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Preface

The first five chapters of this thesis are meant to serve as an introduction
to the world of cold atoms and diatomic molecules. This is a vast area of
research, and a rather “hot topic” in modern atomic, molecular and optical
physics. The presentation provided here is of course strongly biased by my
own view of the field, and how I perceive that it ought to be introduced.
In addition, the introduction should serve as a primer to the papers that
represent the actual research undertaken by us during the last four years
(August 2006 - March 2010).

The introductory part is written at a level suitable for physics students
working in other areas of physics. The first chapter should be readable for
everyone with a basic knowledge of physics, while the later chapters could
benefit from advance knowledge of atomic and molecular physics.

Chapter 1 introduces cold atoms, while chapter 2 introduces cold diatomic
molecules and their quantum mechanical description. Cold collisions are
treated in chapter 3.

Chapters 4 and 5 introduce the work presented in the papers, and are
meant to provide background information and motivations. However, we do
not repeat the arguments or the conclusions presented in these papers, we
merely introduce the approach to the problem. Papers I and IV are related
to chapter 4, whereas papers II and III are related to the material presented
in chapter 5.

Motivations for the present work

The motivations for going into the world of cold atoms and molecules are
many. Some of the questions whose answers are sought are:

• How can cold atoms and molecules be created?

• How do cold atoms and molecules collide?

• How can we control cold collisions by external fields?
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• Can we perform high-resolution molecular spectroscopy?

• Can we expect new states of matter at very low temperatures?

• Can chemical reactions at extremely low temperature be controlled?

• Does the electron have an electric dipole moment?

• Can we make a quantum computer out of cold atoms or molecules?

Partial answers to a few of these questions have been provided, some even
in this thesis, whereas the majority of these questions are subjects of active
and current research by many groups worldwide.

The present work has relied heavily on numerical methods. Quite ex-
tensive programs have been developed from scratch in C/C++. However,
the numerical methods and the algorithms have not been described in this
thesis. The majority of the algorithms we have used are well tested and can
be found in standard references. Some parts of the code are however not
standard. This applies in particular to the implementation of various mat-
rix elements, different molecular basis sets and the transformations between
them, the incorporation of the Pauli principle and so on. Too many weekends
have elapsed testing and debugging these codes, if time permits they may
become available for everyone to modify or use in the future. At the present,
the user interface is not friendly enough. As these codes merely combine
known results, a more detailed description was not included in the papers,
whereas such a description seems far to technical to be appropriate for the
first part of this thesis.
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Chapter 1

Cold atoms

The 1997 Noble prize in physics was awarded Steven Chu, Claude Cohen-
Tannoudji and William D. Phillips for developing methods to cool and trap
atoms with laser light. Without their achievements, the present work would
merely be of theoretical interest, without experimental relevance. In chapter
1 we review common cooling methods used for atoms today. In chapter 2 we
introduce the diatomic molecule and methods for cooling it.

The present work is concerned with cold and ultracold gases of atoms and
diatomic molecules. We shall reserve the word cold for temperatures below
one kelvin, and the word ultracold for temperatures below one microkelvin.
The atoms and molecules that we consider are neutral.

Figure 1.1: Bose-Einstein condensate of rubidium atoms cooled to 170 nan-
okelvin. The figure shows the velocity distribution at three different temper-
atures.

One important question to answer is this: What does it mean to cool
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4 Chapter 1.Cold atoms

a gas of atoms? Cooling means removal of energy, both the kinetic energy
and the internal energy. The temperature is related to the width of the
velocity distribution in a three dimensional atomic gas. Therefore the velocity
distribution of a group of cold atoms should be narrow, that is, the velocities
of the atoms should be similar and as small as possible (see Fig. 1.1).

1.1 Cooling atoms in one dimension

Neutral atoms are cooled to low temperatures using lasers. The basic prin-
ciple is very easy to understand as it relies on momentum conservation. The
ideal atoms for laser cooling have two internal states |1〉 and |2〉, with an
energy separation �ω0. A photon with frequency ω � ω0 can then excite an
atom from state |1〉 to state |2〉, see Fig. 1.2.

If we let the photon propagate in the opposite direction of the atom,
momentum conservation gives

mv − �ω

c
= mv′, (1.1)

where v is the speed of the atom before the collision and v′ is the speed of

v

E

E

2

1

Figure 1.2: An atom with velocity v absorbs a photon propagating in the
opposite direction. The atom is excited to state |2〉 with energy E2 during
the absorption process. A short time later the atom returns to state |1〉 by
spontaneous emission.

the atom after the collision. Hence, the change in velocity is

Δv = −�ω

mc
, (1.2)

which is of the order 10−2m/s.
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The atoms return to the ground state via spontaneous emission. The
photon emitted in this process has no preferred direction, therefore, after
a large number of absorption-emission processes, they do not give a net
acceleration. The lifetime of the excited state |2〉 may be 10−20 nanoseconds,
which gives an deceleration a = −106m/s2. At room temperature the most
probable velocity of an atom is � 1000m/s, hence the stopping distance with
the aforementioned acceleration is around 1m. The lifetime of the excited
state is of course a property of the individual atom that varies with the
different species. However, for laser cooling to be effective, the lifetime of the
excited state |2〉 must be short.

1.2 Cold atomic gases

1.2.1 Optical molasses

Three dimensional atomic gases may be cooled using six orthogonal laser
beams, see Fig. 1.3. In many respects this is a rather natural generalization

x

y

z

Figure 1.3: Simplified sketch of the optical molasses technique. The blue ar-
rows are lasers emitting photons with an energy �ω. The lasers emit photons
with the same frequency lower than the resonance frequency ω0 = E2−E1

�
.

of the setup used in one dimension. However, a few additional effects need
to be considered and we start with the Doppler shift.
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Consider a photon with angular frequency ω measured in the laboratory
system. In the rest frame of the atom, the angular frequency ω′ of the same
photon is

ω′ = ω − k · v, (1.3)

where k is the wave vector for the light and v is the velocity of the atom in
the laboratory system. If k and v are anti-parallel, then ω′ > ω and if k and
v are parallel then ω′ < ω. This is the Doppler shift.

The Doppler shift is in fact utilized to cool atomic gases through the
setup shown in Fig. 1.3. The frequency of the photons emitted from the
lasers is adjusted so that it is smaller than the transition frequency between
the internal states of the atoms, i.e. ω < ω0. Therefore the atoms will absorb
photons propagating in the opposite direction of v with a high probability, as
these photons have a frequency that is Doppler shifted to match the resonance
frequency. Likewise, the frequency of photons propagating parallel to v is
Doppler shifted further out of resonance, and the probability of absorbing
these photons will be low. This mechanism is schematically shown in Fig.
1.4 and is named the optical molasses technique. The force acting on atoms

x

v

E1

E2

ω − kv

y

ω + kv

Figure 1.4: The principle behind the optical molasses technique. The two
counter propagating laser beams shown as arrows. In the rest frame of
the atom the laser light is Doppler shifted. The frequency of the photons
propagating in the opposite direction of the atom is shifted closer to the
resonance frequency ω0.

in such a setup can be written [1]

F = −αv, (1.4)
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where α is a positive constant that depends on the intensity of the light, the
lifetime of the excited state and the resonance frequency ω0.

An atom can be cooled to absolute zero if we only consider the force in
Eq. (1.4). However, this is a consequence of the simplified model we have
used and is not observed in experiments. Spontaneous emission does not
contribute with a net acceleration, but the recoil from photons emitted make
the atom behave like a random walker in velocity space. The mean square
displacement of the random walker equals the number of steps multiplied
with the square of the step length. Hence, spontaneous emission causes the
mean square velocity to increase. From these considerations it can be argued
that there exists a lower attainable temperature TD for laser cooling of atoms.
Detailed calculations [2] show that this limit, in the following referred to as
the Doppler cooling limit, is

kBTD =
�

2γ
, (1.5)

where kB is Boltzmann’s constant and γ is the natural lifetime of the excited
state |2〉.

For ten years, the lowest temperatures achievable with laser cooling were
believed to be given by Eq. (1.5). However, in 1988 Lett et al. observed
atoms laser cooled below the Doppler limit [3]. Lett et al. themselves wrote:

We have measured the temperature of a gas of sodium atoms
released from “optical molasses” to be as low as 43± 20μK. Sur-
prisingly, this strongly violates the generally accepted theory of
Doppler cooling which predicts a limit of 240μK.

This was soon resolved by J. Dalibard and C. Cohen-Tannoudji [4] and ex-
plained with a mechanism dubbed the Sisyphus effect. It is the light shift
combined with polarization gradients that is involved in the Sisyphus effect.
The detailed explanation is however somewhat subtle and will be omitted.

1.2.2 The magneto-optical trap (MOT)

The magneto-optical trap (MOT) is the workhorse in cold atomic physics.
Compared to the optical molasses technique, the MOT has several advant-
ages. Although atoms may be cooled to low temperates with the optical
molasses technique, there is no restoring force acting on the atoms. In the
MOT an inhomogeneous magnetic field provides trapping capabilities.

It is necessary to consider the internal states of an atom in a magnetic
field to understand the working principle of a MOT. The inhomogeneous
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Figure 1.5: Sketch of the experimental setup known as a MOT. Two coils with
currents I create an inhomogeneous magnetic field. Magnetic field lines are
indicated with red arrows. Three pairs of counter-propagating laser beams
with different polarizations are used (only one pair of lasers indicated with
blue arrows is shown).

magnetic field B is created by two coils with currents I running in opposite
directions, see Fig. 1.5. The magnetic field interacts with the atoms via the
Zeeman interaction

HZ = μB(gsS + L) · B = μBM ·B, (1.6)

where S is the total electronic spin, L is the electronic angular momentum
and M is the magnetic moment of the system, omitting the small nuclear
spin contribution. The Bohr magneton μB is equal to 5.788×10−9eV/G and
the g-factor for the electron is gs/2 = 1.00116.

The first order Zeeman effect can be obtained from the Wigner-Eckart
theorem [5]

EZ = 〈ψF
MF

|HZ|ψF
MF

〉 = μBB
〈F ||M ||F 〉
〈F ||F ||F 〉 �MF = �μBBgFMF , (1.7)
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where the gF -factor can be obtained by working out the reduced matrix
element 〈F ||M ||F 〉

〈F ||F ||F 〉
. The atomic state with total angular momentum F and

projection MF on a space-fixed axis is denoted |ψF
MF

〉. The point is to notice
the simple dependence on the MF quantum number in Eq. (1.7).

The magnetic field is zero in the middle of the trap (at x = y = z = 0)
and increases as [6]

B(z) = A
√

ρ2 + 4z2, (1.8)

where ρ2 = x2 +y2 and A is a constant. The magnetic field changes direction
at z = 0 where it is zero.

Consider now atoms displaced from the center of the trap along the z-
axis, where the magnetic field strength and the Zeeman energy EZ increases
linearly with z. For simplicity we consider an alkali atom with total electronic
spin S = 1

2
, zero angular momentum L and nuclear spin I = 1

2
. There are

then two possible quantized values for the total angular momentum quantum
number F , i.e. F = 0 ∨ F = 1.

Atoms in the |F = 1, MF = −1〉 state experience a negative Zeeman
shift at z > 0, whereas atoms in the |F = 1, MF = +1〉 state experience
a positive Zeeman shift at z > 0. Similar considerations hold for atoms
displaced along the negative z-axis (but with reversed conclusions). The
laser frequency ω is adjusted so that it is less than the resonance frequency
ω0 (as in the optical molasses technique). Hence, atoms displaced from the
origin along the positive z-axis have a higher probability of being excited
to the |F = 1, MF = −1〉 state, compared to the states with MF = 0 or
MF = 1, cf. Fig. 1.6. To facilitate absorption of photons propagating in the
direction opposite of the atom, different polarizations are used on the two
counter-propagating laser beams. The laser at the positive z-axis emits light
with σ− polarization, which only induces ΔMF = −1 transitions. The laser
at the negative z-axis emits light with σ+ polarization which only induces
ΔMF = +1 transitions. Hence, the atom is effectively pushed back towards
z = 0 when displaced from the origin. See Fig. 1.6 for an illustration of the
principle behind a MOT.

