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Abstract

Background: Under-dimensioned hearts causing functional problems are associated with higher mortality rates in
intensive Atlantic salmon aquaculture. Previous studies have indicated that tetradecylthioacetic acid (TTA) induces
cardiac growth and also stimulates transcription of peroxisome proliferator activated receptors (PPAR) α and β in the
Atlantic salmon heart. Since cardiac and transcriptional responses to feed are of high interest in aquaculture, the
objective of this study was to characterize the transcriptional mechanisms induced by TTA in the heart of Atlantic
salmon.

Results: Atlantic salmon were kept at sea for 17 weeks. During the first 8 weeks the fish received a TTA supplemented
diet. Using microarrays, profound transcriptional effects were observed in the heart at the end of the experiment, 9
weeks after the feeding of TTA stopped. Approximately 90% of the significant genes were expressed higher in the TTA
group. Hypergeometric testing revealed the over-representation of 35 gene ontology terms in the TTA fed group. The
GO terms were generally categorized into cardiac performance, lipid catabolism, glycolysis and TCA cycle.

Conclusions: Our results indicate that TTA has profound effects on cardiac performance based on results from
microarray and qRT-PCR analysis. The gene expression profile favors a scenario of ”physiological”lright hypertrophy
recognized by increased oxidative fatty acid metabolism, glycolysis and TCA cycle activity as well as cardiac growth
and contractility in the heart ventricle. Increased cardiac efficiency may offer significant benefits in the demanding
Aquaculture situations.

Background
High levels of dietary lipids are used in commercial
Atlantic salmon diets to promote rapid growth and as
a inexpensive source of energy. These high lipid levels
may promote excess lipid deposition in the viscera and
the muscle, thereby reducing the market quality of the
fish. Thus, tetradecylthioacetic acid (TTA: CH3-(CH2)13-
S−CH2-COOH) has been tested for aquaculture nutri-
tion, initially to increase lipid catabolism and thereby
reducing lipid deposition [1]. However, beneficial effects
on cardiac growth and disease resistance have also been
addressed.
TTA is a modified fatty acid (FA) that possesses a

sulfur atom in the β position. Like a normal FA, TTA
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can be converted to co-enzyme A thioester, but further
catabolism by β-oxidation does not occur. This lack of
metabolism is likely to determine the biological effects
of TTA. Biological effects of TTA have been the focus
of extensive research in rodents and also in humans.
The most important findings from these experiments are
that TTA increases the mitochondrial and peroxisomal
β-oxidation and possesses hypolipidemic effects. In addi-
tion, TTA acts as an antioxidant in vivo and can modulate
the inflammatory response (reviewed in [2]). Cell cul-
ture experiments demonstrated that TTA can act as a
ligand for all Peroxisome proliferator activated receptors
(PPARs) [3,4], which are ligand-activated transcription
factors. Upon ligand activation PPARs heterodimerizes
with retinoic-x-acid receptor (RXR) and have been shown
to regulate the expression of genes involved in fatty acid
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metabolism, cell differentiation, development and inflam-
mation (reviewed in [5]). Arguably most of the biological
effects of TTA are mediated through activation of PPARs.
Studies addressing the biological effects of TTA in

Atlantic salmon have demonstrated that TTA increases
β-oxidation in the liver [1] and white muscle [6]. Fur-
thermore, TTA reduces the secretion of triacylglycerides
from Atlantic salmon hepatocytes in vitro [7] and has
been shown to increase the expression of genes asso-
ciated with fat metabolism in the liver and the heart
ventricle [1,8]. Previous results also suggested that TTA
stimulates the transcription of PPARα and β in the heart
[8,9], thus indicating that TTA affects the metabolism in
Atlantic salmon through activation of PPARs, similar to
the mechanism known from rodents. Interestingly, this
activation of PPARs may have been related to increased
survival after a natural outbreak of a heart related viral
disease in Atlantic salmon [8,9]. In mammals, cardiac
activation of PPARs has yielded substantial attention due
to the fact that PPARs have been proven to be major
regulators of cardiac metabolism [10-13]. In addition,
PPAR agonists have been reported to exert beneficial
effects by attenuating the pathogenesis of heart failure and
atherosclerosis [14,15].
Poor development of the outer muscle layer, atheroscle-

rosis and metabolic dysfunction have been related to
under-dimensioned hearts and reduced cardiac function
in Atlantic salmon aquaculture, consequently resulting in
increased mortality [16]. Therefore, methods to improve
cardiac metabolism and performance in fish are needed;
something which has been sparsely studied. It appears
that, similar to themammalian heart, the oxidative cardiac
metabolism in fish depends on the metabolism of fatty
acids and glucose [17].
This study aims to characterize the cardiac transcrip-

tional response of Atlantic salmon to a TTA supplemented
diet. A feeding trial was conducted in sea, feeding a

control and TTA supplemented diet during the first 8
weeks and only control diet for the subsequent 9 weeks of
the experiment. Fish were sampled both at the end of the
TTA feeding period (8.weeks) and at the end of the exper-
iment (17.weeks). Our results show that administration of
TTA to Atlantic salmon resulted in a marked change of
cardiac gene expression. The expression profile suggests
that TTA induces cardiac fatty acid oxidation, glycolysis,
TCA cycle and contractility as well as cardiac growth.

Results
Production data
Atlantic salmon that were fed with 0.25% TTA had sig-
nificantly lower fat content in the muscle at the 8.weeks
sampling point, and showed a tendency for increased
mean relative heart weight (Table 1). No significant effect
of TTA on fish weight was detected. During the experi-
ment none of the dietary groups showed higher mortality
than the control group. In the heart ventricles, 120.2
μgTTA/gTissue was detected at the 8.weeks sampling
point in the TTA group, while 1.2 μgTTA/gTissue was
detected in the control group. Based on the TTA mea-
surements of a group fed a higher (0.5% w/w) TTA diet
from the same trial, we can assume that the TTA levels in
the heart ventricles at the 17.weeks sampling point were
no different to the control group (see Additional file 1:
Table S1).

Microarray analysis
RNA cardiac samples from six individual fish from each
dietary group and sampling point were used in the
microarray analysis, utilizing the Atlantic salmon SIQ2
microarray [18] in a one-color setup, resulting in a total
of 24 arrays. After normalization and filtering, 13166
probes (63%) were classified as present. To obtain a global
overview of the general structure of the dataset we applied
correspondence analysis (CA) as an explorative technique

Table 1 Effect of TTA on Atlantic salmon production parameters
Start sampling 8.weeks 17.weeks

Control 0.25% TTA Control 0.25% TTA

Weight[g] 102± 5 166±1 165±1 438±4 440±2

CF1 1.2 ± 0.1 1.1±0.1 1.1± 0.1 1.2± 0.1 1.2± 0.1

LI2 0.82±0.05 1.00±0.02 1.07±0.07 1.43±0.04 1.41± 0.04

CSI3 0.074±0.002 0.092±0.001 0.094±0.001 0.101±0.002 0.103± 0.002

Mortality[%] 0.74± 0.18 0.41± 0.27 2 ± 0.23 2 ± 0.21

Muscle fat content4[%] 4.2a±0.1 3.9b±0.1 6.5±0.4 6.8±0.1

Values within the same row with different subscripts are significantly different (p ≤ 0.05, t-test). Mean ± SEM, the statistical unit is the mean of the net pen (n = 3). 19
fish were used to calculate the net pen mean.
1Condition factor (CF) = 1000×weight[g]

length[g]3 .
2Liver index (LI) = liver−weight[g]

weight[g] × 100.
3Cardio somatic index (CSI) = heart−weight[g]

weight[g] × 100.
4Muscle samples (NQC: Norwegian quality cut) from 10 fish/cage were pooled to analyse the muscle fat content.
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[19]. The first 2 components of the CA are displayed,
together explaining 67% of the total inertia of the different
samples (Figure 1). The analysis shows a clear distinction
between the two sampling points at 8.weeks and 17.weeks.
It further shows a relatively dense cluster at the 8.weeks
point with minor separation between samples from the
TTA and control group. Even though it was impossible to
draw a straight line to separate between the TTA and con-
trol samples at the 17.weeks sampling point, we observed
a clear tendency of separation.
To identify differentially expressed (DE) probes in the

data set we used moderated t-statistics [20], comparing
samples from TTA to control fed Atlantic salmon for each
sampling point.

