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This sunrrnary concerns involutive aigeb:r-as over the complex field {J 

ex-algebras), which are not suppoaed to be provided with any norm or topolo-

gy. In our opinion it presents a natural approach to M.rmonic analysis 

based on such properties which are closely related to the underlying group; 

specifically the multiplication corresponding to the group operation and the 

involution corresponding to the formation of inverses. Thus the applica­

ti0ns are not restricted to the Banach algebras such as 11(G) and M(G) • 

There are connections with operator theory from which rudiments of the 

theory of states and pure states have been transferred. 

The investigation leans heavily on comrexit;y methods, which is natural 

in view of the fact that (the Hermitian part of) a x-algebra has a natural 

partial ordering, order and convexity being essentially the same thing in 

linear spaces. 

.X Paragraph 1 of the present summary treats completely general ::-algebras. 

The paragraphs 2, 3 deal with such x-algebras as we have called unitar;y and 

pre-uni tar;y. 

In a unitar;y x-algebra the structure of a ring and of a partially or-

dered linear space are related by the requirement that there shall be a 

multiplicative identit;y which is also an order~· A x-algebra a is 

pre-unitar;y if the ~-algebra Gt' obtained by adjunction of an identity, 

is unitary. 

The expo~ition is entirely free of proofs, which will be published else-

where. 

We wish to thank the profeMors E. Hevr.i.tt and E. Effros for valuable dis 

cussions. 
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§1o PURE STATES.~ MULTIPLICATIVE FUNCTIONALS 

A linear functional p on a :x--algebra a iS .12£f!.]Jj.v~ if p(r.t) ~ 0 

for all f E Cl • ·.Every positive linear functional p defines a pseudo 
x . 

inner product (f ,g) = p(g· f) which is iYcompatible with irtvolutiorln {ioe. 

it makes left multiplication by i* the adjoint of left multiplication by 

f.). If ~ has an identity e , then every (f,g) compatible with invol­

ution can be deduced in this way from a p , namely p(f) = (f,e) for all 

f 

To every positive linear functional p there is in turn associated a 
.. --+--, 

~~ Np(f) = v p(.f'I') • If (X has an identity, thliln p is bound~d 
r-:-:'\ ' 

in its own semi-norm Np , and it has (functional-) norm equal to vP(e) •. 

In the general case p is ~"ill.Ildt:\.ble to a positive functional p 9 on a' 
if and only if it is bounded in N • In that case we shall use the symbo~ 

p 

C and the term extension coefficient to denote the square of the N -nor~ 
p p . 

of p , and we observe that one may define 

( 1 .1) p' (f + he) = p(f) + /tx' 

where a is any number such that (X ~ c 0 

p 

The convex~ of positive linear functionals which are ~endable in 

CTJ* 0 the above sense, will be denoted by y (If a has an identity, 

then every pos. lin. funct. is extendable.) Recall that the (complex) 

linear span of a fa~ (cfo ((1)) ) of a cone is called an .91:.der ideal. 

Order ideals are important since they determine (linear) order homomorphi~mso 

The order ideal generated by an element p (relo to ~~ ) will be den9ted 
• 

by [p] • Our first result cha:r.acterizes an order ideal ( p] as the set 

of all linear functionals q for which the conjugate quadratic form 

is N -bounded o 
p 

P r o p o s i t i o n 1 • Let p be a positive linear functional on 
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.@: .::t-algebra a with iloientity element. A linear functionAl g on a 
belongs to [ p] if and only if there exists an OC. <: CXJ such that for 

all f E a 

(1.2) 

Recall that a linear operator T on an algebra. (.t conunutes with left 

multiplicatien if 

( 1 ·3) T(fg) = f(Tg) 

for all f,g E ct Recall also that the associate ~ of an operator 

T is define.t on the (algebraic) dual {l. * by 

( 1 .4) rXq (f) = q(Tf) 

for q E- ct and for all f e a. 
P r • p o s i t i o n 2. Let p be a positive lines-:::'_functi onal on 

a .::t-algebra Ct with identity element. If an N -bouJl•5•':', l:i_-;-,,>''!.r oper~tor - JY --~---~ --

conunut es .._o_ th left multi pli c alli;;;:n:.:::s~·--=t.h=en:;.;;__r::-.Jp~E:"-'[i:..lp::..:)~...:. 

