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THE EFFICIENCY OF PANEL DATA ESTIMATORS:

GLS VERSUS ESTIMATORS WHICH DO NOT

DEPEND ON VARIANCE COMPONENTS

by

ERIK BI�RN

ABSTRACT

For a balanced panel data regression model with random e�ects, we discuss the e�ciency of the

GLS estimator relative to the OLS, the between, and the within estimators. Focus is on how the

e�ciency responds to changes in (a) the relative variance components and (b) the composition

of the regressor covariance matrix which into between and within variation. Both one-way and

two-way models are considered. For the one-way, one regressor model, we show that (i) OLS

has maximal ine�ciency relative to GLS when the within and between individual variation in

the regressor account for the same part of the total variation, (ii) the between estimator is

always less e�cient than the OLS estimator. For the two-way, one regressor model, the between

individual (between period) estimator is more e�cient than OLS if the between period (between

individual) share of the total variation in the regressor and/or the time speci�c (individual speci�c)

disturbance variance component are su�ciently large. Illustrations relating to marginal budget

shares in household consumption are given.

Keywords: Panel Data. Variance Components. E�ciency. Generalized Least Squares.

Within estimation. Between estimation

JEL classi�cation: C13, C23



1 Introduction

According to a familiar textbook result in econometrics, the Generalized Least Squares

(GLS) estimator of a regression coe�cient vector in the case with a non-scalar dis-

turbance covariance matrix is Minimum Variance Linear Unbiased [Greene (2000, sec-

tion 11.3)]. When applied to a panel data model with random e�ects, this extension of

Gauss-Markov's theorem implies that the GLS is more e�cient than the Within (W), the

Between (B), and the Ordinary Least Squares (OLS) estimators. Strict GLS, however, is

an `impracticable' method, as it presumes knowledge of the (relative) disturbance vari-

ances, which is rarely available, and the e�ciency of Feasible GLS relative to W, B, and

OLS when the variance components are estimated from residuals from a �nite (and often

small) number of units and/or periods, is not in general known. Some results are avail-

able, though [Swamy and Arora (1972), Maddala and Mount (1973), Taylor (1980), and

Baltagi (1981)], inter alia, based on Monte Carlo simulations when considering alterna-

tive ways of estimating the variance components, but they cannot be easily summarized.

In this paper, we investigate, for a balanced panel data model, the most important

determinants of the e�ciency of strict GLS relative to estimators which do not presume

the disturbance variances to be known, or estimated. To the author's knowledge, this

issue has not been discussed in the literature, apart from certain special cases. Focus

is on how the e�ciency of GLS and other panel data estimators responds to changes in

(a) the relative variances of the disturbance components, (b) the number of individuals

and periods, and (c) the composition of the regressor covariance matrix in between and

within variation. Both one-way and two-way models of the latent heterogeneity are

considered.

We examine on the one hand the ine�ciency of W, B, and OLS relative to GLS,

on the other hand the relative e�ciency of W, B, and OLS. Since strict GLS may be

unobtainable, choosing between W, B, and OLS is of considerable practical interest,

not least from the point of view of robustness. First, the consistency of W, unlike the

consistency of OLS, is robust to correlation between the latent random e�ects and the

covariate vector [see Hsiao (1986, section 3.4)]. Second, even if OLS often outperforms

B in terms of �nite sample e�ciency, the consistency of the between individual (between

period) estimator, unlike the OLS, is robust to errors of measurement in the regressors

when the number of periods (individuals) goes to in�nity [see Bi�rn (1996, section 10.2.3)].

The paper is organized as follows. In Section 2, we de�ne four estimators for the one-

way random e�ects model and derive general e�ciency results for a regression model of

arbitrary dimension. More detailed results are given for the one regressor (or orthogonal

regressors) case. We �nd that OLS is maximally ine�cient relative to GLS when half of
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the variation in the regressor is within individual and the other half is between individual

variation. For this model, we show that the between individual estimator is less e�cient

than OLS, since the latter exploits both between and within variation in the data.

In Section 3 we extend the analysis to the two-way model and present �ve estimators.

