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Chapter 1

Introduction

This thesis deals with electronic structure calculations of quantum dots using the Coupled-Cluster
Singles and Doubles method (CCSD). The first thing that pops into ones head might be: “What
is a quantum dot?” In fact, it is not an easy task to give a precise definition. “Quantum” and
“dot” reveal some of the answer. The last word reflects its spatial structure which is much like
a small dot. The word “quantum” indicates the physical size of the system (microscopic scale)
and the laws that govern the physical behavior: quantum mechanics. Put simply, a quantum
dot is a semiconductor device with electrons spatially confined. These structures are designed
and fabricated in the laboratory, which is the reason why quantum dots are dubbed “designer
atoms” or “artificial atoms” in the literature. Semiconductor quantum dots are structures where
charge carriers are confined in all three spatial dimensions. The size of the dot is on the order
of the Fermi wavelength in the host material, which is typically between 10 nm and 1 µm. The
confinement of charge carriers are usually obtained by electrical gating of a 2-dimensional electron
gas, possibly combined by etching techniques. Scientists have been able to obtain precise control
of the number of electrons in the conduction band of a quantum dot in GaAs heterostructures.
For a general introduction to the topic we refer to [1, 2].

Quantum dots have provided the basis for a whole new research area in condensed-matter
physics during the last 20 years [2]. They are fabricated and designed artificially in the laboratory
using essentially macroscopic techniques. However, the fabricated structures are small enough
to observe quantum mechanical behavior such as energy shell structure [3] and entanglement
[4]. Coulomb blockade effects [5], tunneling [6] and magnetization [7] can be observed in coupled
quantum dots. Moreover, quantum dots have exceptional electrical and optical properties. They
are therefore attractive components for integration into electronic devices. One advantage over
traditional optoelectronic materials is that quantum dots exist in the solid state. Moreover,
quantum dots can interconvert light and electricity in a tuneable manner. They offer a wide
absorption spectrum while maintaining a distinct and static emission spectrum. We refer to
[8] for further reading. Scientists have experimented and used quantum dots in LEDs (Light-
Emitting Diode) [9], lasers [10], new generation of transistors [11, 12], and so forth. They can
also be used as qubits in quantum computing [13]. Furthermore, quantum dots can be used
for biological applications [14]. For example, they can be used as tools for monitoring cancer
cells and providing a means to better understand its evolution [15]. Another exciting application
is towards solar cells [16]. Traditional solar cell materials have a theoretical efficiency limit of
approximately 30% for conversion of energy from light to electricity. Utilizing quantum dots may
allow realization of third generation solar cells with a theoretical efficiency close to 70% [16].

Besides all the possible technological applications, quantum dots are fundamentally
interesting because of their strong analogies in nature (such as atoms, nuclei and metallic clusters)
and their definition of paradigms in many-body physics [2]. The fact that their properties can
be controlled and designed by electrostatic gates, changes in the spatial geometry, or magnetic
fields, offers exciting possibilities to study quantum mechanical behavior both experimentally and
theoretically. Quantum dots have probably most clear similarities with natural atoms. However,
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there are also significant differences. First of all, quantum dots are designed and fabricated in
the laboratory, with typical length scale of about 1 − 1000 nm. The size of atoms range from
approximately 53 pm (Hydrogen, Bohr radius) to 0.26 nm (empirical radius of Caesium) [17],
making them much smaller than a typical quantum dot. Secondly, the potentials that confine
the electrons are quite different. In atoms, the potential is set up by the nucleus. In quantum
dots we typically have an applied electromagnetic field that sets up the potential. The geometric
form of this potential can be tuned as wanted by varying the applied field. However, it can
often be approximated with a harmonic oscillator potential leading to the so-called parabolic
(circular) quantum dot. Despite the differences between atoms and quantum dots, they share
many features such as shell structure [2].

Electronic structure calculations, i.e. numerical solutions of the time-independent Schrödinger
equation for an electronic system, have become extremely important in the field of material
science in order to describe and predict properties of materials. In order to numerically investigate
the properties of a solid, one needs to model a large number of particles. An approach starting
from the degrees of freedom from quantum many-body theory and ab initio methods is impossible
without substantial simplifications and approximations. The most popular many-body method
for numerical studies of materials is the Density Functional Theory (DFT). However, the major
problem in DFT is that the exact functionals for exchange and correlation are not known (except
for the free electron gas), see [18]. A commonly used approximation is the so-called local
density approximation (LDA). It is clear that such an approximation is a source of error in the
calculations. Ab initio many-body methods, however, are methods starting from first principles,
i.e. the Schrödinger equation without any approximations. This is a mature field ranging from
from advanced perturbation theoretical approaches to the various Monte Carlo techniques, via
Coupled-Cluster (CC) theory and Full Configuration Interaction (FCI) theory. Many of these
methods are extremely powerful and have provided electronic structure calculations that are in
excellent agreement with experimental results. The major disadvantage with ab initio methods is
that they are computationally demanding, especially when the number of particles in the system
increases. The so-called adiabatic-connection method (see for example [19]) can be used to link
ab initio methods, such as the Coupled-Cluster and Configure Interaction method, with DFT in
order to construct a more accurate density functional than the standard approximations. Thus
by doing ab initio calculations on small fragments, such as one quantum dot, a more accurate
density functional can be obtained in order to model a material containing a large number of
quantum dots more precisely. However, in the case of a quantum dot, an accurate electronic
structure calculation must be done. We require an accurate and reliable ab initio many-body
method.

The aim of this thesis is to study quantum dots numerically using the Coupled-Cluster
Singles and Double (CCSD) ab initio method [20]. The Coupled-Cluster (CC) method has been
extremely successful in providing almost exact ab initio results in quantum chemistry, atomic
physics, molecular physics, and nuclear physics. We will consider the so-called parabolic quantum
dot in two dimensions, see Section 4 for details. On the surface, this thesis is about quantum
dots. However, the goal of the analysis, and thus this thesis, is to study the CCSD method itself,
and investigate the reliability and accuracy of the calculations. The study of the accuracy of
the CCSD method with respect to the size of the model space will constitute an important part
of this thesis. The main drawback with wavefunction based methods such as FCI and CC is
that the problem scales almost exponentially with the numbers of particles in the system. This
is called the curse of dimensionality. A common way to circumvent the dimensionality problem
is to introduce a renormalized interaction, called effective interaction. This technique is widely
applied in the nuclear many-body problem, see for example [21, 22]. In addition to the standard
Coulomb interaction, we will therefore also employ an effective interaction and investigate the
accuracy of the CCSD results. This analysis will contain important elements such as Hartree-
Fock calculations, correlation energies, choice of basis, discussion of the CC amplitudes, size of
the model space, and the type of the model space. Where possible, the accuracy of our results
will be compared with results obtained by other ab initio methods.
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In order to achieve this we have developed a Restricted Hartree-Fock (HF) program and a
Coupled Cluster Singles and Doubles (CCSD) program for studies of quantum dots. The ground
state energies for parabolic quantum dots containing 2, 6, 12 and 20 electron have been calculated
with different strengths of the confinement potential. These numbers are so-called magic numbers

(discussed in Chapter 4) meaning that the quantum dots are closed-shell systems.

Overview

The thesis is structured into three main parts:

- Part I : Theory

- Part II : Many-Body Methods

- Part III : Implementations and Results

Part I gives a presentation of the theoretical foundation of this thesis. We have organized the
theory into three chapters. Chapter 1 gives a review of non-relativistic quantum mechanics
and the fundamental postulates that form the basis of the theory. We focus on the single-
particle system and emphasize important notions such as coordinate representation, intrinsic
spin and total wavefunction. In Chapter 2 we move over to non-relativistic many-body theory,
i.e. quantum mechanics of systems containing more than one particle. First we present the
apparently everlasting many-body problem. Then we move over to the non-interacting system
and present important aspects such as identical particles and implications on the many-body
wavefunction. We will also give a review of the formalism of second quantization including
definitions of creation and annihilation operators, operators in second quantization, Wick’s
theorem and the particle-hole formalism. Chapter 3 gives a presentation of the theoretical
description of quantum dots. First we discuss the approximations of the Hamiltonian leading
to the so-called parabolic quantum dot system. Then we solve the Schrödinger equation for the
single-electron quantum dot in 2 dimensions. This is needed in the the many-body treatment.
Finally we establish the N -electron Hamiltonian and scale it into a dimensionless form.

Part II is devoted to a presentation of the Restricted Hartree-Fock (RHF) method and the
Coupled-Cluster Singles and Doubles (CCSD) method. Chapter 5 gives a review of the RHF
method. We present the basic ideas and derive the HF equations that are implemented in our
program. In Chapter 6 we present the Coupled-Cluster (CC) method. The first sections are
devoted to a general presentation of the method including a motivation for CC wavefunction,
fundamental concepts, and the formal CC theory. Then we move over to the CCSD scheme and
derive the energy equation in detail using both an analytical (Wick’s theorem) and diagrammatic
approach. We will also derive the programmable form of the amplitude equations using diagrams.

Part III gives a presentation of the implementations and the results. In Chapter 7 we present
the implementation of the Restricted Hartree-Fock method and the Coupled-Cluster Singles and
Doubles method. We will focus on the CCSD implementation. We present the structure of the
code, derivation of the implemented amplitude equations (leading to definitions of intermediates),
and code examples. Furthermore, Chapter 8 presents our numerical results. The results are
discussed and analyzed. We also compare with results obtained by other CCSD calculations as
well as other many-body methods. Finally at the end of the thesis we summarize and draw our
conclusions.
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Part I

THEORY





Chapter 2

Quantum Mechanics

Mechanics is the field of physics concerned with the behavior of physical bodies when subjected
to forces, and the effect of the bodies on the environment. We have two major sub-fields in the
science of mechanics. Classical mechanics is used for describing the dynamics of macroscopic
objects, while quantum mechanics is used for describing the dynamics of microscopic objects.
Quantum mechanics is a theoretical description of Nature that was developed by many physicists
during the first decades of the last century. The theory contained elements that were completely
unknown in classical mechanics:

• Quantization: Many physical quantities can only have certain discrete values.

• Wave-particle duality: Both particles and fields (for example electromagnetic fields) have
wave properties and particle properties.

• Probability interpretation: The quantum mechanical description can only give the
probability to find a particle at a certain location.

• Uncertainty principle: Nature puts fundamental limits on the precision that some physical
variables can be measured by.

• Annihilation and creation: Any particle can be created and/or destroyed.

Quantum mechanics was created because many experimental results were totally inconsistent
with classical physics. Already in 1752, Thomas Melvill observed the characteristic sodium
line. Frauenhofers measurements of the spectrum of the sunlight in 1814 served as a basis for
many spectroscopic experiments. Johann Balmer discovered in 1885 an empirical formula for the
wavelength of the emitted light from a hydrogen gas. It is given as

λn = 3.6456 · 10−7 n2

n2 − 4
m, (2.1)

where n = 3, 4, 5, 6, and so forth. None of these experiments could be understood with classical
physics. However, the real crisis in physics came with the photoelectric effect, the Compton
effect, and diffraction experiments with electrons. We refer to [23] for details.

Put simply, quantum mechanics is the theoretical framework within which it has been found
possible to describe, correlate and predict the behavior of a vast range of physical systems: from
systems containing elementary particles, through nuclei and atoms, to molecules and solids. This
chapter aims to give a short review of quantum mechanics. It is assumed that the reader is well
acquainted with the fundamental theory. The focus in the presentation will be on parts that are
directly relevant for this thesis. The first section is devoted to the general postulates of quantum
mechanics. In the second section we present basic concepts of single-particle quantum mechanics,
with an emphasize on the time-independent Schrödinger equation, coordinate representation,
intrinsic spin, and the total wavefunction of a particle. We refer to [24] and [25] for an introduction
to the field. For a more profound presentation, we refer to [26].



Chapter 2. Quantum Mechanics

2.1 Postulates of Quantum Mechanics

Every fundamental physical theory is based on postulates. We will in the following present the
postulates of quantum mechanics.

[1] A quantum state of an isolated system is described by a vector in a complex (finite/infinite)
and linear vector space, called Hilbert space.

Comments: In the bra-ket formalism, for every quantum quantum state |Ψ〉 in the Hilbert space
(called “ket”), there exists a dual state 〈Ψ| in a dual vector space (called “bra”). The Hilbert
space H is a complex inner product space meaning that H is a complex vector space on which
there exists an inner product. An inner product is a function that to each pair of vectors |α〉
and |β〉 in H associates a complex number

〈α|β〉. (2.2)

It satisfies

〈α|β〉 = 〈β|α〉∗ (2.3)

〈c1α1 + c2α2|β〉 = c1〈α1|β〉+ c2〈α2|β〉 (2.4)

〈cα|β〉 = c〈α|β〉 (2.5)

〈α|α〉 ≥ 0, (2.6)

where ∗ is the complex conjugate, and c, c1 and c2 are complex numbers. We refer to [27] for
more details. Assume we have a discrete basis,

B = {|i〉}di=1 , (2.7)

where d = dim(H). The orthonormality relation reads

〈i|j〉 = δij , (2.8)

and completeness relation is given as

Î =

d∑

i

|i〉〈i|, (2.9)

where δij is the Kronecker delta, Î is the identity operator, and d is the dimension of the space.
The quantum state can then be written as a linear combination of of these basis functions, viz.

|Ψ〉 =
∑

i

|i〉〈i|Ψ〉 =
∑

i

ci|i〉, (2.10)

where ci ≡ 〈i|Ψ〉. When the basis is continuous, the orthonormality relation is given as

〈x|x′〉 = δ(x − x′), (2.11)

and the completeness relation as

Î =

∫
dx|x〉〈x|, (2.12)

where δ(x− x′) is the Dirac delta function. The quantum state then reads

|Ψ〉 =
∫
dx|x〉〈x|Ψ〉 =

∫
dx c(x)|x〉, (2.13)

where c(x) ≡ 〈x|Ψ〉.

8
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[2] To every physical observable of a quantum system corresponds a linear, hermitian operator
acting on vectors in the Hilbert space. Operators representing the generalized coordinate
qn and the corresponding generalized momentum pn satisfy the commutation relation

[q̂n, p̂n] = i~, (2.14)

where i is the imaginary unit, and ~ is the (reduced) Planck constant.

Comments: A hermitian operator is defined as

Â = Â†, (2.15)

where Â† is the hermitian conjugate of Â. The eigenvalue equation of Â reads

Â|ai〉 = ai|ai〉, (2.16)

where |ai〉 is an eigenfunction with corresponding eigenvalue ai. The set of eigenfunctions
{|ai〉}di=1, where d is the dimension of the Hilbert space, forms a complete set of vectors, i.e.

Î =

d∑

i

|ai〉〈ai|. (2.17)

The spectral decomposition of any hermitian operator is given as

Â =

d∑

i

ai|ai〉〈ai|. (2.18)

[3] The time evolution of the quantum state is (in the Schrödinger picture) represented by a
time-dependent state vector |Ψ(t)〉 that satisfies the fundamental Schrödinger equation

i~
d

dt
|Ψ(t)〉 = Ĥ|Ψ(t)〉, (2.19)

with Ĥ as the Hamiltonian of the system.

Comments: Since the Schrödinger equation is a linear differential equation with a first order
time derivative, the quantum state |Ψ(t)〉 is uniquely determined by |Ψ(t0)〉 for t0 6= t. Thus

|Ψ(t)〉 = Û(t, t0)|Ψ(t0)〉, (2.20)

where Û(t, t0) is the time evolution operator determined by Ĥ. We have that Û(t, t0) must be
linear and unitary, i.e.

Û Û† = Û†U = Î , (2.21)

where Î is the identity operator. Inserting Eq. (2.20) into Eq. (2.19) yields the following equation
for the time evolution operator,

i~
∂

∂t
Û(t, t0) = Ĥ(t)Û(t, t0). (2.22)

When the Hamiltonian is time-independent, we obtain

Û(t, t0) = e−i bH(t−t0)/~. (2.23)

Given an initial quantum state |Ψ(t0)〉, the quantum state (for an isolated system) at t > t0
reads

|Ψ(t)〉 = e−i bH(t−t0)/~|Ψ(t0)〉. (2.24)

9
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[4] In any measurement of the observable associated with the operator Â, the measured value
will always be an eigenvalue of Â. The eigenvalue equation is given as

Â|ai〉 = ai|ai〉, (2.25)

where ai is the eigenvalue and |ai〉 is the corresponding eigenvector.

Comments: Assume the system is in quantum state |Ψ〉. The measured eigenvalue ai will appear
with probability

pi =

l∑

n=1

|〈ain|Ψ〉|2 , (2.26)

where l = 1, 2, 3, ..., and

Â|ain〉 = ai|ain〉, (2.27)

where {|ain〉}ln=1 are possible degenerate eigenfunctions. When the energy level is degenerate,
i.e. several eigenfunctions have the same energy, we have that l > 1. In the non-degenerate case
we have that l = 1. When the eigenvalue x of an operator x̂ is a continuous variable, pi in
Eq. (2.26) is a probability density.

[5] In an ideal measurement, when the measured value of an observable Â is ai, the quantum
state immediately changes to the corresponding eigenstate, i.e.

|Ψ〉 → |ai〉. (2.28)

Comments: This is called the collapse of the wavefunction. When a measurement of Â yields ai,
measurements at all later times will with certainty yield ai.

2.2 Single-Particle Quantum Mechanics

Consider a single-particle system with Hamiltonian

Ĥ = T̂ + Û , (2.29)

where T̂ is the kinetic energy operator, and Û is the potential energy operator. The dynamics of
the system is provided by the time-dependent Schrödinger equation, which in bra-ket notation
reads

i~
d

dt
|Ψ(t)〉 = Ĥ|Ψ(t)〉, (2.30)

where |Ψ(t)〉 is the quantum state of the system at time t, i is the standard imaginary unit
with the property i2 = −1, and ~ is the (reduced) Planck constant. When the Hamiltonian is
time-independent, the time evolution of the state vector reads (see Postulate 3 in Sec. 2.1)

Û(t, t0) = ei
bH(t−t0)/~, (2.31)

where |Ψ(t0)〉 is the initial state vector. Since the time evolution of the state vector is totally
determined by the Hamiltonian, the solutions of the energy eigenvalue equation,

Ĥ|φj〉 = εj |φj〉, (2.32)

10
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can be used to obtain an analytical expression of |Ψ(t)〉. This equation is called the
time-independent Schrödinger equation. When the eigenvalues εj and eigenvectors |φj〉 are
determined, the initial state vector can be written as

|Ψ(t0)〉 =

d∑

j=1

〈φj |Ψ(t0)〉|φj〉, (2.33)

since

Î =

d∑

j=1

|φj〉〈φj |, (2.34)

where d is the dimension of the Hilbert space, see Postulate 1 in Section 2.1. The quantum state
at time t > t0 then reads

|Ψ(t)〉 = ei
bH(t−t0)/~

d∑

j=1

〈φj |Ψ(t0)〉|φj〉 =
d∑

j=1

〈φj |Ψ(t0)〉eiεj(t−t0)/~|φj〉. (2.35)

Provided an initial state vector and a time-independent Hamiltonian, the state vector at time
t > t0 can in principle always be determined by solving the time-independent Schrödinger
equation in (2.32). In addition, the energy spectrum is often the main interest in quantum
mechanical calculations. We will therefore in the following consider the time-independent
Schrödinger equation.

2.2.1 Coordinate Representation

The time-independent Schrödinger equation in (2.32) is written in the bra-ket formalism. This
formalism offers a general and concise notation. When we want to do explicit calculations, we
often transform the time-independent Schrödinger equation to the coordinate representation. In
the 1-dimensional case, the eigenvalue equation of the position operator x̂ reads

x̂|x〉 = x|x〉, (2.36)

where |x〉 is the eigenvector and x is the corresponding eigenvalue. The completeness relation
reads

Î =

∫ ∞

−∞
dx |x〉〈x|. (2.37)

The energy eigenfunctions in Eq. (2.32) can then be written as (suppressing the j-index)

|φ〉 =

∫ ∞

−∞
dxφ(x)|x〉, (2.38)

where we have defined

φ(x) ≡ 〈x|φ〉. (2.39)

We multiply Eq. (2.32) with 〈x| from the left, yielding

〈x|Ĥ|φ〉 = ε〈x|φ〉. (2.40)

Using the completeness relation in Eq. (2.37) we obtain
∫ ∞

−∞
dx′ 〈x|Ĥ |x′〉〈x′|φ〉 = ε〈x|φ〉, (2.41)

11



Chapter 2. Quantum Mechanics

leading to

∫ ∞

−∞
dx′〈x|Ĥ|x′〉φ(x′) = εφ(x), (2.42)

where we have used the definition in Eq. (2.39). In the 1-dimensional case, the momentum
operator is given as [24]

p̂ = −i~ ∂

∂x
. (2.43)

When Ĥ = Ĥ(x̂, p̂) we obtain that

〈x|Ĥ(x̂, p̂)|x′〉 = Ĥ(x,−i~ ∂

∂x
)δ(x− x′), (2.44)

where δ(x − x′) is the Dirac delta function. See [24] for a derivation. Inserting this expression
into Eq. (2.42) yields

Ĥ(x,−i~ ∂

∂x
)φ(x) = εφ(x), (2.45)

which is nothing but the time-independent Schrödinger equation in the coordinate representation.
Suppressing the parenthesis in the Hamiltonian, the 3-dimensional time-independent Schrödinger
equation reads

Ĥφ(x, y, z) = εφ(x, y, z), (2.46)

where x, y and z are cartesian coordinates. In classical mechanics, the kinetic energy of a particle
is given as

T =
p2

2m
, (2.47)

where p = mv is the momentum, and m is the mass of the particle. The quantum mechanical
kinetic energy thus reads

T̂ =
p̂2

2m
, (2.48)

where T and p are changed to T̂ and p̂, respectively. The momentum operator is given as

p̂ = −i~∇, (2.49)

where ∇ is the gradient. The Hamiltonian thus reads

Ĥ =
p̂2

2m
+ u(x, y, z) = − ~

2

2m
∇2 + u(x, y, z), (2.50)

leading to the most common form of the time-independent Schrödinger equation,

(
− ~

2

2m
∇2 + u(x, y, z)

)
φ(x, y, z) = εφ(x, y, z), (2.51)

where φ(x, y, z) is the eigenfunction with corresponding eigenvalue ε, m is the mass of the particle,
and u = u(x, y, z) is the potential.

12



2.2. Single-Particle Quantum Mechanics

2.2.2 Intrinsic Spin

In classical mechanics, an object admits two kinds of angular momentum. The first is the orbital
momentum defined as

L = r× p, (2.52)

where r is the position vector and p is the momentum vector. The second is the spin momentum

S = Iω, (2.53)

where I is the moment of inertia, and ω is the angular velocity. While the orbital momentum is
associated with the motion of the center of mass, the spin momentum is associated with motion
about the center of mass. In quantum mechanics, orbital momentum is also associated with the
motion of particles in space. Particles also carry another form of angular momentum, called
intrinsic spin. This spin has nothing to do with motion in space. The algebraic theory of spin
(Ŝ) is identical to the theory of orbital momentum (L̂), see [24]. The fundamental commutation
relations reads

[
Ŝx, Ŝy

]
= i~Ŝz

[
Ŝy, Ŝz

]
= i~Ŝx

[
Ŝz, Ŝx

]
= i~Ŝy, (2.54)

where Ŝx, Ŝy and Ŝz are the components of Ŝ. The eigenvectors of Ŝ2 and Ŝz satisfy [24]

Ŝ2|sms〉 = ~s(s+ 1)|sms〉 (2.55)

Ŝz|sms〉 = ~ms|sms〉, (2.56)

where s is the principal spin quantum number, and ms is the quantum number associated with
the z-projection of the spin. Since the components of the spin do not have a common set of
eigenfunctions, they are incompatible observables. This means that we cannot determine two
components, say Ŝz and Ŝx, at the same time. However, we can determine one of the components
and Ŝ2 simultaneously. Standard textbooks in quantum mechanics often choose the z-component
of the spin (see for example [24], [25] and [28]), and we therefore also do so. Since the intrinsic
spin cannot be associated with motion in space, the eigenfunctions of Ŝz and Ŝ2 cannot be
written down as analytical functions. The spin quantum numbers are given as [25]

s = 0,
1

2
, 1,

3

2
, 2,

5

2
, ... (2.57)

ms = −s,−s+ 1, ..., s − 1, s. (2.58)

Each elementary particle has a fixed value of s. Often we call s the spin of the particle. Electrons
have spin 1/2, photons have spin 1, gravitons have spin 2, and so forth. The measured value of
Ŝ2 for a certain elementary particle will therefore always be ~s(s+ 1).

We will now consider the spin 1/2 case, i.e.

s =
1

2
, (2.59)

which is by far the most important case. This is the spin of electrons (and other leptons), protons,
neutrons (and other baryons), and quarks. The measured value of Ŝ2 will in this case be 3~

2/4.
Since s = 1/2, the quantum number associated with the z-projection of the spin can have two
values,

ms = ±1

2
. (2.60)

13
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The measured value of Ŝz (or another component of the spin) will therefore be either ~/2 or
−~/2. The eigenfunctions of Ŝ2 and Ŝz are given as

∣∣∣∣
1

2
,
1

2

〉
≡ |+〉 (2.61)

∣∣∣∣
1

2
, -

1

2

〉
≡ |−〉 (2.62)

which are often referred to as spin up and spin down, respectively. Thus, when s = 1/2, the
Hilbert space of the spin is 2-dimensional. Using the eigenstates of Ŝ2 and Ŝz in Eqs. (2.61) and
(2.62) as basis vectors, the general state of a spin 1/2 particle reads

|χ〉 = a|+〉+ b|−〉, (2.63)

where a and b are the weights. We often call |χ〉 a spinor. The spinor must be normalized,
i.e.
√
a2 + b2 = 1. The measured value of the z-component of the spin for a particle in state

|χ〉 will be ~/2 with probability |a|2, and −~/2 with probability |b|2. Since the Hilbert space is
2-dimensional, we can represent spinors by [24]

|χ〉 =
(
a
b

)
, (2.64)

and operators by

Â =

(
c d
e f

)
. (2.65)

The basis is thus given as

|+〉 =

(
1
0

)
|−〉 =

(
0
1

)
. (2.66)

The matrix representation of Ŝ2 and Ŝz are determined by considering the eigenvalue equation
for |+〉 and |−〉, yielding

Ŝ2 =
3

4
~

2

(
1 0
0 1

)
, (2.67)

and

Ŝz =
~

2

(
1 0
0 −1

)
. (2.68)

In the basis of |+〉 and |−〉, we have the following matrix representation of Ŝx and Ŝy,

Ŝx =
~

2

(
0 1
1 0

)
Ŝy =

~

2

(
0 −i
i 0

)
, (2.69)

where i is the imaginary unit. Defining the so-called Pauli spin matrices [24]

σ̂x ≡
(

0 1
1 0

)
σ̂y ≡

(
0 −i
i 0

)
σ̂z ≡

(
1 0
0 −1

)
, (2.70)

we obtain

Ŝx =
~

2
σ̂x Ŝy =

~

2
σ̂x Ŝz =

~

2
σ̂z. (2.71)
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2.2. Single-Particle Quantum Mechanics

2.2.3 Total Wavefunction

Consider the time-independent Schrödinger equation in (2.51). Since the intrinsic spin of a
particle has nothing to do with motion is space, the spin degree of freedom cannot be included
directly in the energy eigenfunctions φ(x, y, z). However, the spin degree of freedom must be
included in some way. First we note that the Hilbert space of the spin, and the Hilbert space
spanned by the energy eigenfunctions, are two distinct spaces. The solution to include the spin
is to divide the wavefunction into two parts that exist in different spaces. Operators must also be
modified in order to reflect which space they act in. Mathematically, this is obtained by the so-
called tensor product [29]. We now define the total energy eigenfunctions of the time-independent
Schrödinger equation as

ψ(r) ≡ φ(x, y, z) ⊗ |χ〉, (2.72)

where r include the spin degree of freedom, φ(x, y, z) is the spatial part, and |χ〉 = |±〉 (see
Eqs. 2.61 and 2.62) is the spin part. An operator Â acting in the “spatial” Hilbert space is given
as

Â⊗ Î , (2.73)

where Î is the identity matrix. An operator B̂ that acts in the spin space is given as

Î ⊗ B̂. (2.74)

For example, given an operator Â⊗ B̂ acting on the total wavefunction ψ(r) yields
(
Â⊗ B̂

)
ψ(r) = Âφ(x, y, z) ⊗ B̂|χ〉. (2.75)

We will in the following drop the tensor product sign when expressing operators. It will be
obvious in which space the operators act. We finally obtain the time-independent Schrödinger
equation for a single-particle system with Hamiltonian given by Eq. (2.50),

(
− ~

2

2m
∇2 + u(x, y, z)

)
ψ(r) = εψ(r), (2.76)

where ψ(r) is the total wavefunction in Eq. (2.72). Our aim is to solve the time-independent
Schrödinger equation and determine the eigenvectors ψ(r) and eigenvalues ε. However, this is as
far as we can go before a specific potential u is provided.

15



Chapter 2. Quantum Mechanics

16



Chapter 3

Many-Body Theory

Single-particle quantum mechanics deals with systems consisting of only one particle. This is
of course a natural and necessary starting point for all quantum mechanical considerations,
where fundamental postulates, formalism, quantization effects, and so forth, can be introduced
and discussed in peace and quiet without considering the implications of interacting particles.
However, real systems contain more than one particle. These systems are often called many-body
or many-particle systems in the literature, and provide a breeding ground for many-body theory
and many approximation schemes and methods.

In this chapter we present the basic quantum mechanics of many-body systems. We will focus
on the parts that are directly relevant for this thesis. In the first section we present the ”many-
body problem”, which refers to the N -particle Schrödinger equation. We will then consider the
non-interacting system and the implications of identical particles on the solutions. Then we turn
to the interacting system and discuss important properties of the solutions. In the last section we
present the formalism of second quantization, including definitions of creation and annihilation
operators, Wick’s theorem and a presentation of the particle-hole formalism.

3.1 The Many-Body Problem

Consider an isolated system consisting of N particles that can be treated non-relativistic. The
properties of the system are given by the Schrödinger equation. In bra-ket notation, the equation
reads (see Section 2.1, Postulate 3)

i~
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉, (3.1)

where |Ψ(t)〉 is the N -particle wavefunction at time t, and Ĥ is the Hamiltonian of the system.
The Hamiltonian is defined as

Ĥ = T̂ + V̂ , (3.2)

where T̂ is the total kinetic energy operator, and V̂ is the total potential energy operator. The
kinetic energy operator reads

T̂ =
N∑

k=1

t̂k, (3.3)

where t̂k is the kinetic energy of electron k. Since T̂ is the sum of t̂k, it is a one-body operator.
Furthermore, in the general case, the potential energy operator is given as

V̂ = V̂1 + V̂2 + V̂3 + ...+ V̂N (3.4)

=

N∑

k=1

v̂
(1)
k +

1

2!

N∑

kl

v̂
(2)
kl +

1

3!

N∑

klm

v̂
(3)
klm + ...+

1

N !

N∑

klm..q

v̂
(N)
klm..q (3.5)
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where

V̂n =
1

n!

N∑

klm..p

v̂
(n)
klm..p (3.6)

is an n-body potential operator. In electronic systems like atoms and quantum dots, the
Hamiltonian is a two-body operator. However, in nuclear physics, the fundamental strong
interaction seems to exhibit three-body behavior. This is due to the fact that the exchange
particles (gluons) can couple to themselves.

The quantum state at time t is given as (see Section 2.1)

|Ψ(t)〉 = Û(t, t0)|Ψ(t0)〉, (3.7)

where t > t0, U(t, t0) is the time evolution operator, and |Ψ(t0)〉 is the quantum state at time
t0. When the Hamiltonian is time-independent, the time evolution operator reads

Û(t, t0) = e−i bH(t−t0)/~. (3.8)

If we were to prepare a system in quantum state |Ψ(t0)〉 at time t0, the quantum state |Ψ(t)〉 at
time t > t0 is determined by simply letting the time evolution operator act on the initial state.
Thus the Hamiltonian determines the time evolution of the system. The solution of the energy
eigenvalue equation (time-independent Schrödinger equation)

Ĥ|Ψλ〉 = Eλ|Ψλ〉, (3.9)

where |Ψλ〉 is the eigenfunction, and Eλ is the energy eigenvalue, can be used to obtain an
algebraic expression of the time evolution. Since the set of eigenfunctions spans the N -particle
Hilbert space, the initial state vector can be written as a linear combinations of eigenfunctions,
viz.

|Ψ(t0)〉 =
d∑

λ

Cλ|Ψλ〉, (3.10)

where d is the dimension of the Hilbert space, yielding the following analytical expression of the
time evolution,

|Ψ(t)〉 = e−i bH(t−t0)/~|Ψ0〉 =
d∑

λ

Cλ|Ψλ〉e−iEλ(t−t0)/~. (3.11)

Moreover, the energy eigenvalues and eigenfunctions are often the main target in many-body
calculations. The time-independent Schrödinger equation in (3.9) is usually called the quantum
mechanical many-body problem. This is a nontrivial problem due to the interaction between the
particles. In Nature, particles interact with each other, and realistic Hamiltonians are at least
two-body operators. Even for the simplest case when the Hamiltonian is a two-body operator,
the many-body problem can in general not be solved exactly. For example, the Hamiltonian for
the helium atom reads (in atomic units)

Ĥ = −1

2
∇2

1 −
1

2
∇2

2 −
2

r1
− 2

r2
+

1

r12
, (3.12)

where ∇1 and ∇2 are the gradients of electron 1 and 2, respectively, r1 is the distance between
electron 1 and the nucleus, r2 is the distance between electron 2 and the nucleus, and r12 is the
distance between the electrons. This two-body problem cannot be solved exactly. In a quantum
mechanical treatment of many-body systems we are therefore forced to utilize approximation
schemes and complex techniques. In Part 2, we will present two important many-body methods:
the Hartree-Fock [18] and the Coupled-Cluster method [20].

We will in the following consider the non-interacting many-body system. This system serves
as a starting point for most many-body methods such as the Hartree-Fock method and the
Coupled-Cluster method [30].

18



3.2. The Non-Interacting System

3.2 The Non-Interacting System

The non-interacting system consists of N non-interacting particles. This system is also called
the unperturbed system. The Hamiltonian reads

Ĥ0 = T̂ + Û , (3.13)

where T̂ is the total kinetic energy operator (given in Eq. 3.3), and Û is a possible external
one-body potential given as

Û =

N∑

k=1

ûk, (3.14)

where ûk is the potential energy of particle k. Defining

ĥ = t̂+ û, (3.15)

we obtain that

Ĥ0 =

N∑

k=1

ĥk. (3.16)

The time-independent Schrödinger equation reads (in bra-ket notation)

Ĥ0|Φa〉 = Ea|Φa〉, (3.17)

where |Φa〉 is the energy eigenvector, and Ea is the energy eigenvalue. We now assume the
particles are distinguishable. Since the Hamiltonian is a one-body operator, Eq. (3.17) is
separable. The energy eigenfunctions are given as

|Φa〉 = |ψα〉 ⊗ |ψβ〉 ⊗ |ψγ〉 ⊗ ...⊗ |ψδ〉, (3.18)

where a denotes the set of quantum numbers (α,β,γ,..,δ). The single-particle energy
eigenfunctions are determined by

ĥ|ψα〉 = εα|ψα〉, (3.19)

where εα is the energy eigenvalue. We note that |ψα〉 is the total single-particle wavefunction,
i.e. it includes the spin, see Sections 2.2.2 and 2.2.3. The energy eigenvalues of the non-interacting
system are thus given as

Ea =
∑

α∈a

εα, (3.20)

where the sum runs over all occupied single-particle states α in the Slater determinant |Φa〉.
The simple product form in Eq. (3.18) assumes that we can tell the particles apart. It would
otherwise make no sense to claim that particle 1 is in state ψα, particle 2 is in state ψβ, and
so forth. On the macroscopic scale, we can in principle always distinguish particles from each
other. However, on a microscopic scale, the situation is fundamentally different. Considering for
example a system of electrons, we will never be able to tell them apart. Moreover, it is not just
that we do not happen to know. There is no such thing as “this” or “that” electron. Electrons
are identical in a way classical objects will never be. The solution in Eq. (3.18) can therefore
not be used for systems consisting of identical particles.
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3.3 Identical Particles

Consider a non-interacting system consisting of N identical particles. We will now utilize the
coordinate representation. The single-electron energy eigenfunctions (see Eq. 3.19) reads

ψα(r) = 〈r|ψα〉, (3.21)

where r includes the spin. We start our discussion by investigating the permutation operator P̂ .
It is defined through its action on the N -particle product state,

P̂ijψα(r1)..ψβ(ri)..ψγ(rj ..ψδ(rN ) = ψα(r1)..ψβ(ri)..ψγ(rj ..ψδ(rN ), (3.22)

i.e. it interchanges the coordinates of particle i and j. When the particles are identical, this
should not affect their probability distribution. We define

Φa(r1, r2, .., rN ) = 〈r1r2.., rN |Φa〉 (3.23)

as the eigenfunction of N non-interacting and identical particles. Thus we obtain that

|Φa(r1, .., ri, .., rj , .., rN )|2 = |Φa(r1, .., rj , .., ri, .., rN )|2 , (3.24)

leading to

Φa(r1, .., ri, .., rj , .., rN ) = ±Φa(r1, .., rj , .., ri, .., rN ). (3.25)

The wavefunction is therefore either antisymmetric or symmetric with respect to the interchange
of two particles. The non-interacting Hamiltonian is invariant under the interchange of particles.
It follows that

[Ĥ0, P̂ik] = 0, (3.26)

i.e. Ĥ0 and P̂ are compatible observables. Thus there exist eigenfunctions Ĥ0 that are also
eigenfunctions of P̂ij (see [31]). The eigenvalue equation of the permutation operator reads

P̂ijΦa(r1, .., ri, .., rj , .., rN ) = βΦa(r1, .., ri, .., rj , .., rN ). (3.27)

Since

P̂ 2
ij = 1, (3.28)

it follows that

β = ±1, (3.29)

leading to Eq. (3.25). Particles with a symmetric wavefunction (β = +1) are called bosons,
while particles with an antisymmetric wavefunction (β = −1) are called fermions. Depending on
whether the system consists of identical bosons or fermions, the eigenfunctions of Eq. (3.17) are
either symmetric or antisymmetric. Consider now a two-particle system. We can construct the
following normalized symmetric (S) and antisymmetric (AS) wavefunctions

ΦS(r1, r2) =
1√
2

[φα(r1)φβ(r2) + φα(r2)φβ(r1)] , (3.30)

ΦAS(r1, r2) =
1√
2

[φα(r1)φβ(r2)− φα(r2)φβ(r1)] , (3.31)

where the single-particle orbitals are given in Eq. (3.19). Both ΦS and ΦAS are eigenstates of
the permutation operator with eigenvalue +1 and −1, respectively. Moreover, they are also
eigenstates of the non-interacting Hamiltonian Ĥ0 with energy eigenvalue

Ea = εα + εβ . (3.32)
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In the general N -particle case, symmetric and antisymmetric wavefunctions are constructed by
the so-called symmetrizer and antisymmetrizer operators acting on product states, respectively.
The symmetrizer is defined as

Ŝ =
1

N !

∑

p

P̂ , (3.33)

and the antisymmetrizer as

Â =
1

N !

∑

p

(−1)pP̂ , (3.34)

where p is the permutation number. Normalized symmetric and antisymmetric states are then
given by

ΦS(r1, r2, .., rN ) =

√
N !

nα!nβ!..nγ !
Ŝ ψα(r1)ψβ(r2)..ψδ(rN ) (3.35)

and

ΦAS(r1, r2, .., rN ) =
√
N ! Âψα(r1)ψβ(r2)..ψδ(rN ), (3.36)

respectively. The antisymmetric wavefunction can be written as a determinant, viz.

Φαβ..δ(r1, r2, .., rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣

ψα(r1) ψβ(r1) · · · ψδ(r1)
ψα(r2) ψβ(r2) · · · ψδ(r2)

...
...

...
...

ψα(rN ) ψβ(rN ) · · · ψδ(rN )

∣∣∣∣∣∣∣∣∣

, (3.37)

called a Slater determinant. We observe that a single-particle state can only be occupied by one

fermion. If we were to put two fermions in the same state, the antisymmetric wavefunction would
be equal to zero. This is completely nonsense. In 1925, Wolfgang Pauli formulated the so-called
Pauli exclusion principle: Two identical fermions cannot occupy the same single-particle state
simultaneously. However, bosons may occupy the same single-particle state. In Nature, bosons
have integer spin, and fermions have half integer spin.

3.4 The Interacting Many-Body System

In this section we consider the interacting many-body system. We limit the discussion to systems
consisting of N fermions. In the coordinate representation, the Schrödinger equation reads

ĤΨλ(r1, r2, .., rN ) = EλΨλ(r1, r2, .., rN ), (3.38)

where Eλ is the energy eigenvalue, and

Ψλ(r1, r2, .., rN ) = Υη(~r1, ~r2, .., ~rN )⊗ |χζ〉 (3.39)

is the total wavefunction (see Section 2.2.3), where λ denote the set of quantum numbers (η,ζ),
Υη(~r1, ~r2, .., ~rN ) is the spatial part, ~r is the position vector, and |χζ〉 is the spin part. As pointed
our before, the Schrödinger equation cannot in general be solved exactly. However, the symmetry
properties of the Hamiltonian can be used in order to obtain important information about the
eigenfunctions. The permutation symmetry is an obvious symmetry for systems consisting of
identical fermions. We obtain that

[Ĥ, P̂ ] = 0, (3.40)
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where the permutation operator is defined in Eq. (3.22). Thus we can construct a set of functions
that are simultaneously eigenfunctions of Ĥ and P̂ . The eigenvalue equation for the permutation
operator reads

P̂ijΨλ(r1, .., ri, .., rj , .., rN ) = βΨλ(r1, .., ri, .., rj , .., rN ), (3.41)

where P̂ 2 = 1 leads to β = ±1 (symmetric/antisymmetric wavefunction). Thus the total

wavefunction is antisymmetric with respect to the interchange of two particles. We have two
possibilities,

Ψ(r1, r2, .., rN )AS = ΥAS(~r1, ~r2, .., ~rN )⊗ |χ〉S (3.42)

Ψ(r1, r2, .., rN )AS = ΥS(~r1, ~r2, .., ~rN )⊗ |χ〉AS, (3.43)

where “AS” denotes antisymmetric and “S” denotes symmetric.

3.4.1 Hilbert Space of Distinguishable Particles

Consider a system ofN distinguishable particles. The energy eigenfunctions live in the N -particle
Hilbert space HN with dimension d (possible infinite). Assume we have an orthonormal set of
single-particle functions

B1 = {|α〉}dα=1 (3.44)

that spans the 1-particle Hilbert space H1. The N -particle Hilbert space can mathematically be
constructed by combining N single-particle spaces with tensor products,

HN = H1⊗1⊗...⊗1 ≡ H(1)
1 ⊗H

(2)
1 ⊗ ...⊗H

(N)
1 . (3.45)

This is called the direct product space. We denote Ĥ(n)
1 as the 1-particle Hilbert space for particle

n. The basis set of the N -particle product space can be constructed in a similar fashion through
a tensor product,

|αβ..δ〉 ≡ |α〉 ⊗ |β〉 ⊗ ..⊗ |δ〉, (3.46)

were |αβ..δ〉 is called a product state. See [26] for details. The energy eigenfunctions can be
written as a linear combination of product states, viz.

|ΨD〉 =
∑

{αβ..γ}

cαβ..γ |αβ..γ〉, (3.47)

where “D” denotes distinguishable. In the coordinate representation, the expression above reads

ΨD(r1, r2, .., rN ) = 〈r1r2..rN |ΨD〉 =
∑

αβ..δ

cαβ..δξα(r1)ξβ(r2)..ξδ(rN ), (3.48)

where r includes the spin, and cαβ..δ is the expansion coefficient. Eq. (3.48) is always valid
provided that the set of functions {ξ(r)} are orthogonal and complete.

3.4.2 Hilbert Space of Bosons and Fermions

Consider a system of N bosons or fermions. As pointed out before, the total N -particle quantum
state must either be symmetric or antisymmetric. We denote the N -particle Hilbert space of
symmetric states as HS

N , and the Hilbert space of antisymmetric states as HAS
N . In the two-

particle system, to each pair of product states |αβ〉 and |βα〉, there exist one symmetric state
and one antisymmetric state. When α = β, the product state is already symmetric, and an
antisymmetric state does not exist due to the Pauli exclusion principle. The two-particle Hilbert
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3.4. The Interacting Many-Body System

space (of distinguishable particles) has thus enough product states to form one symmetric space
and one antisymmetric space, viz.

H2 = HS
2 ⊗HAS

2 , (3.49)

In the general N -particle case we have that (see [26])

HN = HS
N ⊗HAS

N , (3.50)

where HN is the Hilbert space of distinguishable particles, HS
N is the Hilbert space of bosons

(symmetric states), and HAS
N is the Hilbert space of fermions (antisymmetric states). Defining

BS
N = {|σ〉}dσ=1 (3.51)

as the basis of HS
N with dimension d, and

BAS
N = {|ς〉}d′ς=1 (3.52)

as the basis of HAS
N with dimension d′, a symmetric and antisymmetric N -particle state can be

written as

|ΨS〉 =

d∑

σ

fσ|σ〉 (3.53)

|ΨAS〉 =
d′∑

ς

gς |ς〉, (3.54)

where fσ and gς are expansion coefficients. The basis functions in BS
N and BAS

N must be symmetric
and antisymmetric, respectively. The direct product states in Eq. (3.46) are neither symmetric
nor antisymmetric. Thus they cannot constitute a basis forHS

N orHAS
N . In section 3.3, symmetric

and antisymmetric states were constructed from product states (see Eqs. 3.35 and 3.36). These
states have correct symmetry. Moreover, they are orthogonal and complete [26]. Thus,

|σ〉 =

√
N !

nα!nβ!..nδ!
Ŝ |αβ..δ〉 (3.55)

|ς〉 =
√
N ! Â |αβ..δ〉, (3.56)

where σ and ς denote a set of quantum numbers (α,β,..,δ), |αβ..δ〉 is the product state, Ŝ is the
symmetrizer defined in Eq. (3.33), and Â is the antisymmetrizer defined in Eq. (3.34). This is
one possible choice of basis functions. We emphasize that any set

{|α〉}dα=1 (3.57)

that spans the single-particle Hilbert space H1 with dimension d, can be used. A general
symmetric and antisymmetric N -particle function can then be written as

ΨS(r1, r2, .., rN ) =
∑

αβ..δ

fαβ..δ

√
N !

nα!nβ!..nγ !
Ŝ ξα(r1)ξβ(r2)..ξδ(rN ) (3.58)

ΨAS(r1, r2, .., rN ) =
∑

αβ..δ

gαβ..δ

√
N ! Â ξα(r1)ξβ(r2)..ξδ(rN ), (3.59)

where

ξα(r) = 〈r|α〉. (3.60)
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Chapter 3. Many-Body Theory

The energy eigenfunctions of the interacting N -fermion system in Eq. (3.38) can therefore be
written as a linear combination of the eigenfunctions of the non-interacting system in Eq. (3.17),
viz.

Ψλ(ra, r2, .., rN ) =
∑

αβ..δ

Cλ
αβ..δ Φαβ..δ(r1, r2, .., rN ), (3.61)

where Cλ
αβ..δ is the expansion coefficient, and Φαβ..δ(r1, r2, .., rN ) is the Slater determinant given

in Eq. (3.37).

3.5 Second Quantization

We have seen that the energy eigenstates of a non-interacting many-fermion system are given
as Slater determinants (see Eq. 3.37). This is a consequence of the Pauli principle and the fact
that the particles are identical. Moreover, a single-particle orbital can only be occupied by one

electron. It is therefore appropriate to utilize the occupancy notation for Slater determinants.
We define

Φα1α2..αN
≡ |α1α2..αN 〉. (3.62)

Note that in Eq. (3.46) we defined |αβ..δ〉 as a product state. In the rest of the thesis, the
context will clearly show which definition that is used. The notation in Eq. (3.62) is called the
occupancy representation. This form of the Slater determinant does not explicitly reflect the
antisymmetry in the particle coordinates. Nevertheless, the Slater determinant changes sign in
the permutation of two columns, yielding

|α1..αi..αj ..αN 〉 = −|α1..αi..αj ..αN 〉. (3.63)

The full potential of this notation appears when creation and annihilation operators are
introduced. A creation operator creates a fermion in single-particle state, while an annihilation
operator removes a fermion from single-particle state. This formalism is called second
quantization [31].