1.2.3 Evaporative cooling

The different methods considered so far may be able to cool an atomic gas
to temperatures around one microkelvin, i.e. to the so called recoil limit
determined by the recoil energy. An atom absorbing or emitting a photon
will experience a velocity recoil, and the energy associated with it is the recoil
energy. Temperatures corresponding to the recoil energy are not sufficient
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MF

1

0

F = 1

F = 0

0
−1

σ−σ+ ω

z

Energy

Figure 1.6: Hyperfine structure for an alkali atom in an inhomogeneous mag-
netic field. The magnetic field strength increases with z and the magnetic
field changes direction at z = 0. The two counter-propagating laser beams
along the z-axis have different polarization, specified as σ− and σ+ polariz-
ation. The selection rules for σ± polarized light are ΔMF = ±1. Laser light
is indicated with blue arrows in the present figure. See the text for a further
discussion.

for Bose-Einstein condensation (BEC). To create a BEC, temperatures in the
nanokelvin temperature range are required. Such low temperatures may be
achieved using evaporative cooling, as demonstrated experimentally in June
1995 when the first Bose-Einstein condensate was observed [7].

With evaporative cooling we mean selective removal of the hottest atoms.
We assume that the atoms are trapped in e.g. a MOT. The most energetic
atoms can be removed from the system by lowering the potential, allowing
the hottest atoms to escape, see Fig. 4.1. The remaining atoms are then
allowed to thermalize, thereafter the cycle of removal and thermalization is
repeated.

The thermalization process relies on elastic collisions between the atoms
within the trap. Collisions between atoms where only kinetic energy is ex-
changed are called elastic collisions. The cross section for elastic collisions at
low temperatures is given by [8]

σelastic = 4π|α|2, (1.9)

where α is a complex number that depends on the atomic species. The alkali
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Figure 1.7: The principle behind evaporative cooling. Atoms (blue spheres)
are trapped by a linear potential. When the the strength of the potential is
decreased, the most energetic atoms are allowed to escape.

atoms have a large scattering length and therefore a large elastic cross section.
Surprisingly, the elastic cross section is four times what one expects from a
naive geometrical consideration, interpreting the scattering length α as the
radius of a sphere. We also remark that for identical bosons the elastic cross
section is twice the value given in Eq. (1.9). We will return to the scattering
length in chapter 3.

Collisions where part of the internal energy is exchanged with kinetic en-
ergy are called inelastic collisions. Inelastic collisions are not favorable for
evaporative cooling. Clearly, if the internal energy is exchanged for kinetic
energy the atoms may heat up. It is not uncommon that the trapping po-
tential felt by an atom depends on the internal state of the atom. During a
collision, if the internal state is changed to an untrappable state, the atom is
lost from the trap. The cross section for the unfavorable inelastic collisions
is [8]

σinelastic =
4π|α|

k
, (1.10)

where α′ is a real number determined from the scattering amplitude (see
chapter 3) and k is the wave number

k =

√
2mE

�
. (1.11)

The point here is that the cross section for inelastic collisions is inversely
proportional to k. As the energy and k decreases, the inelastic cross section
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increases. For the evaporative cooling process to be effective, the ratio of
elastic to inelastic collisions needs to be high. The fact that σinelastic increases
when the temperature decreases limits the final temperature achievable with
evaporative cooling.

It was commented that evaporative cooling is often used to produce Bose-
Einstein condensates. For such experiments the phase space density is equally
as important as the temperature. If the volume occupied by the remaining
atoms is reduced to an extent that overcompensates for the atoms lost dur-
ing the evaporative cooling process, the phase space density will increase.
Eventually, this together with the low temperature may lead to the creation
of BECs.

One of the coldest atomic gases ever observed was created at MIT in
2003, and reported in the September edition of Science the same year [9].
The temperature was measured to be 450 ± 80 picokelvin.

1.3 Further reading

In preparing this chapter, the book “Laser Cooling and Trapping” by Metcalf
and van der Straten [10], along with “Atomic Physics” by Foot [1], were used.
Together with the extensive list of references included, these two books review
the topics relevant to the field of laser cooling of atoms. References to more
advanced treatments are also included, in particular in the book by Metcalf
and van der Straten.



Chapter 2

Diatomic Molecules

Figure 2.1: Max Born (11 December 1882 - 5 January 1970) won the Nobel
Prize in Physics in 1954 for his statistical interpretation of the wave function.
Together with J. Robert Oppenheimer he authored a paper introducing the
Born-Oppenheimer approximation in 1927.

Throughout this thesis we will work within the Born-Oppenheimer ap-
proximation, let us therefore start this chapter by introducing it. We work
in atomic units where � = me = e = 1. The electron mass is denoted by me

and the electron charge unit is denoted by e.

2.1 The Born-Oppenheimer approximation

The Born-Oppenheimer approximation describes the separation of the elec-
tronic motion from the nuclear motion. The approximation is named after

13



14 Chapter 2.Diatomic Molecules

Max Born and J. Robert Oppenheimer, and was introduced in a famous
article published in Annalen der Physik in 1927 [11].

The natural starting point is the Hamiltonian, and for a diatomic molecule
it can be written

H = − 1

2mA
∇2(rA) − 1

2mB
∇2(rB) − 1

2

N∑
i=1

∇2(ri) + V (rA, rB,x) + Hrel(rA, rB,x),

(2.1)

where x = [r1, r2, r3, . . . , rN ] and N is the number of electrons. The first
three terms of Eq. (2.1) is the kinetic energies for nuclei A and B and for
the electrons respectively. The mass of nuclei A is mA and the mass of nuclei
B is mB. The vectors rA and rB point to the positions of nuclei A and
B respectively, similarly, the vectors ri points to electron i. The potential
V contains the potential energy from the electrostatic interactions and Hrel

contains the relativistic part which we will return to later.
Although the operator in Eq. (2.1) is easy to write down, the correspond-

ing time-independent Schrödinger equation

HΨ(rA, rB,x) = EΨ(rA, rB,x) (2.2)

is not solvable. Two transformations will be applied to the Hamiltonian in
Eq. (2.1). The first transformation consists of separating out the center of
mass motion. This separation is not exact when Hrel �= 0, but the additional
terms are of the order v2/c2 and are omitted. The second transformation
allows us to consider the movement of the nuclei as a one-particle problem,
described by the internuclear separation r and the angles θ and φ that spe-
cifies the orientation of the internuclear axis.

After applying these transformations the Hamiltonian can be written

H = −1

2

N∑
i=1

∇2(ri) − 1

2(mA + mB)

n∑
i,j=1

∇i · ∇j − 1

2μ
∇2(r, θ, φ) + V (r,x),

(2.3)

= He + Hn, (2.4)

omitting the center of mass motion and Hrel. The coordinates of the electrons
now refer to the center of mass. The Hamiltonian has been divided into an
electronic part He, and a nuclear part Hn, where Hn is simply

Hn = − 1

2μ
∇2(r, θ, φ). (2.5)



2.1 The Born-Oppenheimer approximation 15

As Hn does not contain any electronic coordinates, we consider the following
ansatz

Ψ = ψe(r,x)ψn(r, θ, φ). (2.6)

The electrostatic energy depends on r, therefore ψe = ψe(r,x). We assume
that ψe(r,x) is a solution of the electronic part of the Schrödinger equation
for a fixed value of r, hence

Heψe(r,x) = Ee(r)ψe(r,x). (2.7)

By using Eqs. (2.4) and (2.6) in the time-independent Schrödinger equation
(2.2) we obtain

(He + Hn)ψe(r,x)ψn(r, θ, φ) = Eψe(r,x)ψn(r, θ, φ). (2.8)

We find by multiplication with ψ∗
e(r,x) from the left and integration over the

electron coordinates that

〈ψe|Hn|ψe〉ψn(r, θ, φ) + Ee(r)ψn(r, θ, φ) = Eψn(r, θ, φ). (2.9)

In the Born-Oppenheimer approximation it is assumed that 〈ψe|Hn|ψe〉 =
Hn, i.e. the dependency of r in this integral is omitted and,

Hnψn(r, θ, φ) + Ee(r)ψn(r, θ, φ) = Eψn(r, θ, φ). (2.10)

As it turns out most of the terms omitted can be included in Ee(r). This is
the adiabatic Born-Oppenheimer approximation.

To summarize, the energy E of a diatomic molecule is then given by

E = Etranslational + Eelectronic + Enuclei, (2.11)

and we will find that Enuclei can be further separated into a vibrational and
a rotational contribution. The translational energy is not included in Eq.
(2.10).

Finally we comment that the electronic functions ψe(r,x) are classified
according to the eigenvalue Λ of the Lz operator, i.e. the angular momentum
along the molecule fixed axis. In the present work we have considered the
electronic functions ψe(r,x) corresponding to two ground state alkali atoms
(2S atoms). The only possible value of Λ is then zero. Generally, spectro-
scopic notation is introduced to specify the value of Λ for molecules. A few
examples are: Σ(Λ = 0), Π(Λ = 1), Δ(Λ = 2), ϕ(Λ = 3), . . . .
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2.2 Born-Oppenheimer potential curves

From Eqs. (2.7) and (2.10) the functions Ee(r) are seen to be important
for quantitative calculations. In the present work we will be concerned with
atom-atom collisions (chapter 5) that require the interatomic potentials Ee(r)
to be known with high accuracy. We will in the following refer to the functions
Ee(r) as potential curves. See Fig. (5.5) for examples of two potential curves.

It is perhaps not obvious, but Eq. (2.7) represents a very challenging
many-body problem. This is due to the mutual Coulomb repulsion between
the electrons. With many electrons on both nuclei these terms become even
more important.

The problem in the present context is to obtain the function Ee(r) and
the many-body wave function ψe(r,x), from which additional properties of
interest may be computed.

Hartree proposed to write the wave function ψe as a product of single-
particle wave functions

ψe(r1, r2, . . . , rN) = ψa(r1)ψb(r2) . . . ψx(rN), (2.12)

where the one-particle functions ψa(ri) satisfies[
−1

2
∇2(ri) + Vn + Ua(ri)

]
ψa(ri) = εaψa(ri). (2.13)

The one particle energies are denoted εa. The potential Vn includes the
electrostatic interactions with the nuclei, whereas Ua(ri) is given by

Ua(ri) =
∑
b�=a

∫
d3r′

ψ∗
b (r

′)ψb(r
′)

|ri − r′| . (2.14)

The labels a, b, . . . , x denote the one-particle quantum numbers and the one-
particle functions ψa(ri) include the electronic spin. Notice that Eq. (2.13)
really is a set of coupled non-linear differential equations. The solutions can
only be found numerically through an iterative process. The potential Ua(ri)
represents the effect of the electron-electron interactions on the electron in
orbital ψa(ri), created by the charge density

ρ(r′) = −
∑
b�=a

|ψb(r
′)|2. (2.15)

The wave function in Eq. (2.12) does not satisfy the Pauli exclusion
principle. This can be rectified by using a Slater determinant for ψe in
place of Eq. (2.12). An additional non-local term is then introduced in
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the Schrödinger equation, but the accuracy of the solutions and energies is
improved. In the Hartree-Fock (HF) method one seeks the Slater determinant
Φ that minimizes the expectation value

EHF = 〈Φ|He|Φ〉. (2.16)

The HF method plays an important role in quantum chemistry and is often
used as a starting point for other more refined methods. We will not describe
any such post HF method in detail. However, we comment on the Møller-
Plesset many-body perturbation theory as it is used in two of the papers
included in this thesis (papers I and IV).