We show, for the one regressor case, that OLS is most ine�cient relative to GLS (i) in

the presence of between period variation in the regressor when less than half of the

variation in the regressor is between individual variation, and (ii) in the presence of

between individual variation in the regressor when less than half of the variation in the

regressor is between period variation. While for the one-way model the between estimator

is uniformly less e�cient than OLS, this is not generally true for the two-way model. In

the one regressor case, we �nd for the latter that the between individual (between period)

estimator is more e�cient than OLS if the between period (between individual) share of

the total variation in the regressor and/or the time speci�c (individual speci�c) part of the

disturbance variance exceeds a certain level. The ranking of the strict OLS and the two-

way �xed e�ects OLS (double within) estimator is also discussed. Empirical illustrations

relating to marginal budget shares in household consumption are given. Concluding

remarks follow in Section 4.

2 Results for the one-way model

2.1 Model and estimators

Assume that we have a panel data set in which N (� 2) individuals are observed in

T (� 2) periods, and consider the model

yit = k + xit� + �i + uit;

�i � IID(0; �2�); uit � IID(0; �2);

�i; uit;xit are independent for all i; t;

i = 1; : : : ; N;

t = 1; : : : ; T;
(1)

where i indicates individual, t indicates period, xit is a (row) vector of regressors, �

its (column) vector of coe�cients, �i is an individual speci�c random e�ect, and uit

is a disturbance. Let yi = (yi1; : : : ; yiT )
0, y = (y0

1
; : : : ;y0N )

0, Xi = (x0i1; : : : ;x
0

iT )
0,X =

(X0

1
; : : : ;X0

N )
0, etc, � = (�1; : : : ; �N)

0, and em be the (m�1) vector of ones. Compactly,

the model can then be written

y = eNTk +X� + �; � = eT 
 �+ u;

E(�) = 0; V(�) = E(�� 0) = 
;
(2)

where


 = IN 
 (�2� eTe
0

T + �2IT ) = IN 
 [�2KT + (�2 + T�2�)JT ];(3)
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 is the Kronecker product operator, Jm = (eme
0

m)=m and Km = Im � Jm; m =

1; 2; : : : . The latter matrices are idempotent and have orthogonal columns.

We use the following notation for the within individual, the between individual, and

the total covariation in arbitrary matrices of panel data, Z and Q, constructed in the

same way as X above:

WZQ = Z
0(IN 
KT )Q =

PN
i=1

PT
t=1(zit � �zi�)

0(qit � �qi�);

BZQ = Z
0(KN 
 JT )Q = T

PN
i=1(�zi� � �z) 0(�qi� � �q);

TZQ = Z
0(INT � JNT )Q =

PN
i=1

PT
t=1(zit � �z) 0(qit � �q) =WZQ +BZQ;

where �zi� = T�1
PT
t=1 zit, �z = (NT )�1

PN
i=1

PT
t=1 zit, etc. The columns of WZQ and

BZQ are orthogonal since KT and JT have this property. Four estimators of �, familiar

from the panel data literature [see, e.g., Hsiao (1986, chapter 3)], are considered:

b�W = W
�1

XXWXY ;(4) b�B = B
�1

XXBXY ;(5) b�OLS = T
�1

XXTXY = (WXX +BXX)
�1(WXY +BXY );(6) b�GLS = (WXX + �BBXX)

�1(WXY + �BBXY );(7)

where

�B =
�2

�2 + T�2�
:(8)

Here b�W , the within individual estimator, is the Gauss-Markov estimator if the individual

speci�c e�ects �i are treated as �xed and unknown, b�GLS is the Gauss-Markov estimator

if they are treated as random, b�OLS is the Gauss-Markov estimator when no heterogeneity

occurs, and b�B, the between individual estimator, is the OLS estimator constructed from

individual speci�c means of the observations [see Hsiao (1986, section 3.3.2)]. The full

within estimator will only exist when no regressor is time invariant, since otherwiseWXX

has zero rows and columns.