Sampling point: 8.weeks, end of TTA feeding
At the 8.weeks sampling point, five genes were found to be
DE between the TTA and the control fed group (Figure 2).
The genes were: Ephrin-b2, arf gtpase-activating pro-
tein (git2), f-box only protein 11 (fbx11), angiopoietin-
related protein 4 (ANGPTL4) and sodium- and chloride-
dependent creatine transporter 1 (sc6a8). Ephrin-b2 was
the only gene found to be down-regulated in the TTA fed
group.
Ephrin-b2 (Efnb2) in mammals has been reported to be

highly expressed in the heart and serves also as a marker
for angiogenesis [21]. The protein GIT-2 participates in
pleiotropic cellular processes like cell migration and T-
cell activation; however, a function affecting the structure
of the cytoskeleton [22] may be relevant in our study.
Cardiomyocytes rely solely on the creatine transporter
sc6a8 for the uptake of creatine from the plasma. Over-
expression of the creatinfabe transporter in mice has been
reported to correlate with the myocardial creatine con-
tent, but also to be associated with cardiac hypertrophy
[23]. Angiopoietin-related protein 4 possesses a role in
regulating angiogenesis and is also known as a target gene
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Figure 1 Correspondence Analysis (CA). CA of arrays from the two
dietary groups for both sampling points (8.weeks and 17.weeks), n = 6.
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Figure 2 Heatmaps of genes DE at 8.weeks. Columns display the
mean log2 signal of the biological replicates (n = 6), rows display the
genes (probe sets) showing DE. Rows were scaled and ordered by
hierarchical clustering using euclidean distances (indicated by the
dendrogram).

for PPARs and acts as an important stimulator of lipid
metabolism [24].

Sampling point: 17.weeks, 9 weeks post TTA feeding
1198 probes (930 genes) were found to be DE between
the TTA and the control fed group at the 17.weeks sam-
pling point. In order to facilitate a functional interpre-
tation of the vast number of DE genes, we tested them
for enrichment (over-representation) of GO terms from
the category “biological process” [25], using conditional
hypergeometric testing [26]. To ensure that one gene was
represented by a maximum of one probe [26], probes
matching the same gene were collapsed prior to hyper-
geometric testing. This step reduced the total number of
probes in the data set from 11143 to 7659 probes and
the number of DE probes from 1198 to 930 probes (930
genes). From these 930 genes, 90% showed higher gene
expression in the samples from TTA fed fish.
Conditional hypergeometric testing revealed signifi-

cant over-representation of 36 GO terms. To simplify
interpretation, significant GO terms were grouped into
five categories according to their function in the heart
(Table2). The grouping was further supported by a strong
gene overlap between the different GO terms within the
categories (Additional file 2: Figure S1 and Additional
file 3: Table S2 ). Overall, the results from the enrichment
analysis suggests an increased capacity of heart ventricles
from TTA fed Atlantic salmon to catabolize lipids and
glycogen. Further, an increased capacity for cardiac con-
tractility and cardiac tissue morphogenesis is indicated.

Heart performance
The group fed TTA showed an up-regulation in the
expression of genes encoding contractile proteins like
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Table 2 Gene Ontology enrichment analysis for sampling point 17.weeks

GOID p-value Count1 Size2 Gene ontology term

Fat metabolism

GO:0046395 5.33e-04 24 96 carboxylic acid catabolic process

GO:0034440 5.69e-03 13 49 lipid oxidation

GO:0044242 8.41e-03 19 86 cellular lipid catabolic process

Heart performance

GO:0006936 1.56e-03 37 182 muscle contraction

GO:0008015 5.56e-03 38 202 blood circulation

GO:0003015 6.45e-03 22 102 heart process

GO:0008016 7.18e-03 17 73 regulation of heart contraction

GO:0055008 8.94e-03 12 46 cardiac muscle tissue morphogenesis

Citrate cycle (TCA)

GO:0009109 1.87e-07 15 28 co-enzyme catabolic process

GO:0006084 2.12e-07 18 39 acetyl-CoA metabolic process

GO:0006099 2.32e-07 14 25 tricarboxylic acid cycle

GO:0006091 9.39e-05 46 214 generation of precursor metabolites and energy

GO:0045333 3.49e-04 23 88 cellular respiration

GO:0044248 1.34e-03 36 180 cellular catabolic process

carbohydrate metabolism

GO:0006112 6.21e-04 16 54 energy reserve metabolic process

GO:0016052 1.17e-03 19 73 carbohydrate catabolic process

GO:0006073 1.27e-03 14 47 cellular glucan metabolic process

GO:0046164 1.77e-03 16 59 alcohol catabolic process

GO:0019320 2.97e-03 14 51 hexose catabolic process

GO:0006096 3.26e-03 12 41 glycolysis

Other

GO:0007338 1.27e-03 14 47 single fertilization

GO:0001824 1.59e-03 12 38 blastocyst development

GO:0051246 2.00e-03 86 514 regulation of protein metabolic process

GO:0010171 2.83e-03 20 84 body morphogenesis

GO:0055114 3.60e-03 40 210 oxidation reduction

GO:0007050 3.67e-03 19 80 cell cycle arrest

GO:0043009 5.00e-03 48 267 chordate embryonic development

GO:0001822 5.64e-03 19 83 kidney development

GO:0040010 6.35e-03 33 171 positive regulation of growth rate

GO:0009790 7.54e-03 124 815 embryo development

GO:0001655 8.41e-03 19 86 urogenital system development

GO:0070585 8.44e-03 10 35 protein localization in mitochondrion

GO:0044265 8.45e-03 66 399 cellular macromolecule catabolic process

GO:0007018 9.35e-03 16 69 microtubule-based movement

GO:0006839 9.35e-03 16 69 mitochondrial transport

GO:0006402 9.66e-03 13 52 mRNA catabolic process

1Number of times the GO term is represented in the list of DE genes, only GO terms having ≥ 10 genes were considered.
2Number of times the GO term is represented in the filtered list of genes on the array.
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myosin heavy chain 6 (MYH6), myosin light chain
(MYL9), cardiac myosin binding protein (MYBPC3),
cardiac troponin (TNNT2), myomesin-1 (Myom1) and
actin (ACTA1, ACTA2).
Moreover, the same group showed increased expres-