3.5.1 Creation and Annihilation Operators

In this section, we will define creation and annihilation operators. These operators are mappings
between the many-particle Hilbert spaces of different particle numbers, viz.

a†α : HAS
N →HAS

N+1 (3.64)

aα : HAS
N →HAS

N−1, (3.65)

where

α ∈ H1. (3.66)

Creation and annihilation operators are operators that create and annihilate fermions. We define
the fermionic creation operator by

a†α|α1α2..αN 〉 ≡ |αα1α2..αN 〉, (3.67)

i.e. it adds a fermion with quantum number α to an antisymmetric state (Slater determinant)
in which N fermions occupy single-particle orbitals (α1, α2, .., αN ). An antisymmetric (N+1)-
fermion state is the result. Note that if α is already occupied, the result is zero. We can now
write a Slater determinant as a product of creation operators, viz.

|α1α2..αN 〉 = a†α1
a†α2

..a†αN
|0〉 =

N∏

i=1

a†αi
|0〉, (3.68)
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3.5. Second Quantization

where |0〉 is the vacuum state. Combining Eqs. (3.63) and (3.68) yields

a†α1
..a†αi

..a†αj
..a†αN

|0〉 = −a†α1
..a†αj

..a†αi
..a†αN

|0〉, (3.69)

leading to the following anticommutation relation
{
a†α, a

†
β

}
= a†αa

†
β + a†βa

†
α = 0. (3.70)

The adjoint of a†α is called an annihilation operator,

aα =
(
a†α

)†
. (3.71)

It can be shown that its action on a Slater determinant (see [31, 32]) is given by

aα|α1α2..αi−1αiαi+1..αN−1αN 〉 = (−1)i−1|α1α2..αi−1αi+1..αN−1αN 〉 (3.72)

when α = αi is occupied by a fermion, and

aα|α1α2..αN 〉 = 0, (3.73)

when α is unoccupied, i.e. α 6= αi for i = 1, 2, .., N. The annihilation operator aα has therefore the
property that its action upon an antisymmetric N -fermion state (Slater determinant) produces an
antisymmetric (N -1)-fermion state, provided that α is occupied. The anticommutation relation
reads

{aα, aβ} = aαaβ + aβaα = 0. (3.74)

Furthermore, the anticommutation relation between the creation and annihilation operator (see
[31]) reads

{
a†α, aβ

}
= δαβ . (3.75)

3.5.2 Operators in Second Quantization

We are now in a position where we can express many-fermion states by creation and annihilation
operators. In many-body theory in general, we often need to calculate matrix elements or
expectation values of operators. Consider for example the matrix element

〈α1α2|Ô|α3α4〉, (3.76)

where |α1α2〉 and |α3α4〉 are Slater determinants. In second quantization, this element reads

〈0|aα1
aα2

Ô a†α3
a†α4
|0〉. (3.77)

Is it possible to write Ô in terms of creation and annihilation operators? The answer is yes,
provided that the operators conserve the particle number. Thus we can solve the matrix element
by using the anticommutation relations in Eqs. (3.70), (3.74) and (3.75). Operators expressed
in second quantization have the convenient property that they do not depend on the numbers
of particles in the system. They work in the so-called Fock space (see [31]), which is the vector
space constructed by the direct sum of the vacuum space, the single-particle Hilbert space, the
two-particle Hilbert space, and so forth, viz.

F ≡
∞⊕

n=0

HAS
n , (3.78)
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Chapter 3. Many-Body Theory

where HAS
n is the n-fermion Hilbert space. We will in the following only consider the second

quantized form of one-body and two-body operators.
Consider a one-body operator F̂ . It is given as

F̂ =
N∑

i=1

f̂i, (3.79)

where f̂i acts on particle i, and N is the number of fermions. Given an arbitrary single-particle
basis

B1 = {|α〉}di=1 (3.80)

that spans the one-fermion Hilbert space H1 with dimension d (often infinity), the second
quantized form of F̂ reads

F̂ =
∑

αβ

〈α|f |β〉a†αaβ. (3.81)

See [31] for details. Thus for every set of quantum numbers (α,β), the operator F̂ annihilates
a fermion in state β and creates a fermion in state α with probability amplitude 〈α|f |β〉.
Furthermore, consider a two-body operator V̂ . It is given as

V̂N =

N∑

i=1<j

v̂ij , (3.82)

where v̂ij acts on particle i and j, and N is the number of fermions in the system. Given an
arbitrary single-particle basis (see Eq. 3.80), the second quantized form of V̂ reads

V̂ =
1

2

∑

αβγδ

〈αβ|v|γδ〉a†αa†βaδaγ (3.83)

=
1

4

∑

αβγδ

〈αβ|v|γδ〉ASa
†
αa

†
βaδaγ , (3.84)

where the antisymmetrized matrix element is defined as

〈αβ|v|γδ〉AS = 〈αβ|v|γδ〉 − 〈αβ|v|δγ〉. (3.85)

See [31] for details. For every set of quantum numbers (α, β, γ, δ), the operator V̂ annihilates a
fermion from states γ and δ, and creates a fermion in states α and γ, with probability amplitude
1
4 〈αβ|v|γδ〉AS.

We are now in a position where we can write antisymmetric wavefunctions (Slater
determinants), one-body operators and two-body operators in second quantization. As pointed
out before, in a quantum mechanical treatment of many-body systems, we often end up with
evaluating matrix elements. As an example, consider

〈α1α2|V̂ |α3α4〉, (3.86)

where |α1α2〉 and |α3α4〉 denote Slater determinants, and V̂ a two-body operator. Since

〈α1α2| = 〈0|aα1
aα2

(3.87)

|α3α4〉 = a†α3
a†α4
|0〉, (3.88)

we obtain that

〈α1α2|V̂ |α3α4〉 =
1

4

∑

αβγδ

〈αβ|v|γδ〉AS〈0|aα1
aα2

a†αa
†
βaδaγa

†
α3
a†α4
|0〉, (3.89)
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3.5. Second Quantization

where the second quantized form of V̂ is given in Eq. (3.83). Thus we end up with evaluating the
vacuum expectation value of products of creation and annihilation operators. These elements
can be determined by using the anticommutation relations in Eqs. (3.70), (3.74) and (3.75).
However, this approach can be quite tedious and time-consuming. Wick’s theorem provides an
easy, yet sophisticated, method for writing a string of creation and annihilation operators as a
sum of normal ordered terms with all possible combinations of contractions. This will allow us
to easily point out which terms that contribute to the expression. We will in the next section
define Wick’s theorem, and the concepts of normal-ordering and contractions.

3.5.3 Wick’s Theorem

As pointed out in the previous section, a quantum mechanical treatment of many-body systems
often entails calculating matrix elements of operators between state vectors. Thus, in the
formalism of second quantization, we often end up with vacuum expectation values of creation
and annihilation operators. We can use the anticommutation relations in Eqs. (3.70), (3.74)
and (3.75) to rearrange the product into an operator string where the annihilation operators are
placed to the right of the creation operators. All terms with a rightmost annihilation operator
are zero, by construction. Thus, according to Eq. (3.75), every vacuum expectation value of
creation and annihilation operators can be written as a sum of delta functions. Although the
procedure is straightforward in itself, it becomes tedious and time-consuming even for simple
cases. The so-called Wick’s theorem allow us to determine these matrix elements in a simple
and convenient way.

Wick’s theorem is based on two fundamental concepts, viz. normal-ordering and contractions.
Consider a product of creation and annihilation operators,

ÂB̂..X̂Ŷ . (3.90)

Its normal-ordered form is defined as

{
ÂB̂..X̂Ŷ

}
≡ (−1)p [creation operators] · [annihilation operators] , (3.91)

where p denotes the number of permutations that is needed to transform the original string into
the normal-ordered form. The contraction between two operators X̂ and Ŷ is defined as

ÂB̂ ≡ 〈0|ÂB̂|0〉. (3.92)

Furthermore, we define the contraction between two operators within a normal-ordered product
as

{
ÂB̂..X̂Ŷ

}
= (−1)p

{
ÂX̂..R̂Ŷ

}
, (3.93)

where p is the number of permutations needed to bring both operators to the left. In the general
case when we have m contractions within a normal-ordered product, the prefactor reads

(−1)p1+p2+..+pm . (3.94)

Wick’s theorem states that every string of creation and annihilation operators can be written as
a sum of normal-ordered products with all possible combinations of contractions. The theorem
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Chapter 3. Many-Body Theory

reads

ÂB̂ĈD̂..R̂X̂Ŷ Ẑ =
{
ÂB̂ĈD̂..R̂X̂Ŷ Ẑ

}

+
∑

(1)

{
ÂB̂ĈD̂..R̂X̂Ŷ Ẑ

}

+
∑

(2)

{
ÂB̂ĈD̂..R̂X̂Ŷ Ẑ

}

+ ...

+
∑

(n/2)

{
ÂB̂ĈD̂.. R̂X̂Ŷ Ẑ

}
, (3.95)

where (m) denotes the number of contractions, and (n/2) denotes the largest integer that do not
exceed n/2 (n being the number of operators). When n is even, we obtain fully contracted terms.
However, when n is odd, none of the terms in Eq. (3.95) are fully contracted. See [31] for a proof
of Wick’s theorem. An important extension of Wick’s theorem is the so-called generalized Wick’s
theorem. This theorem reads

{
ÂB̂ĈD̂..

}{
R̂X̂Ŷ Ẑ..

}
=
{
ÂB̂ĈD̂..R̂X̂Ŷ Ẑ

}

+
∑

(1)

{
ÂB̂ĈD̂..R̂X̂Ŷ Ẑ

}

+
∑

(2)

{
ÂB̂ĈD̂..R̂X̂Ŷ Ẑ

}

+ ... (3.96)

The vacuum expectation value of creation and annihilation operators can now be written as

〈0|ÂB̂ĈD̂..R̂X̂Ŷ Ẑ|0〉 = 〈0|
{
ÂB̂ĈD̂..R̂X̂Ŷ Ẑ

}
|0〉

+
∑

(1)

〈0|
{
ÂB̂ĈD̂..R̂X̂Ŷ Ẑ

}
|0〉

+
∑

(2)

〈0|
{
ÂB̂ĈD̂..R̂X̂Ŷ Ẑ

}
|0〉

+ ...

+
∑

(N/2)

〈0|
{
ÂB̂ĈD̂.. R̂X̂Ŷ Ẑ

}
|0〉. (3.97)

Since

〈0|
{
ÂB̂..X̂Ŷ

}
|0〉 = 0, (3.98)

by construction (see Eq. 3.93), obtain that

〈0|ÂB̂ĈD̂..R̂X̂Ŷ Ẑ|0〉 =
∑

(fc)

〈0|
{
ÂB̂ĈD̂.. R̂X̂Ŷ Ẑ

}
|0〉

=
∑

(fc)

ÂB̂ĈD̂.. R̂X̂Ŷ Ẑ, (3.99)
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where “fc” denotes full contractions meaning that all operators are contracted. When the number
of creation and annihilation operators is odd, the vacuum expectation value is zero. However,
when the number is even, the expectation value is simply the sum of fully contracted terms. We
observe from the definition in Eq. (3.91) the following relations,

aαa
†
β = δαβ (3.100)

a†αaβ = 0 (3.101)

aαaβ = 0 (3.102)

a†αa
†
β = 0. (3.103)

Wick’s theorem can thus be used to calculate matrix elements of operators between Slater
determinants.

3.5.4 Particle-Hole Formalism

We have seen that the formalism of second quantization is a convenient formalism for constructing
antisymmetric wavefunctions and operators that conserves the particle-number. However, the
real power of second quantization emerges when the particle-hole formalism is introduced. This
is a so-called quasi-particle formalism.

In Sec. 3.5.1, we saw that antisymmetric wavefunctions can be written as

|α1α2..αN 〉 = a†α1
a†α2

..a†αN
|0〉, (3.104)

where |0〉 is the vacuum state. The vacuum state is often called the reference state. In many-
body theory we often deal with Slater determinants that have a few fermions excited relative
to another determinant. For example, the first excited energy eigenstate of the non-interacting
N -fermion system (provided by the Schrödinger equation in Eq. 3.17) has one particle excited
relative to the ground state. Another excited state may have two particles excited relative to
the ground state, and so forth. It is therefore in many cases appropriate to introduce a new
reference state. In the previous example, when we are dealing with energy eigenstates of the
non-interacting system, the reference state could be the ground state. The transition from the
ordinary particle representation to the particle-hole representation is shown schematically in
Fig. (3.5.4). We have in the figure illustrated three antisymmetric states (Slater determinants),

|a〉 = |α1α2..αN−1αN 〉 ∈ HAS
N (3.105)

|b〉 = |α1α2..αN−1αNαN+1〉 ∈ HAS
N+1 (3.106)

|c〉 = |α1α2..αN−1〉 ∈ HAS
N−1, (3.107)

in both the particle representation (left), and the particle-hole representation (right). Here we
denote the single-particle state by quantum numbers α1α2..αN+1. In the particle representation,
the determinants are written as a product of creation operators acting on the vacuum state, viz.

|a〉0 = |α1α2..αN−1αN 〉 = a†α1
a†α2

..a†αN−1
a†αN
|0〉 (3.108)

|b〉0 = |α1α2..αN−1αNαN+1〉 = a†α1
a†α2

..a†αN−1
a†αN

a†αN+1
|0〉 (3.109)

|c〉0 = |α1α2..αN−1〉 = a†α1
a†α2

..a†αN−1
|0〉, (3.110)

where the 0-subscript denotes that the vacuum state is the reference state. By defining a new
reference state

|r〉 ≡ |a〉 = a†α1
a†α2

..a†αN−1
a†αN
|0〉, (3.111)
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the two other determinants can be expressed as

|b〉r = (−1)N a†αN+1
|r〉 ≡ (−1)N |αN+1〉r (3.112)

|c〉r = (−1)N−1 aαN
|r〉 ≡ (−1)N−1 |α−1

N 〉r. (3.113)

The difference between |b〉 and the reference state is the particle occupying single-state αN+1.
Thus in the new representation, |b〉 is called a particle-state. Furthermore, relative to the
reference state, |c〉 has a particle removed from single-particle state αN , and is therefore called
a hole-state.

The new representation is known as the particle-hole representation, and the new reference
state |r〉 is the so-called particle-hole vacuum. This is a quasi-particle representation. The idea is
that both holes (unoccupied single-particle states below the Fermi level) and particles (occupied
single-particle states above the Fermi level ) are treated as quasi-particles, where the Fermi level
denotes the single-particle state αN . Creation of a quasi-particle means either creating a particle
in state α > αN , or creating a hole (i.e. removing a particle) in state α ≤ αN . Annihilation
of a quasi-particle means either removing a particle from state α > αN , or removing a hole
(create a particle) in state α ≤ αN . The choice of reference state is in principle arbitrary, but
the particle-hole formalism is only appropriate when the reference state corresponds to a system
which is physically steady.

When defining a new reference state, the ordinary creation and annihilation operators for
particles must be replaced with corresponding operators for quasi-particles. We will denote the
single-particle states that are part of the occupied space (α ≤ αN ) with ijk..., and the states
that are part of the unoccupied space (α > αN ) with abc... We will refer to i as a hole state, and
a as a particle state. The quasi-particle creation operator is defined as

b†α ≡
{
a†α if α = a, b, c, ..

aα if α = i, j, k, ..
, (3.114)

and the annihilation operator

bα ≡
{
a†α if α = i, j, k, ..

aα if α = a, b, c, ..
. (3.115)

The definitions above yield the following anticommutation relations,

{bα, bβ} = 0 (3.116)
{
b†α, b

†
β

}
= 0 (3.117)

{
b†α, bβ

}
= δαβ , (3.118)

which are identical to Eqs. (3.70), (3.74) and (3.75), as expected. We can now express quasi-
particle states as

|ijkl..abcd..〉r ≡ b†ib
†
jb

†
kb

†
l ..b

†
ab

†
bb

†
cb

†
d..|r〉, (3.119)

where ijkl.. are occupied by holes, and abcd.. are occupied by particles. Operators can also be
expressed by quasi-particle creation and annihilation operators. This is for example necessary
in order to utilize the particle-hole formalism when evaluating matrix elements of operators
between quasi-particle states. Moreover, Wick’s theorem in Eq. (3.95) is valid for products of
quasi-particle creation and annihilation operators, provided that the contractions are defined
relative to the reference state. The only nonzero contraction is

bαb
†
β = 〈r|bαb†β|r〉 = δαβ . (3.120)

We will omit the discussion of operators in quasi-particle representation, and evaluation of matrix
elements of such operators between quasi-particle states. This is not directly relevant for this
thesis.
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|a〉

α1

α2

αN−1

αN

αN+1

αN+2

|b〉 |c〉 |a〉

|r〉

αN+1

αN+2

|b〉 |c〉

Figure 3.1: Illustration of the particle-hole representation. We have three Slater determinants:
|a〉 ∈ HAS

N , |b〉 ∈ HAS
N+1 and |c〉 ∈ HAS

N−1. To the left we have the ordinary particle representation where
each occupied single-particle state is specified. The corresponding expressions are given in Eqs. (3.108),
(3.109) and (3.110). To the right we have the particle-hole representation where each occupied state (by
a particle or hole), that is not occupied in the reference determinant, is specified. The expressions are
given in Eqs. (3.111), (3.112) and (3.113). Note that • represents a particle, and � represents a hole.
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Chapter 4

Theoretical Description of Quantum

Dots

In this chapter we aim at developing a theoretical framework for the 2-dimensional quantum dot.
Put simply, we want to establish a quantum mechanical description of the single-electron system,
i.e. solve the time-independent Schrödinger equation in 2 dimensions. In order to achieve our
goal, a model of the system must be determined. The results from this chapter will be used in
the many-body treatment of quantum dots.

The first section is devoted to the theoretical model of quantum dots and the approximations
that are done. We will see that the confinement potential can be approximated by the harmonic
oscillator potential, which belongs to the class of spherically symmetric potentials. Therefore,
the second section consider the time-independent Schrödinger equation for a general spherically
symmetric potential in 2 dimensions. For these potentials, the Schrödinger equation simplifies
to two independent equations: one angular equation, and one radial equation. The angular
equation can be solved without specifying the potential. Then, in the third section, we will specify
the potential to the harmonic oscillator potential and solve the time-independent Schrödinger
equation. Finally, we will in the last two sections develop our final model Hamiltonian and scale
this into dimensionless form.

4.1 Approximations

As pointed out before, quantum dots are fabricated systems of trapped electrons. They are
created in a semiconductor, typically gallium arsenide (GaAs). The electrons in a quantum dot
are confined by either a physical barrier, typically an insulator like aluminum gallium arsenide
(AlGaAs), or/and an electromagnetic field [2]. In order to calculate properties of real life quantum
dots, we obviously need a model Hamiltonian which is as close to the exact one as possible.
However, quantum dots are complex devices. It is impossible to give a simple, yet totally
complete, theoretical model. For example, we should determine an exact analytical expression
of the confinement potential, account for edge effects, and so forth. In addition, all interactions
that are present in the system should be included in our model. However, the complexity of
such a model would quickly reach the limit of computational resources. Approximations are
therefore necessary. In this thesis we disregard edge effects. Moreover, we only include the
electron-electron interaction, which is given by the Coulomb interaction

v(rij) =
e2

4πǫ0ǫr

1

rij
, (4.1)

where e is the electron charge, ǫ0 is the vacuum permittivity, ǫr is the relative permittivity, and
rij is the distance between the electrons. Numerical [33, 34, 35, 36] and experimental [37, 38, 39]
studies show that the confinement potential can be approximated by the harmonic oscillator
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potential

u(r) =
1

2
m∗ω2r2, (4.2)

where m∗ is the effective mass of the electron, ω is the oscillator frequency, and r is the distance
between the electron and the point in space where u(r) = 0. For example, the effective mass
of the electron in Gallium Arsenide (GaAs) is approximately 0.067me, where me is the electron
mass. See [40] for a discussion of effective masses. Furthermore, theoretical simulations with this
potential have predicted strong absorption of far-infrared light at the frequency corresponding to
the oscillator frequency. See for example [41, 42]. This prediction is consistent with experimental
results, such as [43]. Furthermore, another common approximation of quantum dots is to reduce
the spatial dimensions from three to two. The third dimension is usually fixed by a manufacture
technique, which force the electrons to occupy a planar region. We will in this thesis consider
the 2-dimensional quantum dot. The confinement potential will be given by the harmonic
oscillator potential, and the electron-electron interaction will be modeled with the Coulomb
interaction. This is what we call the parabolic quantum dot. We will also include the effect of an
electromagnetic field, where the magnetic field is constant and uniform in the z-direction, i.e. the
direction that is perpendicular to the 2-dimensional electron plane.

4.2 Schrödinger Equation for Spherically Symmetric Potentials

In Nature we observe many important potentials that are spherically symmetric, i.e. they only
depend on the distance from a certain point in space,

V = V (r). (4.3)

The single-particle Schrödinger equation can in these cases be simplified to a set of independent
equations by first introducing spherical coordinates (r, ϕ, θ), and then separate the equation in
these new variables. We will in the following present how we can rewrite the time-independent
Schrödinger equation as a set of independent equations in 2 dimensions. The total wavefunction
is given as (see Sec. 2.2.3) a tensor product between a spatial part and a spin part. Since
the potential is independent of the spin of the particle, the spin part can be omitted in the
calculation. We here assume that the magnetic field is zero. In the case of an electron, the
eigenstates of Ŝz and Ŝ2 is given by Eqs. (2.61) and (2.62). We will therefore in the following
only consider the spatial part of the total wavefunction.

In the cartesian coordinate representation, the time-independent Schrödinger equation for a
single-particle system reads

− ~
2

2m∗

(
∂2

∂x2
+

∂2

∂y2

)
φ(x, y) + u(

√
x2 + y2)φ(x, y) = εφ(x, y), (4.4)

where m is the mass of the particle, u = u(
√
x2 + y2) is a spherically symmetric potential,

and φ(x, y) is the eigenfunction with corresponding eigenvalue ǫ. We now introduce spherical
coordinates (r,θ) defined as

r ≡
√
x2 + y2 (4.5)

θ ≡ arccos
(x
r

)
= arcsin

(y
r

)
. (4.6)

In this representation, the time-independent Schrödinger equation reads

− ~
2

2m∗

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
φ(r, θ) + u(r)φ(r, θ) = εφ(r, θ). (4.7)
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We are seeking the solutions that are separable in r and θ, viz.

φ(r, θ) = R(r)Y (θ), (4.8)

and substitute this expression into Eq. (4.7), yielding

− ~
2

2m∗

(
Y (θ)

∂2R(r)

∂r2
+
Y (θ)

r

∂R(r)

∂r
+
R(r)

r2
∂2Y (θ)

∂θ2

)
+ u(r)R(r)Y (θ) = εR(r)Y (θ). (4.9)

We multiply −2m∗r2/~2R(r)Y (θ) on both sides and collect the terms containing r and θ for
themselves,

[
r2

R(r)

∂2R(r)

∂r2
+

r

R(r)

∂R(r)

∂r
− 2m∗r2

~2
(u(r)− ε)

]
+

[
1

Y (θ)

∂2Y (θ)

∂θ2

]
= 0. (4.10)

The term in the first square bracket depends only on r, whereas the second term in square bracket
depends only on θ. Each term is therefore equal to a constant,

r2

R(r)

∂2R(r)

∂r2
+

r

R(r)

∂R(r)

∂r
− 2m∗r2

~2
(u(r)− ε) = kr (4.11)

1

Y (θ)

∂2Y (θ)

∂θ2
= kθ, (4.12)

where

kr = −kθ. (4.13)

We choose kr = m2. Do not confuse m with the mass of the particle m∗. Eq. (4.10) can now be
written as two independent differential equations,

r2
d2R(r)

dr2
+ r

dR(r)

dr
− 2m∗r2R(r)

~2
(V (r)− ε) = m2R(r) (4.14)

d2Y (θ)

dθ2
= −m2Y (θ). (4.15)

The solution of the angular equation in (4.15) is

Y (θ) = Ceimθ, (4.16)

where C is a constant, and i is the imaginary unit. Actually, there is also another solution:
e−imθ. This is covered by allowing m to run negative. Since the spatial wavefunction must be
normalized, i.e.

∫ ∞

0

∫ 2π

0
|R(r)Y (θ)|2 rdrdθ = 1, (4.17)

the angular solution must satisfy
∫ 2π

0
|Y (θ)|2 dθ = 1, (4.18)

yielding C2 = 1/2π. The normalized solution of the angular equation thus reads

Y (θ) =
1√
2π
eimθ. (4.19)

At this point, there are no mathematical restrictions on m. Since the system is invariant under
2π-rotation, we demand that

Y (θ + 2π) = Y (θ). (4.20)
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This imply that

eimθ = 1, (4.21)

leading to the following allowed values of m,

m = 0,±1,±2,±3, ... (4.22)

We now turn to Eq. (4.14). In order to simplify the equation, we define

ρ(r) ≡
√
rR(r) ⇒ R(r) =

ρ(r)√
r
, (4.23)

and substitute this expression into Eq. (4.14), yielding

− ~
2

2m∗

d2ρ(r)

dr2
+

[
u(r) +

~
2

2m∗

m2 − 1
4

r2

]
ρ(r) = ερ(r). (4.24)

This is called the radial equation. It is identical to the 1-dimensional Schrödinger equation with
an effective potential

ueff(r) = u(r) +
~

2

2m∗

m2 − 1
4

r2
. (4.25)

Just like the centrifugal pseudo-force in classical mechanics, the second term in the above
expression can be characterized as a centrifugal term which tends to push the particle outwards.
The radial part of the wavefunction must satisfy the normalization condition

∫ ∞

0
|R(r)|2 rdr =

∫ ∞

0
|ρ(r)|2 dr = 1 (4.26)

This is as far as we can go before we specify the potential. Given a spherically symmetric
potential u(r), the solution of the single-particle Schrödinger equation is found by solving the
radial equation in (4.24), yielding R(r) (through Eq. 4.23) and the eigenvalues ε. The normalized
form of R(r) is found by Eq. (4.26). The final spatial solution reads

φm(r, θ) =
1√
2π
R(r)eimθ, (4.27)

with m given in Eq. (4.22).

4.3 Solutions for the Single-Electron Parabolic Quantum Dot

We will in this section solve the Schrödinger equation for the single-electron parabolic quantum
dot in 2 dimensions. The potential is given by Eq. (4.2). In the absence of an electromagnetic
field, the Hamiltonian of the single-electron system reads

Ĥ = − p̂2

2m∗
+

1

2
m∗ω2r2, (4.28)

where

p̂ = −i~∇ = −i~
(
∂

∂x
i +

∂

∂y
j

)
(4.29)

is the momentum operator, m∗ is the effective mass of the electron, ω is the oscillator frequency,
r is the distance between the electron and the point where 1/2m∗ω2r2 = 0, and i and j are the
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cartesian unit vectors. We now introduce an electromagnetic field. The classical Hamiltonian of
a charged electron in an electromagnetic field reads [44]

H =
1

2m
(p− eA)2 + eΩ, (4.30)

with Ω and A as the electromagnetic potentials, m as the mass, e as the charge, and p = mv

is the classical momentum vector. The electromagnetic potentials are related to electromagnetic
field by the equations

E = −∂A
∂t
−∇Ω (4.31)

B = ∇×A, (4.32)

where t is the time. In quantum mechanics, electrons carry intrinsic spin (see Sec. 2.2.2). This
leads to an additional energy contribution, −µ̂·B, where µ̂ is the magnetic moment of the electron.
The Hamiltonian of a single-electron parabolic quantum dot subjected to an electromagnetic field
then reads

Ĥ =
1

2m∗
(p̂− eA)2 + eΩ− µ̂ ·B +

1

2
m∗ω2

0r
2, (4.33)

where p̂ is given by Eq. (4.29). For reasons that will appear later, the oscillator frequency is
changed from ω to ω0. We are seeking the solution of the time-independent Schrödinger equation,

(
1

2m∗
(p̂− eA)2 + eΩ− µ̂ ·B +

1

2
m∗ω2

0r
2

)
ψ(r) = εψ(r), (4.34)

where ε is the energy eigenvalue, and r includes the spin degree of freedom. The total
wavefunction (energy eigenfunction) ψ(r) (see Sec. 2.2.3) is defined as

ψ(r) = φ(x, y)⊗ |χ〉, (4.35)

where φ(x, y) is the spatial part, and |χ〉 is the spin part. We observe that the Hamiltonian
contains a spin dependent part and two parts that depend on the position of the electron, i.e. parts
that act in different spaces (see Sec. 2.2.3). Inserting the total wavefunction in Eq. (4.35) into
the Schrödinger equation (4.34), we obtain

(
1

2m∗
[p̂− eA]2 +

1

2
m∗ω2

o(x
2 + y2)

)
φ(x, y) = εrφ(x, y) (4.36)

− (µ ·B) |χ〉 = εs|χ〉. (4.37)

The total energy is given as

ε = εr + εs + eΩ. (4.38)

We first consider the spatial equation in (4.36). This equation can be simplified by writing out
the first term on the left hand side,

1

2m∗
(p̂− eA)2 =

1

2m∗

(
p̂2 + e2A2 − eB · L̂

)
, (4.39)

where L̂ is the angular momentum operator [24] defined as

L̂ = (x i + y j)× p̂, (4.40)

where p̂ is given in Eq. (4.29). Furthermore, we are working in the Coulomb gauge [44], i.e.

∇ ·A = 0. (4.41)
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One possible solution is [44]

A =
1

2
B× (x i + y j). (4.42)

The Hamiltonian can then be written in the following form,

Ĥ =
1

2m∗

[
p̂2 +

e2

4

(
B× (x i + y j)

)2
− eB · L̂

]
+

1

2
m∗ω2

o(x
2 + y2). (4.43)

We now consider the special case of a constant and uniform magnetic field in the z-direction, i.e.

B = B0k, (4.44)

where k is the unit vector in the z-direction, and B0 is a constant. The Hamiltonian then reads

Ĥ =
1

2m∗

[
p̂2 +

e2B2
0

4

(
x2 + y2

)
− eB0 (xp̂y − yp̂x)

]
+

1

2
m∗ω2

o(x
2 + y2). (4.45)

Defining

ωB ≡
eB0

2m∗
, (4.46)

and

ω2 ≡ ω2
0 + ω2

B , (4.47)

the Hamiltonian can be written as

Ĥ =
1

2m∗

[
p̂2 − eB0 (xp̂y − yp̂x)

]
+

1

2
m∗ω2(x2 + y2). (4.48)

We identify

xp̂y − yp̂x = L̂z, (4.49)

i.e. the z-projection of the angular momentum L̂. Thus we obtain

Ĥ =
1

2m∗

(
p̂2 − eB0L̂z

)
+

1

2
m∗ω2(x2 + y2). (4.50)

We now introduce spherical coordinates, see Eqs. (4.5) and (4.6). In this representation, the
z-projection of the angular momentum reads

L̂z = −i~ ∂

∂θ
. (4.51)

The Hamiltonian is now given as

Ĥ = − ~
2

2m∗

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
− ieB0

~

∂

∂θ

)
+

1

2
m∗ω2r2. (4.52)

We are seeking the solution of the time-independent Schrödinger equation,
[
− ~

2

2m∗

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
− ieB0

~

∂

∂θ

)
+

1

2
m∗ω2r2

]
φ(r, θ) = εrφ(r, θ). (4.53)

We observe that the time-independent Schrödinger equation for a general spherically symmetric
potential (4.7) is almost identical to the equation above. The magnetic field provides an
additional term,

− ieB0

~

∂

∂θ
. (4.54)
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Since it only depends on the angle φ, the solution of Eq. (4.53) is separable. In the previous
section we found that the solution of the angular equation in (4.15) is given as exp(imθ)/

√
2π.

We therefore make the following ansatz

φ(r, θ) = R(r)eimθ, (4.55)

where m is given by Eq. (4.22) since we demand eimθ = 1. Substituting the ansatz into Eq. (4.53),
yields

[
− ~

2

2m∗

(
d2

dr2
+

1

r

d

dr
− m2

r2
+
emB0

~

)
+

1

2
m∗ω2r2

]
R(r) = εrR(r). (4.56)

The normalized energy eigenfunctions are given as

φnm(r, θ) =

√
n!

π(n+ |m|)!β
1

2
(1+|m|)r|m|e−

1

2
βr2

L|m|
n (βr2)eimθ, (4.57)

where L(βr2)
|m|
n is the associated Laguerre polynomials, and β is defined as

β ≡ m∗ω

~
. (4.58)

The eigenvalues are given as

εr,nm = (1 + |m|+ 2n) ~ω +m~ωB, (4.59)

where ωB is defined in Eq. (4.46), and n = 0, 1, 2, 3, ... See App. (A) for the full derivation of
Eq. (4.57) and Eq. (4.59).

We now consider the spin equation in (4.37). The magnetic moment is given as

µ̂ =
eg

2m∗
Ŝ, (4.60)

where g is the g-factor of the electron, e is the charge, m∗ is the effective mass, and Ŝ is the
spin operator. Since B = B0k, where k is the cartesian unit vector in the z-direction, the spin
equation reads

−egB0

2m∗
Sz|χ〉 = εs|χ〉, (4.61)

where Ŝz is the z-projection of the spin. The eigenvectors are given by Eqs. (2.61) and (2.62).
The eigenvalues are (see Sec 2.2.2)

εs,ms = −eg~B0

2m∗
ms = gms~ωB. (4.62)

Collecting all terms that contribute to the total energy ε in Eq. (4.38), yields

εnmms = (1 + |m|+ 2n) ~ω +m~ωB + gms~ωB + eΩ. (4.63)

The total energy eigenfunctions are given as

ψnmms(r, θ) =

√
n!

π(n+ |m|)!β
1

2
(1+|m|)r|m|e−

1

2
βr2

L|m|
n (βr2)eimφ ⊗ |χms〉, (4.64)

where |χms〉 is given in Eqs. (2.61) and (2.62).
When the electromagnetic field vanishes, i.e. ωB = 0 and Ω = 0, the energy is given as

ε0nm = (1 + |m|+ 2n) ~ω0, (4.65)
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where the superscript denotes the absence of an electromagnetic field. This is the energy spectrum
we would have obtained by directly solving the radial equation in (4.24) with the harmonic
oscillator potential. Since

n = 0, 1, 2, 3, ... (4.66)

m = 0,±1,±2,±3, ... (4.67)

ms = −1

2
,
1

2
, (4.68)

the total degeneracy of energy level ε0nm is given as

D = 2d = 2(1 + |m|+ 2n), (4.69)

where the factor of 2 comes from the spin degree of freedom (spin up/down). This is what we
call a shell structure. In Nature, we often observe this feature. The most well-known case is
perhaps the Hydrogen atom. The energy eigenvalues are given as (Bohr formula)

En = − 1

2~2

(
e2

4πǫ0

)2
1

n2
, (4.70)

where n is the so-called principal quantum number. The quantum state is characterized by four
quantum numbers n, l, ml and ms, where l is the orbital quantum numbers, ml is the magnetic
quantum number, and ms is the quantum number associated with the z-projection of the spin.
Since the energy only depends on n, each energy level has degeneracy. Turning back to the
quantum dot system, we define the shell number as

R ≡ (1 + |m|+ 2n). (4.71)

The shell structure is shown in Table 4.1 and illustrated in Figure 4.1. For each shell number

Figure 4.1: Shell structure of a single-electron parabolic quantum dot, where R is the shell number
defined in Eq. (4.71), m is the angular quantum number, and ↑↓ denote ms = ±1/2 (spin quantum
number).

R, we associate D orbitals. Also, for a given shell R, there are

D + (D − 2) + (D − 4) + ...+ 2 (4.72)

orbitals associated with shells R′ ≤ R. We have in Table 4.1 tabulated this value for each
R (Shell-filling). These are the so-called magic numbers, which represent the number of non-
interacting electrons that are needed to obtain a closed-shell ground state. These numbers are
important for many-body calculations of interacting systems. We will come back to this later.
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R D = 2d Shell-filling
1 2 2
2 4 6
3 6 12
4 8 20
5 10 30
6 12 42
7 14 56

Table 4.1: Shell structure of the single-electron parabolic quantum dot, where R is the shell number
(energy level) defined in Eq. (4.71), D is the degeneracy for each level, and “shell-filling” is the number
of orbitals from shell 1 up to shell R.

Consider Eqs. (4.65) and (4.64). We see that the presence of the magnetic field makes the
energy depend on ms and the sign of m. When the strength of the magnetic field increases, the
degenerate states for B = 0 will separate more and more. In order to illustrate this feature, we
set Ω = 0 (this is just a constant) and remove the spin contribution gms~ωB . By substituting
Eq. (4.47) into Eq. (4.59) and divide by ~ω0, we obtain

εnm

~ω0
= (1 + |m|+ 2n)

√

1 +
ω2

B

ω2
0

+m
ωB

ω0
. (4.73)

This leads to the so-called Fock-Darwin energy spectrum [8] shown in Figure (4.2). Including the
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ǫ
n
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Figure 4.2: The 2-dimensional Fock-Darwin energy spectrum for a single-electron quantum dot. For
ωB = 0, the energy levels are degenerate. When ωB increases, the energy levels split due to the
contribution from m~ωB. Sudden degeneracy occur, with subsequent splitting. If we were to follow
the “energy history” of an electron when ωB increases, we would observe a zig-zag line since it chooses
the state with the most favorable energy (after a sudden degeneracy). We clearly observe that the energy
levels converge to the high field limits in Eq. (4.78), forming the so-called Landau bands [45]. The straight
(bold) lines indicate the Landau bands for NL = 0 and 1, see Eq. (4.78).

spin part would split up each energy line and result in an even more complicated Fock-Darwin
diagram. When ωB = 0, the energy levels are degenerate, as discussed above. When the magnetic
field is turned on, the degenerate states separate due to the m~ωB term. Further increment of
the magnetic field leads to sudden degeneracies with other states, i.e. states belonging to different
shells. When the magnetic field increases even more (after a sudden degeneracy), an electron in
a degenerate state will choose the state (if available) with the most favorable energy. Further
increment leads to more sudden degeneracies. In Figure (4.2) we clearly observe that the energy
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lines congregate into bands when the magnetic field increases. These bands are often called
Landau bands [45, 46]. In the limit when ωB →∞, the energy eigenvalues (4.73) reads

lim
ωB→∞

εnm = (1 + |m|+m+ 2n) ~ωB. (4.74)

When m ≥ 0 we obtain

lim
ωB→∞

εnm = (1 + 2 (m+ n)) ~ωB. (4.75)

In the other case, when m < 0, the expression reads

lim
ωB→∞

εnm = (1 + 2n) ~ωB. (4.76)

It is natural to define the Landau number

NL ≡ 0, 1, 2, 3, ... (4.77)

Therefore, for a sufficient strong magnetic field, the energy eigenvalues are approximately given
as

εL ≈ (1 + 2NL) ~ωB. (4.78)

In Figure (4.2), the Landau bands for NL = 0 and NL = 1 are shown by the straight (bold) lines.
We clearly observe that when the magnetic field increases, the energy spectrum form Landau
bands which converges to the Landau energies in Eq. (4.78).

4.4 N-Electron Model Hamiltonian

When the the quantum dot contains more than one electron, the time-independent Schrödinger
equation must be solved numerically. In order to do numerical simulations, a Hamiltonian must
be provided. The Hamiltonian of an N -electron parabolic quantum dot in an electromagnetic
field with B = B0k reads (see Sections 4.2 and 4.3)

Ĥ =

N∑

i=1

(
− ~

2

2m∗
∇2

i +
1

2
m∗ω2

0r
2
i

)
+

e2

4πǫ0ǫr

N∑

i=1<j

1

rij

+

N∑

i=1

(
1

2
m∗ω2

Br
2
i − ωBL̂

(i)
z − gωBŜ

(i)
z

)
, (4.79)

where ~ is the Planck constant, m∗ is the effective mass of the electron, −i~∇2
i /2m

∗ is the kinetic
energy of electron i, ω0 is the oscillator frequency, ri is the distance between electron i and the
point where the harmonic oscillator potential is zero, e is the electron charge, ǫ0 is the vacuum
permittivity, ǫr is the relative permittivity, rij is the distance between electron i and j, ωB is the
cyclotron frequency defined in Eq. (4.46), g is the g-factor of the electron, L̂(i)

z is the z-component
of the angular momentum, and Ŝ

(i)
z is the z-component of the spin. The Hamiltonian can be

simplified to the following form by defining the total frequency ω in Eq. (4.47),

Ĥ =
N∑

i=1

(
− ~

2

2m∗
∇2

i +
1

2
m∗ω2r2i

)
+

e2

4πǫ0ǫr

N∑

i=1<j

1

rij

−
N∑

i=1

(
ωBL̂

(i)
z + gωBŜ

(i)
z

)
. (4.80)
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Since both L̂z and Ŝz commute with the Hamiltonian, we can perform the calculations separately
in subspaces of given m and ms [47]. We can therefore rewrite the Hamiltonian,

Ĥ =

N∑

i=1

(
− ~

2

2m∗
∇2

i +
1

2
m∗ω2r2i

)
+

e2

4πǫ0ǫr

N∑

i=1<j

1

rij

−
N∑

i=1

(
ωBm

(i) + gωBm
(i)
s

)
. (4.81)

Since the angular-part and the spin-part of the Hamiltonian only involve the good quantum
numbers and not the operators themselves, one merely needs to solve the problem without the
magnetic field [47], but with ω0 → ω. The contributions from these terms can be added after
the simulation. Our final model Hamiltonian thus reads

Ĥ =
N∑

i=1

(
− ~

2

2m∗
∇2

i +
1

2
m∗ω2r2i

)
+

e2

4πǫ0ǫr

N∑

i=1<j

1

rij
. (4.82)

4.5 Scaling the Model Hamiltonian

In order to simplify the computations, the Hamiltonian in Eq. (4.82) can be scaled into a
dimensionless form. We will in the following present the scaling used by for example [48, 49, 50].
First we define

ω ≡ ωkω
′ (4.83)

r ≡ l0r′ = l0
(
x′i + y′j + z′k

)

∇′2 ≡ ∂2

∂x′2
+

∂2

∂y′2
+

∂2

∂z′2
,

where ωk and l0 are constants. We then obtain

∇2
i =

1

l20
∇′2

i (4.84)

r2i = l20r
′2
i

rij = l0r
′
ij.

Inserting these expression into Eq. (4.82), yields

Ĥ = − ~
2

2m∗l20

N∑

i=1

∇′2
i +

1

2
m∗ω2

kω
′2l20

N∑

i=1

r′2i +
~

κl0

N∑

i<j

1

r′ij
(4.85)

where

κ ≡ 4πǫ0ǫr~

e2
. (4.86)

Since e2/4πǫ0ǫr has dimension length, κ has dimension time per length. Furthermore, we define

l0 ≡
√

~

m∗ω
=

√
~

m∗ωkω′
, (4.87)

where l0 has dimension length. We now substitute this expression into Eq. (4.85), yielding

Ĥ = −ωkω
′
~

2

N∑

i=1

∇′2
i +

~

2
ωkω

′
N∑

i=1

r′2i +
~

κ

√
m∗ωkω′

~

N∑

i<j

1

r′ij
. (4.88)
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We want to express the energy in units of effective Hartrees,

E∗
H ≡ m∗

(
e2

4πǫ0ǫr~

)2

=
m∗

κ2
. (4.89)

We observe that E∗
H has dimension energy, as wanted. This follows from the definition of κ in

Eq. (4.86). We divide Eq. (4.88) by E∗
H , i.e. multiply with κ2

~/m∗, yielding

Ĥ ′ = −ωkω
′
~κ2

2m∗

N∑

i=1

∇′2
i +

~κ2

2m∗
ωkω

′
N∑

i=1

r′2i +
κ~

m∗

√
m∗ωkω′

~

N∑

i<j

1

r′ij
, (4.90)

where Ĥ ′ ≡ Ĥ/E∗
H . We now define

ωk ≡
m∗

~κ2
,

and observe that ωk has dimension inverse time. Inserting this expression into the above equation
finally yields

Ĥ ′ = −ω
′

2

N∑

i=1

∇′2
i +

1

2
ω′

N∑

i=1

r′2i +
√
ω′

N∑

i<j

1

r′ij
. (4.91)

This is the dimensionless model Hamiltonian for which we have performed all of our numerical
calculations. Energies are measured in units of effective Hartrees E∗

H , lengths in units of l0 and
oscillator frequencies in units of ωk.

We now define the one-body and two-body part of the Hamiltonian as

ĥ′i ≡ −
ω′

2
∇′2 +

1

2
ω′r′2 (4.92)

v̂′i ≡
√
ω′

N∑

i<j

1

r′ij
, (4.93)

leading to the following simplified form,

Ĥ ′ =

N∑

i=1

ĥ′i +

N∑

i<j

v̂′ij . (4.94)
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Chapter 5

Hartree-Fock Method

In this chapter we present the Hartree-Fock (HF) method for a closed-shell system [18], called
the Restricted Hartree-Fock method (RHF). The aim of the chapter is to give a brief overview of
the theory and a derivation of the HF equations that is implemented in this thesis. In the first
section we give an introduction to the method. Then we present the basic ideas of HF and the
variational principle. Thereafter, we derive the Hartree-Fock equations.

5.1 Introduction

The Hartree-Fock (HF) method is an approximate method to determine the ground state energy
and wavefunction of a many-fermion system. Its origin dates back to the end of 1920s, just after
the Schrödinger equation was introduced in 1926 [51]. One year later, in 1927, D.R. Hartree
introduced the self-consistent field method, which we today know as the Hartree method. This
was a method to calculate approximate ground state energies and wavefunctions for atoms and
ions. One of Hartree’s main objectives behind the development of the Hartree method was to solve
the many-body Schrödinger equation from fundamental physical principles alone. Such methods
are today called ab initio methods. Many of Hartree’s competitors did not understand the
physical reasoning behind the Hartree equations and the self-consistent procedure. Furthermore,
the connection to the time-independent Schrödinger equation was unclear to many people. In
1928, J. C. Slater showed that the Hartree equations can be derived by applying the quantum
mechanical variational principle on a trial wavefunction (ansatz) which consists of products
of single-particle functions. A few years earlier, in 1925, W.Pauli formulated the important
Pauli exclusion principle stating that fermions cannot occupy identical single-particle states. In
1929, J. C.Slater published that determinants ensure the antisymmetry requirement of fermionic
wavefunction and the Pauli exclusion principle [52]. V. A. Fock and J. C. Slater pointed out that
the Hartree method did not respect the antisymmetry requirement of the wavefunction. Thus
a more correct ansatz would be the Slater determinants. Applying the variational principle on
a Slater determinant ansatz leads to the so-called Hartree-Fock method. The Hartree method
can be regarded as an approximation to the Hartree-Fock method, where the exchange term
is removed. Despite the physical and intuitive picture of the Hartree-Fock method, it was
infrequently used until the 1950s with the advent of modern computers.

The HF method is often called a mean-field approximation [31]. The main idea of HF is that
the interactions in the system are replaced by an effective (averaged) interaction. The result
is essentially that the many-body Schrödinger equation reduces to a one-body problem. Such
a description means that we potentially loose important information in the system. We can
only hope that most of the correlations in the system are well-described in this approximation.
However, it turns out that HF calculations often give important information of the system.
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5.2 Basic Ideas

The basic idea of HF is the following. First we approximate the ground state wavefunction
by a Slater determinant. Then we vary the single-particle orbitals in order to determine the
best estimate of the ground state energy. The foundation of HF is the variational principle of
Rayleigh and Ritz (RR) (see for example [53]). This is one of the oldest and most powerful tools
in quantum mechanical theory. The Rayleigh Ritz principle forms the basis of other important
many-body methods such as Density Functional Theory (DFT) [32, 54]. It states that given an
(in principle arbitrary) ansatz ψT for the ground state wavefunction, the expectation value of Ĥ
in state ψT is certain to overestimate the exact ground state energy. This can be verified by the
following proof,

〈Ĥ〉 ≡ 〈ψHF|Ĥ|ψHF〉
= 〈
∑

n

cnψn|Ĥ|
∑

m

cmψm〉

= 〈
∑

n

cnψn|
∑

m

cmEmψn〉

=
∑

n,m

c∗nEmcm〈ψn|ψm〉

=
∑

n,m

cncmEmδmn

=
∑

n

|cn|2En

≤ E0,

where E0 is the exact ground state energy. Our goal is to minimize 〈Ĥ〉 in order to obtain an
approximation to the ground state energy.

5.3 Derivation of the Hartree-Fock Equations

The HF ansatz reads

ΨHF(r1, r2, .., rN ) =
1√
N !

