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Abstract 

This master thesis introduces the reader to the general theories behind electromagnetic fields. 
The general theories are put in a signalling perspective and certain guidelines for proper 
antenna design are ascertained. 
Then problems related to the construction and development of a satellite ground station for 
LEO-satellite communication, the Oslo Ground Station and its sub-components, are 
discussed. Some forms digital baseband modulation is presented, resulting in the selection and 
implementation of one of these. A means of interfacing ground stations remotely is suggested, 
and the design and production of such a system is presented. Also, in its design, a way for 
multiple remote users to operate the ground station is achieved. 
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1 Introduction 

 
In the recent years, several universities have begun utilizing small size LEO1-satellites for 
various scientific and educational applications. The University in Oslo, in specific, wants to 
make high altitude measurements covering a larger area than what can be done with sounding 
rockets2 or weather-balloons.  

I was given the task of constructing and describing the Oslo satellite ground station and 
produce a “pre-GENSO5” method for multiple users to operate a remote ground station. The 
University in Oslo is planning the construction of CubeStar (See chap. 1.1), a cube-sat with 
plasma-measuring probes. This satellite has an expected launch-date in 2012, so a modulation 
and demodulation-plan should be presented. 

To summarize the goals of this thesis: 

 Construct and describe the basic hardware of the Oslo Satellite Ground Station. 

 Proposes, and possibly produce a system for remotely operating the ground station. 

 Facilitate the construction of a communication-architecture on the CubeStar satellite 
for satellite to ground-station communication. 

 

 

 

 

 

 

                                                 
1 Low earth orbit; Has an altitude of approx. 100km to 900kmwith a corresponding orbital time of roughly 1-2 
hours.  The satellites are normally placed in a highly inclined orbit so that the satellite will “scan” the entire 
surface of the earth during a 12 or 24 hour period. 
2 A sounding rocket is an instrument-carrying rocket designed to take measurement and perform scientific 
experiments during a sub-orbital and/or parabolic flight through the upper layers of the atmosphere. 
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1.1 The Cube-Star project 

The UiO cube-sat nicknamed “Cube-Star” has an expected launch date in 2012, and 
everything from chassis to antennas are either made or assembled at the university in Oslo. 
The satellites scientific payload consists of two or four of the  
A newly developed plasma-measuring-probe has been proven to have an exceptionally high 
resolution in both the temporal and signal domain, and was flight-proven in 2008 on a 
sounding rocket3. This measuring-probe has high enough accuracy to be able to measure the 
structure dynamics of electronic streams and currents that exists in the upper atmosphere.  

This “plasma” form a significant part of what is popularly called “space weather”. The 
structure dynamics of the upper part of the atmosphere are, to a detailed level, mostly 
unknown, and a satellite in a low orbit may yield large amounts of scientifically interesting 
data. Though, with small LEO satellites, getting large amounts of data down to earth may 
prove a hard thing to do as the cube-sats4 by their small size limits the amount of transmit 
power available. Also, it would probably prove difficult to rely on any directional antenna on-
board to boost the signal as one would not normally expect the satellite to be able to point the 
antenna in any given direction.  

On top of all of that, due to their low altitude, the amount of “free sight”-time to any given 
satellite ground station would be fairly small. For example, the Danish “ATUSAT-II” 
launched in April 2008, currently orbiting at an altitude of 622km and with an inclination of 
98º, would only pass München(Munich) 6 times during a 24 hour-period, accumulating an 
optimistic 55 minutes of  communication-time. 

Overall improvement can be achieved in two ways; Increase the rate of which data is 
downloaded, or increase the amount of time that data can be downloaded. The first solution 
has its limits as each satellite is normally assigned a single 25 kHz channel, and that by itself 
limits the maximum data-rate. So one are left with the second option; increasing the downlink 
time. How do you do that? Simple; Increase the amount of ground stations, and spread them 
across the world!  

But no matter how good an idea a satellite ground-stations (GS) network sounds like, there 
are major issues to be addressed. In order for such a network to exist, a common interface, not 
only to each ground station, but to the system in a whole has to be created. To complicate 
everything, nearly every ground station has its own mixture of instruments and equipment. 
This is because, as in most satellite launches the last decades, for every new satellite, a new 
layout and communication-scheme is chosen. This is done in order to maximize the 
bandwidth utilization and because technology is in a constant development. For most 
expensive satellite projects, last years standards just don’t cut it.  

For CubeSats in particular, the educational gain (a.k.a. the fun of trying) has lead to that not 
only the satellites themselves, but also each belonging ground station is specialized non-
standard setups. 

The GENSO-project5 aim to harvest the multitude of ground stations, but its fully functional 
date is not yet known, although the first public software release was expected in September of 
2009.  

                                                 
3 See http://www.rocketrange.no/campaigns/ici-2/ for campaign details 
4 A Cube-Sat is a type of student space research satellite with a standardized outward dimension of 10×10×10 
centimeters, alternately combining up to three of these in arrow forming a 20×10×10 or 30×10×10-size satellite. 
5 Global Educational Network for Satellite Operations; See 
http://www.esa.int/SPECIALS/Education/SEMKO03MDAF_0.html 
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CubeSats are most often given a low orbit where the satellites experience a slight atmospheric 
drag which inexorably makes them de-orbit. That, in its essence, is a good thing, as one 
normally tries to avoid old space-junk flying around. A short life-span fits the small cube-sats 
well, as they are relatively low-cost. However, as their numbers grow, the need for securing a 
controlled de-orbit is of major concern 

LEO-satellites have an orbit far closer to the earth than for example GEO6-satellites. LEO-
satellites have an orbital time of roughly 1-2 hour area, resulting in relatively short clear-sight 
windows of communication from a satellite to a geographically fixed earth station. Normally 
a satellite-pass takes from a minimum of 3, to a maximum of 9 minutes. Similarly sized 
satellite units will inexorably make the signal, or EIRP7, from the satellite relatively weak.  

One of the major issues in LEO-satellite communication is the problems that arise when using 
a narrow beam directive antenna. Since the satellites do not have a fixed location relative to 
ground as in GEO-satellites, any use of directive antennas much include a way of pointing it 
in the correct direction at the correct time. Since such a system is difficult to include on a 
small size satellite, the answer is to use a high gain directive antenna on the ground. This calls 
for a ground station system that is able to steer an antenna rig in the correct direction and 
track the satellite as it traverses across the sky. In addition, the system must account for the 
varying received frequency from the effects of Doppler-shift that occurs due to the high speed 
of the satellite relative to ground. 

During this master thesis, a proposal for controlling a ground station through the use of a 
microcontroller is made.  

 
 
 
 
 
 
 

                                                 
6 Geostationary earth orbit, an orbit with an altitude of approx. 42 357km, and an orbital time of exactly 24 
hours, and therefore has a fixed sub-satellite point, meaning that the satellite is stationary from a surface of the 
earth point of view. 
7 Effective Isotropic Radiated Power 
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2 Antenna theory 

2.1 General electro-magnetics 

When transmitting an electromagnetic signal, there are two forces at work: The magnetic field 
(H) and the electric field (E). The electric field exists between any two points with a 
difference in charge q. 

 
Figure 2.1: Electric field (E) due to point changes 

Initially the two forces do not affect one another. For example; a charged capacitor and a 
static magnet lying next to each other would not affect each other respective charge or field-
strength.  

However, this is only true when the components are lying still.  

 

As is may prove hard to produce any practical way of signalling with static magnets and 
electrical fields alone, we must introduce another way of producing a magnetic field. As such, 
any moving charge, current ( tqI  ), induces a magnetic field. 

 
Figure 2.2: Magnetic field (H) due to moving charge in a conductor 

Keeping the rate of change, or current (I), constant( 0 tI ), as with direct current (dc), the 
electric field and magnetic field remain independent of each other. The moment a set rate of 
current is established, the induced magnetic field does not change. 
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When time-varying currents ( 0 tI ) occur such as in alternating-current (ac) sources, 
then the time-varying E and H fields are not independent, but coupled. The relationship 
between the two fields can be described by the Maxwell equations in a differential form (in 
the absence of magnetic or polarisable media): 

 

 
  

Gauss' law 
for 

electricity

 
  

Faraday's 
law of 

induction

   
Gauss' law 

for 
magnetism

 

,where

 

Ampere's 
law 

Table 2.1i: Maxwell’s wave-equations when in absence of polarisable media.  

is a vector differential operator, where is the divergence and is the curl, is the 
constant pi, E is the electric field, B is the magnetic field, is the charge density, c  is 
the speed of light (in vacuum), and J is the vector current density. 

 
Or in a similar way when describing the field-variations in the presence of polarisable media: 
 

 
,where 

 

Gauss' law 
for 

electricity

 
  

Faraday's 
law of 

induction

   
Gauss' law 

for 
magnetism

 

,where 

 

Ampere's 
law 

Table 2.2ii: Maxwell wave-equations when in presence of polarisable media 



 13

The equations in table 2.1 and table 2.2 define the amplitude of waves in time and space. 
Theoretically these equations can be applied to any system that exhibits wave-characteristics. 
However, for this application, constants for electric and magnetic fields are assumed, and 
general formulas for describing electromagnetic wavesiii can be made. The equations can 
show how electromagnetic waves traverse space, and a formula for the speed of light is a 
direct tangent from these equations. Also, these equations may be simplified into more system 
specific applications to clarify concepts or make assumptions. 

2.2 Electromagnetic waves 

Radio-signals are by nature electromagnetic waves, and thus can be described by Maxwell’s 
wave-equations. The coupling between time electric and magnetic fields produces 
electromagnetic waves capable of travelling through free space and other media. In a nutshell, 
a varying E-field (electric) induces a perpendicular H-field (magnetic), and then in reverse. 
Each “induction” follows the other in a series, making the wave-packet (photon) traverse 
space at the speed of light.  

 
Figure 2.3:  Depicting a light-beam as a series of perpendicular magnetic and electric fields. 

The speed of this conversion (in vacuum) is set by the vacuum permeability (the magnetic 
constant), μ0, and the vacuum permittivity (the electric constant), ε0. An important 
consequence of Maxwell's equations is that the speed of light in vacuum is independent of the 
frequency and wavelength of the waves, unlike many other types of waves in physics, 
including light travelling through a transparent material such as water or glass. In materials 
the speed of light in not the same as in vacuum as the permeability and permittivity is 
different. Also, as an example, the relative permittivity is frequency-dependent following the 
formula: 

0

)(
)(


 r , where )(  is the complex frequency-dependent absolute permittivity of the 

material. 
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2.3 Guided electromagnetic waves 

Electromagnetic waves can travel through both space and other media. As such, one can 
design structures to either contain or radiate electromagnetic energy. One specific application 
is using cables to convey electromagnetic signals from one point to another without radiating 
the signal into space while obtaining low signal attenuation (loss).  

2.3.1 The telegraphers equation 
For propagation over wires and cables, Maxwell’s equations can be simplified into the 
telegraphers equationiv by modelling the cable into infinite elements of 2-port components 
(see figure 2.4 below). 

 
Figure 2.4: Elementary components of a transmission line 

Solving the telegrapher’s equation yields travelling wave solutions for voltage and current 
waveforms. The waveforms can be plotted with respect to time and position on the 
transmission line.  

2.3.2 Transmission lines 
Most transmission lines are simply characterised by their impedance 0Z .  

 
Figure 2.5: A simple model of a transmission line 

Depending on the impedance of the load LZ , travelling waves can give rise to reflections and 

standing waves. Normally systems are designed so that the loads 0Z and LZ  are close to equal 

at the system operating frequency. This avoids reflections at both the terminating ends (Note 
that this is frequency dependent). Any variation in impedance (such as a connector or 
temperature variation) in the transmission line may also produce unwanted reflections. In 
some cases reflections are used on purpose, as when amplifying a signal by creating standing 
waves on transmission lines (such as the PCI-bus), or when matching two systems with 
dissimilar impedance characteristics (see chapter 3.3.1 - Getting the correct impedance, page 
40).  
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Figure 2.6: Looking at the transmission line with respect to voltage, time and placement x. 

For low frequencies, or DC-current, transmission line characteristics are not a concern. The 
reason for this is because the electrical lines, most often, are very short in relation to the 
wavelength of the signals they carry. For instance, the wavelength of a 50Hz AC power-line 
is 

 
f

ec
 km

Hz

skm
6000

50

1/300000



  [Eq. 2.1] 

e represents the velocity-factor of the transmission line. 

c represents the speed of light. 

f is the measured frequency. 

 

Considering the setup in Figure 2.6 above, and assuming a no-reflection scenario, the voltage 
between A and 'A  at point 0x , when driving the source, would be given from the formula: 

 )cos(),0( 0' tVtVAA    [Eq. 2.2] 

The resulting voltage between B and 'B at any length x at time t is given by the formula:  

 
)

2
cos(

)cos(),0(),(

0

0''






x
tV

ec

x
tV

ec

x
tVtxV AABB












 [Eq. 2.3]  
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Evaluating the last term, 

 

 x2

 [Eq. 2.4] 

shows that for low frequency signals, the voltage at any point on the transmission line only 
varies with respect to time: 

 )
2

cos(),( 0' 
 x

tVtxVBB


  

 )cos(0 tV   [Eq. 2.5]  

 

2.3.3 E and H-fields for transmission lines 
Transmission lines are, as stated earlier, constructed so that the electromagnetic-waves they 
conduct are not radiating into space. To achieve this, a general understanding of how the 
fields behave is a must. 

In order to construct a decent antenna cable, there are only two main concepts that will 
produce a product capable of transferring high-frequency signals without too much cable loss; 
the two wire construct, and the coaxial cable. 

The two-wire transmission line has the advantage that the direction of current flow in one 
conductor is always opposite to the other, so the fields strengthen one other between the 
conductors but cancel each other out away from the conductor. In order for this type of cable 
to maintain constant impedance, a constant distance between the conductors has to be 
maintained. Also, no metallic conductors should be in direct vicinity of the transmission line 
as this will interfere with both the E-field and the H-field. 
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Figure 2.7: The construction (a), visualization of the E-field (b) and the magnetic field (c) in a two-wire 

setup. 

 

Due to the nature of electromagnetics, a signal in this type of cable has a velocity 
factor e close to 0.95. This means that a signal in this type of cable moves with a speed at 95% 
of the speed of light c . 

The fact that this type of cable is influenced by nearby metallic objects makes it hard to use 
with any advanced system components like cable rails, gutter pipes and rigs as they are 
mostly made of metal. 

The coaxial design makes such a cable much less sensitive to nearby metallic (or generally 
conductive) objects mostly due to the fact that the E-field is contained within the cable itself. 

 
Figure 2.8: Visualization of the E-field (a) and the magnetic field (b) in a coaxial design. 

The coaxial outer conductor is normally attached to ground. Because of this, the centre 
conductor is often looked on as a single signal carrier. 

The coaxial transmission line typically has a velocity factor of 0.66.  
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2.3.4 Reflections 
From Eq. 2.3 above, one can plot the voltage across the cable at any specific time interval. 
However, this does not account for reflections when the cable-end impedance of are not the 
same as the impedance of the cable itself.  

If a signal is travelling along a transmission line with a set value of impedance and then meets 
another part of the transmission line with different impedance, parts of the signal is 
transmitted onwards, while the rest is reflected. Depending on whether the transmission was 
from a high to a low impedance, or opposite, the reflection has either a 180º (π) or a 0º degree 
phase-shift (see figure 2.9 and figure 2.10 below). 

 
Figure 2.9: The signal reflection gains a 180° phase shift when going from relatively high impedance to 

lower impedance. 
 

 
Figure 2.10: The signal reflection has no phase shift when going from relatively low impedance to higher 

impedance. 
 
The size of the reflection is, of course, zero, when there is no difference of impedance. When 
there is a reflection, one can calculate the reflection coefficient using the complex ratio of 
the electric field strength of the reflected wave (E −) to that of the incident wave (E +). The 
ratio describes how much of an incoming signal would be reflected back when the signal is 
transmitted between the two devices or mediums. 

 




E

E
 [Eq. 2.6] 

Notice that a negative reflection coefficient corresponds to a phase shift of 180° (or π) of the 
reflected wave. The ratio is +1 when there is a complete positive reflection (open circuit). The 
ratio is -1 when there is a complete negative reflection (short circuited). 

The reflection coefficient may be established using other types of field or circuit parameters, 
one of them being the characteristic impedance of the source and load impedance measured 
individually. 

 
SL

SL

ZZ

ZZ




  [Eq. 2.7] 

From eq. 2.7 one can easily postulate that when 0 SL ZZ , the return loss is 0. If the 

source SZ has lower impedance than the load LZ , a large percentage of the signal is reflected.  

Phase-shift: π or 180° 

High impedance, ZS Low impedance, ZL

Phase-shift: 0 

High impedance, ZL Low impedance, ZS
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Another way of looking at the reflection coefficient is by the voltage standing wave ratio, or 
VSWR. When a signal is reflected, standing waves are formed on the incident cable. At some 
points of the cable the incident and reflected wave will interfere constructively, while 
destructive at other. Measuring the minimum and maximum absolute voltage along the cable, 
or at different frequencies, the voltage standing wave ratio can be found for any device. 

 
min

max

1

1

V

V
VSWR 




   [Eq. 2.8] 

Only the magnitude  is of interest when finding the VSWR. 

2.4 Antennas 

There are many types of antennas, where most of them are designed to achieve specific tasks. 
Some are made so that they can work over a wide spectrum of frequencies (broadband), 
others supporting only a narrow bandwidth. Antennas can be specialized to fit certain size 
limitations, cost limitations or durability demands.  

Other antennas, normally the slightly bigger ones for stationary mounting, have a high 
directional gain enabling it to receive weak signals from far off places. This is the type of 
antenna we need to be able to communicate with a small satellite with limited transmit power. 
In order to explain how such an antenna works, one must first start with the simples of 
antennas. 

It is assumed that antennas are passive reciprocal devices. By this one can assume that they 
will have the same gain when used either for transmission or for reception of electromagnetic 
energy. 

2.4.1 The isotropic radiator 
Behind any successful antenna design, the theory behind travelling waves must be taken into 
consideration, and to measure its capabilities the antenna may be referenced to the most 
rudimentary antenna that can be though of; the theoretical (conductive) single point in space 
called the isotropic radiator:  

 
Figure 2.11: The theoretical isotropic radiator 

The intensity of radiated power normally equals the cross product of HE  , however, for an 
isotropic radiator, the radiation pattern 

 ),(ˆ
4

),,( 


 u
r

e
rE

jkr





 [Eq. 2.9] 

would violate the Helmholtz wave equationv, a derivative of Maxwell's Equations. 

But still, the theoretical radiation pattern from [Eq. 2.9] would yield a completely round 
(spherical/isotropic) radiation pattern at any and all frequencies. 

Diameter d = 0 
The isotropic radiator 
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The isotropic radiator depicted above would never work as the “perfect antenna” (even 
with 0d ); because a coherent isotropic radiator cannot exist for the same reasons that a 
magnetic monopole cannot exist. 

Still, the theoretical radiation pattern that the isotropic radiator represents is a de facto 
standard for comparing antenna gain in dB. When referencing any antenna-gain compared to 
an isotropic radiation pattern, the term dBi is used. 

The smallest directivity a radiator can have relative to an isotropic radiator, is a Hertzian 
dipole (a small dipole relative to the wavelength), which has a directive gain of 1.76 dBi.vi 

 

2.4.2 The dipole 
Let’s consider a radio with a short ended antenna output: 

 
Figure 2.12: Radio with short ended output 

Assuming that the antenna-cable has the same characteristic impedance as the transceiver 
output and that the cable ends in an area of infinite impedance, eq. 2.7 on page 18 provides 
the reflection coefficient occurring at the cable end: 

 
SL

S

SL

L

SL

SL

ZZ

Z

ZZ

Z

ZZ

ZZ










  

 
SL

S

SL

L

Z ZZ

Z

ZZ

Z
L 







lim  

 1






 01
S

S

S Z

Z

Z
 [Eq. 2.10] 

A reflection coefficient of 1 basically means that 100% of the signals transmitted from the 
transceiver are reflected back at the cable end. As a consequence, standing waves are formed 
in the cable, and as there can be no current at the end-point (meaning the impedance is 
infinite), the energy must be dispersed elsewhere. With a radio having, as an example, 50 
watts of maximum output power, then nearly all of this energy must be dispersed in either the 
radio or the cable itself (as nothing comes out the end). Assuming the cable has a low loss at 
the selected frequency, most of the 50 watt of energy is deposited in the radio equipment. This 
leads to local heating that may prove devastating to any electronic equipment and should 
therefore be avoided. 

Of course, neither vacuum nor air sports infinite impedance, so this may not be completely 
true, but even so, we now know that a radio should never transmit while unconnected. If no 
antenna is available, the cable may be terminated by a simple resistor. To achieve a reflection 
of zero, the resistance should match the impedance of the cable and radio. 

Radio 
Tranceiver 
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Figure 2.13: A radio with a short ended output, forming standing waves. Because the distance between the 
conductors is none-zero, some electric and magnetic fields does radiate from the cable end, but these fields 

tend to cancel each other out as they move away from the cable end. 
 

To achieve the opposite of a (near) total reflection, solving eq. 2.7 on page 18, for zero 
reflection, or 0 , gives: 

 
SL

SL

ZZ

ZZ




  

 when,0 LS ZZ   [Eq. 2.11] 

So, a radio system must therefore provide matched characteristic impedances at radio output, 
transmission line and antenna in order to maximize throughput. 

Considering figure 2.13 above, the setup looks very much like a very short dipole antenna 
(a.k.a. a Hertzian dipole), where the two line ends are turned at right angles. With the cable 
ends turned outwards, the electrical field-lines are forced away from the cable, thereby 
radiating an E-field. As the voltage between the tips of the dipole increase, the current that 
flows between the ends generates a magnetic field. The magnetic fields arising from the two 
conductors now has the same rotational aspects and thereby amplifies one another, when in 
the far field, instead of cancelling each other out as they did while in the transmission line. 
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Figure 2.14: Making a dipole antenna from two angled wires 

From a distance, the relative length, and thus the phase difference, to each antenna element 
will only vary with the angle of approach and not the distance to the antenna itself. Looking 
away from any local field the antenna may be generating helps keeping the formulas simple. 
This is called the far-field approximation, and is what is normally assumed when talking 
about antennas. The far-field is defined as when we consider the electromagnetic fields 
approximately 10 , or more, away from the source. 