2.2.1 Comments on the Møller-Plesset perturbation
theory

Basically Møller-Plesset perturbation theory is Rayleigh-Scrödinger perturb-
ation theory applied to the perturbation He−HHF, with the HF Hamiltonian
as the zero order Hamiltonian. The energy difference between the energy EHF

and the exact energy is often called electron-correlation energy [12].
The zero-order Hamiltonian H(0) is the HF Hamiltonian that fulfills

HHFΦ0 = E
(0)
0 Φ0 (2.17)

where Φ0 is the HF ground-state wave function. This choice of H0 was made
by C. Møller and M. S. Plesset. [13]. The perturbation H(1) is then given by

H(1) = He − HHF, (2.18)

and the first order energy correction is

E
(1)
0 = 〈Φ0|H(1)|Φ0〉. (2.19)

However, the energy EHF is obtained as the expectation value EHF = 〈Φ0|He|Φ0〉
and we see that

EHF = E
(0)
0 + E

(1)
0 . (2.20)

The correction to the Hartree-Fock energy comes from second order perturb-
ation theory along with higher order terms when included. The second order
correction is given by

E(2) =
∑
i�=0

〈Φi|H(1)|Φ0〉〈Φ0|H(1)|Φi〉
E

(0)
0 − E

(0)
i

, (2.21)
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where Φi is an eigenfunction of HHF with the eigenvalue E
(0)
i . The evalu-

ation and implementation of Eq. (2.21) have not been part of the present
work. We have used the quantum chemistry software GAMESS [14] and the
implementation of MP2 [15, 16] distributed with it.

Møller-Plesset perturbation theory was chosen as the post Hartree-Fock
method in the present work. We believe that it combines accuracy with
a reasonable computational effort. However, we did not consider the MP2
energies as highly accurate. This was made clear in both papers where results
that relied on MP2 energies were reported. In paper IV we quantified the
uncertainties in the MP2 energies to be ±20%.

2.2.2 Basis sets

In Eq. (2.12) ψa(r) denotes molecular orbitals given by

ψa(r) =
M∑

α=1

caαφα(r), (2.22)

where φα are Gaussian functions of the form (written in Cartesian coordin-
ates)

φ(r) = xiyjzke−kr2

, (2.23)

and caα are constants. On physical grounds, what is known as Slater orbitals1,
may be preferable to the Gaussian functions in Eq. (2.23). However, the
two center integrals involved in the HF calculations are very cumbersome
to evaluate with Slater orbitals. Two center integrals can be handled much
more efficiently with Gaussian orbitals.

Contracted Gaussian functions are often used. A contracted Gaussian
function is a fixed linear combination of Gaussian functions, centered at
the same atomic nucleus. The advantage is less coefficients to determine.
The linear combination should however be carefully chosen to avoid loss of
accuracy.

The number of Gaussian functions to include in a calculation is chosen
as a compromise between accuracy and efficiency. Minimal basis sets, which
only include one function for each orbital, may be used. A minimal basis set
for hydrogen may include one function to represent the 1s orbital. This is

1The Slater orbitals are given by

φ(r) = rn−1e−krYlml
(θ, φ){↑, ↓}, (2.24)

where n, l, ml and ↑↓ are one-electron quantum numbers, and k is a constant.
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certainly inadequate but very efficient. More involved is the “double zeta”
basis sets, in which two functions are used for each orbital, or even the “triple
zeta” basis sets with three functions for each orbital.

The basis sets used in the present work have included polarization func-
tions to account for the distortion of the orbitals by molecular bonds. The
quantum chemistry package GAMESS has an extensive library of basis sets.
Generally we have used rather large basis sets, but more details can be found
in the respective papers.

2.2.3 Potential curves at long range

At large internuclear separations the interatomic potential, i.e. the potential
curve, between two S state atoms is given by the analytical expression [8]

Ee(r) = V (r) = −C6

r6
− C8

r8
− C10

r10
. (2.25)

The coefficients C6, C8 and C10 are called dispersion coefficients and the at-
tractive forces acting between two atoms far apart, due to the potential V (r),
are called van der Waals forces.

2.3 Vibration and rotation

Finally we return to Eq. (2.10) and study the wave functions ψn(r, θ, φ) in
more detail. We may write the Hamiltonian in Eq. (2.5) in the form

Hn = − 1

2μ

1

r2

∂

∂r

(
r2 ∂

∂r

)
+

R2

2μ2r2
+ Ee(r), (2.26)

where we have introduced R as the angular momentum of the relative motion
of the nuclei. The Schrödinger equation (2.10) simplifies by using the ansatz

ψn(r, θ, φ) =
1

r
ψvR(r)ψR(θ, φ), (2.27)

where ψR(θ, φ) are eigenfunctions for the R2 operator. We then obtain the
result (

− 1

2μ

d2

dr2
+

R(R + 1)

2μr2
+ Ee(r)

)
ψvR(r) = EψvR(r). (2.28)

The wave functions ψvR(r) are the ro-vibrational wave functions. They de-
pend on the vibrational quantum number v, and the rotational quantum
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number R. This is a rather complicated differential equation, which can not
be solved exact without additional approximations, in particular since Ee(r)
is unknown.

Previously, upon deriving Eq. (2.10), we neglected the r dependence of
ψe and wrote 〈ψe|Hn|ψe〉 = Hn. We may now include parts of this previously
omitted contribution and reconsider the matrix element

1

2μr2
〈ψe|R2|ψe〉ψn, (2.29)

i.e we still neglect the contribution from the first part of Hn (cf. Eq. (2.26)).
To work out the matrix element in Eq. (2.29) we introduce the total angular
momentum of the molecule, excluding electronic and nuclear spin,

N = R + L. (2.30)

We note that R2 = N2 − 2N ·L + L2, and that Ψ = ψeψn are eigenfunctions
for2 N2 and Nz

N2Ψ = N(N + 1)Ψ, (2.31)

NzΨ = MNΨ, (2.32)

where Nz is the component of N along the space-fixed z-axis. The matrix
element in Eq. (2.29) can then be written

1

2μr2
〈ψe|N2 − 2N · L + L2|ψe〉ψn =

1

2μr2

(
N(N + 1) − 2〈ψe|N · L|ψe〉 + 〈ψe|L2|ψe〉

)
ψn (2.33)

The term proportional to L2 can be included in the electronic and vibrational
energies, i.e. the contribution from this term is independent of the rotational
quantum number N . The term proportional to N · L gives the so called Λ
splitting that will be omitted.

We may then write for the relative motion of nuclei A and B,(
− 1

2μ

d2

dr2
+

N(N + 1)

2μr2
+ Ee(r)

)
ψvN (r) = EψvN (r), (2.34)

and the complete wave function for the nuclei ψn(r, θ, φ) is

ψn(r, θ, φ) =
1

r
ψvN (r)ψNMNΛ(θ, φ), (2.35)

2This means that ψn is redefined and that Eq. (2.27) is no longer valid. See also Eq.
(2.35).
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where ψNMNΛ(θ, φ) is the rotational wave function of a diatomic molecule
with total angular momentum N for a given value of Λ. The eigenvalue
E depends on the rotational quantum number N , the vibrational quantum
number v and the electronic state ψe(r,x).

With some approximations we can write the total energy (not included
the translational energy) as

E = Eel(r) + Evib + Erot = Eel(r) + Evib +
1

2μ

〈
ψv(r)

∣∣∣∣ 1r2

∣∣∣∣ψv(r)

〉
N(N + 1),

(2.36)

where Evib and ψv(r) are obtained by setting N = 0 in Eq. (2.34) and solving

− 1

2μ

d2

dr2
ψv(r) + Ee(r)ψv(r) = Evibψv(r). (2.37)

The vibrational energies Evib, computed for the ground electronic state of
6Li2, are shown in Fig. 2.2.

2.4 Cold and ultracold molecules

In chapter 1 we described methods to cool and trap a gas of atoms. The next
natural step is to attempt to cool gases that consist of diatomic molecules. In
the previous section we discussed the electronic, vibrational and rotational
states of such particles. We found that the inner structure was indeed far
more complex than for atoms, with several additional degrees of freedom.

The quest for cold and ultracold diatomic molecules is due to quantum
mechanics, and in particular the wave-particle duality of matter. When the
de Broglie wavelength

λdB =
1√

2mπkBT
, (2.38)

for a particle of mass m at a temperature T becomes large, in a sense the
size of the particles increases. In this regime it is not adequate to think
of particles as hard spheres, as their wavelike properties become import-
ant. When the inter particle separation becomes less than the de Broglie
wavelength, a quantum mechanical description must be used.

Spectacular physical phenomena have been observed in this regime. For
example molecular Bose-Einstein condensates [18, 19] and the crossover between
a Bose-Einstein condensate and the Bardeen-Cooper-Schrieffer (BCS) state
[20, 21] with de-localized pairing of (fermionic) atoms.
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Figure 2.2: Vibrational energies in the electronic ground state of 6Li2, com-
puted from Eq. (2.37). The vibrational levels v = 0 and v = 1 are explicitly
labeled. The 41 lowest vibrational levels are shown. The figure was made by
the present author to be included in a different work [17], hence, R is used
in place of r.

Cold and ultracold molecules are also well suited for high precision spec-
troscopy. Their low kinetic energy offer longer observation time. Highly
precise measurements can even be used to investigate the variation of fun-
damental constants, such as the fine structure constant and the electron-to-
proton mass ratio [22].

It has even been suggested that ultracold polar molecules may provide
the qubits for a quantum computer [23]. Although the quantum computer is
far from being realized, ultracold molecules are also relevant for the field of
quantum information theory.

Finally, cold atoms and molecules may be used in atomic and molecular
interferometers. The interferometer may be used as an instrument for precise
measurements of e.g. the gravitational constant or as a demonstration of the
fundamentals of quantum mechanics.

Motivated by the possible applications we now discuss how cold and ul-
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tracold molecules can be created. This topic is revisited in chapters 4 and
5.

2.4.1 Obtaining cold molecules

Is there a method that can be used to cool a gas of any molecular species
to very low temperatures? In general the answer is no. We will limit the
discussion to neutral diatomic molecules, and we do not discuss methods that
only apply to polar molecules.

There are then two different strategies: Direct or indirect cooling. In the
direct cooling methods the kinetic energy is removed from the molecules by
collisions, or by some other convenient mechanism. Indirect cooling methods
are based on cold atoms together with a bonding mechanism that allows the
two cold atoms to form a cold diatomic molecule.

Laser cooling was a great success when applied to alkali atoms. It may
therefore seem natural to attempt laser cooling of diatomic molecules. How-
ever, the complex ro-vibrational structure makes it hard to obtain the closed
cycle necessary. Ideally, absorption of a photon should be followed by almost
instantaneous spontaneous emission and the molecule should return to the
initial state (see Fig. 2.3). However, the problem with diatomic molecules is
that the spontaneous emission populates many different ro-vibrational levels,
and a significant fraction of the initial molecules is thereby lost.

|1〉

|2〉 |2〉

|1〉

Figure 2.3: The left panel shows a closed two level cycle between the states
|1〉 and |2〉, typical for alkali atoms. In the right panel the more complex inner
structure of a molecule is shown schematically. A laser (blue arrow) is used
to excite the molecule to the electronic state |2〉. By spontaneous emission
the molecule returns to one of the ro-vibrational levels of the electronic state
|1〉. Molecules populating ro-vibrational states different from the initial state
are not in resonance with the laser, and can not be cooled further.

In the next section we present two selected and successful cooling methods
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used to cool diatomic molecules.

2.4.2 Photoassociation (PA) of diatomic molecules

Two colliding atoms and a photon with the proper energy can create a mo-
lecule in an excited electronic state. In short this is the essence of photoasso-
ciation, an example of an indirect cooling method. Two free ground state
atoms, cooled to microkelvin temperatures, approach each other with an en-
ergy corresponding to the electronic molecular ground state. By absorbing a
photon the two atoms are excited to a bound vibrational level of an excited
molecular electronic state. The process is schematically shown in Fig. 2.4.
Two ultracold atoms remain most of the time far apart. Thus, even though

internuclear separation

E
n
er

g
y

Bound-
free
decay

Laser
Bound-
bound
decay

E1(r)

E2(r)

Figure 2.4: Illustration of the PA process and the spontaneous decay to the
bound ro-vibrational levels in the electronic ground state E1(r), as well as the
decay to the continuum limit. A photon (blue arrow) excites the two ground
state atoms to a bound vibrational level of an excited electronic state E2(r).
Molecules can decay to the ground state, either to a bound ro-vibrational
level or to the continuum of levels, i.e to two free ground state atoms.

the two atoms are excited by a photon, they are not always excited to a
bound molecular level.
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A simple argument can be used to estimate the strength of the bound-
bound decay. The transition from a bound vibrational level in the excited
electronic state, ψv′ , to a vibrational level in the ground state, ψv′′ , happens
almost instantaneously. During this short period of time the internuclear sep-
aration is unchanged. Referring to Fig. 2.4, this means that the spontaneous
decay is vertical, as indicated by the red arrows. Generally the equilibrium
distance re is larger for the excited states. When the excited electronic state
has an equilibrium distance significantly larger than that of the ground state,
the overlap between the wave functions ψv′ and ψv′′ is small, and the probab-
ility for bound-bound decay is low. Clearly this is not a favorable situation
for cold molecule production. Different techniques have been proposed to en-
hance the fraction of the bound-bound decay, see [24] and references therein.
Still it is a challenge to enable both efficient production of molecules and
simultaneously create deeply bound ground state molecules.

