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Abstract

Trawlers involved in the Antarctic krill (Euphausia superba) fishery use different trawl designs, and very little is known about
the size selectivity of the various gears. Size selectivity quantifies a given trawl’s ability to catch different sizes of a harvested
entity, and this information is crucial for the management of a sustainable fishery. We established a morphological
description of krill and used it in a mathematical model (FISHSELECT) to predict the selective potential of diamond meshes
measuring 5–40 mm with mesh opening angles (oa) ranging from 10 to 90u. We expected the majority of krill to encounter
the trawl netting in random orientations due to high towing speeds and the assumed swimming capabilities of krill.
However, our results indicated that size selectivity of krill is a well-defined process in which individuals encounter meshes at
an optimal orientation for escapement. The simulation-based results were supported by data from experimental trawl hauls
and underwater video images of the mesh geometry during fishing. Herein we present predictions for the size selectivity of
a range of netting configurations relevant to the krill fishery. The methods developed and results described are important
tools for selecting optimal trawl designs for krill fishing.
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Introduction

The largest annual catch of Antarctic krill (Euphausia superba,

hereafter called krill) in the Southern Ocean since the inception of

a commercial fishery in 1972 was 528,000 tons. During the last

decade, the annual catches in the Scotia Sea, where the

commercial operations are located today, have ranged between

100,000 and 212,000 tons. Due to limited knowledge about this

marine ecosystem and the potential negative effects of fishery

activities, a precautionary catch limit for the Scotia Sea was set at

620,000 tons by the Commission of Antarctic Marine Living

Resources (CCAMLR) in 1991 to avoid potential conflicts with

land-based predators that depend on krill as prey such as penguins

[1]. Based on a coordinated survey conducted by the CCAMLR in

2000, during which krill density was measured acoustically in the

fishing areas [2], the biomass of krill was calculated to be 60.3

million tons [3]. A theoretical total allowable catch (TAC) limit

based on this calculation was set at 5.61 million tons [3].

The pelagic trawlers involved in the krill industry use different

trawl systems and designs, and very little is known about the size

selectivity of the commercial trawls used to harvest krill. Pshenikov

[4] reported that during the 1970s when the Soviets trawled for

krill, only 10–20% of the krill that entered the trawl opening were

retained in the codend. However, neither data nor analyses were

provided in this paper. In the near future, the krill harvest is

expected to reach the precautionary catch limit due to increased

demand for krill and improved harvesting and processing

technologies. The potential to increase the annual catch further

(i.e., to the TAC limit in the Scotia Sea) is significant [3,5]. Krill

have a circumpolar distribution [6], which will enable a spatial

expansion of the fishery that potentially could contribute to

increases in the total annual catch. The objectives of responsible

harvesting of krill, rational management of the krill fishery, and

economic profit for the industry demand development of fishing

gear that reduces accidental (escape) mortality during the fishing

process. Both the Commission and Scientific Committee of the

CCAMLR strongly recommend member states that are fishing for

krill to investigate the effects of different fishing gears on krill

escapement to assess the total mortality of the krill stock caused by

the fishery [7,8].

Studies of size selectivity for other commercially harvested

species in towed fishing gear have traditionally been made by

conducting a series of sea trails. Sea trials are economically costly

and time consuming, and there is therefore a limit to the number

of different gear designs that can be tested. In addition, some

commercial krill fishing vessels use a continuous pumping

technique to bring the catch from the trawl to the deck, which

makes standard selectivity studies difficult. Due to these limita-

tions, the FISHSELECT method was used in the present study to

evaluate size selectivity of relevant gears for the krill fishery [9].

FISHSELECT is based on a combination of laboratory experi-

ments and computer simulations which involves assessment of the
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morphology relevant for size selection. This method has been used

successfully to describe, understand, and predict size selection of

fish [9,10,11,12,13] and crustaceans, such as Nephrops norvegicus
[14]. The essential first step of the method includes collecting

morphometric measurements of the species investigated and

estimating selectivity parameters based on comparing the

morphology of the species and the geometry of relevant meshes.

This procedure makes it possible to quantify the size selectivity of

different trawl designs, including those commercially used today.

Moreover, it constitutes an essential step towards evaluating

escape mortality in the trawl-based krill fishery. The ability to

quantify and predict size selectivity in the commercial fishery for

krill will allow managers to explore the consequences of fishing in

terms of catch efficiency and catch loss of different gear designs

when harvesting populations with dissimilar size structures.

In general, fish targeted by trawls have good swimming ability

relative to the towing speed used in these fisheries. Several species

of fish also have been observed to orientate themselves in relation

to the trawl netting during the capturing process e.g., [15]. In

contrast to fish, smaller invertebrates such as prawns tend to

display a more limited response to stimuli from the trawl [16,17].

Krill are similar in size to the smaller species of commercially

fished prawns, but they are fished using towing speeds similar to

those used for targeting fish (i.e., 2.5–3.0 knots). Therefore, the

selectivity process for krill in trawls is expected to resemble a

sieving process in which the individual krill may meet the trawl

netting with a more random orientation (in contrast to what has

been observed for fish). Trawls designed to catch small crustaceans

like krill or shrimps are designed with small meshes in the entire

trawl indicating similar expectations from the fishermen.