The electrical field arising from figure 2.14 can be described by the setup: 
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 [Eq. 2.12]  

 

  

E is the far field of the electromagnetic wave radiated in the direction 

0 is the permittivity of vacuum 

c is the speed of light 
r is the distance from the doublet to the point where the electrical field E is evaluated 

k is the wave number 

2

k  

0I is assumed to have a intensity as shown on the picture 
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Figure 2.15: Current distribution on a short dipole 

As the voltage shifts polarity according to the frequency of the signal, an EM-wave (radio-
wave) similar to the modelled light beam in figure 2.3, chapter 2.2 Electromagnetic waves, is 
made. The electric and magnetic fields are perpendicular to both each other and the direction 
of propagation. 

The resulting emission diagram equals a torus, with the short dipole placed in the centre. 

 
Figure 2.16: Emission diagram of a short dipole takes the form of a torus 

Knowing the electric field, one can calculate the radiated power and the resistive part of the 
series impedance of the dipole. This is known as the radiation resistance: 

 
2
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 L
ZRSeries , for L . [Eq. 2.13] 

Where 0Z is the characteristic impedance of free space. 
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Using the approximation of 1200 Z  gives: 

  ohm
L

RSeries

2
220 









  [Eq. 2.14] 

Narrowing down the antenna design to a specific frequency we can now solve for what length 
a dipole must have to have a resistance of 50 Ohm at any specified wavelength. Selecting a 
frequency of 150MHz ( =2m) shows that: 
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 [Eq. 2.15] 

However, although this is pretty close to a real 50 Ohm dipole, the requirement of L  has 
been breached. We have to account for the speed of which the transverse waves on the dipole 
are travelling. Assuming a speed of 95% the speed of light, any frequency f will have a 

wavelength fce   where e represents the relative speed of the electrical field-variations 
versus the speed of light in vacuumc . The antenna should therefore end up being 5% shorter 
than in Eq. 2.15 above: 

  meter
f

ce
L 95.0

2
50.0 


   [Eq. 2.16] 

Also, we have not taken into account the imaginary part of the characteristic impedance that 
will gain a significant size when the length of L is approaching . Even so, we can now safely 
assume that a dipole with a length 2L  makes a pretty good antenna, but this needs further 
investigation.  
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Revising the layout of figure 2.14 above, turning each electrical quarter wavelength ( 4 ) 
ends of the conductors at a right angle, increases the radiation of electromagnetic waves by 
matching the antenna impedance to the transmission line, and the free space surrounding it. 

 
Figure 2.17: Construction of a half-wave dipole antenna from two angled wires 

Knowing that the signal is reflected back (without phase shift) at each end of the quarter 
wavelength stubs, a plot of the maximum occurring voltage across the 2 dipole is possible. 
Assuming a sinusoidal distribution gives: 

 
Figure 2.18vii: Maximum voltage across a dipole 

Noting that the two quarter wavelength stubs has opposite voltage, and that the voltage on 
each end is doubled due to the reflection in the 4 stub, provides a higher differential voltage 
than what would have been with other lengths. This can only be looked upon as a bonus! 

 
Figure 2.19: Maximum current across a dipole 
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With the revision of the dipole length, inserting 2L and revising the formula in Eq. 2.12 
on page 22: 
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One should notice that the fraction 

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 is pretty much the same as sin .  

 

The resulting emission diagram is a slightly flattened torus. Taking the cross-section of the 
torus in figure 2.16 (page 23) reveals a tiny difference: 

 
Figure 2.20: Cross section of the far-field emission diagram of the half-wave dipole compared to  

the emission diagram of a short dipole (in stippled lines). 

 
Since the emission diagram is slightly flattened compared to the Hertzian dipole, the straight 
forward directivity increases slightly, from 1.76dBi to 2.15dBi. 

2.4.3 The Yagi antenna 
As seen above, a single dipole will have an omnidirectional radiation pattern. When aligned 
with the horizon, this is a great antenna for sending and receiving ground radio stations as the 
antenna has no preferred direction compared to the ground.  

With satellites however, this does not provide the needed directivity. 

Placing a passive (non-driven) element with a slightly longer electrical length, h1, alongside a 
dipole with a length h2 makes the radiation pattern shift to a specific direction. This occurs 
because the passive element acts as a reflector, making any incoming wave “bounce back" at 
the dipole increasing the directive gain. 
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Figure 2.21: Simple Yagi setup 

A cross section of the far-field emission diagram of a Yagi shows that the antenna is more 
sensitive in one direction than the other:  

 
Figure 2.22: Cross section of a 2-element reflector-Yagi emission diagram depicting the main and back 

lobe. 

In order to maximise the directive gain, the distance from the reflector to the driven element 
should be placed around 2.0 away from the reflector, as seen in figure 2.23 below. 
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Figure 2.23viii: Gain in dB of a 2-element Yagi relative to a single dipole when varying element spacing 

By definition, a Yagi-antenna only consists of two elements where one is the driven element 
(the dipole). The other element can either be a reflector as seen above, or a director. The size 
of the director must be slightly smaller than the dipole and as seen in figure 2.24 below, the 
emission diagram is exactly similar to the reflector design, only that the maximum gain 
direction is reversed. 

 
Figure 2.24: Cross section of a 2-element director-Yagi emission diagram depicting the main and back 

lobe. 
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2.4.4 The Yagi-Uda array 
Combining the reflector and director from the two types of Yagi-antennas, a so called Yagi-
Uda array can be made. Also, the number of directors in the design could be increased to 
further increase the directivity of the design. 

 
Figure 2.25: A Yagi-Uda array consists of a reflector (1) the dipole (2) and a number of directors (3...k) 
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2.4.5 The cross-Yagi 
The cross-Yagi basically consists of two interleaved Yagi-Uda arrays, with each of the arrays 
perpendicular to the other. Using this setup, while ensuring a proper phase-delay between the 
two arrays, a circular polarization can be achieved.  

Single dipole antennas would produce an electro-magnetic signal similar to the light beam 
depicted in figure 2.3 on page 13 where both the E-field and H-field would keep a constant 
orientation to any given plane along the travelling direction. If the dipole is oriented 
perpendicular to the ground, the antenna would transmit and receive signals were the E-filed 
would be varying in a vertical manner.  

Tilting the antenna 90° along the direction of transmission, any transmission would have the 
E- and H-field perpendicular to the fields in the previous setup. The two antennas would 
therefore not be compatible. 

 
Figure 2.26: Showing the variation of the E-field using vertical (1) and horizontal (2) polarization 

 

 

 
Figure 2.27: Showing the variation of the E-field when receiving a Left Hand Circular Polarization 

(LHCP) and Right Hand Circular Polarization (RHCP) 

1 2 

1 2 
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3 Construction of the Oslo Ground Station – Part 1 

 

In the recent years, universities around the world have begun applying small size LEO8-
satellites for various scientific and engineering applications. LEO-satellites have an orbit far 
closer to the earth than for example GEO9-satellites. LEO-satellites have an orbital time in the 
1-2 hour area, resulting in relatively short clear-sight windows of communication between a 
satellite and a geographically fixed earth station. Normally a satellite pass takes a minimum of 
3 minutes to a maximum of 9 minutes. Even though a LEO-satellite is far closer to earth than 
a GEO-satellite, the small size and limited power available on a Cube Sat10 or similar sized 
space born boxes will inexorably make the signal, or EIRP11, from the satellite relatively 
weak. One of the major issues in LEO-satellite communication is the problems that arise 
when using narrow beam directive antennas. Since the satellites do not have a fixed location 
relative to ground as in GEO-satellites, any use of directive antennas much include a way of 
pointing it in the correct direction at the correct time. Since such a system is difficult to 
include on a small size satellite, the answer is to use a high gain directive antenna on the 
ground. This calls for a ground station system that is able to steer an antenna rig in the correct 
direction at the correct time, and track the satellite as it traverses across the sky. In addition, 
the system must also account for the varying received frequency from the effects of Doppler-
shift that occurs due to the high relative speed of the satellite. 

3.1 General principles 

There are many ways of designing a satellite ground station; however, there are some system 
parameters we in this case aim for: 

a) The system is to communicate on amateur-radio frequencies12, mainly in the 2m and 
70cm-band13. 

b) Follow the present laws and regulations regarding this. 

c) Achieve a high reception gain reducing the need of a high powered transmitter on the 
satellite. 

d) Ability to modulate and demodulate a digital signal. 

e) Remote operation. 

Part d) and e) will be covered in chapter 5 - Construction of the Oslo Ground Station – 
Remote operation. 
                                                 
8 Low earth orbit; an orbit with an altitude of approx. 100km to 900km and a corresponding orbital time of 
roughly 1-2 hours. Very often the satellite is placed in a highly inclined orbit so that the satellite “scans” the 
entire surface of the earth during a 12 or 24 hour period. 
9 Geostationary earth orbit, an orbit with an altitude of approx. 42 357km, and an orbital time of exactly 24 
hours, and therefore has a fixed sub-satellite point, meaning that the satellite is stationary from a surface of the 
earth point of view. 
10 A Cube Sat is a type of space research pico-satellite with a dimension of 10×10×10 centimeters, 
alternately with a combined size of up to three of these cubes in a row. 
11 Effective Isotropic Radiated Power 
12 The International Telecommunication Union (ITU) governs the allocation of satellite communications 
frequencies worldwide. However, most Cube-sats use the amateur frequencies that can only be used by licensed 
users for non-profit, non-commercial use. 
13 The radio-band name comes from the approximate wavelength of the frequencies they represent. 2m-band 
represent the amateur frequency-band of 144.00-148MHz. 70cm-band is at 430-450MHz. 
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A high gain antenna inexorably has a narrow beam-width (or main lobe), and we therefore 
need to keep the antenna pointed towards the satellite throughout the pass. This leads to a new 
sub-goal: 

f) Ability to aim the antenna rig in the correct position at the correct time, and track the 
satellite as is traverses the sky. 

A LEO8-satellite has a relatively high speed compared to a fixed point on the earth, so as it 
enters the horizon, any radio-content will be received at a higher Doppler-shifted frequency 
than what the satellite is transmitting at. Also, radio-signals transmitted from the ground will 
not be received at the satellite at any fixed frequency unless the frequency-shift is correct at 
the ground. To account for this the system should also aim at: 

g) Correct for the Doppler-shift by continuously setting the correct receiving and/or 
transmitting frequency. 

The systems effectiveness will mainly be defined by the number of antennas. In the initial 
setup, we will be using a single cross-Yagi antenna for each frequency-band (2m and 
70cm)14. If this, at a later time, proves inadequate, we have the possibility of adding more 
antennas. We selected a couple of antennas15 from Tonna, as they were cheap and had a 
relatively high gain. Also, they are stackable if we later want to improve the link-budget.  

We also have to use rotors to keep the antenna pointed towards the satellite as it moves across 
the sky. For this we have selected the frequently used Yaesu G-5500 dual rotor system, with a 
Yaesu GS-232B computer control interface. The control interface is normally connected to a 
computer with an RS-232 serial-cable. 

Selecting the ICOM 910h for radio operation, the simplest form of interface between a 
computer and the radio would be a level converter called CT-17 that interfaces, or more 
accurately level converts, the radio’s CI-V bus to a standard RS-232 serial cable (and 
backwards). In the Oslo Ground Station, this is achieved through a custom made level-
conversion on the PCB. 

If you are to automatically control the radio, the simplest way to achieve this would be to use 
the standard ‘remote desktop connection’ to the computer connected to the radio and rotor 
controller. However, sharing passwords and adding users on a computer is not acceptable 
when the computer if part of a large “corporate” network like the university network. 

The way to get around this was to design a ground station controller and terminal node 
controller, or TNC, as a single separate unit. 

                                                 
14 The band name comes from the approx. wavelength of the frequencies they represent. 2m-band represent the 
amateur frequency band of 144.00-148MHz. 70cm-band is at 430-450MHz. 
15 Tonna 20818 2m 2x9element. cross-yagi and Tonna 20438 70cm 2x19element cross-yagi 
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3.2 Deciding on rigging materials 

3.2.1 Rig mounts 
Long before the project began, two antenna-towers had been erected on the roof of the 
physics building16. Luckily none of them contained any antennas in use, so selecting a site for 
the antenna-rig would not be a problem. The rig closest to the room available for radio 
operation would be the northernmost, so this was selected. With this rig, the most practical 
place to attach the azimuth-rotor would be “inside” the rig, at the bottom of the main pole (see 
figure 3.1 below). This setup, compared to placing the rotors together at the top makes the rig 
more stable in windy conditions and will presumably be less prone to failures as wind and 
wind stress on the azimuth rotor is minimized. For this to work, a so called separation-kit was 
purchased. This mainly consisted of screw and clamps so that the elevator could be attached 
to a vertical pole.  

                                                 
16 The Physics building is one of the oldest buildings at the University of Oslo, with a visiting address of Sæm 
Sælandsvei 24. Oslo, Norway. Antenna altitude: (approx.) 95m above sea level. Coordinates: 59.93814ºE, 
10.71800ºN 
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Figure 3.1: The antenna tower (1) with the main vertical pole (2), the cross-bar (3),  
the azimuth rotor (4), the elevator (5) and the low noise amplifiers (LNAs) (6). 

The main vertical pole (2) must be sturdy and support a lot of weight, so using anything out of 
metal for this seems the most logical choice. On top of this pole, the elevator is fixed to the 
vertical pole using two metal clamps and fitting screws. This is called a separation kit, and 
had to be purchased after we discovered that this was not standard supplied accessory. A 
horizontal cross-bar (3) is feed through the elevator, with the antennas mounted at each end. 
Yaesu specifies that this bar should have a diameter between 38 and 41mm. However, they do 
not specify the material best suited for the task, only that a none-conductive material will give 
better performance (signal-wise) than a conductive material. The two choices were aluminium 
and PVC-tubing, and were a hot topic of discussion where the pros and considerable both in 
number and weight: 

- Aluminium conducts electricity, and would affect the E-field, causing a degradation of 
signal reception. However, this effect is effectively halved due to the circular 
polarization setup used. 

+ PVC is none-conductive and should not afflict the E-field as much, and therefore provide 
the best possible reception. 

- Any horizontal piece of PVC may ‘sag’ and cause the antennas at either end to loose their 
position relative to each other. This will negatively influence the signal gain. 

- PVC may not provide enough hold to the antenna bracket attachment, and might cause 
the antennas to “tilt” during windy, snowy or icy conditions. 

- If we later would want to add more antennas to the rig (called stacking), a PVC-tubing 
would prove insufficient for the extra load of more antennas, and would have to be 
replaced either way.  
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In the end a solid aluminium crossbar was selected even though the signal might get slightly 
attenuated. This decision was based on the assumption that a PVC-solution would cause 
problems during the construction, or later, as the PVC is not nearly as sturdy as aluminium. 

 

3.2.2 Cabling 
There are essentially two kinds of coaxial cable design; the coaxial with a solid core (centre-
lead), and one with a threaded centre-lead. The one with a solid copper core normally has an 
air-filled separation between the centre and outer conductor17. This normally results in a 
lesser loss than in a threaded centre-lead cable18. However, a threaded cable does have a much 
better ability of flexing than the single core. In fact, a single core cable should never be used 
to interconnect a moving rig. From the radio to the pre-amplifiers on the rig, approx. 2x60m 
of Westflex103 (solid core) are used. From the pre-amplifiers to the lightning arrestors and 
from there to the impedance adaptor (the splitter), RG-213 (threaded core) is used. This cable 
is also used from the impedance adaptor to the dipoles on the VHF-antenna. The splitters use 
75 Ohm RG-11 cables (solid core) to implement the impedance adaptation. The fact that RG-
11 is solid-core is no problem, as the stretches are so short. 

 

3.2.3 Low noise amplifiers 
Low noise amplifiers, or LNA’s, are an important part of designing a high quality rig for 
receiving weak signals. This amplifier is put as close as possible to the antenna, so that cable 
loss is minimised. Most radio amateurs agree that one should never buy an expensive radio, 
without first buying the absolute best LNA available. The reason for such bold talk is rather 
simple. No matter how much power you put out while transmitting; there will be no 
conversation unless you can hear the other party while receiving.  

In fact, with a high powered transmitter, you even may risk interrupting other people’s 
conversations without knowing. Also, when receiving a weak signal, the worst thing you can 
do is to make the signal pass through longer lengths of cable to the radio unamplified. From 
the moment the signal enters the antenna it is influenced not only by cable loss, but also picks 
up thermal noise (see chap. 4.1.8 - System noise temperature). To minimize this effect, it is 
important to amplify the signal as fast as possible to prevent excess signal degradation. Also, 
this amplification should most importantly introduce as little system noise as possible.  

By their specifications alone (see appendix B) and by customer reviews19, the SP-2000 and 
SP-7000 by SSB-electronics (sold under the name Microset) are considered the best on the 
market. 

 

 

                                                 
17 Our main cable, Westflex 103, has a solid copper core and air-filled separation, and has are spec’d with a total 
loss of 7.5dB/100m @ 432MHz, or 4.5dB/100m @ 144MHz 
18 Our secondary cable, RG-213/U, has a threaded (7 threads) copper core and plastic-filled separation, and has 
an approx. total loss of 15dB/100m @ 432MHz when using a system with an SWR of 1:1. A loss of 8.5dB/100m 
@ 144MHz 
19 http://www.eham.net/reviews/detail/4156, last visited 18/02/10 
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3.3 Building the antennas  

 
The two antennas, the Tonna 20818(2m 2x9 el.) and 20438(70cm 2x19 el.), arrived in a ‘build 
it yourself’-set and had to be accurately assembled, mounted, cabled and tested. Even load-
matching had to be done manually by cutting and soldering exact lengths of cables with 
different impedance, see chap. 3.3.1 - Getting the correct impedance.  

The first thing we had to do was to attach all the directors and reflectors to the antennas, as 
described in the manuals that came along. This was one of the simplest things to do, as it was 
fairly straight forward work. However, thinking that this would be a breeze would prove to be 
a wrong. As work progressed, outcries like “we’ve mounted everything the wrong way” or 
“the manual does not say anything about this” were commonplace. Many things had to be 
redone several times, as people mounted everything the wrong way, or were confused by the 
holes in the ends of the main bar or the extra holes put in for cable guidance. In addition, the 
plastic clamps fixing the dipoles had been overheated at some point (probably during 
production), so that they did not fit. The clamps had to be “reshaped” using a soldering iron. It 
appears that spending some extra cash on antennas might save you some time during system 
setup after all. However, for students working “for free”, this is not a problem. 

Having built the antennas, and connecting the antennas front piece and a rear piece together, 
we could clearly see that one of the antennas (the VHF) buckled in the middle due to a weak 
attachment of the two end pieces. 

The front and rear piece were, from the manufacturer, meant to be latched together at the 
middle using a metal piece that attaches the antenna to the rest of the rig (via the cross bar). 
Because this obviously would result in a weak connection, we drilled two holes in the main 
bar, and let the instrument-tool shop20 lend a hand in making a fitting aluminium piece to 
strengthen the joint (see figure 3.2 through figure 3.4 below). 

 

                                                 
20 Instrumentverkstedet, located at the Institute of Physics, Oslo. See also(in Norwegian): 
http://www.fys.uio.no/omfi/enhetene/verksted/ 
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Figure 3.2: Bottom- side picture of the top attachment piece (1), the rear end of the front antenna boom 

(2) and the custom made aluminium piece with screw-holes (3). 

 
Figure 3.3: Inserting the custom aluminium piece 

 
Figure 3.4: Depicting the top attachment piece (1) with inserted screws, the lover attachment piece (2), the 
rear end of the front antenna boom (3), the front end of the rear antenna boom (4) and the rig supporting 

cross-bar (5). 
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3.3.1 Getting the correct impedance 
Considering antenna cables, one must remember to use cables with the same impedance as the 
equipment connected at either end. Today, two types of VHF and UHF antenna-systems are 
used; 75 Ohm for regular TVs, and 50 Ohm for basically everything else.  

A cable with a diameter of 10 mm and impedance of 77 Ohm would provide the smallest 
possible cable-loss when using air filled coaxial( 1r ). In this technology, the space 
between the core and the shield is mostly filled with air, using plastic, or PTFE, as spacers. 
With a solid copper core, any such cable is considered high quality. The WestFlex103 used 
for the longer stretches in the Oslo ground-station, although with a 50 Ohm impedance, is 
made this way. Cheaper cables use solid PTFE ( 2.2r ) or PTFE-foam ( 43.1r ) as 
spacers, and threaded metal core. 

 
Figure 3.5ix: Cable loss versus impedance, in a copper coax with a 10mm diameter. 

Although an air filled copper coax at 77 Ohm provides the lowest loss, this impedance is not 
optimal when considering the maximum break-down voltage, so this is only suitable in a 
receive-only system (like TV-sets). Coincidently, TV’s normally don’t normally use air-filled 
spacers, as they are expensive to make. Often a solid- or foam-PTFE is used instead. So why 
isn’t 50 Ohm cables used in TV-systems to provide the lowest loss? The reason, again, is 
price. Increasing the impedance slightly decreases the diameter of the metallic centre-core. 
This makes TV-cable cheaper. In addition the cable becomes more flexible and user friendly.  

When considering transmit/receive systems, there is another characteristic that needs to be 
considered. When trying to push large amounts of power through an air-filled coax cable, a 50 
Ohm cable would have the highest break down voltage (see figure 3.6 below). A 30 Ohm 
cable would provide the maximum voltage/current trade-off (supporting the maximum 
power). The maximum voltage available will depend on several factors like humidity, air 
pressure (high above the sea), temperature and surface roughness of the copper core. In figure 
3.6 below, a break-down voltage of 100 kV is assumed. A simple way to increase this would 
be to fill the air-gap with solid PTFE, or other plastics, but then the cable loss would be 
increased. A solid PTFE coax normally can handle up to 10 times the power than air-filled 
coax. Often the power-limitation can be lifted up to at least 10 kW using solid PTFE. 
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Figure 3.6: Maximum power and voltage handling of a 10 mm air filled coax (internal voltage break-down 

at 100 000 V/m) 

Most amateur-radios today use a 50ohm setup. This is also true for the ICOM 910h used in 
the Oslo ground-station, so we must use 50 Ohm cables for this system. 

Basically, if you have a transceiver designed for 50 Ohm operation, one would also use 
antennas with 50 Ohm impedance characteristic. But this is not always possible as two 50ohm 
antennas in parallel would yield a total impedance of 25 Ohm which would give an 
impedance mismatch between the radio and the antennas. Adding more antennas would of 
course make this mismatch even worse.  

In case of a mismatch, an “impedance-matching-setup” has to be made. For small frequency-
bands this can be achieved by introducing a matching-stub (piece of cable) into the system. 
This has to be done when connecting multiple antennas together (for example would two 
50ohm antennas in parallel gives a total impedance of 25 Ohm, which would give an 
impedance mismatch). 