Let �W and �B be non-negative scalar constants and de�ne the more general estimator

b� = b�(�W ; �B) = [�WWXX + �BBXX ]
�1[�WWXY + �BBXY ]:(9)

Obviously, b�W = b�(1; 0);b�B = b�(0; 1);b�OLS = b�(1; 1);b�GLS = b�(1; �B):
Inserting for y from (2) in (9), we obtain

b� � � = [�WWXX + �BBXX ]
�1[�WWX� + �BBX�]:(10)
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2.2 General e�ciency results

From (2) and (3) we obtain

E(WX�W
0

X�) = E([X 0(IN
KT )�] [X
0(IN
KT )�]

0) = X
0(IN
KT )
 (IN
KT )X;

E(BX�B
0

X�) = E([X 0(KN
JT )�] [X
0(KN
JT )�]

0) = X
0(KN
JT )
 (KN
JT )X ;

leading to

E(WX�W
0

X�) = �2X 0(IN 
KT )X = �2WXX ;

E(BX�B
0

X�) = (�2 + T�2�)X
0(KN 
 JT )X = (�2 + T�2�)BXX :

Combining these expressions with (10) it follows that the covariance matrix of b� (condi-

tional on X), is

V(b�) = E[(b� � �)(b� � �) 0](11)

= [�WWXX + �BBXX ]
�1 [�2W�2WXX + �2B(�

2 + T�2�)BXX ]

� [�WWXX + �BBXX ]
�1:

This expression can be used to rank unbiased estimators with di�erent (�W ; �B) con-

stellations. Sometimes, one estimator, b�
1
, is uniformly superior to another, b�

2
, if

V(b�2)� V(b�1) is positive de�nite for any X. In particular, we have

V(b�W ) =

�
WXX

�2

�
�1

;(12)

V(b�B) =

�
BXX

�2 + T�2�

�
�1

;(13)

V(b�OLS) = T
�1

XX [�
2
WXX + (�2 + T�2�)BXX ]T

�1

XX(14)

=

�
TXX

�2

�
�1

+ T�2�T
�1

XXBXXT
�1

XX ;

V(b�GLS) =

�
WXX

�2
+

BXX

�2 + T�2�

�
�1

:(15)

Using Magnus and Neudecker (1988, chapter 1, Theorem 24), it follows that

V(b�W )� V(b�GLS) is pos. def. () BXX

�2 + T�2�
is pos. def.;

V(b�B)� V(b�GLS) is pos. def. () WXX

�2
is pos. def.

This implies that b�GLS is strictly more e�cient than both b�W and b�B when both BXX

and WXX are positive de�nite and �2 and �2� are positive and �nite and T is �nite.

Furthermore, we can write V(b�OLS)�V(b�GLS) as a matrix product which can be shown

[for instance by using results in Horn and Johnson (1985, section 7.6)] to be positive

de�nite, in agreement with Gauss-Markov's theorem.
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2.3 GLS versus OLS: The one regressor case

Consider the relative e�ciency of OLS and GLS in the one regressor case, K = 1. The

results we derive below are not strictly con�ned to this case, however; they are also valid,

for each regression coe�cient, if all regressors are orthogonal so that TXX , BXX , and

WXX are diagonal matrices. Let, for K = 1, b = BXX=TXX , i.e., the share of the total

variation in the regressor (or a typical regressor, under orthogonality) which is between

individual variation. It then follows from (8), (14), and (15) that

eOLS =
V(b�OLS)
V(b�GLS) = [�2(1� b) + (�2 + T�2�)b]

�
1� b

�2
+

b

�2 + T�2�

�
= (1� b)2 + b(1� b)

�
�B +

1

�B

�
+ b2;

i.e.,

eOLS =

�
1 + b

�
�B +

1

�B
� 1

��
(1� b) + b2:(16)

Since

@eOLS

@�B
= b(1� b)

 
1�

1

�2B

!
;

@eOLS

@b
= (1� �B)

 
1

�B
� 1

!
(1� 2b);

the e�ciency function (16) has the following properties: (i) It is convex in �B when

0 < b < 1 and attains its minimum, one, for �B = 1, i.e., �2� = 0 (which is obvious since

OLS and GLS coincide in this case). (ii) It is concave in b when �B < 1 and attains

its maximum, (1=4)(1 + �B)(1=�B + 1), for b = 1

2
. This means that b�OLS , for given T

and �2� (> 0) is maximally ine�cient relative to b�GLS when half of the variation in the

regressor is within individual and the other half is between individual variation. When

b = 0 or b = 1, eOLS = 1 for any �B .

