA 
anti-SERCA2 MA3-919 Affinity Bioreagents, CO, USA 
anti-Phospholamban total MA3-922 Affinity Bioreagents, CO, USA 
anti-PLB phosphor-Ser16 A010-12 Badrilla, Leeds, UK 
anti-PLB phosphor-Thr17 A010-13 Badrilla, Leeds, UK 
anti-MLC2 ALX-BC-1150-S Alexis, AH Diagnostics, Oslo, Norway 

Secondary antibodies 
antimouse HRP-conjugate NA-931 Amersham, Oakville, Ontario, Canada 
antirabbit HRP-conjugate NA-934 Amersham, Oakville, Ontario, Canada 
 

6.7 Phosphoprotein gel stain 
After separating proteins on glycerol/SDS-PAGE gel (see above) the gel was incubated 

with Pro-Q Diamond Phosphoprotein gel stain (Molecular Probes, P33300, invitrogen, Oslo) 

for 90 min and scanned in a Thyphoon laser scanner (excitation/emission: 532/580 nm, 

Typhoon 9410, GE Healthcare, Oslo, Norway). This stain binds to all phosphorylated amino 

acid residues in a protein, both serine, threonine and tyrosin. Other proteins with the same 

molecular weight could therefore yield false results, but MLC and RyR were quantified (4-

15% gradient gel), both making distinct bands, clearly separated from other proteins. To 

quantify total protein content, the same gel was then incubated with SYPRO Ruby (Molecular 

Probes, S12000, invitrogen, Oslo) overnight, and scanned again (excitation/emission: 

457/610 nm). Quantification of bands was done using ImageQuant (GE Healthcare, Oslo, 
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Norway). The amount of phosphorylation was then related to total protein content. As with 

protein immunoblots, this is a semi-quantitative method, so it is not possible to calculate 

protein concentrations, and comparisons should always be made on the same blot. This 

method has also gained some criticism in regard to the binding of Pro-Q to acidic residues in 

the bands on the gel, which increases fluorescence. However, this is a minor problem, as the 

ratio between intervention and the control sample were always calculated so that potential 

background fluorescence would most likely be cancelled out. 

6.8 Near-infrared spectroscopy 
Rat SOL (Paper 1) were harvested after 100 s and 15 min of dynamic exercise and 

frozen in liquid nitrogen within 10 s. The non-working soleus muscle of the contralateral leg 

served as control. Five animals underwent the operation and stimulation protocol but with the 

blood supply to soleus severed. These animals served as ischemic controls (ISCH). 

Immediately prior to analysis, samples were carefully thawed in ice cold paraffin oil. Diffuse 

reflectance near infrared spectra were collected in the spectral range of 400-2500 nm (32 

scans) using a FOSS XDSTM near infrared analyzer (Foss NIRSystems Inc., Silver Spring, 

MD, USA) equipped with a OptiProbe module featuring a reflectance probe. Spectras were 

obtained at a spectral resolution of 0.5 nm, and reference scans using the built-in internal 

reference. Five replicate spectra were collected for each muscle. They were obtained by 

making contact between the reflectance probe and the muscle that was placed on aluminium 

foil and kept at 0°C. The probe was thoroughly washed between every sample 

measurement. Reflectance (R) was defined as R=I/I0, where I is the intensity of reflected light 

and I0 is intensity of light emitted to the muscle. Oxygenation status of hemoglobin (HbO2) 

and cytochrome aa3 (Figure 7) was measured according to Wray et al. (410): 

HbO2 = - 0.499*A778 - 1.756*A813 + 2.577*A867 

HbR = 1.768*A778 - 0.877*A813 - 0.421*A867 

Cyt. aa3 redox = - 0.559*A778 + 1.659*A813 - 0.949*A867 

where An are absorption measurements at wavelength n. 
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Figure 7. Near-infrared spectroscopy. Representative tracings of resting control fibers, working 

fibers after 100 s and 15 min, and working ischemic fibers. 

Myoglobin (Mb) and hemoglobin has similar absorption spectras (123), so the measured 

HbO2 level more accurately reflects skeletal muscle oxygen saturation as a whole (combined 

Hb and Mb oxygenation; SO2). SO2 in resting skeletal muscle tissue and in exercising ISCH 

muscle was set to 70% and 10% respectively (30). SO2 in normoxic exercising muscles 

(100 s and 15 min) where calculated relative to these assumptions. During oxidative 

phosphorylation cytochrome aa3 (cytochrome c oxidase; terminal member of the respiratory 

chain) reduces 90% of the oxygen in skeletal muscle (292). Monitoring the redox state of 

cytochrome aa3 therefore reflects oxygen availability in the tissue. 