As explained in chapter 2.4.5-
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The cross-Yagi, a cross-Yagi is made up of two Yagi-Uda antennas intertwined in a 
perpendicular manner. As consumers normally would like the possibility to send or receive 
both linear (mostly ground based communication) and polarized signals (mostly satellite 
communication), each of the intertwined antennas is made to conform to the industry standard 
50 Ohm impedance. This is all and well if you are only to use one of the antennas at a time, 
but when operating with polarized signals, the two antennas have to be connected together in 
a parallel manner. But as explained earlier, two equal loads in parallel will in total yield a load 
half of their own. In essence, the two 50 Ohm antennas would yield a load of 25 Ohm. This 
does not match the radio or cable-system well, so two so called matching stubs has to be 
made. 

A quarter-wave cable can act as an “impedance adapter” between two known, but unequal 
impedances, 1Z  and 2Z . Notice that this only works within a narrow bandwidth, as any other 
frequency imposed on the system than the one designed for, would not see the matching stub 
as a quarter-wave. The matching stub should have intermediary impedance Z according to the 
quarter wave formula: 

 21 ZZZ   [Eq. 3.1] 

If both the two antennas in question would have a virtual 100 Ohm termination, the parallel of 
these would total in a fitting 50 Ohm. Using a 50 ohm antenna as a starting point, creating a 
theoretical 100 Ohm termination point, you would need a quarter-wave (lengthwise) cable 
with the impedance of: 

 OhmZ 71.70500050100   [Eq. 3.2] 

Of course, a cable with impedance of 70.71 Ohm is not readily available, but a standard 75 
Ohm cable should suffice. Since the lengths of these are relatively short, the loss/meter is not 
important. A few meters of the cable type RG-11 was found in-house. The electrical group 
velocity e of this cable is the pretty standard 0.66 times the speed of light.  

To connect the vertical and horizontal antennas to the radio, we basically used the setup 
shown in figure 3.7 below. 

 

 
Figure 3.7x: Impedance matching of a 1:2 split 
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Note that the two 75ohm-cable has a length of a quarter wavelength. The electrical 
wavelength is shorter in a coaxial cable than in vacuum, since the signal speed in a coaxial 
cable normally is 0.66 times the speed of light (in vacuum).  

As we are constructing two antenna-arrays for two different frequencies, two sets of matching 
stubs should be made with the electrical quarter length from the formula: 

 
4

1

4



 f

c
e

e vacuum
wavequarterelectrical


  [Eq. 3.3] 

 

Radio band length 2m 70cm
Frequency 145 430 MHz

Wavelength (vaccum) 2,069 0,6977 meter
Relative electrical group velocity 0,660 0,660
Electrical wavelength (coax) 1,366 0,4605 meter

Electrical quarter-wavelength (coax) 34,14 11,51 centimeter  

Table 3.1: Quarter wave-length calculations 

In addition, one must consider the type of polarization the antenna is to be tuned to. This is 
done by setting a phase-delay between the horizontal and vertical antennas on the crossed 
yagis (see figure 3.10 below). The physics behind this is described in chap 2.4.5 - 
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The cross-Yagi.  

Trying the best I could, the two impedance-splits ended up looking similar to the illustration 
in figure 3.7: 

 
Figure 3.8: Two impedance-splits (1) going from RG-213 cable (2) to pairs of RG-11 cables with quarter-

wave lengths. The second split has been covered with self-sealing tape and is ready for outdoor use. 
 

3.3.2 Selecting a polarization 
There are basically 2 ways of polarizing electro-magnetic waves; linear and circular. Linear 
polarization means that the E-field is varying in a specific angle. Practically, one normally 
keeps to either a vertical or horizontal polarization. On ground to ground radio systems it is 
fairly easy to keep track of what is vertical and horizontal, as any antenna positioned 
perpendicular to the ground will transmit and receive using vertically polarized EM-waves. 
Having a point to point system with a vertically and horizontally polarized antenna at each 
site, any frequency-channel can be used twice (resulting in a doubled frequency-
efficiency/Hz). 

This is used in satellite-TV systems when receiving data from GEO-stationary satellites. This 
is possible because the satellites are stationary relative to ground. When setting up a receiving 
station the antenna has to be tilted some if the satellite is not located straight south. 

However, when considering LEO-satellite to ground communications, keeping track of what 
is up and down is not as simple. As a CubeSat enters the horizon what is considered “up” will 
not be the same as when it exits. A solution to that would be to send and receive in a 
circularly polarized manner.  

However, since a CubeSat is not likely to feature anything more than a dipole-antenna, nor be 
able to position the antenna correctly, this is not possible. The satellite would, in respect to a 
ground station, transmit in a non-circular manner, with a varying, possibly unknown, 
polarization. In order to avoid signal fading when the satellite is spinning (or just positioned 
the wrong way compared to the ground station) the logical choice would be to select a 
circularly polarized antenna on the ground station (see table 3.2 below).  

Circular polarization exists of course in two forms: Right hand circular polarization (RHCP) 
and left hand circular polarization (LHCP). 

1

3

2
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Table 3.2: Approximate losses, in dB, arising from antenna-signal polarization mismatch 

Some amateur satellites (non-CubeSat), has antennas with a defined circular polarization. 
Approx. 70% of these support RHCP. The ground based antennas are therefore often made to 
comply with this, as either LHCP or RHCP would have the same effect when communicating 
with a CubeSat. From table 3.2 above, we can see that this design will have an inherit 3dB 
signal loss when receiving a linearly polarized signal, but this is a lot more acceptable than 
having the signal fade in and out during a satellite pass. In the worst case scenario, were the 
satellite is spinning, any linearly polarized antenna would receive a fluctuating signal as the 
satellite moves around. 

There are two ways of constructing an antenna with a circular polarization: Correctly phasing 
two crossed dipoles, or using helical antennas. In this thesis, phased cross-yagis are assembled 
for RHCP. Helical antennas tend to have a larger wind load than yagis as they require a 
ground plane.  In addition, they do not stack as well, as the electromagnetic characteristics of 
a spherical antenna are not as easily defined. 
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Making an antenna consisting of two crossed dipoles, with no separation length-wise, into an 
RHCP or LHCP antenna is quite easy. For RHCP, following the positive maximum of the E-
field, the field should have a clockwise (CW) rotation from a receiver’s standpoint. In other 
words, standing “behind” the transmitting antenna, the E-field must rotate counter-clockwise 
(CCW). For LHCP, everything is opposite. Since the dipoles are crossed at a 90° angle, the 
phase delay needed must be 90°. 

 
Figure 3.9: Rear view of crossed dipoles depicting phasing-requirements of RHCP and LHCP.  

Considering the two antennas in question21, each antenna has two dipoles in a crossed setup 
similar to figure 3.9 above, however, the dipoles are not placed right next to each other 
(length wise). To correct for this, the phase-delay between the two dipoles has to be 
specifically adapted (with corresponding reflectors and directors) do not need a simple 90° 
( 4 ). 

 
Figure 3.10x: Introducing extra phasing stubs to ensure correct polarization. 

 

                                                 
21 Tonna 20818(2m 2x9 el.) and 20438(70cm 2x19 el.) 
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Having selected RHCP, the phasing stubs must be adjusted so that the antennas will generate 
the proper delay in relation to the direction the signal will be travelling. Measuring the length 
between the vertical and horizontal dipole, keeping the measuring direction in a back to front 
orientation, the inherit delay between the dipoles can be calculated. As a consequence the 
length of the phasing stubs can be calculated. Notice that the facing stub may very well be a 
lot longer that calculated, as long as the other dipole is also delayed the same extra amount 
using the same type of 50 Ohm cable.  

Also, the importance of keeping track of what is considered point 0 (in figure 3.9 above) from 
the time when these calculations are done to the point where the antennas are fixed to the rig 
and the delay cables (there’s two of them on each antenna) are attached, can not be underlined 
enough. In the Oslo ground station, the left tip, when the rig is in an elevation of 0° (with the 
elevation rotor in a 180° position, “left” would be “right”), of the rearmost dipole serves as 
point 0. 

Setting a fixed reference-orientation of the antennas, and making sure the “positive” tips of 
each dipole (see figure 3.9 above) are marked properly, one can start calculating the inherit 
phase-delay arising from the placement of the dipoles, and then find the required length of the 
phasing-stub: 

Antenna 2m(min) 2m(max) 70cm(min) 70cm(max)
Frequency 144,00 145,99 430,00 435,00 MHz

Wavelength (vaccum) 2,083 2,055 0,6977 0,6897 meter
Relative group velocity (air) 0,9997 0,9997 0,9997 0,9997
Relative electrical group velocity (coax) 0,660 0,660 0,660 0,660

Wavelength (air) 2,083 2,054 0,6975 0,6894 meter
Distance between dipoles (measured) 10,00 10,00 20,00 20,00 cm
→Inherit phase delay 17,29 17,52 103,23 104,43 degrees

Total required phase-delay 90 90 90 90 degrees
Required phase-stub delay 72,71 72,48 -13,23 -14,43 degrees
→Required length of phase-stub 0,2777 0,2730 -0,01692 -0,01825 meters

Average (in centimeters) cm27,54 -1,76  
Table 3.3: Calculating the required lengths of the phase-stubs. 

Notice that a phasing-stub with a calculated negative length means that the phasing stub 
should be inserted in front of the first dipole, instead of the second. 

Due to the dual cable-guiding cylinders on the VHF-antenna, two longer stretches of 50 Ohm 
cable had to be used to feed the two dipoles. These two cables were made so that the one 
going to dipole nr 2 was roughly 27.5 cm longer than the other. 
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3.4 Patching cables 

Concerning the cables used in a ground station, a fair deal of patching has to be done. The 
cables need to be manually terminated as each length is custom cut to every satellite rig. In 
most of these cases, the radio signal cables require extra attention to avoid unnecessary loss.  

With the work on the Oslo Ground Station, the case with the solid core of the WestFlex103 
cable is worth mentioning. The copper core (centre-lead) of this cable proved to be slightly 
too big to fit into the centre-piece of the cable terminators. To fit the connector tip, a set of 
cutting pliers had to be carefully used to lessen the maximum diameter of the core (see 
below). 

 
Figure 3.11: The copper core of the WestFlex103 (1) is too wide to be inserted into the connector tip (2). It 
had to be made smaller by cutting alongside the centre-lead with a pair of cutting pliers (3), decreasing the 

effective diameter of the centre-lead. 
7 

1

2 
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4 Satellite communication 

When designing a satellite, one of the most important properties is on the ability to 
communicate with a ground station. Without a functioning communication link, most 
satellites are rendered useless. To ensure a proper satellite to ground link, one has to make 
estimations of the signal attenuation due to the distance to the satellite, atmospheric 
distortions and other system specific losses. An important aspect is noise originating in the 
system components and from general background radiation. This chapter with introduce the 
reader to the basic theory behind satellite link budgets, and propose a possible link budget for 
the CubeStar satellite. 

4.1 Basic transmission theory 

To be able to compute the power levels in a communication-link, the main aspect is the 
distance between a theoretical transmitter, and the corresponding receiver. The most basic 
transmitter would be the isotropic radiator22.  

4.1.1 The transmitting antenna 
In free space, the transmitting source would radiate power uniformly in all directions. If a 
receiving antenna would encompass the entire transmitting source, 100% of the transmitted 
power would be transferred. This is of course absurd, but imagining that any receiving 
antenna is situated at the surface of a sphere centered at the transmitting source makes it easy 
to compare an antenna’s effectiveness by calculating its effective area. Also, this makes it 
possible to define the flux density at this point in space. 

The surface-area of any sphere is given by the formula  

 24 RAsphere    [Eq. 4.1] 

The flux density crossing the surface of a sphere with radius R , when the source is 
transmitting tP watts, would then be: 

  2
2

mW
4 R

P
F t





 [Eq. 4.2] 

The effectiveness of a receiving system could then easily be described by the effective 
area antennaA versus the total surface area sphereA .  

                                                 
22 See Chapter 2.4.1 - The isotropic radiator on page 19 
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Figure 4.1: Flux density produced by an isotropic source 

 

However, designing a satellite to ground link based on the calculated flux-density alone is not 
recommended, as everything from the distance between the antennas to the effectiveness of 
the system at different frequencies may change during operation.  

Also, as described in chapter 2.4, all real antennas are always directional in the way that they 
radiate more power in some directions than in others. The gain of an antenna in any direction 
is defined as the ratio of power per unit solid angle to the average power radiated per unit 
solid angle. 

  4
)(

)(
0


P

P
G  [Eq. 4.3] 

where 

)(P is the power radiated per unit solid angle by the antenna. 

0P is the total power radiated by the antenna.  

)(G is the gain of the antenna at an angle. 
The term 4 converts the fractional area into steradians(abbreviated sr according to SI23)  

 

For directed antenna systems intended for long distance communication, the direction in 
which the radiated power from the antenna is at its maximum is called the boresight of the 
antenna, and is where the angle  is referenced. Most directive antennas have a given 
parameter of maximum gain in this direction (where 0 ). Normally, most antenna system 
provides a parameter for the main lobe-width. This value is twice the angle of how much an 
offset from can be handled before the flux density if halved (the -3dB point) compared to the 
boresight. 

 

The flux density crossing the surface of a sphere with radius R , when the source is 
transmitting a total of tP watts with an antenna with a boresight-gain of tG would then be: 

                                                 
23The International System of Units (SI). The name was adopted by the 11th General Conference on Weights and 
Measures (1960) for the recommended practical system of units of measurement. The SI system is administered 
by Bureau International des Poids et Mesures. http://www.bipm.org/en/si/ 
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  2
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


 [Eq. 4.4] 

The product ttGP is often called EIRP24 because it describes the combination of a transmitter 

power and antenna gain in terms of an equivalent isotropic source with power ttGP  watts 

radiating uniformly in all directions. Notice that this does not incorporate any measure of 
inherent noise in the transmitting system. This however, is most important when evaluating a 
receiving system. 

4.1.2 The receiving antenna 

 
Figure 4.2:  Power received by an ideal antenna with an area A.  

The incident flux density is 

  2
2

mW
4 R

P
F t


  [Eq. 4.5]  

Received power is then given by 

  W
4 2R

AP
AFP t

r 
  [Eq. 4.6] 

Antennas do not always consist of a parabola, nor would a parabola work at 100% efficiency. 
But by describing the aperture efficiency A , the effective aperture eA can then be simply be 

described by: 

 rAe AA   [Eq. 4.7] 

A  accounts for all losses due to illumination efficiency, aperture taper efficiency, spillover, 
blockage, phase errors, diffraction effects, polarization and mismatch losses. For most 
antennas, A  has a value between 50 and 90%. 

The power received by a real antenna with a physical receiving area rA and effective aperture 

area eA is: 

                                                 
24 The effective isotropically radiated power 
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  W
4 2R

AGP
P ett

r 
  [Eq. 4.8] 

Worth noting is that this equation is essentially independent of frequency if tG and eA are 

constant within a band. The power received at an earth station depends only on the 
distance R , the effective area of the receiving antenna and the EIRP of the transmitter. 
However, a fundamental relationship in antenna theoryxi is that the gain and the size of the 
antenna are related by: 

 
2

4


 e

r

A
G   [Eq. 4.9] 

Substituting eA in eq. 4.8 with eA from eq. 4.9 above, the resulting formula provides us with an 

expression of the total received power: 

  W
)4( 2R

GGP
P rtt

r    [Eq. 4.10] 

This equation is known as the link equation.  

4.1.3 Path loss 

From eq. 4.10 above, the term 2)4( R  is known as the path loss, pL ; Although not a direct 

loss in terms of signal absorption, this factor only accounts for the way energy spreads out as 
an electromagnetic wave. As such, eq. 4.10 represents an idealized case.   
 

Noting that EIRP corresponds to the product ttGP , and recognizing pL , eq. 4.10 can be written 

as: 

 Power received
lossPath 

gain Antenna ReceivingEIRP
receivedPower 


  [Eq. 4.11] 

Converting all quantities into decibel, the equation can be written as: 

  dBWprr LGEIRPP   [Eq. 4.12] 
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In real life however, there are additional losses that needs to be considered. For a satellite to 
ground scenario, atmospheric losses due to attenuation by oxygen, water vapour, rain and 
other contaminants needs to be accounted for. In addition to attenuating the signal en route, 
additional losses may occur when the ground antenna is affected by changing local 
environments like temperature, humidity and wind. Any mispointing of the antenna may also 
leads to a reduction of the antenna gain. 

Most of these factors are normally taken into account by introducing a system margin, but 
these losses have to be calculated either way to ensure an adequate estimation. Revising eq. 
4.12, the result is then: 

  dBWrataaprr LLLLGEIRPP   [Eq. 4.13] 
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The expression dBW means decibels greater or less than 1 W, or 0 dBW. This is closely 
related to the more known expression dBm, which means dB greater than 1 mW. Units of dBp 
mean dB greater than 1 pW (picowatt). 

Notice that when adding or subtracting units of dB, quantities do not have to be of the same 
unit, as long as the units cancels out. In eq. 4.13 all losses and gains are unit-less, 
while rP and EIRP are of dBW. As rP and EIRP appear at opposite side of the equal-sign, this 
is correct. 

By keeping all satellite link parameters in dB, it is possible to enter these values into a 
satellite link budget. For the Oslo Ground Station, this is implemented in  
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On satellite ground stations, an LNA, or low noise amplifier, is often placed close to the 
antenna. In this manner, the weak incoming signal can be boosted before being transmitted 
down the longer coax-cable to the radio. In this way, the inherit loss in the stretch of the cable 
after the LNA can be ignored. While transmitting, the LNA is turned off, so that that the high 
powered signal can pass through unhindered. This, of course, means that one still has to 
consider the loss of this cable stretch while transmitting.  

Figure 4.3 below shows a typical satellite to ground link overview. 

 

Figure 4.3: A satellite link featuring an LNA, or low noise amplifier. Notice that both raL and taL often 

includes eventual cable-loss from the antenna to the LNA, or from the PA, the power amplifier, to the 
antenna. 

 

4.1.4 Simplified earth station 
 

 
Figure 4.4: Simplified earth ground station receiver. BPF is band pass filter. 
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4.1.5 Double conversion heterodyne 

 
Figure 4.5: Double conversion earth station receiver. The first downconversion shifts signals in a 500 MHz 

band to the first 900-1400 MHz. The second downconverter has a tuneable local oscillator and channel 
selection filter to select the wanted radio channel/frequency in the second IF centered at 70 MHz. 

 

4.1.6 Bandwidth, frequency deviation and other 
Defined by a voltage limiter at the input stage, most radios have a defined peak frequency 
deviation that is allowed for specific channel separation and bands. This means that if you 
input the maximum and minimum allowed frequency, the outputted frequencies have a 
specified separation.  

At the same time, there is a maximum allowed frequency in the baseband content. This is also 
normally fixed at most radios. 

Combining the two, the bandwidth of the modulated FM can be found. This is called Carson’s 
rule, and goes like this: 

  Hz )(2 maxffB pk   [Eq. 4.14] 

where 

pkf is the peak frequency deviation of the carrier. 

maxf is the highest frequency present in the modulating signal. 

 
For analog FM broadcast, where there is a 200 kHz channel spacing, the maximum frequency 
deviation is set to 75 kHz. The modulating signal set to a maximum of 15 kHz. Such a radio-
channel then uses: 

  kHz 180)1575(2 B  [Eq. 4.15] 
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With the modulating signal set to a maximum of 15 kHz, this leads to a significant 
improvement of the signal to noise ratio, since a bandwidth of 15 kHz is effectively 
modulated into a bandwidth of 150 kHz. 

In decibel form, the baseband NS is significantly improved: 
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This is a significant improvement over any raw NC , but this goes to the cost of uses up 
valuable bandwidth. 

In other FM-applications, the bandwidth is significantly reduced. 

 Channel 
spacing 

IF- 
bandwidth 

Maximum 
frequency 
deviation 

Maximum 
modulating 
frequency 

FM-broadcast 200 kHz  75 kHz 15 kHz 

The standard old voice-
communication 

25 kHz 15 kHz 5 kHz 5 kHz 

The “new” voice-
communication 
standard(narrow-band FM, 
or NBFM) (Amateur radio) 

12.5 kHz 7.5 kHz 2.25 kHz 2.25 kHz 

The “new” voice-
communication standard(also 
narrow band-FM, or NBFM) 
(NATO) 

8.33 kHz  2 kHz 2 kHz 

Table 4.1xii: List of standard bandwidths 
 

 filter in the IF- FM applications use peak deviations of 75 kHz (200 kHz spacing), 5 kHz (25 
kHz spacing), 2.25 kHz (12.5 kHz spacing), and 2 kHz (8.33 kHz spacing) 

4.1.7 Threshold effect 
With an FM-demodulator, there is a certain lower level of carrier to noise ratio, or NC , 
where noise makes the FM signal change rapidly in phase. Because the demodulator outputs a 
voltage proportional to the rate of change of phase (aka. instantaneous frequency), the 
modulator interprets the rapid changes as frequency changes. Thus, a voltage spike will be 
output from the demodulator, and the signal to noise ratio, or NS , is significantly affected.  
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At higher signal to noise ratio NS is proportional to NC . The threshold is defined as when 

NS drops 1 dB below this proportionality. If NC drops even further NS drops rapidly. For 

most modern demodulators, this threshold is at dB 10NS xiii. 

4.1.8 System noise temperature 
All devices, whether passive or active, generate thermal noise. For communication receivers, 
it is important to determine how much thermal noise is present. Comparing the noise with the 
signal levels is a significant part of analyzing a satellite communication link. 

At higher frequencies, a black body with a physical temperature, pT , generates electrical noise 

over a wide bandwidth. The power of this noise is given by: 

 npn BkTP   [Eq. 4.16] 

where 
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The term pkT is a noise power spectral density, in watts per hertz. This density is constant for 

all frequencies up to 300GHz. Because of this, any noise-level produced at a specific device 
can be compared to the noise produced by a black body radiator. If a device makes a lot of 
noise, one would say that its noise temperature would be high. If a device makes no noise at 
all, the noise temperature would correspond to zero degrees Kelvin. 

When modelling noise in a system, all noisy components can be replaced with a noise-less 
component of the same type, but with a noise generator in front. 

