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HOW IS GENERALIZED LEAST SQUARES

RELATED TO WITHIN AND BETWEEN ESTIMATORS

IN UNBALANCED PANEL DATA? �)

by

ERIK BI�RN

ABSTRACT

For a random e�ects regression model with unbalanced panel data, we demonstrate that the

Generalized Least Squares (GLS) estimator can be expressed as a (matrix) weighted average of

estimators which utilize the within individual and the between individual variation in the data

set. We thus generalize a relationship familiar for balanced panel data. Speci�c attention must

be given to the intercept of the regression. We also de�ne an estimator containing the GLS, the

within individual, and the between individual estimators for balanced and unbalanced data as

special cases.

Keywords: Panel Data. Unbalanced panels. Missing observations. Random e�ects.

Generalized Least Squares. Within estimation. Between estimation

JEL classi�cation: C13, C23
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1 Introduction

It is well known from textbook expositions of �xed and random e�ects regression models

with balanced panel data that the Ordinary (OLS) and the Generalized Least Squares

(GLS) estimators of the coe�cient vector can be interpreted as (matrix) weighted av-

erages of the estimators which utilize only the within individual and only the between

individual variation in the data set, often denoted as within and between estimators [see

Maddala (1977, chapter 14-3) and Hsiao (1986, section 3.3.2)]. Unbalanced situations,

however, are more common in practice than balanced ones, in particular when using micro

data, due to entry or exit of respondents, non-response, rotation designs, etc. Therefore,

the interest of this weighting relationship from a practical point of view is somewhat lim-

ited. There exists a growing literature on GLS estimators of random individual e�ects

models in unbalanced situations [see, e.g., Bi�rn (1981) and Baltagi (1985)]. The question

of whether, and possibly how, this estimator can be related to estimators which can be

interpreted as within and between estimators has not been addressed in this literature.

Our focus in this note is on the latter question. We demonstrate that a weighting

relationship for GLS with unbalanced panel data and random individual e�ects similar

to that in the balanced case exists, provided that the within and the between variation in

the data are de�ned in a suitable way. In deriving this estimator, we show that speci�c

attention must be given to the intercept term of the equation. Finally, we present a

general, and easily implementable, estimator which contains the GLS, the OLS, the

within individual, and the between individual estimators for balanced and unbalanced

situations as special cases.

2 Model and estimators

Consider a one-way error components regression model for unbalanced panel data in

which individual i (i = 1; : : : ; N) is observed in Ti periods (not all equal), and let t

denote the observation number (which di�ers from the calendar period if the starting

period of the individuals di�er or if gaps occur in the time series of some of them):

yit = xit� + k + �it; �it = �i + uit;

�i � IID(0; �2�); uit � IID(0; �2);

�i; uit;xit are independent for all i; t;

i = 1; : : : ; N ; t = 1; : : : ; Ti;(1)

where xit is a (row) vector of regressors, � its (column) vector of coe�cients, �i an

individual speci�c random e�ect, and uit a disturbance. Let yi = (yi1; : : : ; yiTi)
0, y =

(y0
1
; : : : ;y0N )

0, Xi = (x0i1; : : : ;x
0

iTi
)0, X = (X0

1
; : : : ;X0

N)
0, etc., and let Im be the m
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dimensional identity matrix and em the (m� 1) vector of ones. The number of observa-

tions, i.e., the number of rows in y and X , is n =
PN
i=1 Ti. Compactly, the model can

then be written

y = X� + enk + �; � = [e 0T1�1; : : : ; e
0

TN
�N ]

0 + u;

E(�) = 0n;1; E(�� 0) = 
;
(2)

where


 = diag(
1; : : : ;
N );(3)


i = E(�i�
0

i) = �2� eTie
0

Ti
+ �2ITi = �2KTi

+ (�2 + Ti�
2

�)JTi ; i = 1; : : : ; N;(4)

`diag' denoting a block-diagonal matrix, Jm = (eme
0

m)=m, and Km = Im � Jm; m =

1; 2; : : : . Since the latter two matrices are idempotent and have orthogonal columns, we

simply have


�1

i =
1

�2
(KTi

+ �iJTi);(5)

where

�i =
�2

�2 + Ti�2�
; i = 1; : : : ; N:(6)