Cold and ultracold molecules have been produced by the use of PA. This
includes homonuclear diatomic molecules of the alkalies Li, Na, K, Rb and
Cs, but also heteronuclear diatomic molecules composed of alkali atoms. Ex-
amples include KRb, RbCs and NaCs. References can be found in [24]. The
temperatures of these molecules vary between millikelvin and microkelvin
with densities in the range of 103 − 106cm−3.

Although PA is a successful method it can only be used to create molecules
from atoms cooled by one of the more traditional methods. This excludes
among others the hybrides and the oxides.

2.4.3 Play pool to stay cool

A direct cooling method that resembles a game of pool has been proposed and
demonstrated for NO molecules by Elioff et al. [25]. The detailed reaction
can be expressed

NO + Ar → NO′ + Ar. (2.39)

The NO molecules are cooled in one collision with Ar in a crossed molecular
beam experiment (see Fig. 2.5). The result is NO molecules in an excited
rotational state, indicated with the notation NO′ in Eq. (2.39). Elliot et al.
claim this method is general as it does not rely on any particular property
of the molecule. Strangely we have not seen any articles describing the use
of this method on diatomic molecules besides NO.

Consider the collision of a NO molecule with an Ar atom. In the labor-
atory system the NO molecule has the velocity v, while the center of mass
system has velocity vcm in the same system. In the center of mass system
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the NO molecule has velocity u before the collision. Post collision velocities
are primed. The collision between Ar and NO should be such that the ve-
locity of the NO molecule is zero after the collision, i.e. v′ = 0. Expressed
mathematically as

v′ = u′ + vcm = 0. (2.40)

This requirement can be used to obtain the scattering angle θCM [25]

cos θCM =
EAr − ENO√

(ENO + M
m

EAr)(ENO + m
M

EAr)
, (2.41)

with EAr and ENO as the kinetic energies of the Ar atom and the NO mo-
lecule respectively, before the collision. We see from Eq. (2.39) that the NO
molecules are excited after the collision. A fraction of the collision energy
is transformed to internal energy of the NO molecule. The internal energy
gained in the collision is [25]

Einternal =

(
1 − M

m

)
ENO. (2.42)

The temperature at a density of 108 molecules per cubic centimeter was
measured to be � 440mK, reported in [25]. Five years later, the method
was improved and the reported temperature was 35mK, with a significantly
prolonged observation time [26].

2.5 Further reading

The presentation of the Born-Oppenheimer approximation is based on a local
compendium on diatomic molecules [27], along with the book “Physics of
Atoms and Molecules” by Bransden and Joachain [28]. The sections on
photoassociation and billiard cooling are inspired by the presentations given
in the cited articles. More information about photoassociation (including
references) can be found in [17].



2.5 Further reading 27

θ

Figure 2.5: Sketch of the crossed beams in the pool like cooling method.
Collisions between Ar atoms and NO molecules occur at the intersection of
the two beams. The rotational degree of freedom of the NO molecule is
excited and its kinetic energy is close to zero after the collision.





Chapter 3

Cold collisions

In previous chapters we have seen that collisions play an important role
in cold and ultracold atomic and molecular physics. We have occasionally
referred to results from scattering theory in both chapters 1 and 2. The pool
cooling method also relied on collisions.

In this chapter we will introduce atomic and molecular scattering theory.
We restrict ourselves to cold atom - atom and atom - molecule collisions,
using diatomic molecules. The classical picture of a collision is that of two

Figure 3.1: (Winslow Homer: Croquet, 1864) Croquet is an example of a
game of classical hard sphere collisions. In quantum mechanics, this classical
view of collisions is no longer sufficient.

hard spheres colliding, as experienced in pool or croquet. Although the
hard sphere collisions represent a useful mental picture, quantum mechanics
requires that we represent the particles with wave functions satisfying the

29
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Schrödinger equation.
We begin this chapter by introducing one-channel elastic scattering and

define both the scattering length and the phase shift, as well as the scattering
amplitude and the cross section. The theory of inelastic scattering and the
multichannel equations are then introduced and the close-coupled equations
are obtained. Finally we introduce the scattering matrix (the S-matrix).

3.1 Elastic scattering

Elastic scattering means that only kinetic energy is exchanged between the
colliding particles, i.e. the internal states do not change in a collision.

The time-independent Schrödinger equation reads

HΨ(r) = EΨ(r), (3.1)

and the scattering wave functions Ψ correspond to energies E > 0 in the
present chapter. A particle of definite energy E = k2

2m
and mass m traveling

along the z-axis is described by the wave function

ψ(z) = eikz. (3.2)

After a collision the particle is represented as a spherical wave of the form
(see Fig. 3.2)

ψ(r) =
eikr

r
. (3.3)

The wave function in Eq. (3.3) assumes that the particle is moving with

��
��
��
��

��
��
��
��

eikr

eikz

z
θ

Figure 3.2: Incoming plane wave along the z-axis along with an outgoing
spherical wave.

the same probability in all directions. The extra factor of 1/r is included
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to ensure that probability is conserved [29]. To allow for scattering with
different probabilities in different directions θ, the scattering amplitude f(θ)
is introduced and Eq. (3.3) is modified

ψ(r) =
f(θ)eikr

r
. (3.4)

In the region where the scattering potential V is zero we seek a wave function
of the form

Ψ(r, θ) = A

(
eikz +

f(θ)eikr

r

)
, (3.5)

where A is an undetermined constant. We will in this section consider spher-
ical symmetric potentials, V = V (r). The Schrödinger equation then reads(

− 1

2μ
∇2(r) + V (r)

)
Ψ(r) = EΨ(r), (3.6)

where μ is the reduced mass of the system and

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

L2

r2
. (3.7)

The orbital angular momentum operator is L2. The wave function in Eq.
(3.5) represents a solution to the Shcrödinger equation in the region where
r → ∞ and V = 0.

We also need to find the wave function in the interacting region (V �= 0).
It is common to introduce the notation

k2 = 2μE, U(r) = 2μV (r), (3.8)

to write Eq. (3.6) in the form

(∇2(r) + k2 − U(r))Ψ(r) = 0. (3.9)

We use the partial wave expansion to expand the wave function Ψ(r) in
terms of the Legendre polynomials Pl(cos θ)

Ψ(r, θ) =
1

r

∞∑
l=0

alψl(r)Pl(cos θ), (3.10)

where the expansion coefficients al are introduced. The incoming wave breaks
the spherical symmetry (therefore we include θ), but the azimuthal symmetry
remains and justifies that Ψ can not depend on the angle φ. By combining
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Eqs. (3.9) and (3.10) we find the radial Schrödinger equation that ψl(r)
fulfills (

d2ψl(r)

dr2
+ k2 − U(r) − l(l + 1)

r2

)
ψl(r) = 0. (3.11)

The spherical symmetric potential allows for solutions of the form Ψ(r) =
ψl(r)Ylml

(θ, φ), but since Ψ does not depend on φ, m = 0 and Ψ(r) =
ψl(r)Yl0(θ, φ) ∝ ψl(r)Pl(cos θ).

The radial equation (3.11) motivates the definition of an effective poten-
tial

Ul(r) = U(r) +
l(l + 1)

r2
. (3.12)

In atom-atom collisions the interatomic potential V (r) may be taken as the
Born-Oppenheimer potential Ee(r), introduced in the previous chapter. The
effective potentials for the quantum numbers l = 0, 1, 2, 3 are plotted in Fig.
3.3. The partial wave quantum number l represents the quantized angular
momentum for the relative motion of the colliding particles. The function
ψl(r) in Eq. (3.10) is often referred to as partial wave l.

At low temperatures the smallest values of l are by far the most important
in expansion (3.10). Due to the low energy involved in the collisions together

with the repulsive centrifugal barrier l(l+1)
r2 , only the l = 0 partial wave is able

to penetrate into the region where U(r) �= 0 (see Fig. 3.3). In the ultracold
regime it is therefore sufficient to include only the term with l = 0 in Eq.
(3.10), this is called s-wave scattering or s-wave collisions.

The solutions to Eq. (3.11) can only be obtained numerically, except
for a few very special potentials. Numerovs method, described in Numerical
Recipes [30], may be well suited for this task.

If U(r) = 0 in Eq. (3.11) the general solution, which may be found in
almost any quantum mechanics textbook, is

ψl(r) = Arjl(kr) + Brnl(kr), (3.13)

where jl(kr) and nl(kr) are the spherical Bessel functions. To facilitate
comparison with the wave function in Eq. (3.5) (valid in the region where
Ul(r) is zero) it is more convenient to work with spherical Hankel functions.
In terms of the Bessel functions introduced in Eq. (3.13) the first and second

spherical Hankel functions, hl(x) and h
(2)
l (x) respectively, are written

hl(x) = jl(x) + inl(x), (3.14)

h
(2)
l (x) = jl(x) − inl(x). (3.15)
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Figure 3.3: The effective potential Ul(r) = U(r) + l(l+1)
r2 for l = 0, 1, 2 and 3.

The yellow line corresponds to l = 3, the blue line correspond to l = 2, the
red line corresponds to l = 1 and the black line corresponds to l = 0. The
interatomic potential U(r) is assumed to be rather shallow to emphasize the
effect of the repulsive centrifugal term. Arbitrary units are used.

For large values of x the first spherical Hankel function hl(x) is hl(x) =
(−i)l+1eikx/x, which is what we want (apart from (i)l+1), cf. Eq. (3.5). In
addition, it also satisfies the Schrödinger equation in the intermediate region.
The different scattering regions are illustrated in Fig. 3.4.

Further, we rewrite the wave function in Eq. (3.10) in the convenient
form

Ψ(r, θ) = A

(
eikz + k

∞∑
l=0

il+1(2l + 1)alhl(kr)Pl(cos θ)

)
. (3.16)

where the coefficients al have been redefined as al → kil+1(2l + 1)al. This is
only for convenience, as we will see. We have explicitly written eikz as the
wave function for the incoming wave, whereas the second term represents an
outgoing spherical wave. By comparing Eqs. (3.16) and (3.5) the scattering
amplitude is obtained

f(θ) =

∞∑
l=0

(2l + 1)alPl(cos θ). (3.17)
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V = 0
Ul = 0

V �= 0
Ul �= 0

V = 0
Ul �= 0

Figure 3.4: The brown circle represents the scattering region where the full
Schrödinger equation (3.11) is solved. The blue circle represents the in-
termediate region where the potential V (r) is zero, but the centrifugal term
l(l+1)/r2 is non-zero. The asymptotic region (also called the radiation zone)
is characterized by U = V = Ul = 0, and the solution to the Schrödinger
equation in this region is given by Eq. (3.5).

The scattering cross section is defined as the ratio of the scattered flux per
unit solid angle dΩ to the incident flux per unit area, in analogy with the
classical definition found in e.g. Classical Mechanics [31]

dσ(θ)

dΩ
=

r2| f(θ)eikr

r
|2

|eikz|2 = |f(θ)|2. (3.18)

The flux of the incoming particles is clearly proportional to |eikz|2, but are
the two proportionality constants for the incoming and outgoing fluxes equal?
Indeed it can be shown that they are because the momentum of the incoming-
and the outgoing beams are identical.