 
Figure 4.6: Noise model of a receiver.  
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When working with satellite communications systems we are always working with weak 
signals, so to improve the NC ratio a low systemic noise would be beneficial. By looking at 
figure 4.6 above, and assuming that the gain of all of the squared components in the chart is 
larger than 1, one can see that the only thermal noise that is amplified by all consecutive 
blocks is the noise from the antenna, inT , and the noise from the RF-amplifier, RFT . Assuming 

that you can not decrease the noise from the antenna, the main noise-contribution would come 
from the RF-amplifier. This noise is then normally amplified by a couple of decades (~20dB) 
on a good amplifier. Because this part is so important, this is called an LNA, or low noise 
amplifier.  

Instead of providing a noise temperature, most active radio-devices come with a stated noise 
figure, or NF, according to how much noise is induced when amplifying a given signal. 

 
out

in

NS

NS
NF

)(

)(
  [Eq. 4.17] 

To convert this value to a noise temperature, this formula can be used: 

 )1(0  NFTTd  [Eq. 4.18] 

0T is the reference temperature, which is usually stated as 290 K.  

Today GaAsFET25-amplifiers are considered to provide the best signal to noise conditions 
with a noise figure of approximately 0,9dB. This corresponds to a noise temperature of 
approximately 70 K.  

 

4.1.9 Baseband modulation techniques 
When selecting a modulation technique for the Oslo Ground Station, an important concept is 
that it should be compatible with the CubeStar-satellite (see chap 1.1 - 

                                                 
25 Gallium Arsenide Field Effect Transistor. 



 59

The Cube-Star project). At the beginning of my work with this master thesis, the 
communication system of the CubeStar-satellite had not been initiated, so part my task will be 
to investigate suitable modulation techniques for this construction. 

Starting with the most basic digital signalling, the binary data is often in a non-return to zero, 
or NRZ-mode. The latter meaning that binary code in which 1's are represented by one 
significant condition (usually a positive voltage) and 0's are represented by some other 
significant condition (usually a negative voltage), with no other neutral or rest condition. This 
type of signalling initially has no means of synchronization, so the data are often combined 
with a clock line, or some other method of time-synchronization are applied. 

 
Figure 4.7xiv: NRZ-data 

 
NRZ-data, due to sharp transients, has a very wide spectrum-content. This spectrum consists 
of several ‘lobes’. The most significant of these is called the main lobe, and has a maximum 
deviation of half the bit-rate of the NRZ. In figure 4.8 below, this corresponds to 4800 Hz. 
Above this frequency, a number of side-lobes are present, and in theory these stretch out to 
infinity (When Fourier-analyzing an infinitely sharp impulse). Because of this, any such 
signal is not suited for direct transmission over radio as it would utilize a large frequency-
band for relatively small frequency band.  

Most radios have a low-pass filter with a cut-off frequency at 5 kHz on the input-connections 
to limit the modulated frequency content, so any frequencies above this would be heavily 
attenuated. This low-pass filter usually has an unwanted phase-distortion when the 
modulating frequency is close to the cut-off frequency. This is particularly not a good thing 
when utilizing phase-modulated data transmission. 



 60

Also, most radios designed for voice communication employ pre-emphasizing and de-
emphasizing as part of the signal lane. This has the effect of boosting the power of higher 
frequencies while transmitting, and the inverse when receiving. Since baseband-noise has a 
higher magnitude at the higher frequencies from an FM system, this is now counter-effected 
by attenuating the higher frequency-range at the receiver. This works because voice has 
significantly less power at higher frequencies. But when it comes to the transmission of data 
at high frequency utilization, this is not ideal, as digital data has much larger high frequency 
content. 

However, a special “9600-baud input” on the newer type of radios enables the bypass of the 
low-pass filters and emphasising. However, when using this input, the content is not limited 
before entering the IF26-  

Running NRZ-data through a Gaussian low pass filter removes the effective side-lobes. 

 
Figure 4.8xv: Frequency spectrum of a string of random NRZ-data at 9600 bps before (left) and after 

(right) Gaussian low-pass filtering.  
 
This has the effect of taking the sharp edges of the NRZ-data. Notice that the main lobe is 

extending from DC to half the bit rate ( Hz
bitrate

4800
2

 ).  

                                                 
26 Intermodulation Frequency 
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Figure 4.9xvi: Computed power spectra of MSK, BPSK and GMSK (with BT = 0.5) at 9600 bit/sec. 

 

Comparing the power spectra’s of unfiltered MSK with BPSK and GMSK, one can see that 

the main lobe of MSK-signal modulation is clearly wider than
2

bitrate
, as it is with BPSK and 

GMSK. This simply means that MSK is not suitable for high bit rate transmission, since the 
bit-rate would have to be reduced to fit into the required  

BPSK has a main lobe similar to GMSK, yet GMSK has even lower side-lobes. If a signal has 
high side-lobes means that some of the information will not be transmitted through a 
bandwidth-limited radio. However, the total energy-loss would be extremely small ( %1 ). 

However, there are other more important reasons why I have selected GMSK as the 
modulation technique. 

The required baseband bandwidth, and therefore the radio-channel bandwidth requirement of 
a GMSK system is principally determined by two factors: the data rate and the system filter's 
response. The response characteristic with respect to an applied data rate is referred to as the 
system BT (bandwidth - data rate) factor. If the BT-factor is lowered, the baseband frequency 
consumption is also lowered. 
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Figure 4.10: GMSK-filter response with different bit time, or BT. 

From figure 4.10 above, one can quite easily see that the BT-factor is the ratio of the -3dB-
point of the filter in relation to the applied data rate: 

 
rateData

BT 3dBf  [Eq. 4.19] 

By lowering the BT-ratio, one could theoretically achieve an ever increasing maximum bit-
rate using a fixed bandwidth consumption. Of course, this is not completely true, as inter 
symbol effect, or ISI would come into effect.   
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Figure 4.11 (left): BER performance of BPSK and GMSK w/BT=0.5 without synchronization errors. 
Figure 4.12 (right): BER performance of BPSK and GMSK w/BT=0.5 with varying carrier phase and 
symbol sync errors. 

b represents the calculated values of 
0N

Eb  

BER is the calculated bit error ratio of the demodulators. 
 

GMSK-modulation with a filter-value with a BT, or bit time, of 0.5 uses less bandwidth than a 
BPSK-signal (see figure 4.9). Still, GMSK-modulation does just as good (provides the same 
BER) as BPSK (figure 4.11) during no noise scenarios, and even better (provides a lower 
BER) than BPSK during signal noise interference (figure 4.12) and distortion.  

 

MXCom supplies a BER vs. S/N plot that indicates typical performance, independent of bit 
rate (although the applied noise bandwidth is considered to match the bit rate used):  

BER BER
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Figure 4.13: Typical bit error rate for the GMSK demodulator of the CMX589A chip. 

By entering data from figure 4.13 above into a list on a standard calculator (CASIO fx-9000 
series) with line-fitting ability (LSQ-operation), an estimated function using exponential fit is 
found: 

      dB22.1
83.26dB N

S
eBER


  [Eq. 4.20] 

This formula is used in the link budgets to find the expected BER-rate of the communication 
link. (See Appendix B) 
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5 Construction of the Oslo Ground Station – Remote 

operation 

 

5.1 Motivation 

As the number and usage of small LEO-satellites increase, one of the key issues concerning 
ground stations is to get sufficient amount of data from the satellites and to the ground. There 
are, of course, many ways of making this happen, but on a general basis there are three main 
targets: 

1. Increased link bandwidth. 
2. Increased link-time.  
3. Lowered bit error rate 

 
Increasing the link bandwidth correlates to increasing the channel bandwidth. But as on-air 
frequencies are limited and shared between users across the globe, this tactic can only be 
stretched so far. Also, as each satellite is launched, a specific frequency and channel 
bandwidth is assigned by ITU, limiting the bandwidth allowed. Thus, to improve overall 
bandwidth to and from the satellites, one should try to maximize link-time.  
As a LEO-satellite orbits the earth, the amount of time it spends within “visible” range of a 
single spot on the ground is very limited. Also, depending on the placement of the ground 
station versus the inclination of the satellite orbit, the number of contacts pr day may also be 
very limited. For a satellite in a high inclination orbit ( i 90°), a ground station close to the 
equator could yield as low as 2 passes per 24-hour cycle. A steep inclination means that the 
satellite will pass the north and south-pole on every orbit, but as the earth is spinning in a west 
to east manner, each LEO-orbit would only pass a certain point on the equator a limited 
number of times. LEO-satellites is said to “scan” the planet as it orbits. Because of this, any 
ground station placed in particularly high or low latitudes, will have a significantly higher 
percentage of active link-time to most LEO-satellites because of the increased number of 
passes. 

A theoretical ground station at any of the geographical poles would approximately yield 14 
passes per 24-hours, depending on the altitude of the satellite. Still, assuming a maximum 
passage time of roughly 15 min, this would only give a link time of 210 minutes or in excess 
of 3 hours pr 24 hours, giving a duty-cycle of approx. 15%. Thus, using a single ground 
station for a single satellite would never secure “massive downloads”.  

However, if one would be able to utilize multiple ground stations, located all across the globe, 
the transmission duty-cycle for any given satellite would be significantly higher. To achieve 
this, a remote operation of the satellite ground stations, most notably through an internet 
connection, is a must. 

At the time of writing, an ESA project called the GENSO-network is in the progress of being 
developed. The purpose is to make a complete server/client network enabling multiple ground 
station to cooperate on connecting and downloading data from a myriad of LEO-satellites. 
However, since this system is so massive and intricate in its design, its operational date is still 
unclear. What this means is that it’s still is up to each satellite producer (universities and 
others) to ensure a method of connectivity. This normally implies a construction of a 
dedicated satellite ground station. 
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The University in Oslo may, in addition to the one in Oslo, at 59.9° north, place a satellite 
ground station at the university centre in Longyearbyen, Svalbard, at 78° north, and possibly 
one at the Troll research and test-drilling station, at 71° south, in the Antarctic. 

What is needed is a system where multiple users can access ground stations. Moreover, this 
has to stable enough to reduce the need of local human interference. While remotely 
controlling the ground stations may become available though GENSO, this system requires a 
computer to run locally at each site. This may provide stability issues concerning power-outs, 
viruses, software updates, hang-ups and so-forth. To safely operate an instrument in a desert 
or remote site, the more “simple” option of directly interfacing the equipment to the internet 
through a microcontroller is implemented. 

5.2 Tracking software 

As far as these stations go, they are either controlled manually by buttons on the equipment 
itself, or by connecting the equipment to a computer. Most of the instruments made for 
satellite communication in the VHF or UHF-bands are targeted towards amateur-radio 
operators. 

One of the easiest interfaced satellite tracking software available is a program called 
Orbitron27. Orbitron is a satellite tracking system for radio amateur and observing purposes. 
It's also used by weather professionals and other satellite communication users. It is 
developed and maintained by Sebastian Stoff, a radio amateur. 

 
Figure 5.1: Screenshot of Orbitron depicting the ground station position in Oslo, Norway denoted by my 

call sign LA1FRA, the link-coverage of a german CubeSat named UWE-2 (From the University of 
Würzburg) launched in September 2007 at an altitude of approx. 700 km. 

                                                 
27 Downloadable from http://www.stoff.pl/ 
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Orbitron keeps updated TLEs28 from NORAD29, and can read any TLE-files supplied. 
To steer the elevation and azimuthal rotors, an external driver must be installed on the 
computer. An already developed driver called WispDDE can control the rotators used in the 
Oslo Satellite Ground Station via a GS-232B-controller from Yaesu. By purchasing a 
converter called CT-17 from ICOM, the radio can be controlled from the computer via a 
serial-port.  
With this in mind, the easiest way to implement remote control of a satellite ground station 
would of course be to use remote desktop or other similar programs.  

However, handing out usernames and/or passwords for a networked computer is generally a 
no-no, so this is not an option. In addition, only one person can run interfacing programs at 
the same time. 

To solve this, another type of architecture is needed. 

5.3 Deciding on a general system 

By developing a dedicated TNC30 with networking capability and adding the capability to 
control the rotor and radio, the ground station interfacing can be done over a network / the 
internet.  

To achieve this, a separate Delphi-based program has been written. The program is based on a 
programming code supplied at Orbitrons homepage. This code is called My DDE Client 1.05, 
and is an empty shell that supplies the developer with a DDE31-link frond Orbitron supplying 
satellite-data. This is then selected as the driver for Orbitron by setting the path of the 
MyDDE driver in Orbitrons ‘Setup.cfg’-file.  

MyDDE transmits frequency-, modulation method and rotor data to the TNC. In addition, the 
data to be modulated over the radio can be sent from the same computer using a 
mission/satellite specific program written to interface with the satellite in question. Any 
protocol (AX.25 or other) is sent as binary data to the TNC via UDP-packet with a specific 
data header at the beginning of the data-field.  

                                                 
28  The North American Aerospace Defense Command (NORAD) developed the Two-Line Element (TLE) 
format for transmitting satellite Keplerian elements.Using these, the position of a satellite can be computed by a 
satellite tracking program. The Kepplerian elements are normally accurate enough within a time-window of 
approx. 2 weeks.  
29 North American Aerospace Defense Command 
30 Terminal Node Controller. Cconsist of a modulator/demodulator for digital radio operation, and a computer 
interface  
31 Dynamic Data Exchange. A Windows-compatible way of transmitting data from one program to another 
without using files.  
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Figure 5.2: A modified MyDDE Client for networked operation receiving data from Orbitron and sends 

the data via UDP to a dedicated IP:port-address. 
 
This setup can theoretically handle multiple remote operators, each running their own version 
of Orbitron and MyDDE tracker their own satellite. 

Obviously, only one user can utilize the physical rig at the same time, but since LEO-satellites 
are only visible for a short time, each user would theoretically have a large chance of getting 
instantaneous access for “their” satellite. 

Taking the abilities of each equipment into consideration, what is needed is a systemic device 
that is able to tie it all together. By producing the components depicted by the white squares 
in figure 5.3 below, complete functioning system can be produced. 

To interface the antenna rig, a PCB-layout featuring the AVR ATMega32-microcontroller, 
the RTL 8019AS network-controller, the CMX589A GMSK modulator/demodulator and 
additional parts was selected. 



 69

Figure 5.3: General system overview, with remote operation connectivity 

Notice that since the ATMega32-chip only has a single UART-module, the serial output is 
shared between the RS-232B rotor controller and the CI-V interface for the ICOM radio. This 
is possible because ICOM radios only listens to packets preceded by their own address. By 
transmitting the packet termination-code at the end of all data destined for the RS-232B, and 
opposite when transmitting to the ICOM, each component will only accept data targeted for 
them selves. 
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5.4 The ICOM 910h transceiver 

5.4.1 Connectors 

 
Figure 5.4xvii: Part of IC-910h schematics showing ACC (1) and DATA-sockets (2)  

with inductors (3) and capacitors (4). 
 

As can be seen from figure 5.4 above, no input or output connections are directly AC-
coupled. This is a good thing, as long strings 0’s or 1’s may require that the baseband-
modulating input-signal must be DC-coupled to prevent voltage drifts. Because of this, great 
caution must be taken to insure that ground loops, either though power supply or signal 
cables, are not created when connecting external equipment. In this project, the terminal node 
controller, or TNC, is constructed so that one can: 

 Let the radio and the TNC share a common power-supply and be fully DC-coupled. 

 Set the TNC in AC-mode to prevent ground loops when having separate power-
supplies. This requires that the digital data must be scrambled before modulation. 

 Or disconnect the signal ground between the TNC and the radio to let the ground-loop 
act as the common ground. This is a last resort measure that should be avoided. 

2

1

3

4 
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When it comes to high frequency content, it seems that all of ICOM 910h’s connector-lines 
have an LC-filter consisting of a coil (100 μF) and a capacitor. Assuming that any connected 
line has a series resistance of at least 2kΩ, this would act as a RLC low-pass filter. 

The cut-off frequency Cf  of the RLC-setup is easily calculated using the formula: 

 
LC

fC



2

1
 [Eq. 5.1] 

ICOM has not specified the value of all their capacitors, but with the capacitor on the data out 
line (DOUT), the capacitor-value of 47 pF can be read out clearly. This gives a cut-off 
frequency of: 

 MHz
LC

fC 3.2
103.4

1

10472

1

2

1
716









 

 [Eq. 5.2] 

This frequency-limit is way above what will be produced by any modulator used for 
communication at these frequencies. Assuming that the other capacitors has a comparable 
value, one can conclude that these are obviously put there to protect against voltage spikes 
and static electricity, and not to implement any kind of frequency limiting limit. 

 

5.4.2 ICOM 910h functions 

 
Figure 5.5: The ICOM 910h receiver construction layout. 

 
Normally, with radios prepared for voice-communication, several techniques are applied to 
improve vocal communication. In the transmitter part, the modulating signal is subject to pre-
emphasizing, gain adjustment and low-pass filtering. This is not suitable for higher baud-rate 
transmissions. The ICOM 910h features support for higher baud-rates using a separate 
unfiltered signal lane. 



 73

Figure 5.6: Part of section 10-1 in the ICOM service manual showing the data in lane (DIN) (1). The 9600-
baud setting (2) selects between the “1200-baud lane” (3), which clearly uses “the microphone lane”, from 

the unfiltered 9600-baud lane (4). What are also seen are the single-sideband (5), the FM- (6) and 
 AM-modulation circuitry (7).  

 

 

1 
2 

5 6 

7 

3 
4

Microphone 
input-
circuitry



 74

5.5 GMSK-modem setup 

One of the key functions of a satellite ground stations is the ability to perform modulation and 
demodulation of a digital signal. 

 
Figure 5.7xviii: Suggested system block diagram for connecting the CMX589A GMSK Modem 
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5.5.1 DOC1 & DOC2 capacitors 
The formula for calculation of the capacitors that is to be connected to the Rx dc-level 
measurement-module is not part of the datasheet. However, several baud rates versus 
capacitor-values are listed. From these values one can see that for every time you double the 
baud-rate, the capacitance is halved. So a generic formula can be found: 

  
bitrateSelected

kbits
FCC

_

4
*030.08|7   [Eq. 5.3] 

As we select a baud rate of 9600, the result is then: 

 nFF
kbits

kbits
FCC 5.120125.0

6.9

4
*030.08|7    [Eq.5.4] 

Unfortunately, only 10 and 15nF capacitors can be bought, so as smaller capacitance probably 
relates to a higher cut-off frequency in the DC-measurement circuitry, two 10nF capacitors 
are selected. 

 
Figure 5.8xviii: Block diagram of CMX589AD 
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5.6 The remotely operated satellite ground station controller 

Designing a PCB-layout in CADSTAR32, the design (See Appendix C and D) was sent abroad 
for production. The resulting two-layer printed circuit-board was fitted with solder-paste 
using a metal-stencil and the surface-mounted components were soldered using a gas-vapour 
soldering machine. Later the hole-mounted components were fitted, and the device connected 
to the ground station equipment (see figure 5.10). 

 
Figure 5.9: The resulting remote satellite ground station controller version 1.99 depicting the connectors 
(from top left to right) for Ethernet connector (1), ICOM data-modulation connector (2) for both main 

and sub-lane GMSK, AFSK and Morse-keying operation., UART-connector (3) for RS-232B control and a 
CI-V connector (4) for radio frequency control. The microcontroller-chip (5) and the GMSK 

modulator/demodulator (6) can be seen in the middle. 
 

                                                 
32 A design editor produced by Zuken Ltd. 

2
1 3 4 

6

5
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Figure 5.10: Showing the remote satellite ground station controller in a system setup. 
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6 Conclusions 

This thesis clearly states that the implementation of a remotely operated ground station is not 
only possible, but a goal that should be aimed for by all ground station constructers. 
Cooperation between ground stations provides strong benefits when it comes to downloading 
data from LEO-satellites due to the increase of link-time. However, this is clearly limited by 
the fact that not only are there multiple ways of modulating a baseband signal, but there is 
also a multitude of ways of implementing a satellite communications protocol. Because of 
this, the suggestion is made to implement all ground stations so that they may act in a binary 
mode. Using this mode, each satellite producer/ground station user can program their specific 
codes in their own program locally. This program then communicates with the satellite 
through the ground station using, for example, the UDP-protocol across the internet. This 
master thesis shows that a microcontroller, with some extra components, is capable of 
performing such a service. 

6.1 Achievements 

The Oslo Satellite Ground Station is up and running, and has received Morse-coded messages 
from several satellites. So far no data communication has been achieved, but this is because of 
a lack of implemented data protocol towards satellites in space. 

The rotor and radio is operated using the Remote Satellite Ground Station Controller 
produced in this thesis, and the functionality to transmit and receive GMSK through radio is 
implemented.  

Multiple segments in the design of the schematics produced in this master thesis can be 
reused in the design of a communication-module aboard a CubeSat satellite, and thus 
facilitates the future construction of the CubeStar. 

6.2 Future work 

The networked microcontroller of the ground station, with its simplistic UDP-protocol, can 
easily be controlled though a driver attached to a GENSO-server. It is therefore possible to 
connect the Oslo Ground Station to the GENSO network. Also, by programming the 
microcontroller with a standard communication-protocol, less programming will have to be 
done at the ground station user side. 
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Glossary of terms and acronyms 
 AFSK Audio Frequency-shift keying. 

 AM Amplitude modulation. 

 BPSK  Binary phase-shift keying. 

 BT Bit-Time, see Eq. 4.19 on page 62. 

 FM Frequency modulation. 

 FSK Frequency shift keying. 

 GMSK Gaussian minimum shift keying. 

 PM Phase modulation. 

 QPSK Quadrature phase-shift keying. 

 EIRP Equivalent Isotropically Radiated Power (Combined power and antenna gain).  

 G/T Gain to noise temperature ratio (Of a receiving system). 

 LSQ Least square fit. A linear algebraic procedure to fit a line or formula to a set of 

samples. 

 TNC Terminal Node Controller. A device that modulates a digital baseband signal for 

radio transmission. 