sion of the cardiac homeodomain factor Nkx2.5 and the
iroquois-related homeobox factors 3 and 5 (irx3, irx5).
Nkx2.5 and the iroquois transcription factors have been
reported to control cardiac morphogenesis and growth
[27,28]. Furthermore, we observed increased expression
of FK506 binding protein 1A and 1B (FKBP1A, FKBP1B)
and Na+/K+-transporting ATPase subunit α3 (ATP2A2),
encoding an ion-pump responsible for establishing and
maintaining the electrochemical gradients at the plasma
membrane of the cardiomyocyte. Decreased amounts of
this transporter were found in biopsies from humans suf-
fering heart failure [29]. FKBP1A and B are known to
interact with intracellular calcium-release channels. In
cardiomyocytes FKBP1B is a binding partner for themajor
Ca2+ release channel ryanodine receptor 2 (RyR2). RyR2
is required for the Ca2+-induced Ca2+ release from the
sacroplasmatic reticulum (SR) causing activation of the
contractile proteins. Binding of FKBP1B to RyR2 results
in channel closure. Mice deficient for FKBP1B showed
no divergence in the normal cardiac phenotype under
normal conditions but showed exercise-induced arrhyth-
mias [30]. In relation to Ca2+ signaling, we also found
the Na+/Ca2+ exchanger SLC8A1 to be up-regulated.
We also found an increased expression of the SR Ca2+
ATPase 2 (ATP2A2 also known as SERCA2), encoding an
SR calcium pump that is a key component of the cardiac
excitation-contraction mechanism [31].
TheKv channel interacting protein 1 (Kcnip1) was found

to be down-regulated. The protein Kcnip1 is an integral
part of the multimeric Kv4 channel complex, and impor-
tant for modulating the K-flux across this channel by
causing a shortening of the cardiac action potential [32].
Prolongation of the cardiac action potential on the other
hand, potentially caused by decreased Kcnip1 expression,
is associated to cardiac hypertrophy [33].
In summary, the results suggest an increased car-

diac hypertrophy together with increased potential for
cardiac contractility, as indicated by the higher transcrip-
tion of the various ion channels/pumps and contractile
proteins.

Fat metabolism
Nearly all of the genes in this group were up-regulated
(Figure 3). We found up-regulation of the mitochondrial
trifunctional protein HADHA, the mitochondrial fatty
acid transporter carnitine palmitoyltransferase (Cpt1a),
lipoprotein lipase (Lpl), themitochondrial acyl-CoA dehy-
drogenases (ACADS, ACADV and ACADSB) and of per-
oxisomal multi-functional enzyme type 2 (Hsd17b4). We

also observed an up-regulation of malonyl-CoA decar-
boxylase (MLYCD). Malonyl-CoA is a potent inhibitor of
CPT1 and thus crucial in regulating the transport of fatty
acids into the mitochondria for catabolism. Malonyl-CoA
decarboxylase has been reported to function as a positive
regulator of cardiac fatty acid oxidation by decreasing the
levels of the CPT1 inhibitor malonyl-CoA [34]. Thus, the
results indicate increased fatty acid oxidation capacity in
cardiac ventricles from TTA fed Atlantic salmon.

Glycolysis
The genes of the six GO terms that were grouped
together contained almost entirely genes encoding
enzymes or subunits participating in glycolysis. We
found increased expression of hexokinase 1 (HXK1),
the phospho-fructokinases aldolase A (ALDOA) and 6-
phosphofructokinase type C (K6PP), glycerol-3-phosphate
dehydrogenase (GPDA/GAPDH) and the pyruvate dehy-
drogenases DLAT and OPDX. In accordance, we also
observed an increased expression ofMLX-interacting pro-
tein (MLXIP), which has been suggested to be an essen-
tial regulator of cellular glycolysis [35]. All of the genes
showed increased transcription, therefore clearly indi-
cating increased glycolysis in the hearts from TTA fed
Atlantic salmon.

Tricarboxylic acid (TCA) cycle
As in the previously described categories, almost all of
the genes in this category showed an increased expres-
sion. The proteins encoded by nearly all of the genes in
this category are part of the TCA-cycle. For a graphi-
cal representation of the genes within the TCA cycle, see
Additional file 4: Figure S2.

qRT-PCR
To validate themicroarray results, six genes were analyzed
by qRT-PCR between the TTA and control fed group for
the 8.weeks and 17.weeks samples, using the same RNA
samples that were used in the microarray experiment.
The results showed a significant correlation between the
logFCs obtained by qRT-PCR and those obtained by
microarray (Pearson correlation r = 0.8314; p = 0.0008;
Figure 4).
In addition, we measured the gene expression of

the three PPAR subtypes α, β and γ in control and
TTA fed Atlantic salmon in the four different tissues:
Heart, muscle, liver and gut (pyloric caeca) from both
sampling points (Figure 5A). Analyzing the expression
levels using analysis of variance (ANOVA) showed that
only the PPARα expression in the heart was signifi-
cantly increased in the TTA group. The gene expres-
sion levels of PPARγ in heart and muscle were too
low to allow reliable quantification. Since the microar-
ray data revealed quite clearly that TTA affected genes



Grammes et al. BMCGenomics 2012, 13:180 Page 6 of 13
http://www.biomedcentral.com/1471-2164/13/180