The objective of this study was to establish a morphology based

model for krill to predict size selectivity of a range of netting

configurations relevant to the krill fishery. Simulation-based results

(FISHSELECT, [9]) were compared with results from a selectivity

experiment that involved hauling two different trawl gear design, a

macroplankton survey trawl and commercial trawl simultaneously

through a krill swarm. To explore behavioral patterns of krill

during fishing, underwater video observations were made.

Materials and Methods

Ethics statement
This study did not involve endangered or protected species.

Experimental fishing was conducted onboard a Norwegian

commercial trawler. No permit was required to conduct the study.

Figure 1. Krill sliced at cross section 1 (CS1) and cross section 2
(CS2).
doi:10.1371/journal.pone.0102168.g001

Figure 2. Shapes of CS1, CS2 and CS3. CS1 is described by a flexellipse_1, CS2 is described by a flexellipse_3 and CS3 is described
by a flexdrope_2 (see appendix S1).
doi:10.1371/journal.pone.0102168.g002
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Morphological description of krill
We used the FISHSELECT method with some modifications to

establish a morphological description of krill. The FISHSELECT

method aims to identify and parameterize the morphological

properties of a given species that determine the species size

selection of towed fishing gear. For some fish species the vital

morphology has been identified as one or two cross sections along

the length axis that contains the maximum compressed height

and/or the maximum width due to the cylindrical shape of fish

such as gadoids [9,10]. Descriptions of these cross sections are then

used to predict the size selectivity by examining whether or not the

cross section is able to pass through the mesh geometry, which can

be of a variety of sizes and shapes. Traditionally, the FISH-

SELECT method includes a series of ‘‘fall-through trials’’ [9] to

estimate the compressibility of the identified cross sections for fish,

as fish are flexible to a certain point and can compress their cross

section shape during mesh penetration. However, crustaceans

have a hard exoskeleton, so this procedure is not necessary for krill

[14]. To date, the FISHSELECT methodology and the measuring

tools have not been applied to crustaceans as small as krill, which

can grow to a maximum total body length of 60 mm (e.g., [18]).

Thus, application of the FISHSELECT method to krill requires

further development of some of the procedures. The major steps

involved in the method are described in detail in Herrmann et al.

[9], and the customization for using the method on krill is

elaborated below.

Collecting krill and studying the effect of preservation
Fresh krill were not available for the experimental laboratory

trials needed for this study, so preserved animals were used in these

trials. Determining if and how the preservation treatment changed

the morphology of krill were important for accurate interpretation

of the results. When Germany first initiated its krill research

program in the Southern Ocean in 1976, researchers compared

fresh, frozen, ethanol-preserved, and formalin-preserved krill

samples to evaluate potential effects of preservation on morpho-

logical properties. They observed shrinkage in samples preserved

in ethanol, but no statistically significant differences were detected

in formalin fixed or frozen animals (Volker Siegel, pers comm.).

Because these factors are fundamental for the reliability of our

results, and because these historical results never were published,

this result required corroboration.

During a survey conducted aboard the Norwegian fishing vessel

Juvel (Emerald Fisheries ASA) off the South Orkney Islands in late

January to early February 2012, krill were collected fresh from the

catch using a Macroplankton trawl (see [18] for additional

descriptions of the trawl). The trawl was lowered from the sea

surface to 200 m depth and hauled at 2.5–3 knots. Sex and

maturity stages of krill were determined using the classification

methods outlined by [19]. Total body length was measured

(61 mm) from the anterior margin of the eye to the tip of telson,

excluding the setae, according to the ‘‘Discovery method’’ used in

[20]. Carapace width was measured using a caliper at its widest

cross section point. A total of 30 krill including juveniles, sub

adults, adults with gravid females at stage FIIID were preserved

individually in borax-buffered formalin (4%), and body length and

carapace width were measured again after 2 and 10 months.

Comparisons of any temporal change in the morphology

measurements was made using an analysis of variance test (Proc

NPAR1WAY, SAS Institute Inc., Box 8000, Cary, N.C., U.S.A.)

with the 0.05 level accepted as indicating statistical significance.

Morphological measurements
Before initiation of the laboratory trials, the krill body was

examined to identify the relevant morphology that potentially

would determine the animal’s ability to penetrate different meshes.

We first determined the body orientation that would allow the

largest individual to escape through a given mesh, as this

orientation is indicative of the selective potential for krill for that

mesh type. The optimal orientation for krill is when the body is

stretched and meets the mesh opening head or tail first. We next

identified morphological measures that could describe this optimal

orientation. Two cross sections, CS1 and CS2, were identified

along the length axis of the krill body as being decisive for size

selection, as these cross sections contain the maximum height (h)

and width (b) measures of animals in the optimal orientation

(Fig. 1).