∑

p

(−1)pP̂ϕa(r1)ϕb(r2)..ϕd(rN ), (5.1)

where ϕa(r) is a so-called HF orbital. In order to minimize the energy expectation value, we have
two possibilities. The first is to vary the HF orbitals directly, leading to the so-called Roothaan-
Hartree-Fock [55] method. Another opportunity, which we have chosen in this thesis, is to expand
the orbitals in well known single-particle functions and vary the expansion coefficients. We define
the HF orbital as

ϕa(r) =

db∑

α

Caαψα(r), (5.2)

where Caα is an expansion coefficient, and

BHF =
{
ψ(r)

}db

α=1
(5.3)

is an orthonormal set of single-particle functions spanning our model space with dimension db.
The basis set can in principle be chosen arbitrarily. We now limit the discussion to two-body
Hamiltonians. Consider the Hamiltonian

Ĥ = Ĥ0 + V̂
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where

Ĥ0 =

N∑

i=1

ĥi

is the Hamiltonian of the non-interacting system, and

V̂ =
N∑

i=1<j

v̂ij

is the interaction potential between the particles. In the formalism of second quantization (see
Section 3.5), the Hamiltonian reads

Ĥ =
∑

ab

〈a|h|b〉a†aab +
1

2

∑

abcd

〈ab|v|cd〉a†aa†badac,

where a†b is the creation operator and ab is the annihilation operator. We have here chosen the
Hartree-Fock orbitals in Eq. (5.2) as basis functions. Using Wick’s theorem (see Sec. 3.5.3), the
energy expectation value reads

E [ΨHF] ≡ 〈ΨHF|Ĥ|ΨHF〉
= 〈ΨHF|Ĥ0|ΨHF〉+ 〈ΨHF|V̂ |ΨHF〉

=
∑

ab

〈a|h|b〉〈ΨHF|a†aab|ΨHF〉+
1

2

∑

abde

〈ab|v|de〉〈ΨHF|a†aa†badac|ΨHF〉.

=
N∑

a

〈a|h|a〉 + 1

2

N∑

ab

[
〈ab|v|ab〉 − 〈ab|v|ba〉

]
. (5.4)

Inserting Eq. (5.2) into this expression yields

E [ΨHF] =

N∑

a

db∑

αβ

C∗
aαCaβ〈α|h|β〉 +

1

2

N∑

ab

db∑

αβγδ

C∗
aαC

∗
bβCaγCbδ

[
〈αβ|v|γδ〉 − 〈αβ|v|δγ〉

]
, (5.5)

whereN is the number of particles, the Latin letters denote the new basis (Hartree-Fock orbitals),
and the Greek letters denote the old basis in Eq. (5.3). We now want to minimize E [ΨHF] with
the constraint that the Hartree-Fock orbitals are orthonormal, viz.

〈a|b〉 =
∑

λ

C∗
aλCbλ = δab.

Thus we have to introduce Lagrangian multipliers [29]. In general, in order to find the minimum
or maximum of a function f(x, y, z, ..., w) subjected to the constraints

g1(x, y, z, .., w) = k1 (5.6)

g2(x, y, z, .., w) = k2 (5.7)
...

gN (x, y, z, .., w) = kN , (5.8)

we define

F ≡ f + ϑ1g1 + ...+ ϑngn, (5.9)

and set each partial derivative ∂F/∂xi = 0. The minimum or maximum is found by solving the
differential equations and the constraint equations for x, y, z, .., w and the Lagrangian multipliers
ϑ1ϑ2..ϑN .
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We define

F ≡ E [ΨHF]−
N∑

a=1

ϑaga

= E [ΨHF]−
N∑

a=1

ϑa

∑

α

C∗
aαCaα.

Then we take the partial derivative of F with respect to C∗
kα, yielding

0 =
∂

∂C∗
kα

(
E [ΨHF]−

N∑

a=1

ϑa

∑

α

C∗
aαCaα

)

=
∂

∂C∗
kα

(
N∑

a

∑

αβ

C∗
aαCaβ〈α|h|β〉 +

1

2

N∑

ab

∑

αβγδ

C∗
aαC

∗
bβCaγCbδ

[
〈αβ|v|γδ〉 − 〈αβ|v|δγ〉

]

−
N∑

a=1

ϑa

∑

α

C∗
aαCaα

)

=
∑

αβ

Ckβ〈α|h|β〉 +
N∑

a

∑

αβγδ

C∗
aβCkγCaδ

[
〈αβ|v|γδ〉 − 〈αβ|v|δγ〉

]
− ϑk

∑

α

Ckα.

The factor of 1/2 disappears since Caα and C∗
aα are independent. We simplify the expression

into

∑

αβ

Ckβ〈α|h|β〉 +
N∑

a

∑

αβγδ

C∗
aβCkγCaδ

[
〈αβ|v|γδ〉 − 〈αβ|v|δγ〉

]
= ϑk

∑

α

Ckα, (5.10)

leading to

∑

γ

Ckγ〈α|h|γ〉 +
N∑

a

∑

βγδ

C∗
aβCkγCaδ

[
〈αβ|v|γδ〉 − 〈αβ|v|δγ〉

]
= ϑkCkα, (5.11)

where we have changed the dummy index β to γ. Thus we obtain

∑

γ



〈α|h|γ〉 +
N∑

a

∑

βδ

C∗
aβCaδ

[
〈αβ|v|γδ〉 − 〈αβ|v|δγ〉

]


Ckγ = ϑkCkα. (5.12)

By defining the Hartree-Fock Hamiltonian as

hHF
αγ ≡ 〈α|h|γ〉 +

N∑

a

∑

βδ

C∗
aβCaδ [〈αβ|v|γδ〉 − 〈αβ|v|δγ〉] , (5.13)

we finally obtain the Hartree-Fock equations,
∑

γ

hHF
αγ Ckγ = ϑkCkα. (5.14)

The Hartree-Fock equations are non-linear eigenvalue equations. They must be solved iteratively.
Equation (5.14) determines the expansion coefficients in Eq. (5.2) that minimize the energy
expectation value in Eq. (5.4).
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Chapter 6

Coupled-Cluster Method

We will in this chapter give a presentation of the Coupled-Cluster (CC) method [56]. The first
chapter is devoted to some introductory and historical aspects of the method and motivation for
what we call the Coupled-Cluster wavefunction. In the following sections we present fundamental
concepts and the formal theory. The focus will be on the formal Coupled-Cluster equations, and
how programmable equations are obtained. We will derive the programmable equations in detail
using both an analytical and diagrammatic method. Both methods will be thoroughly presented.

6.1 Introduction and Fundamental Ideas

The CC method was introduced in the context of nuclear physics by Coester and Kümmel around
1960. In the later 1960s, the method was introduced in quantum chemistry by Čížek [57, 58] and
Paldus. The community was however slow to accept the theory. The reason for this was probably
that the earliest researches used elegant but unfamiliar theoretical tools such as the formalism
of second quantization and Feynman-like diagrams to derive equations. Almost ten years after
the important contributions from Čížek and Paldus, in 1970s, Hurley presented a re-derivation
of the Coupled-Cluster Doubles (CCD) equations [59] in a framework that was more familiar to
quantum chemists. Thereafter, Monkhorst [60] developed a CC response theory for calculating
properties of molecular systems. In the later 1970s, computer implementations for realistic
systems began to appear, with important contributions from the groups of Pople and Bartlett.
Then, in 1982, Purvis and Bartlett derived the Coupled-Cluster Singles and Doubles (CCSD)
equations, and implemented them in a computer program [61]. After this work, CC methods
became very popular in quantum chemistry. However, in the nuclear physics community, the
method gained little attention before the 1990s. Tremendous efforts have been made to construct
efficient CC codes, inclusion of higher excitations (for example CCSDT), and develop methods
to treat excited states (Equation of Motion Coupled-Cluster).

The CC method is a numerical method used for quantum mechanical treatment of many-
body systems. It is today probably the most powerful ab initio method to obtain the ground
state energy of many-body systems. Other important many-body methods are Configuration
Interaction (CI) [56], Many-Body Perturbation Theory (MBPT) [56], Variational Monte Carlo
(VMC) [62], and Diffusion Monte Carlo (DMC) [62]. The fundamental idea of the method is that
the exact many-body wavefunction can be written as a linear combination of Slater determinants.
The set of determinants must therefore span the whole N -electron Hilbert space. Let us now
prove this. Consider a complete and orthonormal set of one-electron functions {ψα(r)}nα=1, where
r includes spin. The orthonormality is expressed as

∫
ψ∗

α(r)ψβ(r) dr = δαβ , (6.1)
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and the completeness relation as
n∑

α

ψ∗
α(r′)ψα(r) = δ(r − r′). (6.2)

We now construct an N -electron Slater determinant Φa from the set of single-electron functions,

Φa(r1, r2, .., rN ) =
1√
N !

∑

p

(−1)pP̂ψα1
(r1)ψα2

(r2)..ψαN
(rN ). (6.3)

The many-body quantum number a denotes the set of single-particle quantum numbers
(α1,α2,..,αN ). Similarly, we construct another determinant

Φb(r1, r2, .., rN ) =
1√
N !

∑

p

(−1)pP̂ψβ1
(r1)ψβ2

(r2)..ψβN
(rN ), (6.4)

where at least one function ψβj
6= ψαi

. The Slater determinants Φa and Φb are orthonormal
since the set of single-electron functions are orthonormal. This is proved by

∫
Φ∗

a(R)Φa(R) dR =
√
N !

∫
Φ∗

a(R)ψα1
(r1)..ψαN

(rN ) dR

=

∫ [∑

p

(−1)pP̂ψ∗
α1

(r1)..ψ
∗
αN

(rN )

]
ψα1

(r1)..ψαN
(rN ) dR

=

∫
|ψα1

(r1)|2 dr1

∫
|ψα2

(r2)|2 dr2 ...

∫
|ψαN

(rN )|2 drN ,

= 1, (6.5)

and
∫

Φ∗
a(R)Φb(R) dR =

√
N !

∫
Φ∗

a(R)ψβ1
(r1)..ψβN

(rN ) dR

=

∫ [∑

p

(−1)pP̂ψ∗
α1

(r1)..ψ
∗
αN

(rN )

]
ψβ1

(r1)..ψβN
(rN ) dR

=

∫
|ψα1

(r1)|2 dr1 ...

∫
ψ∗

αi
(ri)ψβi

(ri) dri ...

∫
|ψαN

(rN )|2 drN

= 0. (6.6)

The first equality in Eqs. (6.5) and (6.6) follows from the fact that given a symmetric operator
F̂ ,

∫
Φ∗

a(R)F̂Φb(R) dR =
√
N !

∫
Φ∗

a(R)F̂ ψβ1
(r1)..ψβN

(rN ) dR. (6.7)

See [63] for a proof. We conclude that Slater determinants constructed from an orthonormal
set of single-electron functions, form an orthonormal set as well. We will assume that the set of
Slater determinants constructed from all possible combinations of single-electron functions is a
complete set, i.e. it spans the whole antisymmetric N -electron Hilbert space, provided that the
single-electron functions form a complete set as well. In the bra-ket notation, the completeness
relation reads

∑

a

|Φa〉〈Φa| = 1. (6.8)

Any N -electron wavefunction |Ψ〉 can thus be written as a linear combination of N -electron
Slater determinants,

|Ψ〉 =
∑

a

Ca|Φa〉, (6.9)
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where {Ca} are the expansion coefficients. This sum goes in most cases to infinity. The expansion
coefficient Cb is determined by projecting |Ψ〉 down on |Φb〉,

〈Φb|Ψ〉 =
∑

a

Ca〈Φb|Φa〉 =
∑

a

Caδba = Cb. (6.10)

The set of single-electron basis functions can in principle be chosen arbitrary. However, for a
given many-electron system, the most appropriate functions (as a first step) are the solutions
of the single-electron system. By “most appropriate” we mean the basis functions that allow
us to truncate Eq. (6.9) without loosing important information about the system, i.e. without
loosing the important correlations that are present. Assume we have solved the single-electron
system and obtained a complete set of orthonormal energy eigenfunctions. As pointed out in
Chapter 3, Slater determinants constructed from such a basis set are energy eigenfunctions of the
non-interacting many-body system. Thus in this basis, the exact wavefunction of the interacting
system, see Eq. (6.9), is the infinite sum of excited states in the non-interacting system. We
have in Figure 6.1 illustrated this. The horizontal lines represent the single-electron functions

|Ψ〉 = + + + + + + + + +

+ + + + + + + + + +

+ + + + + + + + + +

+ + + + + + + + + + .

Figure 6.1: Illustration of the exact wavefunction |Ψ〉 in Eq. (6.9), written as a linear combination of
eigenfunctions of the non-interacting system. The expansion coefficients are suppressed in the drawing.

(spin included). Each orbital can therefore only be occupied by one electron at most. The
non-interacting ground state is represented by the shadowed area with a bold horizontal line
denoting the Fermi level of the system. The black circles represent electrons, and the white ones
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represent holes. We define an n-particle n-hole excited state as an excited eigenfunction of the
non-interacting system where n electrons are excited from below the Fermi level, to orbitals above
the Fermi level, leaving n holes. We will in the following denote n-particle n-hole excitations by
the shorthand notation npnh. The 1p1h excitations are unique in the sense that given a 1p1h
excited determinant, we can only obtain this state in one way. In the the 2p2h case, each excited
state can be reached in two ways, indicated by the excitation lines in the figure. In the general
case, one can a produce each npnh excited state in n! different ways. Physically, however, this
is irrelevant. The physical information lies in which single-electron states that are occupied by
an electron. Each diagram in Figure 6.1 therefore represents one Slater determinant, with its
corresponding expansion coefficient suppressed.

Given the exact wavefunction |Ψ〉 and a complete set of Slater determinants, the linear
combination in Eq. (6.9) is uniquely determined. However, the exact many-body wavefunction
is not known, simply because this is the main objective in our calculation. In addition, the
many-body problem can in most cases not be solved exactly. At first sight, this does not look
promising. The fact is, however, that Eq. (6.9) serves as a fundamental basis for several powerful
and accurate ab initio methods such as CC and CI. The basic idea is that the exact wavefunction
is approximated with a (necessarily) truncated expansion of Slater determinants, and that the
coefficients are determined by solving Schrödinger’s equation. When the N -electron basis is the
set of eigenfunctions of the non-interacting system, the expansion coefficient Cb tells us “how
much” of the correlations in the system that are represented by |Φb〉. The “correct” formulation
is: |Cb|2 is the probability to measure the non-interacting energy eigenvalue Eb corresponding to
|Φb〉. Given the exact wavefunction, the coefficients are determined by Eq. (6.10). However, since
the exact wavefunction is unknown, physical considerations must be build into these coefficients
right from the beginning. Different approximations schemes serve as the basis for different many-
body methods. Before turning to this point, we present basic notation.

6.1.1 Notation

We will in the following use the particle-hole formalism presented in Sec. 3.5.4. The reference
state is defined as

|r〉 = |Φ0〉, (6.11)

where |Φ0〉 is the ground state of the non-interacting system,

|Φ0〉 = a†α1
a†α2

..a†αN
|0〉. (6.12)

We will denote hole states as ijk..., and particle states as abc.... Hole states are single-electron
orbitals that are occupied in the reference state, while particle states are all states beyond the
Fermi level. These subspaces are called the occupied space and the virtual space, respectively.
States that are in either of the subspaces are denoted pqr... We will not use the standard quasi-
particle creation and annihilation operators b†α and bα explicitly, but in an implicit way by using
vacuum creation and annihilation operators with quantum numbers ij..ab..pq... This notation
tells us in which subspace the operators act.

a†i = bα α ≤ αF (6.13)

a†a = b†α α > αF (6.14)

ai = b†α α ≤ αF (6.15)

aa = bα α > αF (6.16)
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We can now construct particle states, hole states and particle-hole (excited determinants) states,
by acting with strings of creation and annihilation operators on the reference state:

a†aa
†
ba

†
c..|Φ0〉 =

a

b

c

aiajak..|Φ0〉 = i

j

k

a†aa
†
ba

†
c....akajai|Φ0〉 = i

j

k

a

b

c

≡ |Φabc..〉 ≡ |Φijk..〉 ≡ |Φabc..
ijk..〉

Particle states will be denoted with virtual orbitals on the top right position of the ket, hole states
with occupied orbitals in the lower right position, and particle-hole states with both virtual states
and occupied states at their respective positions. The number of particles in a system that are
represented by

|Φnv
no
〉, (6.17)

are given as

N = N ′ + nv − no (6.18)

whereN ′ is the number of particles in the reference state. When nv = no 6= 0, the state represents
an excitation of the reference state.

6.2 Fundamental Concepts

We are seeking the solution of the Schrödinger equation

Ĥ|Ψ〉 = E|Ψ〉 (6.19)

for a system containing N interacting electrons. The Hamiltonian reads

Ĥ = T̂ + Û + V̂ , (6.20)

where

T̂ =

N∑

i=1

t̂i (6.21)

Û =
N∑

i=1

ûi (6.22)

V̂ =

N∑

i=1

v̂ij , (6.23)

where T̂ is the total kinetic energy, Û is the total potential energy, V̂ is the total interaction
energy, t̂i is the kinetic energy of electron i, ûi is the potential energy of electron i, and finally,
v̂ij is the interaction energy (Coulomb interaction) between electron i and j. We define

ĥi ≡ t̂i + ûi, (6.24)

leading to

Ĥ0 ≡
N∑

i=1

ĥi = T̂ + Û , (6.25)
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which is the Hamiltonian of the non-interacting system. In second quantization (see See 3.5),
the Hamiltonian reads

Ĥ =
∑

pq

〈p|h|q〉a†paq +
1

4

∑

pqrs

〈pq|v|rs〉a†pa†qasar, (6.26)

where the interaction elements 〈pq|v|rs〉 are antisymmetrized.
The many-electron problem in Eq. (6.19) can in general not be solved exactly. However,

as pointed out previously, given an arbitrary orthonormal and complete set of single-electron
functions, the exact energy eigenfunctions of Eq. (6.19) can be written as linear combinations
(see 6.9) of Slater determinants constructed from these. We now choose the single-electron basis
to be the solutions of the single-electron Schrödinger equation

ĥ|ψα〉 = ǫα|ψα〉, (6.27)

with ĥ defined in Eq. (6.24). By using the set of Slater determinants

BN = {|Φa〉}∞a=1 , (6.28)

where

〈r1r2..rN |Φa〉 =
1√
N !

∑

p

(−1)pP̂ψα1
(r1)ψα2

(r2)..ψαN
(rN ), (6.29)

as basis functions (a running over all possible combinations of α1α2..αN ), the exact wavefunction
is a linear combination of the energy eigenstates of the non-interacting system. The exact
wavefunction thus reads

|Ψ〉 = C0|Φ〉+
∑

ia

Ca
i |Φa

i 〉+
∑

ijab

Cab
ij |Φab

ij 〉+ ...+
∑

ijk..abc..

Cabc..
ijk.. |Φabc..

ijk..〉, (6.30)

where all the electrons are excited in the last term. The first sum gives the contributions from
all 1p1h excitations, the second gives the contributions from all 2p2h excitations, and so forth
up to NpNh excitations. Even though the sum naturally truncates after NpNh excitations,
it is still an infinite sum since the subspace containing the virtual orbitals are infinite. If the
summations over single-particle orbitals are not truncated, the exact wavefunction is given by
Eq. (6.30). In practice this is not possible. However, Eq. (6.30) tells us an important thing:
given the exact wavefunction, there exists a set of expansion coefficients {C} so that the linear
combination in Eq. (6.30) is equal to the exact state. The wavefunction is not known, meaning
that the expansion coefficients are the unknowns to be determined by the Schrödinger equation.
Before this can be done, we must specify the contributions to each expansion coefficient Cab..

ij.. .
For a given excited Slater determinant |Φab..

ij.. 〉, the corresponding expansion coefficients Cab..
ij.. gets

contributions from excitation amplitudes with all possible couplings. As an example, consider
the 3p3h-excited determinant |Φabc

ijk〉. The corresponding coefficient Cabc
ijk gets contributions from

excitation amplitudes with all possible couplings ,

Cabc
ijk = tai t

b
jt

c
k + tab

ij t
c
k + tai t

bc
jk + tbjt

ac
ik + tabc

ijk (6.31)

We thus obtain

Cabc
ijk |Φabc

ijk〉 =
(
tai t

b
jt

c
k + tab

ij t
c
k + tai t

bc
jk + tbjt

ac
ik + tabc

ijk

)
|Φabc

ijk〉 (6.32)

=
i

j

k

a

b

c

+
i

j

k

a

b

c

+
i

j

k

a

b

c

+
i

j

k

a

b

c

+
i

j

k

a

b

c

, (6.33)
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where the we have illustrated the coupling in the figures by wavy lines. Each figure in Eq. (6.33)
represents the contribution from one specific coupling to the total expansion coefficient Cabc

ijk . The
first figure in Eq. (6.33) represents the 3p3h determinants with three 1p1h excitations that do not
couple any of the electrons. This is a crucial contribution when we consider a system consisting
of two subsystems that do not interact with each other. In addition, a weakly interacting system
gets important contributions from this term. The second, third and fourth term in Eq. (6.33)
denote 3p3h determinants where electrons in two orbitals are coupled. The fifth term denotes
the contribution from the 3p3h determinant where all three electrons are coupled. This example
illustrates that for a certain determinant |Φabc..

ijk..〉, one may divide its corresponding expansion
coefficient into a sum of all possible couplings.

We now define the single-orbital excitation operator (cluster operator) as

t̂i ≡
∑

a

tai a
†
aai. (6.34)

Acting with this operator on the reference state, yields

t̂i|Φ〉 =
∑

a

tai |Φa
i 〉. (6.35)

Similarly, we define the two-orbital excitation operator as

t̂ab
ij ≡

1

2

∑

ab

tab
ij a

†
aa

†
bajai. (6.36)

Acting with this operator on the reference states, yields

t̂ab
ij |Φ〉 =

1

2

∑

ab

tab
ij |Φab

ij 〉, (6.37)

where the factor of 1/2 is due to two independent summations, viz. a = c1 and b = c2 yields the
same excited state as a = c2 and b = c1. In general, the n-orbital excitation operator is defined
as

t̂abc..
ijk.. ≡

1

n!

∑

abc..

tabc..
ijk..a

†
aa

†
ba

†
c....akajai. (6.38)

When we act with this operator on the reference state, we obtain

t̂abc..
ijk..|Φ〉 =

1

n!

∑

abc..

tabc..
ijk..|Φabc..

ijk..〉. (6.39)

These definitions allow us to produce excited determinants with all possible couplings between
electrons. For example,

(
1

2
t̂it̂j + t̂ij

)
|Φ0〉 =

1

2

∑

ab

(
tai t

b
j + tab

ij

)
|Φab

ij 〉, (6.40)

produces all 2p2h excited determinants with a hole in i and j. By summing over the hole states,
we obtain all 2p2h states

1

4

∑

ijab

(
tai t

b
j + tab

ij

)
|Φab

ij 〉, (6.41)
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with all possible couplings. We now define total excitation amplitudes,

T̂1 ≡
∑

i

t̂i =
∑

ia

tai a
†
aai (6.42)

T̂2 ≡
1

2

∑

ij

t̂ab
ij =

1

4

∑

ijab

tab
ij a

†
aa

†
bajai (6.43)

...
...

T̂N ≡
1

N !

∑
t̂abc..
ijk..a

†
aa

†
ba

†
c....akajai =

(
1

N !

)2 ∑

ijk..abc..

tabc..
ijk..a

†
aa

†
ba

†
c....akajai, (6.44)

where N is the number of particles in the system. The total excitation amplitudes can be used
to obtain all excitations with all possible couplings between the electrons. For example, all 3p3h
determinants are obtained by using combinations of T̂1, T̂2 and T̂3, yielding

|3p3h〉 =

(
1

6
T̂ 3

1 + T̂1T̂2 + T̂3

)
|Φ0〉. (6.45)

In the general case, npnh determinants (1 ≤ n ≤ N) are obtained by using combinations of T̂1,
T̂2, ..., T̂n. We thus obtain the following expression for the exact wavefunction in Eq. (6.30),

|Ψ〉 =
(
1 + T̂1 +

[
1

2!
T̂ 2

1 + T̂2

]
+

[
1

3!
T̂ 3

1 + T̂1T̂2 + T̂3

]

+

[
1

4!
T̂ 4

1 +
1

2!
T̂ 2

1 T̂2 + T̂1T̂3 +
1

2!
T̂ 2

2 + T̂4

]
+ ...+

[
...+ T̂N

] )
|Φ0〉. (6.46)

Higher-order terms (like T̂N+1) do not appear since N is the number of electrons in the system.
Because all excitation operators commute, i.e.

[
T̂i, T̂j

]
= 0, (6.47)

all terms in Eq. (6.46) match those from the power series expansion of an exponential function.
We define the Coupled-Cluster wavefunction as

|ΨCC〉 ≡ ebT |Φ0〉, (6.48)

where the total excitation operator reads

T̂ ≡
nmax∑

n=1

T̂n, (6.49)

and 1 ≤ nmax ≤ N . When the total excitation operator is not truncated, i.e. nmax = N , and the
single-particle basis is not truncated, the Coupled-Cluster wavefunction in Eq. (6.48) is exact,
viz. the exact solution of the Schrödinger equation. However, in actual calculations we are often
forced to truncate the single-particle basis. Moreover, when the system consists of many particles,
the total excitation operator must be truncated, i.e. nmax < N . These truncations constitute the
sources of errors in CC calculations. Truncation at specific excitation levels leads to a hierarchy
of CC schemes,

T̂ = T̂1 + T̂2 → CCSD (6.50)

T̂ = T̂1 + T̂2 + T̂3 → CCSDT (6.51)

T̂ = T̂1 + T̂2 + T̂3 + T̂4 → CCSDTQ (6.52)

T̂ = T̂1 + T̂2 + T̂3 + T̂4 + ...+ T̂N → CCSDTQ..N

where S, D, T and Q denote single-, double-, triple- and quadruple-excitations, respectively. We
emphasize that, provided that the single-particle basis is not truncated, a CCSD calculation
yields an exact result for the 2-particle system, a CCSDT calculation yields an exact result for
the 3-particle system, and so forth. In the next section, the formal CC theory is presented.
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6.3 Formal Coupled-Cluster Theory

The CC wavefunction in Eq. (6.48) is the starting point for all CC calculations. We are seeking
the ground state wavefunction and energy of a system. As pointed out in the previous section,
when the total excitation operator and single-particle basis is truncated, the CC wavefunction is
exact. However, in actual calculations, truncations are often necessary. The CC wavefunction is
then hopefully, but not a priori, a good approximation to the exact solution. Inserting the CC
wavefunction into the Schrödinger equation, yields

Ĥe
bT |Φ0〉 = E0e

bT |Φ0〉, (6.53)

where E0 is the ground state energy. The unknowns are the excitation amplitudes (tai , t
ab
ij , .., t

abc..
ijk..)

and the energy E0, which are determined by Eq. (6.53). The basic CC equations are the so-
called energy equation and the amplitude equations. These equations constitute the basic CC
machinery. The formal form of these equations are found by using a “projective” technique. The
energy equation is found by multiplying the equation with the dual reference state from the left,
yielding

〈Φ0|ĤebT |Φ0〉 = E0〈Φ0|ebT |Φ0〉 = E0. (6.54)

The last equality follows from the fact that 〈Φ0|Ψ〉CC = 1, by construction. Expressions for
the excitation amplitudes are obtained by left-multiplying the Schrödinger equation with excited
determinants. For example, in order to obtain the T̂2 equation, |Φab

ij 〉 must be used. The general
amplitude equation reads

〈Φabc..
ijk..|Ĥe

bT |Φ0〉 = E0〈Φabc..
ijk..|e

bT |Φ0〉 = E0t
abc..
ijk... (6.55)

Due to the presence of ebT , all amplitude equations are coupled, meaning that for example tai
depends on all other amplitudes. The CC equations must therefore be solved iteratively.

Eqs. (6.54) and (6.55) serve only as a way to get formal insight into the CC method.
In practical computer implementation, however, they are not useful [20]. In order to obtain
programmable equations, the first step is to multiply Eq. (6.53) with e− bT from the left, and then
use the “projective” technique. The modified equations are given as

〈Φ0|e−
bT Ĥe

bT |Φ0〉 = E0 (6.56)

〈Φabc..
ijk..|e−

bT Ĥe
bT |Φ0〉 = 0. (6.57)

These equations define the conventional CC method. Furthermore, they are equivalent to the
formal equations in (6.54) and (6.55), but have two important advantages. First, the amplitude
equations are decoupled from the energy equation. Secondly, the similarity transformed
Hamiltonian,

e−
bT Ĥe

bT , (6.58)

can be written as a sum of nested commutators by the so-called Campbell-Baker-Hausdorff
(CBH) expansion [56]. This sum is in principle infinite, but as we will see, it truncates naturally
in our case, yielding simplified CC equations.

6.4 Coupled-Cluster Singles and Doubles Equations

We will in this section derive programmable Coupled-Cluster Singles and Doubles (CCSD)
equations using both an algebraic approach, and a diagrammatic approach. In the first two
subsections, we present the notion of normal-ordered form of the Hamiltonian and the Campbell-
Baker-Hausdorff expansion. Thereafter, we will derive the programmable energy equation
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using the algebraic approach. Then we will give an introduction to CC diagrams, forming
the diagrammatic approach. Both the energy and amplitude equations will be written on
diagrammatic form, and then transformed to algebraic expressions using the so-called diagram
rules.

In CCSD we define the total excitation operator as

T̂ ≡ T̂1 + T̂2, (6.59)

where

T̂1 =
∑

ia

tai a
†
aai (6.60)

T̂2 =
1

4

∑

ijab

tab
ij a

†
aa

†
bajai. (6.61)

6.4.1 Normal-Ordered Form of the Hamiltonian

The Hamiltonian is given as

Ĥ =
∑

pq

〈p|h|q〉+ 1

4

∑

pqrs

〈pq|v|rs〉a†pa†qasar. (6.62)

According to Wick’s theorem, the two operator strings in Eq. (6.62) can be written as

a†paq =
{
a†paq

}
+

{
a†paq

}

=
{
a†paq

}
+ δpq∈i

a†pa
†
qasar =

{
a†pa

†
qasar

}
+

{
a†pa

†
qasar

}
+

{
a†pa

†
qasar

}
+

{
a†pa

†
qasar

}

+

{
a†pa

†
qasar

}
+

{
a†pa

†
qasar

}
+

{
a†pa

†
qasar

}

=
{
a†pa

†
qasar

}
−
{
a†qar

}
δps∈i +

{
a†qas

}
δpr∈i

+
{
a†par

}
δqs∈i −

{
a†pas

}
δqr∈i + δpr∈iδqs∈j − δps∈iδqr∈j ,

where the contraction is defined relative to the non-interacting ground state |Φ0〉, and p ∈ imeans
that p must be contained in the set of occupied orbitals and must be equal to i. Substitute these
expressions into Eq. (6.62), yields

Ĥ =
∑

pq

〈p|h|q〉
{
a†paq

}
+
∑

i

〈i|h|i〉

+
1

4

∑

pqrs

〈pq|v|rs〉
{
a†pa

†
qasar

}
− 1

4

∑

qri

〈iq|v|ri〉
{
a†qar

}
+

1

4

∑

qsi

〈iq|v|is〉
{
a†qas

}

+
1

4

∑

pri

〈pi|v|ri〉
{
a†par

}
− 1

4

∑

psi

〈pi|v|is〉
{
a†pas

}
+

1

4

∑

ij

〈ij|v|ij〉 − 1

4

∑

ij

〈ij|v|ji〉.

Furthermore, since the two-particle matrix element 〈pq|v|rs〉 is antisymmetrized, it satisfies the
following relation,

〈pq|v|rs〉 = −〈pr|v|sr〉 = −〈rp|v|rs〉 = 〈rp|v|sr〉. (6.63)
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Using this relation, the Hamiltonian can then be written as

Ĥ =
∑

pq

〈p|h|q〉
{
a†paq

}
+
∑

pqi

〈pi|v|qi〉
{
a†paq

}
(6.64)

+
∑

pqrs

〈pq|v|rs〉
{
a†pa

†
qasar

}
+
∑

i

〈i|h|i〉 + 1

2

∑

ij

〈ij|v|ij〉. (6.65)

We now define

fp
q ≡ 〈p|h|q〉+

∑

i

〈pi|v|qi〉 (6.66)

F̂N ≡
∑

pq

fp
q

{
a†paq

}
(6.67)

V̂N ≡
∑

pqrs

〈pq|v|rs〉
{
a†pa

†
qasar

}
. (6.68)

By identifying

〈Φ0|Ĥ|Φ0〉 =
∑

i

〈i|h|i〉 + 1

2

∑

ij

〈ij|v|ij〉, (6.69)

the Hamiltonian reads

Ĥ = F̂N + V̂N + 〈Φ0|Ĥ|Φ0〉 (6.70)

= ĤN + 〈Φ0|Ĥ|Φ0〉, (6.71)

where the normal-ordered Hamiltonian is defined as

ĤN ≡ F̂N + V̂N . (6.72)

The N -subscript must not be confused with the number of particles in the system. We observe
that

ĤN = Ĥ − 〈Φ0|Ĥ|Φ0〉. (6.73)

The normal-ordered form of the Hamiltonian is thus equal to the Hamiltonian itself minus its
reference expectation value. It is therefore natural to consider ĤN as a correlation operator.
Actually, the normal-ordered form of any operator is equal to the operator itself minus its
reference expectation value.

At this point, the benefit of introducing the normal-ordered form of the Hamiltonian may be
unclear. We will shortly see that it forms the basis needed to derive programmable equations
with the algebraic method.

6.4.2 The Campbell-Baker-Hausdorff Expansion

The conventional energy and amplitude equations in (6.56) and (6.57) contain the similarity
transformed Hamiltonian

Ĥ ≡ e− bT Ĥe
bT . (6.74)

Inserting Eq. (6.71) into Eq. (6.74) yields

Ĥ = e−
bT ĤNe

bT + 〈Φ0|Ĥ|Φ0〉. (6.75)
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We now insert this expression into the Eqs. (6.56) and (6.57), leading to

E0 = 〈Φ0|e−
bT ĤNe

bT |Φ0〉+ 〈Φ0|Ĥ|Φ0〉 (6.76)

0 = 〈Φa
i |e−

bT ĤNe
bT |Φ0〉 (6.77)

0 = 〈Φab
ij |e−

bT ĤNe
bT |Φ0〉. (6.78)

Since the reference expectation value of the Hamiltonian is known, the CC problem is reduced
to calculating matrix elements of the similarity transformed normal-ordered Hamiltonian. We
now define the CC energy as

ECC ≡ 〈Φ0|e−
bT ĤNe

bT |Φ0〉 = E0 − 〈Φ0|Ĥ |Φ0〉. (6.79)

The CCSD equations are usually written as

〈Φ0|e− bT ĤNe
bT |Φ0〉 = ECC (6.80)

〈Φa
i |e−

bT ĤNe
bT |Φ〉 = 0 (6.81)

〈Φab
ij |e−

bT ĤNe
bT |Φ〉 = 0. (6.82)

The next step is to find an expression for e− bT ĤNe
bT . Using the well-known Campbell-Baker-

Hausdorff formula [56], we obtain

e−
bT ĤNe

bT = ĤN +
[
ĤN , T̂

]
+

1

2!

[[
ĤN , T̂

]
, T̂
]

+
1

3!

[[[
ĤN , T̂

]
, T̂
]
, T̂
]

+ ... (6.83)

The CC problem is therefore reduced to evaluating matrix elements of nested commutators.
Fortunately, the sum truncates naturally.

6.4.3 Energy Equation - An Algebraic Approach

We will in this section derive the programmable form of the CCSD energy equation using the
so-called algebraic approach. This equation is actually valid for all CC schemes (CCSD, CCSDT,
CCSDTQ, and so forth), provided that the Hamiltonian is a two-body operator. In the CCSD
scheme (see Eq. 6.59), the Hausdorff expansion in Eq. (6.83) reads

e−
bT ĤNe

bT = ĤN +
[
ĤN , T̂1

]
+
[
ĤN , T̂2

]
+

1

2!

[[
ĤN , T̂1

]
, T̂1

]
+
[
ĤN , T̂2

]
+

1

2!

[[
ĤN , T̂2

]
, T̂1

]

+
1

2!

[[
ĤN , T̂2

]
, T̂1

]
+

1

2!

[[
ĤN , T̂2

]
, T̂2

]
+

1

3!

[[[
ĤN , T̂1

]
, T̂1

]
, T̂1

]
+ ... (6.84)

We will in the following determine the contribution to the CC energy from each of the terms
above. The contribution from 〈Φ0|X̂ |Φ0〉 will be denoted as

ECC ← 〈Φ0|X̂ |Φ0〉, (6.85)

where ECC is the CC energy. We emphasize that the excitation operators are already on normal-
ordered form, viz.

〈Φ0|T̂k|Φ0〉 = 0. (6.86)

Term 1

The first contribution is

ECC ← 〈Φ0|ĤN |Φ0〉 = 0. (6.87)
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Term 2

The second contribution reads

ECC ← 〈Φ0|[ĤN , T̂1

]
|Φ0〉 = 〈Φ0|[F̂N , T̂1]|Φ0〉+ 〈Φ0|[V̂N , T̂1]|Φ0〉. (6.88)

Using Eqs. (6.67) and (6.60), we obtain the following expressions for F̂N T̂1 and T̂1F̂N ,

F̂1T̂1 =
∑

pqia

fp
q t

a
i

{
a†paq

}{
a†aai

}
, (6.89)

T̂1F̂1 =
∑

pqia

fp
a t

a
i

{
a†aai

}{
a†paq

}
. (6.90)

The generalized Wick’s theorem allow us to rewrite the product of normal-ordered strings of
operators into

{
a†paq

}{
a†aai

}
=
{
a†paqa

†
aai

}
+

{
a†paqa

†
aai

}
+

{
a†paqa

†
aai

}
+

{
a†paqa

†
aai

}
,

=
{
a†paqa

†
aai

}
+
{
aqa

†
a

}
δpi +

{
a†pai

}
δqa + δpiδqa

{
a†aai

}{
a†paq

}
=
{
a†aaia

†
paq

}
.

Inserting these expressions into Eqs. (6.89) and (6.90), yields

[F̂N , T1] =
∑

qia

f i
qt

a
i

{
aqa

†
a

}
+
∑

pia

fp
a t

a
i

{
a†pai

}
+
∑

ia

f i
at

a
i . (6.91)

Remembering that the reference expectation value of a normal-ordered string of creation and
annihilation operators is zero, i.e.

〈Φ0| {...} |Φ0〉 = 0, (6.92)

yields the first non-zero contribution to the CC energy,

ECC ← 〈Φ0|[F̂N , T̂1]|Φ0〉 =
∑

ia

f i
at

a
i . (6.93)

Furthermore, using Eqs. (6.68) and (6.60), we obtain the following expression for V̂N T̂1 and
T̂1V̂N ,

V̂N T̂1 =
1

4

∑

pqrsia

〈pq|v|rs〉tai
{
a†pa

†
qasar

}{
a†aai

}
, (6.94)

T̂1V̂N =
1

4

∑

pqrsia

〈pq|v|rs〉tai
{
a†aai

}{
a†pa

†
qasar

}
. (6.95)

We observe that we cannot obtain fully contracted terms, and thus the second term does not
contribute to the energy, i.e.

ECC ← 〈Φ0|[V̂N , T̂1]|Φ0〉 = 0. (6.96)

Term 3

We will now determine the contribution from

ECC ← 〈Φ0|[ĤN , T̂2]|Φ0〉 = 〈Φ0|[F̂N , T̂2]|Φ0〉+ 〈Φ0|[F̂N , T̂2]|Φ0〉. (6.97)
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Eqs. (6.67) and (6.61) yield the following expressions for F̂N T̂2 and T̂2F̂N ,

F̂N T̂2 =
1

4

∑

pqijab

fp
q t

ab
ij

{
a†paq

}{
a†aa

†
bajai

}
, (6.98)

T̂2F̂N =
1

4

∑

pqijab

fp
q t

ab
ij

{
a†aa

†
bajai

}{
a†paq

}
. (6.99)

Using Wick’s generalized theorem we observe that that [F̂N , T̂2] does not include any fully
contracted terms. Therefore,

ECC ← 〈Φ0|[F̂N , T̂2]|Φ0〉 = 0.

Furthermore, Eqs. (6.68) and (6.61) give the following expressions for V̂N T̂2 and T̂2V̂N ,

V̂N T̂2 =
1

16

∑

pqrsijab

tab
ij 〈pq|v|rs〉

{
a†pa

†
qasar

}{
a†aa

†
bajai

}
, (6.100)

T̂2V̂N =
1

16

∑

pqrsijab

tab
ij 〈pq|v|rs〉

{
a†aa

†
baiaj

}{
a†pa

†
qasar

}
. (6.101)

Using Wick’s generalized theorem, we rewrite the products of normal-ordered strings into

{
a†pa

†
qasar

}{
a†aa

†
bajai

}
=




a
†
pa

†
qasara

†
aa

†
bajai




+




a
†
pa

†
qasara

†
aa

†
bajai






+




a
†
pa

†
qasara

†
aa

†
bajai




+




a
†
pa

†
qasara

†
aa

†
bajai






+
{
a†pa

†
qasara

†
aa

†
bajai

}
+ ...

= δpiδqjδsbδra − δpiδqjδsaδrb − δpjδqiδsbδra + δpjδqiδsaδrb

+
{
a†pa

†
qasara

†
aa

†
bajai

}
+ ...,

{
a†aa

†
bajai

}{
a†pa

†
qasar

}
=
{
a†aa

†
bajaia

†
pa

†
qasar

}
,

where we include only fully contracted terms, and the two non-contracted terms. Inserting these
expressions into Eqs. (6.101) and (6.100), yields

[V̂N , T̂2] =
1

16

∑

ijab

[〈ij|v|ab〉 − 〈ij|v|ba〉 − 〈ji|v|ab〉 + 〈ji|v|ba〉] tab
ij + ...

=
1

4

∑

ijab

〈ij|v|ab〉tab
ij + ... (6.102)

We note that since
{
a†pa

†
qasara

†
aa

†
bajai

}
=
{
a†aa

†
bajaia

†
pa

†
qasar

}
, (6.103)

the two non-contracted terms cancel each other in the commutator. Since only fully contracted
terms give contribution to the CC energy, we finally obtain

ECC ←
1

4

∑

ijab

〈ij|v|ab〉tab
ij . (6.104)
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Term 4

The fourth contribution to the CC energy reads

ECC ←
1

2
〈Φ0|[[ĤN , T̂1], T̂1]|Φ0〉 =

1

2
〈Φ0|[[F̂N , T̂1], T̂1]|Φ0〉+

1

2
〈Φ0|[[V̂N , T̂1], T̂1]|Φ0〉.

Consider the first term in the above expression. Using Eqs. (6.60) and (6.91), we obtain the
following expressions,

[F̂N , T̂1]T̂1 =
∑

qijab

f i
qt

a
i t

b
j

{
aqa

†
a

}{
a†baj

}
+
∑

pijab

fp
a t

a
i t

b
j

{
a†pai

}{
a†baj

}
+
∑

ijab

f i
at

a
i t

b
j

{
a†baj

}
,

(6.105)

T̂1[F̂N , T̂1] =
∑

qijab

f i
qt

a
i t

b
j

{
a†baj

}{
aqa

†
a

}
+
∑

pijab

fp
a t

a
i t

b
j

{
a†baj

}{
a†pai

}
+
∑

ijab

f i
at

a
i t

b
j

{
a†baj

}
.

(6.106)

As always, the only terms that give non-zero contribution to the CC energy are those in which
all creation and annihilation operators are fully contracted. First we note that the constant
terms on the right hand side of Eqs. (6.105) and (6.106) cancel each other in the full commutator
expression. Moreover, all non-zero contractions are between a creation (annihilation) operator
with quantum number a (i) and an annihilation (creation) operator with quantum number p, or
the other way around. Thus we cannot obtain non-zero fully contracted terms in Eqs. (6.105)
and (6.106). Therefore,

ECC ←
1

2
〈Φ0|[[F̂N , T̂1], T̂1]|Φ0〉 = 0.

Furthermore, by using Eqs. (6.60), (6.94) and (6.95), we obtain the following terms in
[[V̂N , T̂1], T̂1]/2,

[V̂N , T̂1]T̂1 =
1

4

∑

pqrsijab

〈pq|v|rs〉tai tbj
{
a†pa

†
qasar

}{
a†aai

}{
a†baj

}

+
1

4

∑

pqrsijab

〈pq|v|rs〉tai tbj
{
a†aai

}{
a†pa

†
qasar

}{
a†baj

}
,

T̂1[V̂N , T̂1] =
1

4

∑

pqrsijab

〈pq|v|rs〉tai tbj
{
a†baj

}{
a†pa

†
qasar

}{
a†aai

}

+
1

4

∑

pqrsijab

〈pq|v|rs〉tai tbj
{
a†baj

}{
a†aai

}{
a†pa

†
qasar

}
.

We utilize Wick’s generalized theorem in order to obtain

1

2
〈Φ0|[[V̂N , T̂1], T̂1]|Φ0〉 =

1

8

∑

pqrsijab

〈pq|v|rs〉tai tbj

× (δpiδqjδsaδrb − δpiδqjδsbδra − δpjδqiδsaδrb + δpjδqiδsbδra) + ...

=
1

8

∑

ijab

(〈ij|v|ba〉 − 〈ij|v|ab〉 − 〈ji|v|ba〉 + 〈ji|v|ab〉) tai tbj + ...

=
1

2

∑

ijab

〈ij|v|ab〉tai tbj + ...,

where only fully contracted terms are included. We finally obtain

ECC ←
1

2
〈Φ0|[[V̂N , T̂1], T̂1]|Φ0〉 =

1

2

∑

ijab

〈ij|v|ab〉tai tbj. (6.107)
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We have now evaluated the first four contributions to the CC energy in Eq. (6.84). The
Hausdorff expansion is in principle infinite. Fortunately, it truncates naturally. First, the
examples above allow us to make an important generalization when Wick’s generalized theorem
is applied to the commutators: the only nonzero terms in the Hausdorff expansion are those in
which the Hamiltonian has at least one contraction with every excitation operator T̂i on its right
side. Thus the Hausdorff expansion reads

e−
bT ĤNe

bT =

(
ĤN + ĤN T̂ +

1

2!
ĤN T̂

2 +
1

3!
ĤN T̂

3 +
1

4!
ĤN T̂

4 + ...

)

c

, (6.108)

where T̂ = T̂1 + T̂2, and the c-subscript denotes that the Hamiltonian must have at least one
contraction with every excitation operator. Furthermore, since we are dealing with an electronic
system, the Hamiltonian is a two-body operator. The Hausdorff expansion thus simplifies to

e−
bT ĤNe

bT =

(
ĤN + ĤN T̂ +

1

2
ĤN T̂

2 +
1

6
ĤN T̂

3 +
1

24
ĤN T̂

4

)

c

, (6.109)

i.e. it naturally truncates. The expansion truncates when a specific Hamiltonian is determined.
For example, if the Hamiltonian is a three-body operator, the sum truncates after ĤN T̂

6/6! for
CCSD.

Eq. (6.109) yields the following expression for the CC energy,

ECC = 〈Φ0|
(
ĤN + ĤN T̂ +

1

2
ĤN T̂

2 +
1

6
ĤN T̂

3 +
1

24
ĤN T̂

4
)
c
|Φ0〉. (6.110)

As pointed out before, only fully contracted terms give nonzero contribution. By inserting
Eq. (6.59), we obtain

ECC = 〈Φ0|
(
ĤN T̂1 + ĤN T̂2 +

1

2
ĤN T̂

2
1

)
fc
|Φ0〉, (6.111)

where the fc-subscript denotes that only the fully contracted terms are included. This expression
is not limited to the CCSD scheme. It is valid for all CC schemes (CCSD, CCSDT, CCSDTQ,
and so forth), provided that the Hamiltonian is a two-body operator. It is interesting that the
energy only depends explicitly on the tai and tab

ij amplitudes. However, in for example CCSDT,
all amplitudes are coupled together yielding an implicit dependence of tabc

ijk .
Using Eq. (6.72), we obtain the following expression for the CC energy

ECC = 〈Φ0|
(
F̂N T̂1 + V̂N T̂2 +

1

2
V̂N T̂

2
1

)
fc
|Φ0〉

= 〈Φ0|
(
F̂N T̂1)fc|Φ0〉+ 〈Φ0|

(
V̂N T̂2)fc|Φ0〉+

1

2
〈Φ0|

(
V̂N T̂

2
1 )fc|Φ0〉.

where V̂N T̂1 and F̂N T̂
2
1 are removed since fully contractions are impossible. We obtain the

following three contributions:

〈Φ0|
(
F̂N T̂1)fc|Φ0〉 =

∑

pqia

fp
q t

a
i

{
a†paqa

†
aai

}
=
∑

pqia

fp
q t

a
i δpiδqa =

∑

ia

f i
at

a
i , (6.112)

1

2
〈Φ0|

(
V̂N T̂

2
1 )fc|Φ0〉 =

1

8

∑

pqrsijab

〈pq|v|rs〉tai tbj (δpiδqjδsaδrb − δpiδqjδsbδra − δpjδqiδsaδrb + δpjδqiδsbδra)

=
1

2

∑

ijab

〈ij|v|ab〉tai tbj, (6.113)
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〈Φ0|
(
V̂N T̂2)fc|Φ0〉 =

1

16

∑

pqrsijab

〈pq|v|rs〉tab
ij




a
†
pa

†
qasara

†
aa

†
bajai






+
1

16

∑

pqrsijab

〈pq|v|rs〉tab
ij




a
†
pa

†
qasara

†
aa

†
bajai






+
1

16

∑

pqrsijab

〈pq|v|rs〉tab
ij




a
†
pa

†
qasara

†
aa

†
bajai






+
1

16

∑

pqrsijab

〈pq|v|rs〉tab
ij




a
†
pa

†
qasara

†
aa

†
bajai






=
1

16

∑

pqrsijab

〈pq|v|rs〉tab
ij (δpiδqjδsbδra − δpiδqjδsaδrb − δpjδqiδsbδra + δpjδqiδsaδrb)

=
1

4

∑

ijab

〈ij|v|ab〉tab
ij . (6.114)

These expressions are equal to Eqs. (6.93), (6.104) and (6.107), respectively. We finally arrive at
the following expression for the CC energy,

ECC =
∑

ia

f i
at

a
i +

1

4

∑

ijab

〈ij|v|ab〉tab
ij +

1

2

∑

ijab

〈ij|v|ab〉tai tbj. (6.115)

We have now presented the algebraic approach through solving

ECC = 〈Φ0|e−
bT ĤNe

bT |Φ0〉.