2.4 The ranking of the within, between, and OLS estimators

We see from (12) { (14) that the ranking of b�B, b�W , and b�OLS depends in the general

case on �2, T�2�, BXX , and WXX . The one regressor (or orthogonal regressors) case

is most transparent, and we consider this case speci�cally. From (8) and (12) { (14) we
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obtain the following variance ratios when K = 1:

V(b�W )

V(b�B) = b�B
1� b

> (<) 1 () 1� b < (>) �B
1 + �B

;

V(b�W )

V(b�OLS) = 1

(1� b)

�
1 + b

�
1

�B
� 1

�� > (<) 1 () 1� b < (>) �B
1� �B

;

V(b�B)
V(b�OLS) = 1

b�B

�
1 + b

�
1

�B
� 1

�� > 1 () 0 < b < 1:

If 0 < �B < 1 and 0 < b < 1, then b�B is always less e�cient than b�OLS , b�OLS is less

e�cient than b�GLS , and V(b�B)=V(b�OLS) is monotonically declining in b. The ranking

of b�W depends on b.

We �nd, by inserting from (8), that the relative e�ciency of the four estimators

depends on the share of the variation in the regressor which is within individual variation,

1�b, as follows [these inequalities generalize results in Malinvaud (1978, chapter 8.4(ii))]:

V(b�B) > V(b�OLS) � V(b�W ) > V(b�GLS) if
�2

T�2�
� 1� b < 1;

V(b�B) � V(b�W ) > V(b�OLS) > V(b�GLS) if
�2

2�2 + T�2�
� 1� b <

�2

T�2�
;

V(b�W ) > V(b�B) > V(b�OLS) > V(b�GLS) if 0 < 1� b <
�2

2�2 + T�2�
:

(17)

The larger T or �2�=�
2 for given b is, the more likely is the �rst inequality to be satis�ed

(if, at the limit, T ! 1, then �B ! 1, so that b�W and b�GLS coincide). The larger

b, for given T and �2�=�
2, is, the more likely is the last inequality to be satis�ed (if,

at the limit, b ! 1, then b�B , b�OLS and b�GLS coincide and b�W is unde�ned). From

the point of view of robustness, the �rst inequality in (17) is particularly interesting:

If 1 � b > �2=(T�2�), then
b�W is not only more e�cient than b�OLS , it is also robust

to violation of the assumption that �i and xit are independent and neither depends on

variance components. If 1 � b < �2=(T�2�), there will be a trade-o� between e�ciency

and robustness for these two estimators.

3 Results for the two-way model

We now extend the analysis to the two-way model.
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3.1 Model and estimators

Consider the model

yit = k + xit� + �i + 
t + uit;

�i � IID(0; �2�); 
t � IID(0; �2
); uit � IID(0; �2);

�i; 
t; uit;xit are independent for all i; t;

i = 1; : : : ; N;

t = 1; : : : ; T;
(18)

where 
t is a period speci�c random e�ect and the other symbols have the same inter-

pretation as in Section 2. Compactly, the model can be written as

y = eNTk +X� + �; � = (�
 eT ) + (eN 
 
) + u;

E(�) = 0; V(�) = 
;
(19)

where 
 = (
1; : : : ; 
T )
0 and


 = �2�IN 
 (eTe
0

T ) + �2
(eNe
0

N )
 IT + �2(IN 
 IT )(20)

= �2(KN 
KT ) + (�2 + T�2�)(KN 
 JT ) + (�2 +N�2
)(JN 
KT )

+ (�2 + T�2� +N�2
)(JN 
 JT );

see Fuller and Battese (1974, section 2).

We de�ne BZQ and TZQ as in Section 2 and use the following notation for the residual

(i.e., double within) and the between period covariation for arbitrary matrices of panel

data, Z and Q:

RZQ = Z
0(KN 
KT )Q =

PN
i=1

PT
t=1(zit � �zi� � �z�t + �z) 0(qit � �qi� � �q�t + �q);

CZQ = Z
0(JN 
KT )Q = N

PT
t=1(�z�t � �z) 0(�q�t � �q);

where �z�t = N�1
PN
i=1 zit, TZQ = RZQ +BZQ +CZQ, and the columns of RZQ, BZQ,

and CZQ are orthogonal. Now, �ve estimators of � are considered:

b�R = R
�1

XXRXY ;(21) b�B = B
�1

XXBXY ;(22) b�C = C
�1

XXCXY ;(23) b�OLS = T
�1

XXTXY = (RXX +BXX +CXX)
�1(RXY +BXY +CXY );(24) b�GLS = (RXX + �BBXX + �CCXX)