H
ea

rt
 p

er
fo

rm
an

ce

TPM1 | CK884746
ERAP2 | S48416232
KCIP1 | S32006209
PCSK6 | TC104107

GRAN | GRASP209730287
CNN3 | GRASP223647777
MYL9 | GRASP209731665

GBB1 | TC79716
KCRS | S30290391

HBEGF | S31993707
RYR3 | DW182849

E41L3 | S30275464
MYOM1 | DW182251
CO4A1 | CA039113

NEP | S30275401
LIPL | DW549672

AT1A3 | S48408760
TRI54 | STIR32675

FKB1A | GRASP209154197
NAC1 | S15341030
SMTN | BX885768

PTCD2 | S30242513
MYH6 | DW180424
ACTS | EL697552

ACTN2 | DW181231
OBSCN | S48411021
TGBR3 | S18889649
HAND2 | S18533458

PAR1 | S48405112
RND2 | S30281210
DESM | S19097763

IRX5 | S35595089
ACE | S18866493

SNTB2 | S30293083
RHOA | GRASP209737135

TNNT2 | S19094939
TRI55 | TC110711

ACVR1 | S35674537
MYLK3 | TC95842
AT2A2 | TC111867
VIPR | S21940193

MYPC3 | CK891980
FKB1B | S31977453

DLL4 | EG845938
BTC | S30290783

ACTA | S35549252
IRX3 | S35697349

CASQ2 | CO469637
ALDOA | S23871839
RSPRY | TC104069
NKX25 | STIR36093
RCAN1 | S15266866

DTNA | TC106263
SMTL2 | S35523686
KCMB2 | CK898372

PHKG1 | S31980044

8w
−

C
on

tr
ol

8w
−

T
TA

17
w

−
C

on
tr

ol
17

w
−

T
TA

Fa
t m

et
ab

ol
is

m

AAKB1 | S30240858
NEUR3 | S30293578

CP27A | DY706488
BLMH | KSS3445
LIPL | DW549672

SPEB | BX314283
SARDH | TC95588

DCMC | S30244033
PON2 | S35512344
GCST | STIR32259

RDHE2 | S35549699
DDAH1 | DY738955
MDHM | EL698656

ACADS | S31978689
ACADV | TC107356

HEXA | GRASP209155853
PCCB | S30280966

AAKG2 | S35546780
PADI2 | S35559283
ODBB | S35563200
ECHA | DW567199

CPT1A | S31823509
ACAD8 | S35548423

AATM | EG881932
ACDSB | S30275304

PEX13 | GRASP223649203
ARLY | S35535873

C27C1 | S35700248
ECH1 | S35697554

DHB4 | TC90286
DHE3 | KSS5002

SGPL1 | DW340030
HAOX1 | GRASP209155059

8w
−

C
on

tr
ol

8w
−

T
TA

17
w

−
C

on
tr

ol
17

w
−

T
TA

G
ly

co
lo

ys
is

MLXIP | CA345759
FUT8 | S30242317

HEXA | GRASP209155853
GDE | DY722999

ENOB | KSSb2735
K6PP | S31983934
KPBB | DN163832
G6PI | S35661948
GYS1 | TC105697

ALDOA | S23871839
GNAS | S43896554

ARI1 | S31976062
MC5R | S40831596
MDHM | EL698656

ODPX | S35455079
AKT3 | S15296937

AAKG2 | S35546780
PGM1 | S30269916

PHKG1 | S31980044
PPR3C | S35605727

HXK1 | S32008992
PP1GB | KSS3262

AT132 | S30293967
TPIS | EL697644

GPDA | S30283962
ODP2 | DY712798

RND2 | S30281210
G6PC3 | S34423425

KPYK | S35529394
BGLR | S18840479
FNTA | S30295579

8w
−

C
on

tr
ol

8w
−

T
TA

17
w

−
C

on
tr

ol
17

w
−

T
TA

T
C

A

G6PC3 | S34423425
DHE3 | KSS5002

NU2M | CV428775
COX3 | DW591043
KAT5 | S35663692
ACE | S18866493
NU5M | TC77828

ADT2 | CK884016
SCO2 | TC99896
BLMH | KSS3445

MSH2 | S31964465
PCSK6 | TC104107
PDK1 | S32001896

GDE | DY722999
AT2A2 | TC111867
AKT3 | S15296937
PAOX | BX296647

DPS1 | STIR38930
IDH3B | S48406741

PHKG1 | S31980044
ACAD8 | S35548423
MPPB | S31979703

IDHC | KSS3409
AT132 | S30293967
ACON | S30264410
PGM1 | S30269916
DHSB | S18099777
KPBB | DN163832

ECH1 | S35697554
MPCP | DW182618

BECN1 | GRASP209149557
G6PI | S35661948

SUCB1 | DW590849
ARLY | S35535873
GYS1 | TC105697

GNAS | S43896554
ARI1 | S31976062

MC5R | S40831596
THTM | S30282678
AT1A3 | S48408760
MPPA | S30285170
XYLB | S15331388
SARDH | TC95588

ODO2 | S35666787
SPEB | BX314283

ODPX | S35455079
ACADV | TC107356
MYH6 | DW180424
NNTM | DW561275

IDHP | CV428794
ATPG | CT564516

PP1GB | KSS3262
ODBB | S35563200

QCR1 | KSS4035
PADI2 | S35559283

NDUS1 | S30263927
IDH3G | S48407229

AATM | EG881932
PPR3C | S35605727

ATPA | EL698197
DDAH1 | DY738955
MDHM | EL698656

DHSDB | S30263228
FTHFD | S32001659

CYC | STIR43591
PON2 | S35512344

IDH3A | KSS4102
CISY | S48406123
ODP2 | DY712798

GCST | STIR32259
GMPR2 | EG769655
DCMC | S30244033
OXA1L | S30279791
QCR2 | S30293113

8w
−

C
on

tr
ol

8w
−

T
TA

17
w

−
C

on
tr

ol
17

w
−

T
TA−

2.0

−
1.0

0.0

0.5

1.0

1.5

2.0

Figure 3 Heatmaps of genes DE at 17.weeks. Unique genes from the different categories (Table 2). Columns display the mean log2 signal of the
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are involved in regulating the heart performance, we
used qRT-PCR to measure the expression of the car-
diac transcription factors GATA4, Mef2C and osteonectin
(Osx). For all three transcription factors we observed a
trend of higher mean transcription in the TTA group
(Figure 5B), however, only Mef2C showed statistical
significance.
TTA has previously been reported to stimulate mito-

chondrial biogenesis in mammals [36]. In this study TTA
had no effect on mitochondrial biogenesis as measured by
the ratio of mt/nDNA (Figure 6). In the liver we found
a significant interaction between dietary treatment and
time for mitochondrial biogenesis.

Discussion
In the present study we investigated the response of
Atlantic salmon to TTA during the seawater phase. The
results from our study show that feeding TTA had pro-
found effects on the cardiac gene expression at sam-
pling point 17.weeks, 9 weeks after TTA feeding ended.
The level of TTA applied in the study was, with 0.25%,
lower than previous studies that have been conducted in
Atlantic salmon (compare [1,6,37]). The mortality rates
previously observed in Atlantic salmon in response to
high TTA levels was not observed in this study.
Gene set over-representation of the transcription profile

at 17.weeks shows an increased capacity of fat catabolism,
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Figure 4 qRT-PCR verification. Comparison of the log2FC data for
the two sampling points between Microarray and qRT-PCR measured
samples. qRT-PCR data was normalized to the expression of the
housekeeping gene EF1α. Pearson correlation; r = 0.8314, p = 0.0008.
The dotted line indicates the linear regression line.

glycolysis and activity of the TCA cycle as well as cardiac
contractility and cardiac hypertrophy. Overall, the results
suggest a scenario where cardiac ventricles of TTA pre-fed
fish are able to generate more energy via a TCA-cycle that
is fueled by metabolites from fat catabolism and glycoly-
sis. TTA functions as a ligand for all three PPAR subtypes
[3,4], which have crucial functions in the transcriptional
regulation of cardiac metabolism. In mice the transcrip-
tional effects of TTA in the heart have been shown to
be mediated almost exclusively via PPARα [38]. Gain-
of-function and loss-of-function mutations have shown
that PPARα is a crucial transcription factor in the cardiac
metabolism, regulating mainly cardiac fatty acid uptake
and oxidation [10,11]. Furthermore, activation of PPARα

has been demonstrated to shift cardiac energy utiliza-
tion away from glucose and towards fatty acid oxidation,
actually mimicking the cardiac phenotype observed in
diabetic hearts [11]. Interestingly the cardiac phenotype
of PPARβ differs from that of PPARα, indicating that
both transcription factors regulate, at least partly, differ-
ent subsets of genes in the heart. PPARβ loss-of-function
hearts suffer from myocardial lipid accumulation and
cardiomyopathy [13]. Gain-of-function mutations on the
other hand clearly show that PPARβ positively regulates
cardiac glucose utilization [12], and also stimulates car-
diac growth [39]. Thus, the significantly higher cardiac
transcription of PPARα and the elevated mean transcrip-
tion of PPARβ/ in concert with the activation of their
down-stream pathways, fat catabolism and the glycolysis
pathway suggest that cardiac effects of TTA in Atlantic
salmon are mediated by both PPARα and PPARβ . Intrigu-
ingly, over-expression of a constitutively active form of
PPARβ in murine skeletal muscle has been reported to

mimic training-based muscle adaptation [40]. Hence, it
has been speculated, in accordance with the results from
PPARβ over-expression in mice [12], that PPARβ causes
“physiological” cardiac hypertrophy [39].
Between the 8.weeks and 17.weeks sampling points,