Programmable amplitude equations can be determined in the same way by using Wick’s
generalized theorem and evaluate the resulting matrix elements. An important difference to
the energy equation is that

〈Φabc..
ijk..|X̂ |Φ0〉,

where we have an excited determinant on the left. This means that the nonzero contributions to
the amplitudes are not the fully contracted ones, but instead those therms with an excitation level
that is equal to the excited determinant. The algebraic procedure is simple and straightforward.
However, it is tedious and time-consuming even for the T̂1 amplitude equation. The so-called
diagrammatic method offers a far more convenient and practical approach to construct the
programmable CC equations. We will in the next section introduce a diagrammatic approach
which is particularly convenient for these equations.

6.4.4 Coupled-Cluster Diagrams

Throughout the history of many-body theory, many varieties of diagrams have been used.
Depending on the mathematical context, diagrams represent wavefunctions, operators or matrix
elements. Diagrams are most frequently used to represent matrix elements. For example,

〈α1α2|Ô|α1α2〉 =
1

4

∑

pqrs

〈pq|o|rs〉〈0|aα1
aα2

a†pa
†
qasara

†
α1
a†α2
|0〉

= + + + , (6.116)
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where Ô is a two-body operator. The standard problem is that we want to evaluate a certain
matrix element, and we are seeking an algebraic expression in terms of (in our example) the
matrix elements 〈pq|v|rs〉. This can obviously be done by using Wick’s theorem. However,
this is often a quite tedious and time-consuming procedure. Alternatively, the matrix element
can be transformed into a diagrammatic expression (as we have done above), and then use so-
called diagram rules in order to obtain an algebraic expression. Many varieties of diagrammatic
techniques have been developed in order to give a convenient and practical approach for obtaining
algebraic expressions of matrix elements. It is important to note that diagrammatic techniques
are constructed and tuned to give the same results as the more “fundamental” algebraic approach
using Wick’s theorem.

We will in this section present the diagrammatic technique popularized by Kucharski and
Bartlett [64]. This formalism allows us to construct programmable CC equations in a practical
and straightforward way. We first present the diagrammatic representation of Slater determinants
(particle-hole formalism) and normal-ordered operators. Then we focus on how diagrams of
operators may be connected (analogous to contractions) forming operator products. This leads
to a simple procedure that determines which terms contribute to the energy and amplitude
equations.

Diagrams Representing Slater Determinants

Arrows constitute an important part of diagrams. They point either upwards or downwards, but
will often have a tilt in the diagram. In general, arrows are used to represent Slater determinants.
The particle-hole formalism, with reference determinant defined as

|r〉 ≡ |Φ0〉,
where |Φ0〉 is the ground state of the non-interacting system, allow us to represent Slater
determinants in a simple way. Upward and downward directed lines identify those single-
particle orbitals that differ from those that are occupied in the reference determinant. We
use the convention that downward directed lines represent hole states, while upward directed
lines represent particle states. Thus we can represent all excited states of the non-interacting
system (Slater determinants) with combinations of hole and particle lines. Figure 6.2 shows some
examples.

Diagrams Representing Dynamical Operators

Diagrams can also represent dynamical operators. They are depicted by horizontal lines, called
interaction lines, with vertical directed lines attached to it. These lines are attached to “vertices”
on the interacting line. Each vertex represents the action of the operator on individual electrons.
Therefore, diagrams associated with an n-body operator have n vertices. Each vertex has one
incoming line and one outgoing line attached to it, which represents the annihilation and creation
operators of the dynamical operators normal-ordered string. Since an n-body operator contains
2n annihilation and creation operators, diagrams representing an n-body operator contain 2n
directed lines. Operators acting in the occupied space yield downward directed lines, while
operators acting in the unoccupied space yield upward directed lines. Since the orbitals in
the occupied and unoccupied space are called hole states and particle states, respectively, a
downward directed line is called a hole line, while an upward directed line is called a particle
line. Furthermore, a directed line is placed beneath or above the interaction line depending on
whether its corresponding operator is a quasi-annihilation operator or a quasi-creation operator
(see Eqs. 3.115 and 3.114).

We are seeking the diagrammatic representation of F̂N , V̂N , T̂1 and T̂2. Consider first F̂N .
The second quantized form is given as

F̂N =
∑

pq

fp
q

{
a†paq

}
. (6.117)
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= |Φ0〉 i = |Φi〉

i a = |Φa
i 〉 a = |Φa〉

i j a b = |Φab
ij 〉 i j = |Φij〉

i j k a b c = |Φabc
ijk〉 a b = |Φab〉

Figure 6.2: Diagrammatic representation of Slater determinants. The non-interacting ground state is
the reference state, viz. |r〉 = |Φ0〉, represented by empty space. The states in the left column are excited
states of the non-interacting system. They are represented with particle and hole lines (equal number)
indicating which orbitals that are occupied by a particle-hole pair. In the right column are states with
particles added or removed from the system.

Separating the different combinations of orbitals spaces, i.e. terms with a†iaj, a
†
iaa, a

†
aai and

a†aab, we obtain

F̂N =
∑

ab

fa
b

{
a†aab

}
+

∑

ij

f i
j

{
a†iaj

}
+

∑

ia

f i
a

{
a†iaa

}
+

∑

ai

fa
i

{
a†aai

}

F̂N = + + + . (6.118)

The first diagram contains one quasi-particle annihilation line (particle line) beneath the
interaction line corresponding to a†i , and one quasi-particle creation line (particle line) above
corresponding to ab. In the second diagram, we have one quasi-particle annihilation line
corresponding to a†i , and one quasi-particle creation line corresponding to aj. In the third and
fourth diagram, we have two quasi-particle annihilation lines corresponding to a†i and aa, and
two quasi-particle creation lines corresponding to a†a and ai, respectively.
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We now turn to V̂N and partition in a similar manner as for F̂N , yielding

V̂N =
1

4

∑

abcd

〈ab|v|cd〉
{
a†aa

†
badac

}
+

1

4

∑

ijkl

〈ij|v|kl〉
{
a†ia

†
jalak

}
+

∑

iabj

〈ia|v|bj〉
{
a†ia

†
aajab

}

+
1

2

∑

aibc

〈ai|v|bc〉
{
a†aa

†
iacab

}
+

1

2

∑

ijka

〈ij|v|ka〉
{
a†ia

†
jaaak

}
+

1

2

∑

abci

〈ab|v|ci〉
{
a†aa

†
baiac

}

+
1

2

∑

iajk

〈ia|v|jk〉
{
a†ia

†
aakaj

}
+

1

4

∑

abij

〈ab|v|ij〉
{
a†aa

†
bajai

}
+

1

4

∑

ijab

〈ij|v|ab〉
{
a†ia

†
jabaa

}

= + +

+ + +

+ + +

(6.119)

Here we have implicit antisymmetry with respect to permutations of the lines leaving or entering
the vertices. For example, the sum over 〈ia|v|bj〉a†ia

†
aajab can be transformed into the following

four equivalent diagrams,

↔ ↔ ↔ ,

differing by a sign. Furthermore, the diagrammatic representations of T̂1 and T̂2 read

T̂1 = (6.120)

T̂2 = . (6.121)

Since the second quantized form of the excitation operators in Eqs. (6.60) and (6.61) contain only
quasi-particle creation operators, their diagrammatic representation do not have any directed
lines beneath the interaction line.
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Diagrams Representing Matrix Elements

We will now consider the third representation where diagrams are interpreted as matrix elements
of operators between Slater determinants. We present this representation by showing some ex-
amples.

Example 1

= 〈Φa
i |T̂1|Φ0〉 (6.122)

Consider the diagrammatic form of T̂1. Since |Φ0〉 and |Φa
i 〉 are represented by empty space

and a pair particle-hole lines, respectively, the diagram in Eq. (6.122) may be interpreted from
bottom to top as the matrix element of T̂1 between the reference determinant |Φ0〉 (on its right)
and the one-particle one-hole (1p1h) excited determinant 〈Φa

i | (on its left).

Example 2

= 〈Φab
ij |T̂2|Φ0〉 (6.123)

Consider the diagrammatic form of T̂2. Since |Φ0〉 and |Φab
ij 〉 are represented by empty space and

two pairs of particle-hole lines, respectively, the diagram in Eq. (6.123) may be interpreted from
bottom to top as the matrix element of T̂2 between the reference determinant |Φ0〉 (on its right)
and the two-particle two-hole (2p2h) excited determinant 〈Φab

ij | (on its left).

Example 3

= 〈Φ0|F̂N |Φa
i 〉 (6.124)

Consider the fourth diagram of F̂N in Eq. (6.118). Since |Φ0〉 and |Φa
i 〉 are represented by empty

space and a pair of particle-hole lines, respectively, the diagram in Eq. (6.124) may be interpreted
from bottom to top as the matrix element of F̂N between the reference determinant |Φ0〉 (on its
right) and the one-particle one-hole (1p1h) excited determinant 〈Φa

i | (on its left).

Example 4

= 〈Φc|V̂N |Φab
i 〉 (6.125)

Consider the fourth diagram of V̂N in Eq. (6.119). Since |Φab
i 〉 is represented by two particle lines

and one hole line, and |Φc〉 is represented by one particle line, the diagram in Eq. (6.125) may
be interpreted from bottom to top as the matrix element of V̂N between the determinant |Φab

i 〉
(on its right) and the determinant 〈Φc| (on its left).

We have now considered four examples that illustrate the matrix element representation of
diagrams. This representation able us to find the diagrams that contribute to the CC equations
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in a very practical and convenient way. Before we present how this is done in practice, the
concept of excitation level must be introduced. The excitation level ξ of a diagram is defined as

ξ =
nc − na

2
, (6.126)

where nc is the number of quasi-particle creation lines, and na is the number of quasi-particle
annihilation lines. Denoting ξX,i as the excitation level of the i-th diagram of X̂, we obtain the
following excitation levels of F̂N , V̂N , T̂1 and T̂2:

ξFN ,1 = 0 ξVN ,1 = 0

ξFN ,2 = 0 ξVN ,2 = 0

ξFN ,3 = −1 ξVN ,3 = 0

ξFN ,4 = +1 ξVN ,4 = −1

ξT1
= +1 ξVN ,5 = −1

ξT2
= +2 ξVN ,6 = +1

ξVN ,7 = +1

ξVN ,8 = +2

ξVN ,9 = −2

For example, in the third diagram of V̂N (see Eq. 6.119), we have one “incoming” 1p1h excited
determinant and one “outgoing” 1p1h excited determinant. Thus no additional excitations are
produced, leading to ξVN ,3 = 0. In the eighth diagram of V̂N , however, we have one “incoming”
reference determinant and one “outgoing” 2p2h excited determinant, leading to ξVN ,8 = +2.

6.4.5 Energy Equation on Diagrammatic Form

We will in this section present how the matrix representation of diagrams can be used in order
to determine the nonzero contributions to the energy equation. Our task is to translate the
equation into diagrammatic form by considering each term in

ECC = 〈Φ0|
(
ĤN + ĤN T̂ +

1

2!
ĤN T̂

2 +
1

3!
ĤN T̂

3 +
1

4!
ĤN T̂

4 + ...
)
c
|Φ0〉, (6.127)

where T̂ = T̂1 + T̂2, and the c-subscript denotes that ĤN must have at least one contraction
with every excitation operator. The normal-ordered form of the two-body Hamiltonian is given
in Eq. (6.70). The diagrammatic representations of F̂N , V̂N , T̂1 and T̂2 are given in Eqs. (6.118),
(6.119), (6.120) and (6.121), respectively. We first observe that each matrix element in Eq. (6.127)
has one incoming reference determinant (on its right) and one outgoing reference determinant
(on its left). Thus, diagrams associated with the energy equation cannot contain directed lines
(external lines) that extend above or below the diagram. A diagram contributing to the equation
must therefore have total excitation level zero, and contain the reference determinant both at
the bottom and top of the diagram. Furthermore, Eq. (6.127) contain nested commutators of
ĤN , T̂1 and T̂2, producing operator products. In the diagrammatic representation of an operator
product, the rightmost operator has its interaction line at the bottom of the diagram, and
the leftmost operator has its interaction line at the top. First we observe that the diagrams
representing T̂1 and T̂2 have no external lines. In Eq. (6.127), ĤN must have at least one
contraction with every excitation operator. When a quasi-particle creation line from one diagram
is merged with a quasi-particle annihilation line from another diagram, the diagrams are said to
be connected. This is analogous to contractions in Wick’s theorem. Since the total excitation
level of diagrams associated with the energy equation must be zero, and the the lowest excitation
level of ĤN is −2, ĤN cannot produce a total excitation level of zero. If we were to include
T̂3..T̂N , diagrams including terms with these excitations operators would not contribute to the
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energy. Furthermore, all terms with T̂ n (n ≥ 3) produce excitation level ξ ≥ 3, meaning that ĤN

(with minimum excitation level −2) cannot produce a total excitation level of zero. Moreover,
when n = 2, T̂ 2

2 produces the excitation level +4. Thus Eq. (6.127) simplifies to

ECC = 〈Φ0|
(
ĤN T̂1 + ĤN T̂2 +

1

2
ĤN T̂1

)
c
|Φ0〉, (6.128)

where we have only included those terms with total excitation level of zero. This is the same
expression as we obtained by using Wick’s theorem. We will in the following transform each
term in Eq. (6.127) to a diagrammatic form.

1. Consider 〈Φ0|(ĤN T̂1)c|Φ0〉. The diagrammatic representation of T̂1 is given in Eq. (6.120)
with excitation level +1. We require the diagrams of F̂N in Eq. (6.118) and V̂N in
Eq. (6.119) with excitation level −1 and the reference determinant at the top of the
diagram. The third diagram of F̂N is the only diagram that satisfies these criteria. In
order to obtain a total excitation level of zero, F̂N and T̂1 must be fully connected, viz.

ξtot=0−−−−→ . (6.129)

2. Consider 〈Φ0|(ĤN T̂2)c|Φ0〉. The diagrammatic representation of T̂2 is given in Eq. (6.121)
with excitation level +2. We require the diagrams of ĤN with excitation level −2 and
the reference determinant at top of the diagram. Obviously, F̂N cannot connect to T̂2

producing a total excitation level of zero. The ninth diagram of V̂N in Eq. (6.119) satisfies
the criteria. We then fully connect the diagrams, viz.

ξtot=0−−−−→ . (6.130)

3. Consider 〈Φ0|(ĤN T̂
2
1 )c|Φ0〉. Since T̂1 commute with itself, their vertical ordering in the

diagram is not important. The diagrammatic form of the operator product T̂ 2
1 is given as

T̂ 2
1 = , (6.131)

with excitation level +2. The only diagram of ĤN with excitation level −2 and no external
lines at the top, is the ninth fragment of V̂N in Eq. (6.119). We then fully connect the
diagrams, yielding

ξtot=0−−−−→ . (6.132)

The diagrammatic form of the energy equation finally reads

ECC = + + . (6.133)

These diagrams can be transformed to algebraic expression by using the so-called diagram rules.
Before we present these, we transform the amplitude equations to diagrammatic form.
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6.4.6 Amplitude Equations on Diagrammatic Form

We will in this section transform the amplitude equations into diagrammatic forms. The
amplitude equations are given as

〈Φa
i |e−

bT ĤNe
bT |Φ0〉 = 0 (6.134)

〈Φab
ij |e−

bT ĤNe
bT |Φ0〉 = 0. (6.135)

T̂1 Amplitude Equation

We will now transform the T̂1 equation into a diagrammatic form. Inserting Eq. (6.108) into
Eq. (6.134), yields

〈Φa
i |
(
ĤN + ĤN T̂ +

1

2!
ĤN T̂

2 +
1

3!
ĤN T̂

3 +
1

4!
ĤN T̂

4 + ...
)
c
|Φ0〉 = 0, (6.136)

where T̂ = T̂1 + T̂2, and the c-subscript denote that ĤN must connect with every excitation
operator. Each matrix element has the reference determinant on its right and the one-particle
one-hole (1p1h) excited determinant on its left. Diagrams that contribute to the equation must
therefore satisfy the following three criterion:

1. Total excitation level +1.

2. The reference determinant at the bottom of the diagram.

3. The 1p1h excited determinant at the top of the diagram.

Since ĤN has minimum excitation level of −2, and T̂ n (n ≥ 4) have excitation level ξ ≥ 4,
none of the diagrams representing (ĤN T̂

n)c (n ≥ 4) fulfill these criteria. Moreover, since T̂ 2
2 and

T̂ 3
2 have excitation level +4 and +6, respectively, none of the diagrams representing ĤN T̂

2
2 and

ĤN T̂
3
2 contribute. The T̂1 amplitude equation thus reads

〈Φa
i |(ĤN + ĤN T̂1 + ĤN T̂2 +

1

2
ĤN T̂

2
1 + ĤN T̂1T̂2 +

1

6
ĤN T̂

3
1 )c|Φ0〉 = 0. (6.137)

We will in the following consider the diagrams of F̂N , V̂N , T̂1 and T̂2 in Eq. (6.118), (6.119),
(6.120) and (6.121), respectively, and transform each term into a diagrammatic form.

1. Consider 〈Φa
i |ĤN |Φ0〉. The diagrams of V̂N do not contribute to the equation since none of

them satisfy our criteria. This is a consequence of the fact that V̂N is a two-body operator.
The fourth fragment of F̂N , however, contribute.

2. Consider 〈Φa
i |(ĤN T̂1)c|Φ0〉. Obviously, T̂1 has excitation level +1. Thus we require the

diagrams of ĤN with an excitation level of zero that can connect to T̂1 satisfying the criteria
above. We observe that the first and second diagram of F̂N , and the third fragment of V̂N ,
can connect to T̂1 in this way. We obtain the following three contributions:

ξtot=+1−−−−−→ ξtot=+1−−−−−→

ξtot=+1−−−−−→ .
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3. Consider 〈Φa
i |(ĤN T̂2)c|Φ0〉. Obviously, T̂2 has excitation level +2. Thus we require the

diagrams of ĤN with excitation level −1 that can connect to T̂2 satisfying our criteria.
The third fragment of F̂N , and the fourth and fifth fragment of V̂N , give contributions to
the equation. By connecting the diagrams, we obtain the following contributions:

ξtot=+1−−−−−→ ξtot=+1−−−−−→

ξtot=+1−−−−−→ .

4. Consider 〈Φa
i |(1

2ĤN T̂
2
1 )c|Φ0〉. Obviously, T̂ 2

1 has excitation level +2. As for the previous
term, we require the third diagram of F̂N , and the fourth and fifth diagram of V̂N . These
diagrams have excitation level +1 and can connect to T̂ 2

1 satisfying our criteria. We obtain
the following contributions:

ξtot=+1−−−−−→ ξtot=+1−−−−−→

ξtot=+1−−−−−→ .

5. Consider 〈Φa
i |(ĤN T̂1T̂2)c|Φ0〉. We first observe that T̂1T̂2 has excitation level +3. In order

to obtain at total excitation level of +1, T̂1T̂2 must connect to a diagram with excitation
level −2, i.e. the ninth diagram of V̂N . This diagram may be connected to T̂1T̂2 in three
different ways. We obtain the following contributions to the equation:

ξtot=+1−−−−−→ .

6. Consider 〈Φa
i |(1

6ĤN T̂
3
1 )c|Φ0〉. Since T̂ 3

1 has excitation level +3, we require the ninth
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diagram fragment of V̂N with excitation level −2, yielding the following contribution

ξtot=+1−−−−−→ .

We finally obtain the diagrammatic representation of the T̂1 amplitude equation,

0 = + + +

+ + + +

+ + + +

+ + . (6.138)

T̂2 Amplitude Equation

We will now transform the T̂2 equation into a diagrammatic form. Inserting Eq. (6.108) into
Eq. (6.135), yields

〈Φab
ij |
(
ĤN + ĤN T̂ +

1

2!
ĤN T̂

2 +
1

3!
ĤN T̂

3 +
1

4!
ĤN T̂

4 + ...
)
c
|Φ0〉 = 0, (6.139)

where T̂ = T̂1 + T̂2, and the c-subscript denotes that ĤN must have at least one contraction with
every excitation operator. Each matrix element in the equation has the reference determinant
on its right and the two-particle two-hole (2p2h) excited determinant on its left. Diagrams that
contribute to the equation must therefore satisfy the following three criterion:

1. Total excitation level +2.

2. The reference determinant at the bottom of the diagram.

3. The 2p2h excited determinant at the top of the diagram.
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Since ĤN has minimum excitation level −2, and T̂ n (n ≥ 5) have excitation level ξ ≥ 5,
diagrams representing (ĤN T̂

n)c (n ≥ 5) do not satisfy our criteria. Moreover, since T̂ 3
2 and T̂ 4

2

have excitation level +6 and +8, respectively, (ĤN T̂
3
2 )c and (ĤN T̂

4
2 )c do not contribute to the

equation. Thus the T̂2 equation reduces to

0 = 〈Φab
ij |(ĤN + ĤN T̂1 + ĤN T̂2 +

1

2
ĤN T̂

2
1 +

1

2
ĤN T̂

2
2 + ĤN T̂1T̂2 +

1

6
ĤN T̂

3
1 +

1

2
T̂ 2

1 T̂2)c|Φ0〉.

In order to transform each term into a diagrammatic expression, we use the same procedure as
we did for the T̂1 equation. For each term 〈Φab

ij |ĤNX̂ |Φ0〉, where X̂ has excitation level ξX , the
following procedure is used to obtain the diagrammatic expression:

1. Identify the diagrams of ĤN with the 2p2h excited determinant of the top of the diagram,
and excitation level ξ that satisfies

ξ + ξX = 2. (6.140)

2. For each diagram that satisfies 1., connect this diagram to X̂ in accordance with the three
criteria listed above.

We will not show the derivation of the diagrammatic forms as we did for the T̂1. The final form
of T̂2 reads:

0 = + +

+ + +

+ + +

+ + +

+ + +
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+ + +

+ + +

+ + +

+ + +

+ + +

+ . (6.141)
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Diagram Rules

The diagrammatic form of the energy and amplitude equations in (6.133), (6.138) and (6.141)
can be transformed into algebraic expressions by so-called diagram rules. In the following, the
rules are listed.

1. Label all directed lines with indices ijk.. (hole lines) and abc.. (particle lines).

2. Each operator line contributes with an integral or amplitude.

T̂1 → tai

T̂2 → tab
ij

F̂N → fout
in

V̂N → 〈left-out right-out|v|left-in right-in〉

3. Summation over all internal indices, viz. all indices that label lines that begin and end at
an operator line.

4. A prefactor of (−1)nh+nl is included in the algebraic expression, where nh denotes the
number of hole lines, and nl denotes the number of loops. A loop is defined as either a
route of directed lines that returns to its beginning, or a route that begins and ends at an
external line.

5. For each pair of equivalent lines, i.e. lines that begin and end at the same operator line, a
prefactor of 1

2 is included.

6. For each pair of equivalent vertices, i.e. two T̂n operator lines that connect to a fragment
of ĤN in exactly the same manner, a prefactor of 1

2 is included.

7. For each pair of unique external hole or particle lines, a permutation function P (pq) is
included. P (pq) acting on a function f(pq) yields

P (pq)f(p, q) ≡ f(p, q)− f(q, p),

The permutation function is included in order to ensure antisymmetry of the final
expression.

6.4.7 Amplitude Equations on Algebraic Form

We will in this section utilize the diagram rules in order to transform the amplitude equations
into algebraic expressions. We will use Einstein’s summation convention, viz.

f i
at

a
i ≡

∑

ia

f i
at

a
i . (6.142)

Thus, identical quantum numbers in an expression implies a summation.
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T̂1 Amplitude Equation

We will in the following transform each diagram of Eq. (6.138) into an algebraic expression.

= fa
i = f b

at
a
i (6.143)

= −f j
i t

a
j = 〈ia|v|bj〉tbi (6.144)

= f i
at

ba
ji =

1

2
〈ai|v|bc〉tbcji (6.145)

= −1

2
〈ij|v|ka〉tbaij = −f i

at
a
j t

b
i (6.146)

= −〈ia|v|bc〉tbjtci = 〈ij|v|ak〉tbi taj (6.147)

= 〈ij|v|ab〉tai tbcjk =
1

2
〈ij|v|ab〉taktbcij (6.148)

=
1

2
〈ij|v|ab〉tci tab

jk = 〈ij|v|ab〉taktbi tcj (6.149)
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The final algebraic expression of the T̂1 equation reads,

0 = fa
i + f b

at
a
i − f j

i t
a
j + 〈ia|v|bj〉tbi + f i

at
ba
ji +

1

2
〈ai|v|bc〉tbcji −

1

2
〈ij|v|ka〉tbaij

− f i
at

a
j t

b
i − 〈ia|v|bc〉tbjtci + 〈ij|v|ak〉tbi taj + 〈ij|v|ab〉tai tbcjk +

1

2
〈ij|v|ab〉taktbcij

+
1

2
〈ij|v|ab〉tci tab

jk + 〈ij|v|ab〉taktbi tcj . (6.150)

T̂2 Amplitude Equation

We will in the following transform each diagram of Eq. (6.141) into an algebraic expression.

= 〈ij|v|ab〉 (6.151)

= P (ji)〈ab|v|ci〉tcj (6.152)

= −P (ba)〈ia|v|jk〉tbi (6.153)

= P (cb)f b
at

ca
ij (6.154)

= −P (ki)f j
i t

ab
kj (6.155)

=
1

2
〈ab|v|cd〉tcdij (6.156)

=
1

2
〈ij|v|kl〉tab

ij (6.157)
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= P (kj)P (ca)〈ia|v|bj〉tcbki (6.158)

=
1

2
P (ij)〈ab|v|cd〉tci tdj (6.159)

=
1

2
P (ab)〈ij|v|kl〉tai tbj (6.160)

= P (kj)P (ac)〈ia|v|bj〉tbk tci (6.161)

=
1

2
P (kl)P (cd)〈ij|v|ab〉tcaki t

bd
jl (6.162)

=
1

4
〈ij|v|ab〉tab

kl t
cd
ij (6.163)

= −1

2
P (kl)〈ij|v|ab〉tab

ik t
cd
jl (6.164)

= −1

2
P (cd)〈ij|v|ab〉tcakl t

db
ij (6.165)
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= −P (bc)f i
at

ba
jkt

c
i (6.166)

= −P (jk)f i
at

bc
jit

a
k (6.167)

= P (jk)P (ad)〈ai|v|bc〉tbj tcdik (6.168)

= P (da)〈ai|v|bc〉tdb
jkt

c
i (6.169)

= −1

2
P (ad)〈ai|v|bc〉tbcjktdi (6.170)

= −P (bc)P (kl)〈ij|v|ka〉tbi tac
jl (6.171)

= −P (lk)〈ij|v|ka〉tbcli taj (6.172)

=
1

2
P (lk)〈ij|v|ak〉tal tbcij (6.173)
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= −1

2
P (jk)P (ad)〈ai|v|bc〉tbj tcktdi (6.174)

=
1

2
P (bc)P (kl)〈ij|v|ka〉tbi tal tcj (6.175)

= P (kl)P (cd)〈ij|v|ab〉tak tcbil tdj (6.176)

=
1

4
P (cd)〈ij|v|ab〉tci tab

kl t
d
j (6.177)

=
1

4
P (kl)〈ij|v|ab〉taktcdij tbl (6.178)

= −P (cd)〈ij|v|ab〉tcakl t
d
i t

b
j (6.179)

= −P (kl)〈ij|v|ab〉tcdki t
a
l t

b
j (6.180)

=
1

4
P (kl)P (cd)〈ij|v|ab〉tak tci tbl tdj (6.181)
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Collecting all terms, we finally obtain the algebraic expression for the T̂2 equation,

0 = 〈ij|v|ab〉 + P (ji)〈ab|v|ci〉tcj − P (ba)〈ia|v|jk〉tbi + P (cb)f b
at

ca
ij − P (ki)f j

i t
ab
kj

+
1

2
〈ab|v|cd〉tcdij +

1

2
〈ij|v|kl〉tab

ij + P (kj)P (ca)〈ia|v|bj〉tcbki +
1

2
P (ij)〈ab|v|cd〉tci tdj

+
1

2
P (ab)〈ij|v|kl〉tai tbj + P (kj)P (ac)〈ia|v|bj〉tbk tci +

1

2
P (kl)P (cd)〈ij|v|ab〉tcaki t

bd
jl

+
1

4
〈ij|v|ab〉tab

kl t
cd
ij −

1

2
P (kl)〈ij|v|ab〉tab

ik t
cd
jl −

1

2
P (cd)〈ij|v|ab〉tcakl t

db
ij − P (bc)f i

at
ba
jkt

c
i

− P (jk)f i
at

bc
jit

a
k + P (jk)P (ad)〈ai|v|bc〉tbj tcdik + P (da)〈ai|v|bc〉tdb

jkt
c
i −

1

2
P (ad)〈ai|v|bc〉tbcjktdi

− P (bc)P (kl)〈ij|v|ka〉tbi tac
jl − P (lk)〈ij|v|ka〉tbcli taj +

1

2
P (lk)〈ij|v|ak〉tal tbcij

− 1

2
P (jk)P (ad)〈ai|v|bc〉tbj tcktdi +

1

2
P (bc)P (kl)〈ij|v|ka〉tbi tal tcj + P (kl)P (cd)〈ij|v|ab〉tak tcbil tdj

+
1

4
P (cd)〈ij|v|ab〉tci tab

kl t
d
j +

1

4
P (kl)〈ij|v|ab〉taktcdij tbl − P (cd)〈ij|v|ab〉tcakl t

d
i t

b
j

− P (kl)〈ij|v|ab〉tcdki t
a
l t

b
j +

1

4
P (kl)P (cd)〈ij|v|ab〉tak tci tbl tdj . (6.182)

The amplitude equations are coupled and non-linear in the amplitudes tai and tab
ij . Therefore,

they must be solved iteratively. At this point we will not go further into how this is done in a
computer program. We will in Chapter 7 present the implementation of the equations in detail.
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Chapter 7

Implementation

In this chapter we present the implementation of the Hartree-Fock (HF) method and the Coupled-
Cluster Singles and Doubles (CCSD) method. We also present the code-structures and the
implementation of classes. The focus will be on the CCSD code and its structure. We will
present the implementation of the algorithm, the energy equation and the amplitude equations
in detail. Implementation of important analytical expressions will be shown with pseudo-codes.
We will also present how to run the codes.

Both programs are object-oriented. When designing numerical software in computational
science, it is often common to specialize it to the problem that is examined. It is often timesaving
(in the sense that one obtain results for a specific problem) to start programming without
considering generalizations, class implementations, and so forth. In many-body methods, such
as for example Variational Monte Carlo (see [18]), only small changes are often required when
considering other systems. A specialized code scatters the parts which needs modifications
around. An object-oriented programming style offers an amazing opportunity to structure the
code into parts that are “independent”. Such a programming style also able us to generalize parts
of the code that are identical for many systems. Moreover, when the original system changes,
the class structure often require modifications at well-defined places.

The middle-level C++ language [65] has been chosen for its efficiency and its opportunity
for object-orientation. One of its competitors, Python [66], which is a general-purpose high-level
programming language, has a simpler syntax and offers the opportunity of object-orientation.
However, it cannot compete with the efficiency of C++. Furthermore, we have used the
BLITZ++ library for handling arrays, and LPP/LAPACK libraries providing routines for linear
algebra.

7.1 Implementation of the Hartree-Fock Method

We will in this section present the implementation of the Restricted Hartree-Fock method (RHF)
for a 2-dimensional closed-shell parabolic quantum dot. The program is structured into classes,
with base classes and derived classes. By relatively small changes, the code can handle other
electronic systems such as atoms. The current version of the program only considers the closed-
shell system where the orbitals within a shell are all occupied. An extension of the code would
obviously be to handle open-shell systems. This would require a linear combination of Slater
determinants in the ansatz.

We have implemented the Hartree-Fock scheme presented in Chapter 5. The Hartree-Fock
orbitals in Eq. (5.2) are expanded in single-particle basis functions, and the expansion coefficients
are varied in order to minimize the energy expectation value in Eq. (5.4). The minimization is
done through solving the Hartree-Fock equations in (5.14) iteratively. The program calculates an
approximation of the ground state energy, and computes the Hartree-Fock orbitals (expansion
coefficients) that minimize the energy.



Chapter 7. Implementation

7.1.1 Overview

The HF scheme presented in Chapter 5 considers the case of a two-body Hamiltonian. The
central equations are given in Eqs. (5.2), (5.5) and (5.14). The system under consideration is
defined through

1. the single-particle matrix elements 〈α|h|β〉, and

2. the two-particle interaction matrix elements 〈αβ|v|γδ〉,

where ĥ is the single-particle Hamiltonian and v̂ is the interaction operator. In the parabolic
quantum dot case, ĥ is given in Eq. (4.92), and v̂ is the Coulomb interaction in Eq. (4.93).
Moreover, the matrix elements also define the basis set, i.e. the single-particle functions that we
expand the HF orbitals in. By small changes in the code, the program can handle other functions
as well. In order to run the program, two data-files must be provided:

1. One file containing single-particle matrix elements 〈α|h|β〉, with setup

α β 〈α|h|β〉

2. One file containing interaction elements 〈αβ|v|γδ〉, with setup

α β γ δ 〈αβ|v|γδ〉

The configuration parameters is written in parameters.inp. An example is shown in Table 7.1.1.

#############################################

# CONFIGURATION FILE

# System: 2-dimensional Parabolic Quantum Dot

# Method: Hartree-Fock

#############################################

# --- Model space parameters

N = 2 # number of electrons (closed-shell, i.e. 2,6,12,20,30,..)

R = 10 # number of shells in the basis

dim = 2 # dimensions

Rf = 1 # Fermi-shell

# --- Interaction parameters

omega = 1.0 # oscillator strength

# --- Computational parameters

tol = 1e-10 # self-consistency tolerance

max_iter = 500 # maximum number of iterations

sp_energy_file = spEnergy.dat # <p|h|q>-file

tp_energy_file = interaction.dat # <pq|v|rs>-file

# --- Storing parameters

int_type = standard # type of interaction

Table 7.1: parameters.inp: HF configuration parameters file for a 2-dimensional parabolic quantum
dot.

7.1.2 Validation of the Code

The Hartree-Fock code should reproduce the solutions of the non-interacting system. For
N = 2, 6, 12 and 20, the non-interacting energy is 2~ω, 10~ω, 28~ω and 60~ω, respectively.
The code reproduced these results. However, a complete validation requires that we reproduce
other HF results for the interacting system. Our program reproduces the HF results of Ref. [67].
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7.1.3 Code Structure and Class Implementation

The program is structured into classes, with base classes and derived classes. This offers the
opportunity to divide parts of the code that are specified by the system, and the parts that
are identical for every system, into different fragments. Thus in order to handle other systems,
we can modify the code in well-defined parts of the program. This is the beauty of object-
oriented computing, see [65] for an introduction. The code is divided into four base classes,
viz. HfAlgo, quantumNumber, singleParticleElement and interactionElement. These classes
include members (i.e. variables and functions) that are universal in the sense that they are
common for all system. Each base class has a derived class associated with it. They are named
algo1, qdotQuantumNumber, sp1 and coulombElement, respectively.

The code is tuned to deal with the harmonic oscillator basis (see Eq. 4.64). Since we are
dealing with closed-shell systems only, we only include full shells in the basis. Thus the size of the
basis is determined by the number of shells. This number defines the orbitals that are included.
The objective of qdotQuantumNumber is to handle the single-particle orbitals. It establish the
mapping

|α〉 → |nmms〉, (7.1)

shown in Table 8.1. It also establish a mapping scheme for each orbital-couple |αβ〉, i.e.

|p〉 → |αβ〉. (7.2)

For each couple it calculates the total angular momentum

M = mα +mβ, (7.3)

and total spin

Ms = msα +msβ
, (7.4)

and tabulates couples with equal M and Ms. Furthermore, the aim of singleParticleElement
is to read 〈α|h|β〉 from file and store the elements. Since we are using the harmonic oscillator
functions as basis functions, the single-particle matrix is diagonal, i.e.

〈αβ|h|γδ〉 = εαδαβ , (7.5)

where εα is given in Eq. (8.16). For each M and Ms, called a channel, the program declares an
object of interactionElement which stores all matrix elements

〈p|v|q〉 ≡ 〈αβ|v|γδ〉 (7.6)

in a two-dimensional array. This can be done since

〈MMs|v|M̃M̃s〉 = 0, (7.7)

when M 6= M̃ or/and Ms 6= M̃s. Thus we only store nonzero matrix elements, and avoid a
four-dimensional array.

The HfAlgo class is an abstract base class constructed for the Hartree-Fock algorithm. We
have chosen to implement the specific HF scheme (presented in Chapter 5) in the derived class
algo1. The header file of Hfalgo is shown below. All members are defined in algo1.

class HfAlgo{

protected:

int N; // number of particles

int nbBasis; // number of basis functions

double energyDiff; // energy difference

double oldEnergy, newEnergy; // hartree-fock energy for (i-1)'th and i'th iteration
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double** HF_matrix; // Hartree-Fock matrix

double* eigenvalues; // eigenvalues

singleParticleElement* spMatrixElement; // sp matrix elements <a|h|b>

interactionElement** tpMatrixElement; // tp matrix elements <ab|v|cd>

quantumNumber* QN; // quantum number object

double* off_diag; // to be used in Householder's method

char* spEnergy_file;

char* interaction_file;

public:

double** eigenvectors; // eigenvectors

double hfEnergy; // hartree-fock energy

int iter; // number of iterations in self-consistency procedure

int maxIter; // maximum iteration value

double tol; // self-consistency tolerance

ofstream file;

/*

* allocate and set up single-particle matrix element object

*/

virtual void setUp_spMatrixElement() = 0;

/*

* allocate and calculate two-particle (interaction) matrix elements

*/

virtual void setUp_tpMatrixElement() = 0;

/*

* virtual run-algo function

*/

virtual void runAlgo() = 0;

/*

* write HF-coeff to file

*/

virtual void write_hf_coeff_to_file() = 0;

/*

* generates the hartree-fock matrix

*/

virtual void getHFmatrix() = 0;

/*

* function that re-arrange the eigenvalues (with corresponding eigenvectors)

* from the minimum value to the maximum value

*/

virtual void reArrangeEig() = 0;

/*

* function that returns the hartree-fock energy from given single-particle HF energies

*/

virtual double getHFenergy() = 0;

/*

*

*/

virtual void eigSolver(double**, double*, int) = 0;

/*

* virtual destructor

*/

virtual ~HfAlgo(){

delete[] HF_matrix;

delete[] eigenvectors;

delete[] eigenvalues;

delete spMatrixElement;

delete[] tpMatrixElement;

delete[] off_diag;

}

};

Consider the Hartree-Fock equations in Eq. (5.14). We define the Hartree-Fock matrix
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(HF_matrix) as

hHF ≡




h̃11 h̃12 h̃13 h̃14 · · · h̃1n

h̃21 h̃22 h̃23 h̃24 · · · h̃2n

h̃31 h̃32 h̃33 h̃34 · · · h̃3n

h̃41 h̃42 h̃43 h̃44 · · · h̃4n
...

...
...

...
. . .

...
h̃n1 h̃n2 h̃n3 h̃n4 · · · h̃nn




, (7.8)

where h̃αβ ≡ hHF
αβ (see Eq. 5.13), and n is the number of basis functions. Furthermore, we define

the coefficient vector (eigenvectors) as

Ck ≡




Ck1

Ck2

Ck3

Ck4
...

Ckn




, (7.9)

which contains the expansion coefficients of HF orbital k (see Eq. 5.2). The HF equation for
orbital k can thus be written as the following matrix eigenvalue equation,

hHFCk = ϑkCk, (7.10)

where ϑk is the eigenvalue of Ck. Since the HF matrix depends on all the other coefficient vectors
(C1,C2,..,Cn), the equation is non-linear and must be solved iteratively. We end up with the
following HF algorithm.

Hartree-Fock Algorithm

1. Calculate 〈α|h|β〉 and 〈αβ|v|γδ〉.

2. Initialize coefficient vectors C1, C2,..,CN .

3. While not converged:

a. Calculate the HF matrix.

b. Calculate the eigenvectors and eigenvalues of the HF matrix.

c. Determine the eigenvectors with the N lowest eigenvalues, where N is the number of
particles in the system.

d. Calculate new HF energy.

e. Calculate the difference between the new HF energy and the energy from the previous
iteration.

Results: HF energy and expansion coefficients.

The single-particle elements 〈α|h|β〉 and interaction elements 〈αβ|v|γδ〉 are read from file in
algo1::setUp_spMatrixElement() and algo1::setUp_tpMatrixElement(), respectively. The
eigenvector matrix is defined as

C ≡
(
C1 C2 · · · Cn

)
, (7.11)
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where n is the number of basis functions. It is initialized to

C = I, (7.12)

i.e. the identity matrix, in algo1::algo1(..). The initial HF ansatz is thus equal to the non-
interacting ground state. The iteration procedure is implemented in algo1::runAlgo(). A
pseudo-code is shown below.

void algo1::runAlgo(){

...

while(abs(energyDiff)>tol && (iter+1)<maxIter){

// update iteration variable

iter += 1;

// calculate the hartree-fock matrix

getHFmatrix();

// calculate new eigenvalues and eigenvectors by Householder's method

eigSolver(HF_matrix, eigenvalues, nbBasis);

// determine the smallest energy eigenvalues with corresponding eigenvectors

reArrangeEig();

// get new hartree-fock energy

newEnergy = getHFenergy();

// difference between new and old hartree-fock energy

energyDiff = newEnergy - oldEnergy;

// prepare for next iteration

oldEnergy = newEnergy;

...

} // end self-consistency loop

// update hartree-fock energy variable

hfEnergy = oldEnergy;

...

} // end runAlgo

The HF energy is calculated by the formula [18]

EHF =
1

2

N∑

k=1

(
ϑk + 〈ϕk|h|ϕk〉

)
, (7.13)

where

〈ϕk|h|ϕk〉 =

n∑

αβ

C∗
kαCkβ〈α|h|β〉 (7.14)

is the HF orbital in Eq. (5.2). It can be shown that this expression is equal to Eq. (5.5).

7.2 Implementation of the Coupled-Cluster Method

In this section we present the implementation of the Coupled-Cluster Singles and Doubles method
(CCSD). The program can in principle handle other electronic systems such as the 3-dimensional
parabolic quantum dot, quantum dots with other confinement potentials, atoms, molecules, and
so forth, without modifying the code. One of the main disadvantages of a generalized-code
requirement is that the code becomes less numerical efficient. Nevertheless, in the case of a
parabolic quantum dot in 2 dimensions, the program is able to handle 20 electron with 110
basis functions (10 shells) in approximately 2 days. In this thesis we have chosen to develop a
generalized m-scheme code that in principle is able to handle all electronic systems. The current
version of the program can only handle closed-shell systems. Thus for the parabolic quantum
dot in 2 dimensions, CCSD calculations can only be done for 2, 6, 12, 20, 30, 42, etc. electrons.
The reason is that in the CC wavefunction, the exponentiated cluster operator T̂ acts on the
ground state of the non-interacting system. The non-interacting ground state of an open-shell

94



7.2. Implementation of the Coupled-Cluster Method

system cannot be written as one Slater determinant, but as a linear combination of determinants.
Thus in order to handle open-shell systems, a linear combination of Slater determinants must be
included in the reference state.

The program calculates an approximation to the ground state energy of the closed-shell.
Moreover, it determines the excitation amplitudes tai and tab

ij that define the CC wavefunction.
We will in this section present our implementation of the CCSD method, and the structure of
the computer program. We will also present the validation of the code.

7.2.1 Overview

The many-body system under study is specified through

1. the single-particle matrix elements 〈α|h|β〉, and

2. the two-particle matrix elements 〈αβ|v|γδ〉AS ,

where ĥ is the one-particle Hamiltonian, and v̂ is the two-body interaction. The “AS” subscript
denotes that the elements are antisymmetrized, i.e.

〈αβ|v|γδ〉AS = 〈αβ|v|γδ〉 − 〈αβ|v|γδ〉.

The single-particle basis, and thus the N -particle model space, is defined through the matrix
elements. The matrix elements can sometimes be difficult, or perhaps impossible, to calculate
analytically. In these cases, numerical integration is necessary. Two data files must be provided
in order to run the CCSD program; one containing the single-particle elements 〈α|h|β〉 and one
containing 〈αβ|v|γδ〉. These files must have the following structures:

1. α β 〈α|h|β〉

2. α β γ δ 〈αβ|v|γδ〉

Before this can be done, the model space must be determined with a proper mapping of single-
particle states. Each basis function must be labeled with an integer between 0 and nb− 1, where
nb is the number of basis functions. Functions that are in the occupied space must be labeled
with integers from 0 up to nh− 1, where nh is the number of hole states (i.e. number of particles
in the system). Basis functions that are in the unoccupied space must be labeled with integers
from nh up to nb − 1. When a proper mapping is determined and the matrix elements are
calculated and stored in two separate files, the CCSD calculation can in principle start. The
main-file, main.cpp, requires 6 arguments:

1. nh: Number of hole states, i.e. occupied single-particle orbitals

2. np: Number of particle states, i.e. unoccupied single-particle orbitals

3. tol: Self-consistency tolerance

4. max_Iter: Maximum number of iterations

5. sp_energy_file: 〈α|h|β〉-filename

6. tp_energy_file: 〈αβ|v|γδ〉-filename

We have written a PYTHON script (ccsd.py) for the 2-dimensional parabolic quantum dot.
It reads configuration parameters from parameters.inp (shown below), starts the CCSD
calculation, and organizes the results into folders. If we were to consider another electron system,
a new configuration script must be provided. Alternatively, the arguments above can be typed
in manually.
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#############################################

# CONFIGURATION FILE

# System: 2-dimensional Parabolic Quantum Dot

# Method: Coupled-Cluster Singles and Doubles

#############################################

# --- Model space parameters

N = 2 # number of electrons (closed-shell, i.e. 2,6,12,20,30,..)

Rb = 2 # number of shells (1,2,3,4,5,..)

# --- Interaction parameters

omega = 1.0 # oscillator strength

# --- Computational parameters

tol = 1e-7 # self-consistency tolerance

max_iter = 500 # maximum number of iterations

sp_energy_file = spEnergy.dat # <p|h|q>-file

tp_energy_file = interaction.dat # <pq|v|rs>-file

# -- Storing parameters

int_type = standard # type of interaction

Table 7.2: parameters.inp: CCSD configuration parameters file for a 2-dimensional parabolic quantum
dot.

7.2.2 Validation of the Code

When a method has been implemented in a computer program, the code must be checked for
errors. The first check is often to run the program for the non-interacting case, where analytical
expressions often can be obtained. The program should obviously reproduce these analytical
results. However, although the program reproduces the non-interacting energies, the whole code
is still not validated. The CCSD code can be validated through exact diagonalization of the
Hamiltonian for the 2-particle case. In the literature, exact diagonalization is commonly called
Full Configuration Interaction method (FCI). We will now give a very shallow presentation of
the basic concepts of FCI. We refer to [30] for a more profound introduction.

