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1. A condition A(X) defines a set S implicitly if S 

· 5 I 1 \ ) is the only set which satisfies A, 1.e. 1 XtA(X) (=Is\. 

We note that if A is an arithmetic condition and S is 

implicitly defined by A, then 

n E S ::: \:iX(A(X) ~ n E. X) 

:::3X(A(X)" nE X). 

We shall discuss the following problem: What is the 
1 connection between Li 1 sets and sets defined implicitly by 

an arithmetic condition ? 

The answer is known and is contained in the following 

two results. 

I. ~~ =~(Sets implicitly defined by arithmetic 

conditions). 

II. ~~ + Sets implicitly defined by arithmetic conditions. 

(Here 6Z(Q) denotes the class of sets recursive in some 

member of Q·) 

I is due to c. Spector (2} and II was shown by 

s. Feferman [1]. In this note we give an expcsition of these 

results and present somewhat different proofs. Our proof of 

I is quite direct, the proof of II which we give is in essence 

the same proof as the one given by Feferman, but we have 

adopted a Boolean algebra version which does not explicitly 
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refer to the .notioh of f orcl.ng and generic sets. (The use of 

Boolean-valued logic to obtain independence results in set 

theory is due to o. Scott. That the same technique may be 

used in the first order case is one of the main points of 

this note. We do not claim that our presentation is simpler 

than Feferman's, but we do believe that the way which we 

present the proof may give some insight into the notions of 

forcing and generic sets.) 

2. To prove I we analyze in somewhat more detail the 

inductive definition of the sets Hb' b E 0. It is known that 

~~ equals the class of sets recursive in some Hb. We 

define: 

A(X,a) 

. v. 

• v. 

::. a = 1 1\. '\} X ( <x, 1 > € X ;:: • X = X) 
(a) 

a= 2 ° /\ (a) 0 =f 01\ \jx(<x,a) EX_ 
y(<y, (a) 0 > t: X) 

.dzT (x,x,z) 
(a)2 

a= 3·5 1\ 'lix(<x,a'i EX_ 

We next define: 

(:~oE) A*(X,a) - .A(X,a) A \7'b(b E C(a) ~ A(X,b)) 

Here b E C(a) is the recursively enumerable relation such 

that if a Eo, then b € C(a) ~ .b ~ 0a. 

We now prove 
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1. a E 0: AK(X,a) A. b < 0 a 4 A*(X,b); 

The first statement is trivial by the definition of 

A*. The second is proved by induction on a E 0: 

( i) 

(ii) 

(iii) 

'***) 

a = 1. Then A* = A, 
A 

and thus x(<x,a) E X) = N = 

(a) 
a = 2 ° 1\ (a}o f o. Then (a) 0 E 0 and from 1 • 

follows that A* ( X ,(a ) 0 ) • Hence by induction 

hypothesis ~(<x,(a) 0 '> E: X) = H(a} ' 
0 

definition of A it follows that 

~( <x,a) E X) = xjzTH(a)o(x,x,z) = H • a 

(a) 
a = 3•5 2 • The proof is similar to 

under (ii) and is therefore omitted. 

We may now define 

Aa(X) - • 'lix(x IE X -j x =((x) 0 , (x) 1) 1\ 

((x) 1 =a V (x) 1 E C(a)) 1\ 

A*(x,a). 

and then by 

the one given 

We see that Aa for each a is an arithmetic 

condition with one free set variable x. We shall show 
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3. 1\H() ((x) ). 
X 1 0 

To prove this we note the following sharper version 

of 2: If a € 0 and b ~ a and A:?t(X,a), then 
0 

/I 
x((x,b>€ X) = Hb. This follows immediately from 1 and 2. 

