
 
 

Variation in testis size and sperm morphology in 
the bluethroat, Luscinia svecica svecica 

 
 
 
 

Master of Science thesis in Zoology 
by 

Terje Laskemoen 
 
 
 
 
 

 
 
 
 
 
 

Department of Zoology 
Natural History Museum 

University of Oslo 
2005  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30841447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Forord 
 
Denne masteroppgaven er gjennomført ved Zoologisk Museum, Universitet i Oslo, i 

perioden januar 2004 til november 2005. Feltarbeidet ble utført ved Zoologisk Museums 

utmerkede feltstasjon i Øvre Heimdalen våren 2004. Mikroskopering ble utført ved 

museets nye mikroskopirom av undertegnede.  

En stor takk til min veileder Jan T. Lifjeld for smittende engasjement hele veien 

og meget god oppfølging og tilbakemelding under skrivingen. Tusen takk til stipendiat 

Frode Fossøy for godt samarbeid i felt, kjøring av mikrosatelitter og nyttige råd og 

tilbakemeling under skrivingen. Arild Johnsen, Geir Rudolfsen, Roger Dahl, Magnus 

Snøtun, Bjørnar Beylich og Joachim T. Johansen takkes for all hjelp og hyggelig selskap 

i felt. I tillegg takkes professor Tor A. Bakke for lån av det flotte mikroskopiutstyret, og 

Kjetil Olstad og Grethe Robertsen for opplæring på det nevnte utstyret. Må heller ikke 

glemme mine medstudenter på lesesalen; Grethe, Joachim, Erik Brenna og Ruth Helene 

Kongsbak, takk for en meget hyggelig tid på lesesalen ved Zoologisk museum. Og sist, 

men ikke minst, takker jeg min samboer Cecilie Mathiesen og vår lille Kasper for all 

støtte og tålmodighet med meg den siste tiden før innlevering av denne oppgaven. 

Oppgaven er skrevet på generell artikkelform med tanke på fremtidig publisering. 

Referanselisten og siteringer følger tidsskriftet Proceedings of the Royal Society of 

London Series B-Biological Sciences 

 
Tøyen,  2005 
 
 
Terje Laskemoen 

 2



Table of contents 
 
Abstract.............................................................................................................................. 4 

Introduction....................................................................................................................... 5 

Materials and methods ..................................................................................................... 8 

Study area and species .................................................................................................... 8 

Field procedures.............................................................................................................. 9 

Plumage measurements................................................................................................. 10 

Genetic analyses............................................................................................................ 10 

Sperm measurements .................................................................................................... 11 

Statistical procedures .................................................................................................... 12 

Results .............................................................................................................................. 13 

Testis characteristics ..................................................................................................... 13 

Seminal glomera characteristics ................................................................................... 14 

Sperm characteristics .................................................................................................... 15 

Discussion......................................................................................................................... 17 

References........................................................................................................................ 23 

Tables and figures ........................................................................................................... 29 

Appendix.......................................................................................................................... 39 

 3



Abstract 

In this study I examined intra-specific variation in primary sex traits in male bluethroats 

(Luscinia svecica svecica), a passerine species with a high intensity of sperm 

competition, The single most important predictor of the size of testes and seminal 

glomera was male age (yearlings versus older). This finding suggests that older males 

have higher sperm production rates, which may allow for higher copulation rates and/or 

larger ejaculates than in younger males. Previous findings of older males having a higher 

extra-pair fertilization success, and similar paternity loss in own nest as younger males 

despite less intense mate guarding, contribute to a general pattern of age-dependent sperm 

competition investments in male bluethroats. None of the measured conditional variables 

(body mass, haemoglobin, haematocrit), nor the body size variables (wing length, tarsus 

length, scull length) correlated significantly with testis size. The bluethroat sperm were 

relatively long (216.4 µm, n=46, SD=3.1µm) as expected for a species with intense sperm 

competition. Between-male variation in average sperm length was considerably larger 

than the within-male variation in individual sperm length. However, the between-male 

coefficient of variation in mean sperm length was considerably lower than that reported 

recently for another passerine with low intensities of sperm competition. More species 

should be examined to test for a possible relationship between inter-male variation in 

sperm length and the intensity of sperm competition. 
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Introduction 
 
Sperm competition can be defined as the competition between the sperm of two or more 

males for a given set of ova (Birkhead & Møller 1998; Parker 1970; 1984). This 

definition accounts for the fact that sperm competition also occurs in externally fertilizing 

species, such as sea urchins and various species of fish. Birds usually exhibit high levels 

of sperm competition despite having a socially monogamous mating system (Birkhead & 

Møller 1992). Normally, sperm competition in birds occurs through extra-pair copulation 

(EPC), but sperm competition can also arise through rapid mate switching (Birkhead et 

al. 1998; Birkhead & Møller 1992). Passerine birds are favoured models of sperm 

competition due to the high frequency of EPC behaviour (Griffith et al. 2002). As a 

matter of fact, only 14% of the species reviewed in Griffith et al. (2002) are truly 

monogamous, and genetic polyandry occurs regularly in the remaining 86% species.  