The total cross section σ is found after integration over the solid angle
dΩ, and is given by

σ = 4π
∞∑
l=0

(2l + 1)|al|2. (3.19)

Numerical methods are used to solve the Schrödinger equation in the scat-
tering region and into the intermediate region, where the solution is known
analytically. By comparing the two solutions in this region the amplitudes
al can be determined.
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3.1.1 The phase shift

The phase shift is a consequence of the scattering process and is due to the
potential. To obtain an expression for it we rewrite the plane wave eikz in
Eq. (3.16) by the expansion [32]

eikz =
∞∑
l=0

il(2l + 1)jl(kr)Pl(cos θ). (3.20)

Without a scattering potential V (r) the wave function in Eq. (3.16) is written

Ψ(r, θ) = A

∞∑
l=0

il(2l + 1)jl(kr)Pl(cos θ). (3.21)

For large values of r this simplifies to

Ψ(r, θ) = A
2l + 1

2ikr

(
eikr − (−1)le−ikr

)
Pl(cos θ). (3.22)

This is most easily shown by writing jl(kr) as a superposition of the first and
second order spherical Hankel functions (see Eqs. (3.14) and (3.15))) and
then take the limit r � 1. The point is that by introducing a potential, the
incoming spherical wave is left unchanged (second term in the parentheses
above). The first term however is changed, but only the phase is allowed to
change. The amplitudes of the incoming and the outgoing spherical waves
need to be the same to conserve probability.

Introducing the phase shift 2δl in the outgoing spherical wave, Eq. (3.22)
can be written

Ψ(r, θ) = A
2l + 1

2ikr

(
eikr+2iδl − (−1)le−ikr

)
Pl(cos θ). (3.23)

This equation is valid in the intermediate region. At this point we go back
to Eq. (3.16) and insert the expansion (3.20) in place of eikz to find

Ψ(r, θ) = A

(
2l + 1

2ikr

[
eikr − (−1)le−ikr

]
+

2l + 1

r
ale

ikr

)
Pl(cos θ). (3.24)

Comparing Eqs. (3.23) and (3.24) the coefficients al are obtained

al =
1

2ik

(
e2iδl − 1

)
=

1

k
eiδl sin(δl). (3.25)
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The scattering amplitude f(θ) and the cross section σ can now be expressed
in terms of the phase shift

f(θ) =
1

k

∞∑
l=0

(2l + 1)eiδl sin(δl)Pl(cos θ), (3.26)

σ =
4π

k2

∞∑
l=0

(2l + 1) sin2(δl). (3.27)

3.1.2 The low energy limit

It is possible to show that the phase shift δl, introduced in Eq. (3.23), can
be written [28]

δl(k) = clk
2l+1, (3.28)

in the low energy limit, where cl is an undetermined constant. The coefficients
al can then be expressed as

al =
1

2ik

(
1 + 2iclk

2l+1 − 1
)

= clk
2l. (3.29)

This confirms the argument we gave previously, and we see that only the
l = 0 partial wave contributes at very low energies. Next we define the
scattering length α as the limit of a0 when k → 0,

− lim
k→0

a0 = −c0 = α. (3.30)

The scattering amplitude f(θ) can be expressed in terms of α in the low
energy limit

f(θ) =
∞∑
l=0

(2l + 1)(1 + iclk
2l+1)clk

2lPl(cos θ) = c0 = −α, (3.31)

as well as the scattering cross section

σ = 4π|f(θ)|2 = 4πα2. (3.32)

The total cross section resembles the cross section of a sphere with radius
α. The extra factor of four must be seen as a quantum mechanical contri-
bution due to the wave nature of the particles. The low energy expressions
show that the scattering length is the only quantity of interest at ultracold
temperatures. To determine it, the interatomic potential needs to be known.
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System State Scattering length α(a0) Reference
6Li2 X1Σ+

g 45.5 ± 2.5 [33]
6Li2 a3Σ+

u −2160 ± 250 [33]
7Li2 X1Σ+

g 33 ± 2 [33]
7Li2 a3Σ+

u −27.3 [34]
6Li7Li X1Σ+ −20 ± 10 [33]
6Li7Li a3Σ+ 40.9 ± 0.2 [33]
23Na2 X1Σ+

g 19.20 ± 0.30 [35]
23Na2 a3Σ+

u 62.51 ± 0.50 [35]
23Na85Rb X1Σ+ 167+50

−30 [36]
23Na85Rb a3Σ+ 59+12

−9 [36]
39K2 a3Σ+

u −51 ± 0.7 [37]
87RbCs a3Σ+ (700+700

−300) or (176 ± 2) [38]
Cs2 X1Σ+

g 280.37 [39]
Cs2 a3Σ+

u 2440 [39]

Table 3.1: Scattering lengths α for collisions between selected alkali atoms.
There may be more recent results available in the literature for some of these
systems.

However, the scattering length is extremely sensitive to the interatomic po-
tential, thus, highly accurate Born-Oppenheimer potential curves must be
used to compute α.

Table 3.1 contains values of α for collisions between selected atomic spe-
cies. From Table 3.1 two observations are made: 1) The value of α has
nothing to do with the radius of the electronic charge cloud (it does not
correspond to the size of any physical feature in the atoms), 2) The value of
α can be positive, negative, large or small and varies considerably for two
rather similar atomic systems.

Perhaps as an aside to the previous discussion we make a comment on
the Gross-Pitaevskii (GP) equation. The GP equation provides a mean-field
description of the trapped Bose-Einstein condensate wave function Φ(r)(

− 1

2m
∇2(r) + V (r) +

4πα

m
|Φ(r)|2

)
Φ(r) = εΦ(r). (3.33)

This is an important equation which we will only comment. The wave func-
tion Φ(r) describes a single atom of mass m. The non-linear term, propor-
tional to |Φ(r)|2, represents the mean-field interaction from the other atoms
in the condensate on the atom under consideration. The energy of the atom
in the presence of the others is denoted ε. Notice that the scattering length
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appears in the GP equation and that the atomic interactions are determined
by α. In fact, the sign and size of α determines whether it is possible to
create a Bose-Einstein condensate for a particular atomic species. Only pos-
itive values of α (corresponding to repulsive interactions between the atoms
in the condensate) allow for stable condensates.

Returning to the scattering problem we plot the wave function ψ0(r),
obtained with a very low energy and a realistic interatomic potential V (r).
The scattering length can be interpreted as the value of r at the intersection
between the asymptote of the wave function and the r-axis (see Fig. 3.5).

On a much larger scale the same wave function looks like a sinusoidal
wave, as shown in Fig. 3.6. To summarize, Fig. 3.6 shows the wave function
on the scale of the de Broglie wavelength, whereas Fig. 3.5 shows the wave
function on the scale of the interatomic potential.

r (internuclear separation)

ψ
0
(r

)

Figure 3.5: The wave function ψ0(r) as a function of the internuclear distance
for small and moderate values of r. For low energies (k → 0) the wave
function behaves as indicated in this figure for r � [0, 100]a0, depending
on the detailed interatomic potential. A straight line may be fitted to the
wave function in the region where the rapid oscillations have died out. The
scattering length is approximately equal to the value of r where this line
intersects the r-axis.

3.1.3 Levinson’s theorem

Levinson’s theorem applies to zero energy scattering and is stated below.
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r (internuclear separation)

ψ
0
(r

)

Figure 3.6: The wave function ψ0(r) as a function of the internuclear dis-
tance for large values of r, typically of the order of 104a0. Fig. 3.5 shows a
magnification of ψ0(r) for small values of r.

Theorem 1 (Levinson’s theorem). The phase shift at zero energy (k → 0)
is related to the number of bound states Nl supported by the potential Ul(r)
as

δl = Nlπ. (3.34)

If there exists a zero-energy bound states, Eq. (3.34) needs to be replaced by

δl =

(
Nl +

1

2

)
π. (3.35)

It is interesting to study the implication of the theorem on the scattering
length α. An alternative definition of the scattering length is provided by
the expression [28]

α = − lim
k→0

tan δ0(k)

k
. (3.36)

Consider two slightly different interatomic potential curves V1(r) and
V2(r), describing the same system. Assume that V1 supports N0 bound states,
and that V2 supports N0 + 1 bound states. The phase shift obtained with V1

is δ0. By Levinson’s theorem the phase shift obtained from calculations with
V2 is δ0 + π. Inserted in Eq. (3.36) a difference of π appears quite dramatic
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due to the tangent function, which diverges when the argument approaches
π.

This simplified example illustrates how sensitive the scattering length α
may be to small changes in the interatomic potential.

3.1.4 The optical theorem

The optical theorem relates the total cross section to the forward scattering
amplitude f(θ = 0). The optical theorem is easy to derive. Recall from Eq.
(3.26) that the scattering amplitude f(θ) is

f(θ) =
1

k

∞∑
l=0

(2l + 1)eiδl sin(δl)Pl(cos θ). (3.37)

The forward scattering amplitude f(θ = 0) is obtained (note that Pl(1) = 1),

f(0) =
1

k

∞∑
l=0

(2l + 1)eiδl sin(δl). (3.38)

The imaginary part of this equation is

Imf(0) =
1

k

∞∑
l=0

(2l + 1) sin2(δl), (3.39)

and the right hand side is recognized as the total cross section σ, multiplied
with k and divided by 4π, cf. Eq. (3.27).

Theorem 2 (The optical theorem).

σ =
4π

k
Im[f(0)]. (3.40)

3.2 Inelastic scattering

Inelastic scattering occurs when energy is exchanged between the internal and
the translational degree of freedom. One example is a diatomic molecule that
changes rotational level during a collision with an atom. Another example
may be found in an atom-atom collisions where the collisions may induce
transitions between different hyperfine levels.

Before we discuss inelastic scattering we need to make it clear what we
mean by a scattering channel.
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Definition 1. A scattering channel is a quantum state for the complete sys-
tem before or after the collision has occurred.

We distinguish between closed channels and open channels:

Definition 2. A channel with energy Eb is closed if Eb is larger than the
energy of the system.

Definition 3. A channel with energy Eb is open if Eb is less or equal to the
energy of the system.

In atom-atom collisions, the channels at t → ±∞, when the two atoms are
infinitely separated, can be the quantum state |F1MF1

F2MF2
〉 where F1 and

F2 are the quantized total angular momenta of atom one and two respectively.
The projections on a space-fixed axis (by convention the z-axis) are MFi

, with
i = 1, 2.

Another form of inelastic scattering happens when particles are exchanged
between the colliding particles . This is often referred to as reactive scattering
and will simply omitted, as it is very unlikely to occur at low energies.

3.2.1 The multichannel equations

The goal is to solve the Schrödinger equation and obtain the scattering wave
function, the scattering length, the scattering amplitude, the cross section
and other quantities of interest. We start by writing the Hamiltonian

H = − 1

2μ
∇2(r) + V (r,R) + Hint(R). (3.41)

The first term is the kinetic energy operator for the relative motion of the
collision partners. The interaction potential is denoted V and the Hamilto-
nian for the internal motion is denoted Hint. The eigenfunctions of Hint are
assumed to be known together with the eigenvalues,

Hintψn(R) = Enψn(R), (3.42)

where R denotes the spin and space coordinates necessary to specify the
internal motion. This thesis is concerned with two types of collisions, 1)
atom-atom collisions and 2) atom-diatomic molecule collisions.

For atom-atom collisions the internal Hamiltonian represents two atoms
infinitely separated, and the eigenfunctions ψ(R) are two-atom wave func-
tions ψF1MF1

F2MF2
(R), including both the spatial and spin part.

In atom-diatomic molecule collisions we have considered the diatomic mo-
lecule as a rigid rotator. The internal Hamiltonian for such a system is then
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the rigid rotator Hamiltonian, and ψ(R) are the corresponding eigenfunc-
tions. The internal state of the atom is assumed to be the ground state, both
before and after the collision with the diatomic molecule.