the hearts grew by a considerable portion in abso-
lute and relative terms. The gene expression pro-
file in hearts of TTA fed fish at 17.weeks suggests
that the cardiac growth of TTA fed fish is shifted
towards “physiological” hypertrophy, which may translate
to an increased cardiac output. This notion is sup-
ported by the expression profile found for the cate-
gory “cardiac performance” at 17.weeks, unanimously
pointing to an increased cardiac contractility and also
showing up-regulation of crucial cardiac transcription
factors. In particular the higher transcription of the car-
diac transcription factors Nkx2.5 and Mef2C can be
regarded as markers for cardiac hypertrophy/growth.
It has been demonstrated in mice that over-expression
of Mef2C is sufficient to induce cardiac hypertro-
phy [41]. Furthermore, both Mef2C and Nkx2.5 have
been shown, in vitro, to be regulated by PPARα in
cardiomyocytes [42].
It should also be noted that although we did not find sig-

nificant differences in relative heart weight in this study,
in other studies we found that TTA significantly increases
heart size in Atlantic salmon [8,9], and that the effect
seems to be correlated to the dose of TTA (Rørvik, unpub-
lished data). Thus, it is tempting to speculate that the
increase in relative heart weight may be related to the
cardiac transcriptional changes induced by TTA. A “car-
diac exercise” stimulating effect is of high relevance for
salmonid aquaculture. Atlantic salmon, having a circula-
tory system that is naturally adapted to long migration
routes and high activity, show alteration in cardiac mor-
phology and a reduced relative heart weight in captivity
[43]. In addition, circulatory failure has been identified as
an important cause of mortality in salmon farming [44].
Thus, using TTA may be one way to support the cardiac
performance of fish in captivity.
The highest tissue concentrations of TTA in Atlantic

salmon, as well as in mice, can be found in the heart
[1,45]. In accordance, the heart was also the tissue where
the strongest transcriptional response of PPARα was
detected. The main transcriptional effects were found
nine weeks after the TTA feeding stopped and where
our data suggested that the cardiac tissue levels of TTA
were neglectable. However, we have no information about
the course of gene expression between both sampling
points, thus it might very well be that the effects of
sampling at 17.weeks are the remains of earlier, stronger
transcriptional effects. It is remarkable that a similar,
delayed response in expression of lipidmetabolism related
genes to TTA has been observed in our previous Atlantic
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salmon studies [8,9], indicating a common underlying
mechanism. It is possible that the delay in transcrip-
tional response is caused by a common, yet unknown,
mechanism.

Conclusions
In conclusion, based on results from microarray analysis,
this study demonstrates that TTA increases cardiac fatty
acid oxidation and glycolysis as well as contractility and
cardiac hypertrophy in Atlantic salmon. The gene expres-
sion profiles further favor a scenario of “physiological”
hypertrophy in response to TTA. This increased cardiac
efficiency may offer significant benefits in situations with
increased oxygen demand.

Methods
Feeding trial
The experiment was conducted at Nofima Marin sea-
water research station, Averøy, western Norway. Atlantic
salmon used in this experiment were hatched at Nofima
Marin research station (Sunndaløra, Norway) one year
earlier (S1/1+ Salmon). The experiment started with the
seawater transfer of the fish on the 15th of May 2007 and
lasted until the 27th of September 2007. A randomized
block design with triplicate seawater net-pens and 400
fish per pen (pen = 125 m3) was used for the experiment.
Control and TTA diets (0.25% (w/w) TTA (Thia Medica,
Norway)) were produced by Biomar (Biomar AS, Myre,
Norway). Both TTA and control diets were fed to the fish
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until the 16th of July 2007, from this point until the end
of the experiment only the control diet was fed to the fish.
Low levels of TTA (0.25%) and a short feeding period were
chosen in order to avoid negative TTA effects (mortal-
ity, altered kidney morphology [1,46]). TTA was fed for
the first eight weeks after sea transfer, a period where the
physiology of the salmon alters due to changing from a
fresh to a saltwater environment; and we speculated that
an increased capacity for energy utilization may be bene-
ficial. Fish were sampled from the cages to represent the
average fish weight for the cage. Sampling was done on
the following dates: 16-18th of July 2007 (sampling point:
8.weeks, end of the TTA feeding period) and 25-27th of
September 2007 (sampling point: 17.weeks). For each sam-
pling point, fish were sampled for: heart ventricle, liver,
muscle and gut (pyloric caeca). The tissue samples were
snap frozen in liquid nitrogen and stored at -80°C.

Fat analysis
Fat content in the muscle (Norwegian quality cut–NQC,
Norwegian standard procedure - NS 9401 1994) was mea-
sured in pooled samples (10 fish) from each net pen as
described in [47]. TTA was measured within the total car-
diac lipids. For the analysis 10 ventricles from Atlantic
salmon out of the same net pen were pooled. Total heart
lipids were extracted with chloroform-methanol [48] and

fatty acid methyl esters (FAME) were obtained by heat-
ing of lipids with methanol at 90°C/1 hour, where H2SO4
was used as a catalyst [49]. After extraction into an
organic solvent, the FAME were analyzed by gas-liquid
chromatography. A gas chromatograph GC 8000 TOP
(Finnigan, USA) was equipped with a programmed tem-
perature vaporization (PTV) injector, flame-ionization
detector (FID), AS 800 autosampler and a fused silica
capillary column coated with dimethylpolysiloxane sta-
tionary phase, DB1-ms (J &W Scientific, USA). Hydrogen
was used as a carrier gas. Column temperature was pro-
grammed from 110 to 310°C with a gradient 2.5°C/min.
The GC signal was acquired using Chromeleon soft-
ware (Dionex, USA). Peaks were identified by means of
known FA standards (Larodan Fine Chemicals, Sweden
and Sigma-Aldrich, USA) and by means of mass spectra,
obtained by GC/MS analysis (GCQ, Finnigan, USA) on
the same column. An internal standard (C21:0) was used
for quantitation after calibration with known mixtures of
FA standards.

RNA extraction
Two individual samples from each one of the 3 net-pens
were samples for heart ventricle, liver, muscle and gut. The
samples were randomly chosen (n = 6 per dietary group
and sampling point) and homogenized using a rotor tis-
sue lyser (Precellys 24, Bertin technologies, France). Total
RNA was extracted and purified using column purifica-
tion (96 universal Tissue Kit, Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. Traces of
genomic DNA in the samples were eliminated by on-
column-DNase digestion (Qiagen). RNA concentrations
were measured for all samples using a NanoDrop 1000
Spectrophotometer (Thermo Fisher Scientific, Wilming-
ton, USA). RNA quality for samples later used in the
microarray was determined using a Agilent 2100 Bio-
analyzer (RNA 6000 NanoLabChip, Agilent, Waldborn,
Germany).