There are several issues to consider regarding this methodology: 

1. It can be argued that the oxygen saturation is not maintained at end-of-exercise levels 

when analyzing. This would be a problem foremost in fibers with relatively high SO2 

and not so much in tissue depleted of oxygen, simply because there is less O2 to 

lose. The measurements in tissue with high SO2 would be artificially low, meaning 

that the difference in SO2 between working muscle and ISCH in reality is even bigger. 

2. Blood covering the muscle tissue would interfere with reflectance, so every muscle 

was carefully wiped free of blood before being plunged into liquid nitrogen. This was 

done as quickly as possible. 
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3. Other components of the soleus muscle could contribute to the reflectance at the 

wavelengths of interest. This is, however, a factor that probably would be similar in 

every muscle tissue sample. Since ratios are presented, this will not interfere with the 

results. 

4. The soleus muscle has a broad tendon part on either side. If the probe was placed 

over this part of the muscle, it was readily identified in the resulting scan. When this 

happened, the scan was discarded and a new one obtained. 

6.9 Statistics 
Data are presented as means ± SEM. Any p value less than 0.05 was considered to be 

statistically significant. In Paper 1, changes over time between pre- and post-recovery 

protocols were tested by comparing the means of the area under the curve with a Student’s 

paired t test (248). In Paper 4 we have a repeated measures design, where measurements 

are repeated for each individual, specifically by measuring pre and post training for both 

trained an untrained leg. Repeated measures ANOVA analysis with training (pre/post) and 

leg (trained/untrained) as factors was considered. In our approach we instead related (either 

as ratios or as delta values) the post training measurements directly to the corresponding pre 

training value and then performed t-test between the legs. The pre/post ratios were log-

transformed to approximate the data to normal distribution before t-test was performed. Our 

approach gives the same power and specificity as the repeated measurements ANOVA. 

Dealing with humans, with presumable large genetic variability between individuals, multiple 

testing correction like Bonferroni or even less strict corrections like Benjamini Hochbergs 

False Discovery Rate (FDR) approach (34), can make it very hard to detect differences. As 

the purpose of the study in Paper 4 was to screen for the potential contribution of altered 

Ca2+ handling to the skeletal muscle dysfunction in heart failure patients, the main results 

were presented without such multiple testing correction. Statistics were performed on either 

Statistica (StatSoft, Inc. (2007). STATISTIC, version 8.0, Tulsa, OK, USA) or Microsoft Excel 

2007 
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7 Results and discussion 

7.1 Introductory comments 
Isotonic and isometric muscle stimulation 

Reduced Fmax is traditionally considered to be the main indicator of fatigue during 

isometric muscle activity (13, 20, 117, 126). If only Fmax and other traditional fatigue 

parameters, like shortening velocity, were evaluated, these parameters would indicate that 

15 min of dynamic exercise do not lead to fatigue (Paper 1). This assumption, however, is 

contradicted by the muscles’ marked reduction in shortening capacity; consequently, we 

argue that the traditional definition of fatigue is inadequate. Few experimental fatigue studies 

have examined muscle shortening, and as a result, a knowledge gap exists regarding muscle 

shortening and fatigue; however, the most recent definition of fatigue is less loyal to 

traditional definitions in stating that fatigue is “any decline in muscle performance associated 

with muscle activity” (13). Only when a muscle is shortening against a load is it actually doing 

work, because work (W) is defined as force (F) multiplied by distance (W = F*d) 

([N]*[m] = [Nm] = [J]). The classic work by Fenn (121, 122) stated that “whenever a muscle 

shortens upon stimulation and does work in lifting a weight, an extra amount of energy is 

mobilized which does not appear in an isometric contraction”. Although every aspect of “the 

Fenn-effect” is not generally accepted (263, 303), there is an agreement that a shortening 

and working muscle liberates more energy than a muscle that does not shorten upon 

stimulation. To bring about shortening of a muscle, myosin must undergo a conformational 

change leading to lever arm movement (see section 3.1.3). This process is probably different 

from what happens during isometric contractions, but as Swenney and Houdusse point out: 

“although […] studies support a role for swinging of the lever arm in the generation of force 

and movement, they do not address whether or not force production is directly coupled to 

lever arm movement” (367). Consequently, shortening and force production does not 

necessarily reflect the same cellular mechanisms and surprisingly few experiments are done 

where the two processes are compared. 
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To illustrate that shortening and development of force by the skeletal muscle do not 

reflect the same qualities, a muscle was stimulated isometrically and isotonically at different 

frequencies (Figure 8). The most striking result from these pilot experiments is that maximal 

isometric force rises from 1 to 10Hz stimulation frequency without a corresponding increase 

in maximal shortening capacity. 
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Figure 8. Shortening and force production in soleus muscle of rat 