The total wave function is expanded in terms of the eigenfunctions ψj(R)
as

Ψ(r,R) =
∑

j

φj(r)ψj(R) (3.43)

Inserted in the time-independent Schrödinger equation we get∑
j

(
− 1

2μ
∇2(r) + V (r,R) + Ej − E

)
φj(r)ψj(R) = 0, (3.44)

where Eq. (3.42) has been used. Multiply this equation by ψ∗
i (R) and

integrate over R to get(
− 1

2μ
∇2(r) + Ei − E

)
φi(r) +

∑
j

(∫
ψ∗

i (R)V (r,R)ψj(R)dR

)
φj(r) = 0.

(3.45)

The Schrödinger equation alone is usually very challenging to solve. The
equation above is even more challenging as it represents a set of coupled
Schrödinger equations that need to be solved simultaneously. They are called
the close-coupled equations and the solutions are found numerically. The for-
mulation of the theory presented here is termed the diabatic formulation. In
this formulation the kinetic energy operator of the relative motion is diagonal
in the ψi(R) basis.

In contrast the adiabatic formulation is often used, in which the expansion
(3.43) is replaced by

Ψ(r,R) =
∑

j

φj(r)ψj(r,R), (3.46)

where the functions ψj(r,R) satisfies

[Hint(R) + V (r,R)]ψj(r,R) = Ej(r)ψj(r,R). (3.47)

With these modifications the derivations of the close-coupled equations pro-
ceeds as before. When the separation between the two colliding particles
approach infinity, the potential V is zero and the diabatic formulation is
again obtained as

Ej(r) → Ej , ψj(r,R) → ψj(R). (3.48)

We remark that the kinetic energy operator is not diagonal in the basis
of the adiabatic basis. Many of these non-diagonal terms can usually be
omitted, in particular in the low temperature limit.
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3.2.2 The S-matrix

In elastic scattering the asymptotic form of the wave function was given by
Eq. (3.5). For inelastic scattering a very similar expression can be used. We
consider a system with an initial channel i, and a final channel j, and write
the total asymptotic wave function as

Ψ(r,R) = eikzψi(R) +
∑

j

fij(θ, φ)

r
eikrψj(R), (3.49)

in close analogy with Eq. (3.5). The scattering amplitudes fij(θ, φ) describe
scattering from channel i to channel j and can be represented as a matrix.

In elastic scattering the phase shift determined the scattering amplitude,
the cross section and the scattering length. The scattering matrix holds a
similar position in inelastic scattering and is indeed related to the phase shift.
The scattering matrix S connects the initial internal state of the system to
the final internal state of the system. Let ψ(−∞) be the initial internal state
of the system and ψ(∞) be the final internal state of the system, we can then
define the S-matrix as

ψ(∞) = Sψ(−∞). (3.50)

The initial and final internal states can be superpositions of the different
wave functions ψi(R). The S-matrix is a function of the total energy and
the total angular momentum. The S-matrix conserves probability and is
therefore unitary

ST∗S = I, (3.51)

where T denotes the transpose of S, and I is the identity matrix. The element
Sij is the probability amplitude for a transition between the internal states i
and j, so that the matrix element |Sij|2 gives the corresponding probability.
The S-matrix is also symmetric, the probability for the reverse transition
from j to i must be equal to the transition from i to j, due to the principle
of time reversal.

To end this section we express the scattering amplitude in terms of the
S-matrix. Suppose that Eq. (3.45) is further reduced to a set of differential
equations in one variable r. As for elastic scattering this requires a partial
wave expansion. We denote the partial wave quantum number with l, as
before. The total angular momentum of the colliding particles is J and the
corresponding quantum number is J . The scattering amplitude can then be
written in the general form

fij(θ, φ) =
1

2i(kikj)1/2

∑
j

gJ
ijY

J
ij (θ, φ)(SJ

ij − δij), (3.52)
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where gJ
ij are factors that depend on the degeneracy and other constants.

The functions Y J
ij (θ, φ) are the angular momentum eigenfunctions. Only the

S-matrix depends on the energy. The elastic scattering amplitude can be
obtained by using gJ

ij = (2l + 1) and setting Y J
ji (θ, φ) equal to Pl(cos θ).

When comparing with Eq. (3.52) the diagonal elements of the S-matrix is
related to the phase shift as

S = exp(2iδl). (3.53)

Similarly to Eq. (3.52) we may write the elastic and inelastic cross sections
in terms of the scattering matrix S. These expression must be specialized
to the particular collision process studied, and we will not pursue this any
further in this chapter, however, we return to these expression in chapters to
come. At this point we stress that the scattering matrix is the quantity of
interest. To solve the set of coupled equations (3.45) really means to obtain
the S-matrix.

3.3 Further reading

The introduction to cold collision presented in this chapter is based on three
books: Griffiths [29] provides a good introduction to one-channel elastic scat-
tering, Murrell and Bosanac [32] give more details and introduce the multi-
channel equations. As does the book of Child [40], which contains a lot of
relevant material, in particular for atom-diatom collisions. The theory of
atomic collisions is also treated in detail by Mott and Massey in their book
[41].



Chapter 4

Collisions between diatomic
molecules and atoms

In this chapter we will consider atom-molecule collisions in relation to buffer-
gas cooling and matter wave interferometry. The first part of this chapter
reviews the buffer-gas cooling process and relates it to the work presented in
paper I.

Figure 4.1: A C60 molecule with the ground state electron density shown
(calculated with DFT) [42]. This molecule is among the largest objects whose
wavelike properties have been observed in a matter wave interferometer.

The second part of this chapter presents one particular class of matter
wave interferometers. We will explain why collisions between atoms and
diatomic molecules are relevant also to matter wave interferometers. Finally,

45
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we comment on the study presented in paper IV.

4.1 Description of the buffer-gas cooling pro-

cess

Buffer-gas cooling, first proposed by Stwalley [43], stands apart from all the
previously discussed cooling methods as it, at least in principle, is completely
general. The only requirement is that the particles to be cooled can survive
multiple elastic collisions with the buffer-gas.

In chapter 2 we divided the molecular cooling methods into two groups:
the direct methods and the indirect methods. Buffer-gas cooling is a direct
method. The idea is simple and easy to understand. A cold gas of atoms,
usually one of the inert gases e.g. helium, argon or neon, is kept in a con-
tainer. Hot molecules are loaded into the container and are allowed to collide
with the cold inert gas atoms.

After many collisions with the buffer-gas, the molecules should attain a
temperature similar to the buffer-gas temperature. The collisions need to be
elastic so that only kinetic energy is distributed. Somewhat simplified this is
the basic idea of buffer-gas cooling.

This cooling method, as described hitherto, is indeed completely general.
It can be applied to cool any species of atoms and molecules (not restricted
to diatomic molecules). It does not rely on a cycling transition or subtle
spectroscopic properties of the molecule. Yet another advantage is the ability
to produce rather large samples of atoms or molecules.

However, we should not disregard the shortcomings of the buffer-gas cool-
ing method. After the cooling process is completed, the particles must be
separated from the inert gas of e.g. helium. It is not immediately clear how
this can be accomplished.

One method is to introduce a magnetic field in the container (by e.g.
an anti-Helmholtz coil configuration) and if the particles (i.e. atoms or
molecules) have a sufficiently large magnetic moment μ, they can become
trapped: A particle with a magnetic moment μ experiences an energy shift
ΔE in a magnetic field B, equal to

ΔE = −μ · B. (4.1)

Particles whose magnetic moments are aligned with the magnetic field, will
have lower energies in the regions where |B| is large. These atoms are called
high-field-seekers and tend to gather in regions with a strong magnetic field.
Similarly but opposite, particles whose magnetic moments are anti-parallel
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to the magnetic field, tend to gather in regions where the magnetic field
strength is low. These are low-field-seekers. By creating a local minimum in
the magnetic field the low-field seeking atoms may become trapped in this
region, provided that their kinetic energies are insufficient for them to escape
(see Fig. (4.2)). Typical magnetic field strengths are of the order 2−4 Tesla.

Once the cold particles are trapped, the inert gas atoms may be removed.
This may be achieved by cooling the walls of the buffer-gas cell to a low
temperature, and letting the inert gas condense on the walls.

By relying on this method to remove the inert gas atoms, buffer-gas
cooling can no longer be described as a general cooling method. To trap
the cold gas of particles they need to have a magnetic moment at least of the
order of the Bohr magneton μB.

Figure 4.2: The buffer-gas cooling cell. A cold diatomic molecular gas in a
low-field-seeking state is trapped by a magnetic field in the middle of the cell.
The magnetic field lines are indicated with curved arrows. The inert buffer-
gas atoms, most often helium, are shown as spheres, diatomic molecules as
two connected spheres.

The density of the buffer-gas is important. The number of collisions per
unit time should be sufficient to cool the particles before they hit the walls
of the cell. Otherwise the particles may stick to the wall and be lost.
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After the buffer-gas is removed the diatomic molecules will continue to
collide with each other. If the collisions are elastic the sample can be evap-
oratively cooled as described in chapter 1. Such molecule-molecule collisions
are very complex, even for two diatomic molecules. Few theoretical pre-
dictions are available. Generally, the intermolecular potentials need to be
known with high accuracy, as the properties of the collisions are very sensit-
ive to the potential in the low energy limit. It is an open question whether
potentials with the required accuracy are available for calculations. The elec-
tronic, vibrational, rotational, fine and hyperfine structures may provide a
very large number of channels, hence, many approximations are necessary to
make computations feasible.

Table 4.1 summarizes the capabilities of the buffer-gas cooling method
at the present, by listing the diatomic molecular species cooled with this
technique along with additional information. In this context we use the
word buffer-gas cooling, somewhat misleading, to describe the whole cooling
process, including the evaporative cooling.

System Final temperature (mK) Density (cm−3) Reference
CaH 400 ± 50 4 × 106 [44]
NH 6000 1012 [45]
NH 600 − 700 108 [46]
PbO 4000 ± 1000 1012 [47]
CrH 650 1015 [48]
MnH 650 1015 [48]

Table 4.1: Diatomic molecules cooled with buffer-gas cooling. The temper-
atures and densities refer to the cold sample of diatomic molecules observed
in the experiments.

Finally we mention that many atomic species have been cooled to low
temperatures with buffer-gas cooling and subsequent evaporative cooling.
Among these are Eu, Cr, Mo, Dy, Ho, Nd, Pr, Tb, Au, Ag, Cu, Mn, Li,
Na and N. Recently the first buffer-gas cooled BEC was also reported for
metastable helium (4He∗) [49].

4.2 Buffer-gas cooling and the present work

Paper I included in this thesis is relevant for buffer-gas cooling. In this section
we describe the relevance of our work, but we do not reproduce the results
presented in the paper. Rather we motivate our study.
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As we have seen, buffer-gas cooling in a magnetic field relies on the mo-
lecules to be in a trappable state, i.e. the molecules are in a low-field-seeking
state. Transitions between trappable and untrappable molecular states can
not occur spontaneously. However, collisions between the molecules and the
inert gas atoms are not only elastic. Inelastic collisions do occur, in which
the internal state of the molecules can change from low-field-seeking states to
high-field seeking states. At this stage in the cooling process, where the inert
gas atoms are still present in the cell, molecule-molecule collisions do not need
to be considered. The number of inert gas atoms are typically five orders of
magnitude larger than the number of molecules. Hence, molecule-molecule
collisions are extremely rare compared to atom-molecule collisions.

To be more specific, we consider a homonuclear diatomic molecule and an
inert gas atom as our system and we are interested in quantities relevant to
buffer-gas cooling. This includes among other quantities the cross sections
for elastic collisions and for different inelastic collisions. The cross section is
defined as [41]

σp→p′ =
π

kp

∑
lmll′m

′

l

|Sp′l′m′

l

plml
− δpp′δll′δmlm

′

l
|2, (4.2)

where p is the initial internal state. The partial wave quantum number is l
and the projection on a chosen axis is denoted by ml. Post collision quantities
are marked. The wave vector is denoted kp and S is the S-matrix introduced
in chapter 3.

To obtain the S-matrix, the potential energy surface describing the in-
teractions between the inert gas atom and the diatomic molecule must be
known. This potential is non-central, in contrast to the interatomic poten-
tial for two atoms which depends only on r. With some approximations the
potential energy surface V depends only on two parameters r and θ (see Fig.
4.3).