We define the Hamiltonian of the N -electron system as

Ĥ = Ĥ0 + V̂ ,

where

Ĥ0 =
N∑

i=1

ĥi (7.15)

is the Hamiltonian of the non-interacting system, and

V̂ =

N∑

i=1<j

v̂ij (7.16)

is the interaction. Furthermore, we define

B1 ≡ {|αi〉}dm

i=1 (7.17)

to be an arbitrary basis set of the model space with dimensionality dm. In the matrix formulation
of quantum mechanics [24], the time-independent Schrödinger equation reads

Hc = Ec, (7.18)
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where the Hamiltonian matrix is defined by its elements Hmn = 〈Φm|Ĥ|Φn〉, |Φm〉 is a Slater
determinant (build up of orbitals contained in B), and

c =




c1
c2
c3
...

cNB



.

When dm → ∞, the energy eigenvalue equation in (7.18) yields exact eigenvalues and
eigenvectors. However, the Hilbert space must be truncated, and the solution of Eq. (7.18) within
a truncated Hilbert space of dimensionality dm gives an approximation to the eigenfunctions and
eigenvalues. For a given value of dm, the eigenfunctions is given as

|Ψλ〉 =

dm∑

i=1

cλi|Φi〉. (7.19)

By writing the Hamiltonian in second quantized form, i.e.

Ĥ =
∑

αβ

〈α|h|β〉a†αaβ +
1

4

∑

αβγδ

〈αβ|v|γδ〉a†αa†βaδaγ ,

we conclude that, due to Wick’s theorem, the matrix element Hmn = 〈Φm|Ĥ|Φn〉 can be written
in terms of 〈α|h|β〉 and 〈αβ|v|γδ〉.

We now choose the harmonic oscillator functions as basis functions. Analytical expressions
can be obtained for 〈αβ|v|γδ〉 (see [68]). Thus for a given size of the model space, the Hamiltonian
matrix can be computed, and approximate eigenvalues and eigenfunctions can be found by
diagonalization. Exact diagonalization (FCI) results can be used to validate CCSD results,
and in principle all CC schemes (CCSDT, CCSDTQ, and so forth). For a given model space, the
CCSDT..N energy (N is the number of electrons) is equal to the energy obtained by exact
diagonalization [30]. We have validated the CCSD by considering the 2-electron parabolic
quantum dot in 2 shells, i.e. 6 basis functions. We have used the following mapping:

|0〉 → |n = 0,m = 0,ms = −1/2〉
|1〉 → |n = 0,m = 0,ms = +1/2〉
|2〉 → |n = 0,m = −1,ms = −1/2〉
|3〉 → |n = 0,m = −1,ms = +1/2〉
|4〉 → |n = 0,m = +1,ms = −1/2〉
|5〉 → |n = 0,m = +1,ms = +1/2〉 (7.20)

Since the Coulomb interaction is spherically symmetric and does not depend on the spin, the
only nonzero interaction elements are

〈M,Ms|v|M,Ms〉,

where

M = mα +mβ = mγ +mδ = 0

Ms = msα +msβ
= msγ +msδ

= 0.

We observe that |01〉, |25〉 and |34〉 have M = 0 and Ms = 0, and the dimensionality H reduces
to 3. The Hamiltonian reads

H =




〈Φ01|H0|Φ01〉+ 〈Φ01|V |Φ01〉 〈Φ01|H0|Φ25〉+ 〈Φ01|V |Φ25〉 〈Φ01|H0|Φ34〉+ 〈Φ01|V |Φ34〉
〈Φ25|H0|Φ01〉+ 〈Φ25|V |Φ01〉 〈Φ25|H0|Φ25〉+ 〈Φ25|V |Φ25〉 〈Φ25|H0|Φ34〉+ 〈Φ25|V |Φ34〉
〈Φ34|H0|Φ01〉+ 〈Φ34|V |Φ01〉 〈Φ34|H0|Φ25〉+ 〈Φ34|V |Φ25〉 〈Φ34|H0|Φ34〉+ 〈Φ34|V |Φ34〉



 ,
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where the Slater determinant is defined as

|Φαβ〉 =
1√
2

(
|αβ〉 − |βα〉

)
. (7.21)

We then obtain

H =




2 + 〈01|v|01〉AS 〈01|v|25〉AS 〈01|v|34〉AS

〈25|v|01〉AS 4 + 〈25|v|25〉AS 〈25|v|34〉AS

〈34|v|01〉AS 〈34|v|25〉AS 4 + 〈34|v|34〉AS





=




3.2533141373154997 0.3133285343288749 −0.3133285343288749
0.3133285343288749 4.8616534694044069 −0.2349964007466563
−0.3133285343288749 −0.2349964007466563 4.8616534694044069



 ,

by using the formula in Eq. (8.16) and the analytical expressions in [68]. MATLAB yields the
following diagonalization result,

E0 = 3.15232800710.

Our CCSD program reproduces this result.

7.2.3 Code Structure and Class Implementation

The code is structured into four abstract base classes:

• CCalgo: CCSD algorithm class.

• Amplitudes: Class for handling the CCSD amplitudes tai and tab
ij .

• Fmatrix: Class for handling the F-matrix in Eq. (6.67).

• Interaction: Class for handling the interaction elements 〈αβ|v|γδ〉.

The following derived classes have been constructed:

• ccsd1: Implementation of the CCSD algorithm.

• amp1: Implementation of the amplitude equations, structuring of amplitudes, and
calculations of intermediates.

• Fmatrix: Structuring of 〈α|h|β〉, calculation and structuring of F-matrix.

• Interaction: Structuring of 〈αβ|v|γδ〉.

Figure 7.1 shows the class diagrams of our CCSD program. We will in the following sections
present each class, its structure and functionality. The focus will be on the implementations of
the CCSD algorithm, the energy equation and the amplitude equations.
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CCalgo

+ nh : int
+ np : int
+ F : Fmatrix*
+ V : Interaction*
+ T : Amplitudes*
+ E_ref : double
+ E_new = double
+ E_old : double
+ tol : double
+ max_iter : int
+ iter : int
+ file : ofstream

+ start_iteration_procedure()

+ calculate_energy()
+ calculate_ref_energy()

+ CCalgo() 

+ start_calculation()
+ ~CCalgo()

ccsd1

+ ccsd1(nh:int, np:int, 

+ ~ccsd1()
+ start_calculation()
+ start_iteration_procedure()
+ calculate_ref_energy()
+ calculate_energy()

max_iter:int, tol:double, 
F:Fmatrix*, V:Interaction*, 
T:Amplitudes*)

Fmatrix

+ f_hh : Array<double,2>
+ f_hp : Array<double,2>
+ f_ph : Array<double,2>
+ f_pp : Array<double,2>
+ s_hh : Array<double,2>
+ s_hp : Array<double,2>
+ s_ph : Array<double,2>
+ s_pp : Array<double,2>

+ Fmatrix()
+ ~Fmatrix()
+ read_sp_energy(filename:char*)
+ set_up_fmatrix(V:Interaction*)

f1

− nh : int
− np : int

+ f1(nh:int, np:int)
+ ~f1()
+ read_sp_energy(filename:char*)
+ set_up_fmatrix(V:Interaction*)

Interaction

+ nh : int
+ np : int
+ hhhh : Array<double,4>
+ phhh : Array<double,4>
+ phph : Array<double,4>
+ ppph : Array<double,4>
+ pppp : Array<double,4>

+ Interaction()
+ ~Interaction()
+ read_interaction(filename:char*)

int1

+ int1(nh:int, np:int)
+ ~int1()
+ read_interaction(filename:char*)

Amplitudes

+ nh : int
+ np : int
+ t1 : Array<double,2>
+ t1_old : Array<double,2>
+ t2 : Array<double,4>
+ t2_old : Array<double,4>
+ F : Fmatrix*
+ V : Interaction*
+ file : ofstream
+ file2 : ofstream

+ Amplitudes()
+ ~Amplitudes()

+ I1 : Array<double,2>
+ I2 : Array<double,2>
+ I3 : Array<double,2>
+ I4 : Array<double,4>
+ I5 : Array<double,4>
+ I6 : Array<double,4>
+ I7 : Array<double,4>
+ I8 : Array<double,2>
+ I9 : Array<double,4>
+ I10 : Array<double,4>
+ I11 : Array<double,4>

amp1

+ amp1()
+ ~amp1()

+ calc_t1()
+ calc_t1_intermediates()
+ calc_t1_term2(ans:Array<double,2>)
+ calc_t1_term3(ans:Array<double,2>)
+ calc_t1_term4(ans:Array<double,2>)
+ calc_t1_term5(ans:Array<double,2>)
+ calc_t1_term6(ans:Array<double,2>)
+ calc_t1_term7(ans:Array<double,2>)
+ calc_t1_d(ans:Array<double,2>)
+ calc_t2()
+ calc_t2_intermediates()
+ calc_t2_term2(ans:Array<double,4>)
+ calc_t2_term3(ans:Array<double,4>)
+ calc_t2_term4(ans:Array<double,4>)
+ calc_t2_term5(ans:Array<double,4>)
+ calc_t2_term6(ans:Array<double,4>)
+ calc_t2_term7(ans:Array<double,4>)
+ calc_t2_term8(ans:Array<double,4>)
+ calc_t2_d(ans:Array<double,4>)

+ calc_I1()
+ calc_I2()
+ calc_I3()
+ calc_I4()
+ calc_I5()
+ calc_I6()
+ calc_I7()
+ calc_I8()
+ calc_I9()
+ calc_I10()
+ calc_I11()

+ calc_t1()
+ calc_t1_intermediates()
+ calc_t1_term2(ans:Array<double,2>)
+ calc_t1_term3(ans:Array<double,2>)
+ calc_t1_term4(ans:Array<double,2>)
+ calc_t1_term5(ans:Array<double,2>)
+ calc_t1_term6(ans:Array<double,2>)
+ calc_t1_term7(ans:Array<double,2>)
+ calc_t1_d(ans:Array<double,2>)
+ calc_t2()
+ calc_t2_intermediates()
+ calc_t2_term2(ans:Array<double,4>)
+ calc_t2_term3(ans:Array<double,4>)
+ calc_t2_term4(ans:Array<double,4>)
+ calc_t2_term5(ans:Array<double,4>)
+ calc_t2_term6(ans:Array<double,4>)
+ calc_t2_term7(ans:Array<double,4>)
+ calc_t2_term8(ans:Array<double,4>)
+ calc_t2_d(ans:Array<double,4>)

+ calc_I1()
+ calc_I2()
+ calc_I3()
+ calc_I4()
+ calc_I5()
+ calc_I6()
+ calc_I7()
+ calc_I8()
+ calc_I9()
+ calc_I10()
+ calc_I11()

Figure 7.1: Class diagrams of our CCSD program.
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7.2.4 Implementation of the CCSD Algorithm

The CCSD algorithm is implemented in ccsd1. The derived class inherits all members of CCalgo
and defines these. The header file CCalgo.hpp is shown below.

//// CCalgo.hpp ///

class CCalgo {

public:

// number of hole states

int nh;

// number of particle states;

int np;

// f-matrix object

Fmatrix* F;

// interaction object

Interaction* V;

// amplitude object

Amplitudes* T;

// reference energy <Phi_0|H|Phi_0>

double E_ref;

// new ground state energy

double E_new;

// old ground state energy

double E_old;

// self-consistency tolerance

double tol;

// maximum number of iterations

int max_iter;

// iteration variable

int iter;

// output file

ofstream file;

// <p|h|q>-file

char* sp_energy_file;

// <pq|v|rs>-file

char* tp_energy_file;

/*

* constructor

*/

CCalgo();

/*

* destructor

*/

virtual ~CCalgo();

/*

* start ccsd calculation

*/

virtual void start_calculation() = 0;

/*

* self-consistent iteration procedure

*/

virtual void start_iteration_procedure() = 0;

/*

* set up reference energy <Phi_0|H|Phi_0>

*/

virtual void calculate_ref_energy() = 0;

/*

* calculate coupled-cluster energy

*/

virtual void calculate_energy() = 0;

};

The aim of constructing an abstract base class CCalgo is that other algorithm schemes can be
implemented in derived classes. The members shown in the header file are universal in the sense
that they are needed in most schemes. Moreover, additional variables and functions can of course
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7.2. Implementation of the Coupled-Cluster Method

be included in derived classes. We have in this thesis implemented the following CCSD algorithm
in ccsd1.

Coupled-Cluster Algorithm

1. Set up model space

2. Calculate f q
p and 〈pq|v|rs〉

3. Set up reference energy Eref = 〈Φ0|Ĥ|Φ0〉

4. Initialize amplitudes tai and tab
ij , and energy variables Enew and Eold

5. While not converged (diff > ǫ)

a. Calculate intermediates

b. Calculate new 1p1h excitation amplitudes tai
c. Calculate new 2p2h excitation amplitudes tab

ij

d. Calculate new energy Enew

e. Calculate diff = Enew − Eold

f. Set Eold = Enew

Results: Ground state energy Enew, and excitation amplitudes tai and tab
ij .

The number of basis functions, i.e. the dimension of the single-particle model space, is given
as

nb = nh + np, (7.22)

where nh and np are given in the arguments of main.cpp. However, the basis in itself is
determined by the single-particle matrix elements 〈α|h|β〉 or interaction elements 〈αβ|v|γδ〉.
Thus the model space is determined by the matrix elements. The f q

p -elements are calculated
in f1. We will present f1 and int1 in the next two sections. Items 1-5 are carried out in
ccsd1::start_calculation(). The code is shown below.

void ccsd1::start_calculation(){

// read interaction energy elements

V->read_interaction();

// read <p|h|q>-elements from file

F->read_sp_energy();

// set up f-matrix

F->set_up_fmatrix();

// set up reference energy E_ref = <phi_0|H|phi_0>

calculate_ref_energy();

// initialize t1 amplitudes

T->init_t1();

// initialize t2 amplitudes

T->init_t2();

...

// initialize energy

E_new = E_ref;

E_old = 0;

// start self-consistency procedure

start_iteration_procedure();

} // end start_calculation
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Items 5a-f are implemented in ccsd1::start_iteration_procedure(). The code is shown
below.

void ccsd1::start_iteration_procedure(){

...

// self-consistent iteration procedure

while(abs(diff)>tol && iter<max_iter){

// update iteration variable

iter = iter + 1;

// calculate t1 amplitudes

T->calc_t1();

// calculate t2 amplitude

T->calc_t2();

// calculate energy

calculate_energy();

// energy difference

diff = E_new - E_old;

// update amplitudes

T->t1_old = T->t1;

T->t2_old = T->t2;

// update old energy variable

E_old = E_new;

}

// save data

...

} // end start_iteration_procedure

We start out with initial amplitudes tai and tab
ij . These are inserted into the amplitude equations

yielding new amplitudes. Then we calculate the new CC energy, and determine whether the
energy is converged or not. If not, the procedure starts over again, till convergence is obtained.

In order to calculate the ground state energy, the reference energy is needed (see Eq. 6.79).
The expression reads

Eref = 〈Φ0|Ĥ|Φ0〉 =
∑

i

〈i|h|i〉 + 1

2

∑

ij

〈ij|v|ij〉,

and is implemented in void ccsd1::calculate_ref_energy().

void ccsd1::calculate_ref_energy(){

...

// E_ref = <phi_0|H|phi_0> = SUM_i <i|h_0|i> + 0.5*SUM_ij <i j|v|i j>

E_ref = 0.0;

for(i=0; i<nh; i++){

E_ref += F->s_hh(i,i);

for(j=0; j<nh; j++){

E_ref += 0.5*V->hhhh(i,j,i,j);

}

}

} // end calculate_ref_energy

For each iteration in the self-consistency procedure, the new CC energy is calculated for given
values of tai and tab

ij . The energy equation

ECC =
∑

ia

f i
at

a
i +

1

2

∑

ijab

〈ij|v|ab〉tai tbj +
1

4

∑

ijab

〈ij|v|ab〉tab
ij

is implemented in void ccsd1::calculate_energy.

void ccsd1::calculate_energy(){

...

// <Phi_0|HT1|Phi_0>

p1 = 0.0;

for(i=0; i<nh; i++){
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for(a=0; a<np; a++){

p1 = p1 + F->f_hp(i,a)*T->t1(a,i);

}

}

// <Phi_0|HT1T1|Phi_0>

p2 = 0.0;

for(j=0; j<nh; j++){

for(i=0; i<nh; i++){

for(b=0; b<np; b++){

for(a=0; a<np; a++){

p2 = p2 + V->pphh(a,b,i,j)*T->t1(a,i)*T->t1(b,j);

}

}

}

}

p2 = p2*0.5;

// <Phi_0|HT2|Phi_0>

p3 = 0.0;

for(j=0; j<nh; j++){

for(i=0; i<nh; i++){

for(b=0; b<np; b++){

for(a=0; a<np; a++){

p3 = p3 + V->pphh(a,b,i,j)*T->t2(a,b,i,j);

}

}

}

}

p3 = p3*0.25;

// total coupled-cluster energy

p = p1 + p2 + p3;

// total ground state energy

E_new = p + E_ref;

...

} // end calculate_energy

The rest of the functions in ccsd1::start_calculation and ccsd1::start_iteration_procedure()

will be described soon.

7.2.5 F-matrix and Interaction Elements

The F-matrix is defined in Eq. (6.66). We have chosen to construct an abstract Fmatrix class,
and a derived class f1 that defines its members. The header file Fmatrix.hpp is shown below.

/// Fmatrix.hpp ///

class Fmatrix {

public:

// f-matrices

Array<double,2> f_hh;

Array<double,2> f_hp;

Array<double,2> f_ph;

Array<double,2> f_pp;

// sp-energy matrices

Array<double,2> s_hh;

Array<double,2> s_hp;

Array<double,2> s_ph;

Array<double,2> s_pp;

// <p|h|q>-file

char* sp_energy_file;

// Interaction* object

Interaction* V;

/*

* constructor

*/

Fmatrix();
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/*

* read single-particle energies from file

*/

virtual void read_sp_energy() = 0;

/*

* set up f-matrix

*/

virtual void set_up_fmatrix() = 0;

/*

* destructor

*/

virtual ~Fmatrix();

};

The function f1::read_sp_energy() reads the single-particle elements 〈α|h|β〉 from file, and
structure the data into four arrays s_hh, s_hp, s_ph and s_pp. The h denotes a hole state i,
while p denotes a particle state a. The position of h/p reflects the position of the states in the
matrix elements, viz.

s_hh = 〈i|h|i〉
s_hp = 〈i|h|a〉
s_ph = 〈a|h|i〉
s_pp = 〈a|h|b〉.

Furthermore, the elements of the F-matrix are defined as

f q
p = 〈p|h|q〉 +

∑

i

〈pi|v|qi〉, (7.23)

where the interaction elements are antisymmetrized, and pqr.. denote both hole and particle
states. The elements are structured into four arrays,

f_hh = f j
i

f_hp = fa
i

f_ph = f i
a

f_pp = f b
a.

The function f1::set_up_fmatrix() calculates and structures the F-matrix. The code is shown
below.

void f1::set_up_fmatrix(){

...

// set up f_hh = <i|h_0|j> + SUM_k <i k||j k>

for(i=0; i<nh; i++){

for(j=0; j<nh; j++){

f_hh(i,j) = s_hh(i,j);

for(k=0; k<nh; k++){

f_hh(i,j) += V->hhhh(i,k,j,k);

}

}

}

// set up f_hp = <i|h_0|a> + SUM_k <i k||a k>

// <h h||p h> = <p h||h h>

for(i=0; i<nh; i++){

for(a=0; a<np; a++){

f_hp(i,a) = s_hp(i,a);

for(k=0; k<nh; k++){

f_hp(i,a) += V->phhh(a,k,i,k);

}

}

104



7.2. Implementation of the Coupled-Cluster Method

}

// set up f_ph = <a|h_0|i> + SUM_k <a k||i k>

for(a=0; a<np; a++){

for(i=0; i<nh; i++){

f_ph(a,i) = s_ph(a,i);

for(k=0; k<nh; k++){

f_ph(a,i) += V->phhh(a,k,i,k);

}

}

}

// set up f_pp = <a|h_0|b> + SUM_k <a k||b k>

for(a=0; a<np; a++){

for(b=0; b<np; b++){

f_pp(a,b) = s_pp(a,b);

for(k=0; k<nh; k++){

f_pp(a,b) += V->phph(a,k,b,k);

}

}

}

} // end set_up_fmatrix

The abstract base class Interaction, with derived class int1, is constructed to handle the
interaction elements 〈pq|v|rs〉. The header file Interaction.hpp is shown below.

/// Interaction.hpp ///

class Interaction {

public:

// number of hole states

int nh;

// number of particle states

int np;

// interaction matrices

Array<double,4> hhhh; // <hh||hh>

Array<double,4> phhh; // <ph||hh>

Array<double,4> pphh; // <pp||hh>

Array<double,4> phph; // <ph||ph>

Array<double,4> ppph; // <pp||ph>

Array<double,4> pppp; // <pp||pp>

// <pq|v|rs>-file

char* tp_energy_file;

/*

* constructor

*/

Interaction();

/*

* read interaction elements <p q||r s> from file

*/

virtual void read_interaction() = 0;

/*

* destructor

*/

virtual ~Interaction();

};

The aim of the class is to read 〈pq|v|rs〉 from file, and structure the data into six arrays: hhhh,
phhh, pphh, phph, ppph and pppp. The position of h/p reflects the position of the corresponding
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state in the interaction element, viz.

hhhh = 〈ij|v|kl〉
phhh = 〈aj|v|kl〉
pphh = 〈ab|v|kl〉
phph = 〈aj|v|bl〉
ppph = 〈ab|v|cl〉
pppp = 〈ab|v|cd〉,

where ijkl.. denote hole states, and abcd.. denote particle states. If we were to store 〈pq|v|rs〉
in a four-dimensional array, we would use unnecessary amount of memory. The matrix would
actually increase exponentially with respect to the size of the basis. Furthermore, since 〈αβ|v|γδ〉
is antisymmetrized, i.e.

〈pq|v|rs〉 = 〈rs|v|pq〉 = 〈qp|v|sr〉 = −〈pq|v|sr〉 = −〈qp|v|rs〉,

we obtain the following matrix relations,

phhh = −hphh = hhph = −hhhp
pphh = hhpp

phph = hphp = −hpph = −phhp
ppph = phpp = −pphp = −hppp.

All possible combinations are covered. Thus it is sufficient to only store 〈pq|v|rs〉 with p, q, r and
s matching one of the six arrays. The function int1::read_interaction() reads 〈pq|v|rs〉 from
file and structures the elements. For a given array-name (hhhh, phhh, and so forth), we know the
orbital subspace of each single-particle state in the elements. Thus we number each element from
0 up to number of hole/particle states. For example, assume we have 6 basis functions with the
mapping given in Eq. (7.20). We also assume that we have 2 hole states, i.e. |0〉 and |1〉. Thus
we have 4 particle states: |2〉, |3〉, |4〉 and |5〉. Let nh = 2 (number of hole states) and np = 4
(number of particle states). The following examples illustrate the convention used to store the
interaction elements.

phph(1,1,2,0) = 〈(nh+ 1)1|v|(nh + 2)2〉 = 〈31|v|40〉
pphh(1,3,0,1) = 〈(nh+ 1)(nh+ 3)|v|01〉 = 〈35|v|01〉
ppph(0,1,2,1) = 〈(nh)(nh + 1)|v|(nh + 2)1〉 = 〈23|v|41〉

7.2.6 Implementation of the Amplitude Equations

We will in this section present our implementation of the CCSD amplitude equations in detail.
We have constructed the abstract base class Amplitudes, and the derived class amp1 with the
implementation. The objective of the class is to calculate new amplitudes form old (previous
iteration) amplitudes. See CCSD algorithm in Sec. 7.2.4. The header file Amplitudes.hpp is
shown below.

class Amplitudes {

public:

// number of hole states

int nh;

// number of particle states

int np;

// T1 amplitude arrays

Array<double,2> t1;

Array<double,2> t1_old;

// T2 amplitude array
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Array<double,4> t2;

Array<double,4> t2_old;

// Fmatrix object

Fmatrix* F;

// Interaction object

Interaction* V;

// output files

ofstream file;

ofstream file2;

/*

* intermediate arrays

*/

Array<double,2> I1;

Array<double,2> I2;

Array<double,2> I3;

Array<double,4> I4;

Array<double,4> I5;

Array<double,4> I6;

Array<double,4> I7;

Array<double,2> I8;

Array<double,4> I9;

Array<double,4> I10;

Array<double,4> I11;

/*

* intermediates calculation

*/

virtual void calc_I1() = 0;

virtual void calc_I2() = 0;

virtual void calc_I3() = 0;

virtual void calc_I4() = 0;

virtual void calc_I5() = 0;

virtual void calc_I6() = 0;

virtual void calc_I7() = 0;

virtual void calc_I8() = 0;

virtual void calc_I9() = 0;

virtual void calc_I10() = 0;

virtual void calc_I11() = 0;

/*

* T1 functions

*/

virtual void init_t1() = 0;

virtual void calc_t1() = 0;

virtual void calc_t1_intermediates() = 0;

virtual void calc_t1_term2(Array<double,2>) = 0;

virtual void calc_t1_term3(Array<double,2>) = 0;

virtual void calc_t1_term4(Array<double,2>) = 0;

virtual void calc_t1_term5(Array<double,2>) = 0;

virtual void calc_t1_term6(Array<double,2>) = 0;

virtual void calc_t1_term7(Array<double,2>) = 0;

virtual void calc_t1_d(Array<double,2>) = 0;

/*

* T2 functions

*/

virtual void init_t2() = 0;

virtual void calc_t2() = 0;

virtual void calc_t2_intermediates() = 0;

virtual void calc_t2_term2(Array<double,4>) = 0;

virtual void calc_t2_term3(Array<double,4>) = 0;

virtual void calc_t2_term4(Array<double,4>) = 0;

virtual void calc_t2_term5(Array<double,4>) = 0;

virtual void calc_t2_term6(Array<double,4>) = 0;

virtual void calc_t2_term7(Array<double,4>) = 0;

virtual void calc_t2_term8(Array<double,4>) = 0;

virtual void calc_t2_d(Array<double,4>) = 0;

/*
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* constructor

*/

Amplitudes();

/*

* destructor

*/

~Amplitudes();

/*

* write converged amplitudes to file

*/

virtual void write_amplitudes_to_file() = 0;

};

We now turn to the implementation of the amplitude equations. The formal expressions are
given in Eqs. (6.134) and (6.135), and the diagrammatic representations in Eqs. (6.138) and
(6.141). The algebraic expressions are given in Eqs. (6.150) and (6.182). Before we turn to
the implementation of the amplitude equations, manipulations of the algebraic expressions are
needed.

Consider the T̂1 equation in Eq. (6.150). We first rearrange the equation into

0 = fa
i + 〈ia|v|bj〉tbi +

1

2
〈ai|v|bc〉tbcji +

(
f b

at
a
i − 〈ia|v|bc〉tbj tci

)

+

(
−f j

i t
a
j − f i

at
a
j t

b
i + 〈ij|v|ak〉tbi taj + 〈ij|v|ab〉taktbi tcj +

1

2
〈ij|v|ab〉tci tab

jk

)

+

(
−1

2
〈ij|v|ka〉tbaij +

1

2
〈ij|v|ab〉taktbcij

)
+
(
f i

at
ba
ji + 〈ij|v|ab〉tai tbcjk

)
,

leading to

0 = fa
i + 〈ia|v|bj〉tbi +

1

2
〈ai|v|bc〉tbcji +

(
f b

at
a
i + 〈ai|v|bc〉tbjtci

)

−
(
f j

i t
a
j + f i

at
a
j t

b
i + 〈ij|v|ka〉tbi taj + 〈ji|v|ab〉taktbi tcj +

1

2
〈ji|v|ab〉tci tab

jk

)

+
1

2

(
〈ij|v|ka〉tab

ij + 〈ij|v|ab〉taktbcij
)

+
(
f i

at
ba
ji + 〈ij|v|ab〉tai tbcjk

)
.

Relabeling some of the dummy-indices and moving amplitudes outside the parentheses, yields

0 = fa
i + 〈ma|v|ei〉tem +

1

2
〈am|v|ef〉tefim +

(
fa

e + 〈am|v|ef〉tfm
)
tei

−
(
fm

i + fm
e t

e
i + 〈mn|v|ie〉ten + 〈mn|v|ef〉tei tfn +

1

2
〈mn|v|ef〉tefin

)
tam

+
1

2

(
〈mn|v|ie〉+ 〈mn|v|fe〉tfi

)
teamn +

(
fm

e + 〈mn|v|ef〉tfn
)
tae
im.

We define the following intermediates,

[I1]ae ≡ fa
e + 〈am|v|ef〉tfm

= fa
e + 〈ef |v|am〉tfm (7.24)

[I2]me ≡ fm
e + 〈mn|v|ef〉tfn

= fm
e + 〈ef |v|mn〉tfn (7.25)

[I3]mi ≡ fm
i + fm

e t
e
i + 〈mn|v|ie〉ten + 〈mn|v|ef〉tei tfn +

1

2
〈mn|v|ef〉tefin

= fm
i + 〈mn|v|ie〉ten +

1

2
〈mn|v|ef〉tefin +

(
fm

e + 〈mn|v|ef〉tfn
)
tei

= fm
i − 〈ei|v|mn〉ten +

1

2
〈ef |v|mn〉tefin +

(
fm

e + 〈ef |v|mn〉tfn
)
tei

= fm
i − 〈ei|v|mn〉ten +

1

2
〈ef |v|mn〉tefin + [I2]me tei (7.26)
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[I4]mn
ie ≡ 〈mn|v|ie〉 + 〈fe|v|mn〉t

f
i

= −〈ei|v|mn〉 + 1

2
〈fe|v|mn〉tfi +

1

2
〈fe|v|mn〉tfi

= [I5]mn
ie +

1

2
〈fe|v|mn〉tfi (7.27)

[I5]mn
ie ≡ −〈ei|v|mn〉 +

1

2
〈fe|v|mn〉tfi (7.28)

Using these definitions, the T̂1 amplitude equation reads

0 = fa
i + 〈ma|v|ei〉tem +

1

2
〈am|v|ef〉tefim + [I1]ae t

e
i − [I3]mi tam

+
1

2
[I4]mn

ie teamn + [I2]me tae
im.

We want to obtain an equation for tai . Rewriting the equation into

0 = fa
i + 〈ia|v|ai〉tai + (1− δeaδmi)〈ma|v|ei〉tem +

1

2
〈am|v|ef〉tefim

+ [I1]aa t
a
i + (1− δea) [I1]ae t

e
i − [I3]ii t

a
i − (1− δmi) [I3]mi tam

+
1

2
[I4]mn

ie teamn + [I2]me tae
im,

and collecting all tai -terms, yields

0 = fa
i +

(
〈ia|v|ai〉 + [I1]aa − [I3]ii

)
tai +

1

2
〈am|v|ef〉tefim

+ (1− δeaδmi)〈ma|v|ei〉tem + (1− δea) [I1]ae t
e
i − (1− δmi) [I3]mi tam

+
1

2
[I4]mn

ie teamn + [I2]me tae
im.

We now define

da
i ≡ −〈ia|v|ai〉 − [I1]aa + [I3]ii , (7.29)

leading to the following equation for tai ,

da
i t

a
i = fa

i +
1

2
〈ef |v|am〉tefim − (1− δeaδmi)〈am|v|ei〉tem + (1− δea) [I1]ae t

e
i

− (1− δmi) [I3]mi tam +
1

2
[I4]mn

ie teamn + [I2]me tae
im. (7.30)

This equation is implemented in amp1::calc_t1(). In the following we also show the
implementation of each term in Eq. (7.30). The implementation of the intermediates will be
shown after the T̂2 equation is modified.

void amp1::calc_t1(){

...

// calculate intermediates I1, I2, I3, I4 and I5

calc_t1_intermediates();

...

// f_i^a

t1 = F->f_ph;

// 0.5<ef|v|am>t_(im)^(ef)

calc_t1_term2(temp);

t1 = t1 + temp;

// -(1 - \delta_(ea)\delta_(mi))<am|v|ei>t_m^e

calc_t1_term3(temp);

t1 = t1 + temp;

// (1 - \delta_(ea))[I1]_e^at_i^e

calc_t1_term4(temp);
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t1 = t1 + temp;

// -(1 - \delta_(mi))[I3]_i^mt_m^a

calc_t1_term5(temp);

t1 = t1 + temp;

// 0.5[I4]_(ie)^(mn)t_(mn)^(ea)

calc_t1_term6(temp);

t1 = t1 + temp;

// [I2]_e^m t_(im)^(ae)

calc_t1_term7(temp);

t1 = t1 + temp;

// calculate denominator d_i^a

calc_t1_d(temp);

// calculate final t1 amplitudes

t1 = t1/temp;

...

} //end calc_t1

da
i t

a
i ←

1

2
〈ef |v|am〉tefim

void amp1::calc_t1_term2(Array<double,2> ans){

...

for(i=0; i<nh; i++){

for(a=0; a<np; a++){

temp = 0.0;

for(m=0; m<nh; m++){

for(f=0; f<np; f++){

for(e=0; e<np; e++){

temp = temp + V->ppph(e,f,a,m)*t2_old(e,f,i,m);

}

}

}

ans(a,i) = ans(a,i) + 0.5*temp;

}

}

} // end calc_t1_term2

da
i t

a
i ← −(1− δeaδmi)〈am|v|ei〉tem

void amp1::calc_t1_term3(Array<double,2> ans){

...

for(i=0; i<nh; i++){

for(a=0; a<np; a++){

temp = 0.0;

for(m=0; m<nh; m++){

for(e=0; e<np; e++){

if(m!=i || e!=a){

temp = temp + V->phph(a,m,e,i)*t1_old(e,m);

}

}

}

ans(a,i) = ans(a,i) - temp;

}

}

} // end calc_t1_term3

da
i t

a
i ← (1− δea) [I1]ae t

e
i
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void amp1::calc_t1_term4(Array<double,2> ans){

...

for(i=0; i<nh; i++){

for(a=0; a<np; a++){

temp = 0.0;

for(e=0; e<np; e++){

if(e!=a){

temp = temp + I1(a,e)*t1_old(e,i);

}

}

ans(a,i) = ans(a,i) + temp;

}

}

} // end calc_t1_term4

da
i t

a
i ← −(1− δmi) [I3]mi tam

void amp1::calc_t1_term5(Array<double,2> ans){

...

for(i=0; i<nh; i++){

for(a=0; a<np; a++){

temp = 0.0;

for(m=0; m<nh; m++){

if(m!=i){

temp = temp + I3(m,i)*t1_old(a,m);

}

}

ans(a,i) = ans(a,i) - temp;

}

}

} // end calc_t1_term5

da
i t

a
i ←

1

2
[I4]mn

ie teamn

void amp1::calc_t1_term6(Array<double,2> ans){

...

for(i=0; i<nh; i++){

for(a=0; a<np; a++){

temp = 0.0;

for(n=0; n<nh; n++){

for(m=0; m<nh; m++){

for(e=0; e<np; e++){

temp = temp + I4(m,n,i,e)*t2_old(e,a,m,n);

}

}

}

ans(a,i) = ans(a,i) + 0.5*temp;

}

}

} // end calc_t1_term6

da
i t

a
i ← [I2]me tae

im

void amp1::calc_t1_term7(Array<double,2> ans){

...

for(i=0; i<nh; i++){

for(a=0; a<np; a++){

temp = 0.0;

for(m=0; m<nh; m++){

111



Chapter 7. Implementation

for(e=0; e<np; e++){

temp = temp + I2(m,e)*t2_old(a,e,i,m);

}

}

ans(a,i) = ans(a,i) + temp;

}

}

} // end calc_t1_term7

da
i ≡ −〈ia|v|ai〉 − [I1]aa + [I3]ii = 〈ai|v|ai〉 − [I1]aa + [I3]ii ,

void amp1::calc_t1_d(Array<double,2> ans){

...

for(i=0; i<nh; i++){

for(a=0; a<np; a++){

ans(a,i) = V->phph(a,i,a,i) - I1(a,a) + I3(i,i);

}

}

} // end calc_t1_d

Consider the T̂2 equation in Eq. (6.182). We first rearrange the equation into

0 = 〈ij|v|ab〉 + 1

2
〈ab|v|cd〉tcdij

+

(
P (ki)f j

i t
ab
kj + P (jk)f i

at
bc
jit

a
k + P (lk)〈ij|v|ka〉tbcli taj + P (kl)〈ij|v|ab〉tcdki t

a
l t

b
j

+
1

2
P (kl)〈ij|v|ab〉tab

ik t
cd
jl

)

+
1

2

(
〈ij|v|kl〉tab

ij + P (lk)〈ij|v|ak〉tal tbcij +
1

2
〈ij|v|ab〉tab

kl t
cd
ij +

1

4
P (kl)〈ij|v|ab〉taktcdij tbl

)

+

(
P (cb)f b

at
ca
ij − P (bc)f i

at
ba
jkt

c
i + P (da)〈ai|v|bc〉tdb

jkt
c
i − P (cd)〈ij|v|ab〉tcakl t

d
i t

b
j

− 1

2
P (cd)〈ij|v|ab〉tcakl t

db
ij

)

+

(
P (kj)P (ca)〈ia|v|bj〉tcbki + P (jk)P (ad)〈ai|v|bc〉tbj tcdik − P (bc)P (kl)〈ij|v|ka〉tbi tac

jl

+ P (kl)P (cd)〈ij|v|ab〉tak tcbil tdj +
1

2
P (kl)P (cd)〈ij|v|ab〉tcaki t

bd
jl

)

+

(
− P (ba)〈ia|v|jk〉tbi −

1

2
P (ad)〈ai|v|bc〉tbcjktdi + P (kj)P (ac)〈ia|v|bj〉tbk tci

− 1

2
P (jk)P (ad)〈ai|v|bc〉tbj tcktdi +

1

2
P (ab)〈ij|v|kl〉tai tbj +

1

4
P (cd)〈ij|v|ab〉tci tab

kl t
d
j

+
1

2
P (bc)P (kl)〈ij|v|ka〉tbi tal tcj +

1

4
P (kl)P (cd)〈ij|v|ab〉tak tci tbl tdj

)

+

(
P (ji)〈ab|v|ci〉tcj +

1

2
P (ij)〈ab|v|cd〉tci tdj

)
(7.31)
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Relabeling some of the dummy-indices, and moving amplitudes and P -functions outside the
parentheses, yields

= 〈ab|v|ij〉 + 1

2
〈ab|v|ef〉tefij

− P (ij)

(
fm

j + fm
e t

e
j + 〈mn|v|je〉ten + 〈mn|v|ef〉tejtfn +

1

2
P (kl)〈mn|v|ef〉tefjn

)
tab
im

+
1

2

(
〈mn|v|ij〉 + P (ij)〈mn|v|ie〉tej +

1

2
〈mn|v|ef〉tefij +

1

2
P (ij)〈mn|v|ef〉tei tfj

)
tab
mn

+ P (ab)

(
f b

e − fm
e t

b
m + 〈bm|v|ef〉tfm − 〈mn|v|ef〉tbmtfn −

1

2
〈mn|v|ef〉tbfmn

)
tae
ij

+ P (ij)P (ab)

(
〈mb|v|ej〉 + 〈bm|v|fe〉tfj − 〈nm|v|je〉tbn − 〈nm|v|fe〉tbnt

f
j +

1

2
〈nm|v|fe〉tbfjn

)
tae
im

− P (ab)

(
〈mb|v|ij〉 + 1

2
〈mb|v|ef〉tefij + P (jk)〈mb|v|ej〉tei +

1

2
P (jk)〈bm|v|fe〉tei tfj

− 1

2
〈mn|v|ij〉tbn −

1

4
〈mn|v|ef〉tbntefij −

1

2
P (jk)〈mn|v|ie〉tbntej −

1

4
P (jk)〈mn|v|fe〉tbntejtfi

)
tam

+ P (ij)

(
〈ab|v|ej〉 + 1

2
〈ab|v|ef〉tfj

)
tei . (7.32)

In order to simplify the equation, we first define

[I6]mb
ej ≡ −〈bm|v|ej〉 +

1

2
〈fe|v|bm〉tfj .

We now consider each expression in parenthesis in Eq. (7.32). We define the following
intermediates:

[I7]mn
ij ≡ 〈mn|v|ij〉 + P (ij)〈mn|v|ie〉tej +

1

2
〈mn|v|ef〉tefij +

1

2
P (ij)〈mn|v|ef〉tei tfj

= 〈mn|v|ij〉 + 1

2
〈mn|v|ef〉tefij + P (ij)

(
〈mn|v|ie〉+ 1

2
〈mn|v|fe〉tfi

)
tej

= 〈mn|v|ij〉 + 1

2
〈ef |v|mn〉tefij + P (ij)

(
−〈ei|v|mn〉+ 1

2
〈fe|v|mn〉tfi

)
tej

= 〈mn|v|ij〉 + 1

2
〈ef |v|mn〉tefij + P (ij) [I5]mn

ie tej (7.33)

[I8]be ≡ f b
e − fm

e t
b
m + 〈bm|v|ef〉tfm − 〈mn|v|ef〉tbmtfn −

1

2
〈mn|v|ef〉tbfmn

=
(
f b

e + 〈bm|v|ef〉tfm
)
− 1

2
〈mn|v|ef〉tbfmn −

(
fm

e + 〈mn|v|ef〉tfn
)
tbm

=
(
f b

e + 〈ef |v|bm〉tfm
)
− 1

2
〈ef |v|mn〉tbfmn −

(
fm

e + 〈ef |v|mn〉tfn
)
tbm

= [I1]be −
1

2
〈mn|v|ef〉tbfmn − [I2]me tbm (7.34)
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[I9]mb
ej ≡ 〈mb|v|ej〉 + 〈bm|v|fe〉t

f
j − 〈nm|v|je〉tbn − 〈nm|v|fe〉tbnt

f
j +

1

2
〈nm|v|fe〉tbfjn

=

(
〈mb|v|ej〉 + 1

2
〈bm|v|fe〉tfj

)
+

1

2
〈bm|v|fe〉tfj −

(
〈nm|v|je〉 + 〈nm|v|fe〉tfj

)
tbn

+
1

2
〈nm|v|fe〉tbfjn

=

(
−〈bm|v|ej〉 + 1

2
〈fe|v|bm〉tfj

)
+

1

2
〈fe|v|bm〉tfj

−
(
−〈ej|v|nm〉 + 1

2
〈fe|v|nm〉tfj +

1

2
〈fe|v|nm〉tfj

)
tbn +

1

2
〈fe|v|nm〉tbfjn

= [I6]mb
ej +

1

2
〈fe|v|bm〉tfj − [I4]nm

je tbn +
1

2
〈fe|v|nm〉tbfjn (7.35)

[I10]mb
ij ≡ 〈mb|v|ij〉 +

1

2
〈mb|v|ef〉tefij + P (ij)〈mb|v|ej〉tei +

1

2
P (ij)〈bm|v|fe〉tei tfj

− 1

2
〈mn|v|ij〉tbn −

1

4
〈mn|v|ef〉tbntefij −

1

2
P (ij)〈mn|v|ie〉tbntej

− 1

4
P (ij)〈mn|v|fe〉tbntejtfi

= 〈mb|v|ij〉 + 1

2
〈mb|v|ef〉tefij + P (ij)

(
〈mb|v|ej〉 + 1

2
〈bm|v|fe〉tfj

)
tei

− 1

2

(
〈mn|v|ij〉 + 1

2
〈mn|v|ef〉tefij + P (ij)

(
〈mn|v|ie〉 + 1

2
〈mn|v|fe〉tfi

)
tej

)
tbn

= −〈bm|v|ij〉 − 1

2
〈ef |v|bm〉tefij + P (ij)

(
−〈bm|v|ej〉 + 1

2
〈fe|v|bm〉tfj

)
tei

− 1

2

(
〈mn|v|ij〉 + 1

2
〈ef |v|mn〉tefij + P (ij)

(
−〈ei|v|mn〉+ 1

2
〈fe|v|mn〉tfi

)
tej

)
tbn

= −〈bm|v|ij〉 − 1

2
〈ef |v|bm〉tefij + P (ij) [I6]mb

ej t
e
i −

1

2
[I7]mn

ij tbn (7.36)

[I11]ab
ej ≡ 〈ab|v|ej〉 +

1

2
〈ab|v|ef〉tfj (7.37)

The T̂2 equation can now be written as

0 = 〈ab|v|ij〉 + 1

2
〈ab|v|ef〉tefij − P (ij) [I3]mj tab

im +
1

2
[I7]mn

ij tab
mn + P (ab) [I8]be t

ae
ij

+ P (ij)P (ab) [I9]mb
ej t

ae
im − P (ab) [I10]mb

ij tam + P (ij) [I11]ab
ej t

e
i . (7.38)

We want to obtain an equation for tab
ij . Rewriting the equation into

0 = 〈ab|v|ij〉 + 1

2
〈ab|v|ab〉tab

ij +
1

2
(1− δeaδfb)〈ab|v|ef〉tefij − P (ij) [I3]jj t

ab
ij

− P (ij)(1 − δmj) [I3]mj tab
im +

1

2
[I7]ijij t

ab
ij +

1

2
(1− δmiδnj) [I7]mn

ij tab
mn

+ P (ab) [I8]bb t
ab
ij + P (ab)(1 − δeb) [I8]be t

ae
ij + P (ij)P (ab) [I9]mb

ej t
ae
im

− P (ab) [I10]mb
ij tam + P (ij) [I11]ab

ej t
e
i . (7.39)
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and collecting all tab
ij -terms, yields

0 = 〈ab|v|ij〉 +
(

1

2
〈ab|v|ab〉 − P (ij) [I3]jj +

1

2
[I7]ijij + P (ab) [I8]bb

)
tab
ij

+
1

2
(1− δeaδfb)〈ab|v|ef〉tefij − P (ij)(1 − δmj) [I3]mj tab

im

+
1

2
(1− δmiδnj) [I7]mn

ij tab
mn + P (ab)(1 − δeb) [I8]be t

ae
ij

+ P (ij)P (ab) [I9]mb
ej t

ae
im − P (ab) [I10]mb

ij tam + P (ij) [I11]ab
ej t

e
i . (7.40)

By defining

dab
ij ≡ −

1

2
〈ab|v|ab〉+ P (ij) [I3]jj −

1

2
[I7]ijij − P (ab) [I8]bb , (7.41)

we obtain the following T̂2 amplitude equation,

dab
ij t

ab
ij = 〈ab|v|ij〉 + 1

2
(1− δeaδfb)〈ab|v|ef〉tefij − P (ij)(1 − δmj) [I3]mj tab

im

+
1

2
(1− δmiδnj) [I7]mn

ij tab
mn + P (ab)(1 − δeb) [I8]be t

ae
ij

+ P (ij)P (ab) [I9]mb
ej t

ae
im − P (ab) [I10]mb

ij tam + P (ij) [I11]ab
ej t

e
i . (7.42)

This equation is implemented in amp1::calc_t2(), which is shown below. We will in the
following also show the implementation of each term in Eq. (7.42).

void amp1::calc_t2(){

...

// calculate intermediates I6, I7, I8, I9, I10 and I11

calc_t2_intermediates();

...

// <ab|v|ij>

t2 = V->pphh;

// 0.5(1 - \delta_(ea)\delta_(fb))<ab|v|ef>t_(ij)^(ef)

calc_t2_term2(temp);

t2 = t2 + temp;

// - P(ij)(1 - \delta_(mj))[I3]_j^m t_(im)^(ab)

calc_t2_term3(temp);

t2 = t2 + temp;

// 0.5(1 - \delta_(mi)\delta_(nj))[I7]_(ij)^(mn)t_(mn)^(ab)

calc_t2_term4(temp);

t2 = t2 + temp;

// P(ab)(1 - \delta_(eb))[I8]_e^bt_(ij)^(ae)

calc_t2_term5(temp);

t2 = t2 + temp;

// P(ij)P(ab)[I9]_(ej)^(mb)t_(im)^(ae)

calc_t2_term6(temp);

t2 = t2 + temp;

// -P(ab)[I10]_(ij)^(mb)t_m^a

calc_t2_term7(temp);

t2 = t2 + temp;

// P(ij)[I11]_(ej)^(ab)t_i^e

calc_t2_term8(temp);

t2 = t2 + temp;

// calculating denominator d_(ij)^(ab)

calc_t2_d(temp);

// calculating final t2 amplitudes

t2 = t2/temp;

...

