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STANDARD AND NON-STANDARD METHODS IN UNIFORM TOPOLOGY.

By

J.E, Fenstad and A.M. Nyberg.

The purpose of this note is to discuss the relationship
between standard and non-standard concepts in uniform topology.
Wz have, in particular, been interested in the case where the
space carries both an algebraic and uniform structure, e.g. as

in the case of a topological group.

We assume that the reader is familiar with the standard
theory as presented e.g. in [3] and the non-standard theory as

presented in [6].

Recently two contributions to the non-standard approach to
uniform topology have been published ([4], (5]). There seems
to be little overlap with the present discussion. We believe
that our emphasize on the notion of a bounded point leads to a
very clear understanding of the exact relationship between stan-

dard and non-standard concepts.

BOUNDED POINTS

Let (X,7) be a uniform space and let *X be a non-stan-

dard extension of X . By the s-topology on *X we understand

the topology defined by the neighbourhood systems
N,o= [¥U(x) | U <A, x & oxx



Remark, The uniformity 10 can also be defined by an associated
family of pseudo-metrics, éﬂ . And it is easily shown that the

s~-topology is generated by the following family of open sets

in *X ,

where S,(x,r) = {y st da(x,y) <} .

The monad, u(x) , of a point x € *X dis defined to be
the set
u(x) = fA }*U(X) .
Uc %

Remark. Using the associated family of pseudo-metrics we see

that u(x) = {y < *X | d(x,y) ~ 0 for all d € &}

One easily notes that the relation x < u(y) is an equiva-
lence relation on *X which we denote by x ~y . The space

X is Hausdorff iff every monad contains at most one standard

point,

We call x < *X near-standard if x Dbelongs to the monad

of a standard point.

In the sequel we assume that X is Hausdorff in the asso-

ciated topology.

DEPINITION. The set BX of bounded points of *X is defined
to be the closure of X 1in *X with respect to the s-topology,

BXZClSX'



We shall obtain a characterization of B in terms of

Cauchy z-ultrafilters on X .
It is known (see e.g. [2] that to every x € *X there is

associated a unidque z-ultrafilter cﬁx on X , and to every

z-ultrafilter 5?‘ on X there corresponds a point x < *X

(o
such that o = cﬁ; . (é?; is the unique z-ultrafilter which
~=7
extends the prime z-filter é;X = {FcX ! x € *P and FEZX}.)

PROPOSITION. The set of bounded points consists exactly of

those x « *X such that the associated z-ultrafilter is Cauchy,

i.e.

By = [x < *X | J is a Cauchy z-ultrafilter} .

We sketch the proof, Let x ¢ clg X , we have to show
that §g is Cauchy. Pick any U ¢ U, and choose a closed
v € W such that V oV = U and such that *V(x) N X £ & .

Let p € *V(x) N X . We now observe that V(p) € égb, since

x € *V(p) and we may assume that V(p) € Z(X) . And obviously

V(p) x V(p) € U , which shows that é% is Cauchy.

° ;
Conversely, let <% Dbe Cauchy. Let U € U and pick

—

a (symmetric) U, < U, such that U, e U, =U . Since d%

s

is Cauchy, there is a V € &  such that V x VZ U, . It is

S
—

-

now possible to pick an x_ € u(x) such that X € *V . This

shows that (p,x ) € *U; , hence p < *U(x) N X .

Remark, We mention here the following result : X dis complete
iff every bounded point is near-standard. This generalizes the
fact that compactness is equivalent to every (non-standard)

point being near-standard.



THE COMMUTATIVE DIAGRAI.

We noted above that if x € *X , then n(x) contains at

most one standard point. If p dis a standard point in u(x) ,

then p 1is uniquely determined. We call p the standard part

of x , and write p = st(x) .

Let yX denote the completion of X . Then X is imbed-
ded in both *X and vyX and there is a surjection BX - vX

such that the following diagram is commutative:

™
BX ?ﬁyX
W\\\\ //////
T X
The definition of = is immediate: mn(x) , x € B , is the

(N—a
equivalence class of the Cauchy z-ultrafilter &§ in vX .

PROPOSITION. Let (X,70) and (Y,7") ©be uniform spaces, and

assume that (Y,?7*) is complete. Let f: X - Y Dbe a uniformly

continuous map, hence f has an extension to a continuous map

A
f: vX - Y . The following identity is valid for all x ¢ BX :

st(*f(x)) = £(n(x))

As a preliminary remark toward a sketch of the proof, we
note that if f: X - Y is uniformly continuous, then
flu(x)) < u(f(x)) for all x < *X , This follows immediately
from the definition of uniform continuity, and, in fact, charac-
terizes this notion.