The approximation that allows us to write V = V (r, θ) is the rigid rotator
approximation. The distance between the two nuclei in the diatomic molecule
is fixed to a value we denote by re. The rotation about an axis perpendicular
to the molecular axis can be described by the Hamiltonian

Hrot =
p2

2μ
=

j2

2μr2
e

=
j2

2I
, (4.3)

where I is the moment of inertia with respect to the rotational axis (per-
pendicular to the molecular axis), j is the angular momentum and μ is the
reduced mass of the diatomic molecule. As the separation between the nuc-
lei is constant, the derivative with respect to the internuclear separation,
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re

r

θ

Figure 4.3: Definition of the two parameters r and θ needed to describe the
potential energy surface between a diatomic molecule (blue spheres) and an
atom. Notice that the angle θ indicated in this figure is not the same θ that
was used in the previous chapter to denote the angle of the internuclear axis
between the colliding particles.

contained in p2, is zero and the second equality in Eq. (4.3) follows. The
Schrödinger equation with this Hamiltonian is solved, and the eigenfunctions
are the spherical harmonics Yjmj

(α, β), where α and β describe the orienta-
tion of the molecular axis. The corresponding quantized energies are

Ej =
j(j + 1)

2I
, (4.4)

where j = 0, 1, 2, . . . .
To obtain the S-matrix the close-coupled equations are solved numeric-

ally. These equations were presented in chapter three, see Eq. (3.45). Here
we will write the set of coupled equations in a different form, obtained by
expanding the scattering wave functions φ(r,R) in terms of partial wave
components ψl(r) and total angular momentum eigenstates Ypl(r,R):

φ(r,R) =
1

r

∑
pl

ψpl(r)Ypl(r,R). (4.5)

The internal state of the system (molecule and atom) is denoted by p. The
vectors r and R were introduced in chapter 3, and denote the relative coordin-
ates between the colliding particles and the internal coordinates respectively.
The close-coupled equations are then written (cf. section 3.2)(

d2

dr2
+ k2

p −
l(l + 1)

r2

)
ψpl(r) =

∑
p′l′

2μ〈pl|V (r, θ)|p′l′〉ψp′l′(r), (4.6)

with

kp ≡ 2μ(E − Ep). (4.7)
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The wave functions ψl(r) are obtained numerically. The number of partial
waves included in the expansion of the wave function φ(r,R) can be large
(several hundred), if the temperature is of the order 10K. Including also
the internal states of a diatomic molecule, the number of channels can easily
exceed 1000.

Within the rigid rotator approximation, we investigated the feasibility of
buffer-gas cooling of diatomic oxygen, with helium as the buffer-gas. Elastic
and inelastic cross sections for collisions between the diatomic oxygen mo-
lecules and the helium atoms were computed for energies corresponding to
temperatures in the range of 10K to 1μK. It was discovered that the fa-
vorable elastic collisions were more probable than the inelastic collisions by
several orders of magnitude, at all temperatures. We refer to paper I for
more details and a far more thorough discussion of the calculations and the
results.

4.2.1 Cooling of the rotational degree of freedom

As the potential between a diatomic molecule and an atom is non-central, the
rotational degree of freedom may be cooled, together with the translational
degree of freedom. The potential V (r, θ) couples different states |qjSl〉, where
j is the rotational quantum number, S is the total electronic spin quantum
number, l is the partial wave quantum number and q is included to specify
any additional quantum numbers. Formally, the possibility of rotational
relaxation through collisions with the buffer-gas is due to the matrix elements

〈qjSl|V (r, θ)|q′j′Sl′〉 �= 0, (4.8)

and the fact that they are non-zero (cf. Eq. (4.6)). The matrix elements
in Eq. (4.8) can be worked out by algebraic techniques, and the detailed
expression can be found in paper I. With numerical methods these matrix
elements may also be obtained from brute-force integration, but this requires
far more computational effort than the solutions written in closed form.

The buffer-gas cooling process for the diatomic oxygen molecule was then
simulated on a computer, using the elastic and inelastic cross sections com-
puted. In particular we investigated the effect the collisions had on the initial
velocity distribution of the diatomic oxygen molecules, along with the effect
on the rotational distribution. To reach equilibrium, we found that the mo-
lecules needed 15−20 collisions with the buffer-gas per molecule considering
the translational degree of freedom. However, the rotational degree of free-
dom required closer to 100 collisions per molecule before equilibrium was
reached. To allow for efficient cooling of the rotational degree of freedom the
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potential energy surface V (r, θ) needs to be far more anisotropic than the
O2 − He surface is.

4.3 Matter wave interferometry and the in-

dex of refraction

The wave-particle duality allows for interferometry with matter. Atoms may
behave like waves, with phenomena such as interference and diffraction. The
matter waves have a wavelength determined by the de Broglie relation

λdB =
h

p
, (4.9)

where p is the momentum of the particle. Although the description of the
particle as a wave may appear conceptually challenging, it is nothing new.
The wave like properties of electrons and neutrons were investigated long
ago, by Davisson and Germer [50] among others. Within this context, the
atom interferometer is merely an extension of previous experiments.

We will be concerned with a particular class of atom interferometers,
shown schematically in Fig. (4.4).

|2〉

|1〉

|2〉

|1〉|1〉

π/2 π π/2

Figure 4.4: An atom interferometer. One beam of particles is split into two
beams by a pulse of light (a π/2 pulse), then the two beams are deflected and
finally recombined by an additional pulse. A box of atoms is introduced in
the upper pathway. To the far right an interference pattern can be observed
(not drawn). The drawing is a courtesy of H̊akon Bjørgen.

The box of particles introduced in the upper pathway induces a phase
shift and attenuates the particle beam. This is due to collisions between the
particles in the beam and the atoms in the box. The particular effect of these
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collisions on the particle beam, and on the interference pattern, is the topic
of the work included as paper IV.

We will further assume that the box is filled with inert gas atoms, and that
diatomic molecules are used as the beam. Notice that the collisions occur-
ring within the box are formally identical to the collisions between diatomic
molecules and the inert gas atoms in the buffer-gas cooling technique.

Immediately it is not clear how the collisions between the beam particles
(hereafter called the projectiles) and the atoms (hereafter called the targets)
change macroscopic properties such as the phase shift and the attenuation
of the beam. That is, the link between the microscopic collisions and the
macroscopic physics, as observed with an interferometer, is not obvious.

The macroscopic wave function, which describes a beam of projectiles
along the x-axis with a well defined energy E, is written

Ψincoming(q, x, t) = ψ(q)ei(kpx−Et), (4.10)

with kp as the wave number and ψ(q) as the wave function for the internal
motion of the projectile. The coordinates q denote the internal coordinates
of the projectile.

After traversing a box of length l, filled with inert gas atoms, the wave
function in Eq. (4.10) is phase shifted and the amplitude is attenuated as
[51]

Ψtrans(q, x, t) = ψ(q)e(ikp−Et)eiRe(n)kple−Im(n)kpl, (4.11)

where “trans” is short for transmitted and n denotes the index of refraction1.
The index of refraction is defined as [52]

n = 1 + 2πρt
mp + mt

mt

〈f(kr, γ = 0)〉
kp

. (4.12)

Here ρt is the density of the target gas, mp is the mass of the projectile
particle, mt is the mass of the target particle and f(kr, γ = 0) is the forward
(i.e. γ = 0) scattering amplitude. The index of refraction is a complex
quantity because the scattering amplitude f is complex. The wave vector kr

is the wave vector for the relative motion, hence

kr = μ|vp − vt|, (4.13)

with μ as the reduced mass (target and projectile), and vp and vt as the
velocities of the projectile and target, respectively. The brackets in Eq. (4.12)

1In analogy with the index of refraction defined for light waves in dielectrics, this is the
index of refraction for matter waves in a gas of atoms.
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mean that the forward scattering amplitude should be averaged over the
velocity distribution of the target gas . We assume that the target gas has a
well defined temperature.

Notice that the exponential factor involving Re(n) in Eq. (4.11) contrib-
utes with a phase shift φ,

φ = Re(n)kpl, (4.14)

whereas the exponential factor involving Im(n) attenuates the amplitude of
the wave function.

Equation (4.12) is a central part of this theory, as it links the microscopic
scattering amplitude to the macroscopic wave function via the refractive
index. The forward scattering amplitude can be written [40]

f(kr, γ = 0) =

1

2i

∑
J

∑
ll′

√
(2l + 1)(2l′ + 1)

kjk
′
j

il−l′〈jmjl0|JMJ〉[Sj′l′

jl − δllδjj′]〈j′mjl
′0|JMJ〉,

(4.15)

where 〈jmjl0|JMJ〉 denotes a Clebsch-Gordon coefficient. The partial wave
quantum number is denoted with l and the angular momentum of the diat-
omic molecule is denoted with j. The total angular momentum is

J = l + j, (4.16)

with the corresponding quantum number J , and projection MJ on the space-
fixed z-axis. To compute f(kr), Eq. (4.15) shows clearly that the S-matrix
needs to be known, hence the solution to the close-coupled equations (4.6)
must be obtained.

The scattering amplitude is a function of the energy involved in the col-
lisions, as well as the density ρt of the target gas. Since the scattering amp-
litude is averaged over the velocity distribution of the target gas, the temper-
ature of this gas is important. The results we have reported were computed
as a function of the projectile velocity and the target gas temperature, and
can be found in paper IV.

The results obtained from interferometry experiments may provide in-
formation on the validity of the interatomic potential used in the theoretical
calculations, when the two are compared. The calculation of interatomic po-
tential surfaces is challenging. The results from matter wave interferometry
indicate how well the interatomic potential used in the calculations describes
the interactions between the target and the projectile. In this context the
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interferometer should be viewed as an indirect measuring device for the in-
teratomic potential. For good reasons, further explained in paper IV, it is
the the ratio

ρ(vp) =
Re(n − 1)

Im(n − 1)
, (4.17)

which is measured and compared with theoretical predictions
Most experiments so far have used target gases at room temperature. In

paper IV we focus in particular on calculations at low target gas temperat-
ures with low to moderate beam velocities, because at low temperatures the
function ρ(vp) shows clearly both oscillations and resonances (see Fig. 4.5).

In Fig. 4.5 we observe two typical features for the ratio ρ. The slow
oscillations are called glory oscillations and are related to the number of
bound vibrational levels supported by the potential [53]. In Fig. 4.5, only
one oscillation is visible (one maximum), but additional maxima may exist
at higher projectile velocities.

The rapid oscillations superimposed on the glory oscillations are believed
to be resonances due to quasibound levels, which are levels bound by the
centrifugal barrier. These resonances are only resolved at low buffer-gas
temperatures. For a further discussion, we refer to paper IV.

4.4 Further reading

The introduction to the buffer-gas cooling technique was inspired by the
PhD thesis “Buffer-Gas Cooling of Diatomic Molecules” by Dimitri Michael
Egorov [54]. It contains a lot more information than included here. For
more information on matter wave interferometry, see the review “Optics and
interferometry with atoms and molecules” by Cronin, Schmiedmayer and
Pritchard [55].
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Figure 4.5: Plot of the function ρ(vp) at four different temperatures, calcu-
lated for collisions between diatomic sodium molecules and helium atoms.
The sodium molecules act as projectiles, whereas the helium atoms make up
the target gas. A color code is used to indicate the temperature of the target
gas: red - 4K, black - 0.1K, blue - 1K, brown - 1mK. The rotational level of
the Na2 molecules is N = 2.



Chapter 5

Atomic collisions and Feshbach
resonances

In this chapter we introduce the Feshbach resonance using a toy model that
encapsulates much of the physics, without introducing unnecessary complex-
ity. We relate the discussion to the Feshbach resonances that appear when
two ultracold atoms collide, and motivate parts of our own work presented
in papers II and III.

Finally, we present two applications of Feshbach resonances, namely cold
diatomic molecule formation and the BCS-BEC crossover, to emphasize the
importance of Feshbach resonances in ultracold physics today.