Sperm competition will generate a selection pressure on the males’ behaviour, 

anatomy and morphology to ensure fertilization and paternity. Relatively large testes, 

large sperm stores, long spermatozoa, mate guarding and frequent copulations are all 

male adaptations to intense sperm competition (Birkhead et al. 1998). Testicular size in 

birds is likely to affect the individual bird’s success in sperm competition as large testes 

are thought to produce high sperm numbers and thus facilitate frequent copulations and 

large ejaculates (Birkhead & Møller 1992; Briskie 1993; Møller 1988; 1991; 1994).  

In many bird species older males (second breeding season or older) tend to have 

larger testes (mass and volume) than yearling males (first breeding season) (Birkhead et 

al. 1997; Deviche et al. 2000; Evans & Goldsmith 2000; Graves 2004; Merilä & Sheldon 

1999). The implications of this fact are still unknown, but it has been hypothesized that 
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the reproductive capacities of yearling passerines may not be equivalent to those of older 

males (Graves 2004).  

Another testicular trait documented in many bird species is that the left testis often 

is larger than the right one (Birkhead et al. 1997; Graves 2004; Møller 1994). Møller 

(1994) found that this asymmetry was positively correlated with expression of secondary 

sexual characters. He hypothesized that the right testis increases in size to compensate for 

reduced function of the left one and suggested further that the degree of directional 

asymmetry in testicular size reflects male quality.    

Sperm morphology, and especially sperm length, can have important impact on 

sperm competition (Birkhead et al. 1998). Although no studies have actually shown that 

longer sperm swim faster than shorter sperm within species, comparative studies show 

that sperm length increases with level of EPC and extra-pair paternity (EPP) across 

species (Briskie et al. 1997; Johnson & Briskie 1999). This correlation could imply that 

long sperm is selected through sperm competition. One should thus expect relatively low 

variation in sperm length between different males of species and similarly low variation 

between sperm within individual males. To this date surprisingly few studies have been 

conducted on intra-specific variation in sperm length. In a recent study, Birkhead et al. 

(2005) showed that the zebra finch (Taeniopygia guttata) exhibits a considerable 

variation in both sperm length and sperm phenotype (head-, mid-piece- and tail length). 

Sperm competition is not very intense in the zebra finch (Birkhead et al. 1990), and thus 

the species may have been subject to weak selection on sperm length (Birkhead et al. 

2005). Birkhead et al. (2005) called for more work on sperm design in more promiscuous 

passerine birds. 
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The bluethroat (Luscinia svecica svecica) is a monogamous species with strong 

tendencies to EPC behaviour, with 19-32% of the chicks being sired by extra-pair males 

(Johnsen et al. 2001; Krokene et al. 1996). Hence sperm competition is intense. Previous 

studies have documented that mate guarding is a well-developed paternity guard in the 

species (Johnsen et al. 2003; Krokene et al. 1996). Little is known about copulation 

behaviour and copulation frequency, but intense sperm competition should select for 

increased sperm production and competitive spermatozoa. Analyses of male fertilization 

success have revealed that there are few if any morphological traits that co-vary with 

fertilization success, except that male age is a strong predictor of male extra-pair 

fertilization (EPF) success (Johnsen et al. 2001).  Thus, the bluethroat is a good candidate 

for studying variation in testis size and sperm length, and how the variation in these traits 

relates to male age, as well as morphological characters.  

The aim of the present study is to quantify the variation in size of the testes and 

sperm length in the bluethroat and test for possible correlations with various 

morphological and conditional traits, age and indicators of genetic quality. Based on 

patterns reported in other species, three particular predictions could be made; I. Due to 

the intensity of sperm competition the bluethroat should have relatively long spermatozoa 

and the intra- and inter-male variation in sperm length should be low, II. Older males 

should have larger testes than yearling males. III. The left testis should be larger than the 

right testis, and the directional asymmetry should be correlated with secondary sexual 

characters. 
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Materials and methods 

Study area and species 
 
The field work was carried out in the valley Øvre Heimdalen (61º25’N, 8º52’E), Øystre 

Slidre municipality, Oppland county, Norway, from 18 May to 21 June 2004. The study 

area is located at an altitude of about 1100 m a.s.l. The area is dominated by dwarf birch 

Betula nana, willows Salix spp. and juniper Juniperus communis. In addition there is a 

belt consisting of mountain birch Betula pubescens tortuosa (Vik 1978). 

The bluethroat is a migratory, relatively small passerine belonging to the family 

Turdidae. The species is sexually dichromatic, with males of this subspecies having a 

bright blue throat with a chestnut round patch in the middle and a chestnut band below 

(RB). Females have a paler throat with less blue and the chestnut colour is usually 

missing. It is a socially monogamous and territorial species. Males arrive on the breeding 

grounds in the middle of May (about a week prior to females), and initiate territory 

activities. The population in Øvre Heimdalen has been thoroughly studied since 1991, 

and the breeding density has been estimated to 23-38 breeding pairs per km2 (Anthonisen 

et al. 1997; Johnsen et al. 2000). Females start nest building soon after pair formation. 