We also considered the different ways in which krill can meet

the meshes in a trawl (i.e., head first, tail first, curled, stretched), as

this determines which additional measurements should be made

during data collection. In this study we included a second contact

mode, the curled shape, CS3 (Fig. 2). We expect that krill are

more passive in a trawl compared with fish and thus might

encounter the meshes in more random orientations. CS3

represents a contact mode very different from the optimal mode,

and it is expected to result in low selectivity due to the large cross

section shape. At this stage we chose to include only one contact

mode in addition to the optimal contact mode. If the observed size

selectivity of krill is difficult to explain by simulation the process

using the optimal contact mode is a more detailed approach,

involving more contact modes needed.

A two-step process was used to take morphological measure-

ments. The first step involved taking measurements of 30

individuals covering the length span from 27 to 55 mm. Each

individual was placed on a flatbed scanner to measure width and

Figure 3. Scanned pictures of krill with markings to illustrate
the width and height at CS1 and CS2.
doi:10.1371/journal.pone.0102168.g003
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height at CS1 and CS2. Width and height were extracted using

the image analysis in the FISHSELECT software (Fig. 3). After

these measurements were taken, each individual was frozen on a

metal plate at 280uC to ensure rapid freezing. The frozen

individuals were cut with a scalpel at CS1 and CS2 perpendicular

to the length of the body. The frozen condition prevented the

specimens from deforming during the slicing, which would cause

deviation from their natural morphology. These sliced cross

sections were photographed on a flatbed scanner. Then based on

the shape describtion by analyzing the cross section images, we

found relations between the three parameters describing the cross

section shapes and size and the height and width at the cross

sections. This enabled us to assess the cross section shapes and

sizes established for CS1 and CS2 for a larger number of

individuals based on only measuring height and width at CS1 and

CS2. In the second step, the length of 83 individuals with a length

range from 19 to 54 mm was measured and the established length

to cross-section relationship applied. Without cutting we assessed

the cross sections CS1, CS2, and CS3 by placing a given specimen

on the scanner for the different measures (height, width, and

curled).

Modeling of cross sections
To describe the shapes of the the cut cross sections of CS1 and

CS2 (fig 2), the best parametric model was selected for each based

on R2 and Akaike’s Information Criterion (AIC) [21]. Ten

different geometric models were tested for both CS1 and CS2 (see

Appendix S1). Models that fit the data well have a high R2 value.

Comparison between models with different numbers of parame-

ters can be made using AIC values following the procedure

described in Sistiaga et al. [11], and the model with the lowest AIC

value is the one that best fits the data. A more detailed

mathematical description of the chosen models is given in the

Appendix S1. Each model is defined by three parameters (c1, c2,

and c3). For each cross section (CS1 and CS2), we have a dataset

consisting of measurements from the 30 individuals that includes

the values for b, h, c1, c2, c3 and a cross section model. To be able

to estimate a cross section of a krill specimen based on

Figure 4. Image of the netting wall (mesh size15.4 mm) of the krill trawl captured during fishing operations (A). Digitizition of selected
meshes to establish realistic values for mesh opening angles (oa) (B). The camera is located 10 m from the codline-end, pointing backwards. The intire
15.4 mm trawl was covered with 200 mm double 5 mm PE diamond netting for protection.
doi:10.1371/journal.pone.0102168.g004

Figure 5. Illustration of how the effective mesh openings in a trawl can vary depending of the attack angle of krill (5–906) (A). The
light mesh is the real mesh in 90u view and the dark mesh is the effective mesh opening when projecting the mesh opening to a plan perpendicular
to the towing direction. The lower mesh series (B) shows the potential effect of rotation of the cross section (CS1_CS2) in a 30u open mesh.
doi:10.1371/journal.pone.0102168.g005
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measurements of b and h at that cross section requires knowing

how c1, c2, and c3 depend on b and h for the selected models.

Therefore, for each cross section we assumed that cx (x = {1,2,3}

can be modeled by a simple bilinear function in b and h including

interaction. Thus we use:

cx~a0xza1x|bza2x|hza3x|b|h ð1Þ

Model (1) was applied using the lm function in statistical package

R (version 2.15.2; www.r-project.org) to establish the models for

c1, c2, and c3 for both CS1 and CS2. Each model term in (1) that

was found to be non-significant was removed to establish the final

models for how c1, c2, and c3 can be estimated based on b and h

measured for each cross section (CS1 and CS2). The resulting

models (Table 1) were subsequently applied to estimate the cross

section shapes of other krill individuals based on measuring only b

and h at CS1 and CS2.

Assessment of mesh shape and size of trawl netting
In addition to a morphological description of krill, we needed a

precise description of sizes and shapes of the meshes used in

commercial trawls for which experimental size selectivity data

were collected. Weaved diamond mesh polyamide (PA) netting

with a nominal mesh size of 16 mm (stretched inside measure) is

commonly used in the commercial krill fishery. A small sample of

this netting was placed on a flatbed scanner with no tension in the

netting together with a measuring unit to determine the precise

mesh size. Individual meshes in the picture were analyzed in

FISHSELECT using the built-in image analysis function, and

mesh size was assessed following the procedures described in

Sistiaga et al. [11]. Standard mesh measuring methods (e.g., the

OMEGA measuring gauge [22]), which are applied for larger

mesh sizes, could not be used in this study because the measuring

jaws are too large for the small mesh sizes used in the krill fishery.

