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1. Introduction. Let us consider the differtial equation 

( 1 • 1 ) y' (x) = f(x,y(x)) , y(a) = T] 

over the interval [a,b], where f E C([a,b] x !R) and Lipschitz 

continous in the second variable. Then (1.1) has exactly one 

solution y E c1([a,b]) 

Initial value problems for non-linear differential equations 

with large Lipschitz constants are encountered in many applica-

tions. But it often happens that the solution is smooth outside 

a transient phase, inside which there is a rapid variation. 

It is convenient to refer to the general class of problems 

exhibiting this behavior as stiff • 

In integrating stiff equations with a k-step multistep 

method, we have for obtaining the desired accuracy in the 

transient phase, to choose a very small step h • VVhen this 

phase is over, we would then like to proceed with a much greater 

step h .since the solution in this part of the integration 

interval is smooth. But, in general for a k-step method 

we have to impose a strict condition on h ,. a restriction which 

might turn out to be prohibitive if we want to compute the 

approximate solution over a large interval. This phenomenon 

led Dahlquist [1] to introduce a special requirement, 

A-stability; 
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Definition: A k-step method is called A-stable , if all 

solutions of the method tend to zero, as n .... oo , when the 

method is applied with fixed positive h to any differential 

equation of the form 

( 1. 2) 
_, _, 

dx /dt = q x 

where q E C and Req < 0 • 

In many applications this is a very desirable property 9 

but Dahlquist [1] shows that among all linear multistep methods 

whith this property, the trapezodial rule is the most accurateo 

In order to achieve greater accuracy and order we are then 

obliged to study non-linear methods, or methods with non-constant 

coeffisients. 

( 1 • 3) 

( 1. 4) 

We will now show how the Adams - Bashforth's method 

y = m 

q m 
= Yn + h m~O Ym V fn 

1 

(-1 )m J c;s)ds 
0 

can be made A-stable with a very little modification, 

2. Derivation of the formula. 

Linear multistep methods may be characterized in that they 

integrate exactall differential equations of the form 

( 2. 1 ) y 1 (x) = T(x) 

where T(x) is an arbitrary polynomial up to a certain degree. 

We will instead demand the method to integrate exact the more 

general class of differential equations 

(2.2) y 1(x) = -P y(x) + T(x) 

where P is a constant. 

The whole idea is now toapproximate the function 

y 1(x) + P y(x) with the Lagrangian interpolation polynomial 



at the points 

(2.3) 

X . ' n-1 
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i = o, 1, ••• ,q. 

Next we integrate the equation 

(2.4) 1 y (x) + Py(x) = T(x) 

x-x n 
-h-

with T(x) given by (2.3), between xn and xn+ 1 to get 

( 2. 5) -Ph q 
Yn+1 = e Yn + h ~ s \7m(f +Py ) 

m=O mv n n 

where 

(2.6) 

1 

sm = (-1)m e-Ph J ePhs(~)ds • 

0 

In order to find a recurrence relation, numerical values 

and other properties of the coefficients s we use the 
m 

method of generating functions. Let therefore 

(2.7) m 
N(t) = mEo sm t • 

Using (2.6) we find 

(2.8) N ( t) = 8 -P • e • 1- t -1 h Ph ( t-1 
Ph - ln 1-i'T 

Expanding (1-t)- 1 and ln(1-t) in powerseries we obtain 

-Ph 1 e -
Ph (2.9) 

(2.10) 
s . 
n-1 
i - 1} 

for the coefficients sm in (2,6). 

From (2.9) and (2.10) we now see that sm is dependent 

of h and P • But the calculation of sn is not hard; we 

have only to evaluate -Ph e , and then a calculation simular 

to that for Ym gives sm • 

So far we have not said anything about the quantity P • 

The question is ; how to choose P so our new method will be 
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A-stable. To obtain this, let P be an approximation to 

0f;-::, ( ) If h · 1 t · oy x y we ave a Slng e equa lOn · n' n • 
1 y = f(x,y) , y(a) = ~ 

a natural choice of P is 

(2.11) p = fn- f(xn,Yn-1) 

Yn - Yn-1 

However, with this choise of P , we have to evaluate the 

function f at the point (xn,Yn_ 1 ) ; if f is a complicated 

function, the time used for this extra evaluation may be rather 

high. 

For a system of equations, the choice may depend on the 

-Ph efficiency of the routine to evaluate e when P is a 

matrix. 

We then have the following theorem, 

Theorem: The method (2~5) is A-stable. 

..... .... ..... 
Proof: Let f(x,y) = qy with q E c and Re q < 0 . 

Then with p = -q 
' 

f n-i + Py . = 0 n-1 Q.E.D. 

3. The truncation error. 

The truncation error, RSA of the method is defined to be q 

( 3 .1) SA ( ) -Ph ( ) R q = y xn+ 1 - e y xn 

(See Henrici [2] p.p. 203.) Where, if x is dependent of 

Yn' i = x(y(xn)) • 

We will assume that the choice of P is such that 

(3.2) 

Then we easily find 
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( 3. 3) 

Using the error term of the Lagrangian interpolation 

polynomial, (3.2) and (3.3) we find 

(3.4) = hq+2(y(q+2)(x ) - f (x y(x ))y(q+1)(x )) 
n y n' n n 

4. Concluding remark. 

i) The method is A-stable and non-linear. 

ii) The order is q + 1 , as for Adams-Bashforth's method, and 

the error constant is of the same order as which 

tends to 0 as q ... o0 • 

iii) Wl1en P = 0 the method is equal to Adams-Bashforth's method. 

This new method with q = 4 has been tested at the 

problem 

Y' = 

y(O) = 1 

because this differential equation gives the same numerical 

difficulties as stiff equations do. The integration interval 

was [O, 100] • Working with a relative error 10-4 I could 

start with h = 0.25 and increase h to 2 with P 200 

at x = 100 • That's ph~ 400, which we could never obtain 

with Adams-Bashforth's method. 

The same problem has as well been integrated by Adams-

Bashforth's method, q = 4 . In this case ~e had to use 

h ~ 10-3 , and if the integrationtime with our new method 

was t , it now increased to about 3t in the smaller inter­
vals [0, 15] • 
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