Specialized to G*-algebras this gives one half of the proof •f the 

order-isomorphism •f [ p] and the commutant of the representing algebra 

ove-r J-fp ((4 )) . (The other half is an applicati3n •f the Riesz represen­

tation of Hilbert space functionals.) 

Out •f context we also specialize to 
1 

L -group ~lgebras, for which p* 

may be identified with the cone (in L~~) of positive definite functions. 

By Prop. 2, the order ideal of a positive definite function is invariant 

under translation by central elements of the group. Fr.am this one may 

easily deduce that the ~r:_treme, normalized positive def-iiU'te furl6t-i:oiis- p 
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(for which [P] = ([ p ), are characters in the commutative case. However,~! 

this fact will follow more directly from our next result. 

Adopting the terminology of operator algebras, we shall use the word 

state to denote a positive and normalized (i.e. p(e) = 1 ) linear func­

tional on a *-algebra with identity, and we shall use the notation pure 

state to denote an extreme el~ment in the convex set of states. Also we 

shall use the symbol 102 R to denote the set of all those non-zero mul,ti­

plioative linear functionals on a ±-algebra, which are real in the sense 

that they assume real values at Hermitian elements. 

To fix the idea.£wwe recall that for a commutative ~"lach ± -algebra, 

•rf2 R = o02 (the latter consisting of &J: non-zero multiplicative linear 

functionals) if and only if it is syrmnetr:h9 in the sense that (e + rf)-1 

exists for all elements f (or that -rf has a quasi-inverse when the 

algebra bas no identity) ((5, p. 143)). It should be mentioned that many 

important Banach *-algebras fail to be symmetric in the above sense (e.g. 

the measure algebra of any non-discrete locally compact group ((8)) , ((9, 

p. 1 04)) , ( ( 11 ) ) • 

T h e o r e m 1 • The set 66?R of a commutative *-algebra OZ.. with 

~dentity element consists of all pure states p for which multiplication ~~ 

separately (and then jointly) continuous in the corresponding semi-norm N e 
p== 

§2. THE RAIKOV-BOCHNER THEOREM FOR ERE-UNITARY ±-ALGEBRAS 

We shall use the symbol fJJ to denote the convex cone of all ·elements 

:f of a ±_algebra C'l such that p(f) = 0 for every p E :JJ '*. If 

()Z has an identity, then ~ is the closure of the cone generated by all 

~iconjugate squares11 rr in the topology defined by the semi-norms N 
p • 

A positive element of a ±-algebra (/~ is an order unit if it is contained 

in no proper order ideal. 

The concept of a unitar~ and of a pre-unitary *-algebra were defined 

in the introduction, and it is easily verified that a *-algebra ~~ with 

identity e is unitary if every f E ()L admits a finite seguence 
0 
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f E: C.t, and an eX. E fR 
n 

).1. 

~1:. 
~f. f. 

:i;::::O ~ ~ 

such that 

' 

and similarly that a general ~algebra is pre-unitary if every 

admits a finite seguence f 1 , .' ••• ;fn 6: @::, ,, such that_ 

(2.2) 

f E {)... 
0 

It follows by a standard application of the binormial series of the 

square root that every Banach algebra with continuous involution is pre-,. ,. 

unitary (unitary if identity). 

An important necessary and ,sufficient cond~tion is g:i,veq in the following 

P r o p o s i t i o n 3 P 

onl;y_ if every f e a a&nits a positive number ~ such that fer all 
. ' 

E. cn*-P. . .;:r· 

:=:;:. C tX 
p 

For every element f o;f a pre-uni ta;ry x -algebr~ -v;e define 1-' f to be 

the infimum value of the square root of the ppssible bounds <X of (2 .3) • 

By definition of 

(2.4) 

for all f E: Ct 

is valid for all 

vf and of 

I p(r) I 

c 
p 

anq. 'Tf: is the least number for which 
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The normalization condition p(e) = 1 in the definition of states may 

be translated to C = 1 , which is meaningful even if there is no identity~ 
p 

However, the set f pI p E px, Cp = 1} need not be convex in this case. 