The female builds the nest alone in dense vegetation on the ground, and incubates 5-7 

eggs for 13-15 days without male assistance (Johnsen & Lifjeld 1995). Both parents feed 

the nestlings, which stay in the nest for 10 to 14 days (Anthonisen et al. 1997). 
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Field procedures 
 
Adult males were caught in their territories using mist nets, caged and transported to the 

lab. All birds were caught within a three-week period (1-21 June) that corresponds to the 

period in which egg-laying is initiated and males certainly are sexually mature. Cages 

were supplied with a Petri dish containing mealworm larvae, Tenebrio molitor. In the lab 

the birds were measured (body mass, wing length, tarsus length and RB), aged (yearling 

or older; (Svensson 1992)), and a blood sample (approx. 50 µl) was taken by brachial 

venipuncture. Haemoglobin was measured using HemoCue B-Hemoglobin Photometer 

(HemoCue AB, Ängelholm, Sweden), and haematocrit was measured using a digital 

calliper (amount red blood cells/amount total blood) after centrifugation of the micro 

capillary for approx. 2 minutes. The remaining blood sample was stored in lysis buffer 

for later genetic analyses. The birds were sacrificed by cervical translocation and then 

carefully dissected. Right and left seminal glomerus (the coiled distal ends of the vas 

deferens), right and left testis and liver were weighed to the nearest 0.001 g using a 

digital scale (Sartorius Talent TE153S Sartorius AG, Goettingen, Germany). The left 

seminal glomerus was carefully opened using a scalpel and a sample of sperm was fixed 

in Glutaraldehyd for later analyses of sperm length. A sample of living sperm was taken 

as well, and sperm motility was analysed (F. Fossøy, G. Rudolfsen, T. Laskemoen & J. T. 

Lifjeld in progress). 

Right and left testis were measured to the nearest 0.1 mm using a digital calliper. 

Figure 1 illustrates the typical shape of the bluethroat testes, left testis bean-shaped and 

right testis pea-shaped. Three measures were taken; length, breadth1 and breadth2 

(perpendicular to each other), and further calculated to radiuses (r1, r2 and r3 respectively). 
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Testis volume was calculated according to the equation; (testis volume (mm3) = 1.33π 

r1(mm) r2(mm) r3(mm)), (assuming an ellipsoidal testis shape) derived from Møller 

(1991). Volume of testes = left testis volume + right testis volume. In the analyses of 

testis size and correlations between testes and other variables, data from testis mass were 

used due to the more exact value of testis size given by the digital scale. Calculations of 

testis volume and t-tests of testis volume between yearlings and older males can be found 

in the appendix (table B). After dissection each bird was frozen for later measurements of 

plumage traits and skin preservation. During preservation scull length was measured 

using a calliper. 

 

Plumage measurements 
 
The reflectance from the blue feathers in the throat patch was measured using a 

spectroradiometer, Ocean Optics USB2000 spectrometer, PX-2 pulsed xenon light source 

connected by a bifurcated fibre optics cable, (Ocean Optics BV, Duiven, The 

Netherlands). The methods for these reflectance measurements and the calculation of 

objective colour parameters (chroma, UV chroma hue and brightness) can be found in 

Johnsen et al. (2001). 

 

Genetic analyses 
 
DNA was extracted from blood using QIAamp® DNA Blood Kit (QIAGEN, Venlo, The 

Netherlands). A total of 10 microsatellite markers were amplified by polymerase chain 

reaction (PCR) on an ABI Prism® GeneAmp PCR System 9700 (Applied Biosystems, 
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Foster City, U.S.A.), and ran on an ABI Prism® 3100 Genetic Analyser (Applied 

Biosystems) using fluorescently labelled primers. Allele sizes were determined using ABI 

Prism® GenemappperTM Software version 3.0 (Applied Biosystems). Standardized 

heterozygosity (SH) (Coltman et al. 1999) and standardized mean d2 (Sd2) (Amos et al. 

2001) was calculated. A more thorough description of the genetic analyses can be found 

in Fossøy et al. (in progress). 

 

Sperm measurements 
 
The sperm fixated in glutaraldehyd were prepared on a microscope slide and allowed to 

dry over night. A Leica DC 500 camera mounted on a Leica DM 6000B stereo 

microscope was used to photograph the sperm cells at a magnification of 320 X. A total 

of 30 sperm cells from each male were identified and photographed. All sperm cells were 

measured by using the Leica IM1000 software system provided by Tamro MedLab AS, 

Norway. Abnormal sperm cells (broken tail, damaged or missing acrosome) were not 

photographed. Passerine sperm are characterized by having a helical shaped head 

(acrosome + nuclear region) and straight flagellum (midpiece + tail), or both helical 

shaped head and flagellum (Koehler 1995). Bluethroat sperm is characterized as the 

latter, with helical shaped head and flagellum (figure 2). When examining passerine 

sperm it is hard to distinguish the midpiece and the tail from one another, and in this 

study I concentrated on the flagellum and total sperm length. Hence midpiece + tail are 

called flagellum in this paper. Two measures were taken; head length and flagellum 

length, combined giving the total length. When measuring flagellum and head length, a 

path tool in the Leica IM1000 software was used, as illustrated on the flagellum in figure 
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2a. Figure 2b & c illustrates one sperm cell from the individual exhibiting the shortest 

sperm cells, and one sperm cell from the individual exhibiting the longest sperm cells.  