} // end t2_calc
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dab
ij ←

1

2
(1− δeaδfb)〈ab|v|ef〉tefij

void amp1::calc_t2_term2(Array<double,4> ans){

...

for(j=0; j<nh; j++){

for(i=0; i<nh; i++){

for(b=0; b<np; b++){

for(a=0; a<np; a++){

temp = 0.0;

for(f=0; f<np; f++){

for(e=0; e<np; e++){

if(a!=e || b!=f){

temp = temp + V->pppp(a,b,e,f)*t2_old(e,f,i,j);

}

}

}

ans(a,b,i,j) = 0.5*temp;

}

}

}

}

} // end calc_t2_term2

dab
ij ← −P (ij)(1 − δmj) [I3]mj tab

im

void amp1::calc_t2_term3(Array<double,4> ans){

...

for(j=0; j<nh; j++){

for(i=0; i<nh; i++){

for(b=0; b<np; b++){

for(a=0; a<np; a++){

temp = 0.0;

for(m=0; m<nh; m++){

temp1 = 0.0;

temp2 = 0.0;

if(j!=m){

temp1 = I3(m,j)*t2_old(a,b,i,m);

}

if(i!=m){

temp2 = I3(m,i)*t2_old(a,b,j,m);

}

temp = temp + (temp1 - temp2);

}

ans(a,b,i,j) = -temp;

}

}

}

}

} // end calc_t2_term3

dab
ij ←

1

2
(1− δmiδnj) [I7]mn

ij tab
mn

void amp1::calc_t2_term4(Array<double,4> ans){

...

for(j=0; j<nh; j++){

for(i=0; i<nh; i++){

for(b=0; b<np; b++){

for(a=0; a<np; a++){

temp = 0.0;

for(n=0; n<nh; n++){

for(m=0; m<nh; m++){
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if(i!=m || j!=n){

temp = temp + I7(m,n,i,j)*t2_old(a,b,m,n);

}

}

}

ans(a,b,i,j) = 0.5*temp;

}

}

}

}

} // end calc_t2_term4

dab
ij ← P (ab)(1 − δeb) [I8]be t

ae
ij

void amp1::calc_t2_term5(Array<double,4> ans){

...

for(j=0; j<nh; j++){

for(i=0; i<nh; i++){

for(b=0; b<np; b++){

for(a=0; a<np; a++){

temp = 0.0;

for(e=0; e<np; e++){

temp1 = 0.0;

temp2 = 0.0;

if(b!=e){

temp1 = I8(b,e)*t2_old(a,e,i,j);

}

if(a!=e){

temp2 = I8(a,e)*t2_old(b,e,i,j);

}

temp = temp + (temp1 - temp2);

}

ans(a,b,i,j) = temp;

}

}

}

}

} // end calc_t2_term5

dab
ij ← P (ij)P (ab) [I9]mb

ej t
ae
im

void amp1::calc_t2_term6(Array<double,4> ans){

...

for(j=0; j<nh; j++){

for(i=0; i<nh; i++){

for(b=0; b<np; b++){

for(a=0; a<np; a++){

temp = 0.0;

for(m=0; m<nh; m++){

for(e=0; e<np; e++){

temp = temp + ((I9(m,b,e,j)*t2_old(a,e,i,m) - I9(m,a,e,j)*t2_old(b,e,i,m)) -

(I9(m,b,e,i)*t2_old(a,e,j,m) - I9(m,a,e,i)*t2_old(b,e,j,m)));

}

}

ans(a,b,i,j) = temp;

}

}

}

}

} // end calc_t2_term6
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dab
ij ← −P (ab) [I10]mb

ij tam

void amp1::calc_t2_term7(Array<double,4> ans){

...

/*

* t1 used instead if t1_old for a quicker convergence

*/

for(j=0; j<nh; j++){

for(i=0; i<nh; i++){

for(b=0; b<np; b++){

for(a=0; a<np; a++){

temp = 0.0;

for(m=0; m<nh; m++){

temp = temp + (I10(m,b,i,j)*t1(a,m) - I10(m,a,i,j)*t1(b,m));

}

ans(a,b,i,j) = -temp;

}

}

}

}

} // end calc_t2_term7

dab
ij ← P (ij) [I11]ab

ej t
e
i

void amp1::calc_t2_term8(Array<double,4> ans){

...

/*

* t1 used instead if t1_old for a quicker convergence

*/

for(j=0; j<nh; j++){

for(i=0; i<nh; i++){

for(b=0; b<np; b++){

for(a=0; a<np; a++){

temp = 0.0;

for(e=0; e<np; e++){

temp = temp + (I11(a,b,e,j)*t1(e,i) - I11(a,b,e,i)*t1(e,j));

}

ans(a,b,i,j) = temp;

}

}

}

}

} // end calc_t2_term8

dab
ij ≡ P (ij) [I3]jj − P (ab) [I8]bb −

1

2
[I7]ijij −

1

2
〈ab|v|ab〉

void amp1::calc_t2_d(Array<double,4> ans){

...

for(j=0; j<nh; j++){

for(i=0; i<nh; i++){

for(b=0; b<np; b++){

for(a=0; a<np; a++){

ans(a,b,i,j) = I3(i,i) + I3(j,j) - I8(a,a) - I8(b,b) - 0.5*I7(i,j,i,j) -

0.5*V->pppp(a,b,a,b);

}

}

}

}

} // end calc_t2_d
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We will in the following show the the implementation of the intermediates.

[I1]ae = fa
e + 〈ef |v|am〉tfm

void amp1::calc_I1(){

...

I1 = F->f_pp;

for(e=0; e<np; e++){

for(a=0; a<np; a++){

for(m=0; m<nh; m++){

for(f=0; f<np; f++){

I1(a,e) = I1(a,e) + V->ppph(e,f,a,m)*t1(f,m);

}

}

}

}

} // end calc_I1

[I2]me = fm
e + 〈ef |v|mn〉tfn

void amp1::calc_I2(){

...

I2 = F->f_hp;

for(e=0; e<np; e++){

for(m=0; m<nh; m++){

for(n=0; n<nh; n++){

for(f=0; f<np; f++){

I2(m,e) = I2(m,e) + V->pphh(e,f,m,n)*t1(f,n);

}

}

}

}

} // end calc_I2

[I3]mi = fm
i − 〈ei|v|mn〉ten +

1

2
〈ef |v|mn〉tefin + [I2]me tei

void amp1::calc_I3(){

...

I3 = F->f_hh;

for(i=0; i<nh; i++){

for(m=0; m<nh; m++){

for(n=0; n<nh; n++){

for(e=0; e<np; e++){

I3(m,i) = I3(m,i) - V->phhh(e,i,m,n)*t1(e,n);

}

}

}

}

for(i=0; i<nh; i++){

for(m=0; m<nh; m++){

for(n=0; n<nh; n++){

for(f=0; f<np; f++){

for(e=0; e<np; e++){

I3(m,i) = I3(m,i) + 0.5*V->pphh(e,f,m,n)*t2(e,f,i,n);

}

}

}

}

}

for(i=0; i<nh; i++){

for(m=0; m<nh; m++){
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for(e=0; e<np; e++){

I3(m,i) = I3(m,i) + I2(m,e)*t1(e,i);

}

}

}

} // end calc_I3

[I4]mn
ie = [I5]mn

ie +
1

2
〈fe|v|mn〉tfi

void amp1::calc_I4(){

...

I4 = I5;

for(e=0; e<np; e++){

for(i=0; i<nh; i++){

for(n=0; n<nh; n++){

for(m=0; m<nh; m++){

for(f=0; f<np; f++){

I4(m,n,i,e) = I4(m,n,i,e) + 0.5 * V->pphh(f,e,m,n)*t1(f,i);

}

}

}

}

}

} // end calc_I4

[I5]mn
ie = −〈ei|v|mn〉 + 1

2
〈fe|v|mn〉tfi

void amp1::calc_I5(){

...

I5 = 0.0;

for(e=0; e<np; e++){

for(i=0; i<nh; i++){

for(n=0; n<nh; n++){

for(m=0; m<nh; m++){

I5(m,n,i,e) = -V->phhh(e, i, m, n);

for(f=0; f<np; f++){

I5(m,n,i,e) = I5(m,n,i,e) + 0.5 * V->pphh(f,e,m,n)*t1(f,i);

}

}

}

}

}

} // end calc_I5

[I6]mb
ej = −〈bm|v|ej〉 + 1

2
〈fe|v|bm〉tfj

void amp1::calc_I6(){

...

I6 = 0.0;

for(j=0; j<nh; j++){

for(e=0; e<np; e++){

for(m=0; m<nh; m++){

for(b=0; b<np; b++){

I6(m,b,e,j) = -V->phph(b,m,e,j);

}

}

}

}

for(m=0; m<nh; m++){
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for(b=0; b<np; b++){

for(e=0; e<np; e++){

for(j=0; j<nh; j++){

for(f=0; f<np; f++){

I6(m,b,e,j) = I6(m,b,e,j) + 0.5 * V->ppph(f,e,b,m)*t1(f,j);

}

}

}

}

}

} // end calc_I6

[I7]mn
ij = 〈mn|v|ij〉 + 1

2
〈ef |v|mn〉tefij + P (ij) [I5]mn

ie tej

void amp1::calc_I7(){

...

double temp = 0.0;

I7 = V->hhhh;

for(j=0; j<nh; j++){

for(i=0; i<nh; i++){

for(n=0; n<nh; n++){

for(m=0; m<nh; m++){

temp = 0.0;

for(f=0; f<np; f++){

for(e=0; e<np; e++){

temp = temp + V->pphh(e,f,m,n)*t2(e,f,i,j);

}

}

I7(m,n,i,j) = I7(m,n,i,j) + 0.5*temp;

}

}

}

}

for(j=0; j<nh; j++){

for(i=0; i<nh; i++){

for(n=0; n<nh; n++){

for(m=0; m<nh; m++){

temp = 0.0;

for(e=0; e<np; e++){

temp = temp + (I5(m,n,i,e)*t1(e,j) - I5(m,n,j,e)*t1(e,i));

}

I7(m,n,i,j) = I7(m,n,i,j) + temp;

}

}

}

}

} // end calc_I7

[I8]be = [I1]be −
1

2
〈mn|v|ef〉tbfmn − [I2]me tbm

void amp1::calc_I8(){

...

I8 = I1;

for(e=0; e<np; e++){

for(b=0; b<np; b++){

for(m=0; m<nh; m++){

for(n=0; n<nh; n++){

for(f=0; f<np; f++){

I8(b,e) = I8(b,e) - 0.5*V->pphh(e,f,m,n)*t2(b,f,m,n);

}

}
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}

}

}

for(e=0; e<np; e++){

for(b=0; b<np; b++){

for(m=0; m<nh; m++){

I8(b,e) = I8(b,e) - I2(m,e) * t1(b,m);

}

}

}

} // end calc_I8

[I9]mb
ej = [I6]mb

ej +
1

2
〈fe|v|bm〉tfj − [I4]nm

je tbn +
1

2
〈fe|v|nm〉tbfjn

void amp1::calc_I9(){

...

I9 = I6;

for(m=0; m<nh; m++){

for(b=0; b<np; b++){

for(e=0; e<np; e++){

for(j=0; j<nh; j++){

for(f=0; f<np; f++){

I9(m,b,e,j) = I9(m,b,e,j) + 0.5 * V->ppph(f,e,b,m)*t1(f,j);

}

}

}

}

}

for(m=0; m<nh; m++){

for(b=0; b<np; b++){

for(e=0; e<np; e++){

for(j=0; j<nh; j++){

for(n=0; n<nh; n++){

I9(m,b,e,j) = I9(m,b,e,j) - I4(n,m,j,e)*t1(b,n);

}

}

}

}

}

for(m=0; m<nh; m++){

for(b=0; b<np; b++){

for(e=0; e<np; e++){

for(j=0; j<nh; j++){

for(n=0; n<nh; n++){

for(f=0; f<np; f++){

I9(m,b,e,j) = I9(m,b,e,j) + 0.5*V->pphh(f,e,n,m)*t2(b,f,j,n);

}

}

}

}

}

}

} // end calc_I9

[I10]mb
ij = −〈bm|v|ij〉 − 1

2
〈ef |v|bm〉tefij + P (ij) [I6]mb

ej t
e
i −

1

2
[I7]mn

ij tbn

void amp1::calc_I10(){

...

double temp = 0.0;

I10 = 0.0;

for(j=0; j<nh; j++){
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for(i=0; i<nh; i++){

for(m=0; m<nh; m++){

for(b=0; b<np; b++){

I10(m,b,i,j) = -V->phhh(b,m,i,j);

}

}

}

}

for(j=0; j<nh; j++){

for(i=0; i<nh; i++){

for(b=0; b<np; b++){

for(m=0; m<nh; m++){

temp = 0.0;

for(f=0; f<np; f++){

for(e=0; e<np; e++){

temp = temp - V->ppph(e,f,b,m)*t2(e,f,i,j);

}

}

I10(m,b,i,j) = I10(m,b,i,j) + 0.5*temp;

}

}

}

}

for(j=0; j<nh; j++){

for(i=0; i<nh; i++){

for(b=0; b<np; b++){

for(m=0; m<nh; m++){

temp = 0.0;

for(e=0; e<np; e++){

temp = temp + (I6(m,b,e,j)*t1(e,i) - I6(m,b,e,i)*t1(e,j));

}

I10(m,b,i,j) = I10(m,b,i,j) + temp;

}

}

}

}

for(j=0; j<nh; j++){

for(i=0; i<nh; i++){

for(b=0; b<np; b++){

for(m=0; m<nh; m++){

temp = 0.0;

for(n=0; n<nh; n++){

temp = temp + I7(m,n,i,j)*t1(b,n);

}

I10(m,b,i,j) = I10(m,b,i,j) - 0.5*temp;

}

}

}

}

} // end calc_I10

[I11]ab
ej = 〈ab|v|ej〉 + 1

2
〈ab|v|ef〉tfj .

void amp1::calc_I11(){

...

double temp = 0.0;

I11 = V->ppph;

for(j=0; j<nh; j++){

for(e=0; e<np; e++){

for(b=0; b<np; b++){

for(a=0; a<np; a++){

temp = 0.0;

for(f=0; f<np; f++){
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temp = temp + V->pppp(a,b,e,f)*t1(f,j);

}

I11(a,b,e,j) = I11(a,b,e,j) + 0.5*temp;

}

}

}

}

} // end calc_I11
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Numerical Results and Analysis

8.1 Standard interaction

In this section we present the Hartree-Fock (HF) and Coupled-Cluster Singles and Doubles
(CCSD) results for a 2-dimensional parabolic quantum dot. The model Hamiltonian reads

Ĥ = − ~
2

2m∗

N∑

i=1

∇2
i +

1

2
m∗ω2

N∑

i=1

r2i +
e2

4πǫ0ǫr

N∑

i=1<j

1

rij
, (8.1)

see Section 4.4 for a discussion. In Section 4.5 we scaled the Hamiltonian into the following
dimensionless form,

Ĥ ′ = −ω
′

2

N∑

i=1

∇′2
i +

1

2
ω′

N∑

i=1

r′2i +
√
ω′

N∑

i=1<j

1

r′ij
, (8.2)

where

ω′ =
~κ2

m∗
ω (8.3)

κ =
4πǫ0ǫr~

e2
(8.4)

r′i = l0ri (8.5)

r′ij = l0rij (8.6)

∇′2
i =

1

l20
∇2

i (8.7)

l0 =
~κ

m∗
. (8.8)

We refer to Section 4.5 for a full derivation. Length is now measured in units of l0, ω′ in units
of ωk and energy in units of effective Hartrees E∗

H , defined as

E∗
H ≡

m∗

κ2
. (8.9)

We observe from Eq. (8.2) that the frequency constitutes an important parameter in the system.
A change in the frequency will influence all parts that contribute to the total energy, and thus
change the energy spectrum. Qualitatively, this is what we expect. For example, when ω
increases, the harmonic oscillator potential pushes the electrons closer together. This would
obviously affect the contributions from both the electron-electron repulsion, and the kinetic
energy. From an experimental point of view, the frequency is a controllable quantity. It
is therefore interesting to analyze numerical calculations for different frequencies in order to
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gain important information about the system, such as the correlation energy. In addition, the
reliability of numerical methods can be studied by such an analysis.

All numerical calculations have been done with the dimensionless Hamiltonian in Eq. (8.2),
and the results are presented in this scaling. Therefore, we will from now on drop the
prime-subscript. In this section we present the HF and CCSD results obtained with standard
interaction, which we define as the Coulomb interaction. The interaction between two electrons
is obviously given by the Coulomb interaction. However, the reason that we define the Coulomb
interaction as the standard interaction is that we later introduce an effective interaction in order
to improve our results. We will present the basic ideas of effective interaction theory in Section
8.2. We will in this section only consider the results obtained with standard interaction.

Both HF and CCSD require a single-particle basis set, and we have in these calculations
chosen the eigenfunctions of

(
−ω

2

N∑

i=1

∇2
i +

1

2
ω

N∑

i=1

r2i

)
ψα(r) = εαψα(r) (8.10)

as basis functions, where α denotes a set of three quantum numbers (n,m,ms). We identify this
equation as the time-independent Schrödinger equation for the single-electron parabolic quantum
(see Section 4.3), in our dimensionless scaling. Multiplying the Hamiltonian in Eq. (8.10) by E∗

H

yields back the expression in Eq. (4.28). Furthermore, the total wavefunction ψα(r) is given as
(see Section 2.2.3)

ψα(r) = φnm(x, y)⊗ |χms〉, (8.11)

where φnm(x, y) is the spatial part, and |χms〉 is the spin part. The quantum number ms is
associated with the z-projection of the spin, and is given as

ms = ±1

2
, (8.12)

with corresponding eigenvectors
∣∣∣∣
1

2

〉
≡ |+〉 (8.13)

∣∣∣∣−
1

2

〉
≡ |−〉, (8.14)

which are often referred to as spin up and spin down, respectively, see Section (2.2.2). The
spatial part of the wavefunction satisfies

(
−ω

2

N∑

i=1

∇2
i +

1

2
ω

N∑

i=1

r2i

)
φnm(x, y) = εnmφnm(x, y), (8.15)

where n and m are quantum numbers, and εnm is the energy eigenvalue. Since the Hamiltonian
in Eq. (8.15) is “linear” in ω, the eigenfunctions do not depend on the frequency. However, the
energy eigenvalue εnm depends on ω, and is given as (see Eq. 4.65)

εnm = (1 + 2n+ |m|)ω. (8.16)

The eigenfunctions of Eq. (8.15) is given in Eq. (4.57) with m∗ = ~ = 1. We will refer to the
total wavefunctions in Eq. (8.11) as harmonic oscillator functions.

Since ĥ is the single-electron Hamiltonian in Eq. (8.15), our choice of basis leads to a diagonal
single-particle matrix,

〈α|h|β〉 = δαβεα, (8.17)
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where α = (n,m,ms) and εα = εnm. As pointed out in the previous chapter, both the HF
and the CCSD program (see Chapter 7) reads 〈α|h|β〉 and 〈αβ|v|γδ〉 from file. The required
file structure is shown in Sections (7.1) and (7.2). We established the mapping α → (n,m,ms)
shown in Table 8.1. Table 8.2 shows the shell structure in the α-labelling of harmonic oscillator
functions. Furthermore, in order to calculate the antisymmetrized interaction elements

〈αβ|v|γδ〉, (8.18)

where v is the Coulomb interaction (standard interaction), we have used the analytical
expressions derived in [68].

α n m s α n m s α n m s α n m s α n m s α n m s
0 0 0 -1 20 0 -4 -1 40 2 1 -1 60 1 -5 -1 80 2 -4 -1 100 2 5 -1
1 0 0 1 21 0 -4 1 41 2 1 1 61 1 -5 1 81 2 -4 1 101 2 5 1
2 0 -1 -1 22 0 4 -1 42 0 -6 -1 62 1 5 -1 82 2 4 -1 102 3 -3 -1
3 0 -1 1 23 0 4 1 43 0 -6 1 63 1 5 1 83 2 4 1 103 3 -3 1
4 0 1 -1 24 1 -2 -1 44 0 6 -1 64 2 -3 -1 84 3 -2 -1 104 3 3 -1
5 0 1 1 25 1 -2 1 45 0 6 1 65 2 -3 1 85 3 -2 1 105 3 3 1
6 0 -2 -1 26 1 2 -1 46 1 -4 -1 66 2 3 -1 86 3 2 -1 106 4 -1 -1
7 0 -2 1 27 1 2 1 47 1 -4 1 67 2 3 1 87 3 2 1 107 4 -1 1
8 0 2 -1 28 2 0 -1 48 1 4 -1 68 3 -1 -1 88 4 0 -1 108 4 1 -1
9 0 2 1 29 2 0 1 49 1 4 1 69 3 -1 1 89 4 0 1 109 4 1 1
10 1 0 -1 30 0 -5 -1 50 2 -2 -1 70 3 1 -1 90 0 -9 -1
11 1 0 1 31 0 -5 1 51 2 -2 1 71 3 1 1 91 0 -9 1
12 0 -3 -1 32 0 5 -1 52 2 2 -1 72 0 -8 -1 92 0 9 -1
13 0 -3 1 33 0 5 1 53 2 2 1 73 0 -8 1 93 0 9 1
14 0 3 -1 34 1 -3 -1 54 3 0 -1 74 0 8 -1 94 1 -7 -1
15 0 3 1 35 1 -3 1 55 3 0 1 75 0 8 1 95 1 -7 1
16 1 -1 -1 36 1 3 -1 56 0 -7 -1 76 1 -6 -1 96 1 7 -1
17 1 -1 1 37 1 3 1 57 0 -7 1 77 1 -6 1 97 1 7 1
18 1 1 -1 38 2 -1 -1 58 0 7 -1 78 1 6 -1 98 2 -5 -1
19 1 1 1 39 2 -1 1 59 0 7 1 79 1 6 1 99 2 -5 1

Table 8.1: Mapping scheme for harmonic oscillator functions. The functions are given by three quantum
numbers: n, m and ms. The first two quantum numbers, n and m, emerge when solving Eq. (8.15). See
Section 4.3. The allowed values are n = 0, 2, 3, ... and m = 0,±1,±2,±3, ... The third quantum number,
ms, is associated with the z-projection of the spin, with allowed values ms = ±1/2 (spin up/down). We
have in our implementation chosen to represent ms = 1/2 with 1, and ms = −1/2 with −1.

R |α〉
1 0-1
2 2-5
3 6-11
4 12-19
5 20-29
6 30-41
7 42-55
8 56-71
9 72-89
10 90-109

Table 8.2: Shell structure of the parabolic quantum dot in 2 dimensions. The shell number is denoted
by R, and the harmonic oscillator functions are denoted by |α〉. The mapping scheme α → (n,m, s) is
given in Table 8.1.

8.1.1 Tables of Numerical Results

The HF and CCSD results with standard interaction are tabulated in Tables 8.5-8.9. We have
done calculations for 2, 6, 12 and 20 electrons, and oscillator frequencies ranging from 0.4 up to
50. Table 8.4 shows for which values of N (number of electrons) and ω (frequency) the CCSD
energy converges within the iteration procedure, see Section 7.2.4. All calculations with standard
interaction have been done with the direct product (DP) model space

PDP ⊂ HAS
N , (8.19)
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α εα α εα α εα α εα α εα α εα

0 1 20 5 40 6 60 8 80 9 100 10
1 1 21 5 41 6 61 8 81 9 101 10
2 2 22 5 42 7 62 8 82 9 102 10
3 2 23 5 43 7 63 8 83 9 103 10
4 2 24 5 44 7 64 8 84 9 104 10
5 2 25 5 45 7 65 8 85 9 105 10
6 3 26 5 46 7 66 8 86 9 106 10
7 3 27 5 47 7 67 8 87 9 107 10
8 3 28 5 48 7 68 8 88 9 108 10
9 3 29 5 49 7 69 8 89 9 109 10
10 3 30 6 50 7 70 8 90 10
11 3 31 6 51 7 71 8 91 10
12 4 32 6 52 7 72 9 92 10
13 4 33 6 53 7 73 9 93 10
14 4 34 6 54 7 74 9 94 10
15 4 35 6 55 7 75 9 95 10
16 4 36 6 56 8 76 9 96 10
17 4 37 6 57 8 77 9 97 10
18 4 38 6 58 8 78 9 98 10
19 4 39 6 59 8 79 9 99 10

Table 8.3: Single-particle energies εα/ω = εnm/ω = (1 + |m| + 2n). The harmonic oscillator functions
are defined by α. The mapping between α and (n,m, s) is given in Table 8.1.

ω N = 2 N = 6 N = 12 N = 20

0.2 conv. not conv. not conv. not conv.
0.4 conv. conv. not conv. not conv.
0.5 conv. conv. not conv. not conv.
0.6 conv. conv. not conv. not conv.
0.8 conv. conv. not conv. not conv.
1.0 conv. conv. conv. not conv.
2.0 conv. conv. conv. conv.
3.0 conv. conv. conv. conv.
4.0 conv. conv. conv. conv.
5.0 conv. conv. conv. conv.
10.0 conv. conv. conv. conv.
20.0 conv. conv. conv. conv.
50.0 conv. conv. conv. conv.

Table 8.4: The table shows for which values of ω the HF (effective interaction) and CCSD energy
(standard interaction and effective interaction) converges within the iteration procedure. We have used
harmonic oscillator functions as basis functions. When the energy converges, it converges for all values
of Rb from Rf (Fermi shell) up to 10. When it does not converge, it does not converge for any value of
Rb.

where HAS
N is the N -electron Hilbert space. The basis of PDP is given as

BDP = BDP(Rb) =

{
|Φα1α2..αN

〉 : max
i
{εi} ≤ Rb

}
, (8.20)

where |Φα1α2..αN
〉 is a Slater determinant with harmonic oscillator functions as single-particle

orbitals, and εi is the single-particle energy given in Eq. (8.16). The direct product basis means
that there are no restrictions on which single-particle states (defined by αmax) that can be
occupied. When turning to the effective interaction in Section 8.2 we will also consider another
model space, called the energy cut (EC) model space. In this space we have restrictions on which
single-particle states that can be occupied. See Section 8.2 for details.

Tables 8.5-8.8 show the CCSD energies for different sizes of the model space, denoted by Rb.
The single-particle basis, which is used to construct the N -particle basis, is given as

B1 =
{
|α〉
}αmax

α=0
, (8.21)

where αmax is equal to 1, 5, 11, 19, 29, 41, 55, 71, 89 or 109. We have only used these values
of αmax since we are dealing with closed-shell systems (see Table 8.1). Stated differently, when
increasing the single-particle basis by the smallest amount means that we include all orbitals
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within the “next” shell. The size of the single-particle basis can therefore be characterized by the
number of shells in the basis, Rb. Moreover, Rb also defines the size of PDP (see Eq. 8.20).

Tables 8.5-8.8 present the CCSD energy with the standard interaction for Rb = Rf up to
Rb = 10, where Rf is the Fermi shell defined as the outermost shell that contains occupied
single-particle orbitals. Table 8.9 presents results for Rb = 10.
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N = 2 N = 6
ω Rb HF energy CCSD energy HF energy CCSD energy

0.4

1 1.592665 1.592665 - -
2 1.592665 1.494392 11.728488 11.728488
3 1.508042 1.392856 11.156151 11.005419
4 1.508042 1.386722 10.504554 10.208494
5 1.508024 1.383259 10.467626 10.064250
6 1.508024 1.381489 10.405715 9.987983
7 1.508015 1.380338 10.405292 9.977274
8 1.508015 1.379554 10.405222 9.970650
9 1.508011 1.378983 10.405195 9.966218
10 1.508011 1.378551 10.405166 9.963027

0.5

1 1.886227 1.886227 - -
2 1.886227 1.786914 13.640713 13.640713
3 1.799856 1.681633 13.051620 12.895476
4 1.799856 1.673874 12.357471 12.047565
5 1.799748 1.669500 12.325128 11.914166
6 1.799748 1.667259 12.271499 11.841655
7 1.799745 1.665801 12.271375 11.827869
8 1.799745 1.664808 12.271361 11.819437
9 1.799743 1.664085 12.271337 11.813819
10 1.799743 1.663537 12.271326 11.809788

0.6

1 2.170813 2.170813 - -
2 2.170813 2.070856 15.465426 15.465426
3 2.083158 1.962891 14.864332 14.703670
4 2.083158 1.953712 14.135156 13.814684
5 2.082926 1.948533 14.106585 13.690123
6 2.082926 1.945869 14.059885 13.621142
7 2.082926 1.944135 14.059867 13.604622
8 2.082926 1.942953 14.059716 13.594539
9 2.082924 1.942090 14.059698 13.587834
10 2.082924 1.941436 14.059697 13.583037

0.8

1 2.720998 2.720998 - -
2 2.720998 2.620341 18.929733 18.929733
3 2.631563 2.508827 18.312821 18.144988
4 2.631563 2.497304 17.528556 17.193050
5 2.631058 2.490771 17.505795 17.081893
6 2.631058 2.487386 17.469841 17.018754
7 2.631055 2.485175 17.469813 16.997854
8 2.631055 2.483665 17.469269 16.985003
9 2.631054 2.482560 17.469263 16.976408
10 2.631054 2.481724 17.469257 16.970279

1.0

1 3.253314 3.253314 - -
2 3.253314 3.152329 22.219813 22.219813
3 3.162691 3.038605 21.593198 21.419889
4 3.162691 3.025232 20.766919 20.421325
5 3.161921 3.017607 20.748402 20.319716
6 3.161921 3.013627 20.720257 20.260893
7 3.161909 3.011021 20.720132 20.236760
8 3.161909 3.009237 20.719248 20.221750
9 3.161909 3.007931 20.719248 20.211590
10 3.161909 3.006938 20.719217 20.204345

2.0

1 5.772454 5.772454 - -
2 5.772454 5.671234 37.281425 37.281425
3 5.679048 5.553152 36.637217 36.448558
4 5.679048 5.534274 35.689555 35.322283
5 5.677282 5.523274 35.681728 35.242971
6 5.677282 5.517386 35.672333 35.193258
7 5.677206 5.513491 35.671851 35.161115
8 5.677206 5.510801 35.670358 35.140124
9 5.677204 5.508822 35.670333 35.125055
10 5.677204 5.507311 35.670144 35.114198

Table 8.5: Hartree-Fock and Coupled-Cluster Singles and Doubles results for a parabolic quantum dot
with 2 and 6 electrons using standard interaction. We have used the DP space as model space (see
Eq. 8.20). The size of the space is denoted by Rb (shell number), and the oscillator frequency is given by
ω. Energy is measured in effective Hartrees E∗
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N = 2 N = 6
ω Rb HF energy CCSD energy HF energy CCSD energy

3.0

1 8.170804 8.170804 - -
2 8.170804 8.069761 51.165337 51.165337
3 8.076274 7.950410 50.517683 50.321752
4 8.076274 7.928709 49.508478 49.135135
5 8.073884 7.915891 49.504750 49.062885
6 8.073884 7.908930 49.501573 49.014446
7 8.073751 7.904296 49.501011 48.979127
8 8.073751 7.901081 49.499580 48.955363
9 8.073744 7.898706 49.499520 48.937698
10 8.073744 7.896889 49.499237 48.924839

4.0

1 10.506628 10.506628 - -
2 10.506628 10.405775 64.439626 64.439626
3 10.411470 10.285895 63.791597 63.591329
4 10.411470 10.262419 62.743808 62.368661
5 10.408646 10.248423 62.742006 62.298906
6 10.408646 10.240751 62.741163 62.249606
7 10.408469 10.235621 62.740611 62.212557
8 10.408469 10.232050 62.739357 62.187127
9 10.408456 10.229405 62.739276 62.167826
10 10.408456 10.227378 62.738940 62.153663

5.0

1 12.802496 12.802496 - -
2 12.802496 12.701808 77.324332 77.324332
3 12.706930 12.581669 76.676854 76.473661
4 12.706930 12.556949 75.602124 75.226743
5 12.703782 12.542112 75.601300 75.157693
6 12.703782 12.533923 75.601221 75.106872
7 12.703567 12.528429 75.600706 75.068703
8 12.703567 12.524595 75.599630 75.042121
9 12.703550 12.521751 75.599534 75.021677
10 12.703550 12.519568 75.599173 75.006580

10.0

1 23.963327 23.963327 - -
2 23.963327 23.863173 138.642441 138.642441
3 23.866830 23.742766 137.999396 137.789201
4 23.866830 23.714877 136.856842 136.485196
5 23.862773 23.697829 136.856753 136.413343
6 23.862773 23.688243 136.854607 136.354504
7 23.862443 23.681757 136.854284 136.313637
8 23.862443 23.677199 2136.853782 136.284071
9 23.862411 23.673802 136.853661 136.260729
10 23.862411 23.671183 136.853287 136.243183

20.0

1 45.604991 45.604991 - -
2 45.604991 45.505319 254.648664 254.648664
3 45.507912 45.385045 254.011527 253.796720
4 45.507912 45.354878 252.821683 252.457058
5 45.503120 45.336174 252.820088 252.378355
6 45.503120 45.325508 252.811954 252.309241
7 45.502684 45.318241 252.811811 252.266330
8 45.502684 45.313105 252.811687 252.234390
9 45.502636 45.309263 252.811568 252.208972
10 45.502636 45.306293 252.811247 252.189591

50.0

1 108.862269 108.862269 - -
2 108.862269 108.763094 586.407125 586.407125
3 108.764735 108.643160 585.777168 585.558594
4 108.764735 108.610971 584.547339 584.192313
5 108.759222 108.590750 584.542520 584.103507
6 108.759222 108.579064 584.524974 584.021400
7 108.758672 108.571049 584.524954 583.976331
8 108.758672 108.565356 584.524950 583.941913
9 108.758604 108.561080 584.524852 583.914635
10 108.758604 108.557765 584.524623 583.893560

Table 8.6: Hartree-Fock and Coupled-Cluster Singles and Doubles results for a parabolic quantum dot
with 2 and 6 electrons using standard interaction. We have used the DP space as model space (see
Eq. 8.20). The size of the space is denoted by Rb (shell number), and the oscillator frequency is given by
ω. Energy is measured in effective Hartrees E∗
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N = 12 N = 20
ω Rb HF energy CCSD energy HF energy CCSD energy

1.0

1 - - - -
2 - - - -
3 73.765549 73.765549 - -
4 70.673849 70.297531 177.963297 177.963297
5 67.569930 66.989912 168.426371 x
6 67.296869 66.452006 161.339721 x
7 66.934745 65.971686 159.958722 x
8 66.923094 65.889324 158.400172 x
9 66.912244 65.838932 158.226030 x
10 66.912035 65.806539 158.017667 x

2.0

1 - - - -
2 - - - -
3 120.722260 120.722260 - -
4 117.339642 116.978642 286.825295 286.825295
5 113.660396 113.020282 276.898196 275.845577
6 113.484866 112.613571 267.269712 266.325997
7 113.247601 112.264166 266.213200 264.830000
8 113.246579 112.189996 264.933622 263.325189
9 113.246303 112.135551 264.874009 263.089951
10 113.245854 112.094025 264.809954 262.928937

3.0

1 - - - -
2 - - - -
3 163.268256 163.268256 - -
4 159.769062 159.414625 384.318425 384.318425
5 155.762811 155.097118 373.776094 373.229501
6 155.639179 154.762454 363.162287 362.175933
7 155.475049 154.487959 362.323215 360.924104
8 155.475049 154.408521 361.277490 359.652011
9 155.474144 154.348106 361.254334 359.469820
10 155.473848 154.302641 361.233837 359.337510

4.0

1 - - - -
2 - - - -
3 203.531098 203.531098 - -
4 199.971455 199.619694 475.926595 475.926595
5 195.745462 195.066235 465.021258 464.483436
6 195.653702 194.776202 453.717528 452.706359
7 195.535485 194.547735 453.029759 451.624943
8 195.535177 194.463255 452.163171 450.533964
9 195.532936 194.398503 452.154007 450.370119
10 195.532772 194.350424 452.148052 450.245879

5.0

1 - - - -
2 - - - -
3 242.334879 242.334879 - -
4 238.739591 238.388819 x563.773952 563.773952
5 234.352741 233.665684 552.630093 552.098704
6 234.282331 233.405545 540.804720 539.777215
7 234.194820 233.207198 540.227793 538.821500
8 234.194059 233.118844 539.499326 537.871223
9 234.190797 233.051061 539.495941 537.713326
10 234.190714 233.000991 539.494612 537.589832

Table 8.7: Hartree-Fock and Coupled-Cluster Singles and Doubles results for a parabolic quantum dot
with 12 and 20 electrons using standard interaction. We have used the DP space as model space (see
Eq. 8.20). The size of the space is denoted by Rb (shell number), and the oscillator frequency is given
by ω. The CCSD energy does not converge within the iteration procedure (see Section 7.2.4) for certain
values of Rb, denoted by “x”. Energy is measured in effective Hartrees E∗
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N = 12 N = 20
ω Rb HF energy CCSD energy HF energy CCSD energy

10.0

1 - - - -
2 - - - -
3 424.723373 424.723373 - -
4 421.066552 420.714412 973.032700 973.032700
5 416.245656 415.548025 961.371081 960.853435
6 416.221892 415.352162 948.057077 946.995097
7 416.198611 415.213229 947.765474 946.367418
8 416.196677 415.115445 947.410305 945.798531
9 416.191836 415.040983 947.409440 945.634643
10 416.191833 414.985087 947.404930 945.499122

20.0

1 - - - -
2 - - - -
3 764.669757 764.669757 - -
4 760.999568 760.642727 1727.547904 1727.547904
5 755.851177 755.158770 1715.636447 1715.121677
6 755.847874 754.988910 1701.112340 1700.040683
7 755.846430 754.864771 1701.000555 1699.622516
8 755.844396 754.761753 1700.881357 1699.291198
9 755.840282 754.683971 1700.876899 1699.113200
10 755.840196 754.623201 1700.866177 1698.965611

50.0

1 - - - -
2 - - - -
3 1723.611301 1723.611301 - -
4 1719.954910 1719.591333 3834.126475 3834.126475
5 1714.516506 1713.842082 3822.122324 3821.601747
6 1714.514709 1713.670423 3806.466383 3805.411147
7 1714.502278 1713.526638 3806.454602 3805.108329
8 1714.500976 1713.420167 3806.448065 3804.882880
9 1714.498844 1713.340085 3806.442304 3804.694261
10 1714.498639 1713.274652 3806.431632 3804.541353

Table 8.8: Hartree-Fock and Coupled-Cluster Singles and Doubles results for a parabolic quantum dot
with 12 and 20 electrons using standard interaction. We have used the DP space as model space (see
Eq. 8.20). The size of the space is denoted by Rb (shell number), and the oscillator frequency is given by
ω. Energy is measured in effective Hartrees E∗

H .
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N ω 〈Φ0| bH0|Φ0〉 EHF ECCSD ECCSD-EHF 〈Φ0| bH|Φ0〉 〈Φ0| bHN
bT1|Φ0〉 〈Φ0| bHN

bT 2
1 |Φ0〉 〈Φ0| bHN

bT2|Φ0〉 〈Φ0| bHN

“
bT1 + bT 2

1 + bT2

”
|Φ0〉

2

0.4 0.8 1.508011 1.378551 -0.129460 1.592665 -0.086879 0.007582 -0.134818 -0.214114
0.5 1.0 1.799743 1.663537 -0.136206 1.886227 -0.088901 0.007137 -0.140926 -0.222690
0.6 1.2 2.082924 1.941436 -0.141488 2.170813 -0.090443 0.006770 -0.145703 -0.229377
0.8 1.6 2.631054 2.481724 -0.149330 2.720998 -0.092663 0.006190 -0.152801 -0.239274
1.0 2.0 3.161909 3.006938 -0.154971 3.253314 -0.094206 0.005745 -0.157915 -0.246376
2.0 4.0 5.677204 5.507311 -0.169893 5.772454 -0.098061 0.004447 -0.171530 -0.265143
3.0 6.0 8.073744 7.896889 -0.176855 8.170804 -0.099735 0.003774 -0.177955 -0.273915
4.0 8.0 10.408456 10.227378 -0.181078 10.506628 -0.100707 0.003343 -0.181885 -0.279250
5.0 10.0 12.703550 12.519568 -0.183982 12.802496 -0.101356 0.003035 -0.184606 -0.282928
10.0 20.0 23.862411 23.671183 -0.191228 23.963327 -0.102895 0.002223 -0.191471 -0.292144
20.0 40.0 45.502636 45.306293 -0.196343 45.604991 -0.103907 0.001609 -0.196400 -0.298698
50.0 100.0 108.758604 108.557765 -0.200839 108.862269 -0.104739 0.001037 -0.200803 -0.304504

6

0.4 4.0 10.405166 9.963027 -0.442139 11.728488 -1.576346 0.257724 -0.446838 -1.765461
0.5 5.0 12.271326 11.809788 -0.461538 13.640713 -1.609268 0.244324 -0.465980 -1.830924
0.6 6.0 14.059697 13.583037 -0.476660 15.465426 -1.634956 0.233265 -0.480698 -1.882389
0.8 8.0 17.469257 16.970279 -0.498978 18.929733 -1.673066 0.215745 -0.502134 -1.959454
1.0 10.0 20.719217 20.204345 -0.514872 22.219813 -1.700464 0.202215 -0.517218 -2.015468
2.0 20.0 35.670144 35.114198 -0.555946 37.281425 -1.773149 0.161679 -0.555757 -2.167227
3.0 30.0 49.499237 48.924839 -0.574398 51.165337 -1.807268 0.139802 -0.573032 -2.240498
4.0 40.0 62.738940 62.153663 -0.585277 64.439626 -1.828063 0.125380 -0.583281 -2.285963
5.0 50.0 75.599173 75.006580 -0.592593 77.324332 -1.842415 0.114887 -0.590225 -2.317752
10.0 100.0 136.853287 136.243183 -0.610104 138.642441 -1.878444 0.086342 -0.607156 -2.399258
20.0 200.0 252.811247 252.189591 -0.621656 254.648664 -1.904107 0.063785 -0.618751 -2.459073
50.0 500.0 584.524623 583.893560 -0.631063 586.407125 -1.926850 0.041953 -0.628673 -2.513565

12

1.0 28.0 66.912035 65.806539 -1.105496 73.765549 -8.083917 1.180485 -1.055578 -7.959010
2.0 56.0 113.245854 112.094025 -1.151829 120.722260 -8.483021 0.966841 -1.112054 -8.628235
3.0 84.0 155.473848 154.302641 -1.171207 163.268256 -8.675835 0.846680 -1.136461 -8.965615
4.0 112.0 195.532772 194.350424 -1.182348 203.531098 -8.795704 0.765705 -1.150674 -9.180674
5.0 140.0 234.190714 233.000991 -1.189723 242.334879 -8.879606 0.705903 -1.160184 -9.333888
10.0 280.0 416.191833 414.985087 -1.206746 424.723373 -9.094802 0.539378 -1.182862 -9.738286
20.0 560.0 755.840196 754.623201 -1.216995 764.669757 -9.252451 0.403719 -1.197825 -10.046556
50.0 1400.0 1714.498639 1713.274652 -1.223987 1723.611301 -9.395486 0.268914 -1.210076 -10.336649

20

2.0 120.0 264.809954 262.928937 -1.881017 286.825295 -25.409371 3.303809 -1.790796 -23.896357
3.0 180.0 361.233837 359.337510 -1.896327 384.318425 -26.104762 2.931583 -1.807734 -24.980915
4.0 240.0 452.148052 450.245879 -1.902173 475.926595 -26.535690 2.672422 -1.817447 -25.680716
5.0 300.0 539.494612 537.589832 -1.904780 563.773952 -26.837784 2.477431 -1.823767 -26.184120
10.0 600.0 947.404930 945.499122 -1.905808 973.032700 -27.616252 1.920436 -1.837762 -27.533578
20.0 1200.0 1700.866177 1698.965611 -1.900566 1727.547904 -28.189744 1.453073 -1.845622 -28.582293
50.0 3000.0 3806.431632 3804.541353 -1.890279 3834.126475 -28.712212 0.977796 -1.850706 -29.585122

Table 8.9: Energy results for a parabolic quantum dot with 2, 6, 12 and 20 electrons in 2 dimensions. The results are obtained with standard interaction and the
DP space as model space (see Eq. 8.20). For each oscillator frequency ω, the following are tabulated: Non-interacting ground state energy 〈Φ0|Ĥ0|Φ0〉, Hartree-Fock

energy EHF, Coupled-Cluster Singles and Doubles energy ECCSD, difference between CCSD and HF energy (ECCSD-EHF), reference expectation energy 〈Φ0|Ĥ |Φ0〉,
and the three contributions to the correlation energy 〈Φ0|ĤN (T̂1 + T̂ 2

1 + T̂2)|Φ0〉 in Eq. (6.115). All calculations are done with Rb = 10. Energy is measured in
effective Hartrees E∗
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8.1. Standard interaction

8.1.2 General Analysis and Discussion

Consider the HF results for the 2-electron quantum dot (N = 2) in Tables 8.5 and 8.6. We
observe that the HF energy does not change when the size of the basis increases from an odd to
an even number by 1 shell. This behavior occur for all oscillator frequencies. For example, for
ω = 1.0, the HF energy remains 3.253314 when the basis is increased from Rb = 1 to Rb = 2.
This can be understood by the following argument. The HF ansatz for N = 2 reads

ΦHF(r1, r2) =

(
ϕa(r1) ϕa(r2)
ϕb(r1) ϕb(r2)

)
, (8.22)

where

ϕa(r) =

αmax∑

i=1

Caαψ(r) (8.23)

is a so-called HF orbital, and {ψ(r)}αmax

i=1 is the single-particle basis of harmonic oscillator
functions, see Chapter 5 for a presentation of the HF method. Since each HF orbital is written
as a linear combination of harmonic oscillator functions, the HF wavefunction in Eq. (8.22) is a
linear combination of 2× 2 determinants. Since the HF ansatz (see Eq. 5.1) only includes one-
particle one-hole (1p1h) excited determinants [56], i.e. determinants where only one particle is
excited from a hole state i, to a particle state a. Therefore, in the 2-electron case, 2p2h excitations
are not included in the HF wavefunction. In the general N -electron case, all excitations beyond
1p1h are excluded, i.e. 2p2p, 3p3h, and so forth up to NpNh. Turning back to the 2-electron
case, when Rb = 1, we have that Rb = Rf . This means that

ΦHF (r1, r2) = Φ0(r1, r2), (8.24)

where Φ0(r1, r2) is the non-interacting ground state, and

EHF = Eref = 〈Φ0|Ĥ|Φ0〉 = 3.253314, (8.25)

where EHF is the HF energy, and Eref is the non-interacting ground state energy. When we
increase our basis to Rb = 2, we open for the possibility to include 1p1h excitations in the HF
wavefunction. The non-interacting ground state of the 2-electron systems reads

Φ0(r1, r2) =

(
ψ0(r1) ψ0(r2)
ψ1(r1) ψ1(r2)

)
, (8.26)

where the harmonic oscillator functions are given in Table 8.1. In the bra-ket notation, the
following two states are occupied (hole states),

|0〉 = |0, 0,−1〉 (8.27)

|1〉 = |0, 0, 1〉, (8.28)

where |α〉 = |n,m,ms〉. When Rb = 2, we include

|2〉 = |0,−1,−1〉 (8.29)

|3〉 = |0,−1, 1〉 (8.30)

|4〉 = |0, 1,−1〉 (8.31)

|5〉 = |0, 1, 1〉, (8.32)

in the basis. Since the Coulomb interaction is independent of the angular momentum and the
spin, the total angular momentum

M ≡ mα +mβ, (8.33)
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and total spin

Ms ≡ msα +msβ
, (8.34)

must be conserved. For example, assume the electrons are in the non-interacting ground state in
Eq. (8.26). The occupied states are given in Eqs. (8.27) and (8.28), with total angular momentum
M = 0 and total spin S = 0. We propose the 1p1h excitation

(
ψ0(r1) ψ0(r2)
ψ2(r1) ψ2(r2)

)
, (8.35)

i.e. an electron excited into state |2〉, with m = −1 and ms = −1. The total angular momentum
and spin is −1 and −2, respectively. Hence this is not an allowed excitation. All 1p1h excitations
that do not conserve M and S, are not allowed. When Rb = 2, we cannot construct any 1p1h
excited determinant that has M = 0 and Ms = 0. This is clearly seen in Eqs. (8.29), (8.30),
(8.31) and (8.32). No more correlations are therefore included when we increase the basis from
Rb = 1 to Rb = 2, and the energy remains the same. In all the other cases, when Rb increases
from 3 to 4, 5 to 6, and so forth, no “new” 1p1h excitations are allowed, and the energies thus
remain constant. For systems containing 6, 12 and 20 electrons, we observe from Tables 8.5-8.6
that the HF energies are different for all Rb. Thus by increasing Rb we include “new” allowed
1p1h correlations.

The HF method is variational, i.e. the HF energy overestimates the exact ground state energy.
By looking at Tables 8.5-8.8, we conclude that increasing Rb yields a better energy, viz.