We use the following notation for the within individual, the between individual, and

the total covariation in arbitrary matrices, Z and Q, constructed in the same way as X

above:

WZQ =
NX
i=1

TiX
t=1

(zit � �zi�) 0(qit � �qi�) = Z
0diag(KT1 ; : : : ;KTN )Q;

BZQ =
NX
i=1

Ti(�zi� � �z) 0(�qi� � �q) = Z
0diag(JT1 ; : : : ;JTN )Q �Z 0

JnQ;

T ZQ =
NX
i=1

TiX
t=1

(zit � �z) 0(qit � �q) =WZQ +BZQ = Z
0(In � Jn)Q;

where �zi� = T�1

i

PTi
t=1 zit and �z = n�1

PN
i=1

PTi
t=1 zit = n�1

PN
i=1 Ti�zi�.

Let fX i = (Xi

...eTi) and
fX = (fX 0

1
; : : : ;fX0

N )
0. In the following we do not, however,

include the intercept term and the ones attached to it in the coe�cient vectors and

regressor matrices, as in, e.g., Baltagi (1995, section 9.2), but specify them explicitly in

the formulae. This is essential in de�ning between estimators and decomposing the GLS

estimator into within and between estimators for the unbalanced case.

The OLS and GLS estimators of (� 0 k) 0 are24 b�OLSbkOLS
35 = (fX 0fX)�1(fX 0

y) =

24 PX
0

iX i

P
X

0

ieTiP
e
0

Ti
Xi

P
e
0

Ti
eTi

35�1 24 PX
0

iyiP
e
0

Ti
yi

35(7)

=

24 WXX +
P

Ti�x
0

i��xi�
P

Ti�x
0

i�P
Ti�xi� n

35�1 24 WXY +
P

Ti�x
0

i��yi�P
Ti�yi�

35
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and 24 b�GLSbkGLS
35 = (fX 0fX)�1(fX 0

y)(8)

=

24 PX
0

i

�1

i X i

P
X

0

i

�1

i eTiP
e
0

Ti

�1

i X i

P
e
0

Ti

�1

i eTi

35�1 24 PX
0

i

�1

i yiP
e
0

Ti

�1

i yi

35
=

24 WXX +
P

�iTi�x
0

i��xi�
P

�iTi�x
0

i�P
�iTi�xi�

P
�iTi

35�1 24 WXY +
P

�iTi�x
0

i��yi�P
�iTi�yi�

35 ;
respectively, the last equality following from (5). Since the formula for the partitioned

inverse [see, e.g., L�utkepohl (1996, section 3.5.3)] implies24 A b
0

b c

35�1 =
24 Q �Qb

0

c

�bcQ
b
cQ

b
0

c + 1
c

35 ; Q =

 
A� b

0
b

c

!
�1

;(9)

where A is a symmetric matrix, b a row vector, and c a scalar, (7) and (8) can be written

as b�OLS = [WXX +
P

Ti(�xi� � �x) 0(�xi� � �x)]�1

� [WXY +
P

Ti(�xi� � �x) 0(�yi� � �y)];bkOLS = �y � �xb�OLS ;
(10)

and b�GLS = [WXX +
P

�iTi(�xi� � e�x) 0(�xi� � e�x)]�1
� [WXY +

P
�iTi(�xi� � e�x) 0(�yi� � e�y)];bkGLS = e�y � e�xb�GLS ;

(11)

where

�x =

P
Ti�xi�P
Ti

; �y =

P
Ti�yi�P
Ti

; e�x =

P
�iTi�xi�P
�iTi

; e�y = P
�iTi�yi�P
�iTi

:(12)

Note that the global means occurring in the de�nitions of the OLS and the GLS estimators

di�er when Ti depends on i.