 

Statistical procedures 
 
Statistical analyses were performed using STATISTICA version 6.1 (StatSoft, Inc). 

Constructions of graphs were done using Origin® v7.0300 (OriginLab Corporation). 

Nonparametric tests were used on data that were not normally distributed. All tests were 

two-tailed and the null hypotheses were rejected at p<0.05. 

 12



Results 

Testis characteristics 
 
The bluethroats in the present study had a mean mass of testes (TM) of 0.171g (n=47, SD 

±0.045g). Coefficient of variance ( 100*
x̂

SDCV = ) was calculated to 26.2, illustrating a 

substantial variation in testis size. One potential source of variation is different stages of 

testicular development among the males included in the study. This would be indicated 

by a positive relationship between testis size and collection date.  However, no such date 

effect was revealed (figure 3). 

 There was no difference in mass between right and left testis (table 1). In order to 

test Møller’s (1994) directional asymmetry hypothesis, directional asymmetry (DA) was 

calculated (left testis – right testis) and correlated with secondary sexual characters (RB 

and UV chroma). None of the two correlations were significant (Linear regressions: RB: 

n=47, r=-0.002, p=0.99; UV chroma: n=47, r=-0.03, p=0.85). Thus, Møller’s (1994) 

directional asymmetry hypothesis was not supported.  

Older males had significantly larger testes than yearlings (table 2).  No significant 

differences between older males and yearlings were revealed with respect to measures of 

testis asymmetry, although there was a trend with yearlings having a higher degree of 

directional asymmetry (DA) than older males (table 2). 

One of the males caught showed an extreme testis asymmetry with the right testis 

weighing more than twice as much as the left testis (right testis: 0.224 g and left testis: 

0.090 g). In addition I was unable to find any sperm cells in either of the seminal glomera 

of this male. Thus the male was classified as infertile and not included in the analyses. 
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I also tested whether standardized heterozygosity (SH) had any effect on TM. SH 

and TM were not significantly correlated (figure 4). Neither of the condition measures 

(body mass, haemoglobin and haematocrit) nor the body size measures (tarsus length and 

scull length) were significantly correlated with TM (Linear regressions: body mass: n=47, 

r=0.09, p=0.55; haemoglobin: n=47, r=-0.14, p=0.35; haematocrit: n=45, r=-0.18, p=0.22; 

tarsus: n=47, r=0.17, p=0.26; scull: n=33, r=0.25, p=0.17). The last body size measure, 

wing length, was positively and significantly correlated with TM (n=47, r=0.29, p<0.05). 

However this is explained by the fact that older males have significantly longer wings 

than yearlings (Appendix, table B), and when running linear regressions after dividing 

into the two age classes, none were significant (yearlings: n=22, r=0.09, p=0.69; older 

males: n=25, r=0.08, p=0.69). 

After running separate Analyses of covariance (ANCOVA’s) with TM as 

dependent variable, age class as categorical and one and one of several continuous 

variables, age class shows as the only significant variable predicting TM (Appendix, table 

A). 

 

Seminal glomera characteristics 
 
Mean seminal glomera mass (SGM) was measured to 0.080g (n=45. SD=0.019). CV was 

calculated to 24.3, illustrating a considerable variation in this trait as well. SGM could 

also have been affected by a date effect as they may require some time to be filled after 

the testes have reached full size. However no date effect on SGM was found (figure 5). It 

therefore seems evident that all the collected birds had fully developed reproductive 

organs. No difference in right and left seminal glomerus was found (table 1). 
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 Older males had significantly larger seminal glomera than yearlings (table 2). In 

addition TM and SGM was positively correlated (figure 6), providing support for more 

sperm production in larger testes. TM and SGM were significantly correlated in older 

males, but not in yearlings (figure 6). 

 

Sperm characteristics 
 
Mean sperm length was measured to 216.5 µm (n=46, SD=6.0). The sperm length dataset 

was tested for normal distribution using a Shapiro-Wilk’s test (W=0.98, p=0.42), giving 

support for normal distribution. I found a substantial variation in sperm length between 

the different bluethroat males (197.4 µm – 232.8 µm), but the variance within each male 

were relatively low (SD around 3.1 µm) (figure 7). There were significant differences in 

sperm length between males (one-way ANOVA F1,45 =112, p<0.001), with a repeatability 

(Lessells & Boag 1987) of r=0.79. The CV for mean sperm length among males was 3.1.  