We used underwater video recordings made during commercial

fishing operations onboard the Norwegian vessel Antarctic Sea

during the 2013 season to assess the shapes of the meshes during

fishing. Following Sistiaga et al. [11], the digitized images were

used to extract the mesh opening angle (oa) to identify the best

shape description of the meshes (e.g., diamond, hexagonal, square)

(Fig. 4).

Predicting potential size selectivity of krill
We generated a combined model of CS1 and CS2 because

together they contained the maximum cross section width (CS1)

and height (CS2). CS3 represents a different body shape mode by

which krill can make contact with the trawl netting during fishing,

so it was not combined with the other cross sections and instead

was treated separately. Using the established cross section

descriptions (CS1, CS2, and CS3) we conducted simulations to

predict the basic selective properties for a variety of different mesh

sizes and shapes using the optimal orientation of CS1_CS2 and

CS3. Optimal orientation includes optimal rotation of the cross

section description in the given mesh using a 90u attack angle

relative to the mesh opening. The optimal orientation therefore

gives the absolute potential and the upper limit for the potential

size selection of the mesh sizes and shapes investigated. The

standard FISHSELECT predictions of size selectivity are based on

optimal orientation of the identified cross section descriptions.

Such predictions of size selectivity are based only on the species

morphology and on the given mesh shape and size and do not take

into account any behavioral effects that may affect size selectivity

of the species in question.

Herein we made selective predictions over a relevant range of

diamond meshes with varying sizes and opening angles. To test a

sufficient number of individuals in the selective range of all

relevant mesh sizes, we created a large virtual population. The

empirically established relationship between body length and the

cross section shape parameters (c1, c2, c3) was used to define the

properties of the individuals in the virtual population. We

estimated L50 by assuming a logistic selection curve and treated

the simulated penetration data as covered codend data [23]. L50 is

the length at which there is 50% retention likelihood for the

individual [23], and we used this and the selection range

(SR).These basic selective properties were assessed for the relevant

mesh sizes and shapes for each mesh type, and they are presented

as iso-L50 plots known as design guides (see [9] for further details

about this procedure).

Selective effect of cross section orientation and attack
angle

In previous studies carried out using FISHSELECT to predict

size selectivity for different species of fish, it was assumed that each

individual is optimally orientated when attempting to pass through

the meshes. However, we expect krill to have a lower probability of

meeting the meshes in the optimal orientation with optimal attack

angle due to the relatively high towing speed compared to the size

of the animal. In addition, the tapering of commercial krill trawls

differs from that of traditional fish trawls, and this can affect how

the individuals in the trawl meet the mesh. The commercial trawl

used to collect the experimental data had a mouth opening of

about 20620 m, and the trawl was about 200 m long. This small

amount of tapering resulted in an attack angle of less than 3u
between the direction of the flow and the netting wall.

Table 2. Mesh size measurements based on image analysis (mesh id 1–5) and fit statistics for using a diamond mesh description
(R2) and measured mesh opening angles (oa values in degrees) based on underwater video recordings during commercial fishing
(mesh id 6–10).

Mesh id Mesh size (mm) Mesh id R2 oa (degrees)

1 15.08 6 0.9511 44

2 15.4 7 0.9881 34

3 15.81 8 0.9167 28

4 15.94 9 0.8709 31

5 14.66 10 0.9762 33

Mean 15.38 0.9406 34

doi:10.1371/journal.pone.0102168.t002
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We explored the potential effect of orientation of CS1_CS2 in

the mesh opening and the effect of attack angles between krill and

the netting for the specific gear for which we collected

experimental size selection data. In principle, orientation of the

cross section and the attack angle work in combination, but for

simplicity we assessed their potential effects separately. We

therefore examined the effect of orientation of CS1_CS2 using

an optimal attack angle; in this scenario, the description of

CS1_CS2 was presented perpendicular to the mesh (90u in Fig. 5

Panel A) and then was rotated stepwise from 0 to 90u (Fig. 5 Panel

B). To evaluate the effect of the attack angle was the mesh shape

stepwise projected to a plan perpendicular to the towing direction

in steps of 10u (Fig. 5). The description of CS1_CS2 during this

procedure was orientated optimally in the projected mesh shape.

This analysis was conducted using the FISHSELECT software.

Collecting experimental selectivity data
Experimental size selectivity data were collected in February

2011 onboard the Norwegian commercial krill trawler Saga Sea

(Aker Biomarine ASA) off the South Orkney Islands. The Saga

Sea was equipped with a twin trawl beam system. One beam was

rigged with a 7 mm macroplankton trawl with a 38 m2 mouth

opening. The other beam was rigged with a commercial trawl with

a 400 m2 mouth opening and a mesh size of 15.4 mm from the

trawl opening to the rear end. The trawls were lowered from the

sea surface to 200 m depth simultaneously and then slowly hauled

at a vessel speed of 2.5–3.0 knots, which corresponds to the towing

speed used during commercial fishing. At the surface, one trawl

was taken onboard before the other trawl. The order in which

each trawl that was taken onboard first was alternated between a

total of four hauls. When a trawl catch was landed on deck, the

body length of about 100 individual krill from each trawl was

measured (61 mm) from the anterior margin of the eye to the tip

of telson, excluding the setae. A total of 416 individuals were

measured from the macroplankton trawl and 393 individuals from

the commercial 15.4 mm trawl.