Soleus muscles (n=4) were prepared as described in section 6.1 and stimulated at different 

frequencies against a very low afterload (about 25-30 mN) to test maximal shortening capacity, and 

analyzed isometrically to test maximal force production. Representative tracings of selected 

frequencies are shown in Panel A-F. Black lines are force, gray are shortening. G, Force and 

shortening pair obtained from different frequencies. H, Force-frequency (black) and length-frequency 

(gray) relationships. Dots represent the ratio between shortening and force. 
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When fatigue is studied experimentally, the power of the skeletal muscle is frequently 

reported. Power (P) is defined as work pr time (t) ((F*d)/t = W/t = P) ([Nm/s] = [J/s] = [W]). 

The conventional way to measure power has been to base calculations on the force-velocity 

curve. This curve is obtained by load clamping a tetanically stimulated muscle preparation at 

different loads and measure the resulting shortening velocities (46). Velocity is plotted 

against load and fitted to the Hill equation (F + a)(V + b) = (F0 + a)b (169) where a and b are 

constants, F is force, V is velocity and F0 is peak isometric force. Power is calculated by 

multiplying the force and the corresponding velocity (d/t), (F*(d/t) = (F*d)/t = W/t = P) 

([N*m/s] = [Nm/s] = [J/s] = [W]) (Figure 9). 
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Figure 9. Calculation of power. 

A-D, shortening (upper panels) and force development (lower panel) of in situ stimulated (100Hz) 

soleus muscle at variable afterload (75, 50, 33 and 25% are shown). Gray line in lower panel A 

represents maximal isometric force (Fmax). Maximal shortening velocities are shown in straight lines in 

upper panels (A-D), and plotted against afterload in Panel E. F, power plot obtained by multiplying 

velocity with corresponding load from Panel E. G, actual work done by the muscle during 1 s of 

stimulation (shortening multiplied by afterload). H, power plot based on the work plot, G (work divided 

by time). 
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The limitation to the traditional way to calculate power lies in the fact that it only indirectly 

takes the work performed by the muscle into consideration. In addition, power will be 

unaffected by the time used in contraction phase. If shortening speed is constant (as in the 

work by Edman et al. (114)) it can be argued that peak power (maximal power at a given 

load) can be calculated as described, but it is confusing since power per definition is “work 

per time”. Also, shortening contractions do not usually start at fully Ca2+ loaded myofilaments, 

and conversely, shortening speed will not necessarily be constant throughout the shortening 

phase. We propose that a calculation of power based on actual work will reflect muscle 

function more closely (Figure 9). Further, since locomotive muscles normally shorten upon 

stimulation and because force production and shortening seem to be regulated differently 

(Figure 8), shortening and work should be included as standard fatigue parameters. 

Maintaining appropriate temperature 

Muscles are slower and weaker at low temperatures and tend to fatigue faster at lower 

(e.g. 21°C) compared to higher (37°C) temperatures (304, 312). Moreover, the effects of 

different factors on muscle mechanics are also temperature dependent. More specifically, the 

effect of Pi on cross-bridge force development seems to be less marked as temperature 

increases (78, 91), whereas the effect on myofibrillar Ca2+ sensitivity is larger at 30° 

compared to 15°C (92). Deleterious effects of high H+ on force production diminishes with 

increasing temperature, while the effect on V0 (200) and contribution of ROS to fatigue 

increase with higher temperatures (116, 264). Recently it has also been shown that 

phosphorylation of MLC2 in fast twitch fibers limits shortening velocity more at 30°C 

compared to at 10°C (192). Also MLC phosphorylation has been found to increase tension of 

skeletal muscle fibers more at 23°C than at 15°C (366). The effects of MLC2 phosphorylation 

could partly be due to a disorientation of myosin heads that will increase the probability of 

myosin – actin crossbinding (366). At lower temperatures, myosin heads already are 

disordered (414). Thus, the effects of MLC phosphorylation would be expected to be more 

evident at high compared to low temperatures. Posttetanic twitch potentiation (a 
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phenomenon attributed to MLC phosphorylation) is also greater at higher temperatures 

(203). 

As many of the hypothesized key players in skeletal muscle fatigue seem to be 

temperature dependent, choosing an appropriate temperature in the experimental setup is 

crucial when it comes to interpretations of the results. The temperatures in Paper 1 and 2 are 

set to give the appropriate skeletal muscle core temperature of an exercising muscle. 