As predicted there were no differences in sperm length between older males and 

yearlings (table 1). In addition sperm length was not significantly correlated with testes 

mass  (figure 8). Neither of the measures body mass, haemoglobin, haematocrit, wing 

length, scull length and SH were significantly correlated with sperm length (Linear 

regressions: body mass: n=46, r=0.09, p=0.53; haemoglobin: n=46, r=-0.09, p=0.53; 

haematocrit: n=44, r=-0.03, p=0.85; wing length: n=46, r=-0.24, p=0.11; scull length: 

n=33, r=0.07, p=0.69; SH: n=46, r=-0.06, p=0.70). Surprisingly, tarsus length was 

significantly correlated with sperm length (n=46, r=0.35, p=0.02). However, it is difficult 

to explain the biological meaning of this correlation, and after applying a Bonferroni 

 15



adjustment (0.05/7) the α-level should be set to 0.007, thus implying that the correlation 

was not significant.     
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Discussion 
 
This study has documented a large between-male variation in several primary sexual 

traits in the bluethroat. Given the fact that sperm competition is intense in the species 

(Johnsen et al. 1998; Johnsen et al. 2001), it was interesting to test whether components 

of this variation were correlated with secondary sexual traits, age, condition or indicators 

of genetic quality. I found a strong age effect on the size of testes and seminal glomera, 

whereas no other correlates were significant. Neither did I find any correlates of 

directional asymmetry in testis size. Sperm length varied considerably between males, but 

was highly repeatable within males. Sperm length did not correlate with male age or any 

other phenotypic traits. 

 Average TM in the bluethroat was 0.17 g., This value is lower than that reported 

by Møller (1991; 0.24 g) and lies between the phylogenetically related common redstart 

Phoenicurus phoenicurus (testes mass 0.10g) and the stonechat Saxicola torquata (testes 

mass 0.30g) (Møller 1991). The expected TM for a body size of 17 g (mean body mass of 

the birds caught in this study) is 0.28 g, according to regression equation in Møller 

(1991). This suggests that the TM in the bluethroat is somewhat lower than expected for 

its size. 

 Larger testes in older birds (second breeding season or older) was expected due to 

the findings from several other species (e.g. greenfinch Carduelis chloris (Merilä & 

Sheldon 1999), black-throated blue warbler Dendroica caerulescens (Graves 2004), 

sedge warbler Acrocephalus schoenobaenus (Birkhead et al. 1997), dark-eyed junco 

Junco hyemalis (Deviche et al. 2000), wren Troglodytes troglodytes (Evans & Goldsmith 

2000) and barn owl Tyto alba (Roulin et al. 2004)). A possibly more important finding is 
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that seminal glomera also were larger in older males. This is more seldom reported from 

other studies, although Birkhead et al. (1997) reported a significant positive correlation 

between age and seminal glomera mass in the sedge warbler. There is support for 

increasing number of sperm when testes increase in size (Birkhead & Møller 1992; 

Briskie 1993; Møller 1988; 1989; 1991; 1994). In addition earlier studies have found 

increasing number of sperm with increasing size of the seminal glomera (Birkhead et al. 

1993; Sax & Hoi 1998). The seminal glomera functions as storage for mature sperm, 

ready to be ejaculated during copulation (Birkhead et al. 1994). Especially if sperm 

competition by numbers is the most important factor, larger seminal glomera may give 

older males a significant advantage over yearlings during copulations due to the relatively 

larger number of sperm ejaculated. They may also produce a higher number of ejaculates 

per day. Both of these possible advantages experienced by older males may explain why 

older males have a higher EPP success than younger males in the bluethroat (Johnsen et 

al. 2001), as well as in other species (e.g. purple martin Progne subis  (Wagner et al. 

1996); Bullock’s orioles Icterus galbula bullockii (Richardson & Burke 1999)). 

 Earlier hypotheses have emphasized experience with age as an important variable 

explaining why older males sire significantly more EPO than yearling males (Johnsen et 

al. 2001; Richardson & Burke 1999), or even older males being the only males in a 

population siring EPO (Wagner et al. 1996). It is also a possibility that yearling males do 

not invest much effort in EPC behaviour during their first breeding season. This can be 

due to their lack of experience and their relatively less developed reproduction organs 

(smaller testes and smaller seminal glomera than older males). Hence a somewhat 

speculative theory can be that yearlings trade off effort in EPC behaviour and 
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development of reproduction organs during their first breeding season with gaining 

experience, guarding within-pair paternity (WPP) and survival. In addition to the finding 

of older males achieving more EPP than yearlings (Johnsen et al. 2001), it has been 

shown that yearlings mate guard at a significant higher rate than older males in the same 

bluethroat population (Johnsen et al. 2003). Further, there is no age difference in 

achieving WPP (Johnsen et al. 2003), and this may indicate that an increase in mate 

guarding intensity compensates for lower sperm production in the yearlings in the sperm 

competition.  