Analyzing experimental selectivity data
The experimentally collected data were analyzed using

SELNET [12] and paired gear analysis [23]. Data were

modeled by the traditional logistic model (2) with parameters

L50 and SR.

r(l,L50,SR)~
exp (

ln (9)

SR
|(l{L50)

1:0z exp (
ln (9)

SR
|(l{L50)

ð2Þ

The following function (3) was minimized with respect to the

parameters L50, SR, and SP. SP denotes the so-called split

between the fishing power of the test and control trawls.

Although it is of no real interest here, it is necessary to assess the

value of SP to obtain the value of the selection parameters L50

and SR (see Wileman et al. [23] for further information on this

subject). Function (3) is written as:

X
l

ntl| ln
sp|r(l,L50,SR)

1{spzsp|r(l,L50,SR)

� ��

znc1| ln
1{sp

1{spzsp|r(l,L50,SR

� �� ð3Þ

where the summation is over length classes l. ntl denotes the

number of individuals found in the test gear (15.4 mm trawl) of

length l, whereas ncl denotes the number found in the control

gear (7 mm trawl). Data were pooled for the four pairs of hauls

prior to conducting the analyses to obtain the average size

selection estimation for the 15.4 mm trawl.

Based on the estimated selection parameters L50 and SR, the

length Li by which the retention likelihood is in % can be

calculated by:

Li~L50z
SR

ln (9)
| ln

0:01|i

1:0{0:01|i

� �
ð4Þ

Estimation of L05 to L95 based on (4) is required for the

comparison between experimental- and simulation-based results

by means of the method described in Herrmann et al. [13].

Table 3. Dates, body length and carapax width measurements of 30 juvenile, sub adult and adult krill collected fresh from the
trawl catch (25. January) off South Orkney Islands and after two and 10 months preserved in borax-buffered formalin (4%).

Date in 2012 Range body length (mm) Mean (SD) body length (mm) Range body width (mm) Mean (SD) body width (mm)

25. January 27.0–55.0 44.7 (7.7) 2.4–7.1 4.7 (1.1)

21. March 27.0–55.0 44.3 (7.6) 2.2–7.0 4.7 (1.1)

14. November 27.0–54.0 43.8 (7.4) 2.5–7.2 4.8 (1.1)

doi:10.1371/journal.pone.0102168.t003

Table 4. Fit statistic for the used models to describe CS1, CS2 and CS3.

Cross section (CS) Model R2 AIC

1 flexellipse_1 0.8334 253.63

2 flexellipse_3 0.7427 237.32

3 flexdrope_2 0.8670 77.97

The model description for each cross section is based the highest R2 value and the lowest AIC value among the tested models (see appendix S1).
doi:10.1371/journal.pone.0102168.t004
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Estimation of 95% confidence intervals for the selection

parameters and the entire selection curve as well as for L05 to

L95 is carried out using a bootstrapping method implemented in

the SELNET software.

Simulation of size selection of krill
Based on the experimentally obtained size selection results for

the commercial trawl and using CS1 and CS2 optimally rotated

with optimal attack angle, we can explain the experimental results

Table 5. Estimated regression coefficients for CS1 and CS2.

CS1 CS2

Length vs. width Length vs. height Length vs. width Length vs. height

a 0.1031 0.1444 0.0995 0.1282

b 0.0033 0.7278 0.0833 0.2461

R2 0.8478 0.8220 0.8822 0.8419

doi:10.1371/journal.pone.0102168.t005

Figure 6. Diamond mesh design guide for Krill, based in combination of CS1 and CS2. The plot gives iso-L50 curves as a function of mesh
size (mm) and mesh opening angle (oa).
doi:10.1371/journal.pone.0102168.g006
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assuming contributions of different mesh oa values. This kind of

netting contact corresponds to what has been assumed when using

FISHSELECT to investigate size selection for different species of

fish. Using the observed oa range derived from underwater video

recordings during commercial fishing, we explored, by combining

the contribution of meshes with oa values of a slightly wider range

than observed, the possibility to obtain a size selection curve

similar to the experimentally obtained selectivity curve for the

commercial netting. For this, we used simulated data for the

specific commercial mesh size with oa values of 15, 20, 25, 30, 35,

40, 45 and 50u using the method described in Herrmann et al.

[13]. We divided the L05 to L95 values from the experimental

data into 5% steps and investigated whether it, by combining the

same oa-value as observed on underwater recordings, was possible

by simulation to obtain a similar size selection curve as

experimentally observed. Finally, we used the estimated distribu-

tion of oa values together with the FISHSELECT results for other

mesh sizes to predict the size selectivity of krill for trawls with these

different mesh sizes following the procedure described in [13].