The between and within estimators corresponding to b�OLS and bkOLS , obtained by

running OLS on p
Ti�yi� =

p
Ti�xi�� +

p
Tik +

p
Ti��i�; i = 1; : : : ; N;(13)

and on (1) with the k + �i's considered as N unknown constants, are, respectively,b�B = [
P

Ti(�xi� � �x) 0(�xi� � �x)]�1[
P

Ti(�xi� � �x) 0(�yi� � �y)] = B
�1

XXBXY ;bkB = �y � �xb�B;(14)

and b�W =W
�1

XXWXY :(15)

Note that the disturbances in (13),
p
Ti��i�, are homoskedastic when no individual e�ects

occur (�2� = 0), and heteroskedastic otherwise.
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3 The relationship between the estimators

We next consider the relationships between the estimators (10), (11), (14), and (15).

From (10), (14), and (15) we have

b�OLS = (WXX +BXX)
�1(WXX

b�W +BXX
b�B);(16)

regardless of whether the panel data set is balanced or unbalanced. In the balanced case,

where Ti = T and �i = � = �2=(�2 + T�2�) for all i, it follows from (11), (14) and (15)

that b�GLS = (WXX + �BXX)
�1(WXX

b�W + �BXX
b�B):(17)

We will now derive a relationship for the unbalanced case similar to the latter.

Let vi (i = 1; : : : ; N) be an arbitrary weight for individual i and multiply its equation

in individual means by the square root of this weight, which generalizes (13) to

p
vi�yi� =

p
vi�xi�� +

p
vik +

p
vi��i�; i = 1; : : : ; N:(18)

Running OLS on this equation, we obtain generalized between estimators of � and k24 e�B(v)ekB(v)
35 =

24 P vi�x
0

i��xi�
P

vi�x
0

i�P
vi�xi�

P
vi

35�1 24 P vi�x
0

i��yi�P
vi�yi�

35 ;(19)

where v = (v1; : : : ; vN), which, when we again use (9), leads to

e�B = e�B(v) = [
P

vi(�xi� � ex(v))0(�xi� � ex(v))]�1 [P vi(�xi� � ex(v))0(�yi� � ey(v))] ;ekB = ekB(v) = ey(v)� ex(v)e�B(v);(20)

where ex(v) = P
vi�xi�P
vi

; ey(v) = P
vi�yi�P
vi

:(21)

This brings us to the main result in this note: The estimators b�OLS , b�W b�B, e�B,
and b�GLS are all matrix weighted means of b�W and e�B(v) for a suitable choice of v,

since they all belong to the class

b�(�W ; �B; v) = [�WWXX + �BfBXX(v)]
�1[�WWXX

b�W + �BfBXX(v)e�B(v)];(22)

where �W and �B are arbitrary scalar constants and

fBXX(v) =
P

vi[�xi� � ex(v)]0[�xi� � ex(v)]:
Note that fBXX(v) and b�(�W ; �B; v) are homogeneous in v of degrees one and zero,

respectively, while b�(�W ; �B; v) is homogeneous in (�W ; �B) of degree zero. In particular,
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we have b�OLS = b�(1; 1;T);b�W = b�(1; 0;T) = b�(1; 0; �T );b�B = e�B(T ) = b�(0; 1;T);e�B(�T ) = b�(0; 1; �T );b�GLS = b�(1; 1; �T );
where T = (T1; : : : ; TN) and �T = (�1T1; : : : ; �NTN).

In practical applications, the �i's have to be estimated, which requires estimation of

�2 and �2�. This problem, for unbalanced panel data, is discussed in Searle, Casella, and

McCulloch (1992, section 3.6) and Bi�rn (1999, section 3).

4 Conclusion

Our conclusions then are the following:

1. If we de�ne a modi�ed between estimator of �, (20), by choosing the weight vi

such that the weighted equation in individual means, (18), has disturbances which are

homoskedastic with variance �2, we obtain the between estimator for the unbalanced

panel data set, e�B(�T ). Since var(��i�) = �2� + �2=Ti, this choice inplies vi = �iTi (i =

1; : : : ; N).

2. The GLS estimator for the unbalanced case can be interpreted as a matrix weighted

mean of b�W and e�B(�T ), with weights depending on X . Unlike the OLS estimator for

the unbalanced case, it cannot, however, in general be interpreted as a matrix weighted

mean of b�W and b�B.
3. In the balanced case, in which �T = �(T; : : :; T ), we have fBXX(�T ) = �BXX ande�B(�T ) = e�B(T ) = b�B . This gives the familiar decomposition formula (17).
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