Let now a Eo, Aa(X) and x f x. Then (x) 1 ~ 

and hence, by our remark, H( ) ( ( x) ) • Conversely, if 
X 1 0 

(x) 1 ~ 0 a and H(x) 1((x) 0 ), then by the remark we may 

conclude that ((x) 0 ,(x) 1) ~X, which by the assumption 

Aa(X) yields that x Ex. 
We also note that the set 

a' 0 

satisfies Aa(X), hence the condition Aa' a Eo, is an 

implicit definition. And from the known characterization of 

Ll~ in terms of the hierarchy -{ Hb; bE. 0 f the result I 

follows. 

3. The proof of II is rather more complicated and it will 

be subdivided in several steps. 

A. We first define two languages L and L*. L is the 

usual 1 order language for number theory with four predicates 

R. ' i = 1 ' ••• ,4, corresponding to the arithmetic relations: 
-1. 

"x = y", "x = y' II 

' "x+y = z" and "x•y = z". L:?t is 

obtained from L by adding one set symbol s~ 
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B. We shall give an interpretation of the languages in 

the complete Boolean algebra of regular open sets in 2N. 

If we let A*= 2N-cl{A), then the Boolean operations in~ 

(= regular open sets) are given by: A A B = A~ B, -A= A* 

and 1Ak = (~Ak)**. 
The interpretation of L * in 63 is now defined in 

the following way: 

(ii) d. E 1\ §(k) \\: ·O.(k) = 1; 

(iii) lllcp!! =-II ~II ; 

(v) II 3x{>(x) II= VII tP(i<)ll. 
k 

We assume that the basic properties of <E are known, 

but remark that L in ~ is the same as set-theoretic 

inclusion. Further if u is a finite sequens of o's and 

1 's, we also let u denote the basic neighborhood in 2N 

consisting of all functions c{ such that O(..(i) = u.' 1 

i <. lh(u). - Note that if ot- Ell cf>l\, then there is some u 

such that d.. E:. n s il til, since each II 4 L is open. 

c. We next introduce certain transformations on the 

language L* and on the algebra~. For each kEN let 

Tk~ be the function which equals ~ at each point different 
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from k but differs from c:J... at k. 't k induces a 

transformation on subsets of 2N by l:kA = i ex. € 2N; 

erko~.. E A}. We note the following facts: rck'tk = f(k' 1:k 

commutes with the set-theoretic operations in 2N. 

Lemma. 

The point to prove is that cl(~k A)= ~k(cl A), or 

equivalently cl(A) = ~kcl1kA. 

( 1 ) c.1. e. cl A = . 't:J u( ctE u --? u r'l A :f fl)) 

( 2) c<. E c-c:. kcJ.tkA = V u ( T kcx. e u 4 u n cr kA t ¢) . 

We prove ( 1 ) -t ( 2): Let 'T kd-. e u, then 01. E 'T k u, hence 

by ( 1), <tku n A = ¢. But then u f\ "tkA = 'Tk('tku f1 A) ~ ¢, 

which is the conclusion of (2). 

From this follows that T k commutes with the 

operations in 6~ • 

We now define a transformation, also to be denoted by 

~k' on L* by replacing each occurrence of 2(s) in a 

sentence of L* by 

(s ~ k A S(s)) v (s = k"1S{s)). 

Lemma. 

The proof is by induction on the structure of t . The 

only interesting case is to show that rc k II s Cn) II = 
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U1k(S(~))U. And this may be verified by a simple direct 

computation. 

D. We note that if x is a numerical variable, then 

T x<f' is a formula of L * which we rna y assume contains x 
fre~. Hence 3x['Tx<{>] belongs to L*. 

Let cfl(§.) be an arithmetic conditions on S, we 

have the following result: 

Lemma. 

Assume that n cp(§.) Ill\ 1\. ( -1\Tkct( s) II) > ¢. Then there is some 
k 

u such that 

( i) u c;. n cp( s) u ; 

(ii) N 2 -u; as cl(u) = u. 

Let k0 > lh ( u), then l"[k ( u) = u, and hence 
0 

u = 'tk ( u) S 1. k!lcp(_§.) ll =II 'T kcp(.§.) II <; 2N-u; this contradiction 

proves the lemma. 