E0 < EHF(Rb + 1) ≤ EHF(Rb), (8.36)

with equality for certain values of Rb in the 2-electron system. This is what we expect. For
the 2-electron system, we observe that the HF energy converges rapidly for all frequencies. We
have in Figure 8.1 and 8.2 plotted the HF energy as function of Rb. The energy changes only
by approximately 10−5 when Rb increases from 8 to 10. For systems containing 6, 12 and 20
electrons, the HF energy also converges relatively rapidly. When Rb increases from 9 to 10, the
energy changes approximately 10−3 − 10−5. The HF results for Rb = 10 are therefore good
estimates of the HF limits, i.e.

lim
Rb→∞

EHF(Rb), (8.37)

We conclude that the most important 1p1h excitations are included when Rb = 10. When the
system contains 2 electrons, the most important correlations are 1p1h excitations into shell 3.
These are included when Rb = 3. When ω = 0.4,

EHF(Rb = 10) − EHF(Rb = 3) ≈ −3 · 10−5, (8.38)

and when ω = 50.0,

EHF(Rb = 10) − EHF(Rb = 3) ≈ −6 · 10−3. (8.39)

For systems containing 6, 12 and 20 electrons, 1p1h excitations in higher shells yield considerably
contributions. For a system containing N electrons, we observe that we have relatively good
energy estimates when

Rb = Rf + 4, (8.40)

relative to the HF energies for Rb = 10, where Rf is the Fermi shell.
Consider the CCSD results in Tables 8.5-8.8. We observe that

ECCSD(Rb) ≤ EHF(Rb), (8.41)
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for all frequencies. We obtain equality when Rb = Rf . The CCSD method is not variational.
Thus we cannot, in principle, conclude with certainty whether HF or CCSD yields the best
energy estimate. By this we mean the energy that is closest to the exact value. In order to
decide the best estimate, results from other variational methods, such as Full Configuration
Interaction (FCI) [30], Variational Monte Carlo (VMC) [18] or Diffusion Monte Carlo (DMC)
[18], are needed. That said, the CCSD energies are more likely better estimates. Since CCSD
includes more correlations than HF, we should obtain a much better energy. We now choose
to anticipate the course of events. For the 2-electron system, the CCSD results with effective
interaction yields exact energies (see Section 8.2). We observe that the results with standard
interaction are always higher than the exact energies, i.e.

Estd
CCSD(Rb) > E0 = Eeff

CCSD(Rb), (8.42)

where “std” denotes standard interaction, and “eff” denotes effective interaction. We conclude
that with standard interaction, the CCSD energies are better estimates than the HF energies.
This is what we expect. For systems containing 6, 12 and 20 electrons, however, the exact ground
state energies are unknown. Since CCSD yields better results than HF in the 2-electron case, it
is probable that it also yields better estimates for lager systems. We emphasize that, in principle,
we cannot say anything with certainty before comparing with other variational methods. Table
8.30 shows results from other many-body methods. We will discuss these results in more detail
later. Comparing with the CCSD results, we conclude that for ω = 1.0 and N = 6, 12 and
20, the CCSD energies are better estimates than the HF energies. This is what we expect since
CCSD includes excitations from 1p1h up to NpNh. Excitations beyond 2p2h are obtained with
combinations of T̂1 and T̂2. For example, 3p3h excitations are obtained by

T̂1T̂2|Φ0〉, (8.43)

where |Φ0〉 is the reference determinant. Therefore, since CCSD includes much more correlations
than HF, the results should be better. Since CCSD yields better results in the 2-electron case
(all frequencies) and for larger systems (6, 12 and 20 electrons) with ω = 1.0, it is reasonable to
believe that the CCSD energies are better estimates than HF for all frequencies (ω = 0.4− 50.0)
and electron number (N = 2, 6, 12 and 20).

Consider the 2-electron system. We observe that the energy changes for every value of
Rb, in contrast to the HF energy. This is a direct consequence of 2p2h excitations. As we
discussed earlier, when Rb = 2, 1p1h excitations are not allowed. However, there exist two 2p2h
excitations that conserve total angular momentum M and spin Ms. We see from Table 8.1 that
the determinants

(
ψ3(r1) ψ3(r2)
ψ4(r1) ψ4(r2)

)
, (8.44)

and
(
ψ3(r1) ψ3(r2)
ψ4(r1) ψ4(r2)

)
, (8.45)

have M = 0 and Ms = 0. Since the reference state in Eq. (8.26) has M = 0 and Ms = 0,
these 2p2h excitations are allowed. Thus the energy changes when we increase Rb from 1 to 2.
In general, increasing Rb will always yield “new” allowed excitations. Furthermore, we observe
that CCSD with ω = 0.4 − 5.0 and Rb = 2 gives a better energy than HF with Rb = 10. This
means that the allowed 2p2h excitations in Eqs. (8.44) and (8.45) are more important than 1p1h
excitations in shell 2 − 10. The HF energy is practically converged for all frequencies, meaning
that (at least for ω = 0.4 − 1.0) the 2p2h excitations in Eqs. (8.44) and (8.45) describe the
correlations in the system better than all 1p1h excitations beyond shell 2. For example, when
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ω = 1.0 and Rb = 2, the CCSD energy is 3.152329. The corresponding HF energy is 3.161909.
We have that

EHF(Rb = 10)− ECCSD(Rb = 2) ≈ 0.01, (8.46)

and

EHF(Rb = 8)− EHF(Rb = 10) < 10−6, (8.47)

supporting the statement above.
Figures 8.1 and 8.2 show the HF energy and CCSD energy as function of the size of the model

space (Rb) for 2, 6, 12 and 20 electrons. In addition, the relative error

∆E(Rb) ≡ E(Rb)− E(Rb = 10)

E(Rb = 10)
(8.48)

is plotted for the CCSD energy. We have chosen frequencies 0.4, 1.0 and 5.0 for the 2- and
6-electron system, 1.0 and 5.0 for the 12-electron system, and 2.0 and 5.0 for the 20-electron
system. First, consider the HF energy. For the 2-electron system we observe that the energy is
almost constant for Rb ≥ 3. For the 6-electron system, the energy is almost constant for Rb ≥ 4
when ω = 5.0. Decreasing the frequency to ω = 0.4 results in significant contributions from
shell 5 and 6. Turning to the 12-electron system with ω = 5.0, the most important excitations
are included when Rb = 5 − 6. When the frequency is 0.4, we have important contributions
from Rb = 6 and Rb = 7. For the 20-electron system, lowering the frequency from 5.0 to 2.0
makes the contributions from shells 6 and 7 more important. Thus in general, contributions
from higher-lying shells tend to be important for low frequencies. Furthermore, consider the
CCSD energy in Figure 8.1 and 8.2. For the 2-electron system, we clearly observe that when
Rb = 3, important correlations are included. These correlations are particularly important when
ω = 0.4. Increasing the frequency leads to important contributions from higher-lying shells.
When ω = 1.0, contributions from shells 4 and 5 are more important than for ω = 0.4. When
ω = 5.0, we also have important contributions from shells 6 and 7. Turning to the 6-electron
system, we observe that the correlations included when Rb = 4 are particularly important. When
ω = 0.4, important contributions are also present in shells 5 and 6. Increasing the frequency
(1.0 and 5.0) leads to a slower convergence. For the 12-electron system, the correlations that
are included when Rb = 5, are important. These correlations are particularly important when
ω = 5.0. Decreasing the frequency to 1.0 leads to a larger contributions from shells 5 and
6. Finally, for the 20-electron system, the same behavior occurs. Important correlations are
included when Rb = 6. When the frequency is lowered from 5.0 to 2.0, we obtain important
contributions from shell 7. In general, when the frequency increases, the CCSD energy exhibits
a slower convergence. Particularly important correlations are included when

Rb = Rf + 2. (8.49)

Also, except for the 2-electron system, contributions from low-lying shells become more important
when the frequency decreases.

Consider the relative error plots in Figure 8.1 and 8.2. The relative error can be approximated
as

∆E(R) ≈ k1R
a, (8.50)

where R ≡ Rb, and k1 and a are constants. Both constants depend on the number of electrons
and the frequency. We observe that the convergence rate is higher for larger systems, i.e.

|aN | > |aN ′ | (8.51)

when N > N ′.
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Figure 8.1: CCSD and HF energy as function of Rb for the 2- and 6-electron system with ω = 0.4, 1.0
and 5.0. For the CCSD energy, the relative error as function of Rb is also shown. The relative error is
given by

[
E(Rb)− E(10)

]
/E(10). Energy is measured in effective Hartrees (E∗

H).
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Figure 8.2: CCSD and HF energy as function of Rb for the 12- and 20-electron system. With a harmonic
oscillator basis, the CCSD energy does not converge for ω < 1.0 (N = 12), and ω < 2.0 (N = 20). We
have therefore chosen ω = 1.0 and 5.0 for N = 12, and ω = 2.0 and 5.0 for N = 20. The relative error as
function of Rb is also shown for the CCSD energy. The relative error is given by

[
E(Rb)− E(10)

]
/E(10).

Energy is measured in effective Hartrees (E∗

H).

The exact results for N = 2, 6 and 12 with ω = 1.0 are given by Taut’s analytical result [69]
(N = 2) and the Diffusion Monte Carlo (DMC) [70] results in Table 8.30. We emphasize that
the DMC energy is not the exact energy. However, the exact energy is within the uncertainty of
the DMC result [62]. Since the DMC results in Table 8.30 have uncertainties of approximately
±10−4, we refer to these energies as “exact”. For the 2-electron system we see that the difference
between the CCSD result for Rb = 10 and the exact result is approximately 0.007. For the 6-
electron system, the difference is approximately 0.04. For the 12-electron system, the difference
is approximately 0.1.

Table 8.11 shows the CCSD energy for N = 6 and ω = 1.0 with Rb = 12, 14 and 16. The
energies are taken from [70]. We observe that when the size of the basis increases, we obtain
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a better energy. We have done a polynomial curve fitting in MATLAB for N = 6 and 12, and
extrapolated the CCSD energy to infinity. We have used the results in Table 8.11 in order to
obtain a better estimate. The results are shown in Table 8.10. For the 6-electron system we see
that the difference between the extrapolated result and the exact result is approximately 0.02.
For the 12-electron system, the difference is 0.08. Even though the extrapolated results are closer
to the exact energies, we are still not within the uncertainties of the DMC results.

Furthermore, Table 8.12 shows the CCSDT energy for N = 6, Rb = 10 and ω = 1.0 obtained
with standard interaction [70]. Comparing with the CCSD result for Rb = 10 in Table 8.10, we
see that inclusion of Triples leads to a better energy. This is what we would expect. However,
for Rb = 16, the CCSD energy is better than the CCSDT result for Rb = 10. This hints that the
size of the model space is very important. We will come back to this is Section 8.2.

N = 6 N = 12
Rb CCSD |∆E| CCSD |∆E|

10 20.204345 ≈ 0.04 65.806539 ≈ 0.1
∞ 20.181 ≈ 0.02 65.786 ≈ 0.08

Table 8.10: Extrapolated CCSD energies (Rb → ∞) for N = 6 and 12 with ω = 1.0 and standard
interaction (DP model space). We have done a polynomial curve fitting in MATLAB with the results
tabulated in Tables 8.5 and 8.7, and extrapolated to infinity. In order to obtain a better fitting for N = 6,
we have included the results for Rb = 12, 14 and 16 in Table 8.18. The difference between the CCSD
results and the DMC results (see Table 8.30) are given by |∆E|. Energy is measured in effective Hartrees
E∗

H .

Rb CCSD

12 20.19468
14 20.18855
16 20.18431

Table 8.11: CCSD results for the 6-electron system with ω = 1.0 and Rb = 12, 14 and 16, calculated
by [70]. The calculations have been done with a standard interaction and the DP space as model space.
Energy is measured in effective Hartrees E∗

H .

Rb CCSDT

10 20.19880

Table 8.12: CCSDT result for the 6-electron system with ω = 1.0 and Rb = 10, calculated by [70].
The energy is obtained by using the standard interaction and DP model space. Energy is measured in
effective Hartrees E∗

H .

8.1.3 Full Correlation Energy

We have in Table 8.9 tabulated energy results for Rb = 10 and different frequencies. For each
electron number N and frequency ω, the table shows the non-interacting ground state energy
〈Φ0|Ĥ0|Φ0〉, the HF energy, the CCSD energy, the difference between the CCSD energy and the
HF energy, the reference expectation energy 〈Φ0|Ĥ |Φ0〉, the T̂1 contribution 〈Φ0|ĤN T̂1|Φ0〉, the
T̂ 2

1 contribution 〈Φ0|ĤN T̂
2
1 |Φ0〉, the T̂2 contribution 〈Φ0|ĤN T̂2|Φ0〉, and the total contribution

〈Φ0|ĤN (T̂1 + T̂ 2
1 + T̂2)|Φ0〉 to the CCSD energy. First we observe that the non-interacting ground

state energy increases when the frequency increases. This is what we expect since the single-
particle energies are given by Eq. (8.16). Figure 8.11 shows the non-interacting energy, the CCSD
energy, and the HF energy as function of frequency. We see that the energies are approximately
linear functions. By taking the electron-electron repulsion into account, the energy increases
more when the frequency is changed.

We define the Full Correlation Energy (FCE) as the difference between the exact ground
state energy of the interacting system, and the non-interacting energy. The FCE is thus the
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contribution to the total energy from the electron-electron interaction. Therefore, the difference
between the CCSD energy and the non-interacting energy gives us an approximation to the
FCE. The Coulomb interaction is repulsive, meaning that the electrons repel each other. The
repulsion should obviously give a positive contribution to the energy. We have in Figure 8.3
plotted the FCE as function of frequency. First we observe that the FCE is positive, as expected.
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Figure 8.3: Full correlation energy (FCE) as function of frequency ω (left plot). The FCE is defined as
the difference between the CCSD energy and the non-interacting ground state energy. In the right plot,
the relative contribution to the CCSD energy ∆EFCE is shown. All calculations have been done with
Rb = 10 and standard interaction. Energy is measured in effective Hartrees (E∗

H).

Furthermore, the FCE increases when the frequency increases. This can be understood by the
following argument: when the frequency increases, the confinement potential

u(r) =
1

2
m∗ω2r2, (8.52)

becomes steeper. When the potential well is steeper, the electrons are pushed closer together,
yielding a stronger repulsion. Thus the FCE is larger for higher frequencies. However, since the
single-particle energy increases when the frequency increases (see Eq. 8.16), this does not mean
that the contribution from the Coulomb interaction is more important for higher frequencies.
We will discuss this in a moment. The FCE can be approximated by

fFCE(ω) = k2ω
b, (8.53)

where k2 and b are constants. We observe from Figure 8.3 that k2 depends on the number of
electrons in the system, and that b is approximately independent of the electron number. We
have obtained

b ≈ 0.55. (8.54)

Furthermore, for a given frequency, a system containing more electrons than another has a larger
contribution from the interaction. This is also what we expect. The more electrons that are
present in the system, the larger is the number of interacting particles, obviously. Another
important quantity is the relative (full) correlation energy, defined as

∆EFCE ≡
ECCSD − 〈Φ0|Ĥ0|Φ0〉

ECCSD
. (8.55)

This quantity reveals how important the contribution from the Coulomb interaction is to the
total energy, i.e. whether the single-particle field or the Coulomb interaction dominates. The
right plot of Figure 8.3 shows ∆EFCE as function of frequency. For a given frequency, the relative
contribution is always larger for a system containing more electrons. Secondly, the contribution
decreases when the frequency increases. We observe that

∆EFCE(ω) ≈ k3ω
c, (8.56)
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where k3 and c are constants. This is a rough approximation. We observe that k3 depends on the
number of electrons in the system, and c is approximately independent of the electron number.
We have obtained

c ≈ −0.3. (8.57)

Let us now consider the changes in the relative contribution to the CCSD energy when the
frequency increases from the lowest to the highest value. For the 2-electron system, the
contribution from FCE is approximately 42% of the CCSD energy when ω = 0.4. When ω = 50.0,
the contribution is 8%. For the 6-electron system, the contribution is approximately 60% when
ω = 0.4, and 14% when ω = 50.0. For the 12-electron system, the contribution is approximately
57% when ω = 1.0, and 18% when ω = 50.0. For the 20-electron system, the contribution is
approximately 54% when ω = 2.0, and 21% when ω = 50.0. In general, the relative contribution
to the energy decreases when the frequency increases. We conclude that the contribution from
the electron-electron interaction is more important for low frequencies than for high frequencies.
Thus, when the frequency increases, the single-particle field increases more than the electron-
electron interaction meaning that the contribution from the Coulomb interaction becomes less
and less important.

8.1.4 Correlation Energy

The so-called Correlation Energy (CE) is normally defined as the difference between the HF limit
and the exact ground state energy of the interacting system. This definition was introduced in
[71]. The CE must not be confused with what we previously defined as the full correlation
energy (FCE). While the FCE is a measurement of the total contribution from the electron-
electron interaction, the CE is a measurement of the contribution from correlations beyond what
are included in HF, i.e. 1p1h excitations. In Table 8.9, the difference between the CCSD energy
and the HF energy is tabulated. Since the CCSD energy is not exact, and the single-particle
basis is truncated in the HF calculation, the difference between the CCSD energy and the HF
energy is an approximation to the CE. Figure 8.4 shows the CE (absolute value) as function of
frequency. First we observe that the CE does not vary much. Nonetheless, it increases somewhat
when the frequency increases, i.e.

fCE(ω) < fCE(ω′), (8.58)

for ω > ω′, where fCE is the CE. Remember that CE is defined to be negative. For the 2-
electron system, the CE changes by approximately −0.09 when the frequency increases from
0.4 to 50.0. For the 6-electron system, it changes by approximately −0.19 when the frequency
increases from 0.4 to 50.0. For the 12-electron system, the CE change is approximately −0.13
when the frequency increases from 1.0 to 50.0. Finally, for the 20-electron system, we observe
something else. The energy increases from ω = 2.0 up to ω = 10.0, and decreases from ω = 10.0
up to ω = 50.0. We first conclude that a system containing more electrons than another has
a larger CE for all frequencies. This is what we expect. Compared to the FCE, however, the
differences are relatively small, meaning that 1p1h correlations are important. Anticipate the
course of events, this hints to the importance of using a HF basis. We will discuss this in Section
8.1.8. Furthermore, the right plot in Figure 8.4 shows the relative contribution from the CE to
the CCSD energy. It is defined as

∆ECE =

∣∣∣∣
ECCSD − EHF

ECCSD

∣∣∣∣ . (8.59)

The relative contributions are in accordance with [49]. We observe that ∆ECE can be
approximated by a power function function,

∆ECE(ω) ≈ k4ω
d, (8.60)
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Figure 8.4: Correlation energy (absolute value) as function of oscillator frequency ω (left plot). The
correlation energy is defined as the difference between the CCSD energy and HF energy. In the right
plot, the relative contribution from the correlation energy to the CCSD energy (see Eq. 8.55) is shown.
All calculations have been done with model space Rb = 10 and standard interaction. Energy is measured
in effective Hartrees (E∗

H).

where k4 and d are constants. We observe that k4 depends on the number of electrons in the
system, and d is approximately independent of the electron number. We have obtained

d ≈ −0.78. (8.61)

The relative contribution from the CE to the CCSD energy decreases when the frequency
increases. Let us for example consider the 2-electron system. When the frequency increases
from 0.4 to 50.0, the relative contribution changes from approximately 9% to 0.002%. The CE
is therefore much more important for low frequencies. We conclude that when the frequency
decreases, the system becomes more correlated. Furthermore, consider the relative contribution
from the FCE and the CE in Figures 8.3 and 8.4, respectively. We observe that both contributions
decrease when the frequency increases. We have in Eqs. (8.56) and (8.60) approximated the
relative correlation energies ∆EFCE and ∆ECE by power functions, see Eqs. (8.59) and (8.55).
We obtained c ≈ −0.3 (FCE) and d ≈ −0.78 (CE), where c and d are the slopes. Thus we have
that

|c| < |d| . (8.62)

Since the FCE is a measurement of the contribution from 1p1h, 2p2h, and so forth up to
NpNh (however, remember T̂ = T̂1 + T̂2), and the CE is a measurement of the contribution
from correlations beyond 1p1h, we conclude that when the frequency increases, the relative
contribution from 1p1h decreases less than the relative contribution from correlations beyond
1p1h. Moreover, when the frequency decreases, the relative contribution from correlations
beyond 1p11p1h increases more than 1p1h correlations, meaning that many-body correlations
are important for low frequencies. This does not necessary mean that many-body correlations
are more important than 1p1h. We see from Figures 8.3 and 8.4 that the relative FCE is much
larger than the relative CE (absolute value), meaning that 1p1h excitations are very important.
This has important consequences for the choice of basis for small frequencies. We will discuss
this in Section 8.1.8.

Another clear difference between CE and FCE is that their relative contributions depend
differently on N . When the number of electrons in the system increases, the relative contribution
from FCE increases while the contribution from CE decreases. As pointed out before, CE is a
measurement of the contribution from correlations beyond 1p1h. Increasing the size of the system
lowers the relative contribution from 2p2h, 3p3h, up to NpNh excitations. Thus the correlations
beyond the HF approximation is less important when the size of the system increases, i.e. 1p1h
excitations are important. This is what we expect.
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8.1.5 CCSD Correlation Energy

The CCSD energy can be written as (see Section 6.4.3)

ECCSD = 〈Φ0|Ĥ|Φ0〉+ 〈Φ0|ĤN T̂1|Φ0〉+ 〈Φ0|ĤN T̂
2
1 |Φ0〉+ 〈Φ0|ĤN T̂2|Φ0〉. (8.63)

We define the CCSD correlation energy (CCSD-CE) as

fCCSD-CE ≡ ECCSD − 〈Φ0|Ĥ|Φ0〉
= 〈Φ0|ĤN T̂1|Φ0〉+ 〈Φ0|ĤN T̂

2
1 |Φ0〉+ 〈Φ0|ĤN T̂2|Φ0〉. (8.64)

We have in Table 8.9 tabulated 〈Φ0|Ĥ|Φ0〉, 〈Φ0|ĤN T̂1|Φ0〉, 〈Φ0|ĤN T̂
2
1 |Φ0〉, 〈Φ0|ĤN T̂2|Φ0〉 and

fCCSD-CE. Figure 8.5 shows the contribution from T̂1, T̂ 2
1 and T̂2 to the CCSD-EC as function

of frequency, for 2, 6, 12 and 20 electrons. First we observe that

〈Φ0|ĤN T̂1|Φ0〉 < 0 (8.65)

〈Φ0|ĤN T̂
2
1 |Φ0〉 > 0 (8.66)

〈Φ0|ĤN T̂2|Φ0〉 < 0. (8.67)

For the 2-electron system, the contribution from T̂2 is always larger than the contribution from
T̂1 and T̂ 2

1 . This means that 2p2h excitations are important. It also explains why the HF energy
is not a very good approximation to the exact energy in the 2-electron case. For example, when
ω = 1.0, the exact energy is 3 [69], the CCSD energy is 3.006938, and the HF energy is 3.161909.
Since the CCSD result is close to the exact value, the difference between the HF energy and
the exact result is mainly because 2p2h correlations are not included. Furthermore, for larger
systems (6, 12 and 20 electrons), we observe that

∣∣∣〈Φ0|ĤN T̂1|Φ0〉
∣∣∣ >

∣∣∣〈Φ0|ĤN T̂
2
1 |Φ0〉

∣∣∣ (8.68)
∣∣∣〈Φ0|ĤN T̂1|Φ0〉

∣∣∣ >
∣∣∣〈Φ0|ĤN T̂2|Φ0〉

∣∣∣ , (8.69)

i.e. the contribution from T̂1 is larger than both the contribution from T̂ 2
1 , and from T̂2. When

the size of the system increases from 6 to 12 electrons, the contribution from T̂1 increases by
approximately a factor of 8, while the contribution from T̂ 2

1 and T̂2 roughly remain the same.
When the size of the system increases from 12 to 20 electrons, the contribution from T̂1 and T̂2

still remains roughly the same. However, the contribution from T̂1 increases by roughly a factor of
3. We conclude that the single-particle field is stronger for a system containing more electrons.
Furthermore, the contribution from T̂1 and T̂2 increase (absolute value) when the frequency
increases. However, the contribution from T̂ 2

1 decreases. We also see that the contribution from
T̂2 is less sensitive to changes in the frequency for larger systems. For the 20-electron system, the
change is approximately 0.05 when the frequency increases from 2.0 to 50.0. For the 2-electron
system, the change is approximately 0.07 when the frequency increases from 0.4 to 50.0.

We have in Figure 8.6 plotted the CCSD-CE (left plot) defined in Eq. (8.64), i.e. the total
contributions from T̂1, T̂ 2

1 and T̂2, and the relative contribution to the CCSD energy (right plot).
The relative contribution is defined as

∆ECCSD-CE ≡
∣∣∣∣
fCCSD-CE

ECCSD

∣∣∣∣ . (8.70)

First we observe that the CCSD-EC increases (absolute value) when the size of the system
increases. This is what we would expect. Moreover, when the frequency increases, the CCSD-
EC also increases. However, the CCSD-EC is much more sensitive to changes in the frequency
for larger systems. We observe that for the 2-electron system, the curve is flat compared to the
20-electron system. We conclude that when the frequency increases, the CCSD-EC (absolute
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value) increases more for a system containing more electrons than another. Furthermore, for
a given frequency, the relative contribution from the CCSD-EC increases when the size of the
system increases. This is the same behavior as the Full Correlation Energy (FCE). Even though
the definitions of FCE and CCSD-EC are different, both quantities give information about
the correlations in the system. We observe that when the frequency decreases, the relative
contribution from CCSD-EC increases. Thus the system is more correlated for low frequencies.
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8.1.6 Analysis of the Amplitudes

We will in this section analyze the T̂1 and T̂2 amplitudes. We want to find out if it is possible
to extract general tendencies for different system sizes and oscillator frequencies. We first define
the total T̂1 contribution as

t1(R) ≡
∑

i≤if

∑

a∈R

|tai |2 , (8.71)

where if is the Fermi state, and a ∈ Rmeans all orbitals within shellR (see Table 8.2). Remember
that i denotes a hole state and a denotes a particle state. We see from the definition that t1(R)
is the sum of all T̂1 amplitudes (squared) having contribution from shell R. This is an interesting
quantity since it may reveal the shells that are most important. Figure 8.7 shows the plot of
t1(R). We observe that for the 2-electron system,

t1(R) ≈ CeηR, (8.72)

where C is a constant determined by the frequency, and η is a constant that is approximately
independent of the frequency. We observe that

η ≈ −1.2. (8.73)

The T̂1 amplitudes are nonzero for odd shells. Stated differently, when we increase the basis from
an even number to an odd number by one, we do not get additional 1p1h excitations. This is
exactly what we observed for the HF energy in Table 8.5. This reflects that HF includes 1p1h
excitations only.
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Figure 8.7: Total T̂1 contribution t1(R) (defined in Eq. 8.71) for systems with 2, 6, 12 and 20 electrons.
The CCSD calculations have been done with model space Rb = 10 and for different frequencies ω. Note
that the excitation amplitudes are not normalized.
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Turning to systems containing 6, 12 and 20 electrons we see that t1(R) changes radically.
Although it tends to decrease for higher shells, t1(R) can increase from one shell to another.
For example, the contribution from shell 4 tend to be more important than the contribution
from shell 3. For ω = 1.0 we observe that t1(Rodd) and t1(Reven) are approximately exponential
functions (straight lines in the plot) for systems containing 6 and 12 electrons. However, this
is not true for other frequencies. It is important to note that the excitation amplitudes are not

normalized. This follows from Eq. (6.48). Thus we cannot directly compare the quantitative
values of t1(R) for different frequencies. Figure 8.7 can only be used to gain insight into how
t1(R) depends on R for a given frequency. It is difficult to observe general tendencies in the
figure. The “staggering-effect” is the reason for this.

We define the total T̂2 contribution as

t2(R1, R2) ≡
1

2

∑

ij≤if

∑

a∈R1

∑

b∈R2

∣∣tab
ij

∣∣2, (8.74)

where a ∈ R1 means all orbitals within shell R1, and b ∈ R2 means all orbitals within shell
R2. We see from the definition that t2(R1, R2) is the sum of all T̂2 amplitudes (squared) having
contributions from shell R1 and R2. It gives an indication of which shells that are most important.
Thus it is an interesting quantity to analyze. Figures 8.8 and 8.9 show the plot of

tR1

2 (R2) ≡ t2(R1, R2), (8.75)

for different values of R1. Note that the excitation amplitudes are not normalized. Consider the
2-electron system. We observe that

tab
ij = tbaij = 0 (8.76)

when

a ∈ Rodd (8.77)

b ∈ Reven, (8.78)

where Rodd is an odd shell, and Reven is an even shell. This is due to the fact that there are
none 2p2h excitations that conserve total angular momentum and total spin. As we discussed
previously for the 2-electron system, states that have

M = 0 (8.79)

S = 0 (8.80)

are allowed. Consider for example shell 3 and 4 with corresponding single-particle states in
Table 8.2. The mapping scheme is given in Table 8.1. We see that orbitals within shell 3 have
m = −2, 0 and 2, and orbitals within shell 4 have m = −3,−1, 1 and 3. Thus we cannot excite
one electron into shell 3, and another electron into shell 4. This is what we observe in Figure
8.8. Furthermore, we observe that t2(R) decreases in an exponential way. This indicates that
low-lying shells are most important.

Turning to the system consisting of 6 electrons we observe that t2(R) changes radically. The
“staggering-effect” makes it difficult to observe any general tendencies besides that t2(R) tend to
decrease. When the system is larger (12 or 20 electrons) we observe that the “staggering-effect”
is less present. Still we cannot draw any general conclusions.
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Figure 8.8: Total T̂2 contribution t2(R) (defined in Eqs. 8.74 and 8.75) for systems containing 2 and 6
electrons. The CCSD calculations have been done with model space Rb = 10 and for different frequencies
ω. Note that the excitation amplitudes are not normalized.
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Figure 8.9: Total T̂2 contribution t2(R) (defined in Eqs. 8.74 and 8.75) for systems containing 12 and 20
electrons. The CCSD calculations have been done with model space Rb = 10 and for different frequencies
ω. Note that the excitation amplitudes are not normalized.

8.1.7 Analysis of Basis Size

The accuracy of the CCSD results are obviously dependent on the size of the model space.
Normally we obtain a better accuracy when the size of the model space increases. Thus we
often like to run our calculations with a model space as large as possible. In wavefunction-
based methods, such as Coupled-Cluster and Configuration Interaction [30], we quickly reach the
maximum size of the model space due to computational limitations. It is therefore interesting
to gain insight into how sensitive our results are on the size of the model space for different
frequencies. In order to analyze this, we have in Figure 8.10 plotted

g6(ω) ≡ ERb=6(ω)− ERb=10(ω) (8.81)

g9(ω) ≡ ERb=9(ω)− ERb=10(ω), (8.82)

where ERb is the CCSD energy with model space Rb. The relative errors, defined as

∆E6(ω) ≡ g6(ω)

ERb=10(ω)
(8.83)

∆E9(ω) ≡ g9(ω)

ERb=10(ω)
, (8.84)

are also shown. First we observe that for a given frequency, both g6(ω) and g9(ω) increases when
the size of the system increases, i.e.

gN
6 (ω) > gN ′

6 (ω) (8.85)

gN
9 (ω) > gN ′

9 (ω), (8.86)
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when N > N ′. This is an important similarity. Furthermore, we observe that g6(ω) and g9(ω)
vary much more in the low-frequency region than in the high-frequency region. In the 2-electron
case, g6(ω) and g9(ω) are roughly independent of the frequency. The curve is almost flat. Turning
to the 6-electron system, both g6(ω) and g9(ω) increase somewhat in the low-frequency region,
and then flatten out. In the case of 12 and 20 electrons, g6(ω) and g9(ω) depend quite differently
on the frequency. We see that g6(ω) decreases exponentially for systems containing 12 and 20
electrons. However, for the 12-electron system, g9(ω) increases when the frequency increases.
For the 20-electron system, g9(ω) decreases when the frequency increases from 2.0 to 5.0, and
then increases from 5.0 to 50.0. Both g6(ω) and g9(ω) tend to stabilize (converge) in the high-
frequency region.

Consider the relative error plots in the second column of Figure 8.10. We see that the plots
of ∆E6(ω) and ∆E9(ω) are relatively equal. For systems containing 2 and 6 electrons,

d

dω
∆E6(ω) =

d

dω
∆E9(ω) = 0, (8.87)

when ω ≈ 0.8. The errors increase up to ω ≈ 0.8, and then decrease for higher frequencies. For
systems containing 12 and 20 electrons, the relative errors are given by

∆E6(ω) ≈ k6 ω
λ6 (8.88)

∆E9(ω) ≈ k9 ω
λ9 , (8.89)

where k6 = k6(N), k9 = k9(N), λ6 and λ9 are constants. We see that λ6 < 0 and λ9 < 0. For low
frequencies, both ∆E6(ω) and ∆E9(ω) depend strongly on the number of electrons. However,
the relative errors converge in the high-frequency region. Moreover, here they are approximately
independent of the electron number. We observe that ∆E6(ω) is approximately equal for 2, 6
and 12 electrons, and ω ≥ 10. When 20 ≤ ω ≤ 50,

∆E6(20 ≤ ω ≤ 50) ≈ 5 · 10−4, (8.90)

for 2, 6, 12 and 20 electrons. Since ∆E9(ω) is about a factor 1/10 lower than ∆E6(ω), it seems to
converge somewhat slower. When ω ≥ 20, ∆E9(ω) is approximately equal for systems containing
2, 6, 12 and 20 electrons. When ω = 50,

∆E9(ω = 50) ≈ 5 · 10−5. (8.91)

We conclude that in general, the size of the model space is more important for low frequencies
than for high frequencies, except for ω ≤ 0.8 and N = 2 and 6. We also conclude that when the
number of electrons in the system increases, the size of basis is more important. Thus in the low
frequency region (ω ≤ 10), in order to obtain an accuracy for a system containing N electrons
that is equal to the accuracy of a system containing N ′ electrons, where N > N ′, the model
space must be larger.
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Figure 8.11: Non-interacting energy 〈Φ0|Ĥ0|Φ0〉, HF energy, and CCSD energy as function of frequency.
All calculations have been done with Rb = 10 and standard interaction. Energy is measured in effective
Hartrees E∗

H .

8.1.8 Hartree-Fock Basis

The results presented till now have been calculated with harmonic oscillator functions as basis
functions. We have seen that the CCSD energy does not converge for certain (low) values of ω
(see Table 8.4). Moreover, when size of the system increases, the limit (frequency) where the
energy converges and where it does not converge seems to increase. This is an unsatisfactory
situation. We would like to calculate the ground state energy for low values of the frequency
as well. In addition, low frequencies often represent the most interesting cases. We have in the
previous sections seen (in the analysis of FCE, CE and CCSD-CE) that the relative contribution
from the electron-electron interaction is larger for low frequencies. We would obviously like to
investigate the accuracy of the CCSD method for these cases as well.

The question is: “what can we do in order to obtain convergence for low values of the
frequency?” In CC calculations of the atomic nucleus, one must use a Hartree-Fock basis in
order to obtain convergence, see for example [72]. We therefore propose to generate a HF basis
for the parabolic quantum dot and run the CCSD calculation with these basis functions. The
HF basis is the set of orthonormal HF orbitals obtained by a HF calculation. See Chapter 5 for
details. The HF basis is given as

BHF =
{
ϕa(r)

}db

a=1
, (8.92)

where db is the dimension of the single-particle model space. The HF orbitals reads

ϕa(r) =

db∑

α=1

Caαψα(r), (8.93)
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where

B1 =
{
ψα(r)

}db

α=1
(8.94)

is the set of harmonic oscillator functions. Note that BHF and B1 span the same single-particle
model space. Using BHF as single-particle basis we obtain that

〈a|h|b〉 =

db∑

αβ

C∗
aαCbβ〈α|h|β〉, (8.95)

and

〈ab|v|cd〉 =

db∑

αβγδ

C∗
aαC

∗
bβCcγCdδ〈αβ|v|γδ〉, (8.96)

where the expansion coefficients are determined by the HF calculation.
In order to check the CCSD machinery with a HF basis, we have in Table 8.13 tabulated the

results for N = 2 and ω = 1.0 using a HF basis. We observe that the we reproduce the results
obtained with harmonic oscillator functions as basis functions, see Table 8.5.

We have chosen to calculate the CCSD energy for ω = 0.2 (N = 6), ω = 0.8 (N = 12)
and ω = 1.0 (N = 20) with a HF basis. The results are tabulated in Tables 8.14, 8.15 and
8.16, respectively. We observe that the CCSD energies converge. Thus by including some of the
correlations, viz. 1p1h correlations, in the basis, we obtain convergence.

Rb N = 2

2 3.152329
4 3.025232
6 3.013627
8 3.009237
10 3.006938

Table 8.13: CCSD results for the 2-electron system with ω = 1.0 obtained by using a HF basis (see
Eq. 8.92). We have used standard interaction and DP model space. We see that the energies are equal the
results obtained with harmonic oscillator functions in Table 8.5. Energy is measured in effective Hartrees
E∗

H .

Rb N = 6

2 7.464866
4 6.192991
6 5.963611
8 5.953721
10 5.950087

Table 8.14: CCSD results for the 6-electron system with ω = 0.2 obtained by using a HF basis (see
Eq. 8.92). We have used standard interaction and DP model space. Energy is measured in effective
Hartrees E∗

H .

Rb N = 12

4 60.007157
6 56.386937
8 55.792561
10 55.709855

Table 8.15: CCSD results for the 12-electron system with ω = 0.8 obtained using a HF basis (see
Eq. 8.92). We have used standard interaction and DP model space. Energy is measured in effective
Hartrees E∗

H .
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Rb N = 20

4 177.963297
6 160.592549
8 157.035291
10 156.365862

Table 8.16: CCSD results for the 20-electron system with ω = 1.0 obtained using a HF basis (see
Eq. 8.92). We have used standard interaction and DP model space. Energy is measured in effective
Hartrees E∗

H .

8.2 Effective Interaction

The CCSD results with standard interaction converge slowly as function Rb. Moreover, the
energies for 6 and 12 electrons with ω = 1.0 are not within the uncertainty of the DMC results in
Table 8.30. The differences is tabulated in Table 8.10. In order to improve our results we must
increase the size of the model space.

The number of Slater determinants increases exponentially with respect to the size of the
single-particle basis. It is given by the binomial factor

nS =

(
n
N

)
, (8.97)

where n is the number of single-particle states, and N is the number of electrons. For example,
when N = 6 and n = 110 (10 shells) we have 2 × 1010 available Slater determinants. This set
spans the DP(Rb) model space. Since the number increases exponentially we quickly reach the
computational limit. A common way to circumvent the dimensionality problem is to introduce a
renormalized Coulomb interaction, called effective interaction, that is defined in the model space.
Effective Hamiltonians and interactions are commonly used in nuclear shell-model calculations
[21, 22]. We will not give a profound presentation of the nuclear effective interaction theory. We
refer to [22, 73, 74] for further reading. Put simply, an effective Hamiltonian is a Hamiltonian
that reproduces exact eigenvalues of the full problem within a finite-dimensional model space
[75]. We will in the following give a brief overview of the basic ideas.

8.2.1 Basic Ideas

Assume that the N -electron Hilbert space is finite-dimensional, i.e. n = dim (HN ). The spectral
decomposition of the Hamiltonian reads

Ĥ =

n∑

k=1

Ek|Ψk〉〈Ψk|, (8.98)

where {|Ψk〉}nk=1 is the orthonormal set of energy eigenfunctions satisfying

Ĥ|Ψk〉 = Ek|Ψk〉, (8.99)

where Ek is the energy eigenvalue that corresponds to |Ψk〉. We define the model space P ⊂ H
as

P ≡ span {|ek〉 : k = 1, 2, ..,m} , (8.100)

where {|ek〉}mk=1 is an orthonormal basis, and m = dim (P). Furthermore, we define the operator
P̂ as the orthogonal projector of P. Its spectral decomposition reads

P̂ =

m∑

i=1

|ei〉〈ei|. (8.101)
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The orthogonal complement of P is Q ⊂ HN , which is often called the excluded space. Its
orthogonal projector reads

Q̂ = 1−
m∑

i=1

|ei〉〈ei| (8.102)

=

n∑

i=(m+1)

|ei〉〈ei|, (8.103)

The dimension of Q is l = dim (Q) = n − m. We have now divided HN into P and Q. This
division transfers to operators in HN . An arbitrary operator Â splits up in four parts, viz.

Â =
(
P̂ + Q̂

)
Â
(
P̂ + Q̂

)
= P̂ ÂP̂ + P̂ ÂQ̂+ Q̂ÂP̂ + Q̂ÂQ̂, (8.104)

since

P̂ + Q̂ = 1. (8.105)

We see that P̂ ÂP̂ maps P into itself, P̂ ÂQ̂ maps Q into P, and so forth. It is convenient to
picture this in the following block (matrix) form:

Â =

(
P̂ ÂP̂ P̂ ÂQ̂

Q̂ÂP̂ Q̂ÂQ̂

)
(8.106)

We define the similarity transformed Hamiltonian as

Ĥ ′ ≡ e−bSĤe
bS , (8.107)

where Ĥ is the Hamiltonian of the system, and Ŝ is chosen such that

Q̂Ĥ ′P̂ = P̂ Ĥ ′Q̂ = 0. (8.108)

This is called the de-coupling equation. The effective Hamiltonian is defined as

Ĥeff ≡ P̂ Ĥ ′P̂ . (8.109)

Since similarity transformations preserve eigenvalues, the m eigenvalues of Ĥeff are identical to
some of the n eigenvalues of Ĥ. We assume that the eigenvalues of Ek in Eq. (8.98) are arranged
so that Ek (k = 1, ..,m) are reproduced by Ĥeff. Furthermore, we define the effective interaction
as

V̂eff ≡ Ĥeff − P̂ Ĥ0P̂ , (8.110)

where Ĥ0 is the Hamiltonian of the non-interacting system. Here we assume that
[
Ĥ0, P̂

]
= 0, (8.111)

which is satisfied when the model space is spanned by the eigenvectors (Slater determinants) of
Ĥ0.

We have calculated a 2-particle effective interaction for the parabolic quantum dot using the
algorithm exposed in [76]. Calculating the effective interaction for the N -electron system in a
large basis means solving the exact problem, which we cannot do. The diagonalization problem
is therefore solved for a sub-cluster Hamiltonian consisting of 2 electrons, leading to missing
many-body correlations for N > 2. The diagonalization is done by first defining the relative
coordinates as

r ≡ r1 − r2, (8.112)
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and the center-of-mass coordinates as

R ≡ 1

2
(r1 + r2) , (8.113)

where r1 and r2 are the position vector of electron 1 and 2, respectively. The time-independent
Schrödinger equation
[
− ~

2

2m∗
∇2

1 −
~

2

2m∗
∇2

2 +
1

2
m∗ω2r21 +

1

2
m∗ω2r22 +

e2

4πǫ0ǫr

1

r12

]
Ψ(r1, r2) = EΨ(r1, r2) (8.114)

is separable in r and R. Inserting

Ψ(R, r) ≡ f1(R)f2(r) (8.115)

into the equation yields
[

~
2

4m∗
∇2

R +m∗ω2R2

]
f1(R) = E1 f1(R) (8.116)

[
~

2

m∗
∇2

r +
1

4
ω2r2 +

e2

4πǫ0ǫr

1

r

]
f2(r) = E2 f2(r). (8.117)

The center-of-mass problem is trivial. The relative coordinate problem is solved by using the so-
called generalized half-range Hermite functions (see [76]). The m eigenvalues of Ĥ ′ will therefore
be equal to some of the n eigenvalues of Ĥ for the 2-electron system.

8.2.2 Energy Cut Model Space

Using an effective interaction in a CCSD calculation means that the standard interaction v is
replaced by the effective interaction veff, viz.

〈αβ|v|γδ〉 → 〈αβ|veff|γδ〉. (8.118)

We must generate the effective interaction in the energy cut model space (EC) in order to obtain
a well-defined interaction. This is because the EC space contains all the symmetries of the
interaction. By generating the interaction in the DP space we would break essential symmetries
such as conservation of center-of-mass momentum. The basis of the EC space is defined as

BEC = BEC(Rb) ≡
{
|Φα1α2..αN

〉 :

N∑

i=1

εi ≤ F (Rb)

}
, (8.119)

where F (Rb) is the cut-off, see [75, 76]. The HF and CCSD results with effective interaction are
tabulated in Tables 8.20-8.23. The calculations have been done with EC(Rb) as model space.
We have tabulated HF and CCSD energies for systems containing 2, 6, 12 and 20 electrons, and
frequencies ranging from 0.4 up to 50.0. We have included the results obtained with standard
interaction from Tables 8.5-8.8 in order to more easily compare the results. Table 8.4 shows for
which values of N and ω the CCSD (and HF) energy converges within the iteration procedure.
Additionally, for some values of ω we obtain convergence for only certain Rb.

Consider the HF results with effective interaction in Tables 8.20-8.23. For the 2-electron
system we observe the same behavior with respect to Rb as the HF energy with standard
interaction. This is what we would expect. See Section 8.1.2 for details. An important difference
(N = 2, 6, 12 and 20) is that

EHF-Veff
(Rb + 1) ≥ EHF-Veff

(Rb), (8.120)

while

EHF-V(Rb + 1) ≤ EHF-V(Rb), (8.121)
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with equality for odd values of Rb in the 2-electron system. Thus, for a given size of the model
space, the HF energy with effective interaction is lower than with the standard interaction, viz.

EHF-Veff
(Rb) < EHF-V(Rb). (8.122)

Since the effective interaction is computed by considering the 2-electron system, the CCSD
calculation should in principle yield exact results for the 2-electron system. We have compared
the CCSD energies for ω = 1/6 and 1.0 with Tauts analytical (exact) solutions [69], and the
energy for ω = 0.28 with the DMC result in [77]. Our results for ω = 1/6 and 1.0 are exact
with precision close to numerical accuracy. For ω = 0.28 the DMC energy is 1.02162(7), and the
CCSD energy is 1.021644. The energy is thus within the uncertainty of the DMC result, and it
is therefore very probable that this is the exact energy. We have now (numerically) validated the
CCSD calculation with an effective interaction. All the energies for the 2-electron system should
therefore be exact. Moreover, the energy should be exact for every value of Rb, i.e. the energy is
independent of Rb. This is observed in Tables 8.20 and 8.21.

Turning to the 6-electron system we first observe that the CCSD energy does not converge
for 3 ≤ Rb ≤ 5 when ω = 0.4 and 0.5. Increasing the frequency leads to convergence for more
and more values of Rb. We note that the energy tends to have problems with the convergence
for low frequencies and low values of Rb. Just like the HF energy we see that (N = 6, 12 and
20)

ECCSD-Veff
(Rb + 1) > ECCSD-Veff

(Rb), (8.123)

whenever we have convergence. Thus in our case the effective interaction (in the EC model space)
underestimates the exact ground state energy, while the standard interaction overestimates the
exact energy. Furthermore we observe that the differences between the energies for Rb = 10 and
Rb = 9 are relatively small (10−3 − 10−4) for 0.4 ≤ ω ≤ 50.0. However, for ω = 1.0 we are
still not within the uncertainty of the DMC result, see Table 8.30. We see that we are definitely
closer to the exact value than the standard interaction, see the results tabulated in Table 8.10.
This is what we would expect with an effective interaction. The difference between the exact
energy and our result is with certainty between 0.002 and 0.003.

For systems containing 12 and 20 electrons we have more problems with convergence. The
CCSD energy does not convergence for low frequencies and low values of Rb. The differences
between the energies for Rb = 10 and Rb = 9 are relatively large, except for N = 12 with
1.0 ≤ ω ≤ 5.0. Furthermore we see that for ω = 1.0 and N = 12 we are still not within the
DMC result in Table 8.30. However, we are closer than with standard interaction as expected,
see Table 8.10. The difference between the exact energy and our result is between 0.065 and
0.070.

Table 8.18 shows the CCSD results for the 6-electron system with Rb = 12, 14 and 16,
calculated by [70]. We have done a polynomial curve fitting in MATLAB for N = 6 and ω = 1.0
with the results tabulated in Tables 8.20 and 8.18, and extrapolated to infinity. This is not
possible for N = 12 and ω = 1.0 since the energy does not converge for Rb < 9. Table 8.17
shows the results for N = 6 and 12 with ω = 1.0 using an effective interaction and the EC space
as model space. We observe that the extrapolated result for N = 6 and ω = 1.0 is within the
DMC uncertainty.

The effective interaction yields an energy that is closer to the exact result than the standard
interaction. For Rb = 10 and ω = 1.0, the CCSD results (N = 6 and 12) are not within the
uncertainties of the DMC results. The means that

1. the model space is too small, and/or

2. we are missing important many-body correlations, such as Triples.