So far I have only focused on the males’ behaviour and morphology as predictors 

of paternity. If female choice occurs and some males are favoured over others, the sperm 

competition and paternity competition may be biased. Earlier studies have found 

significant differences between the two age classes in secondary sexual characters such as 

width of RB and UV chroma (Johnsen et al. 2001). In this study there was no difference 

in RB (Appendix Table B), but significantly higher value for UV chroma in the older 

males (Appendix table B). In addition it has been shown that males with experimentally 

blackened throat patch had lower pairing success than control males (Johnsen & Lifjeld 

1995) and males with artificially reduced UV reflectance had lower success in attracting 

social mates, and furthermore had lower success in achieving extra-pair fertilizations 

(Johnsen et al. 1998). But it is important to remember that these manipulations were 

considerably outside of normal variation, and may even have influenced the species 

recognition. And given the fact that normal variation in coloration does not correlate with 

paternity success (Johnsen et al. 2001), it seems unlikely that female choice on male 

coloration and ornamentation plays an important role in the sperm competition.   
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The EPC-mating system in the bluethroat population of Heimdalen has shown to 

increase the heterozygosity of the extra-pair young (EPY) compared to the within-pair 

young (WPY) (Lifjeld et al. unpublished data). In addition an earlier study from the same 

population has shown that EPY have higher immunocompetence than WPY (Johnsen et 

al. 2000). When correlating SH (as a proxy for “genetic quality”) with TM in the present 

dataset, no significant relationship was found, nor when dividing into the two age subsets.  

Earlier studies have supported the prediction that increased risk and intensity of 

sperm competition can favour increased sperm length in e.g. insects (Gage 1994), frogs 

(Byrne et al. 2003), and some mammals (Gomendio & Roldan 1991). In birds, sperm 

length has shown to correlate positively with level of EPC and EPP in passerines (Briskie 

et al. 1997) and in a study of  shorebirds, sperm were significantly longer in 

nomonogamous than in monogamous species (Johnson & Briskie 1999). A study of 20 

species of North American passerines revealed no relation between sperm size and 

mating system (Briskie & Montgomerie 1992). However, Briskie & Montgomerie (1992) 

used mating system, and not level of EPP, as a proxy for sperm competition. An example 

of the disadvantage of that definition of sperm competition is the later revealed level of 

EPP in one of their monogamous species, tree swallow (Tachycineta bicolour), with 38% 

EPY and 50% broods containing EPY (Lifjeld et al. 1993). In addition the tree swallow 

exhibits relatively long sperm (approx 250 µm) (Briskie & Montgomerie 1992). The reed 

bunting (Emberiza schoeniclus) exhibits the highest reported frequency of EPP for 

socially monogamous species (Griffith et al. 2002), namely 55% EPY and 86% broods 

containing EPY in a population in Great Britain (Dixon et al. 1994). And the sperm 

length (292 µm) of the reed bunting is among the longest reported in birds (Briskie et al. 
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1997). In comparison, the zebra finch exhibits short sperm (approx. 60 µm) (Birkhead et 

al. 2005) and low intensity in sperm competition (Birkhead et al. 1990). The sperm 

length of the bluethroat revealed in the present study (216 µm) together with the earlier 

revealed frequency of EPP in this population (19-32%) (Johnsen et al. 2001; Krokene et 

al. 1996), coincide well with earlier findings of positive relationship between sperm 

competition and sperm length (Briskie et al. 1997; Johnson & Briskie 1999).   

Having found that testis size is age-dependent in the bluethroat, it would have 

been interesting to study the development of the testes over subsequent breeding seasons. 

Measuring testis size in living birds can be a challenge, but earlier studies have shown 

successful laparotomy on both captive and free living birds (Bailey 1953; Partecke et al. 

2004; Wingfield & Farner 1976). Briefly, the laparotomy method implies a small incision 

on left side of the bird between the last two ribs, thus permitting a satisfactory view of the 

left testis and allowing measurement of testis length (Bailey 1953). A recent paper 

describes a simple technique of collecting sperm from fresh faeces of the birds (Immler & 

Birkhead 2005). This method would be preferred over other methods due to the less 

handling and manipulation of the bird. However, this method excludes the possibility of 

measuring sperm motility as the sperm most likely are killed or influenced in other ways 

after mixing with the faeces. If measurements of sperm motility are included as an aim in 

the study, one should probably seek another method of obtaining living sperm. 

Abdominal massage, a method which has been used successfully on passerines 

previously (Tuttle et al. 1996; Vernon & Woolley 1999), could be the solution. To be 

able to carry out such a study over subsequent breeding seasons one would need a 
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philopatric study species. The return rate of bluethroats in Heimdalen is approx. 20% (J. 