�1(RXY + �BBXY + �CCXY );(25)

where

�B =
�2

�2 + T�2�
; �C =

�2

�2 +N�2

:(26)

Here b�R, the residual (double within) estimator, is the Gauss-Markov estimator if the

individual speci�c and period speci�c e�ects �i and 
t are all treated as �xed, b�GLS is the

7



Gauss-Markov estimator if they are all treated as random [see Fuller and Battese (1974,

section 3) and M�aty�as (1996, section 4.2.2)], b�OLS is the Gauss-Markov estimator when

no heterogeneity occurs, b�B , the between individual estimator is, as in Section 2, the

OLS estimator constructed from individual speci�c means, and b�C , the between period

estimator, is the symmetric estimator constructed from period speci�c means. The full

residual estimator will only exist when no regressor is individual or time invariant, since

otherwise RXX has zero rows and columns.

Let �R, �B, and �C be non-negative scalar constants and consider the more general

estimator

b� = b�(�R; �B; �C)(27)

= [�RRXX + �BBXX + �CCXX ]
�1[�RRXY + �BBXY + �CCXY ];

which also generalizes (9) since latter corresponds to �R = �C = �W . Obviously,

b�R = b�(1; 0; 0);b�B = b�(0; 1; 0);b�C = b�(0; 0; 1);b�OLS = b�(1; 1; 1);b�GLS = b�(1; �B; �C):
Inserting for y from (19) in (27), we obtain

b� � � = [�RRXX + �BBXX + �CCXX ]
�1[�RRX� + �BBX� + �CCX�]:(28)

3.2 General e�ciency results

From (19) and (20) we obtain

E(RX�R
0

X�) = E([X 0(KN
KT )�][X
0(KN
KT )�]

0) = X
0(KN
KT )
(KN
KT )X;

E(BX�B
0

X�) = E([X 0(KN
JT )�][X
0(KN
JT )�]

0) = X
0(KN
JT )
(KN
JT )X;

E(CX�C
0

X�) = E([X 0(JN
KT )�][X
0(JN
KT )�]

0) = X
0(JN
KT )
(JN
KT )X;

leading to

E(RX�R
0

X�) = �2X 0(KN 
KT )X = �2RXX ;

E(BX�B
0

X�) = (�2 + T�2�)X
0(KN 
 JT )X = (�2 + T�2�)BXX ;

E(CX�C
0

X�) = (�2 +N�2
)X
0(JN 
KT )X = (�2 +N�2
)CXX :

8



Combining these expressions with (28) it follows that

V(b�) = E[(b� � �)(b� � �) 0](29)

= [�RRXX + �BBXX + �CCXX ]
�1

� [�2R�
2
RXX + �2B(�

2 + T�2�)BXX + �2C(�
2 +N�2
)CXX ]

� [�RRXX + �BBXX + �CCXX ]
�1:

This expression can be used to rank unbiased estimators with di�erent (�R; �B; �C)

constellations. Sometimes, one estimator, b�
1
, is uniformly superior to another, b�

2
, if

V(b�
2
)� V(b�

1
) is positive de�nite for any X. In particular, we have

V(b�R) =

�
RXX

�2

�
�1

;(30)

V(b�B) =

�
BXX

�2 + T�2�

�
�1

;(31)

V(b�C) =

"
CXX

�2 +N�2


#
�1

;(32)

V(b�OLS) = T
�1

XX [�
2
RXX + (�2 + T�2�)BXX + (�2 +N�2
)CXX ]T

�1

XX(33)

=

�
TXX

�2

�
�1

+ T�1

XX [T�
2

�BXX +N�2
CXX ]T
�1

XX ;

V(b�GLS) =

"
RXX

�2
+

BXX

�2 + T�2�
+

CXX

�2 +N�2


#
�1

:(34)

Using Magnus and Neudecker (1988, chapter 1, Theorem 24), it follows that

V(b�R)� V(b�GLS) is pos. def. () BXX

�2 + T�2�
+ CXX

�2 +N�2

is pos. def.;

V(b�B)� V(b�GLS) is pos. def. () RXX

�2
+ CXX

�2 +N�2

is pos. def.;

V(b�C)� V(b�GLS) is pos. def. () RXX

�2
+ BXX

�2 + T�2�
; is pos. def.