 VSWR Voltage Standing Wave Ratio. A way of measuring the magnitude of signal 

reflection. 
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10 Appendix A - UDP command protocol description  

Command protocol description for remote TNC-operation through UDP data packets at 
port 45963 The hex-values describes the initial values required in the UDP-data field: 
 
PC->Ctr UDP: 0x00 Status req 
 Ctr Status Standby: 
  Ctr->PC UDP: 0x00  
 Ctr Status LockedToRequestingIP(operational): 
  Ctr->PC UDP: 0x01  
 Ctr Status LockedToOtherIP(busy): 
  Ctr->PC UDP: 0x0E +LockedIP[4] 
 
PC->Ctr UDP: 0x01 RequestLock 
 Status LockedToRequestingIP(operational,OK): 
  Ctr->PC UDP: 0x01 
 Status LockedToOtherIP(busy, notOK): 
  Ctr->PC UDP: 0x0E 
 
PC->Ctr UDP: 0xhhhh hhhh (when length <= 8) 
  if(LockedToRequestingIP) then  
   Ctr outputs the following sequence to the UART: 
    0xhhhh hhhh 0D 
  else if(Standby) then  
   Ctr Status LockedToRequestingIP(operational): 
   Ctr outputs the following sequence to the UART: 
    0xhhhh hhhh 0D     
  else drops packet 
    
PC->Ctr UDP: 0xhhhh hhhh hhhh h..... (when length > 8) 
  if(LockedToRequestingIP) then  
   Ctr outputs the following sequence to the UART: 
    0xhhhh hhhh 0D hhhh h.... OD 
  else if(Standby) then  
   Ctr Status LockedToRequestingIP(operational): 
    Ctr outputs the following sequence to the UART: 
    0xhhhh hhhh 0D hhhh h.... OD 
  else drops packet 
   
PC->Ctr UDP: 0x02 ReleaseLock 
 if(LockedToRequestingIP) then  
  Status Standby(released): 
   Ctr->PC UDP: 0x00 
 else drops packet 
 
If no packet has been received for approx. 1min, then  
 Ctr Status Standby: 
 Ctr->PC UDP: 0x00   





 

Appendix B – Estimated satellite communication link-budget 

CubeStar – Oslo Ground Station using GMSK 

Fysisk Institutt        
Date    : 02/12/2009        
   Broadend values are calculated using worksheet functions. 
STATIONS :OSLO (Tx) OSLO (Rx)  Normal texted values are entered by hand   
Version DLL Propagation : 20060213        

        

Parameters   The Satellite    

Satellite Latitude (°) 47,2000 North/south    

Satellite Longitude (°) 27,6768 East/west    

Satellite height (km) 700,0000      

TX Station     Oslo Satellite Ground Station   

Latitude (°) 59,9370      
Longitude (°) 10,7181      
Height (km) 0,0900      
Antenna Diameter (m) 0,5000      
Antenna Efficiency (%) 60,0000      
Polarisation (circular = 45°) (°) 45,0000      
Satellite Elevation (°) 5,0609      
Distance (km) 2557,5843      

RX Station     Oslo Satellite Ground Station   

Latitude (°) 59,9370      
Longitude (°) 10,7181      
Height (km) 0,1150      
Satellite Elevation (°) 5,0609      
Distance (km) 2557,5843      

Satellite link          

Baud rate   9600      
Modulation (bits per symbol)   1,0 AFSK/MSK/BPSK/GMSK   
FEC rate   1,0      
Usefull Bit rate (Mbps) 0,0096      
Uplink Frequency (GHz) 0,4330      
Uplink channel separation (Hz) 25 000 Standard FM has 25kHz ch. separation. NFM has 12,5 
Uplink peak frequency deviation (Hz) 5 000      
Uplink, minimum RF BW consumption (Hz) 19 600      
Downlink Frequency (GHz) 0,4330      
Downlink channel separation (Hz) 25 000 Standard FM has 25kHz ch. separation. NFM has 12,5 
Downlink peak frequency deviation (Hz) 5 000      
Downlink,minimum RF BW consumption (Hz) 19 600      
Uplink Availability (%) 12,0      
Downlink Avalability (%) 12,0      
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Uplink (station to satellite)        

Tx station Power OSLO ground station      

Amplifier Power (dBW) 17,0 50 W    
Feeder Losses (dB) 5,5 Loss over entire cable stretch,+J105 70 meters 
Pointing error loss(+-10degrees) (dB) 0,5      
Max. Antenna Gain (dBic) 14,4 Tonna (F9FT) 20438 (16dBi) - alu. cross bar loss (1,6) 
EIRP (dBW) 25,4      

Propagation losses          

Free Space Losses (dB) 153,3      
Atm. Gaz Attenuation (dB) 0,00000 Low value due to low frequency  
Rain Attenuation (dB) 0,00000 Low value due to low frequency  
Clouds Attenuation (dB) 0,00000 Low value due to low frequency  
Scintillation (dB) 0,00000 Low value due to low frequency  
Polarisation Losses (dB) 3,0 Accounts for linear->RHCP ant.polarization mismatch 
Total Losses (dB) 156,3      

Satellite Rx Parameters Satellite        
Rx Satellite Antenna Gain (footprint 
edge) 

(dBic) 0,0      

Feeder Losses (dB) 0,4 Estimated    
Feeder Noise Temperature (K) 150,0      
Rx Noise Figure (dB) 1,0 Unknown    
Rx Noise Temperature (dBK) 25,9      
Rx Satellite Noise Figure : G/T (dB/K) -25,9      

Uplink link budget          

(C/N0) uplink (dBHz) 71,8 Calculated using total loss   
(C/I) uplink (dB) 30,0 Assumed 1000:1 signal/interference ratio 
(Eb/N0) uplink (dB) 32,0      
Implementation Losses (dB) 1,0 Estimated    
(C/N) downlink (dB) -3,2      
FM demodulator threshold (dB) 12,0 Assumed FM-demodulator threshold  
Threshold margin (dB) -100,0 Must be above 0 dB to avoid threshold deterioration! 
          
          
Margin (dB) 34,1567 Good signal margin in uplink!  
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Downlink (Satellite to station)        

Tx Satellite Power Satellite        

Amplifier Power (dBW) -3,0 0,5 W max = 0dBW = 1W 
Feeder Losses (dB) 0,4 Loss before the LNA    
Tx Satellite Antenna Gain (footprint 
edge) 

(dBic) 0,0 Dipole with unknown orientation->"Isotrophic" 

EIRP (dBW) -3,4      

Propagation Losses          

Free Space Losses (dB) 153,3281      
Atm. Gaz Attenuation (dB) 0,0000000 Low value due to low frequency  
Rain Attenuation (dB) 0,0000000 Low value due to low frequency  
Clouds Attenuation (dB) 0,0000000 Low value due to low frequency  
Scintillation (dB) 0,0000000 Low value due to low frequency  
Polarisation Losses (dB) 3,0 Accounts for linear->RHCP ant.polarization mismatch 
Total Losses (dB) 156,3      

Rx Parameters OSLO ground station      

Rx Station Antenna gain (dBic) 14,4 Tonna (F9FT) 20438 (16dBi) - alu. cross bar loss (1,6) 

Clear Sky Noise Temperature (K) 61,1 
Ground Noise Temperature (K) 290,0 
Feeder Noise Temperature (K) 290,0 

http://webs.uvigo.es/servicios/biblioteca/uit/rec/P/R-
REC-P.372-9-200708-I!!PDF-E.pdf page 8 
RECOMMENDATION ITU-R P.372-9 

Feeder Losses (dB) 1,6 Estimated from cable lengths befor LNA vs loss/meter 
Rx Noise Figure (dB) 0,9 Noise figure from SSB SP-7000 preamp spec. 
Rx Noise Temperature (clear sky) (dBK) 27,6      
Rx Noise Temperature (rain/clouds) (dBK) 27,6      
Rx station Noise Figure : G/T (dB/K) -13,2      

Downlink link budget          

(C/N0) downlink (dBHz) 55,7  Signal - total loss + G/T + Boltzmanns constant 
(C/I) downlink (dB) 30,0 1000:1 signal/interference ratio assumed 
(Eb/N0) downlink (dB) 15,8      
Implementation Losses (dB) 1,0      
(C/N) downlink (dB) 11,7 Above threshold    
FM demodulator threshold (dB) 10,0 Standard FM discriminator (PLL) threshold 
Threshold margin (dB) 1,7 Must be above 0 dB to avoid threshold deterioration! 
S/N @ 100% mod (dB) 18,8      
S/N @ 80% mod (dB) 16,8      

Expected BER using GMSK @ 80% (dB) 3,2E-08 More than good enough bit-error rate at 0.5W 





 

Appendix C – Satellite Ground Station Remote Controller - 
Schematics 

 
Schematics 1: TOP schematic drawing 
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Schematics 2: Power and bypass capacitors 
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Schematics 3: GMSK modem setup 
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Schematics 4: RS-232 and CI-V driver and level-conversion circuits 
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Schematics 5: PTT (push to talk/transmit en able) circuit 
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Schematics 6: PWM low-pass and driver circuitry 
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Schematics 7: Reset button 
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Schematics 8: Network controller 
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Schematics 9: Weak drive block (to separate programming interface from IO-lines during programming) 
 





 

Appendix D - Satellite Ground Station Remote Controller – 
PCB-layout  

 
PCB-layout 1: All layers (normal) 
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PCB-layout 2: BOTTOM electric 
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PCB-layout 3: TOP  electric 

 





 

Appendix E – Source code for 

micro-controller on ground 

station controller circuit board 

(c-code for AVR ATMEGA32) 

easyethavr.c 
////////////////////////////////////////////////////////////////////// 
// REALTEK RTL8019AS DRIVER FOR AVR ATMEGA163 
// PACKET WHACKER ENABLED 
// Author: Fred Eady 
// Company: EDTP Electronics 
// Version: 1.2 
// Date: 08/08/19 
// Description: ARP, PING, ECHO and LCD Control, TCP, UDP 
////////////////////////////////////////////////////////////////////// 
//****************************************************************** 
//* PORT MAP 
//****************************************************************** 
// PORT A = rtldata - data bus RTL8019 and AVR 
//  0 SD0 
//  1   SD1 
//  2   SD2 
//  3   SD3 
//  4   SD4  
//  5   SD5  
//  6   SD6 
//  7   SD7 
// PORT B 
//  0 SA0  
//  1   SA1  
//  2   SA2  
//  3   SA3  
//  4   SA4  
//  5    
//  6    
//  7    
// PORT C  
//  0 E 
//  1   RS  
//  2   TCK 
//  3   TMS 
//  4   TDO 
//  5   TDI 
//  6   BL 
//  7   rst_pin 
// PORT D 
//  0 RXD 
//  1   TXD 
//  2   INT0 
//  3   EESK 
//  4   EEDI 
//  5   EEDO 
//  6   ior_pin 
//  7   iow_pin 
 
//#include <iom16v.h> 
#include <avr/io.h> 
#include <string.h> 
#include <stdio.h> 
//#include <macros.h> 
#define  esc   0x1B 
//#include <avr/signal.h> - Obsolete 
#include <avr/interrupt.h> 
#include <avr/pgmspace.h> 
//#include <avr/iom323.h> //already included in avr/io.h 
unsigned int LSB = 0; 
//****************************************************************** 
//* BAUD RATE NUMBERS FOR UBRR 
//****************************************************************** 
#define  b9600  47  // 7.3728MHz clock & U2X=0 
#define  b19200 23 
#define  b38400 11 
#define  b57600 7 
 
//****************************************************************** 
//* Statics for  IC-910h 
//****************************************************************** 
#define  TrAddr 0x60  // Default address of Tranceiver(IC-910h) 
#define  CoAddr 0xE0  // Default controller address 
//****************************************************************** 

//* FUNCTION PROTOTYPES 
//****************************************************************** 
//void lcd_init(void); 
//void lcd_send_nibble( unsigned char n ); 
//unsigned char lcd_read_byte(void);  
//void lcd_send_byte( unsigned char address, unsigned char n ); 
//void lcd_gotoxy( unsigned char x, unsigned char y); 
void init_USART(unsigned int baud); 
void IC910_command(unsigned char command,unsigned char subCommand, unsigned 
int subOrNot, unsigned int nrDatabytes,unsigned char databytes[]); 
void delay_ms(unsigned int delay); 
void delay_us(unsigned int delay); 
void show_aux_packet(void); 
void dump_header(void); 
void readwrite(void); 
void bin2hex(unsigned char binchar); 
void show_regs(void); 
void show_packet(void); 
void cls(void); 
void application_code(void); 
void tcp(void); 
void assemble_ack(void); 
void write_rtl(unsigned int regaddr, unsigned int regdata); 
void read_rtl(unsigned int regaddr); 
void get_frame(void); 
void setipaddrs(void); 
void cksum(void); 
 
void echo_packet(void); 
void send_tcp_packet(void); 
void arp(void); 
void icmp(void); 
void udp(void); 
void sendLockStatus(unsigned char b); 
void udpProcess(unsigned char j); 
void testOut(unsigned char t); 
//****************************************************************** 
//* TELNET SERVER BANNER STATEMENT CONSTANT 
//****************************************************************** 
char const telnet_banner[] = {"\r\nEasy Ethernet AVR>"}; 
//****************************************************************** 
//* IP ADDRESS DEFINITION 
//*   This is the Ethernet Module IP address. 
//*   You may change this to any valid address. 
//****************************************************************** 
unsigned char MYIP[4] = { 129,240,85,70 }; 
//****************************************************************** 
//* HARDWARE (MAC) ADDRESS DEFINITION 
//*   This is the Ethernet Module hardware address. 
//*   You may change this to any valid address. 
//****************************************************************** 
char MYMAC[6] = { 'V','A','N','G','L','I' }; 
//****************************************************************** 
//* Receive Ring Buffer Header Layout 
//*   This is the 4-byte header that resides infront of the 
//*   data packet in the receive buffer. 
//****************************************************************** 
unsigned char  pageheader[4]; 
#define  enetpacketstatus     0x00 
#define  nextblock_ptr        0x01 
#define  enetpacketLenL    0x02 
#define  enetpacketLenH    0x03 
//****************************************************************** 
//* Ethernet Header Layout 
//****************************************************************** 
unsigned char  packet[96];       //50 bytes of UDP data available 
#define enetpacketDest0    0x00  //destination mac address 
#define enetpacketDest1    0x01 
#define enetpacketDest2    0x02 
#define enetpacketDest3    0x03 
#define enetpacketDest4    0x04 
#define enetpacketDest5    0x05 
#define enetpacketSrc0    0x06  //source mac address 
#define enetpacketSrc1    0x07 
#define enetpacketSrc2    0x08 
#define enetpacketSrc3    0x09 
#define enetpacketSrc4    0x0A 
#define enetpacketSrc5    0x0B 
#define enetpacketType0    0x0C  //type/length field 
#define enetpacketType1    0x0D 
#define  enetpacketData    0x0E  //IP data area begins here 
//****************************************************************** 
//* ARP Layout 
//****************************************************************** 
#define arp_hwtype      0x0E 
#define arp_prtype      0x10 
#define arp_hwlen      0x12 
#define arp_prlen      0x13 
#define arp_op       0x14 
#define arp_shaddr      0x16   //arp source mac address 
#define arp_sipaddr      0x1C   //arp source ip address 
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#define arp_thaddr      0x20   //arp target mac address 
#define arp_tipaddr      0x26   //arp target ip address 
//****************************************************************** 
//* IP Header Layout 
//****************************************************************** 
#define ip_vers_len      0x0E //IP version and header 
length 
#define ip_tos       0x0F //IP type of 
service 
#define ip_pktlen      0x10 //packet length 
#define ip_id       0x12 //datagram 
id 
#define ip_frag_offset     0x14 //fragment offset 
#define ip_ttl       0x16 //time to 
live 
#define ip_proto      0x17 //protocol (ICMP=1, 
TCP=6, UDP=11) 
#define ip_hdr_cksum     0x18 //header checksum 
#define ip_srcaddr      0x1A //IP address of source 
#define ip_destaddr      0x1E //IP addess of destination 
#define ip_data       0x22 //IP data 
area 
//****************************************************************** 
//* TCP Header Layout 
//****************************************************************** 
#define TCP_srcport      0x22 //TCP 
source port 
#define TCP_destport           0x24 //TCP destination port 
#define TCP_seqnum          0x26 //sequence number 
#define TCP_acknum            0x2A //acknowledgement number 
#define TCP_hdrflags     0x2E //4-bit header len and 
flags 
#define TCP_window      0x30 //window 
size 
#define TCP_cksum         0x32 //TCP checksum 
#define TCP_urgentptr       0x34 //urgent pointer 
#define TCP_data               0x36  //option/data 
//****************************************************************** 
//* TCP Flags 
//*   IN flags represent incoming bits 
//*   OUT flags represent outgoing bits 
//****************************************************************** 
#define  FIN_IN               (packet[TCP_hdrflags+1] & 0x01) 
#define  SYN_IN               (packet[TCP_hdrflags+1] & 0x02) 
#define  RST_IN               (packet[TCP_hdrflags+1] & 0x04) 
#define  PSH_IN               (packet[TCP_hdrflags+1] & 0x08) 
#define  ACK_IN               (packet[TCP_hdrflags+1] & 0x10) 
#define  URG_IN               (packet[TCP_hdrflags+1] & 0x20) 
#define  FIN_OUT              packet[TCP_hdrflags+1] |= 0x01 //00000001 
#define  SYN_OUT              packet[TCP_hdrflags+1] |= 0x02 //00000010 
#define  RST_OUT              packet[TCP_hdrflags+1] |= 0x04 //00000100 
#define  PSH_OUT              packet[TCP_hdrflags+1] |= 0x08 //00001000 
#define  ACK_OUT              packet[TCP_hdrflags+1] |= 0x10 //00010000 
#define  URG_OUT              packet[TCP_hdrflags+1] |= 0x20 //00100000 
//****************************************************************** 
//* Port Definitions 
//*   This address is used by TCP and the Telnet function. 
//*   This can be changed to any valid port number as long as 
//*   you modify your code to recognize the new port number. 
//****************************************************************** 
#define  MY_PORT_ADDRESS      0xB38B  // 8088 DECIMAL 
//****************************************************************** 
//* IP Protocol Types 
//****************************************************************** 
#define PROT_ICMP     0x01 
#define PROT_TCP     0x06 
#define PROT_UDP     0x11 
//****************************************************************** 
//* ICMP Header 
//****************************************************************** 
#define ICMP_type      ip_data 
#define ICMP_code      ICMP_type+1 
#define ICMP_cksum      ICMP_code+1 
#define ICMP_id       ICMP_cksum+2 
#define ICMP_seqnum      ICMP_id+2 
#define ICMP_data              ICMP_seqnum+2 
//****************************************************************** 
//* UDP Header 
//;****************************************************************** 
#define UDP_srcport      ip_data 
#define UDP_destport     UDP_srcport+2 
#define UDP_len       UDP_destport+2 
#define UDP_cksum      UDP_len+2 
#define UDP_data      UDP_cksum+2 
//****************************************************************** 
//* REALTEK CONTROL REGISTER OFFSETS 
//*   All offsets in Page 0 unless otherwise specified 
//****************************************************************** 
#define CR    0x00 
#define PSTART  0x01 
#define PAR0       0x01    // Page 1 

#define CR9346     0x01    // Page 3 
#define PSTOP  0x02 
#define BNRY  0x03 
#define TSR   0x04 
#define TPSR  0x04 
#define TBCR0  0x05 
#define NCR   0x05 
#define TBCR1  0x06 
#define ISRx   0x07   //( name 'ISR' already defined 
in 'avr/interrupt.h', 'x' added to separate. Henning Vangli, June '09) 
#define CURR  0x07   // Page 1 
#define RSAR0  0x08 
#define CRDA0  0x08 
#define RSAR1  0x09 
#define CRDAL  0x09 
#define RBCR0  0x0A 
#define RBCR1  0x0B 
#define RSR   0x0C 
#define RCR   0x0C 
#define TCR   0x0D 
#define CNTR0  0x0D 
#define DCR   0x0E 
#define CNTR1  0x0E 
#define IMR   0x0F 
#define CNTR2  0x0F 
#define RDMAPORT   0X10 
#define RSTPORT    0x18 
//****************************************************************** 
//* RTL8019AS INITIAL REGISTER VALUES 
//****************************************************************** 
#define rcrval  0x04 
#define tcrval  0x00 
#define dcrval  0x58    // was 0x48 
#define imrval  0x11    // PRX and OVW interrupt enabled 
#define txstart    0x40 
#define rxstart    0x46 
#define rxstop     0x60 
//****************************************************************** 
//* RTL8019AS DATA/ADDRESS PIN DEFINITIONS 
//****************************************************************** 
#define  rtladdr    PORTB 
#define  rtldata    PORTA 
#define  tortl      DDRA = 0xFF   
#define  fromrtl    DDRA = 0x00  
//****************************************************************** 
//* RTL8019AS 9346 EEPROM PIN DEFINITIONS 
//****************************************************************** 
#define  EESK        0x08 //PORTD3 00001000 
#define  EEDI        0x10 //PORTD4 00010000 
#define  EEDO        0x20 //PORTD5 00100000 
//****************************************************************** 
//* RTL8019AS ISRx REGISTER DEFINITIONS 
//****************************************************************** 
#define  RST         0x80 //1000000 
#define  RDC         0x40 //0100000 
#define  OVW         0x10 //0001000 
#define  PRX         0x01 //0000001 
//****************************************************************** 
//* AVR RAM Definitions 
//****************************************************************** 
unsigned char aux_data[20];            //tcp received data area 
unsigned char *addr,flags,last_line; 
unsigned char byteout,byte_read,data_H,data_L; 
unsigned char high_nibble, low_nibble, high_char, low_char,resend; 
unsigned int i,txlen,rxlen,chksum16,hdrlen,tcplen,tcpdatalen_in; 
unsigned int tcpdatalen_out,ISN,portaddr,ip_packet_len,cntr; 
unsigned long hdr_chksum,my_seqnum,client_seqnum,incoming_ack,expected_ack; 
 
unsigned char lockStatus; //IPLockStatus 0x00-Standby 0x01-LockedToIP 
unsigned char lockedIP[4]; //LockedIP 
//****************************************************************** 
//* Flags 
//****************************************************************** 
#define synflag 0x01 //00000001 
#define finflag 0x02 //00000010 
#define hexflag 0x04 //00000100 
#define synflag_bit flags & synflag 
#define finflag_bit flags & finflag 
#define hexflag_bit flags & hexflag 
//****************************************************************** 
//*   PORT and LCD DEFINITIONS 
//****************************************************************** 
#define databus    rtldata 
#define addrbus    rtladdr     
      
   
#define eeprom    PORTD 
#define iorwport   PORTD 
//#define lcdcntrl   PORTC 
//#define cport    PORTC 
#define resetport  PORTD 
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#define nop     asm("NOP") 
#define BL      0x40 
#define RS      0x02 
#define E       0x01   
//#define BLon       lcdcntrl |= BL 
//#define BLoff    lcdcntrl &= ~BL 
//#define clrRS    lcdcntrl &= ~RS 
//#define setRS    lcdcntrl |= RS 
//#define clrE    lcdcntrl &= ~E 
//#define setE    lcdcntrl |= E 
        
//#define lcdcls    lcd_send_byte(0,0x01) 
//#define line1    lcd_gotoxy(1,1) 
//#define line2    lcd_gotoxy(2,1) 
//#define line3    lcd_gotoxy(3,1) 
//#define line4    lcd_gotoxy(4,1) 
 