7.2 Fatigue in shortening skeletal muscle 
To our knowledge, very few other animal studies have examined muscle fatigue 

development during controlled shortening contractions (15, 388), and thus, causes of fatigue 

in shortening slow twitch muscle during aerobic conditions at physiological temperature may 

have escaped detection. Some of these mechanisms have been studied further in Paper 1. 

During isotonic muscle activity, fatigue is seen as a gradual reduction of shortening 

(Smax), which is in striking contrast to the maintained Fmax. Reduction of Smax is temporally 

paralleled by reduced phosphorylation of MLC2s. There is a transient decline of the rate of 

isometric relaxation and the unloaded shortening velocity peaking at 100 s. This takes place 

without a reduction in muscle tissue oxygen saturation but is paralleled by lactacidosis and a 

reduction of CrP and ATP. During a repeated exercise protocol following 15 min of recovery, 

muscle performance was significantly superior to the initial fatigue protocol. This effect was 

lost after 1 hour. 

Metabolites 

Several experimental NMR studies report a 50% reduction in [CrP] following 2 min of 

isometric low frequency stimulation (19, 374). Considering that the energy cost from dynamic 

muscle performance is assumed to be about 2.7 greater than the energy cost from isometric 

contractions (299) and thus creates a higher oxygen demand, it is not surprising that the 

concentrations of ATP and CrP already drop during the initial 100 s of exercise (Paper 1 and 

2). However, in Paper 1 there is a trend towards regeneration of CrP during stimulation. This 



66 
 

is unexpected, since ATP production that is dependent solely on muscle metabolism without 

CrP buffering taking place at the same time is thought to be too slow to maintain ATP during 

contractions (383). The surprising tendency towards an increase in CrP during stimulation 

may be interpreted in terms of differences between isometric and shortening contractions. 

It is important to maintain sufficient skeletal muscle blood supply during exercise. This 

ensue a sufficient oxygen delivery to and removal of waste products from the muscle 

metabolism. Isometric stimulations compromises blood flow during stimulation, and 

depending on the duty cycle, blood supply could be noticeably limited during exercise. This 

could contribute to fatigue during isometric stimulation protocols (24, 344). In submaximal 

dynamic exercise, however, there could be fewer restrictions on blood supply, leaving the 

cell fully saturated with oxygen throughout the exercise period (NIR experiments, Paper 1). 

This constitutes a potential difference between isometric and isotonic exercise that could 

affect the fate of [CrP] during exercise. 

The activation of mitochondrial enzymes is slowed in comparison to the elevated work 

rate. This is embodied in the “oxygen deficit” concept, and it has been shown that the 

accumulation of lactate and utilisation of CrP can be reduced by activating PDH prior to 

exercise (376). This can also be achieved by high intensity exercise prior to activity. NIR 

experiments have shown that the muscle tissue and the respiratory chain are fully 

oxygenated during the shortening contractions in Paper 1. At 100 s, the mitochondria will 

thus have a high oxidation capacity, but at the same time will have only limited access to 

acetyl-CoA due to a possible lag in activation of PDH. The energy consumption from 

shortening contractions is higher compared to isometric contractions, so it could be 

speculated that shortening contractions activate PDH to a greater extent and thus increase 

oxidative phosphorylation and production of high energy metabolites to a rate superior to the 

consumption rate. This would stabilize and ultimately even increase levels of CrP in the 

muscle. 
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As shortening capacity drops, paralleled by a reduced phosphorylation of MLC2s, so 

does the oxygen demand. It could be speculated that the regulation of MLC2s represents a 

“physiological brake” on the muscle. Skeletal muscle shortening could be reduced due to 

dephosphorylation of MLC2 thereby dramatically reducing energy expenditure. This makes 

possible a continued aerobic metabolism despite a high motoneuron firing rate, and 

ultimately increases endurance. In this way, dephosphorylation of MLC2s has a protective 

effect on type I fibers, making them even more fatigue resistant to shortening in comparison 

to isometric contractions. With reduced shortening capacity, total energy consumption also 

decreases, to some extent explaining how [CrP] nominally increase even during contraction 

(Paper 1).  
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Figure 10. Schematic diagram illustrating the work intensity and aerobic metabolism during 

dynamic exercise. 

In shortening slow twitch skeletal muscle in situ at physiological temperatures, reduced 

CrP and ATP and accumulation of Pi and lactate seem to affect contractile parameters, both 

of force production and shortening. 