Results

Mesh size and shape description
The shape of the 15.4 mm meshes appeared relative stable

during commercial fishing based on underwater observation

(Fig. 4, Table 2). Pictures from the underwater video were

captured and five individual meshes were identified and digitized

(Table 2). Table 2 also provides the model fit statistics for a

diamond mesh description of the commercial netting. Based on its

high R2 value, the meshes subsequently were described using the

diamond mesh description. The five meshes listed in Table 2

covered the oa range in the captured picture frames, and the most

open and closed meshes were selected for analysis. Table 2

indicates that 25–45u is the realistic oa range during commercial

Figure 7. Diamond mesh design guide for CS3. The plot gives iso-L50 curves as a function of mesh size (mm) and mesh opening angle (oa).
doi:10.1371/journal.pone.0102168.g007
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fishing for krill in the tapered part of the trawl design used in this

study.

Use of preserved krill for morphological measurements
No significant difference in morphology was found between

fresh krill collected from the trawl catch and those stored in borax-

buffered 4% formalin for 10 months (total body length:

F = 0.1145, P = 0.9; carapace width: F = 0.1266, P = 0.9). The

minor differences in these parameters (Table 3) likely are due to

slight differences in the locations at which measurements were

taken and in interpretation of the caliper readings.

Morphological measures and penetration models
The three measured cross sections had different cross section

shapes. CS1 was best described by a flexelipse1, CS2 was best

described by a flexelipse3, and CS3 was best described by a

flexdrope2 (Table 4, Appendix S1). These models were chosen for

use in the subsequent analyses because they displayed the highest

R2 value and the lowest AIC value. Figure 2 shows both the actual

and the modeled cross section shapes and that they were in

agreement. The model description of CS2 (lower part) did not

include parts of the legs that were present in the cutting zone

(Fig. 2). Krill legs are expected to have little effect on the optimal

orientation, as they should fold up against the ventral side of the

animal during mesh penetration with optimal orientation (head or

tail first). Table 5 shows the length-based regression parameters

for body length versus width and height in the cross sections.

Comparison of FISHSELECT-based and experimental
selectivity estimates

The design guide based on CS1_CS2 was used to predict the

basic selective properties for krill for all relevant sizes of diamond

mesh when the individuals meet the meshes at the optimal

orientation (Fig. 6). The design guide covers the mesh size range

from 5 to 40 mm and the opening angle range from 10 to 90u. The

size selectivity of krill depends greatly on the mesh opening angles.

This is especially true for meshes with oa values ranging from 10–

45u where meshes with larger oa values have less effect on the

predicted L50. The predicted L50 for a given mesh size is however

increasing towards a mesh opening angle of 90u (which equals a

square mesh). The design guide further indicates that even the

small meshes used in some survey trawls (,7 mm) can be selective

if the meshes are sufficiently open; if true, such surveys may

underestimate the density of juvenile krill.

Compared to the contact mode CS1_CS2, little escapement

occurs for the larger CS3 cross section, even for rather large

meshes (Fig. 7). When the meshes of the commercially used trawl

(15.4 mm) are open optimally, krill smaller than 18 mm length

can potentially escape (Fig. 7). The experimentally obtained results

show that L5 (5% retention likelihood) is above 26 mm (Table 6),

which means that this type of contact plays no role in defining the

size selection for krill in this type of gear. In reality, we retained

only 50% of the individuals with a body length of 33 mm (L50)

(Table 6). The experimental L50 of krill with the 15.4 mm

commercial trawl was estimated to be 32.72 mm with an SR

(L75–L25) value of 4.85 mm (Table 7). The selectivity curve

shown in Figure 8 demonstrates that size selectivity occurs for

individuals smaller than 40 mm in the commercial trawl. Based on

the fit statistics in Table 7 it is demonstrated that the applied

model (2) in Fig. 8 is able to describe the experimental data

sufficiently (p-value.0.05). The experimental selectivity results

also show that fewer than 5% of the krill smaller than 26 mm

length that enters the trawl will be retained (Table 6). Based on

this result, any contribution to the size selectivity of krill from

contact modes with L50 less than 26 mm will be very limited.

Furthermore, the majority of individuals seem to be able to meet

the meshes with a far more optimal body orientation (CS1_C2), at

least for their decisive (last) contact with the netting. This is

clarified in Figure 9, in which the potential selectivity based on

CS1_CS2 and CS3 is compared to the observed selective range in

the commercial netting (15.4 mm), the observed oa range during

commercial fishing, and the experimental L50 value. Selectivity

based on CS3 does not reach the experimentally observed selective

range; in contrast, the estimated selectivity based on CS1_CS2 has

reasonable overlap with both the expected experimental oa range

and the selective range for the 15.4 mm mesh size (Fig. 9).

Table 6. Values for the length of krill (L5-95) with different
fixed retention likelihoods based on selectivity data from
experimental fishing.

L Value (mm)

5 26.23 (23.80–28.54)

10 27.87 (25.80–29.83)

15 28.90 (27.04–30.59)

20 29.66 (27.92–31.24)

25 30.30 (28.69–31.79)

30 30.85 (29.33–32.27)

35 31.36 (29.84–32.74)

40 31.83 (30.27–33.19)

45 32.28 (30.71–33.68)

50 32.72 (31.09–34.12)

55 33.16 (31.53–34.58)

60 33.62 (31.92–35.10)

65 34.09 (32.32–35.64)

70 34.59 (32.73–36.28)

75 35.15 (33.20–36.93)

80 35.78 (33.66–37.78)

85 36.55 (34.13–38.75)

90 37.57 (34.96–40.03)

95 39.22 (36.19–42.21)

95% confidence limits in indicated in brackets.
doi:10.1371/journal.pone.0102168.t006

Table 7. Selectivity estimates for the commercial 15.4 mm
diamond mesh trawl including fit-statistics based on
experimental fishing.