Microarray hybridization
A customized oligo (60-mer) Atlantic salmon microarray
in the 4x44K format (Agilent, [18]) was used to detect
differential gene expression between samples from the
heart ventricles of control and 0.25% TTA fed fish for
the 8.weeks and 17.weeks sampling points. The array
contained 21012 different probes spotted in duplicates.
RNA samples from individual fish were hybridized to
the microarray. 24 individual microarrays were performed
using 12 fish (6 control and 6 TTA fish) at the 8 week
sampling point, and similarly at the 17 week sampling
point. All RNA samples used in the hybridization had RIN
values ranging from 9.5 to 10. 500ng RNA were amplified
and labeled with Cy3 using the Quick Amp Labeling Kit
(One Color-Agilent). After purification the cRNA was
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quantified using NanoDrop. Subsequently 1.65μg Cy-dye-
labeled cRNA was fragmented (mean size, approximately
50-100 nucleotides) with fragmentation buffer (Agilent
Technologies) at 60°C for 30 min; cRNA was subsequently
hybridized to the microarray at 65°C for 17 h. All steps
were conducted according to the Agilent protocol (One-
Color Quick Amp Labeling, Version 5.7). The microarray
chips were scanned using a Agilent Microarray Scanner
(G2565CA) and analysis of the microarray images was
done in Agilent’s Feature Extraction Software (Version
10.5.1.1) using the one-color (GE1 105 Dec08) protocol.

Microarray analysis
Normalization and analysis of the data was performed in
R/Bioconductor [50,51] using the “limma” package [20].
The background corrected fluorescence signals (gPro-
cessedSignal) were obtained from Feature Extraction
(Agilent). Spots were filtered according to the follow-
ing criteria provided by Feature Extraction: gIsFound,
gIsPosAndSignif and gIsWellAboveBG (a description of
the parameters can be found in the Feature Extrac-
tion Software Reference Guide). The mean signal of the
duplicated probes was calculated and all control spots
together with probe sets showing more than three miss-
ing values were removed from the dataset. The data
was subsequently normalized using quantile normaliza-
tion in order to adjust the scale of intensities across arrays
[52]. After normalization the signals were log2 trans-
formed. The normalized/filtered dataset then contained
13166 probe sets (63% of the total). The raw and normal-
ized data is publicly available at NCBI’s GEO repository
(http://www.ncbi.nlm.nih.gov/geo/, AccNr: GSE25305).

Differential expression of probe sets was assessed by
fitting a linear model, including the effects of feeding
(2 levels: Control and TTA) and the effects of sam-
pling point (2 levels: 8.weeks and 17.weeks) and their
interaction. The specific comparisons: TTA vs. Con-
trol at sampling point 8.weeks and TTA vs. Control at
sampling point 17.weeks were made by extracting the
appropriate contrasts from the linear model. For each
contrast moderated t-statistics were calculated using an
empirical Bayes method [53]. Probes without annota-
tion were removed from the dataset before controlling
the false discovery rate [54] simultaneously across probe
sets and contrasts (method: “ global” in the limma func-
tion “decideTests”). Probe sets with a q-value ≤ 0.05
and a log2FC ≥ 0.5 were declared DE for the corre-
sponding contrast. A comprehensive list of all DE probes
for each contrast can be found in Additional file 5:
Table S3.
Probe annotation and GOs were retrieved using the

top Blast function implemented in Blast2GO [55]. Full
length probe sequences were blasted against protein
sequences from the Swissprot database in a BlastX search.
The E-value cut off was set to 10−6. Hypergeomet-
ric testing for over-representation of GO terms from
the category biological process [25] among the genes
DE for the contrast TTA vs. Control at the 17.weeks
sampling point was conducted using the GOstats pack-
age [26]. Before testing, probes matching to the same
gene were collapsed to the probe showing the largest
variance.
Correspondence analysis was conducted using the R

package “made4” [56]. Probe sets with missing values

Table 3 qRT-PCR primer sequences

Gene Accession no. Forward primer (3’ - 5’) Reverse primer (5’ - 3’)

mt D Loop B (gDNA) NC001960 CCCCTGAAAGCCGAATGTAA CGACCTTGTTAGACTTCTTTGCTTG

MyoD2 (gDNA) AJ557150 CAGAGCCAGGATTACACTCGTTACA GCATGTCGCTGGTGTTGAAG

PPARα DQ294237 TCCTGGTGGCCTACGGATC CGTTGAATTTCATGGCGAACT

PPARβ AJ416953 GAGACGGTCAGGGAGCTCAC CCAGCAACCCGTCCTTGTT

PPARγ AJ416951 CATTGTCAGCCTGTCCAGAC TTGCAGCCCTCACAGACATG

EF1α AF321836 CACCACCGGCCATCTGATCTACAA TCAGCAGCCTCCTTCTCGAACTTC

MYH6 DW559270 CAGGTCCTCTATGTGCTGGTGTG TCCTCATTGTAGTTGCTGTCCTCAC

ANGL4 GRASP209147493 CCGTATGGGGGATGATGCTAA GGTAGTATGCTGACGACTGACACCT

GTR1 S30269700 GCCATGGATGTCCTACGTGA CTCCGCTACATACGGGAAGG

CPT1A S31823509 TCCCACATCATCCCCTTCAACT TGTCCCTGAAGTGAGCCAGCT

ACADS S31978689 CTGGGGAAGAAGGAGGACAAG TCTAGAGCAGCCTGAGCAATACC

NKX2.5 DW550500 CCCAGTACGTCCACACCCTT GGAGGTCGGTAAGGCACAGT

Mef2C GU252207 CACCGTAACTCGCCTGGTCT GCTTGCGGTTGCTGTTCATA

GATA4 HM475152 TCTCCATTCGACAGCTCCGT CATCGCTCCACAGTTCACACA

Osx FJ195614 ATTACTGAGGAGGAGCCCATCATT CCTCATCCACCTCACACACCTT

http://www.ncbi.nlm.nih.gov/geo/
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were removed from the dataset prior to correspondence
analysis.

Quantitative RT-PCR
Single strand cDNA was synthesized from 500ng of
total RNA using oligo dT primers and the Taq Man
reverse transcription Kit (Applied Biosystems, CA, USA).
qRT-PCR was performed on a Light-Cycler 480 (Roche,
Switzerland). For the PCR reaction, 2x SYBR green I mas-
ter Mix (Roche), 0.41nM of each primer and the cDNA
template were mixed in a total reaction volume of 10μl.
Primer sequences are listed in Table 3. A three step PCR
protocol with 45 cycles (15s 95°C, 15s 60°C, 15s 72°C)
was used. To verify specific amplification, a melting curve
analysis step was done at the end of the program. In
order to verify the results obtained through the microar-
ray experiment, the same 24 samples used in the array
were used in a qRT-PCR approach. Six genes were then
randomly picked and samples were analyzed in duplicates.
The expression level was calculated using the standard
curve method (Applied Biosystems User Bulletin 2). The
standard curve was produced from a serial dilution of a
pool consisting of all cDNA samples. The expression levels
were standardized to the expression of the housekeeping
gene elongation factor 1α (EF1α, [57]).

mt/nDNA ratio
Genomic DNA was isolated from tissue samples from
the same individuals as the ones used for the total RNA
extraction (totally 96 samples, n = 6). DNA was isolated
using DNAeasy kit (Qiagen) according to the manual. The
DNA quality for all samples was checked on a 1% agarose
gel and concentration was measured using a NanoDrop
Spectrophotometer. The MyoD gene (intron-exon span-
ning primers) and the mitochondrial D-loop were ampli-
fied by qRT-PCR. For the PCR reaction 1x SYBR green
I master Mix (Roche), 0.41nM of each primer and the
6.4ng DNA template were mixed in a reaction volume
of 10μl. PCR amplification was conducted as described
above. All reactions were run in duplicates. Absolute con-
centrations for mt- and nDNA samples were obtained
using the standard curvemethod. The ratio was calculated
by dividing the absolute mtDNA by the absolute nDNA
concentration.