E. If U is an ultrafilter in d~ which preserves the 

(countably many) quantifiers in L*, then the map ~ ~ 

6S;U combined with the evaluation in ~ defines a two­

valued model of L K in which <t>(§.) ~ 3 x['1 x~(§.)] is true 

for all formulas ~ • 

In the model §. will be interpreted by a set S, 

defined by the condition 



- 8 -

n € S _ • 1.\ S ( ~) ~\ E U. 

We note that for each k, if sk is the set defined 

by n E sk = .11-rk(.§(n) )II E u, then s + sk, as k € s ;;. . 

k~ sk. 
If A is an arithmetic condition on the set St 

then there is some formula {> such that 4:>(.§) is true in 

the model defined by u. But then 3x[~x~{§)] is also true, 

which means that 't kcl>(.§) is true for some k. But this 

means that Sk also satisfies the condition A. Hence, 

there is no implicit arithmetic definition of the set s. 

F. It remains to define an ultrafilter which produces 

a tl~-set s. 
Let Vx~ (x) be an (effective) enumeration of all 

n 

sentences in 1* of the indicated form. One may then define 

a sequence of numbers k1 ,k2 , ••• such that for all n 

n 

i01 ( II \f X <it ( X ) II v II -, ~ i ( k i ) ll ) f ci. 

The proof is by a simple induction. 

We may then define a function ~ by the following 

recursion: 

~ ( n+ 1 ) 

n 

= l.t k [ 1\ (II ~ xcr. (X) II v lh 4J. ( p ( i) ) II ) 1\ r . 1 1 1 
l= 

(ll'v' x4n+ 1 ( x) ll V li l~n+ 1 (k) H) t fi) J 
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Let ~t be an (effective) enumeration of all 

sentences in L~. Let U be defined through the following 

recursion: 

n 

1\ (U~xq,.(x)llv 1114-(R(i))ll) 
. 1 ~ ~ r 
~= 

We see that U is an ultrafilter in L~ which 

preserves the logical quantifiers. (It is a maximal filter 

which refines the family iii\:Jxfn(x)llvll1cpn(kn)llt.) But then 

U' = i U til ; ~ € U} is an ul traf il ter in the subalgebra of 

db which is generated through the evaluation of L~, and 

it is precisely this ultrafilter we need to know in order to 

define the appropriate two-valued model. 

G. As a first step toward the evaluation of U we note 

the following result. 

Lemma. II 4>11 is an arithmetic union of basic open sets, i.e. 

!.X, E II cpll ; • 3 u~4:;(u) "eX. E: u], where A't is arithmetic. 

The proof is by induction. (One proves that 

ct.E.!I~Ci<1 , ••• ,kn)~;. 3u[AcP(u,k1 , ••• ,kn)" 0(€ u].) The 

main point is the following evaluation: 

N 
C{E 2 cl( J\~11) =. ci~ cl(II4>U) .. 

3u[un ll¢1l = ¢ f\ clE u]. 
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Here: u () !k~ll = ¢ ~ · -, (u n llcpll :f ¢) = 4 

1 (3u1 [Ac:p(u1 ) A u1 n u2 t ¢]) ~ 

Since u1 n u2 + ¢ evidently is arithmetic, the conclusion 

follows. 

Next observe that 1\411 ~ ¢ is 6~ since 

11 cpn t ¢ = . 3 u Vex [ ()( E u ~ CJ.. e- II cp 11 J 
= • 30\ (ot..E (I cpll]. 

(We have used the fact that II~~~ is open.) 

From this we may conclude that the function ~ is 

~ ~, hence the ultrafilter U is also .b. ~ • 

But then the set S is also /).. ~ since 

nE S- .§(n)E U. 

(The appropriate godel-numbering of L~ has been assumed 

carried out.) 

REFERENCES. 

[1] FEFERMAN, s., Some applications of the notion of 

forcing and generic sets, Fund.Math , 56(1965), 

325-345. 

[2) SPECTOR, c., Hyperarithmetical quantifiers, 

Fund.Math., 48(1960), 313-320. 