L50 (mm) 32.72 (61.74)

SR (mm) 4.85 (62.10)

SP 0.55 (60.04)

p-value 0.26

Deviance 36.80

DF 32

Total number in test 393

Total number in control 416

95% confidence limits in indicated in brackets.
doi:10.1371/journal.pone.0102168.t007
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However, Figure 9 shows that results could be slightly biased

towards smaller oa values. Such difference may result from effect

of attack angle with netting or none optimal rotation for krill

during contact with the netting. This potential effect is investigated

in detail in the next section.

Effect of cross section orientation and attack angle
When examining the effect of cross section orientation and

attack angle, we used only CS1_CS2, as CS3 was found to have no

effect on the size selection of krill in the current trawl design.

Figure 10 shows the potential effect of orientation of CS1_CS2 in

the mesh for the relevant oa range rotated from a dorso-ventral

orientation (see CS1 and CS2 in Fig. 2) (i.e., 0 to 90u). For the

rotation range from 0 to 40u, the L50 value was nearly constant,

indicating little effect of orientation over this range; it was only

about 15–20% smaller than the maximal value obtained at 90u
(Fig. 10). This relatively limited effect of rotation is also visible in

Figure 5, but shows that individuals rotated 70–90u contrary to the

other orientations will be retained by the mesh. Overall, the effect

of cross section orientation in the mesh opening is relatively weak

for a large range of rotation angles. This is due to the cross section

shape of CS1_CS2, which is reasonably round shaped.

A more dramatic effect on the estimated L50 value was

predicted for low attack angles (0–30u) but little effect was detected

for large attack angles (Fig. 11). The very low tapering present in

the commercial trawls targeting krill results in attack angles ,5u. If

the angle of attack had an important effect on the size selection of

krill in the trawl designs tested, we would expect L50 values of

around 10 mm for the experimental results, which was not is the

case (Fig. 8).

The underwater recordings of escaping krill seem to indicate

that they escape at the optimal attack angle perpendicular to the

netting and head first (Fig. 12). This result demonstrates that the

optimal FISHSELECT mode (i.e., CS1_CS2 with optimal

orientation and attack angle) is a good approximation of the

escape process. We therefore based our predictions of size

selectivity of krill in trawls with other mesh sizes on this

approximation and used only the optimal orientation (CS1_CS2).

Simulation-based predictions and comparison to sea trail
results

In Figure 13, the experimentally obtained selectivity results are

indicated by the black curve, and the dashed lines show the 95%

confidence limits. The thick grey curve shows the optimal

FISHSELECT-based predictions for CS1_CS2 at optimal orien-

Figure 8. Top plot show paired gear fit of the experimental data. The population structure of the measured individuals are indicated (solid
line = 7 mm survey trawl (Macroplankton trawl); broken line 15.4 mm commercial trawl). The lower plot is the size selection curve including 95%
confidence limits.
doi:10.1371/journal.pone.0102168.g008
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tation and attack angle using the relative contributions of oa values

according to Table 8. The similarity of the two curves indicates

that it is possible to obtain a modeled size selection curve that is

very similar to the one obtained experimentally by using realistic

oa values. Table 8 also shows that this curve is reproduced nearly

exclusively by contributions of meshes with oa values of 25, 30,

and 35u, with contributions of 39.9, 45.33, and 14.74%,

respectively. These results also indicate that less open meshes are

more common than what would be expected based on the

underwater recordings. This might be due to the effect of non-

optimal rotation and/or the effect of attack angle. However, the

size selection for krill seems to be well approximated by the

FISHSELECT optimal mode, as was previously found to be the

case for a number of fish species. Thus, it makes sense to make

predictions based on the FISHSELECT optimal mode. This

premise is validated by the similarity between the experimental

and predicted selectivity curves shown in Figure 13. Figure 14 and

Table 9 shows the predictions of size selectivity for krill using the

oa distribution in Table 8 for the optimal orientation of CS1_CS2

for the range of mesh sizes from 6 to 28 mm. This figure shows the

size selectivity consequences of using different mesh sizes in the

krill trawl fishery, and it is valid under the assumption that trawls

with these mesh sizes have a similar distribution of oas during

fishing.