(&n—-
Let x ¢ BX be given. Since Jé is Cauchy and Y is



complete, we see that the z-filter

fﬁ(ézé) = {7 € z(Y) | f—1(Z) € g;;} converges toward the point
%(n(x)) in Y . Pick a point x_ such that x_ < *F , for
all P < JZJ. Then x_ £ (X)) and *f(XO) € *¥Z , for all

X
" " A
7z € f Jil. Since f'(é?;) converges to f(n(x)) , we see that

sex) € [ 1wz = (W) = w(E=2)) .
zef'(ﬁg) Ve v

The uniform continuity of f now implies that *(x) € u@f(xo)).
A
Hence *f(x) € u(f(m(x))) , which exactly means that

st(*£(x)) = £(n(x)) .

Remark, This generalizes a result in [2] where we considered
the relationship between *X and the Store-Cech compactifi-

cation 8X of X .,

In the first section of this note we showed that the set
BX , Which was defined as the s-closure of X 1in *X , is the
set of points x such that £, is a Cauchy z-ultrafilter on

S

X . Prom the observations of this section it follows that
A
st d(x,y) = d(=(x) , =(y)) ,

for all bounded x and y and all d in the associated family
of pseudo-metrics. This identity "explains" why the s-topology
as defined by A. Robinson is the appropriate setting for dis-
cussing the completion of metric spaces. It also implies that
x ~y (di.e. x € u(y)) iff n(x) = =(y) .

These observations taken together shows that we obtain the
completion of X as the set of bounded points modulo monads.

Implicit in our observations is also the fact that this non-



standard approach is nothing but the "1lifting" from 8X to *X
of a well-known procedure (see e.g. [3]).

But something may be gained. A, Robinson [7] constructed
R as Qf/Qi , where Q. is nothing but the bounded points of
Q and Qi are the infinitesimals., The important point here
is that the algebraic operations of Q extends to Qe » 1.e.
Qf is a '"nice" substructure of *Q which itself is an elemen-
tary extension of @ . Ve will return to this point in the

next section.

EXTENDING MAPS FROM X TO «vX .

Let as above (X,U) and (Y,7?) be uniform spaces, and
assume that (Y,?V) dis complete. It is known in the metric
case (and fairly straight forward to extend to the uniform case)

that a map f: X - Y is continuous, iff f is s-continuous

for all standard x , or, equivalently, iff f(u(x)) < u(f(x))
for all standard x . Here "standard" can be replaced by "near-

standard®,

And a map f: X - Y 1is uniformly continuous, iff f is

s-continuous for all x < *X , or, equivalently, iff
flu(x)) = u(f(x)) for all x < *X ,
In this section we characterize in a similar way the pro-

-perty of having a continuous extension from X to vX .

PROPOSITION. Let (X,%) and (Y,7) Dbe uniform spaces, and

assume that (Y,?¥) is complete. Tet f be a map from X +to

Y . The following three conditions are equivalent.

(i) f has a continuous extension to vX ,
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(ii) f is s-continuous for all bounded x < *X ,

(1ii) f(u(x)) < u(£(x)) for all bounded x € *X ,

We first prove that (i) implies (ii) & (iii). TLet £ De
the continuous extension of f to X . Ve consider X as a
dense subspace of yX and we work with non-standard extensions
*X ¢ *vX . The map Q is continuous from vX +to Y . Hence
*%” maps near-standard points of *yX +to near-standard points
in *Y , And %%(G(x)) o u(*%(x)) , Tor all near-standard
x ¢ *vyX ., (Here 1 denotes the monad in vX.)

First, note that near-standard is the same as bounded in
*yX since yX 1s complete,

Next, note that X 1is uniformly imbedded as a dense subset
of yX . This means, in particular, that wu(x) , the monad of

. -y . . . A -
a point x & *X , is the restriction of the monad u(x) to *X .

(This follows from the correspondence between entourages in X
and vX,) TFurther, a point =x & *X which is bounded in *X
remains bounded in *yX .,

Putting these things together we see that (i) implies (ii)
and (iii). As an example we verify (iii). Thus let x ©be a
bounded point in *X . Hence x 1is bounded, and therefore
near-standard in vyX . The continuity of % then implies that
*%(ﬁ(x)) c u(g(x)) . Let y < u(x) . Then y < Q(X) , hence
%Q(y) < u(*g(x)) . But *f = *Q P *X , hence *f(y) € u(*f(x)),
which was to be proved.