This implies that b�GLS is strictly more e�cient than both b�R, b�B , and b�C when both

BXX , CXX , and RXX are positive de�nite and �2, �2�, and �2
 are positive and �nite

and T and N are �nite. Furthermore, we can write V(b�OLS) � V(b�GLS) as a matrix

product which can be shown [for instance by using results in Horn and Johnson (1985,

section 7.6)] to be positive de�nite, in agreement with Gauss-Markov's theorem.

3.3 GLS versus OLS: The one regressor case

Consider the relative e�ciency of OLS and GLS in the one regressor case, K = 1. The

results we derive below are not strictly con�ned to this case, however; they are also valid,
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for each regression coe�cient, if all regressors are orthogonal so that TXX , BXX , CXX ,

and RXX are diagonal matrices. Let, for K = 1, b = BXX=TXX and c = CXX=TXX ,

i.e., the shares of the total variation in the regressor (or a typical regressor, under or-

thogonality) which are between individual and between period variation, respectively. It

then follows from (26), (33), and (34) that

eOLS =
V(b�OLS)
V(b�GLS) = [�2(1� b� c) + (�2 + T�2�)b+ (�2 +N�2
)c]

�

"
1� b� c

�2
+

b

�2 + T�2�
+

c

�2 +N�2


#

= (1� b� c)2 + b2 + c2 + bc

�
�B

�C
+

�C

�B

�
+

�
b

�
�B +

1

�B

�
+ c

�
�C +

1

�C

��
(1� b� c);

i.e.,

eOLS =

�
1 + b

�
�B +

1

�B
� 1

�
+ c

�
�C +

1

�C
� 1

��
(1� b� c)(35)

+ b2 + bc

�
�B

�C
+

�C

�B

�
+ c2:

Not unexpectedly, this e�ciency function is more complicated than (16) for the one-way

model. In the particular case where �B = �C = �, i.e., T�2� = N�2
 , we have, however

eOLS =

�
1 + (b+ c)

�
� +

1

�
� 1

��
(1� b� c) + (b+ c)2;

which depends on � and b+ c only, and resembles (16).

Since, in general,

@eOLS
@�B

= b(1� b� c)

 
1�

1

�2B

!
+

bc

�C

 
1�

�2C
�2B

!
;

@eOLS
@�C

= c(1� b� c)

 
1�

1

�2C

!
+

bc

�B

 
1�

�2B
�2C

!
;

@eOLS
@b

= (1� �B)

"
(1� 2b)

 
1

�B
� 1

!
� c(1� �C)

 
1

�B
+

1

�C

!#
;

@eOLS
@c

= (1� �C)

"
(1� 2c)

 
1

�C
� 1

!
� b(1� �B)

 
1

�B
+

1

�C

!#
;

the e�ciency function (35) has the following properties: If 0 < b < 1, 0 < c < 1,

0 < b+ c < 1, then eOLS attains its minimum, one, for �B = �C = 1, i.e., �2� = �2
 = 0

(which is obvious since OLS and GLS coincide in this case). If b = 0; c = 1 or b = 1; c = 0,
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then eOLS = 1 for any �B and �C . Furthermore,

�C = 1; �B < 1; 0 < b < 1 =)
@eOLS
@�B

< 0;

�B = 1; �C < 1; 0 < c < 1 =)
@eOLS
@�C

< 0;

�B = �C < 1; 0 < b+ c < 1 =)
@eOLS
@�B

< 0;
@eOLS
@�C

< 0:

It also follows that

@eOLS
@b

> (<) 0() b < (>)
1

2

�
1� c

1� �C

1� �B

�
1 +

�B

�C

��
(�B < 1);

@eOLS
@c

> (<) 0() c < (>)
1

2

�
1� b

1� �B

1� �C

�
1 +

�C

�B

��
(�C < 1);

@2eOLS
@b2

= �
2

�B
(1� �B)

2;

@2eOLS
@c2

= �
2

�C
(1� �C)