Discussion

We identified, measured, and parameterized the morphology

that determines size selectivity of krill in towed gears by applying

Figure 9. The experimentally obtained L50 value is indicated with the solid line (exp L50). L50 predictions for CS1_CS2 and for CS3 are
indicated for the commercial mesh size (15.4 mm). The realistic mesh opening angles during commercial fishing is indicated with the vertical gray
interval. The horizontal interval indicated the selective range for the 15.4 mm commercial mesh size.
doi:10.1371/journal.pone.0102168.g009

Figure 10. The effect of krill encountering meshes with
different orientation. The penetration model (CS1_CS2) is rotated,
at optimal attack angle perpendicular to the netting from 0–90u. 0u is a
dorso ventral orientation equal to normal swimming orientation.
doi:10.1371/journal.pone.0102168.g010

Figure 11. The effect of varying attack angles in the
penetration model for CS1-CS2 in the range of oa-values that
were found relevant in the 15.4 mm trawl.
doi:10.1371/journal.pone.0102168.g011
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the FISHSELECT method with the modifications necessary for

analyzing krill. Using the combination of this morphological

description, realistic oa values for the meshes based on underwater

observations made during commercial fishing operations, and

experimental selectivity data, we were able to predict the

selectivity for krill for different mesh sizes. This is the first time

this has been attempted for krill, and it will be a useful tool for

predicting the size selectivity of existing netting configurations and

optimizing the size selectivity of future trawls designs based on

management specifications in relation to the size selection. Such a

predictive tool is especially valuable in expanding fisheries, such as

the Antarctic trawl fishery for which few experimental data are

available.

We expected to find more random selectivity for krill than that

generally observed for fish in trawls due to the relatively high

towing speed used to fish for these small individuals. The tapering

in commercial krill trawls is very low compared to that of

traditional fish trawls, which results in a low attack angle relative to

the flow direction during towing. Theoretically, this could

dramatically reduce the estimated L50 value. We found that the

selectivity of krill in the commercial trawl can be explained by

assuming that individuals of all lengths meet the meshes in the

optimal contact mode (CS1_CS2) at a more or less optimal attack

angle. Underwater recordings made during commercial trawling

show that krill escape the trawl head first and relatively

perpendicular to the netting wall. This suggests that individual

krill are capable of orientating themselves in relation to the trawl

netting and meeting the meshes at an optimal orientation and

attack angle. An alternative explanation for the observed size

selectivity of krill is that selection is a more random process but the

size of the commercial trawl (about 200 m long) provides so many

contacts with the netting during passage to the codend that the

Figure 12. Underwater images captured during fishing indi-
cating escaping krill in the 15.4 mm mesh size. The escapees are
marked with red arrows in the lower photo and clearly demonstrate an
optimal orientation of the krill escaping. The photo is taken 10 meters
in front of the cod line during commercial fishing.
doi:10.1371/journal.pone.0102168.g012

Figure 13. Experimentally obtained data (black line) with 95%
confidence limits (broken line). Thick line (gray) is the predicted
selectivity curve based on morphological based measurements (FISH-
SELECT) and the distribution of opening angle (oa)-values given in
table 8.
doi:10.1371/journal.pone.0102168.g013

Table 8. Simulated distribution of opening angles (oa)
grouped in 5 cm. intervals that will result in identical
selectivity curves for krill between simulated and
experimental data.

oa (degree) Contribution (0–100%)

15 0.00

20 0.01

25 39.90

30 45.33

35 14.74

40 0.01

45 0.01

50 0.00

doi:10.1371/journal.pone.0102168.t008

Figure 14. Predicted selectivity of krill in different mesh sizes
based on the weight factors of the different opening angle
(oa)-values for optimal CS1_CS2. Predictions are made from 6 to
28 mm meshes in steps of 2 mm assuming a similar distribution of oa.
doi:10.1371/journal.pone.0102168.g014
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catch loses the signature of a random process, as most individuals

meet the mesh opening optimally at some point during transport

through the trawl. Further studies are needed to determine which

of these two processes is actually occurring.

We estimated an L50 of 32.72 mm, which indicates that there is

substantial size selectivity in the fisheries that use the 15.4 mm

mesh size. The SR value for krill is small compared to the

experimentally observed SR values for other crustaceans such as

Nephrops [14]. Possible explanations for the difference are that

krill do not have claws and that the length of Nephrops trawls

typically are much shorter than e.g. krill trawl which reduces the

number of netting contacts during the catching process. The

observed stability of the mesh opening (oa values) in the krill trawl

during fishing may also result in a lower SR value.

Because a relatively large proportion of the length classes of krill

(24–42 mm) potentially can escape through the commonly used

mesh size, it is important to estimate the survival of escapees in

such fishing gears. Siegel [5] estimated mortality rates of 5–25% of

krill individuals escaping through the trawl netting. This estimate

was based on the assumption that the mortality rate of the

individuals passing through the net meshes equals the rate of

lethally damaged individuals observed in the codend of the

commercial trawl. If this is correct, the total mortality caused by

the commercial fishery might be considerably higher than catch

values that are reported to the CCAMLR. However, several

substantially different trawl designs, using different mesh sizes, are

used in the commercial krill fishery. The potential mortality and

survival rate of escapees likely depend on the different gear designs

used. If the survival rate of escapees in krill trawls is low and differs

between trawl designs, it is important to apply gears that are the

most sustainable.
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12 25.72 3.81

14 29.93 4.34

16 33.91 4.83

18 37.93 5.24

20 41.55 5.77

22 45.68 6.35

24 49.49 7.22

26 53.44 7.56

28 57.20 7.97

doi:10.1371/journal.pone.0102168.t009
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