//unsigned char LCD_INIT_STRING[5] = {0x28,0x08,0x01,0x06,0x0E}; 
//unsigned char msg_initfail[] = "INIT FAILED"; 
//****************************************************************** 
//* RTL8019AS PIN DEFINITIONS 
//****************************************************************** 
#define  ior_pin     0x40 //PORTD6 01000000 
#define  iow_pin     0x80 //PORTD7 10000000 
#define  rst_pin     0x10 //PORTD4 00010000 
#define  INT0_pin    0x04 //PORTD2 00000100 
//#define  LE_pin   0x08 //PORTD3 00001000 //Not needed 
//****************************************************************** 
//* RTL8019AS PIN MACROS 
//****************************************************************** 
#define set_ior_pin iorwport |= ior_pin 
#define clr_ior_pin iorwport &= ~ior_pin 
#define set_iow_pin iorwport |= iow_pin 
#define clr_iow_pin iorwport &= ~iow_pin 
#define set_rst_pin resetport |= rst_pin 
#define clr_rst_pin resetport &= ~rst_pin 
#define set_le_pin  iorwport |= LE_pin 
#define clr_le_pin  iorwport &= ~LE_pin 
 
#define set_cport_0 cport |= 0x01 
#define set_cport_1 cport |= 0x02 
#define set_cport_2 cport |= 0x04 
#define set_cport_3 cport |= 0x08 
#define set_cport_4 cport |= 0x10 
#define set_cport_5 cport |= 0x20 
#define set_cport_6 cport |= 0x40 
#define set_cport_7 cport |= 0x80 
 
#define clr_cport_0 cport &= ~0x01 
#define clr_cport_1 cport &= ~0x02 
#define clr_cport_2 cport &= ~0x04 
#define clr_cport_3 cport &= ~0x05 
#define clr_cport_4 cport &= ~0x10 
#define clr_cport_5 cport &= ~0x20 
#define clr_cport_6 cport &= ~0x40 
#define clr_cport_7 cport &= ~0x80 
 
 
//#define latchdata set_le_pin;     \ 
     //delay_us(1);
    \ 
     //clr_le_pin;  //Not 
needed 
 
#define clr_EEDO eeprom &= ~EEDO 
#define set_EEDO eeprom |= EEDO 
 
#define clr_synflag flags &= ~synflag 
#define set_synflag flags |= synflag 
#define clr_finflag flags &= ~finflag 
#define set_finflag flags |= finflag 
 
#define clr_hex flags &= ~hexflag 
#define set_hex flags |= hexflag 
 
#define  set_packet32(d,s) packet[d] = make8(s,3);   \ 
                           packet[d+1] = make8(s,2); \ 
                           packet[d+2] = make8(s,1); \ 
                           packet[d+3]= make8(s,0);  
          
#define make8(var,offset) (var >> (offset * 8)) & 0xFF 
#define make16(varhigh,varlow) ((varhigh & 0xFF)* 0x100) + (varlow & 0xFF) 
#define make32(var1,var2,var3,var4) \ 
  ((unsigned long)var1<<24)+((unsigned long)var2<<16)+ \ 
  ((unsigned long)var3<<8)+((unsigned long)var4) 
  
 
 
void application_code(){ 
  //TCP datapackets sent towards port address 45963 decimal (0xB38B) is also decoded 
here. This data is output 

   //to the rotor controller through the UART. 
   if(packet[TCP_destport] == 0xB3 && packet[TCP_destport+1] == 0x8B); 
   { 
    unsigned int i; 
  for (i = 0; i < tcpdatalen_in; ++i) { //looping through the octets 
of data in the TCP data field 
     while ( !( UCSRA & (1<<UDRE)) ); /* Wait for 
empty UART transmit buffer */ 
   UDR = aux_data[i];//sends octet of data through 
UART 
  }//end for-loop 
       while ( !( UCSRA & (1<<UDRE)) ); /* Wait for empty UART transmit 
buffer */ 
  UDR = 0x0D;//send carriage-return through UART 
//  while ( !( UCSRA & (1<<UDRE)) ); /* Wait for empty UART 
transmit buffer */ 
//  UDR = 0x0A;//send linefeed through UART 
 }   
} 
 
 
//****************************************************************** 
//* Application Code 
//*   Your application code goes here.//Is run if an acceptable TCP data packet is 
received 
//*   This particular code toggles the LED on PORT A bit 4 using 
//*   Telnet. 
//****************************************************************** 
/* 
void application_code() 
{ 
   int i,j; 
 
   ++cntr; 
 
   if(aux_data[0] != 0x0A) 
      tcpdatalen_out = tcpdatalen_in; 
   if(aux_data[0] == 0x0A) 
   { 
      tcpdatalen_out = 0x00; 
      clr_hex; 
   } 
   if(hexflag) 
   { 
  if(aux_data[0] >= '0' && aux_data[0] <= '9') 
       aux_data[0] -= 0x30; 
  else if(aux_data[0] >= 'A' && aux_data[0] <= 'F') 
    aux_data[0] -= 0x37; 
  else if(aux_data[0] >= 'a' && aux_data[0] <= 'f') 
    aux_data[0] -= 0x67; 
     else 
     { 
    cntr = 0x00; 
       clr_hex; 
     } 
 
     if(cntr == 1) 
       byteout = aux_data[0] << 4; 
  if(cntr == 2) 
     { 
       byteout |= aux_data[0] & 0x0F; 
    DDRA = 0xFF;            //tocreg; 
       PORTA = byteout;    //cregdata = byteout; 
       latchdata; 
       clr_hex; 
    printf("Byte Latched = %x\r\n",byteout); 
     } 
   } 
   if(aux_data[0] == '*') 
   { 
    set_hex; 
    cntr=0; 
   } 
 
   if (aux_data[0] == 0x0D) 
      { 
         j = sizeof(telnet_banner); 
      for(i=0;i<j;++i) 
          packet[TCP_data+i] = telnet_banner[i]; 
         tcpdatalen_out = j; 
      } 
} 
*/ 
/*          
****************************************************************** 
* Application Code 
*   Your application code goes here. //Is run if an acceptable TCP data packet is 
received 
*   This particular code echos the incoming Telnet data to the LCD 
****************************************************************** 
*/ 
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/* 
void application_code() 
{ 
    
  for(i=0;i<tcpdatalen_in;++i) 
  {   
    
   if(aux_data[i] != 0x0A) 
      tcpdatalen_out = tcpdatalen_in; 
   if(aux_data[i] == 0x0A) 
      tcpdatalen_out = 0x00; 
    
   switch (aux_data[i]) 
   { 
    case '~': //throws up a banner message 
   
   strcpy(&aux_data[0],"Telnet is UP!       "); 
   line1;  
   for (i=0;i<20;++i) 
     lcd_send_byte(1,aux_data[i]);  
       
   strcpy(&aux_data[0],"216.53.172.209:8088 ");  
      line2; 
   for (i=0;i<20;++i) 
    lcd_send_byte(1,aux_data[i]);  
 
   strcpy(&aux_data[0],"ESC=Clear LCD       ");  
      line3; 
   for (i=0;i<20;++i) 
    lcd_send_byte(1,aux_data[i]);  
 
   strcpy(&aux_data[0],"TAB=New Line        ");  
      line4; 
   for (i=0;i<20;++i) 
     lcd_send_byte(1,aux_data[i]);  
   line1;  
    break;  
    case 0x0D: 
      strcpy(&packet[TCP_data],"\r\nEDTP AVR Telnet SERVER>"); 
         tcpdatalen_out = 25; 
         break; 
    case 0x1B: //ESC clears the LCD 
         last_line = 0;  
      lcdcls; 
         strcpy(&packet[TCP_data],"\r\nEDTP AVR Telnet SERVER>"); 
         tcpdatalen_out = 25; 
     break;    
 case 0x09: //TAB takes you to the next LCD line 
      switch (last_line) 
   { 
    case 0x00: 
         line2; 
      last_line = 0x40; 
      break; 
    case 0x40: 
         line3; 
      last_line = 0x14; 
      break; 
    case 0x14: 
        line4; 
      last_line = 0x54; 
      break; 
    case 0x54: 
        line1; 
      last_line = 0x00; 
      break; 
    default: 
        line1; 
      last_line = 0x00; 
      break; 
    }              
       
    break; 
  default: 
       lcd_send_byte(1,aux_data[i]); 
    break; 
 }       
 } 
  
 } 
 */ 
//****************************************************************** 
//* USART Function 
//*    
//****************************************************************** 
 
void init_USART(unsigned int baud) 
{ 
   UCSRB = 0x00; //disable while setting baud rate 
   UBRRH = (unsigned char)(baud>>8); 
   UBRRL = (unsigned char)baud; 

   UCSRB = 0x18;//Enable USART receive( 0x10) and transmit(0x08) 
// Antar at UCSRC er satt opp riktig fra før av. 
// UCSRC = 0x86; 
 
 while ( !( UCSRA & (1<<UDRE)) ); /* Wait for empty UART transmit 
buffer */ 
   UDR = 0x0D;//send carriage return(Line Feed) 
through UART  
 while ( !( UCSRA & (1<<UDRE)) ); /* Wait for empty UART transmit 
buffer */ 
   UDR = 0x0D;//send carriage return(Line Feed) 
through UART  
 while ( !( UCSRA & (1<<UDRE)) ); /* Wait for empty UART transmit 
buffer */ 
   UDR = 0x0D;//send carriage return(Line Feed) 
through UART  
 
}  
 
//****************************************************************** 
//* IC-910h Function 
//*    
//****************************************************************** 
void IC910_command(unsigned char command,unsigned char subCommand, unsigned 
int subOrNot, unsigned int nrDatabytes,unsigned char databytes[]){ 
 while ( !( UCSRA & (1<<UDRE)) ); /* Wait for empty transmit buffer */ 
  UDR = 0xFE;//First start sequence, sends the data 
 while ( !( UCSRA & (1<<UDRE)) ); /* Wait for empty transmit buffer */ 
  UDR = 0xFE;//Second(final) start sequence 
 while ( !( UCSRA & (1<<UDRE)) );  
  UDR = TrAddr;//Transmit "To"-address 
 while ( !( UCSRA & (1<<UDRE)) );  
  UDR = CoAddr;//Transmit "From"-address 
 while ( !( UCSRA & (1<<UDRE)) );  
  UDR = command; 
 if(subOrNot == 1){//whether to use subcommand or not 
  while ( !( UCSRA & (1<<UDRE)) );  
  UDR = subCommand; 
  } 
  if( !(nrDatabytes == 0x00)){//whether to send a datafield or 
not 
   unsigned int i; 
   for(i = 0;i < nrDatabytes;i++){ 
    while ( !( UCSRA & (1<<UDRE)) );  
    UDR = databytes[i]; 
   } 
  } 
 while ( !( UCSRA & (1<<UDRE)) );  
 UDR = 0xFD; //End of Message 
} 
 
 
//****************************************************************** 
//* Delay millisecond Function 
//*   This function uses Timer 1 and the A compare registers 
//*   to produce millisecond delays. 
//*    
//****************************************************************** 
void delay_ms(unsigned int delay) 
{ 
 unsigned int i; 
 OCR1AH = 0x1C; 
 OCR1AL = 0xCC;           
 TCCR1B = 0x00;          // Stop Timer1 
 for(i=0;i<delay;++i) 
 { 
 TCCR1B = 0x00;          // Stop Timer1 
 TCNT1H = 0x00;          // Clear Timer1 
 TCNT1L = 0x00;           
 TCCR1B = 0x09;          // Start Timer1 with clk/1 
 while(!(TIFR & 0x10)); 
 TIFR |= 0x10; 
 } 
} 
//****************************************************************** 
//* Delay microsecond Function 
//*   This function uses Timer 1 and the A compare registers 
//*   to produce microsecond delays. 
//*    
//****************************************************************** 
void delay_us(unsigned int delay) 
{ 
 unsigned int i; 
 OCR1AH = 0x00; 
 OCR1AL = 0x07;      
 TCCR1B = 0x00;          // Stop Timer1 
 for(i=0;i<delay;++i) 
 { 
 TCCR1B = 0x00;          // Stop Timer1 
 TCNT1H = 0x00;          // Clear Timer1 
 TCNT1L = 0x00;           
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 TCCR1B = 0x09;          // Start Timer1 with clk/1 
 while(!(TIFR & 0x10)); 
 TIFR |= 0x10; 
 } 
}  
//****************************************************************** 
//* Perform ARP Response 
//*   This routine supplies a requesting computer with the 
//*   Ethernet modules's MAC (hardware) address. 
//****************************************************************** 
void arp() 
{ 
   //start the NIC 
   write_rtl(CR,0x22); 
 
   //load beginning page for transmit buffer 
   write_rtl(TPSR,txstart); 
 
   //set start address for remote DMA operation 
   write_rtl(RSAR0,0x00); 
   write_rtl(RSAR1,0x40); 
 
   //clear the Interrupts 
   write_rtl(ISRx,0xFF); 
 
   //load data byte count for remote DMA 
   write_rtl(RBCR0,0x3C); 
   write_rtl(RBCR1,0x00); 
 
   //do remote write operation 
   write_rtl(CR,0x12); 
 
   //write destination MAC address 
   for(i=0;i<6;++i) 
      write_rtl(RDMAPORT,packet[enetpacketSrc0+i]); 
 
   //write source MAC address 
   for(i=0;i<6;++i) 
      write_rtl(RDMAPORT,MYMAC[i]); 
 
   //write typelen hwtype prtype hwlen prlen op: 
   addr = &packet[enetpacketType0]; 
   packet[arp_op+1] = 0x02; 
   for(i=0;i<10;++i) 
      write_rtl(RDMAPORT,*addr++); 
 
   //write ethernet module MAC address 
   for(i=0;i<6;++i) 
      write_rtl(RDMAPORT,MYMAC[i]); 
 
   //write ethernet module IP address 
      for(i=0;i<4;++i) 
      write_rtl(RDMAPORT,MYIP[i]); 
 
   //write remote MAC address 
   for(i=0;i<6;++i) 
      write_rtl(RDMAPORT,packet[enetpacketSrc0+i]); 
 
   //write remote IP address 
   for(i=0;i<4;++i) 
      write_rtl(RDMAPORT,packet[arp_sipaddr+i]); 
 
   //write some pad characters to fill out the packet to 
   //the minimum length 
   for(i=0;i<0x12;++i) 
      write_rtl(RDMAPORT,0x00); 
 
   //make sure the DMA operation has successfully completed 
   byte_read = 0; 
   while(!(byte_read & RDC)) 
         read_rtl(ISRx);   
 
   //load number of bytes to be transmitted 
   write_rtl(TBCR0,0x3C); 
   write_rtl(TBCR1,0x00); 
 
   //send the contents of the transmit buffer onto the network 
   write_rtl(CR,0x24); 
 } 
//****************************************************************** 
//* Perform ICMP Function 
//*   This routine responds to a ping. 
//****************************************************************** 
void icmp() 
{ 
   //set echo reply 
   packet[ICMP_type]=0x00; 
   packet[ICMP_code]=0x00; 
 
   //clear the ICMP checksum 
   packet[ICMP_cksum ]=0x00; 

   packet[ICMP_cksum+1]=0x00; 
      
   
   //setup the IP header 
   setipaddrs(); 
 
   //calculate the ICMP checksum 
   hdr_chksum =0; 
   hdrlen = (make16(packet[ip_pktlen],packet[ip_pktlen+1])) - \ 
   ((packet[ip_vers_len] & 0x0F) * 4); 
   addr = &packet[ICMP_type]; 
   cksum(); 
   chksum16= ~(hdr_chksum + ((hdr_chksum & 0xFFFF0000) >> 16)); 
   packet[ICMP_cksum] = make8(chksum16,1); 
   packet[ICMP_cksum+1] = make8(chksum16,0); 
   i=0; 
   //send the ICMP packet along on its way 
   echo_packet(); 
} 
 
void sendLockStatus(unsigned char b){//sending a defined byte to operator 
  
   testOut('u'); 
  testOut(48+b);// 0x01 ? 
  testOut(48+packet[UDP_len]); //0 
  testOut(48+packet[UDP_len+1]);//9 
  testOut(48+packet[ip_pktlen]);//0 
  testOut(48+packet[ip_pktlen+1]);//77,0x4D -48 = 29 or 'M' 
 testOut(48+pageheader[enetpacketLenL]); //112-48 = 64 or 'p' 
  
 //enetpacketLenL seems to always be 18 octets bigger than the total packet 
length 
 //= 20(IP header length)+8(UDP header length)+1(udp-data 
length)+18(frame data) = 47 = 0x2F 
 testOut(48+pageheader[enetpacketLenH]);//0 
 
 packet[UDP_data] = b;//Setting data 
 pageheader[enetpacketLenL] = 0x40; //Length = 64 
 pageheader[enetpacketLenH] = 0x00; 
 packet[UDP_len] = 0x00; 
 packet[UDP_len+1] = 0x09;//Set new udp length. Header(8) +data(1) 
=0x0009 
   
  //build the IP header 
      setipaddrs(); 
  
      //set the UDP source and destination port to the default port, 45963 = 0xB38B 
      packet[UDP_srcport] =  make8(MY_PORT_ADDRESS,1);//0xB3 
   packet[UDP_destport] = make8(MY_PORT_ADDRESS,1);//0xB3 
       
      packet[UDP_srcport+1] =  make8(MY_PORT_ADDRESS,0);//0x8B 
      packet[UDP_destport+1] = make8(MY_PORT_ADDRESS,0);//0x8B; 
 
      //calculate the UDP checksum 
      packet[UDP_cksum] = 0x00; 
      packet[UDP_cksum+1] = 0x00; 
 
      hdr_chksum =0; 
      hdrlen = 0x08; 
      addr = &packet[ip_srcaddr]; 
      cksum(); 
      hdr_chksum = hdr_chksum + packet[ip_proto]; 
      hdrlen = 0x02; 
      addr = &packet[UDP_len]; 
      cksum(); 
      hdrlen = make16(packet[UDP_len],packet[UDP_len+1]); 
      addr = &packet[UDP_srcport]; 
      cksum(); 
      chksum16= ~(hdr_chksum + ((hdr_chksum & 0xFFFF0000) >> 16)); 
      packet[UDP_cksum] = make8(chksum16,1); 
      packet[UDP_cksum+1] = make8(chksum16,0); 
 
      //echo the incoming data back to the original sender 
      echo_packet(); 
    
} 
void testOut(unsigned char t){//Writes to UART 
 
 
//testbegin 
 
//while ( !( UCSRA & (1<<UDRE)) ); /* Wait for empty UART transmit buffer */ 
//   UDR = 0x0D;//send carriage return(Line Feed) 
through UART  
 
// while ( !( UCSRA & (1<<UDRE)) ); /* Wait for empty UART transmit 
buffer */ 
//  UDR = 't';//sends octet of data through UART 
// while ( !( UCSRA & (1<<UDRE)) ); /* Wait for empty UART transmit 
buffer */ 
//  UDR = t; 
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 //  UDR = pageheader[enetpacketLenH];//sends octet 
of data through UART 
// while ( !( UCSRA & (1<<UDRE)) ); /* Wait for empty UART transmit 
buffer */ 
//  UDR = 't';//sends octet of data through UART 
   
//  bin2hex(pageheader[enetpacketLenH]); 
// while ( !( UCSRA & (1<<UDRE)) ); /* Wait for empty UART transmit 
buffer */ 
//  UDR = high_char;//sends octet of data through UART 
// while ( !( UCSRA & (1<<UDRE)) ); /* Wait for empty UART transmit 
buffer */ 
//  UDR = low_char;//sends octet of data through UART 
//bin2hex(pageheader[enetpacketLenL]); 
// while ( !( UCSRA & (1<<UDRE)) ); /* Wait for empty UART transmit 
buffer */ 
//  UDR = high_char;//sends octet of data through UART 
// while ( !( UCSRA & (1<<UDRE)) ); /* Wait for empty UART transmit 
buffer */ 
//  UDR = low_char;//sends octet of data through UART 
 
// while ( !( UCSRA & (1<<UDRE)) ); /* Wait for empty UART transmit 
buffer */ 
//  UDR = 0x0D;//send carriage return through UART  
 
//testend 
} 
 
//****************************************************************** 
//* UDP Function 
//*   This function uses UDP-packets from MyDDE Client 1.05 to receive data to 
control the radio and rig. 
//*   It also echoes packets sent to port 7. 
//****************************************************************** 
void udp(){ 
   //port 7 is the well-known echo port... echo that.. 
   if(packet[UDP_destport] == 0x00 && packet[UDP_destport+1] ==0x07) 
 { 
   //build the IP header 
      setipaddrs(); 
 
      //swap the UDP source and destination ports 
      data_L = packet[UDP_srcport]; 
      packet[UDP_srcport] = packet[UDP_destport]; 
      packet[UDP_destport] = data_L; 
 
      data_L = packet[UDP_srcport+1]; 
      packet[UDP_srcport+1] = packet[UDP_destport+1]; 
      packet[UDP_destport+1] = data_L; 
 
      //calculate the UDP checksum 
      packet[UDP_cksum] = 0x00; 
      packet[UDP_cksum+1] = 0x00; 
 
      hdr_chksum =0; 
      hdrlen = 0x08; 
      addr = &packet[ip_srcaddr]; 
      cksum(); 
      hdr_chksum = hdr_chksum + packet[ip_proto]; 
      hdrlen = 0x02; 
      addr = &packet[UDP_len]; 
      cksum(); 
      hdrlen = make16(packet[UDP_len],packet[UDP_len+1]); 
      addr = &packet[UDP_srcport]; 
      cksum(); 
      chksum16= ~(hdr_chksum + ((hdr_chksum & 0xFFFF0000) >> 16)); 
      packet[UDP_cksum] = make8(chksum16,1); 
      packet[UDP_cksum+1] = make8(chksum16,0); 
 