Ca2+ handling 

Since the Ca2+ ion plays a key role in activation of the myofilaments (see section 3.1.2), 

many researchers hold altered Ca2+ handling to be a probable cause of fatigue. Potentially, 

all proteins engaged in Ca2+ handling could contribute to fatigue, but it has recently been 
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proposed that exercise can lead to phosphorylation of RyR, resulting in dissociation of 

Calstabin 1 from the receptor complex. This, in turn, could make the receptor leaky, so that 

Ca2+ escapes SR even through a “closed” RyR (33). During exercise there is an excitation of 

sympaticus because of a central command, but also due to a local exercise pressor effect 

(249, 313) that potentially could bring about RyR phosphorylation. Thus, exercise could be 

limited because an elevated resting cytosolic Ca2+ level triggers the contractile machinery, 

slowing down relaxation. The increase in base line tension (Tbl, Paper 1 and 2) could, in this 

way, be a result of a leaky RyRs. Further, training in elderly healthy male subjects is 

correlated to a tendency toward decreased RyR phosphorylation and a lower Ca2+ leak, 

which could increase fatigue tolerance (Paper 4). 

MLC2s dephosphorylation 

MLC2s is dephosphorylated in response to shortening contractions in slow twitch skeletal 

muscle (Paper 1 and 2). In contrast, the literature is more or less unanimous in reporting an 

increased phosphorylation after stimulation. This is reported in a variety of species, like frog, 

rabbit and rat (23, 242, 359), and at different temperatures (23 - 37°C (242, 265)). MLC2 

phosphorylation has been shown to have limited effects in slow twitch compared to fast 

twitch fibers, maybe due to a blunted kinase and enhanced phosphatase activity in slow 

twitch fibers (265). Humans, however, seem to lack the difference between the fiber types 

(176). 

Following 100 s of dynamic exercise, MLC2s in SOL was dephosphorylated by 49% 

relative to control muscle in healthy animals (Paper 1) and by 23, 31 and 36% in sham, chf1 

and chf2 respectively (Paper 2). It is interesting that it has been impossible to 

dephosphorylate MLC2s more than 75% in rats, maybe because the remainder phospho 

group is mechanically hidden in some way, inaccessible to phosphatases (141). The 

experimental setup in Paper 1 and 2 is, however, different from other experiments and could 

explain why our results on MLC2 phosphorylation are different from what is reported in 

literature. First, and maybe most importantly, the muscle in Paper 1 and 2 was allowed to 



69 
 

shorten when stimulated. Shortening contractions could activate regulators that will not be 

triggered in isometric contractions. These regulators could be mechanically stimulated. Also, 

such contractions are more energetically costly than isometric contractions and might trigger 

signaling pathways more profoundly compared to isometric contractions. Probably also very 

important for the differences seen in MLC2 phosphorylation is the fiber type specific 

relationship between kinases and phosphatases that in slow twitch fibers, are tilted in favor of 

dephosphorylation (265). Lastly, although probably not very important for the result, one 

should note that previous papers often have measured phosphorylation differently from how 

it is done in Paper 1 and 2. Both isotope labeling (23) and separation of phospho proteins on 

pH gradient gels (199) have been used.  

The reduced phosphorylation of MLC2s in shortening slow twitch skeletal muscle in situ 

at physiological temperatures may decrease contraction rate, shortening capacity and 

velocity of isotonic shortening. 

7.3 Skeletal muscle function in CHF 

7.3.1 Experimental studies 
Unlike most experimental studies on skeletal muscle function in heart failure animals, a 

dynamic exercise protocol was used where the muscle shortened during stimulation (see 

page 47). Since CHF patients report fatigue during activity, dynamic protocols will probably 

reflect skeletal muscle dysfunction more fully than isometric protocols, in which shortening 

does not occur. Sham animals (Paper 2) and healthy animals (Paper 1) performed similarly 

during dynamic exercise. SOL’s isometric relaxation rate from the severely failing animals 

(chf2), however, decreased less during dynamic exercise, resulting in only a modest rise in 

baseline tension after 100 s (17±1% of afterload compared to 26±3% for sham) and tended 

to shorten more (do more work) during exercise (679±63 mm in total shortening compared to 

591±37 mm for sham) (Paper 2). The phenotype during dynamic exercise of SOL from chf2 

animals was similar to the phenotype of SOL from unoperated rats (Paper 1) in the second 
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session of dynamic exercise that was performed following 15 min of rest. This is reflected in 

the changes in the time constants describing the isometric relaxation tracings during 

exercise. During the first 100 s of the first exercise protocol, the time constants for healthy 

animals increased from 2.9 to 17.2 ms (tau1) and 38.7 to 328.1 ms (tau2). The changes in 

tau1 and tau2 were smaller when the dynamic exercise protocol was repeated after 15 min of 

rest, increasing from 3.9 to 10.2 ms (tau1) and 37.6 to 146.0 ms (tau2) after 100 s. Thus, a 

prior exercise bout seems beneficial to the skeletal muscle. The time constants for severely 

failing animals increased from 5.3 to 8.1 ms and 38.9 to 225.8 ms the initial 100 s of 

exercise. Although the isometric relaxation rate during the second exercise session for 

control muscles decreased even less than SOL from chf2 animals, it is tempting to speculate 

that chf2 animals were in some way primed for exercise. Surprisingly, the failing animals 

seemed to perform better than sham animals and failing animals with a lower EDP (chf1). 