T. Lifjeld pers. comm.), quite low but a study as mentioned above should be feasible.  

In conclusion, the present study shows that both testis mass and seminal glomera 

mass are age-dependent in the bluethroat. The positive relationship between testis mass 

and seminal glomera mass revealed together with the fact that larger testes and larger 

seminal glomera are associated with larger number of sperm, may indicate that older 

males experience an advantage in sperm competition with yearling males. The bluethroat 

possesses relatively long spermatozoa compared to other passerines, and in combination 

with the high frequency of EPP in this species it provides support for earlier findings of 

positive relationship between frequency of EPP and length of sperm. Future studies 

should seek to find relationships between sperm motility and other variables in the 

bluethroat (already in progress (Fossøy et al.)). In addition, measurements of testes 

development over subsequent breeding seasons together with already known data on 

behaviour of the males would be valuable in order to understand the role of male factors 

in EPC behaviour and sperm competition.   
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Tables and figures 
 
Table 1. Comparisons of right and left testes and seminal glomera. Two-sample  
t-tests assuming equal variances 
 
 Left Right   
Variable Mean SD n Mean SD n t-value p 
TM (g) 0.087 0.023 47 0.083 0.024 47 0.77 0.44 
SGM (g) 0.040 0.010 45 0.039 0.011 45 0.33 0.74 
 
TM=mass of testes, SGM=seminal glomera mass. Both tests two tailed. 
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Table 2. Means and standard deviation of testicular measurements of older male and 
yearling Bluethroats. Two-sample t-tests assuming equal variances 
 
 Older males  Yearlings   
Variable Mean SD n Mean SD n t-value p 
TM (g) 0.194 0.044 25 0.144 0.029 22 4.52 <0.001* 
SGM (g) 0.086 0.021 23 0.073 0.010 22 2.22 <0.03* 
Testes DA 0.001 0.015 25 0.007 0.012 22 1.53 0.13 
Sperm flagellum length (µm) 191.3 5.7 25 192.3 6.2 21 0.57 0.57 
Sperm total length (µm) 215.8 5.7 25 217.2 6.2 21 0.74 0.46 

 
SGM=seminal glomera mass, TM=mass of testes, Testes DA1=directional asymmetry in testis mass; left 
testis mass minus right testis mass. All tests two tailed: *p<0.05. 
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Figure 1. Photography showing the morphological difference between the 
left and right testis. Left testis bean-shaped and right testis pea-shaped.  
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Figure 2. (a-c) Digital photos of bluethroat sperm. (a) Illustrating the helical shaped head 
and flagellum. Head (acrosome + nucleus), flagellum (midpiece + tail) and total length 
indicated by straight bars. Green path illustrates the measuring method of flagellum 
length. (b) Sperm cell from the individual possessing the shortest spermatozoa measured 
in this study (197.4 µm); (c) Sperm cell from the individual possessing the longest 
spermatozoa measured in this study (232.8 µm). (Photos taken with a Leica DC 500 
camera mounted on a Leica 600B stereo microscope.) 
 

 32



0 5 10 15 20

0,10

0,15

0,20

0,25

0 5 10 15 20

0,10

0,15

0,20

0,25

0 5 10 15 20

0,10

0,15

0,20

0,25
te

st
is

 m
as

s (
g)

date

 
Figure 3. No date effect on testis mass revealed with respect to capture date. 
(Spearman: whole sample: n=47, rs=-0.15, p=0.32; yearlings: n=22, rs=-0.35, 
p=0.11; older males: n=25, rs=0.08, p=0.70) Lines shown to illustrate the lack of 
date effect (linear regressions: solid line: whole sample: n=47, r=-0.03, p=0.83; 
dotted line: yearlings: n=22, r= -0.12, p=0.59; dashed line: older males: n=25, 
r=0.12, p=0.56). Symbols: □ = yearling (2k) and ■ = older male (3k+).  
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Figure 4. Showing correlation between standardized heterozygosity (Coltman et al. 
1999) and testis mass. (Linear regressions: whole sample: n=47, r=0.12, p=0.43; 
yearlings: n=22, r=-0.16, p=0.48; older males: n=25, r=0.19, p=0.35) Solid line: 
whole sample; dotted line: yearlings; dashed line: older males. Symbols: □ = 
yearling (2k) and ■ = older male (3k+). 
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Figure 5. No date effect on seminal glomera mass revealed with respect to capture 
date. (Spearman: whole sample: n=45, rs=0.07, p=0.66; yearlings: n=22, rs=-0.15, 
p=0.50; older males: n=23, rs=0.22, p=0.31). Lines shown to illustrate the lack of 
date effect (Linear regressions: solid line: whole sample: n=45, r=0.10, p=0.52; 
dotted line: yearlings: n=22, r=0.03, p=0.88; dashed line: older males: n=23, r=0.19, 
p=0.38). Symbols: □ = yearling (2k) and ■ = older male (3k+). 

 35



0,10 0,15 0,20 0,25
0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,10 0,15 0,20 0,25
0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,10 0,15 0,20 0,25
0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,10 0,15 0,20 0,25
0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,10 0,15 0,20 0,25
0,02

0,04

0,06

0,08

0,10

0,12

0,14

testis mass (g)

se
m

in
al

 g
lo

m
er

a 
m

as
s (

g)

 
Figure 6. Correlations between testis mass and seminal glomera mass. (Linear 
regressions: whole sample: n=45, r=0.46, p=0.002; yearlings: n=22, r=0.12, p=0.60; 
older males: n=23, r=0.48, p=0.02). Solid line: whole sample; Dotted line: 
yearlings; Dashed line: older males. Symbols: □ = yearling (2k) and ■ = older male 
(3k+) 
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Figure 7. All sperm lengths measured (n=46, mean ± SD µm). Symbols: □ = 
yearling (2k) and ■ = older male (3k+). Sorted by capture date (from left to right), 
yearlings and older males respectively. 
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Figure 8. No significant correlation between testes mass and total sperm length 
(Linear regression: n=46, r=-0.02, p=0.89). Symbols: □ = yearling (2k) and ■ = 
older male (3k+). 
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Appendix 
 
Table A. Independent analyses (ANCOVA) for TM.  
 