      //echo the incoming data back to the original sender 
      echo_packet(); 
 } 
   //UDP datagrams sent towards port address 45963 decimal (0xB38B) is decoded here. 
This data is output 
   //to the rotor controller through the UART. 
   else if(packet[UDP_destport] == 0xB3 && packet[UDP_destport+1] == 0x8B) 
 { 
  unsigned char j = 
make16(packet[UDP_len],packet[UDP_len+1]) - 0x08;//Datagram length 
  if(j == 0x01){//Command request 
   switch (packet[UDP_data]) 
   { 
   case 0x00: 
    if(lockStatus == 0x00){ 
    
 sendLockStatus(0x00);//-----send status udp 
     testOut('s'); 
     }else if(lockStatus == 
0x01&& //If locked and incoming packet is from locked user, send 
LockedToRequestingIP(operational)(0x01) 

     lockedIP[0] == 
packet[ip_srcaddr] && 
     lockedIP[1] == 
packet[ip_srcaddr+1] && 
     lockedIP[2] == 
packet[ip_srcaddr+2] && 
     lockedIP[3] == 
packet[ip_srcaddr+3] ){ 
     testOut('S'); 
    
 sendLockStatus(0x01);//-----Send Status udp 
    }else if(lockStatus == 
0x01){//locked, and not to calling IP 
    
 sendLockStatus(0x0E);//-----Send LockedToOtherIP(busy)(0x0E) 
     testOut('E'); 
    } 
     break; 
   case 0x01://Lock Command 
    if(lockStatus == 0x00){ //If on 
Standby, lock the incoming IP 
     lockStatus = 0x01; 
     lockedIP[0] = 
packet[ip_srcaddr]; 
     lockedIP[1] = 
packet[ip_srcaddr+1]; 
     lockedIP[2] = 
packet[ip_srcaddr+2]; 
     lockedIP[3] = 
packet[ip_srcaddr+3]; 
     testOut('L'); 
    
 sendLockStatus(0x01);//------send Status udp 
    }else if((lockStatus == 0x01) && (
  //If locked and lock command is NOT from locked user. 
     !(lockedIP[0] == 
packet[ip_srcaddr]) || 
     !(lockedIP[1] == 
packet[ip_srcaddr+1]) || 
     !(lockedIP[2] == 
packet[ip_srcaddr+2]) || 
     !(lockedIP[3] == 
packet[ip_srcaddr+3]))){ 
     testOut('N'); 
    
 sendLockStatus(0x0E);//Send request denied(0x0E) 
    } 
     break; 
   case 0x02://Release Command 
    if(lockStatus == 0x01 && //If locked 
and incoming packet is from locked user, release IP-lock 
      lockedIP[0] 
== packet[ip_srcaddr] && 
      lockedIP[1] 
== packet[ip_srcaddr+1] && 
      lockedIP[2] 
== packet[ip_srcaddr+2] && 
      lockedIP[3] 
== packet[ip_srcaddr+3] ){ 
     lockStatus = 0x00;
       
     testOut('O'); 
    
 sendLockStatus(0x00);//Send Status udp 
    } 
     
    break; 
//  default: 
   }//end switch 
  }else if(j > 0x01){//Prosess UDP-data 
   if(lockStatus == 0x00){ //If on Standby, lock the 
incoming IP and process 
    lockStatus = 0x01; 
    lockedIP[0] = packet[ip_srcaddr]; 
    lockedIP[1] = packet[ip_srcaddr+1]; 
    lockedIP[2] = packet[ip_srcaddr+2]; 
    lockedIP[3] = packet[ip_srcaddr+3]; 
    testOut('l'); 
    udpProcess(j); 
    sendLockStatus(0x01);//------send 
Status udp 
   }else if(lockStatus == 0x01 && 
 //If locked and incoming packet is from locked user, then process data, else 
drop packet 
    lockedIP[0] == packet[ip_srcaddr] 
&& 
    lockedIP[1] == packet[ip_srcaddr+1] 
&& 
    lockedIP[2] == packet[ip_srcaddr+2] 
&& 
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    lockedIP[3] == packet[ip_srcaddr+3] 
){ 
    testOut('L'); 
    udpProcess(j); 
   }else{//Packet dropped 
    testOut('N'); 
   } 
  }//End Size-if 
 } 
/*    
  //LCD UDP application code 
   else if(packet[UDP_destport] == 0x13 && packet[UDP_destport+1] == 0x88) 
   { 
            
      switch (packet[UDP_data]) 
   { 
     case 0: 
      lcdcls; 
      break; 
    case 1: 
      line1; 
      break; 
       case 2: 
      line2; 
      break; 
       case 3: 
      line3; 
      break; 
       case 4: 
      line4; 
      break; 
    default: 
      
lcd_send_byte(1,packet[UDP_data]); 
       
       
  } 
   } 
*/ 
} 
/*          
****************************************************************** 
* UDP Data processing block 
* Outputs udp-data to UART(rotor and radio) 
****************************************************************** 
*/ 
void udpProcess(unsigned char j){//j = length of UDP-data area 
  unsigned char i; 
  if(j>0x08){ //both rotor and radio data in datafield 
      
   for (i = 0; i <= 0x07; ++i){ //looping through the 
assumed octets of data destined for the rotor in the UDP data field 
    while ( !( UCSRA & (1<<UDRE)) ); 
/* Wait for empty UART transmit buffer */ 
    UDR = packet[UDP_data+i];//sends 
octet of data through UART 
   }//end for-loop 
    
   while ( !( UCSRA & (1<<UDRE)) ); /* Wait for 
empty UART transmit buffer */ 
   UDR = 0x0D;//send carriage return through 
UART (for rotor acceptance) 
    
   for (i = 0x08; i <= j; ++i){ //looping through the 
rest of the data in the UDP data field("radio data") 
    while ( !( UCSRA & (1<<UDRE)) ); 
/* Wait for empty UART transmit buffer */ 
    UDR = packet[UDP_data+i];//sends 
octet of data through UART 
   }//end for-loop 
 
   while ( !( UCSRA & (1<<UDRE)) ); /* Wait for 
empty UART transmit buffer */ 
   UDR = 0x0D;//send carriage return through 
UART (so the rotor will look away from the last "nonsense") 
 
 
  }else if(j > 0x01){//only rotor data available. If the data-area is 
emty, only a line end is sent 
   for (i = 0; i <= j; ++i){ //looping through the 
assumed octets of data in the UDP data field 
    while ( !( UCSRA & (1<<UDRE)) ); 
/* Wait for empty UART transmit buffer */ 
    UDR = packet[UDP_data+i];//sends 
octet of data through UART 
   }//end for-loop. 
   while ( !( UCSRA & (1<<UDRE)) ); /* Wait for 
empty UART transmit buffer */ 
   UDR = 0x0D;//send carriage return through 
UART (for rotor) 
  } 

//  while ( !( UCSRA & (1<<UDRE)) ); /* Wait for empty UART 
transmit buffer */ 
 //  UDR = 0x0A;//send line feed through UART 
  
} 
 
//****************************************************************** 
//* TCP Function 
//*   This function uses TCP protocol to act as a Telnet server on 
//*   port 8088 decimal.  The application function is called with 
//*   every incoming character. 
//****************************************************************** 
void tcp() 
{ 
   int i,j; 
   //assemble the destination port address from the incoming packet 
   portaddr = make16(packet[TCP_destport],packet[TCP_destport+1]); 
 
   //calculate the length of the data coming in with the packet 
   //tcpdatalen_in = incoming packet length - incoming ip header length -  
   //incoming tcp header length 
   tcpdatalen_in = (make16(packet[ip_pktlen],packet[ip_pktlen+1]))- \ 
   ((packet[ip_vers_len] & 0x0F)* 4)-(((packet[TCP_hdrflags] & 0xF0) >> 4) * 4); 
 
   //If an ACK is received and the destination port address is valid  
   //and no data is in the packet 
   if(ACK_IN && portaddr == MY_PORT_ADDRESS && tcpdatalen_in == 0x00) 
   { 
      //assemble the acknowledgment number from the incoming packet 
      incoming_ack =make32(packet[TCP_acknum],packet[TCP_acknum+1], \ 
    packet[TCP_acknum+2],packet[TCP_acknum+3]); 
 
      //if the incoming packet is a result of session establishment 
      if(synflag_bit) 
      { 
         //clear the SYN flag 
         clr_synflag; 
 
         //the incoming acknowledgment is my new sequence number 
         my_seqnum = incoming_ack; 
 
   //send the Telnet server banner 
         //limit the character count to 40 decimal 
                j = sizeof(telnet_banner); 
                for(i=0;i<j;++i) 
       packet[TCP_data+i] = 
telnet_banner[i]; 
         //length of the banner message 
             tcpdatalen_out = j; 
       
         //send the Telnet server banner 
         //limit the character count to 40 decimal 
         //strcpy(&packet[TCP_data],"EDTP AVR Telnet SERVER>"); 
         //length of the banner message 
         //tcpdatalen_out = 23; 
 
         //expect to get an acknowledgment of the banner message 
         expected_ack = my_seqnum +tcpdatalen_out; 
 
         //send the TCP/IP packet 
         send_tcp_packet(); 
      } 
   } 
 
   //if an ack is received and the port address is valid and there is data  
   //in the incoming packet 
   if((ACK_IN) && portaddr == MY_PORT_ADDRESS && tcpdatalen_in) 
   { 
       
      for(i=0;i<tcpdatalen_in;++i) 
         //receive the data and put it into the incoming data buffer 
         aux_data[i] = packet[TCP_data+i]; 
     
      application_code();    
       
      //assemble the acknowledgment number from the incoming packet 
      incoming_ack =make32(packet[TCP_acknum],packet[TCP_acknum+1], \ 
   packet[TCP_acknum+2],packet[TCP_acknum+3]); 
 
      //check for the number of bytes acknowledged 
      //determine how many bytes are outstanding and adjust the outgoing  
   //sequence number accordingly 
      if(incoming_ack <= expected_ack) 
         my_seqnum = expected_ack - (expected_ack - incoming_ack); 
      
      //my expected acknowledgement number 
      expected_ack = my_seqnum +tcpdatalen_out; 
      send_tcp_packet(); 
    
   } 
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   //this code segment processes the incoming SYN from the Telnet client 
   //and sends back the initial sequence number (ISN) and acknowledges 
   //the incoming SYN packet 
   if(SYN_IN && portaddr == MY_PORT_ADDRESS) 
   { 
      tcpdatalen_in = 0x01; 
      set_synflag; 
 
      setipaddrs(); 
 
      data_L = packet[TCP_srcport]; 
      packet[TCP_srcport] = packet[TCP_destport]; 
      packet[TCP_destport] = data_L; 
 
      data_L = packet[TCP_srcport+1]; 
      packet[TCP_srcport+1] = packet[TCP_destport+1]; 
      packet[TCP_destport+1] = data_L; 
 
      assemble_ack(); 
 
      if(++ISN == 0x0000 || ++ISN == 0xFFFF) 
         my_seqnum = 0x1234FFFF; 
 
      set_packet32(TCP_seqnum,my_seqnum); 
 
      packet[TCP_hdrflags+1] = 0x00; 
      SYN_OUT; 
      ACK_OUT; 
 
      packet[TCP_cksum] = 0x00; 
      packet[TCP_cksum+1] = 0x00; 
 
      hdr_chksum =0; 
      hdrlen = 0x08; 
      addr = &packet[ip_srcaddr]; 
      cksum(); 
      hdr_chksum = hdr_chksum + packet[ip_proto]; 
      tcplen = make16(packet[ip_pktlen],packet[ip_pktlen+1]) - \ 
   ((packet[ip_vers_len] & 0x0F) * 4); 
      hdr_chksum = hdr_chksum + tcplen; 
      hdrlen = tcplen; 
      addr = &packet[TCP_srcport]; 
      cksum(); 
      chksum16= ~(hdr_chksum + ((hdr_chksum & 0xFFFF0000) >> 16)); 
      packet[TCP_cksum] = make8(chksum16,1); 
      packet[TCP_cksum+1] = make8(chksum16,0); 
      echo_packet(); 
   } 
 
   //this code segment processes a FIN from the Telnet client 
   //and acknowledges the FIN and any incoming data. 
   if(FIN_IN && portaddr == MY_PORT_ADDRESS) 
   { 
      if(tcpdatalen_in) 
      { 
         for(i=0;i<tcpdatalen_in;++i) 
         { 
            aux_data[i] = packet[TCP_data+i]; 
            application_code(); 
         } 
      } 
 
      set_finflag; 
 
      ++tcpdatalen_in; 
 
      incoming_ack =make32(packet[TCP_acknum],packet[TCP_acknum+1], \ 
   packet[TCP_acknum+2],packet[TCP_acknum+3]); 
      if(incoming_ack <= expected_ack) 
         my_seqnum = expected_ack - (expected_ack - incoming_ack); 
 
      expected_ack = my_seqnum +tcpdatalen_out; 
      send_tcp_packet(); 
 
   } 
} 
//****************************************************************** 
//* Assemble the Acknowledgment 
//*   This function assembles the acknowledgment to send to 
//*   to the client by adding the received data count to the 
//*   client's incoming sequence number. 
//****************************************************************** 
void assemble_ack() 
{ 
   client_seqnum=make32(packet[TCP_seqnum],packet[TCP_seqnum+1], \ 
   packet[TCP_seqnum+2],packet[TCP_seqnum+3]); 
   client_seqnum = client_seqnum + tcpdatalen_in; 
   set_packet32(TCP_acknum,client_seqnum); 
} 
//****************************************************************** 
//* Send TCP Packet 

//*   This routine assembles and sends a complete TCP/IP packet. 
//*   40 bytes of IP and TCP header data is assumed. 
//****************************************************************** 
void send_tcp_packet() 
{ 
   //count IP and TCP header bytes.. Total = 40 bytes 
   ip_packet_len = 40 + tcpdatalen_out; 
   packet[ip_pktlen] = make8(ip_packet_len,1); 
   packet[ip_pktlen+1] = make8(ip_packet_len,0); 
   setipaddrs(); 
 
   data_L = packet[TCP_srcport]; 
   packet[TCP_srcport] = packet[TCP_destport]; 
   packet[TCP_destport] = data_L; 
   data_L = packet[TCP_srcport+1]; 
   packet[TCP_srcport+1] = packet[TCP_destport+1]; 
   packet[TCP_destport+1] = data_L; 
 
   assemble_ack(); 
   set_packet32(TCP_seqnum,my_seqnum); 
 
 
   packet[TCP_hdrflags+1] = 0x00; 
   ACK_OUT; 
   if(flags & finflag) 
   { 
      FIN_OUT; 
      clr_finflag; 
   } 
 
   packet[TCP_cksum] = 0x00; 
   packet[TCP_cksum+1] = 0x00; 
 
   hdr_chksum =0; 
   hdrlen = 0x08; 
   addr = &packet[ip_srcaddr]; 
   cksum(); 
   hdr_chksum = hdr_chksum + packet[ip_proto]; 
   tcplen = ip_packet_len - ((packet[ip_vers_len] & 0x0F) * 4); 
   hdr_chksum = hdr_chksum + tcplen; 
   hdrlen = tcplen; 
   addr = &packet[TCP_srcport]; 
   cksum(); 
   chksum16= ~(hdr_chksum + ((hdr_chksum & 0xFFFF0000) >> 16)); 
   packet[TCP_cksum] = make8(chksum16,1); 
   packet[TCP_cksum+1] = make8(chksum16,0); 
 
   txlen = ip_packet_len + 14; 
   if(txlen < 60) 
      txlen = 60; 
   data_L = make8(txlen,0); 
   data_H = make8(txlen,1); 
   write_rtl(CR,0x22); 
   write_rtl(TPSR,txstart); 
   write_rtl(RSAR0,0x00); 
   write_rtl(RSAR1,0x40); 
   write_rtl(ISRx,0xFF); 
   write_rtl(RBCR0,data_L); 
   write_rtl(RBCR1,data_H); 
   write_rtl(CR,0x12); 
 
   for(i=0;i<txlen;++i) 
      write_rtl(RDMAPORT,packet[enetpacketDest0+i]); 
 
   byte_read = 0; 
   while(!(byte_read & RDC)) 
      read_rtl(ISRx); 
 
   write_rtl(TBCR0,data_L); 
   write_rtl(TBCR1,data_H); 
   write_rtl(CR,0x24); 
} 
//****************************************************************** 
//* Read/Write for show_regs 
//*   This routine reads a NIC register and dumps it out to the 
//*   serial port as ASCII. 
//****************************************************************** 
void readwrite() 
{ 
     read_rtl(i); 
     bin2hex(byte_read); 
     printf("\t%c%c",high_char,low_char); 
} 
//****************************************************************** 
//* Displays Control Registers in Pages 1, 2 and 3 
//*   This routine dumps all of the NIC internal registers 
//*   to the serial port as ASCII characters. 
//****************************************************************** 
void show_regs() 
{ 
   write_rtl(CR,0x21); 
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   cls(); 
   printf("\r\n"); 
   printf("    Realtek 8019AS Register Dump\n\n\r"); 
   printf("REG\tPage0\tPage1\tPage2\tPage3\n\r"); 
 
   for(i=0;i<16;++i) 
   { 
     bin2hex((unsigned char) i); 
     printf("%c%c",high_char,low_char); 
     write_rtl(CR,0x21); 
     readwrite(); 
     write_rtl(CR,0x61); 
     readwrite(); 
     write_rtl(CR,0xA1); 
     readwrite(); 
     write_rtl(CR,0xE1); 
     readwrite(); 
     printf("\r\n"); 
   } 
} 
//****************************************************************** 
//* Dump Receive Ring Buffer Header 
//*   This routine dumps the 4-byte receive buffer ring header 
//*   to the serial port as ASCII characters. 
//****************************************************************** 
void dump_header() 
{ 
    for(i=0;i<4;++i) 
      { 
         bin2hex(pageheader[i]); 
         printf("\r\n%c%c",high_char,low_char); 
      } 
} 
//****************************************************************** 
//* Converts Binary to Displayable Hex Characters 
//*   ie.. 0x00 in gives 0x30 and 0x30 out 
//****************************************************************** 
void bin2hex(unsigned char binchar) 
{ 
   high_nibble = (binchar & 0xF0) / 16; 
   if(high_nibble > 0x09) 
      high_char = high_nibble + 0x37; 
   else 
      high_char = high_nibble + 0x30; 
 
   low_nibble = (binchar & 0x0F); 
   if(low_nibble > 0x09) 
      low_char = low_nibble + 0x37; 
   else 
      low_char = low_nibble + 0x30; 
} 
//****************************************************************** 
//* Used with Tera Term to clear the screen (VT-100 command) 
//****************************************************************** 
void cls(void) 
{ 
   printf("%c[2J",esc); 
} 
//****************************************************************** 
//*   show_packet 
//* This routine is for diagnostic purposes and displays 
//*   the Packet Buffer memory in the AVR. 
//****************************************************************** 
void show_packet() 
{ 
   cls(); 
   printf("\r\n"); 
   data_L = 0x00; 
   for(i=0;i<96;++i) 
   { 
      bin2hex(packet[i]); 
      printf(" %c%c",high_char,low_char); 
      if(++data_L == 0x10) 
         { 
            data_L = 0x00; 
            printf("\r\n"); 
         } 
   } 
} 
//****************************************************************** 
//*   show_aux_packet 
//* This routine is a diagnostic that displays Auxillary 
//*   Packet Buffer buffer memory in the AVR. 
//****************************************************************** 
void show_aux_packet() 
{ 
   cls(); 
   printf("\r\n"); 
   data_L = 0x00; 
   for(i=0;i<80;++i) 
   { 

      bin2hex(aux_data[i]); 
      printf(" %c%c",high_char,low_char); 
      if(++data_L == 0x10) 
         { 
            data_L = 0x00; 
            printf("\r\n"); 
         } 
   } 
} 
//****************************************************************** 
//* Write to NIC Control Register 
//****************************************************************** 
void write_rtl(unsigned int regaddr, unsigned int regdata) 
{ 
    rtladdr = regaddr; 
    rtldata = regdata; 
    tortl; 
 nop; 
    clr_iow_pin; 
 nop; 
    set_iow_pin; 
 nop; 
    fromrtl; 
 rtldata = 0xFF;  
} 
//****************************************************************** 
//* Read From NIC Control Register 
//****************************************************************** 
void read_rtl(unsigned int regaddr) 
{ 
   fromrtl; 
   rtldata = 0xFF;  
   rtladdr = regaddr; 
   clr_ior_pin; 
   nop; 
   byte_read = PINA; 
   nop; 
   set_ior_pin; 
   nop; 
    
} 
//****************************************************************** 
//* Handle Receive Ring Buffer Overrun 
//*   No packets are recovered 
//****************************************************************** 
void overrun() 
{ 
   read_rtl(CR); 
   data_L = byte_read; 
   write_rtl(CR,0x21); 
   delay_ms(2); 
   write_rtl(RBCR0,0x00); 
   write_rtl(RBCR1,0x00); 
   if(!(data_L & 0x04)) 
      resend = 0; 
   else if(data_L & 0x04) 
      { 
         read_rtl(ISRx); 
         data_L = byte_read; 
         if((data_L & 0x02) || (data_L & 0x08)) 
            resend = 0; 
         else 
            resend = 1; 
      } 
 
   write_rtl(TCR,0x02); 
   write_rtl(CR,0x22); 
   write_rtl(BNRY,rxstart); 
   write_rtl(CR,0x62); 
   write_rtl(CURR,rxstart); 
   write_rtl(CR,0x22); 
   write_rtl(ISRx,0x10); 
   write_rtl(TCR,tcrval); 
} 
//****************************************************************** 
//* Echo Packet Function 
//*   This routine does not modify the incoming packet size and 
//*   thus echoes the original packet structure. 
//****************************************************************** 
void echo_packet() 
{ 
   write_rtl(CR,0x22); 
   write_rtl(TPSR,txstart); 
   write_rtl(RSAR0,0x00); 
   write_rtl(RSAR1,0x40); 
   write_rtl(ISRx,0xFF); 
   write_rtl(RBCR0,pageheader[enetpacketLenL] - 4 ); 
   write_rtl(RBCR1,pageheader[enetpacketLenH]); 
   write_rtl(CR,0x12); 
 
   txlen = make16(pageheader[enetpacketLenH],pageheader[enetpacketLenL]) - 4; 
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   for(i=0;i<txlen;++i) 
      write_rtl(RDMAPORT,packet[enetpacketDest0+i]); 
 
   byte_read = 0; 
   while(!(byte_read & RDC)) 
      read_rtl(ISRx); 
 
   write_rtl(TBCR0,pageheader[enetpacketLenL] - 4); 
   write_rtl(TBCR1,pageheader[enetpacketLenH]); 
   write_rtl(CR,0x24); 
    
} 
//****************************************************************** 
//* Get A Packet From the Ring 
//*   This routine removes a data packet from the receive buffer 
//*   ring. 
//****************************************************************** 
void get_frame() 
{ 
   //execute Send Packet command to retrieve the packet 
   write_rtl(CR,0x1A); 
   for(i=0;i<4;++i) 
      { 
         read_rtl(RDMAPORT); 
         pageheader[i] = byte_read; 
      } 
         rxlen = make16(pageheader[enetpacketLenH],pageheader[enetpacketLenL]); 
         for(i=0;i<rxlen;++i) 
            { 
               read_rtl(RDMAPORT); 
               //dump any bytes that will overrun the receive buffer 
               if(i < 96) 
                  packet[i] = byte_read; 
            } 
   while(!(byte_read & RDC)) 
      read_rtl(ISRx); 
 
   write_rtl(ISRx,0xFF); 
   