Statistical analysis
All data are presented as means ± SEMwith an n value as
stated. The effect of dietary treatment on the production
parameters and qRT-PCR were analyzed by 2-way anal-
ysis of variance (ANOVA), using dietary treatment and
sampling point as fixed factors and block as a random fac-
tor. TTA effects on gene expression and mt/nDNA ratio
were calculated using EF1α standardized expression val-
ues in a 2-way ANOVA with dietary treatment and time

as fixed factors. Unless otherwise stated the statistical unit
is the individual fish. All analyses were conducted using
R [50], plots were produced using the R package ggplot
[58] and the heatmaps were produced with the R package
lattice/latticeExtra [59].

Additional files

Additional file 1: Table S1. TTA measurements in the cardiac ventricles.

Additional file 2: Figure S1. Overlap matrix of the genes from the 36 GO
terms that were significantly over represented in TTA fed Atlantic salmon at
sampling point 17.weeks. Rows and columns are hierarchical clustered
(indicated by the dendrogram) based on euclidean distance. Overlap is
indicated by red color.

Additional file 3: Table S2. Full list of DE genes associated to
over-represented GO Biological processes terms at sampling point
17.weeks.

Additional file 4: Figure S2. KEGG Pathway diagram. Seven genes from
the category TCA (Table 2) could be annotated to a KEGG Ontology (KO)
using the program KAAS [60]. These 7 genes were highlighted (yellow/red)
in the KEGG reference pathway: TCA-cycle (ko:00020). The genes were
annotated to the following enzymes: Citrate synthase [EC:2.3.3.1] - 1 gene;
Isocitrate dehydrogenase [EC:1.1.1.42] - 1 gene; Isocitrate dehydrogenase
(NAD+) [EC:1.1.1.41] - 3 genes; Succinate dehydrogenase (ubiquinone)
flavoprotein subunit [EC:1.3.5.1] - 1gene; and membrane anchor unit
[EC:1.3.5.1] -1 gene.

Additional file 5: Table S3. Full list of the DE genes after collapsing.
Column 1: Probe ID; Column 2: log2FCs of the contrast TTA vs. Control for
sampling point 8.weeks; Column 3: log2FCs of the contrast TTA vs. Control
for sampling point 17.weeks; Column 4-6: Gene annotation: Gene name,
gene symbol and e-value. Column 7-8: Significance of the corresponding
gene for the corresponding contrast. Column 9: Joint between GeneID
and Symbol, as used in the heatmaps.
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RK, Sigholt T, Thomassen MS: Does the capacity for energy utilization
affect the survival of post-smolt Atlantic salmon, Salmo salar L.,
during natural outbreaks of infectious pancreatic necrosis? J Fish Dis
2007, 30(7):399–409.

7. Vegusdal A, Gjøen T, Berge RK, Thomassen MS, Ruyter B: Effect of
18:1n-9, 20:5n-3, and 22:6n-3 on lipid accumulation and secretion
by Atlantic salmon hepatocytes. Lipids 2005, 40(5):477–86.

8. Alne H, Thomassen MS, Takle H, Terjesen BF, Grammes F, Oehme M,
Refstie S, Sigholt T, Berge RK, Rørvik KA: Increased survival by feeding
tetradecylthioacetic acid during a natural outbreak of heart and
skeletal muscle inflammation in S0 Atlantic salmon, Salmo salar L.
J Fish Dis 2009, 32(11):953–61.

9. Grammes F, Rørvik KA, Takle H: Tetradecylthioacetic acid modulates
cardiac transcription in Atlantic salmon, Salmo salar L., suffering
heart and skeletal muscle inflammation. J Fish Dis 2012, 35(2):109–17.

10. Sambandam N, Morabito D, Wagg C, Finck BN, Kelly DP, Lopaschuk GD:
Chronic activation of PPARalpha is detrimental to cardiac recovery
after ischemia. Am J Physiol Heart Circ Physiol 2006, 290:H87—95.

11. Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, Han X,
Gross RW, Kozak R, Lopaschuk GD, Kelly DP: The cardiac phenotype
induced by PPARalpha overexpression mimics that caused by
diabetes mellitus. J Clin Invest 2002, 109:121–30.

12. Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM,
Shoghi K, Welch MJ, Kelly DP: Nuclear receptors PPARbeta/delta and
PPARalpha direct distinct metabolic regulatory programs in the
mouse heart. J Clin Invest 2007, 117(12):3930–9.

13. Cheng L, Ding G, Qin Q, Huang Y, He N, Evans RM, Schneider MD, Brako
FA, Xiao Y, Chen YE, Yang Q: Cardiomyocyte-restricted peroxisome
proliferator-activated receptor-[delta] deletion perturbsmyocardial
fatty acid oxidation and leads to cardiomyopathy. Nat Med 2004,
10(11):1245–50.

14. Chinetti G, Fruchart JC, Staels B: Peroxisome proliferator-activated
receptors (PPARs): nuclear receptors at the crossroads between
lipidmetabolism and inflammation. Inflamm Res 2000, 49(10):497–505.

15. Finck BN: The PPAR regulatory system in cardiac physiology and
disease. Cardiovasc Res 2007, 73(2):269–77.

16. The health situation in Norwegian aquaculture 2009. Tech. rep.,
Norwegian Veterinary Institute 2009. Http://www.vetinst.no/eng/
Research/Publications/Fish-Health-Report.

17. Driedzic WR: Cardiac energy metabolism. In Fish Physiology, Volume 7.
Edited by Hoar WS, Randall DJ, Farrell AP. New York: Academic Press;
1992:219–266.

18. Krasnov A, Timmerhaus G, Afanasyev S, Jørgensen SM: Development
and assessment of oligonucleotide microarrays for Atlantic salmon
(Salmo salar L.). Comp Biochem Physiol Part D Genomics Proteomics 2010.

19. Fellenberg K, Hauser NC, Brors B, Neutzner A, Hoheisel JD, Vingron M:
Correspondence analysis applied to microarray data. Proc Natl Acad
Sci USA 2001, 98(19):10781–6.

20. Smyth GK: Limma: linear models for microarray data. In Bioinformatics
and Computational Biology Solutions using R and Bioconductor. Edited by
Gentleman R, Carey V, Dudoit S, R Irizarry WH. New York: Springer;
2005:397–420.

21. Gerety SS, Anderson DJ: Cardiovascular ephrinB2 function is essential
for embryonic angiogenesis. Development 2002, 129(6):1397–410.

22. Hoefen RJ, Berk BC: Themultifunctional GIT family of proteins. J Cell
Sci 2006, 119(Pt 8):1469–75.

23. Wallis J, Lygate CA, Fischer A, ten Hove, M, Schneider JE,
Sebag-Montefiore L, Dawson D, Hulbert K, Zhang W, Zhang MH, Watkins
H, Clarke K, Neubauer S: Supranormal myocardial creatine and

phosphocreatine concentrations lead to cardiac hypertrophy and
heart failure: insights from creatine transporter-overexpressing
transgenic mice. Circulation 2005, 112(20):3131–9.

24. Mandard S, Zandbergen F, van Straten E, Wahli W, Kuipers F, Müller M,
Kersten S: The fasting-induced adipose factor/angiopoietin-like
protein 4 is physically associated with lipoproteins and governs
plasma lipid levels and adiposity. J Biol Chem 2006, 281(2):934–44.

25. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis
A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G:
Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nat Genet 2000, 25:25–9.