We have seen that by performing calculations with Rb = 12, 14 and 16 for the 6-electron system,
the extrapolated value is within the uncertainty of the DMC result, see Table 8.17. This means
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N = 6 N = 12
Rb CCSD |∆E| CCSD |∆E|

10 20.157541 0.002-0.003 65.634530 0.065-0.070
∞ 20.160 w.unc. o o

Table 8.17: CCSD energies for N = 6 and 12 with ω = 1.0 and effective interaction (EC model space).
We have done a polynomial curve fitting in MATLAB for N = 6 with the results tabulated in Tables
8.18 and 8.20, and extrapolated to infinity. The approximate difference to the DMC result in Table 8.30
is given by |∆E|. We observe that the result for N = 6 is within the uncertainty of the DMC result,
denoted by “w.unc.” We have not been able to extrapolate the energy for N = 12 and ω = 1.0 since it
does not converge for Rb < 9, denoted by “o” in the table. Energy is measured in effective Hartrees E∗

H .

Rb CCSD

12 20.15851
14 20.15912
16 20.15958

Table 8.18: CCSD results for the 6-electron system with ω = 1.0 and Rb = 12, 14 and 16 calculated
by [70]. The calculations have been done with an effective interaction and the EC space as model space.
Energy is measured in effective Hartrees E∗

H .

that the difference between the DMC energy and the CCSD energy for Rb = 10 is mainly due
to the size of the mode space; it is too small. Table 8.19 shows the CCSDT energy for Rb = 10
obtained with an effective interaction [70]. We see that the inclusion of Triples lowers the energy.
This means that for Rb = 10, the CCSD energy is closer to the exact energy than the CCSDT
energy. This hints, at least for the 6-electron system, that the size of the model space is more
important than Triples corrections.

Rb CCSDT

10 20.15533

Table 8.19: CCSDT result for the 6-electron system with ω = 1.0 and Rb = 10, calculated by [70]. The
energy is obtained by using an effective interaction and EC model space. Energy is measured in effective
Hartrees E∗

H .

We would also like to obtain an extrapolated energy for the 12-electron system. However,
for N = 12 and ω = 1.0, the energy does not converge for Rb < 9. This means that we cannot
extrapolate. We have seen that this is a trend for low frequencies and small model spaces. Since
the energy converges by using the standard interaction, the problems with convergence might be
a consequence of the EC model space. In order to check this we propose to generate an effective
interaction in the EC(2Rb) space and then run CCSD calculations with the DP(Rb) space as
model space. Figure 8.12 shows an illustration of EC(Rb), DP(Rb) and EC(2Rb). We clearly see
that

EC(Rb) ⊂ DP(Rb) ⊂ EC(2Rb). (8.124)

By generating the effective interaction in the EC(2Rb) space and then run the calculations in
DP(Rb) space means that we only use those interaction elements that corresponds to the DP
space.
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EC(Rb)

DP (Rb)

EC(2Rb)

Figure 8.12: Illustration of EC(Rb), DP(Rb) and EC(2Rb).
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8.2. Effective Interaction

N = 2 N = 6
Standard interaction Effective interaction Standard interaction Effective interaction

ω Rb HF CCSD HF CCSD HF CCSD HF CCSD

0.4

1 1.592665 1.592665 1.375594 1.375594 - - - -
2 1.592665 1.494392 1.375594 1.375594 11.728488 11.728488 7.931966 7.931966
3 1.508042 1.392856 1.427126 1.375594 11.156151 11.005419 x x
4 1.508042 1.386722 1.427126 1.375594 10.504554 10.208494 x x
5 1.508024 1.383259 1.453967 1.375594 10.467626 10.064250 x x
6 1.508024 1.381489 1.453967 1.375594 10.405715 9.987983 10.045408 9.890108
7 1.508015 1.380338 1.467257 1.375594 10.405292 9.977274 10.173956 9.944735
8 1.508015 1.379554 1.467257 1.375594 10.405222 9.970650 10.196753 9.942164
9 1.508011 1.378983 1.475288 1.375594 10.405195 9.966218 10.227403 9.939521
10 1.508011 1.378551 1.475288 1.375594 10.405166 9.963027 10.245645 9.940905

0.5

1 1.886227 1.886227 1.659772 1.659772 - - - -
2 1.886227 1.786914 1.659772 1.659772 13.640713 13.640713 9.914958 9.914958
3 1.799856 1.681633 1.783908 1.659772 13.051620 12.895476 x x
4 1.799856 1.673874 1.783908 1.659772 12.357471 12.047565 x x
5 1.799748 1.669500 1.817459 1.659772 12.325128 11.914166 x x
6 1.799748 1.667259 1.817459 1.659772 12.271499 11.841655 12.556760 11.736520
7 1.799745 1.665801 1.834071 1.659772 12.271375 11.827869 12.717445 11.787516
8 1.799745 1.664808 1.834071 1.659772 12.271361 11.819437 12.745941 11.784081
9 1.799743 1.664085 1.844110 1.659772 12.271337 11.813819 12.784254 11.781074
10 1.799743 1.663537 1.844110 1.659772 12.271326 11.809788 12.807056 11.782354

0.6

1 2.170813 2.170813 1.936931 1.936931 - - - -
2 2.170813 2.070856 1.936931 1.936931 15.465426 15.465426 10.946441 10.946441
3 2.083158 1.962891 1.994233 1.936931 14.864332 14.703670 x x
4 2.083158 1.953712 1.994233 1.936931 14.135156 13.814684 x x
5 2.082926 1.948533 2.024000 1.936931 14.106585 13.690123 x 13.432229
6 2.082926 1.945869 2.024000 1.936931 14.059885 13.621142 13.683596 13.505043
7 2.082926 1.944135 2.038722 1.936931 14.059867 13.604622 13.811551 13.556509
8 2.082926 1.942953 2.038722 1.936931 14.059716 13.594539 13.836037 13.552735
9 2.082924 1.942090 2.047546 1.936931 14.059698 13.587834 13.868257 13.549756
10 2.082924 1.941436 2.047546 1.936931 14.059697 13.583037 13.887058 13.550906

0.8

1 2.720998 2.720998 2.475905 2.475905 - - - -
2 2.720998 2.620341 2.475905 2.475905 18.929733 18.929733 13.811468 13.811468
3 2.631563 2.508827 2.537139 2.475905 18.312821 18.144988 x x
4 2.631563 2.497304 2.537139 2.475905 17.528556 17.193050 x x
5 2.631058 2.490771 2.568856 2.475905 17.505795 17.081893 16.933000 16.809860
6 2.631058 2.487386 2.568856 2.475905 17.469841 17.018754 17.075290 16.880900
7 2.631055 2.485175 2.584547 2.475905 17.469813 16.997854 17.207361 16.935520
8 2.631055 2.483665 2.584547 2.475905 17.469269 16.985003 17.233916 16.931715
9 2.631054 2.482560 2.593908 2.475905 17.469263 16.976408 17.268048 16.929259
10 2.631054 2.481724 2.593908 2.475905 17.469257 16.970279 17.287339 16.930135

1.0

1 3.253314 3.253314 3.000000 3.000000 - - - -
2 3.253314 3.152329 3.000000 3.000000 22.219813 22.219813 16.578993 16.578993
3 3.162691 3.038605 3.064154 3.000000 21.593198 21.419889 x x
4 3.162691 3.025232 3.064154 3.000000 20.766919 20.421325 x x
5 3.161921 3.017607 3.097299 3.000000 20.748402 20.319716 20.166941 20.033306
6 3.161921 3.013627 3.097299 3.000000 20.720257 20.260893 20.310117 20.104242
7 3.161909 3.011021 3.113707 3.000000 20.720132 20.236760 20.446045 20.162126
8 3.161909 3.009237 3.113707 3.000000 20.719248 20.221750 20.474497 20.158637
9 3.161909 3.007931 3.123465 3.000000 20.719248 20.211590 20.510432 20.156905
10 3.161909 3.006938 3.123465 3.000000 20.719217 20.204345 20.530161 20.157541

2.0

1 5.772454 5.772454 5.496523 5.496523 - - - -
2 5.772454 5.671234 5.496523 5.496523 37.281425 37.281425 29.621623 29.621623
3 5.679048 5.553152 5.568856 5.496523 36.637217 36.448558 x x
4 5.679048 5.534274 5.568856 5.496523 35.689555 35.322283 34.940481 34.895937
5 5.677282 5.523274 5.605893 5.496523 35.681728 35.242971 35.067346 34.904897
6 5.677282 5.517386 5.605893 5.496523 35.672333 35.193258 35.213499 34.977420
7 5.677206 5.513491 5.624295 5.496523 35.671851 35.161115 35.360563 35.044569
8 5.677206 5.510801 5.624295 5.496523 35.670358 35.140124 35.395567 35.043402
9 5.677204 5.508822 5.635166 5.496523 35.670333 35.125055 35.438093 35.045024
10 5.677204 5.507311 5.635166 5.496523 35.670144 35.114198 35.459520 35.045026

Table 8.20: Hartree-Fock and Coupled-Cluster Singles and Doubles results for a parabolic quantum dot
with 2 and 6 electrons using both standard interaction and effective interaction. We have used the DP
space as model space (see Eq. 8.20) for calculations with standard interaction, and the EC space as model
space for calculations with effective interaction (see Eq. 8.119). The size of the space is denoted by Rb

(shell number), and the oscillator frequency is given by ω. The CCSD energy does not converge within
the iteration procedure (see Section 7.2.4) for certain values of Rb, denoted by “x”. Energy is measured
in effective Hartrees E∗

H .
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N = 2 N = 6
Standard interaction Effective interaction Standard interaction Effective interaction

ω Rb HF CCSD HF CCSD HF CCSD HF CCSD

3.0

1 8.170804 8.170804 7.883753 7.883753 - - - -
2 8.170804 8.069761 7.883753 7.883753 51.165337 51.165337 41.976374 41.976374
3 8.076274 7.950410 7.960167 7.883753 50.517683 50.321752 x x
4 8.076274 7.928709 7.960167 7.883753 49.508478 49.135135 48.911412 48.888397
5 8.073884 7.915891 7.999091 7.883753 49.504750 49.062885 48.870529 48.694263
6 8.073884 7.908930 7.999091 7.883753 49.501573 49.014446 49.017179 48.767717
7 8.073751 7.904296 8.018485 7.883753 49.501011 48.979127 49.168672 48.837661
8 8.073751 7.901081 8.018485 7.883753 49.499580 48.955363 49.207459 48.838404
9 8.073744 7.898706 8.029916 7.883753 49.499520 48.937698 49.254040 48.842291
10 8.073744 7.896889 8.029916 7.883753 49.499237 48.924839 49.276642 48.842136

4.0

1 10.506628 10.506628 10.212604 10.212604 - - - -
2 10.506628 10.405775 10.212604 10.212604 64.439626 64.439626 53.969200 53.969200
3 10.411470 10.285895 10.291594 10.212604 63.791597 63.591329 x x
4 10.411470 10.262419 10.291594 10.212604 62.743808 62.368661 62.222799 62.207046
5 10.408646 10.248423 10.331687 10.212604 62.742006 62.298906 62.094434 61.909899
6 10.408646 10.240751 10.331687 10.212604 62.741163 62.249606 62.240659 61.983603
7 10.408469 10.235621 10.351708 10.212604 62.740611 62.212557 62.394121 62.054033
8 10.408469 10.232050 10.351708 10.212604 62.739357 62.187127 62.435414 62.056216
9 10.408456 10.229405 10.363494 10.212604 62.739276 62.167826 62.484777 62.061658
10 10.408456 10.227378 10.363494 10.212604 62.738940 62.153663 62.508252 62.061505

5.0

1 12.802496 12.802496 12.503561 12.503561 - - - -
2 12.802496 12.701808 12.503561 12.503561 77.324332 77.324332 65.728844 65.728844
3 12.706930 12.581669 12.584369 12.503561 76.676854 76.473661 x x
4 12.706930 12.556949 12.584369 12.503561 75.602124 75.226743 75.125654 75.113312
5 12.703782 12.542112 12.625280 12.503561 75.601300 75.157693 74.943996 74.753920
6 12.703782 12.533923 12.625280 12.503561 75.601221 75.106872 75.089461 74.827516
7 12.703567 12.528429 12.645744 12.503561 75.600706 75.068703 75.243799 74.979503
8 12.703567 12.524595 12.645744 12.503561 75.599630 75.042121 75.286899 74.900811
9 12.703550 12.521751 12.657783 12.503561 75.599534 75.021677 75.338318 74.907377
10 12.703550 12.519568 12.657783 12.503561 75.599173 75.006580 75.362476 74.907284

10.0

1 23.963327 23.963327 23.651663 23.651663 - - - -
2 23.963327 23.863173 23.651663 23.651663 138.642441 138.642441 122.653567 122.653567
3 23.866830 23.742766 23.737201 23.651663 137.999396 137.789201 136.821655 136.817756
4 23.866830 23.714877 23.737201 23.651663 136.856842 136.485196 136.468182 136.461845
5 23.862773 23.697829 23.780202 23.651663 136.856753 136.413343 136.173391 135.970427
6 23.862773 23.688243 23.780202 23.651663 136.854607 136.354504 136.314578 136.042076
7 23.862443 23.681757 23.801822 23.651663 136.854284 136.313637 136.468590 136.107197
8 23.862443 23.677199 23.801822 23.651663 136.853782 136.284071 136.516429 136.113676
9 23.862411 23.673802 23.814526 23.651663 136.853661 136.260729 136.573456 136.123096
10 23.862411 23.671183 23.814526 23.651663 136.853287 136.243183 136.599654 136.123432

20.0

1 45.604991 45.604991 45.283850 45.283850 - - - -
2 45.604991 45.505319 45.283850 45.283850 254.648664 254.648664 232.473626 232.473626
3 45.507912 45.385045 45.372916 45.283850 254.011527 253.796720 252.813945 252.812952
4 45.507912 45.354878 45.372916 45.283850 252.821683 252.457058 252.479052 252.475760
5 45.503120 45.336174 45.417442 45.283850 252.820088 252.378355 252.117095 251.906240
6 45.503120 45.325508 45.417442 45.283850 252.811954 252.309241 252.252367 251.974297
7 45.502684 45.318241 45.439931 45.283850 252.811811 252.266330 252.402979 252.031493
8 45.502684 45.313105 45.439931 45.283850 252.811687 252.234390 252.454257 252.040496
9 45.502636 45.309263 45.453140 45.283850 252.811568 252.208972 252.515579 252.051740
10 45.502636 45.306293 45.453140 45.283850 252.811247 252.189591 252.543550 252.052681

50.0

1 108.862269 108.862269 108.532386 108.532386 - - - -
2 108.862269 108.763094 108.532386 108.532386 586.407125 586.407125 551.989727 551.989727
3 108.764735 108.643160 108.624706 108.532386 585.777168 585.558594 584.550992 584.550743
4 108.764735 108.610971 108.624706 108.532386 584.547339 584.192313 584.236057 584.234700
5 108.759222 108.590750 108.670612 108.532386 584.542520 584.103507 583.821763 583.605066
6 108.759222 108.579064 108.670612 108.532386 584.524974 584.021400 583.949063 583.667717
7 108.758672 108.571049 108.693908 108.532386 584.524954 583.976331 584.093494 583.713833
8 108.758672 108.565356 108.693908 108.532386 584.524950 583.941913 584.147709 583.725123
9 108.758604 108.561080 108.707593 108.532386 584.524852 583.914635 584.212909 583.737561
10 108.758604 108.557765 108.707593 108.532386 584.524623 583.893560 584.242692 583.739292

Table 8.21: Hartree-Fock and Coupled-Cluster Singles and Doubles results for a parabolic quantum dot
with 2 and 6 electrons using both standard interaction and effective interaction. We have used the DP
space as model space (see Eq. 8.20) for calculations with standard interaction, and the EC space as model
space for calculations with effective interaction (see Eq. 8.119). The size of the space is denoted by Rb

(shell number), and the oscillator frequency is given by ω. The CCSD energy does not converge within
the iteration procedure (see Section 7.2.4) for certain values of Rb, denoted by “x”. Energy is measured
in effective Hartrees E∗

H .
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N = 12 N = 20
Standard interaction Effective interaction Standard interaction Effective interaction

ω Rb HF CCSD HF CCSD HF CCSD HF CCSD

1.0

1 - - - - - - - -
2 - - - - - - - -
3 73.765549 73.765549 46.502552 46.502552 - - - -
4 70.673849 70.297531 42.000000 61.027715 177.963297 177.963297 102.282541 102.282541
5 67.569930 66.989912 x 71.238897 168.426371 x x x
6 67.296869 66.452006 x x 161.339721 x x x
7 66.934745 65.971686 x x 159.958722 x x x
8 66.923094 65.889324 x x 158.400172 x x x
9 66.912244 65.838932 66.175736 65.618539 158.226030 x x x
10 66.912035 65.806539 66.258111 65.634530 158.017667 x x x

2.0

1 - - - - - - - -
2 - - - - - - - -
3 120.722260 120.722260 82.919042 82.919042 - - - -
4 117.339642 116.978642 x 103.906310 286.825295 286.825295 181.235783 181.235783
5 113.660396 113.020282 x x 276.898196 275.845577 x 220.636627
6 113.484866 112.613571 x x 267.269712 266.325997 x 259.240388
7 113.247601 112.264166 111.434211 111.152591 266.213200 264.830000 x 286.808535
8 113.246579 112.189996 112.058791 111.603983 264.933622 263.325189 x x
9 113.246303 112.135551 112.495988 111.872020 264.874009 263.089951 x x
10 113.245854 112.094025 112.562079 111.861880 264.809954 262.928937 260.714153 x

3.0

1 - - - - - - - -
2 - - - - - - - -
3 163.268256 163.268256 117.419306 117.419306 - - - -
4 159.769062 159.414625 x 143.421667 384.318425 384.318425 255.851700 255.851700
5 155.762811 155.097118 x x 373.776094 373.229501 255.473175 304.640563
6 155.639179 154.762454 151.298879 x 363.162287 362.175933 x 352.421157
7 155.475049 154.487959 153.647870 153.334781 362.323215 360.924104 x x
8 155.475049 154.408521 154.257210 153.773520 361.277490 359.652011 x x
9 155.474144 154.348106 154.686893 154.032341 361.254334 359.469820 x x
10 155.473848 154.302641 154.759873 154.025320 361.233837 359.337510 358.202983 357.441187

4.0

1 - - - - - - - -
2 - - - - - - - -
3 203.531098 203.531098 150.915215 150.915215 - - - -
4 199.971455 199.619694 x x 475.926595 475.926595 328.200763 328.200763
5 195.745462 195.066235 x x 465.021258 464.483436 x 385.065642
6 195.653702 194.776202 191.896341 x 453.717528 452.706359 x 440.816169
7 195.535485 194.547735 193.671035 193.343218 453.029759 451.624943 x x
8 195.535177 194.463255 194.278540 193.778488 452.163171 450.533964 x x
9 195.532936 194.398503 194.713851 194.042575 452.154007 450.370119 447.620204 x
10 195.532772 194.350424 194.794571 194.040504 452.148052 450.245879 449.401371 448.600616

5.0

1 - - - - - - - -
2 - - - - - - - -
3 242.334879 242.334879 183.765318 183.765318 - - - -
4 238.739591 238.388819 x x 563.773952 563.773952 399.094328 399.094328
5 234.352741 233.665684 x x 552.630093 552.098704 x 463.433094
6 234.282331 233.405545 230.999630 230.911117 540.804720 539.777215 x 526.882127
7 234.194820 233.207198 232.298553 231.961480 540.227793 538.821500 x x
8 234.194059 233.118844 232.903979 232.393330 539.499326 537.871223 527.599736 x
9 234.190797 233.051061 233.345264 232.663493 539.495941 537.713326 535.233890 534.738382
10 234.190714 233.000991 233.432765 232.666033 539.494612 537.589832 536.834713 536.015305

Table 8.22: Hartree-Fock and Coupled-Cluster Singles and Doubles results for a parabolic quantum dot
with 12 and 20 electrons using both standard interaction and effective interaction. We have used the DP
space as model space (see Eq. 8.20) for calculations with standard interaction, and the EC space as model
space for calculations with effective interaction (see Eq. 8.119). The size of the space is denoted by Rb

(shell number), and the oscillator frequency is given by ω. The CCSD energy does not converge within
the iteration procedure (see Section 7.2.4) for certain values of Rb, denoted by “x”. Energy is measured
in effective Hartrees E∗
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N = 12 N = 20
Standard interaction Effective interaction Standard interaction Effective interaction

ω Rb HF CCSD HF CCSD HF CCSD HF CCSD

10.0

1 - - - - - - - -
2 - - - - - - - -
3 424.723373 424.723373 342.837272 342.837272 - - - -
4 421.066552 420.714412 387.852166 x 973.032700 973.032700 741.907454 741.907454
5 416.245656 415.548025 x x 961.371081 960.853435 x x
6 416.221892 415.352162 414.259253 414.204471 948.057077 946.995097 x x
7 416.198611 415.213229 414.221231 413.862491 947.765474 946.367418 x x
8 416.196677 415.115445 414.807209 414.274282 947.410305 945.798531 938.828011 938.708830
9 416.191836 415.040983 415.261980 414.558155 947.409440 945.634643 943.208098 942.653517
10 416.191833 414.985087 415.371069 414.576142 947.404930 945.499122 944.709187 943.856608

20.0

1 - - - - - - - -
2 - - - - - - - -
3 764.669757 764.669757 649.864219 649.864219 - - - -
4 760.999568 760.642727 717.086454 717.085698 1727.547904 1727.547904 1402.547504 1402.547504
5 755.851177 755.158770 757.317038 757.286320 1715.636447 1715.121677 1528.572359 1528.568611
6 755.847874 754.988910 754.752961 754.727375 1701.112340 1700.040683 1636.066502 1636.248392
7 755.846430 754.864771 753.834848 753.463003 1701.000555 1699.622516 1695.229330 1695.426720
8 755.844396 754.761753 754.381289 753.839129 1700.881357 1699.291198 1695.620663 1695.516615
9 755.840282 754.683971 754.833236 754.118115 1700.876899 1699.113200 1696.546369 1695.980919
10 755.840196 754.623201 754.960572 754.149732 1700.866177 1698.965611 1698.009292 1697.143442

50.0

1 - - - - - - - -
2 - - - - - - - -
3 1723.611301 1723.611301 1543.553745 1543.553745 - - - -
4 1719.954910 1719.591333 1651.443071 1651.443062 3834.126475 3834.126475 3322.973815 3322.973815
5 1714.516506 1713.842082 1717.046895 1717.041097 3822.122324 3821.601747 3524.659120 3524.659055
6 1714.514709 1713.670423 1714.072815 1714.062550 3806.466383 3805.411147 3709.512572 3709.510304
7 1714.502278 1713.526638 1712.503731 1712.124312 3806.454602 3805.108329 3810.774973 3810.736980
8 1714.500976 1713.420167 1712.983144 1712.440387 3806.448065 3804.882880 3804.309792 3804.269253
9 1714.498844 1713.340085 1713.411514 1712.690503 3806.442304 3804.694261 3802.079664 3801.509670
10 1714.498639 1713.274652 1713.555168 1712.734499 3806.431632 3804.541353 3803.408939 3802.545757

Table 8.23: Hartree-Fock and Coupled-Cluster Singles and Doubles results for a parabolic quantum dot with 12 and 20 electrons using both standard interaction
and effective interaction. We have used the DP space as model space (see Eq. 8.20) for calculations with standard interaction, and the EC space as model space for
calculations with effective interaction (see Eq. 8.119). The size of the space is denoted by Rb (shell number), and the oscillator frequency is given by ω. The CCSD
energy does not converge within the iteration procedure (see Section 7.2.4) for certain values of Rb, denoted by “x”. Energy is measured in effective Hartrees E∗

H .
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8.2. Effective Interaction

8.2.3 Direct Product Model Space

Table 8.24 shows the CCSD results obtained with an effective interaction using the DP(Rb)
space as model space. The effective interaction is generated in the EC(2Rb) space. The energy

ω Rb N = 6 N = 12 N = 20

0.5

1 - - -
2 12.354365 - -
3 12.370527 x -
4 11.869773 x x
5 11.829131 x x
6 11.791420 x x
7 11.789686 x x
8 11.788671 x x
9 11.788102 x x
10 11.787723 x x

1.0

1 - - -
2 20.812210 - -
3 20.861973 70.313660 -
4 20.213101 68.801111 x
5 20.196498 66.272632 x
6 20.176509 66.045184 x
7 20.171717 65.725357 x
8 20.168871 65.704352 x
9 20.167111 65.690913 x
10 20.165981 65.683076 x

2.0

1 - - -
2 35.773760 - -
3 35.855162 117.074044 -
4 35.075759 115.443302 280.041849
5 35.079981 112.271487 272.331986
6 35.073529 112.140503 264.609591
7 35.067101 111.936896 263.757069
8 35.062850 111.930685 262.611398
9 35.059595 111.921831 262.539444
10 35.057440 111.912895 262.481615

5.0

1 - - -
2 75.716532 - -
3 75.834921 238.494746 -
4 74.924903 236.782140 556.697251
5 74.945590 232.844442 548.909506
6 74.945253 232.835033 538.029207
7 74.939229 232.775676 537.627077
8 74.934352 232.769156 536.989443
9 74.929588 232.758150 536.994956
10 74.926225 232.749369 536.985127

Table 8.24: CCSD energies with effective interaction using the DP(Rb) space as model space. We
present results for systems containing 6, 12 and 20 electrons. The effective interaction is generated in the
EC(2Rb) space. The frequency is denoted by ω and the number of shells in the basis is denoted by Rb.
Note that “x” means that the energy does not converge. Energy is measured in effective Hartrees E∗

H .

converges for all values listed in Table 8.4. We see that the energies for systems containing 12 and
20 electrons are much more “well-behaved” than the energies obtained with the EC model space,
see Tables 8.22 and 8.23. Furthermore, the energy converges in the same way as for standard
interaction, viz.

ECCSD-Veff
(Rb + 1) < ECCSD-Veff

(Rb). (8.125)

This type of convergence therefore seems to be a consequence of the DP space. The CCSD energy
with effective interaction and DP(Rb) as model space, i.e. an interaction generated in EC(2Rb),
is thus always larger than the corresponding energy with EC(Rb) as model space.

By comparing the energies for ω = 1.0 with the DMC results in Table 8.30 we see that
our results are still not within the DMC uncertainty. For the 6-electron system, the difference
between the exact result and the CCSD energy is between 0.0057 and 0.0061. We obtained a
better energy with the EC(Rb) model space. Turning to the 12-electron system we see that the
difference with the exact result is between 0.018 and 0.021. Thus we are closer to the DMC
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energy than the result obtained with the EC(Rb) model space. We have done a polynomial curve
fitting in MATLAB for N = 6 and 12 with ω = 1.0 using the results tabulated in Table 8.24, and
extrapolated the energies to infinity. Table 8.25 shows the results. We see that the extrapolated
energy for N = 6 is closer to the exact energy than the result for Rb = 10. However, we are not
within the uncertainty of the DMC result. Turning to the 12-electron system we observe that the
energy obtained with Rb = 10 is closer to the exact energy than the extrapolated result. This
hints that we are missing important many-body correlations and/or we are missing important
information due to the DP model space. Still, the extrapolated energy is better than the result
obtained with Rb = 10 using the EC space as model space, see Table 8.17.

N = 6 N = 12
Rb CCSD |∆E| CCSD |∆E|

10 20.165981 0.0057-0.0061 65.683076 0.018-0.021
∞ 20.165 0.0047-0.0051 65.679 0.023-0.025

Table 8.25: CCSD energies for N = 6 and 12 with ω = 1.0 and effective interaction (DP model space).
We have done a polynomial curve fitting in MATLAB for N = 6 and 12 with the results tabulated in
Table 8.24, and extrapolated to infinity. The approximate difference to the DMC result in Table 8.30 is
given by ∆E. We observe that the energy for N = 12 and Rb = 10 is closer to the exact energy than
the extrapolated result. For N = 6 we see that the extrapolated energy is the best result. Energy is
measured in effective Hartrees E∗

H .

Table 8.24 shows that the energy does not converge for the parameters listed in Table 8.4.
This was the case for standard interaction as well, see Section 8.1. In the next section we deal
with this problem.

8.2.4 Hartree-Fock Basis

It is unsatisfactory that the CCSD energy does not converge for certain (low) values of ω. In
Section 8.1.8 we saw that the energy with the standard interaction converges when we use a HF
basis. Thus, we propose the same solution for the effective interaction. We use the DP(Rb) space,
i.e. an effective interaction generated in EC(2Rb), since this model space yields the most “well-
behaved” results with standard interaction. Moreover, the HF energy with effective interaction in
EC(Rb) model space only converges for the values listed in Table 8.4. Thus in order to generate
a HF basis for a frequency where the CCSD energy does not converge, we have no choice: we
must use the DP(Rb) space.

Tables 8.26, 8.27 and 8.28 show the CCSD results obtained with a HF basis for ω = 0.2
(N = 6), ω = 0.8 (N = 12) and ω = 1.0 (N = 20), respectively. We observe that the CCSD
energies converge. Thus by including some of the correlations, viz. 1p1h correlations, in the
basis, we obtain convergence.

Rb N = 6

2 6.364656
4 6.034881
6 5.937662
8 5.938335
10 5.939177

Table 8.26: CCSD results for the 6-electron system with ω = 0.2 obtained by using a HF basis (see
Eq. 8.92). We have used an effective interaction and DP model space. The effective interaction is
generated in the EC(2Rb) space. Energy is measured in effective Hartrees E∗

H .

8.3 Comparison with other CCSD Calculations

Electronic structure calculations of quantum dots with the CC method have to our knowledge
not been done to a very large extent. However, T. M. Henderson et al. [48] and I. Heidari et al.
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Rb N = 12

4 58.838127
6 55.981295
8 55.614801
10 55.593058

Table 8.27: CCSD results for the 12-electron system with ω = 0.8 obtained by using a HF basis (see
Eq. 8.92). We have used an effective interaction and DP model space. The effective interaction is
generated in the EC(2Rb) space. Energy is measured in effective Hartrees E∗

H .

Rb N = 20

4 171.485601
6 158.843069
8 156.377199
10 156.012761

Table 8.28: CCSD results for the 20-electron system with ω = 1.0 obtained by using a HF basis (see
Eq. 8.92). We have used an effective interaction and DP model space. The effective interaction is
generated in the EC(2Rb) space. Energy is measured in effective Hartrees E∗

H .

[49] have calculated ground state energies of parabolic quantum dots in two dimensions using
the CCSD method. Their results are presented in Table 8.29. From Table 8.5 we see that our

N ω CCSD energy [48] CCSD energy [49]

2

0.4 1.377 1.366
0.6 1.939 1.932
0.8 2.479 2.475
1.0 3.003 3.001

6 1.0 - 20.229
12 1.0 - 65.982
20 1.0 - 107.670

Table 8.29: CCSD results for a parabolic quantum dot in two dimensions. The results are taken from
[48, 49]. Energy is measured in effective Hartrees E∗

H .

results for the 2-electron system are somewhat higher than the energies in Table 8.29. However,
our results obtained with an effective interaction are lower, see Table 8.20. This is what we
would expect since CCSD calculations with an effective interaction yield exact results for the
2-electron system. Turning to the 6-electron system we see from Table 8.7 that our CCSD energy
for ω = 1.0 obtained with the standard interaction is closer to the exact energy (see DMC result
in Table 8.30) than the result obtained by [49]. Our results with an effective interaction (both
EC and DP space) are even better, see Tables 8.20 and 8.24. Furthermore, for the 12-electron
system, our result with standard interaction is also closer to the DMC result in Table 8.30, see
Table 8.7. The results obtained with the effective interaction (EC and DP space) in Tables 8.22
and 8.24 are even closer. Finally, turning to the 20-electron system, we observe that the result
obtained by [49] is completely different from our results in Tables 8.16 and 8.28. The difference
is approximately 50. We see from Table 8.7 that the HF energy is in agreement with our CCSD
results. Moreover, we have reproduced the HF result obtained by [67] with N = 20 and ω = 1.
The result given in [49] is therefore most probably a misprint.

8.4 Comparison with other Many-Body Methods

Table 8.30 shows the ground state energies for parabolic quantum dots in two dimensions using
other many-body methods. We have already compared our results with the DMC results [70].
As pointed out previously, the exact energy is within the uncertainty of the DMC result [62],
and we will therefore refer to these results as the “exact” results.

Consider the 2-electron system. The FCI result [76], which is calculated with Rb = 8, is
equal to our CCSD energy in Table 8.5 for Rb = 8, as expected. Remember that for a given
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Rb, FCI and CCSD should yield the same result in the 2-particle case [30]. Furthermore, the
VMC result is somewhat lower than our result for the 2-electron system obtained by using the
standard interaction. However, with an effective interaction, the CCSD energy is exact with a
precision close to numerical accuracy, i.e. we reproduce Taut’s analytical result [69]. The DFT
energy is calculated by using the so-called local density approximation (LDA) [50]. We see that
our CCSD energy with standard interaction is closer to the exact result for Rb ≥ 3, meaning
that the LDA is not a very good approximation for the 2-electron system.

Turning to the 6-electron system we see that our CCSD energies obtained by both the
standard and effective interaction are closer to the DMC result, i.e. the exact result, than the FCI
energy. The energy obtained with standard interaction is actually better than the FCI energy
for Rb ≥ 6. Comparing our result for Rb = 10 (standard interaction) with the VMC result, we
see that the VMC energy is somewhat closer to the exact energy, see Table 8.5. Table 8.12 shows
the CCSDT energy with standard interaction in 10 shells. We see that the VMC result is still
closer to the exact energy. This indicates that the model space is too small. Increasing the size
of the basis to Rb = 14, the CCSD energy with standard interaction is closer to the DMC result,
i.e. the exact energy, see Table 8.11. When the size of the model space increases to Rb = 16 (see
Table 8.11) we obtain an even better energy, as expected. Furthermore, our CCSD energies with
effective interaction in EC and DP model space (Rb = 10) are closer to the DMC result than the
VMC result. The result obtained with Rb = 16 is even better, see Table 8.18.

For the 12-electron system we observe that the difference between the FCI energy and the
DMC energy is approximately 4.6. Our CCSD calculation with standard interaction yields a
better energy for Rb ≥ 3. Thus, by including excitations into shell 3, the CCSD yields an energy
that is closer to the exact result. For Rb = 10, the difference between the FCI and CCSD result
is approximately 4.5, see Table 8.7. The CCSD calculation with an effective interaction yields
a even better energy, as expected. Furthermore, we observe that the VMC result is somewhat
closer to the exact result than the CCSD energy with standard interaction for Rb = 10. However,
by using an effective interaction, the CCSD energy is closer to the exact energy.

N Method ω Energy Ref.

2

Analytic 1.0 3 [69]
FCI 1.0 3.009236 [76]

VMC 1.0 3.0025(1.2) [67]
DFT (LDA) 1.0 3.066 [50]

6
VMC 1.0 20.1910(3.5) [78]
DMC 1.0 20.16010(16) [70]
FCI 1.0 20.316754 [67]

12
VMC 1.0 65.790(1.9) [67]
DMC 1.0 65.70281(78) [70]
FCI 1.0 70.312502 [67]

Table 8.30: Ground state energies for parabolic quantum dots in two dimensions obtained with other
many-body methods. The table shows results obtained by Full Configuration Interaction (FCI), Diffusion
Monte Carlo (DMC), Variational Monte Carlo (VMC), and Density Functional Theory (DFT) with local
density approximation (LDA). The analytic result for the 2-electron system with ω = 1.0 is also tabulated.
Energy is measured in units of effective Hartrees E∗

H .
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Chapter 9

Conclusions

We have in this thesis studied numerically systems consisting of several interacting electrons
in two dimensions, confined to small regions between layers of semiconductors. These systems
are dubbed quantum dots in the literature. We have considered a specific model called the
parabolic (or circular) quantum dot. In this approximation the confinement potential is given by
the harmonic oscillator potential, and the electron-electron interaction is given by the standard
Coulomb interaction. The main aim of the thesis was to study the reliability of the Coupled-
Cluster Singles and Doubles (CCSD) method for calculating the ground state energies of parabolic
quantum dots in two dimensions. Another objective was to study the accuracy of the method
for different sizes of the model space, and for different strengths of the confinement potential.
In order to investigate the method we have developed a CCSD program in the m-scheme. The
program can in principle handle other electronic systems such as atoms, molecules and other
quantum dot models. We have also created a Restricted Hartree-Fock (RHF) program in order
to investigate the CCSD machinery with another basis and to study (in combination with CCSD)
the correlations in the system.

Our studies have been limited to closed-shell systems. We have considered quantum dots
containing 2, 6, 12 and 20 electrons. The reason that we have not done calculations for systems
with more electrons is primarily due to the fact that CCSD calculations with 20 particles take
roughly 3 days. Moreover, there have to our knowledge not been published numbers obtained
with ab initio methods for systems containing more than 20 electrons. We have calculated
the HF and CCSD energy for frequencies ranging from 0.4 up to 50.0 with standard Coulomb
interaction. In this thesis, we have not investigated when the closed-shell model breaks, i.e. for
which strengths of the applied magnetic field the model fails.

We have found that the CCSD results obtained by using the standard Coulomb interaction
are better than the Full Configuration Interaction (FCI) results in the literature. This is what
we expect since the accuracy of the FCI method is very limited for N ≥ 4, see [70]. Compared
with the Variational Monte Carlo (VMC) results, the CCSD energies obtained with the standard
interaction are somewhat higher. However, by increasing the size of the model space to Rb = 14
and 16, our result for the 6-electron system is closer to the Diffusion Monte Carlo (DMC) energy.
This reflects the importance of a large model space in order to obtain a better accuracy. We have
therefore employed an effective interaction in our calculations. The CCSD calculations with an
effective interaction reproduce the analytical results for the 2-electron system [69]. Moreover,
the accuracy of the results obtained for larger systems are considerably improved, where we are
very close to the DMC results for 6 and 12 electrons. Increasing the size of the model space to
16 shells for the 6-electron (ω = 1.0) system leads to an even better energy. The extrapolated
energy is within the uncertainty of the DMC result for 6 electrons. We conclude that an effective
interaction is necessary in order to improve the accuracy of the CCSD calculations. Moreover,
the size of the model space is still important when employing an effective interaction.

We have seen that the inclusion of Triples brings us closer to the DMC energy for the 6-
electron system with a standard interaction and ω = 1.0. However, when using an effective



Chapter 9. Conclusions

interaction, CCSD yields a better energy than CCSDT for Rb = 10. Since the extrapolated
CCSD energy is within the uncertainty of the DMC result, this hints that Triples excitations are
not that important in this case. In order to extrapolate the CCSD energy for the 12-electron
system, we are forced to use the direct product model space. The extrapolated energy is very
close to the DMC result. However, we are still not within the uncertainty. We have four sources
of errors:

1. The size of the model space.

2. The effective interaction is generated by considering the 2-particle system, leading to
missing many-body correlations.

3. We have limited our CC calculation to Singles and Doubles. Thus we are missing Triples
(and in principle all order excitations op to N) corrections in our calculations.

4. We are only including certain interaction elements when using the DP model space.

It is clear that our model space is too small forN ≥ 6. How important the many-body correlations
that are lost when we generate an effective interaction by considering the 2-electron system, is
in general unknown. For N = 6 and ω = 1.0, it seems that they are not that important.
However, we cannot draw any general conclusions without comparing with more DMC results.
Furthermore, the importance of Triples corrections is not clear either. We expect that for
sufficient low frequencies and large systems, many-body correlations become more important. In
order to investigate the importance of Triples and to extract general tendencies, more CCSDT
calculations are needed for different strengths of the confinement potential. Moreover, these
results must be compared with DMC results.

In the analysis of the correlations energies (FCE, CE and CCSD-EC) we found that, for a
given number of electrons, the system becomes more correlated when the frequency decreases.
The CCSD energy does not converge when the relative contribution from the interaction is
approximately 50-60% of the total energy. We obtain relative contributions over 50% for
sufficiently low frequencies. Moreover, for a given frequency, when the number of electrons
increases, the system becomes more correlated. This explains why we have more problems with
convergence for large systems. We conclude that the CCSD energy does not converge when the
system is sufficiently correlated. This feature applies to CCSD calculations with both a standard
interaction and an effective interaction. In order to obtain convergence, we need a Hartree-Fock
basis.

In the analysis of the size of the model space we found that the accuracy of our CCSD
calculations are worse for low frequencies and large systems. Stated differently, the accuracy of
our calculations are worse for more correlated systems. In order to obtain an improved accuracy,
we need a larger model space in combination with an effective interaction, and possibly Triples
corrections.

Future Work and Perspectives

CC theory offers a many-body formalism which allows for systematic expansions and error
estimates in terms of truncations in the single-particle basis, see [79]. Our calculations can
in principle always be improved by increasing the size of the model space and include higher
order excitations. Our CCSD code is neither optimized, nor parallelized. By realizing this, we
expect to be able to study quantum dots containing more than 50 electrons with a larger basis,
probably 16-20 shells. Furthermore, an implementation of CCSDT (alternatively CCSD(T),
see [56]), with subsequent optimization, is necessary in order to accommodate for important
Triples corrections. When this is done, it would be interesting to move over to more realistic
systems such as coupled quantum dots. Since the code is developed in the m-scheme, it is able
to handle systems without spherically symmetric potentials. Furthermore, an implementation
of Equation-of-Motion Coupled-Cluster (EOM-CC) [56] with particle attached/removed would

170



be interesting. We could then study the addition spectra of quantum dots and compare with
experimental results.

Another interesting field is the link between ab initio methods and Density Functional
Theory (DFT). The main idea is that an ab initio method, such as the CC method, can be
used to construct a density functional for a specific system by using the so-called adiabatic-
connection method, see [19]. One can then compare with standard functionals (which are
approximations) that are frequently used in DFT calculations [54], and investigate differences
and general tendencies.

This formalism opens up perspectives for interesting applications and studies of current
physics. One can extract spectroscopic factors [80], study the role and effects of spin-orbit
interactions [81, 82], and so forth, and compare with experimental results. Furthermore, the
coupling between CC and DFT may lead to more accurate DFT calculations of systems containing
a large number of quantum dots [19]. One can then for example study and predict the properties
of solar cells doped with a large number of quantum dots with an (possibly) improved accuracy.
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Appendix A

Solution of the Single-Electron

Schrödinger Equation

We will now derive the solution of

− ~
2

2m∗

(
d2

dr2
+

1

r

d

dr
− m2

r2
+
emB0

~

)
R(r) +

(
1

2
m∗ω2r2 − εr

)
R(r) = 0, (A.1)

where R(r) is the radial part of the energy eigenfunction, and εr is the energy eigenvalue (spatial
contribution). See Sec. 4.3). This is the radial Schrödinger equation for a single-electron parabolic
quantum dot subjected to a constant magnetic field in the z-direction. The idea is to build up an
ansatz by considering the limits r → 0 and r →∞. When r → 0, m2/r2 dominates completely,
and Eq. (A.1) reduces to

r2
d2R(r)

dr2
+ r

dR(r)

dr
−m2R(r) = 0. (A.2)

We make the ansatz

R(r) = rs, (A.3)

and insert this expression into Eq. (A.2), yielding

s(s− 1)rs + srs −m2rs = 0.

We thus obtain that

s = |m| , (A.4)

leading to

lim
r→0

R(r) = rabsm, (A.5)

where R(r) is the solution of Eq.( A.1). Furthermore, in the limit r →∞, 1
2m

∗ω2r2 dominates,
and Eq. (A.1) reduces to

d2R(r)

dr
+

1

r

dR(r)

dr
− m∗2ω2r2

~2
R(r) = 0. (A.6)

We make the ansatz

R(r) = etr
2

, (A.7)

where t is a constant, and insert this expression into Eq. (A.6), yielding

4t2r2 + 4t− m∗2ω2r2

~2
= 0. (A.8)
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We obtain

t = ±m
∗ω

2~
. (A.9)

Mathematics allow both negative and positive values of t. However, a positive value leads to a
wavefunction that cannot be normalized. Thus we choose the negative value. We obtain that

lim
r→∞

R(r) = e−
m∗ω
2~

r2

. (A.10)

We now make the following ansatz to the solution of Eq. (A.6),

R(r) = r|m|e−
m∗ω
2~

r2

g(r), (A.11)

where g(r) is a function that must satisfy

lim
r→0

g(r) = 1 (A.12)

lim
r→∞

g(r) =
1

r|m|
. (A.13)

Inserting the ansatz into Eq. (A.1) yields
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(A.14)

We define

Λ ≡ 2m∗εr
~2

+
emB0

~
, (A.15)

and

β ≡ m∗ω

~
. (A.16)

By using the definitions above we obtain

d2g(r)

dr2
+
(
1 + 2 |m| − 2βr2

) 1

r

dg(r)

dr
− 2β (1 + |m|) g(r) + Λg(r) = 0. (A.17)

Furthermore, we define

x = βr2 (A.18)

λ =
1

2

(
Λ

2β
− |m| − 1

)
, (A.19)

leading to

x
d2g(x)

dx2
+ (1 + |m| − x) dg(x)

dx
+ λg(x) = 0. (A.20)

This equation is called the associated Laguerre differential equation, and the solutions are the
Laguerre polynomials. We assume g(x) is analytic in the region 0 < x <∞. The Laurent series
is given as [29]

g(x) =

∞∑

n=0

anx
n+s, (A.21)
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where s is real number and a0 6= 0. Inserting Eq. (A.21) into Eq. (A.20), yields

x

∞∑

n=0
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After changing some dummy indices we obtain

∞∑

n=0

an (n+ s) (n+ s− 1) xn+s−1

+ (1 + |m|)
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−
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+λ
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an−1x
n+s−1 = 0. (A.23)

For n = 0 we obtain

a0s(s− 1) + a0s(1 + |m|) = 0

leading to

s(s+ |m|) = 0. (A.24)

Thus we have two possibilities: s = 0 and s = − |m|. However, when s = − |m|, the eigenvectors
diverge at x = 0. We must therefore choose s = 0. The equation reduces to

∞∑

n=0

ann (n− 1) xn−1

+ (1 + |m|)
∞∑

n=0

annx
n−1

−
∞∑

n=1

an−1 (n− 1) xn−1

+λ

∞∑

n=1

an−1x
n−1 = 0. (A.25)

For n ≥ 1 we obtain the following recurrence relation

an+1 =
n− λ

(n+ 1) (1 + |m|+ n)
an. (A.26)

Given a boundary condition, the constant a0 can be determined, yielding an for n ≥ 1. Thus,
we have found the the solution of Eq. (A.1). It is given by Eqs. (A.11) and (A.21), with s = 0
and an determined by Eq. (A.21). We obtain the following expression for g(x),

g(x) =

[
1− λ

1 + |m|x−
(1− λ)λ

2 (1 + |m|) (2 + |m|)x
2 + ...

]
a0. (A.27)
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We observe that the series converges when λ ≥ 0. The normalization condition requires that the
series terminate after a certain n. This is obtained when

n = λ. (A.28)

We end up with the following allowed values for n (and λ),

n = 0, 1, 2, 3, 4, ... (A.29)

Since Eq. (A.20) can be written as

D̂g(x) = 0, (A.30)

where

D̂ = x
d2

dx2
+ (1 + |m| − x) + λ, (A.31)

we can remove a0 from Eq. (A.27). The solutions of Eq. (A.20) are the associated Laguerre
polynomials L|m|

n . The Rodrigues representation is given as

L|m|
n (x) =

exx−|m|

n!

d2

dx2

(
e−xxn+|m|

)
. (A.32)

The polynomials can also be written as a finite series,
n∑

k=0

(−1)k
(n+ |m|)!

(n− k)!(|m|+ k)!k!
xk. (A.33)

We finally obtain the solutions of Eq. (A.1),

n L
|m|
n (x)

0 1
1 1 + |m| − x
2 1

2 (1 + |m|) (2 + |m|)− 2 (2 + |m|)x+ x2

Table A.1: Lowest order associated Laguerre polynomials.

R(r)nm = Knmr
|m|e−

1

2
βr2

L|m|
n (βr2), (A.34)

where Knm is the normalization constant determined by

1 = K2

∫ ∞

0

∣∣∣r|m|e−
1

2
βr2

L|m|
n (βr2)

∣∣∣
2
rdr. (A.35)

The spatial part of the eigenfunctions reads (see Section 4.3)

φnm(r) =

√
n!

π(n+ |m|)!β
1

2
(1+|m|)r|m|e−

1

2
βr2

L|m|
n (βr2)eimφ, (A.36)

where

n = 0, 1, 2, 3, ... (A.37)

m = 0,±1,±2,±3, ... (A.38)

The energy eigenvalue εr is determined by combining Eqs. (A.28) and (A.19) into

Λnm = 2β (1 + |m|+ 2n) . (A.39)

Inserting the in Eq. (A.15) finally yields

εr,nm = (1 + |m|+ 2n) ~ω +m~ωB, (A.40)

where ωB is defined in (4.46).
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