2;

@2eOLS
@b@c

= �
�B + �C

�B�C
(1� �B)(1� �C):

The e�ciency of OLS relative to GLS therefore has the following properties: (i) When

0 < �B < 1 and 0 < �C < 1, then eOLS is strictly concave in b and c. (ii) When

c(1 � �C) = 0, then eOLS attains its maximum for b = 1

2
, and when 0 � c(1 � �C) �

[�C(1 � �B)]=(�B + �C), then eOLS attains its maximum for b 2 (0; 12 ). (iii) When

b(1 � �B) = 0, then eOLS attains its maximum for c = 1

2
, and when 0 � b(1 � �B) �

[�B(1� �C)]=(�B + �C), then eOLS attains its maximum for c 2 (0; 1

2 ). In the particular

case where �B = �C < 1, we have

@eOLS
@(b+ c)

> (<) 0 () b+ c < (>)
1

2
;

so that OLS is maximally ine�cient when the sum of the between individual and the

between period variation in the regressor is half of the total variation.

3.4 The ranking of the within, between, and OLS estimators

We see from (30) { (33) that the ranking of b�B, b�C , b�R, and b�OLS in the general case

is determined by �2, T�2�, N�2
, BXX , CXX , and RXX . Again, the one regressor (or

orthogonal regressors) case is most transparent, and we consider this case speci�cally.
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From (26) and (30) { (33) we obtain the following variance ratios when K = 1:

V(b�R)
V(b�B) = b�B

1� b� c
;

V(b�R)
V(b�C) = c�C

1� b� c
;

V(b�B)
V(b�C) = c�C

b�B
;

V(b�R)
V(b�OLS) = 1

(1� b� c)

�
1 + b

�
1

�B
� 1

�
+ c

�
1

�C
� 1

�� ;
V(b�B)
V(b�OLS) = 1

b�B

�
1 + b

�
1

�B
� 1

�
+ c

�
1

�C
� 1

�� ;
V(b�C)
V(b�OLS) = 1

c�C

�
1 + b

�
1

�B
� 1

�
+ c

�
1

�C
� 1

�� :
Rearranging these expressions, de�ning �2� = �2�=�

2 and �2
 = �2
=�
2, and using (26), we

�nd

V(b�R)
V(b�B) > (<) 1 ()

1� b� c

1� c
< (>)

1

2 + T�2�
;

V(b�R)
V(b�C) > (<) 1 ()

1� b� c

1� b
< (>)

1

2 +N�2

;

V(b�C)
V(b�B) > (<) 1 ()

b

c
> (<)

1 + T�2�

1 +N�2

;

V(b�R)
V(b�OLS) > (<) 1 () 1� b� c < (>)

1

1 + bT�2� + cN�2

;

V(b�B)
V(b�OLS) > (<) 1 () b < (>)

1 + T�2�

1 + bT�2� + cN�2

;

V(b�C)
V(b�OLS) > (<) 1 () c < (>)

1 +N�2


1 + bT�2� + cN�2

:

From these expressions, we can rank the �ve estimators by relative e�ciency.

We do not describe the detailed ranking, as there are a substantial number of possible

cases and some parameter constellations are more likely to occur than others. In principle,

there is a region in the (b; c; T�2�; N�2
 ) space in which b�R is superior to b�B, b�B is superior

to b�C , b�R is superior to b�OLS , etc. Genuine panel data from individuals, households, or

�rms often show substantial individual speci�c heterogeneity, both in the regressor and

in the disturbances, and less pronounced period speci�c heterogeneity, so that b often by

far exceeds c, 1�b�c is small (but often larger than c), and �2� exceeds �2
 . Furthermore,
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N is often considerably larger than T . Four realistic cases may then be

V(b�C) > V(b�B) > V(b�OLS) > V(b�R) > V(b�GLS) if

1 <
1

1� b� c
< 1 + bT�2� + cN�2
 <

1 + T�2�
b

<
1 +N�2


c
;

V(b�C) > V(b�B) > V(b�R) > V(b�OLS) > V(b�GLS) if

1 < 1 + bT�2� + cN�2
 <
1

1� b� c
<

1 + T�2�
b

<
1 +N�2


c
;