Animals with CHF might have a lower sympathetic responsiveness (372), and the local 

sympathoexcitation is blunted in severely failing animals (218). This could limit PKA 

phosphorylation of RyR in skeletal muscle of chf2 animals compared to muscles from sham 

and control animals. As a result Ca2+ leaking from SR could also be reduced in chf2. This 

mechanism could provide some rationale as to why the isometric relaxation rate seems to be 

better maintained in chf2, compared to control and sham operated animals, for which the rate 

drops with a resulting rise in baseline tension. Maximal isometric force (Fmax) showed a 

different time course than the isometric relaxation. Fmax deteriorated steadily during the 

exercise for chf2, while it recovered for the sham group (Paper 2) and healthy animals 

(Paper 1) during the last part of the protocol. Previous experimental studies have mainly 

evaluated Fmax as a marker of fatigue. These studies typically report that Fmax decreases 

during muscle stimulation, so by solely assessing this parameter our findings are in line with 

literature. 
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7.3.2 Human studies 
The main objective of the training study (the TRUST study, Paper 3) was to examine 

skeletal muscle baseline characteristics, as well as fatigability and training effects in CHF 

patients, and compare the results with data obtained from healthy controls (HC) matched for 

age and activity level. Furthermore, the study was designed to investigate the molecular 

mechanisms responsible for possible increased skeletal muscle fatigability in these patients. 

Of particular interest were alterations residing within the skeletal muscle itself. The study is 

described in more detail in Paper 3. 

This is the first training intervention study in CHF patients to include a group of matched, 

healthy controls beyond the purpose of comparing baseline characteristics. Only patients 

with post infarction heart failure were included, because this is the most common cause of 

heart failure and mimicked in several experimental HF models. Also, inclusion of patients 

with various aetiologies would introduce confounding factors and complicate interpretation of 

the results. Only men were included because gender differences appear to exist in skeletal 

muscle properties in the CHF patients (95). 

Listed in Table 2 are results from human studies indicating an increased fatigability in 

CHF patients. As discussed, the nature of the skeletal muscle dysfunction in CHF is at the 

least linked to alterations in fiber type, oxidative capacity and energy metabolism. Recent 

publications point to activation of AMPK as important in inducing gluconeogenesis and 

expression of mitochondrial genes in muscle, probably mediated by PGC1� and peroxisome 

proliferator-activated receptor � (PPAR�) (272). PGC1� increases after systemic exercise in 

healthy (21) and CHF patients (407), but ACEi administration also elevates PGC1� mRNA 

levels (418). Thus, dysfunctional alterations in the PGC1� pathway might contribute to the 

attenuated skeletal muscle function in the heart failure patient. The pathway also provides a 

potential link between training and medication (see below) and improvement of the impaired 

skeletal muscle. 
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In Paper 4, CHF patients had the same peak force in the quadriceps when corrected for 

the muscle cross sectional area, but peak power was 30% lower in the untrained leg 

compared to untrained leg of HC. The reduction in peak power was also present even when 

correcting for CSA, and indicates that the CHF patients had increased fatigability. After the 

training period the difference in peak power between trained CHF muscle and untrained HC 

muscle was reduced by 35%, suggesting that it is partly possible to reverse skeletal muscle 

dysfunction in CHF with training of one muscle group independent of the effects of systemic 

training. This is in line with conclusions presented in Table 4. There were, however, no 

differences in trainability between HC and CHF. The results from Paper 4 state that reversal 

of dysfunction is possible in CHF patients without altered Ca2+ handling, while the training for 

healthy controls was associated with a reduction in SR Ca2+ leak. Thus, in line with 

experiments in rats (230), CHF calcium handling in humans does not appear to be the site of 

increased fatigability. 

As in experimental studies, it has also been reported that local sympthoexcitation is 

attenuated in heart failure in humans (273). Thus, the lower Ca2+ leak in CHF patients 

compared to HC before training could be due to lower sympathetic stimulation and lower 

phosphorylation of RyR in these patients compared to the control group. Also, the use of �-

blockers could affect skeletal muscle and Ca2+ leak by reducing RyR phosphorylation and 

dissociation of calstabin 1. 