26. Falcon S, Gentleman R: Using GOstats to test gene lists for GO term
association. Bioinformatics 2007, 23(2):257–8.

27. Christoffels VM, Habets PE, Franco D, Campione M, de Jong, F, Lamers
WH, Bao ZZ, Palmer S, Biben C, Harvey RP, Moorman AF: Chamber
formation andmorphogenesis in the developing mammalian heart.
Dev Biol 2000, 223(2):266–78.

28. Chen JN, Fishman MC: Zebrafish tinman homolog demarcates the
heart field and initiatesmyocardial differentiation. Development
1996, 122(12):3809–16.

29. Schwinger RHG, Bundgaard H, Müller-Ehmsen J, Kjeldsen K: The Na,
K-ATPase in the failing human heart. Cardiovasc Res 2003,
57(4):913–20.

30. Wehrens XHT, Lehnart SE, Huang F, Vest JA, Reiken SR, Mohler PJ, Sun J,
Guatimosim S, Song LS, Rosemblit N, D’Armiento JM, Napolitano C,
Memmi M, Priori SG, Lederer WJ, Marks AR: FKBP12.6 deficiency and
defective calcium release channel (ryanodine receptor) function
linked to exercise-induced sudden cardiac death. Cell 2003,
113(7):829–40.

31. Frank KF, Bölck B, Erdmann E, Schwinger RHG: Sarcoplasmic reticulum
Ca2+-ATPasemodulates cardiac contraction and relaxation.
Cardiovasc Res 2003, 57:20–7.

32. Beck EJ, Bowlby M, An WF, Rhodes KJ, Covarrubias M: Remodelling
inactivation gating of Kv4 channels by KChIP1, a
small-molecular-weight calcium-binding protein. J Physiol 2002,
538(Pt 3):691–706.

33. Wickenden AD, Kaprielian R, Kassiri Z, Tsoporis JN, Tsushima R, Fishman GI,
Backx PH: The role of action potential prolongation and altered
intracellular calcium handling in the pathogenesis of heart failure.
Cardiovasc Res 1998, 37(2):312–23.

34. Dyck JR, Barr AJ, Barr RL, Kolattukudy PE, Lopaschuk GD:
Characterization of cardiac malonyl-CoA decarboxylase and its
putative role in regulating fatty acid oxidation. Am J Physiol 1998,
275(6 Pt 2):H2122—9.

35. Sans CL, Satterwhite DJ, Stoltzman CA, Breen KT, Ayer DE:MondoA-Mlx
heterodimers are candidate sensors of cellular energy status:
mitochondrial localization and direct regulation of glycolysis. Mol
Cell Biol 2006, 26(13):4863–71.

36. Totland GK, Madsen L, Klementsen B, Vaagenes H, Kryvi H, Frøyland L,
Hexeberg S, Berge RK: Proliferation of mitochondria and gene
expression of carnitine palmitoyltransferase and fatty acyl-CoA
oxidase in rat skeletal muscle, heart and liver by hypolipidemic fatty
acids. Biol Cell 2000, 92(5):317–29.

37. Kleveland EJ, Ruyter B, Vegusdal A, Sundvold H, Berge RK, Gjøen T: Effects
of 3-thia fatty acids on expression of some lipid related genes in
Atlantic salmon (Salmo salar L.). Comp Biochem Physiol B , BiochemMol
Biol 2006, 145(2):239–48.

38. Hafstad AD, Khalid AM, Hagve M, Lund T, Larsen TS, Severson DL, Clarke K,
Berge RK, Aasum E: Cardiac peroxisome proliferator-activated
receptor-alpha activation causes increased fatty acid oxidation,
reducing efficiency and post-ischaemic functional loss. Cardiovasc
Res 2009, 83(3):519–26.

39. Wagner N, Jehl-Piétri C, Lopez P, Murdaca J, Giordano C, Schwartz C,
Gounon P, Hatem SN, Grimaldi P, Wagner KD: Peroxisome
proliferator-activated receptor beta stimulation induces rapid
cardiac growth and angiogenesis via direct activation of
calcineurin. Cardiovasc Res 2009, 83:61–71.

40. Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, Mihaylova MM,
Nelson MC, Zou Y, Juguilon H, Kang H, Shaw RJ, Evans RM: AMPK and
PPARdelta agonists are exercise mimetics. Cell 2008, 134(3):405–15.

Http://www.vetinst.no/eng/Research/Publications/Fish-Health-Report
Http://www.vetinst.no/eng/Research/Publications/Fish-Health-Report


Grammes et al. BMC Genomics 2012, 13:180 Page 13 of 13
http://www.biomedcentral.com/1471-2164/13/180

41. Xu J, Gong NL, Bodi I, Aronow BJ, Backx PH, Molkentin JD:Myocyte
enhancer factors 2A and 2C induce dilated cardiomyopathy in
transgenic mice. J Biol Chem 2006, 281(14):9152–62.

42. Sharifpanah F, Wartenberg M, Hannig M, Piper HM, Sauer H: Peroxisome
proliferator-activated receptor alpha agonists enhance
cardiomyogenesis of mouse ES cells by utilization of a reactive
oxygen species-dependent mechanism. Stem Cells 2008, 26:64–71.

43. Poppe TT, Johansen R, Gunnes G, Tørud B: Heart morphology in wild
and farmed Atlantic salmon Salmo salar and rainbow trout
Oncorhynchusmykiss. Dis Aquat Org 2003, 57(1-2):103–8.

44. Tørud B, Hillestad M: “Hjerte-rapporten” Rapport om hjertelidelser
hos laks og regnbueørret. 2004:1–69.
[www.fiskerifond.no/files/projects/attach/hjerterapporten.pdf].

45. Asiedu DK, Frøyland L, Vaagenes H, Lie O, Demoz A, Berge RK: Long-term
effect of tetradecylthioacetic acid: a study on plasma lipid profile
and fatty acid composition and oxidation in different rat organs.
Biochim Biophys Acta 1996, 1300(2):86–96.

46. Gjøen T, Kleveland EJ, Moya-Falcón C, Frøystad MK: Effects of dietary
thia fatty acids on lipid composition, morphology andmacrophage
function of Atlantic salmon (Salmo salar L.) kidney. Comp Biochem
Physiol B , BiochemMol Biol 2007, 148:103–11.

47. Alne H, Oehme M, Thomassen M, Terjesen B, Rørvik KA: Reduced
growth, condition factor and body energy levels in Atlantic salmon
Salmo salar L. during their first spring in the sea. Aquacult Res 2010,
42(2):248–259.

48. Bligh EG, Dyer WJ: A rapid method of total lipid extraction and
purification. Can J Biochem Physiol 1959, 37:911–917.

49. Dates M: General analytical procedures. In Techniques in Lipidology.
Edited by Kates M. Elsevier; 1986.

50. R Development CoreTeam: R: A Language and Environment for Statistical
Computing. Vienna: R Foundation for Statistical Computing; 2009. http://
www.R-project.org. [ISBN 3-900051-07-0].

51. Gentleman RC, Carey VJ, Bates DM, et al.: Bioconductor: Open software
development for computational biology and bioinformatics.
Genome Biology 2004, 5:R80.

52. Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of
normalization methods for high density oligonucleotide array data
based on variance and bias. Bioinformatics 2003, 19(2):185–93.

53. Smyth GK: Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat Appl Genet Mol
Biol 2004, 3:Article3.

54. Benjamini Y, Yosef H: Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J Roy Stat Soc B 1995,
57:289–300.
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