A

Remark. Since f maps near-standard points of *yX +to near-

—-standard points in *Y , it follows that f maps bounded points

in *X to bounded points in FY ,
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The s-continuity of f on BX implies dimmediately that
f(u(x)) cu(f(x)) for any x = By . 1In fact, let x be boun-
ded and consider an s-open neighbourhood V! of f(x) in *Y .
It then exists an s-open neighbourhood V of x such that
X) Z V' . As u(x) 1is the intersection of all s-neigh-
bourhoods of x and u(x) < BX , we see that f(u(x)) < V' .

f(VvNnB
Since V' is arbitrary, the result follows.

For the final part of the proof assume that f(u(x)) c(fx)
for all bounded x . Let ézv be an arbitrary Cauchy z-ultra-
filter on X . We have to show that
fﬂé?—z {z < z2(y) ! f—T(Z) < 375 is a Cauchy z-filter on Y .
Note first that éf‘: =§; for some bounded point x .

Consider the family £(F.) = (£(8) | F < £} . It
suffices to show that for all V < 7% +there is some F' € f(ﬁ;)
such that F' x F' ZV .

We prove this by contradiction., Assume not: Then there

exists a V ¢ 7/ such that the following (standard) sentence

is true:

(VE)(P € & - (£x£)(F) £ V) .

A familiar type non-standard argument now gives an internal
set P € *JZU such that T = u(x) and such that
(f xf)(FO) Z *V .

Pick a symmetric W < ¢ such that W e W =V . It
follows that (f)(f)(FO) Z *W o ¥ , And since FO = u(x) ,
we further obtain that (f xf)(u(x)) £ *W o *W , We may then
choose points wu,v < u(x) such that (f(u), £(v)) £ *W o *§ ,

which easily implies that f(u(x)) & *W(f(x)) . However,
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u(f(x)) < *W(£(x)) , and the result follows.,

Egggzg. We note the following supplementary characterization
of the set of bounded points: A point x 1s bounded, iff for
all uniformly continuous f: X - R , f(x) is bounded, or,
equivalently, iff for all f: X - R which has a continuous ex-
tension to vX , f(x) is bounded.

It remains to show that if x < *X - BX , then there is
some uniformly continuous f: X - R such that f(x) is not
tounded., DNote that X can be imbedded into a product RI 5
where I ={f: X - R | £ is uniformly continuous?! . If x £ B ,
then Cg; is a z-ultrafilter which is not Cauchy. Hence there
must be some f < I such that prf(é?;) is a base for a z-ul-
trafilter which is not Cauchy. But this means that the z-ultra-
filter cﬁg(x) cannot be Cauchy, hence f(x) is not bounded.

Let X now carry both an algebraic and uniform structure,
e.g. let X ©be a topological group. When is yX an algebraic
structure of the same kind as X ? The answer must be related
to the "degree of continuity" of the algebraic operations. Con-
tinuity is known to be too weak and uniform continuity too
strong. It turns out that s-continuity of the algebraic opera-
tions on the set of bounded points of *X is the right kind
of requirement.

For simplicity assume that X as an algebraic structure
has certain operations f1""’fk and that the axioms which
X is supposed to satisfy are open, positive sentences (e.g. let
X be a group with both group multiplication and inverse opera-

tion). We must now consider maps £ ™ - yX . (Note that



monads and bounded points commute with finite cartesian products,

hence our previous results apply.) The s-continuity of the ope-
rations fr implies that each frA maps bounded points to boun-
ded points. Hence the operations fr , which can be extended

to *X by general model-theoretic considerations, can be re-
stricted to the bounded points, Since s-continuity means that

fr(u(b1),,..,u(b )) < u(f(b1,...,bn)) , the operations f_ can

n r

be further defined on YyX ~ B/u .

And since yX 1is a homomorphic image of a subsystem of
*X , which itself is an elementary extension of X , the syn-
tactic form of the axioms implies that they are also valid in
vyX . Thus in this case the s-continuity of the algebraic ope-
rations ensures that yX 1s an algebraic structure of the same
kind as X , and that the extended operations are continuous
in the associated topology. And in this case the condition of
s-continuity is also necessary.

This includes known results on topological groups and rings.
When the axioms are of a more complicated syntactic character,
the situation becomes more involved. It is perhaps somewhat

doubtful whether a useful general theorem can be stated.
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