   //process an ARP packet 
   if(packet[enetpacketType0] == 0x08 && packet[enetpacketType1] == 0x06) 
   { 
      if(packet[arp_hwtype+1] == 0x01 && 
      packet[arp_prtype] == 0x08 && packet[arp_prtype+1] == 0x00 && 
      packet[arp_hwlen] == 0x06 && packet[arp_prlen] == 0x04 && 
      packet[arp_op+1] == 0x01 && 
      MYIP[0] == packet[arp_tipaddr] && 
      MYIP[1] == packet[arp_tipaddr+1] && 
      MYIP[2] == packet[arp_tipaddr+2] && 
      MYIP[3] == packet[arp_tipaddr+3] ) 
   arp(); 
   } 
   //process an IP packet 
   else if(packet[enetpacketType0] == 0x08 && packet[enetpacketType1] == 0x00 
          && packet[ip_destaddr] == MYIP[0] 
          && packet[ip_destaddr+1] == MYIP[1] 
          && packet[ip_destaddr+2] == MYIP[2] 
          && packet[ip_destaddr+3] == MYIP[3]) 
   { 
      if(packet[ip_proto] == PROT_ICMP) 
         icmp(); 
      else if(packet[ip_proto] == PROT_UDP) 
         udp(); 
      else if(packet[ip_proto] == PROT_TCP) 
         tcp(); 
   } 
 
} 
//****************************************************************** 
//* SETIPADDRS 
//*   This function builds the IP header. 
//****************************************************************** 
void setipaddrs() 
{ 
   //move IP source address to destination address 
   packet[ip_destaddr]=packet[ip_srcaddr]; 
   packet[ip_destaddr+1]=packet[ip_srcaddr+1]; 
   packet[ip_destaddr+2]=packet[ip_srcaddr+2]; 
   packet[ip_destaddr+3]=packet[ip_srcaddr+3]; 
   //make ethernet module IP address source address 
   packet[ip_srcaddr]=MYIP[0]; 
   packet[ip_srcaddr+1]=MYIP[1]; 
   packet[ip_srcaddr+2]=MYIP[2]; 
   packet[ip_srcaddr+3]=MYIP[3]; 
   //move hardware source address to destination address 
   packet[enetpacketDest0]=packet[enetpacketSrc0]; 
   packet[enetpacketDest1]=packet[enetpacketSrc1]; 
   packet[enetpacketDest2]=packet[enetpacketSrc2]; 
   packet[enetpacketDest3]=packet[enetpacketSrc3]; 
   packet[enetpacketDest4]=packet[enetpacketSrc4]; 
   packet[enetpacketDest5]=packet[enetpacketSrc5]; 

   //make ethernet module mac address the source address 
   packet[enetpacketSrc0]=MYMAC[0]; 
   packet[enetpacketSrc1]=MYMAC[1]; 
   packet[enetpacketSrc2]=MYMAC[2]; 
   packet[enetpacketSrc3]=MYMAC[3]; 
   packet[enetpacketSrc4]=MYMAC[4]; 
   packet[enetpacketSrc5]=MYMAC[5]; 
 
   //calculate the IP header checksum 
   packet[ip_hdr_cksum]=0x00; 
   packet[ip_hdr_cksum+1]=0x00; 
 
   hdr_chksum =0; 
   hdrlen = (packet[ip_vers_len] & 0x0F) * 4; 
   addr = &packet[ip_vers_len]; 
   cksum(); 
   chksum16= ~(hdr_chksum + ((hdr_chksum & 0xFFFF0000) >> 16)); 
   packet[ip_hdr_cksum] = make8(chksum16,1); 
   packet[ip_hdr_cksum+1] = make8(chksum16,0); 
 } 
//****************************************************************** 
//* CHECKSUM CALCULATION ROUTINE 
//****************************************************************** 
void cksum() 
{ 
      while(hdrlen > 1) 
      { 
         data_H=*addr++; 
         data_L=*addr++; 
         chksum16=make16(data_H,data_L); 
         hdr_chksum = hdr_chksum + chksum16; 
         hdrlen -=2; 
      } 
      if(hdrlen > 0) 
      { 
         data_H=*addr; 
         data_L=0x00; 
         chksum16=make16(data_H,data_L); 
         hdr_chksum = hdr_chksum + chksum16; 
      } 
} 
//****************************************************************** 
//* Initialize the RTL8019AS 
//****************************************************************** 
void init_RTL8019AS() 
{ 
   fromrtl;                           // PORTA data lines = input 
   rtldata = 0xFF;  
   DDRB = 0xFF; 
   rtladdr = 0x00;                    // clear address lines 
   DDRC = 0xFF; 
   DDRD = 0xFA;      
    // setup IOWB, IORB, EEPROM,RXD,TXD,CTS,LE 
      
   PORTD = 0x05;        // enable 
pullups on input pins 
 
 //  clr_le_pin;     
    //initialize latch enable for HCT573 //Not needed 
   clr_EEDO; 
   set_iow_pin;                       // disable IOWB 
   set_ior_pin;                       // disable IORB 
   set_rst_pin;                       // put NIC in reset 
   delay_ms(2);                        // delay at least 1.6ms 
   clr_rst_pin;     
    // disable reset line 
  
   read_rtl(RSTPORT);                 // read contents of reset port 
   write_rtl(RSTPORT,byte_read);      // do soft reset 
   delay_ms(10);                       // give it time 
   read_rtl(ISRx);                     // check for good soft reset 
   if(!(byte_read & RST)) 
   { 
    while(1){ 
    printf("RTL8019AS INIT FAILED!\r\n"); 
 delay_ms(1000); 
 } 
   } 
   write_rtl(CR,0x21);       // stop the NIC, abort DMA, page 0 
   delay_ms(2);               // make sure nothing is coming in or going out 
   write_rtl(DCR,dcrval);    // 0x58 
   write_rtl(RBCR0,0x00); 
   write_rtl(RBCR1,0x00); 
   write_rtl(RCR,0x04); 
   write_rtl(TPSR,txstart); 
   write_rtl(TCR,0x02); 
   write_rtl(PSTART,rxstart); 
   write_rtl(BNRY,rxstart); 
   write_rtl(PSTOP,rxstop); 
   write_rtl(CR,0x61); 
   write_rtl(CURR,rxstart); 
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   for(i=0;i<6;++i) 
      write_rtl(PAR0+i, MYMAC[i]); 
       
   write_rtl(CR,0x22); 
   write_rtl(ISRx,0xFF); 
   write_rtl(IMR,imrval); 
   write_rtl(TCR,tcrval); 
} 
 
//****************************************************************** 
//* MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN 
MAIN MAIN 
//****************************************************************** 
//void C_task main(void) 
int main(void) 
{ 
   //lcd_init(); 
   init_RTL8019AS(); 
   init_USART(b9600); // sets baudrate on UART and transmits enter-sign 
   //init_PWM(); 
 
   lockStatus = 0x00; 
   clr_synflag; 
   clr_finflag; 
   //printf("Easy Ethernet W For AVR Version 03.08.19\r\n"); 
//****************************************************************** 
//* Look for a packet in the receive buffer ring 
//****************************************************************** 
   while(1) 
   { 
  //* Looking for a packet in the receive buffer ring 
      //start the NIC 
      write_rtl(CR,0x22); 
 
      //wait for a good packet 
      while(!(PIND & INT0_pin)); 
       
      //read the interrupt status register 
      read_rtl(ISRx); 
 
      //if the receive buffer has been overrun 
      if(byte_read & OVW) 
         overrun(); 
 
      //if the receive buffer holds a good packet 
      if(byte_read & PRX) 
         get_frame(); 
 
      //make sure the receive buffer ring is empty 
      //if BNRY = CURR, the buffer is empty 
         read_rtl(BNRY); 
         data_L = byte_read; 
         write_rtl(CR,0x62); 
         read_rtl(CURR); 
         data_H = byte_read; 
         write_rtl(CR,0x22); 
      //buffer is not empty.. get next packet 
         if(data_L != data_H) 
            get_frame(); 
 
      //reset the interrupt bits 
      write_rtl(ISRx,0xFF); 
  //* Stop Looking for a packet in the receive buffer 
ring    
 
 //* Reset IC-910h(radio) control command test cycle 
/* 
 if(LSB == 0){ 
 IC910_command(0x06,0x01,1,0,0); 
 LSB = 1; 
 }else{ 
 delay_ms(500); 
 IC910_command(0x06,0x03,1,0,0); 
 LSB = 0; 
 } 
 */ 
   } 
} 

 
 
 
 





 

Appendix F – Important Code snippets from MyDDE 1.50 
Language: Object pascal 
 
See attached Delphi 7-project files for complete description 
 
Main.pas: 
 

 

procedure TFMain.FormCreate(Sender: TObject); 
 
begin 
  ParseString('',SatData); 
  PrintData(SatData); 
 
  PathP:=ExtractFileDir(ParamStr(0)); 
  if PathP[length(PathP)]<>'\' then PathP:=PathP+'\'; 
  ChDir(PathP); 
 
  If not FileExists(PathP+'Orbitron.exe') then begin 
    Reg:=TRegistry.Create; 
    try 
      if Reg.OpenKey('\Software\Stoff\Orbitron',True) then 
        Tracking.ServiceApplication:=Reg.ReadString('Path')+'orbitron'; 
    finally 
      Reg.CloseKey; 
      Reg.Free; 
    end; 
  end; 
  Tracking.OpenLink; 
  ComboBox1.Items.LoadFromFile('RemoteGroundStationList.cfg');//Loading IP:Port-
addresses from file 
 
   //RadioControl statics 
   StartString:= Chr(254)+Chr(254)+Chr(96)+Chr(224); 
   StopString:= Chr(253); 
   SetFCmd:= Chr(6)+Chr(0); 
   GetFCmd:= Chr(5)+Chr(0); 
   Memo1.Lines.Add('LocalHostName ='+IdUDPServer1.LocalName); 
   Memo1.Lines.Add('LocalHostAddress='+GStack.LocalAddress); 
   Memo1.Lines.Add('Port = '+IntToStr(IdUDPServer1.DefaultPort)); 
   Memo1.Lines.Add('BufferSize ='+IntToStr(IdUDPServer1.BufferSize)); 
   Memo1.Lines.Add('LocalServerActive = '+BoolToStr(IdUDPServer1.Active,True)); 
   IdUDPServer1.Active := True; 
end; 
 

procedure TFMain.UpdateRotorAndRadio(data: TSatData); 
 
var 
Sazm, Selv : Double;//Corrected azimuth and elevation 
Sdnf, Supf : Double;//Corrected downlink and uplink frequency in kHz 
TmpAzm : Double; 
tmp : String; 
tmi : Integer; 
FreqBCD : String; 
RadioString : String; 
 
begin        { 
  Please write support for your rotor/radio hardware here. 
 
  Use DATA record as source of current tracking data sent by 
  Orbitron. 
 
  This procedure will be called by DDE engine after Orbitron made 
  changes into the tracking data (each 1s, 5s, 10s or so). 
  } 
 
//Adding Corrections to Azimuth and Elevation 
  if(TryStrToFloat(Edit2.Text,Sazm) and TryStrToFloat(Edit3.Text,Selv))//Corrections 
successfully converted to float 
    then begin 
    Sazm := Sazm+data.azm; //Corrected azimuth and elevation 
    Selv := Selv+data.elv; 
    end 
   else begin 

    Edit1.Text := 'Edit2.float= '+Edit2.Text+'Conv: 
'+BoolToStr(TryStrToFloat(Edit2.Text,Sazm),TRUE);//test 
    Sazm := data.azm; //Uncorrected azimuth and elevation to be sent over IP 
    Selv := data.elv; 
    //ShowMessage('Azimuth and elevation correction boxes must be in float format("-
12.5")'); 
    end; 
 
if (CheckBox2.Checked and (Selv<StrToFloat(Edit6.Text))) then begin//Deactivating 
rig and driver if satellite is below set horizon(elevation) limit 
     Selv := 0; Sazm := 0; Sdnf := 0;  Supf := 0; 
  if(RigLock = 1) then begin 
   IdUDPServer1.Send(TargetIPAddress,TargetPort,'W'+FormatFloat('000',Sazm)+' 
'+FormatFloat('000',Selv));//Resetting antenna-position 
   IdUDPServer1.Send(TargetIPAddress,TargetPort,Chr(2));//releasing lock on rig-
controller 
  end; 
 
  if(DriverActive = True) then begin 
   DriverActive := False; 
   Label28.Caption := 'Driver inactive'; 
   Label28.Color := clGreen; 
  end; 
 
end else if(RigLock <> 14) then begin //Unless rig is busy.. 
  if((RigLock = 0) and (IdUDPServer1.Active = True)) then begin //"lock and load" 
    Memo1.Lines.Add('Selv deactivation 
bool:'+BoolToStr((Selv<StrToFloat(Edit6.Text)),TRUE)); 
    
Memo1.Lines.Add('Selv:'+FloatToStr(Selv)+'Edit6:'+FloatToStr(StrToFloat(Edit6.Tex
t))); 
    IdUDPServer1.Send(TargetIPAddress,TargetPort,Chr(1));//Request rig-lock. 
    Memo1.Lines.Add('Sending reqRigLock 0x01'); 
  end; 
  DriverActive := True; 
  Label28.Caption := 'Driver active'; 
  Label28.Color := clRed; 
  TmpAzm:= 0; 
 
  if(not AnsiSameText(Lastdnm,data.dnm)) then begin //Downlink mode change 
detected 
    tmp := Chr($0d); 
    if(AnsiSameText(data.dnm,'LSB')) then begin 
      
IdUDPServer1.Send(TargetIPAddress,TargetPort,tmp+tmp+tmp+tmp+tmp+tmp+tmp+
tmp+StartString+SetFCmd+Chr($01)+StopString); 
         Memo1.Lines.Add('Sending radio mode change'); 
      Label24.Caption := 'LSB'; 
    end; 
    if(AnsiSameText(data.dnm,'USB')) then begin 
      
IdUDPServer1.Send(TargetIPAddress,TargetPort,tmp+tmp+tmp+tmp+tmp+tmp+tmp+
tmp+StartString+SetFCmd+Chr($02)+StopString); 
      Label24.Caption := 'USB'; 
        Memo1.Lines.Add('Sending radio mode change'); 
    end; 
    if(AnsiSameText(data.dnm,'FM')) then begin 
      
IdUDPServer1.Send(TargetIPAddress,TargetPort,tmp+tmp+tmp+tmp+tmp+tmp+tmp+
tmp+StartString+Chr($07)+StopString); 
      Label24.Caption := 'FM'; 
         Memo1.Lines.Add('Sending radio mode change'); 
    end; 
    if(AnsiSameText(data.dnm,'FM-N')) then begin 
      
IdUDPServer1.Send(TargetIPAddress,TargetPort,tmp+tmp+tmp+tmp+tmp+tmp+tmp+
tmp+StartString+Chr($07)+StopString); 
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      Label24.Caption := 'FM-N'; 
         Memo1.Lines.Add('Sending radio mode change'); 
    end; 
    if(AnsiSameText(data.dnm,'CW') or AnsiSameText(data.dnm,'CW-N')) then begin 
          
IdUDPServer1.Send(TargetIPAddress,TargetPort,tmp+tmp+tmp+tmp+tmp+tmp+tmp+
tmp+StartString+SetFCmd+Chr($04)+StopString); 
         Memo1.Lines.Add('Sending radio mode change');           
          Label24.Caption := 'CW or CW-N'; 
          if(Checkbox3.Checked) then begin 
            Edit4.Text := '-2.0'; 
//            ShowMessage('Downlink CW or CW-N mode has been detected. To be able 
to listen to baseband morse-code a -2kHz frequency correction has been entered'); 
          end 
          else Edit4.Text := '-0.0'; 
     end 
     else Edit4.Text := '-0.0'; 
  end; 
 
 
  if(not AnsiSameText(Lastupm,data.upm)) then begin //Uplink mode change detected 
     if(AnsiSameText(data.upm,'CW') or AnsiSameText(data.upm,'CW-N')) then begin 
        if(Checkbox3.Checked) then begin 
          Edit5.Text := '-2.0'; 
  //        ShowMessage('Uplink CW or CW-N mode has been detected. To be able to 
transmit a baseband morse-code, a -2kHz frequency correction has been entered'); 
          end 
          else Edit5.Text := '-0.0'; 
     end 
     else Edit5.Text := '-0.0'; 
   end; 
 
  Lastdnm := data.dnm; 
  Lastupm := data.upm; 
 
  if(TryStrToFloat(Edit7.Text,TmpAzm))//Azimuth offset successfully converted to 
float 
    then  Sazm := Sazm+TmpAzm; //Offset-corrected azimuth to be sent over IP 
 
 
    if(CheckBox1.Checked) then begin //Makes the antenna use the ekstra 90 degrees of 
azimuth movement(450 degree support) 
      if((LastValidAzimuth>330) and (Sazm<90)) then Sazm := Sazm + 360;//If the 
satellite traverses 359->001 degrees azimuth, then use the 450 area. 
    end; 
    LastValidAzimuth := Sazm; 
 
  if(TryStrToFloat(Edit4.Text,Sdnf) and TryStrToFloat(Edit5.Text,Supf)) 
    then begin //Corrections successfully converted to float 
    Sdnf := (Sdnf*1000) + data.dnf;  //Corrected downlink and uplink frequency to be 
sent over IP 
    Supf := (Supf*1000) + data.upf; 
    end 
   else begin 
    Sdnf := data.dnf;  //Uncorrected downlink and uplink frequency to be sent over IP 
    Supf := data.upf; 
    //ShowMessage('Downlink and uplink frequency correction boxes must be in float 
format("-12.5")'); 
    end; 
 
 
 
      if(Selv<0) then Selv := 0; //Do not transmit negative elevation as it is not supported 
      if(ComboBox1.ItemIndex >0) then begin 
//        Label26.Caption := 'Rig activated'; 
//        Label26.Color := clRed; 

 
        {Radio control} 
           {Downlink frequency control} 
    tmi:= Round(data.dnf); 
    FreqBCD:= Chr(((tmi Div 10)Mod 10)*16+((tmi Div 1)Mod 10)) 
                +Chr(((tmi Div 1000)Mod 10)*16+((tmi Div 100)Mod 10)) 
                +Chr(((tmi Div 100000)Mod 10)*16+((tmi Div 10000)Mod 10)) 
                +Chr(((tmi Div 10000000)Mod 10)*16+((tmi Div 1000000)Mod 10)) 
                +Chr((tmi Div 100000000)Mod 10); 
 
 
    RadioString:= StartString+SetFCmd+FreqBCD+StopString; 
    IdUDPServer1.Send(TargetIPAddress,TargetPort,'W'+FormatFloat('000',Sazm)+' 
'+FormatFloat('000',Selv)+RadioString); 
     Memo1.Lines.Add('Sending Whhh hhh'); 
        end; 
  end; //end "deactivation-if" 
 
 
   Label13.Caption := FormatFloat('000',Sazm); 
   Label14.Caption := FormatFloat('000',Selv); 
   Label18.Caption := FormatFloat('000" "000" "000',Sdnf)+' Hz'; 
 
   Label19.Caption := FormatFloat('000" "000" "000',Supf)+' Hz'; 
 
   end; 
 
procedure TFMain.IdUDPServer1UDPRead(Sender: TObject; AData: TStream; 
  ABinding: TIdSocketHandle); 
 
var 
  ReceivedData : TMemoryStream; 
  Lockstatus : String; 
  bu : Byte; 
begin 
    ReceivedData := TMemoryStream.Create; 
    ReceivedData.LoadFromStream(AData); 
    ReceivedData.Read(bu,1); 
    ReceivedData.Read(LockStatus,25); 
    Memo1.Lines.Add('Received:'+IntToStr(Integer(bu))+Lockstatus+':');  
//.ReadString(50); 
//    if(bu = 0)then begin//AData.Size > 0) then begin 
//      LockStatus := ;//LeftStr(bu,1); 
      if(bu = 0) then begin 
//          Memo1.Lines.Add('bu=0'); 
        RigLock := 0; 
        Label26.Caption := 'Rig status INACTIVE'; 
        Label26.Color := clGreen; 
      end 
      else if(bu = 1) then begin 
//        Memo1.Lines.Add('bu=1'); 
        RigLock := 1; 
        Label26.Caption := 'Rig status ACTIVATED'; 
        Label26.Color := clRed; 
      end 
      else if(bu = 14) then begin 
//        Memo1.Lines.Add('bu=14'); 
        RigLock := 14; 
        Label26.Caption := 'Rig status BUSY'; 
        Label26.Color := clPurple; 
      end; 
//    end; 

 
 

   ReceivedData.Free(); 
end; 

 
 



 

Appendix G - SP2000 & SP7000 Preamplifier Curvesxix 

Low Noise GaAsFet Design using single gate selected microwave Fets  
Hi-Q Helical Coils & Helical Filters (SP-2000/7000) 
RF-Sensed (VOX) or PTT (Hard Keyed) operation 
Voltage Feed via coax or separate line. 
High Quality Coaxial Relays with N-type Connectors 
Two cabinet construction with shielded inner box Weatherproof Housin 

MODEL FREQ. NF-MAX GAIN-Adj. Filters VOX/PTT 
SP-2000 144.0MHz. 0.8 approx. 10-20dB HELICAL 200/750 
SP-7000 432/435MHz. 0.9 approx. 10-20dB HELICAL 100/500 
 
SP2000 Series 

 
Graph 1: This graph illustrates the SP-2000 preamplifier filter characteristics. Center frequency = 

145.0MHz, SPAN = 100MHz, Vertical Marker Pointer = 22.062dB Gain.  
Horizontal Marker Pointer = 0.0dB Reference, 10dB per division 

SP-7000 Series 

 
Graph 2: This graph illustrates the SP-7000 preamplifier filter characteristics. Center frequency = 

435.0MHz, SPAN = 100MHz, Vertical Marker Pointer = 20.22dB Gain. 
 Horizontal Marker Pointer = 0.0dB Reference, 10dB per division





 

Appendix H – Important pages from ICOM 910h manual  
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Appendix I – Important pages of the 

Yaesu RS-232B manual 
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Appendix J –Parts list of the Oslo Satellite ground station 
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