Training effects 

Previous studies have shown that the beneficial effects of training on small muscle 

groups in CHF seem to arise mainly from increased CS activity and a more efficient CrP 

utilization (Table 4). Effects on Ca2+ handling do not seem to contribute to these beneficial 

effects (Paper 4). However, it could be argued that the patients in Paper 4 were too healthy 

(NYHA average: 2.4) for researchers to detect differences in Ca2+ handling that may exist in 

the more severe stages of heart failure. However, patients in the studies included in Table 4 

have NYHA classes ranging from 1.9 to 2.6, i.e. in the same range as patients in Paper 4. 
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The way our human study was designed (Paper 3) would probably make it impossible to 

include patients with NYHA class 4, simply due to practical limitations. Furthermore, the 

beneficial effects of training could be more easily detected following a harder training 

program than was used in Paper 4. It has been shown that heart failure patients tolerate 

even high intensity systemic exercise quite well, so local muscle training regimens could 

probably be more intense than those used in Paper 4. Also, as will be discussed below, 

medication used by heart failure patients may affect skeletal muscle. Better guidelines for 

treatment of patients may in this way also reduce the skeletal muscle dysfunction in parallel 

with other effects. 

In Paper 4, muscle samples were not obtained in relation to exercise. Therefore it is 

impossible to explore the role of posttranslational alterations of, for example, MLC2 in limiting 

exercise in CHF. It is possible that reduced phosphorylation of MLC2 with exercise (Paper 2) 

limits exercise capacity in patients due to desensitized adrenergic receptors in CHF (372). 

Training could partly reverse the dysfunctional signaling system in skeletal muscle, or in 

some other way lead to a more adequate MLC2 response to exercise. However, exercise in 

CHF rats in Paper 2 had the same effects on MLC2s phosphorylation as in the sham 

animals. It is impossible to conclude from these results how training in humans would affect 

the phosphorylation status during activity, both because the rat study did not involve training 

and because the enzymatic profile is different in rats and humans (176). 

Systemic exercise reduces cytokines like TNF�, Il-1� and Il-6 (138, 221) and elevates 

PGC1� (407). What effects local muscle training will have on these substances is unknown, 

but it remains a possibility that training of one muscle group will also reduce the production of 

inflammatory cytokines in the muscle ultimately reducing the circulating concentration. This 

could in turn explain why there are some alterations in the untrained leg after training in 

Paper 4.  
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Pharmacological effects 

An interesting observation in Paper 4 is that the training effect on Ca2+ handling in HC 

seems to already have been achieved in CHF patients before training. For these patients, 

training did not alter Ca2+ handling significantly. Maybe skeletal muscle function in CHF is 

partly rescued by the use of medication (Table 6)? 

Table 6. Drugs commonly used in heart failure and their effects on skeletal muscle 
Reference 
 

Drug Species (MI 
induction/ HF 
etiology) 
Muscle 

Effect on skeletal muscle 

Zoll et al., 2006 (418) 
 

ACEi (Perindopril) Rat (ligation), 
Gastocnemius 

Increase in mitochondrial respiration 
Recovery of depressed CS and cytocrome oxidase 
Recovery of depressed mRNA; PGC-1�, NRF-2�, 
mtTFA 

Coirault et al., 1999 
(70) 
 

ACEi (Perindopril) Rabbit (banding) 
Diaphragm, Soleus 

Limiting loss of cross-bridges, preserve strength 

Shah et al., 2004 
(334) 
 

ACEi (Captopril, 
imidapril, enalapril) 
ATII blocker 
(Losartan) 

Rat (ligation), 
hind leg 

Alterations in Ca2+ uptake and release are prevented 

Vescovo et al., 1998 
(396) 
 

ACEi (Enalapril) 
ATII blocker 
(Losartan) 

Human (IHD, HT, 
CM), 
Medial gastroc 

Both drugs: 
Shift toward slower MHC isoform 

Dalla Libera et al., 
2001 (206) 
 

ATII blocker 
(Irbesartan) 

Rat (monocrotaline),
Tibialis anterior 

Normalization of MHC distribution 
Partial improvement of atrophy 
Trend toward normalization of TNF� 

Dalla Libera et al., 
2005 (206) 
 

�-blocker 
(Carvedilol) 
- Bisoprolo 

Rat (monocrotaline),
Soleus 

Reduced protein oxidation 
Normalization of twitch and tetanic tension 

Dørup et al., 1988 
(100) 