Dependent variable Independent variables df MS F-ratio p 
TM (g) Date 1 0.00007 0.05 0.83 
 Age class 1 0.03 19.96 <0.001* 
 Error 44 0.001   
      
TM (g) Body mass (g) 1 0.001 0.85 0.36 
 Age class 1 0.03 20.67 <0.001* 
 Error 44 0.001   
      
TM (g) Wing length (mm) 1 0.0004 0.31 0.58 
 Age class 1 0.02 14.98 <0.001* 
 Error 44 0.001   
      
TM (g) Tarsus (mm) 1 0.003 2.28 0.14 
 Age class 1 0.03 21.34 <0.001* 
 Error 44 0.001   
      
TM (g) RB 1 0.0003 0.21 0.65 
 Age class 1 0.03 20.05 <0.001* 
 Error 44 0.001   
      
TM (g) Haemoglobin 1 0.0008 0.57 0.45 
 Age class 1 0.03 19.50 <0.001* 
 Error 44 0.001   
      
TM (g) SH 1 0.0003 0.23 0.63 
 Age class 1 0.03 19.40 <0.001* 
 Error 44 0.001   
      
TM (g) UV chroma 1 0.00004 0.03 0.88 
 Age class 1 0.02 16.90 <0.001* 
 Error 44 0.001   
      
TM (g) Scull (mm) 1 0.005 3.46 0.07 
 Age class 1 0.03 17.70 <0.001* 
 Error 30 0.002   
      
TM (g) Liver 1 0.0006 0.40 0.53 
 Age class 1 0.02 10.27 0.003* 
  Error 34 0.002     

 
TM=mass of testes; RB=width of chestnut band; SH=standardized heterozogosity. *p<0.05
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Table B. Means and standard deviation of all measures of older male and yearling 
bluethroats. Two-sample t-tests assuming equal variances.   
 
  Older males Yearlings     
Variable Mean SD n Mean SD n t-value p 
Wing length (mm) 74.3 1.4 25 73 1,5 22 2.98 0.005* 
Body mass (g) 16.75 1.34 25 16.85 0.85 22 0.26 0.80 
Tarsus length (mm) 30.54 0.68 25 30.58 0.90 22 0.18 0.86 
Scull length (mm) 34.69 0.52 17 34.68 0.84 17 0.05 0.96 
RB (mm) 7.9 2.1 25 7.9 2.6 22 0.02 0.99 
Amount red in tail 0.65 0.03 25 0.66 0.03 22 0.12 0.90 
Haemoglobin 17.7 2.7 25 18.1 1.7 22 0.56 0.58 
Haematocrit 0.47 0.07 25 0.49 0.04 20 1.06 0.29 
Liver (g) 0.588 0.078 21 0.659 0.078 16 2.77 0.009* 
SH 1.00 0.19 25 0.96 0.21 22 0.69 0.49 
Sd2 0.11 0.05 25 0.13 0.08 22 1.08 0.29 
Chroma 1.150 0.102 25 1.061 0.129 22 2.66 0.01* 
UV chroma 0.320 0.014 25 0.306 0.016 22 3.15 0.003* 
l(max) 368.8 5.5 25 373.5 10.1 22 2.04 0.05* 
Left seminal glomerus (g) 0.042 0.012 23 0.038 0.008 22 1.57 0.12 
Right seminal glomerus (g) 0.043 0.011 23 0.036 0.009 22 2.51 0.02* 
SGM (g) 0.086 0.021 23 0.073 0.016 22 2.22 0.03* 
Left testis mass (g) 0.097 0.023 25 0.076 0.016 22 3.66 <0.001* 
Right testis mass (g) 0.096 0.023 25 0.069 0.015 22 4.86 <0.001* 
TM (g) 0.194 0.044 25 0.144 0.029 22 4.52 <0.001* 
Testes DA 0.001 0.015 25 0.007 0.012 22 1.53 0.13 
Left testis volume (mm3) 86.8 21.7 25 67.9 15.9 22 3.38 0.002* 
Right testis volume (mm3) 85.2 22.1 25 60.5 15.0 22 4.41 <0.001* 
Total testis volume (mm3) 172.0 41.4 25 128.4 28.4 22 4.17 <0.001* 
Sperm length (µm) 215.8 5.7 25 217.2 6.5 21 0.74 0.46 

 
RB=width of the chestnut band; SH=standardized heterozygosity; Sd2=standardized mean d2; 
SGM=seminal glomera mass; TM=mass of testes; Testes DA=directional asymmetry (left testis-right 
testis). All tests two-tailed, *p<0.05 
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