It turns out that in the general case the appropriate substitute of the set 

of states is the convex set of sub-~tates 

A non-zero extreme point of X will be called a pure state o This conforms 

to previous notation since every extreme point p of 1{ satisfies 

c = 1 p 
(hence it is a 11 state11 ), and the extension 

y 

p ~ p where 

(2o5) 
i 

p (f + )., e) = p(f) + )v 

ro1r o,' is an affine isomorphism of ~ onto the set of states on L~ , carrying 

the pure states of ~~ ~' JV onto the set of all pure states of ~ 
~ 

by p 
0 

v 
where p ( f + }\. e) = )v • 

0 

delected 

P r o p o s i t i o n 4 o 
x A -algebra Cl is pre-unitary if and 

only if the set (of vwsub-states11 ) is x w -compact o 

P r o p o s i t i o n 5 • The following relation holds for all 

elements f,g 

(2.6) 

of a commutative pre-unitary 

N (fg) 
p 

x -algebra and for any 

In particular, multiplication is separately continuous in the semi-

N f e mx o norm or every p ~ 
p 

From Theorem 1 one may now obtain 

T h e o r e m 2 • The set n2: R of a pre-unitary x -algebra consis.i§. 

of all pure state~. It is locally com]§ct in the x w -topology, and it is 

x w -compact in the unitary case. 
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Let f '3:- f be the restriction to 1)2H of the canonical embedding 

" 
of a into f(p) = p(f) 

This gives a functional representation of the custamary type. Specifically 

one has: 

P r o p o s i t i o n 6 • The mapping f 
::J:. f is a -repres~nta-

::J:. l?t ;:;;-tion of a pre-unitary -algebra ~ onto a dense subset V1 of C0 (il~R) __ • 
/?1 ;:;-

If l..fi-' is unitary (and rYtR ....;;;.c;:;.:om::;Jp;;.;a;;.;c;;..:t~)..~..""'"t.;;.;h:.;;.;e;;;:n.;;..._....;;...vv_-'l:;.;. s;:;......;;d...,.e~n-.s_e_i;;;;n.;..__c_.(_n_c R)_. 

The identification of multiplicative functionals with extreme points 

makes available the Krein-Milman Theorem, which is most readily applicable 

in integral form: Every point in a convex compact set for which the set of 

extreme Roints is closed, is barycenter of a positive normalized measure on 

the set of extreme points. (This is of course a mere specialization of the 

general Choquet Theorem, but it follows from Krein-~lilman's Theorem by a 

simple limit-argument based on 11vague11 compactness, cf. e.g. ( ( 3, p. 34)) ) • 

This gives the general form of the Raikov-Bochner Theorem. 

T h e o r e m 3 • For every extendable uositive linear functional p 

on a commutative pre-unitary ::J:. -algebra (3L. , there is a unique finite 

positive measure ~ 
f p 

(2.7) 

Moreover, p -?· rP may be extended (by linearity) to a linear order 

isomorphism of the linear span of ' ::J:. SD onto the set of all finite measures 

on 0!/ R _ • ._-'an=d~_JI f-l·--=-Cp ~ 
The content of Theorem 3 m~y be rephrased by saying that the set ~ 

(of iisubstates11 ) of a commutative pre-unitary ::J:. -algebr§t a is a compact 

.Qhoguet simplex whose set of extreme points is closed (an r-simplex in the 

terminology of ((1)) ). In particular, the linear span of :P::J:. is a 
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vedor-J,a;ttice (by a known properi.y of simplexes, or directly by Jord~ de-

composition of measures). 

By the definition of rf and by a lmown :ma.x:i.mum principle based on 

the Krein-JY1i1man Theurem, one has 

sup p(rf) 
pElC 

Hence Yf = ~ f lltxJ 
---:\ 

By 

= 

(2 .4) ' f ~ p(f) is uniformly continuou~ 

on a for every p E: p*- ' which gives an alternative pr~of of Theorem 3 

by virtue of the Riesz? Decomposition Thewrem. NQte however, that both 

proofs deper.d on the Krein-llilman Theorem, and they are not essentially 

different. 

It should be noted that in the case of a Banach algebra with continuous 

involution vf is equal t.J the Sflectra_1 .!1Q.Iill of f 0 This can easily be 

verified directly as well. Also Yr is equ~l to the norm used by R. V. 

Kadison in ((9, P• 5)) (i.e. fwr Hermitian elements). 

It is apparent from Theorem 3 that the representation theory for pre­

unitary *--algebras is very s-.tisfactory as long as we rest;:-ict (Yurselves 

to study the c~rder theGretic) ~' i.e. the linear span ef p*- in 

f?J x • A 1./Y well behaved representation theory for will require stron-

ger axioms (relating ring stru::ture and orc1P-rin:-"), and it will be discussed 

in a subsequent note. 
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