Diuretics 
(Thiazids, loop-
diuretica) 

Human (IHD, HT), 
Vastus lateralis 

Potassium and magnesium deficiencies 
Reduced concentration of NKAs 

CM = Cardiomyopathy; IHD = Ischemic heart disease; HT = Hypertension; Ligation = Coronary artery 
ligation; Banding = Aorta banding; Gastroc = Gastrocnemius muscle 

 

It has been proposed that digitalis could lower oxidative enzyme activity or even down-

regulate the amount of oxidative enzymes (320). Although not specifically shown in CHF 

patients, statins could have negative effects on skeletal muscle mitochondrial ATP-producing 

capacity (198). Additionally the �-blocker carvedilol downregulates NF-�B activity (416) and 

levels of IL-6 and TNF� (368) in the plasma of CHF patients. This could constitute a 
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therapeutic mechanism in the treatment of atherosclerosis. As far back as 1956 it was 

reported that HF severity was correlated to the level of CRP in the blood (118). The 

Framingham Heart study also pointed to CRP as important in identifying risk candidates for 

developing HF (386). Other cytokines have been shown to be produced in the heart, and the 

patient’s individual “inflammatory fingerprint” could, in the future, guide physicians in 

choosing the appropriate therapy (49). 

The HF condition has detrimental effects on skeletal muscle (see section 3.5). It is likely 

that skeletal muscle function is also influenced pharmacologically (Table 6). This makes it 

hard both to evaluate human skeletal muscle dysfunction in heart failure, but also obscures 

the effects of training. Drug-induced changes could, however, explain why Ca2+ handling 

properties in CHF patients before training were phenotypically similar to the trained leg in the 

HC group (Paper 4). 
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8 Main conclusions 
The present studies reveal new insight into the cellular mechanisms governing skeletal 

muscle fatigue. This is the first time fatigue in animals has been studied in an in situ exercise 

protocol where the muscle shortens during stimulation and the temperature is kept at 

physiological levels. New knowledge about skeletal muscle function in heart failure is also 

provided. 

Referring to the specific aims of the study, the conclusions are: 

Conclusion 1 

Fatigue following shortening contractions reduces the shortening capacity of the muscle 

to a greater extent than the muscle’s force generating capacity, implying that different cellular 

mechanisms are at work in shortening and isometric contractions. During shortening 

contractions maximal force production initially drops and then rises again, while shortening 

capacity declines steadily. 

Conclusion 2 

Shortening contractions give rise to a drop in ATP and CrP and dephosphorylation of 

MLC2s. The concentration of CrP is partially restored towards the end of the protocol. 

Dephosphorylation of MLC2s is associated with reduced shortening capacity but not 

correlated to maximal force generating capacity. Sufficient nutrient supply, activation of 

oxidative phosphorylation and the control of contraction by dephosphorylation of MLC2s 

might explain why CrP builds up even during stimulation. 

Conclusion 3 

Maximal isometric force declines steadily for severely failing animals during shortening 

contractions, whereas Fmax values for sham animals tend to recover after an initial drop. The 

decline in isometric relaxation rate and the resulting rise in baseline tension between 

stimulation trains are less marked in severely failing animals compared to sham animals. 
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Skeletal muscle from HF animals also tends to shorten more than the sham operated 

animals during shortening contractions. 

Conclusion 4 

Heart failure patients demonstrate lower skeletal muscle SR Ca2+ leak compared to 

healthy peers, and have increased fatigability. This fatigability seems unrelated to Ca2+ 

handling. Several drugs used in standard treatment of HF also affect the skeletal muscle and 

could influence the skeletal muscle of heart failure patients favorably. 

Conclusion 5 

Skeletal muscle from CHF patients with increased fatigability profits from local muscle 

training similarly to healthy skeletal muscle. However, contrasting healthy subjects, the 

beneficial effects of training in CHF patients seems unrelated to changes in skeletal muscle 

Ca2+ handling. 

9 Future perspectives 
In the present study we propose that skeletal muscle fatigue development is dependent 

on the contraction modality. Our results suggest that future experiments on skeletal muscle 

function and fatigue should include shortening as a fatigue parameter to evaluate the 

functional influence on the skeletal muscle from exercise. Since fatigue in humans is most 

often present in shortening muscle, this could have implications for how we understand 

fatigue and ultimately treat pathological processes characterized by increased fatigability, 

e.g. heart failure. The literature is not uniform when reporting skeletal muscle phenotypes 

from CHF patients. Alterations seem to depend on several factors such as medication, and 

the field is in need of larger controlled studies to further clarify this area. 
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