V(b�C) > V(b�R) > V(b�B) > V(b�OLS) > V(b�GLS) if

1 < 1 + bT�2� + cN�2
 <
1 + T�2�

b
<

1

1� b� c
<

1 +N�2


c
;

V(b�R) > V(b�C) > V(b�B) > V(b�OLS) > V(b�GLS) if

1 < 1 + bT�2� + cN�2
 <
1 + T�2�

b
<

1 +N�2


c
<

1

1� b� c
:

Let us consider an empirical illustration taken from Bi�rn (1994, Table 8), in which

marginal budget shares for 28 disaggregate consumption commodities (exhausting the

complete budget) and their variances are estimated from Norwegian household panel

data with K = 1, N = 418 and T = 2. The only regressor variable is total expenditure,

which corresponds to x. Its shares of the total variation which is between individual,

between period, and residual variation in this data set are b = 80:5%, c = 4:2%, and

1� b� c = 15:3%, respectively. (Values of b and c of similar magnitudes are often found

for logarithms of outputs and inputs in �rm data.) The variance components �2, �2� and

�2
 are commodity speci�c and are estimated consistently from residuals, as explained

in Bi�rn (1994, p. 142). We �nd from these estimates of the variance components that

the �rst of the above four sets of inequalities is satis�ed for one commodity (tobacco),

the second for one commodity (fuel and power), and the third for the remaining 26

commodities (including foods, services, housing, durables etc.). It should come as no

surprise that the �rst inequality is the one to hold for tobacco, since this is a strongly

addictive commodity whose value of �2� is substantially larger than for other commodities.

For none of the 28 commodities the fourth set of inequalities is satis�ed according to the

estimated variance components.

For this two-way, unlike the one-way, model it is possible for the between individual

estimator to be more e�cient than OLS. This will happen when cN�2
 is so large that

b > (1+T�2�)=(1+ bT�2�+ cN�2
 ) [if �
2


 = 0 or c = 0, and b < 1, we always have V(b�B) >
V(b�OLS)]. Likewise, it is possible for the between period estimator to be more e�cient

than OLS. This will happen when bT�2� is so large that c > (1+N�2
 )=(1+bT�2�+ cN�2
 )

[if �2� = 0 or b = 0, and c < 1, we always have V(b�C) > V(b�OLS)]. Neither of these
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situations occur in our marginal budget shares example, however. In fact, the between

period estimator has by far the lowest estimated e�ciency for all the 28 commodities.

The OLS estimator is ranked second for all commodities except one (tobacco), for which

it is ranked third and the residual estimator is ranked second.

4 Concluding remarks

Although it is well established that the GLS is the optimal estimator of the coe�cient

vector in random e�ects panel data regression models, when the model is correctly spec-

i�ed, we can conclude from the results in this paper that both OLS and various between

and within estimators may be of interest for practical purposes. First, in many realistic

situations, the estimation e�ciency may not be much improved by using GLS instead of

one of its competitors. Second, GLS depends on variance components which are rarely

available and may be estimable only with substantial margins of errors, so that the Fea-

sible GLS may depart substantially from the strict GLS. Other panel data estimators

do not require this kind of information, although it is needed in order to estimate their

variances correctly. Third, the consistency of GLS, like OLS, may be vulnerable to model

speci�cation errors. For instance, the consistency of within estimators is robust to cor-

relation between the random latent e�ects and the covariate vector, and the consistency

of the between individual (between period) estimator is robust to errors of measurement

in the regressors when the number of periods (individuals) goes to in�nity.

In the paper, we have, for both the one-way and the two-way random e�ects models,

reconsidered on the one hand the e�ciency of the GLS over its competitors, on the other

hand the mutual e�ciency of the OLS and the within and between estimators. A detailed

investigation has been done for the one regressor (or the orthogonal regressors) case, in

which the e�ciency can be characterized by variance ratios. A further examination of the

multiple (non-orthogonal) regressor case is left for future research. Of course, the precise

ranking of the estimators is indeterminate unless the disturbance variance components

are known. Still, our results may give guidelines about which estimator of the coe�cient

vector to choose when the relative composition of the (co)variation of the regressors into

within and between (co)variation is known and we have estimates of disturbance variance

component ratios, for instance obtained from OLS residuals, even if they are inaccurate.
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