5.1 Toy model of a Feshbach resonance

Consider a system with two spin states, S = 1 and S = 0. The Hamiltonian
can be written (we assume that 1

2m
= 1)

H =

(− d2

dr2 + VS(r) Δ

Δ − d2

dr2 + VT (r) + B

)
, (5.1)

with VT (r) as the triplet (S = 1) potential and VS(r) as the singlet (S = 0)
potential. The potentials are defined as (see Fig. 5.1)

VS(r) =

{
−V1 r ≤ a

0 r > a
, VT (r) =

{
−V2 r ≤ a

0 r > a
. (5.2)

The coupling between the different spinstates is represented by Δ. In homo-
nuclear diatomic systems the coupling depends on r and is due to the hy-
perfine interaction. For Feshbach resonances to occur Δ must be non-zero.

57
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r = a r

−V1

−V2

V (r)

Figure 5.1: The triplet (VT (r)) and singlet (VS(r)) potentials.

The time-independent Schrödinger equation reads(− d2

dr2 + VS(r) Δ

Δ − d2

dr2 + VT (r) + B

)(
ψS(r)
ψT (r)

)
= E

(
ψS(r)
ψT (r)

)
, (5.3)

and must be solved for all values of r. The states that we consider (scattering
states) have energies E larger than zero.

5.1.1 Long range solution

At long range (r ≥ a) the Hamiltonian simplifies to

H(r ≥ a) = − d2

dr2

(
1 0
0 1

)
+

(
0 Δ
Δ B

)
(5.4)

where the last part is non-diagonal. A short piece of algebra yields the
eigenvalues as

λ± =
1

2

(
B ±

√
B2 + 4Δ2

)
. (5.5)

Clearly λ+ > 0 while λ− < 0. The non-diagonal part of Eq. (5.4) may be
diagonalized with a similarity transformation QT ( 0 Δ

Δ B )Q, with Q defined as

Q =

(
2aΔ 2bΔ

(B +
√

B2 + 4Δ2)a (B −√
B2 + 4Δ2)b

)
. (5.6)

To save the eyes we have introduced a and b as

a ≡ [4Δ2 + (B +
√

B2 + 4Δ2)2]−1/2, b ≡ [4Δ2 + (B −
√

B2 + 4Δ2)2]−1/2,
(5.7)
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with the property: a2 + b2 = 1
4Δ2 ·

The Schrödinger equation with the diagonalized Hamiltonian is

(− d2

dr2 + λ+ 0

0 − d2

dr2 + λ−

)(
ψ1

ψ2

)
= E

(
ψ1

ψ2

)
(5.8)

The solutions to this equation can be written

ψ1(r) = c1 exp(−k′r), (5.9)

ψ2(r) = sin(kr) + tan(δ0) cos(kr), (5.10)

with k′ =
√

λ+ − E and k =
√|λ−| + E. The phase shift δ0 is not determ-

ined, neither is the constant c1.
The wave functions ψ1(r) and ψ2(r) are linear combinations of the singlet

and triplet wave functions ψS(r) and ψT (r). Due to the singlet-triplet inter-
action, the total spin quantum number is not a good quantum number. This
conclusion holds even for real diatomic systems: In highly excited molecular
states, in which the internuclear separations is large enough for the sing-
let and triplet potentials to be identical, the total electronic spin quantum
number is not a good quantum number .

5.1.2 Short range solution

After having obtained the long-range solution we look for the solution to the
short-range Schrödinger equation.

We can rewrite the two coupled differential equations in Eq. (5.3) as four
coupled first order equations, by introducing the first derivative of ψT and
ψS as φT and φS respectively,

d

dr

⎛
⎜⎜⎝

ψ1

ψ2

φ1

φ2

⎞
⎟⎟⎠ =

(
0 1

QT V Q 0

)⎛⎜⎜⎝
ψ1

ψ2

φ1

φ2

⎞
⎟⎟⎠ . (5.11)

To simplify the notation we have defined 1 ≡ ( 1 0
0 1 ) and 0 ≡ ( 0 0

0 0 ).
In diatomic molecules the coupling between the singlet and triplet spin

states is much smaller than both |VS| and |VT | at small internuclear separa-
tions (corresponding to r < a in the toy model). As r increases, the singlet-
triplet coupling becomes more important as |VS| and |VT | rapidly approach
zero. The energy shift due to the interaction with the external magnetic field
is much less than both |VS| and |VT | (but may be of the same order as Δ).
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We adopt these relations among the parameters in our toy model and assume
that

{|VS|, |VT |} � {|Δ|, |B|}, r < a. (5.12)

It can then be shown that the matrix in Eq. (5.11) has four purely
imaginary eigenvalues τ = iα, ρ = iσ, τ ∗ = −iα and ρ∗ = −iσ, with
corresponding eigenvectors v = u + iw,y = x + iz,v∗ = u − iw and y∗ =
x − iz. Hence, the solutions to Eq. (5.11) can be written

Ψ(r) =

⎛
⎜⎜⎝

ψ1(r)
ψ2(r)
φ1(r)
φ2(r)

⎞
⎟⎟⎠ =

c2[sin(αr)u + cos(αr)w] + c3[cos(αr)u− sin(αr)w] + c4[sin(σr)x + cos(σr)z]

+ c5[cos(σr)x − sin(σr)z]. (5.13)

with c2, c3, c4 and c5 as unknown constants to be determined from the bound-
ary conditions, and from the continuity requirements on the wave function.
The boundary conditions at r = 0 require that ψ1(0) = 0 and ψ2(0) = 0,
whereas the continuity requirements can be expressed

Ψ(a) =

⎛
⎜⎜⎝

c1 exp(−k′a)
sin(ka) + tan(δ0) cos(ka)

−c1k
′ exp(−k′a)

k cos(ka) − k tan(δ0) sin(ka)

⎞
⎟⎟⎠ . (5.14)

The unknown coefficients, including tan δ0 which is the phase shift, are ob-
tained from the system of equations:⎛
⎜⎜⎜⎜⎜⎜⎝

− exp(−k′a) 0 su1 + cw1 cu1 − sw1 sx1 + cz1 cx1 − sz1

0 −c su2 + cw2 cu2 − sw2 sx2 + cz2 cx2 − sz2

k′ exp(−k′a) 0 su3 + cw3 cu3 − sw3 sx3 + cz3 cx3 − sz3

0 ks su4 + cw4 cu4 − sw4 sx4 + cz4 cx4 − sz4

0 0 cw1 cu1 cz1 cx1

0 0 cw2 cu2 cz2 cx2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

c1

tan δ0

c2

c3

c4

c5

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
−s
0

−kc
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(5.15)

We have introduced the shorthand notation s = sin(ka) and c = cos(ka) in
Eq. (5.15). From the solution of Eq. (5.15) we obtain the scattering length
α from the relation

α = − lim
k→0

tan δ0

k
. (5.16)
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Figure 5.2: Scattering length α vs. external magnetic field strength B.
The figure shows a Feshbach resonance in the toy model at the magnetic
field strength � 0.06. The different colors correspond to different coupling
strengths Δ (see Eq. (5.3)). The coupling strengths are Δ = 0.13 (green),
Δ = 0.11 (yellow), Δ = 0.009 (red), Δ = 0.007 (blue) and Δ = 0.005 (black).

5.1.3 A Feshbach resonance appears

We choose the potential depths V1 = 10 and V2 = 3, and set the coupling
constant Δ � 0.01. For simplicity we assume that a = 1. The singlet and
triplet potentials in zero magnetic field (B = 0) are shown in Fig. 5.1. We
vary the magnetic field strength, included in Eq. (5.3) with the parameter
B, between 0 and 0.1. Equation (5.15) is then solved to obtain the phase
shift δ0, and the scattering length α follows from Eq. (5.16). The scattering
length as a function of magnetic field strength B is shown in Fig. 5.2. The
different colors are used to indicate different coupling strengths Δ between
the singlet and triplet states. A strong coupling implies a broad Feshbach
resonance and vice verse.

The scattering length is seen to diverge to ±∞ at a particular magnetic
field strength. This is the signature of a Feshbach resonance in the system.
By applying a magnetic field the scattering length can be “tuned” to take,
in principle, any value between ±∞. In chapter three we commented that
the interactions between the atoms were, at least in part, controlled by the
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scattering length. This implies that a Feshbach resonance enables the exper-
imentalists to control the atomic interactions in an ultracold environment.

An interesting question to answer is this: What happens with the system
at the magnetic field strength where the Feshbach resonance appears? To
answer this we compute the bound state(s) in the triplet potential. Note that
the singlet state does not interact with the magnetic field at all, whereas the
triplet state does.

Consider first the situation at B = 0, shown schematically in Fig. 5.3

�

r

V (r)

−V2

−V1

�r = a

Figure 5.3: The singlet and triplet potentials as well as a bound state in the
triplet potential (dashed line). The magnetic field is turned off.

Calculations show that the level in the triplet potential, indicated in
Fig. (5.3)) with a dashed line, is bound by approximately 0.062. When
the magnetic field strength is increased, the energies of the bound singlet
levels are not affected, whereas the energies of the triplet levels are lifted. It
turns out that the triplet potential only supports one energy level. At the
magnetic field strength corresponding to the Feshbach resonance, the energy
of this level is zero (although bound), as illustrated in Fig. 5.4.

To summarize: The Feshbach resonance occurs when the energy of the
bound triplet state corresponds the zero energy asymptote of the singlet
potential. In addition, for the Feshbach resonance to appear the singlet and
triplet states must be coupled.
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Figure 5.4: A sketch of the effective potentials (VS and VT + B) at the
magnetic field strength where the Feshbach resonance is found. The bound
triplet level, indicated with a dashed line in Fig. 5.3, is in resonance with
the continuum of states (E > 0) for the singlet potential.

5.2 Feshbach resonances in diatomic alkali mo-

lecules

The system of two ground state alkali atoms of the same species, corres-
ponds to two electronic molecular states, as shown in Fig. 5.5. There is
a strong analogy between the occurrences of Feshbach resonances in atom-
atom collisions and the toy model previously studied. In diatomic systems
the Feshbach resonances occur when the energy of a bound molecular state
coincides with that of two-colliding atoms.

In this context the diatomic Hamiltonian may be written

H = − 1

2μ
∇2 + Hev + Hhf + HZ. (5.17)

The first term is the kinetic energy of the relative motion of the two nuclei.
The second term is the electronic and vibrational contribution, whereas the
Hamiltonian Hhf includes the hyperfine interaction. The last term is the
Zeeman Hamiltonian, non-zero in a magnetic field.

The hyperfine interaction is very important as it couples the singlet and
triplet states in the homonuclear diatomic system. The interaction with
external magnetic fields is due to the Zeeman Hamiltonian, which does not
interact with the singlet states. However, due to the hyperfine interaction,
the singlet and triplet states are coupled and the Zeeman interaction affects
all states.
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Figure 5.5: The triplet 3Σ+
u (dashed line) and singlet 1Σ+

g (solid line) poten-
tials corresponding to two ground state atoms.

5.2.1 Our work

Papers II and III are relevant to the study of Feshbach resonances. With
the Hamiltonian in Eq. (5.17), we solved the close-coupled equations, now
written in the form

− 1

2μ

d2

dr2
ψa(r) +

l(l + 1)

2μr2
ψa(r) +

∑
b

[V ev
ab + V hf

ab + V Z
ab ]ψb(r) = Eψa(r).

(5.18)

The reduced mass is denoted with μ and

V ev
ab = 〈φa(r,R)|Hev|φb(r,R)〉, (5.19)

V hf
ab = 〈φa(r,R)|Hhf|φb(r,R)〉, (5.20)

V Z
ab = 〈φa(r,R)|HZ|φb(r,R)〉. (5.21)

The notation introduced in chapter 3 is used in these equations.
We computed the solutions to the close-coupled equations (5.18), and cal-

culated the magnetic field positions of Feshbach resonances, similar (although
far more complicated) to the calculations we did for the toy model.

An immediate question is: How accurate can the magnetic field positions
of Feshbach resonances be determined by this kind of ab initio calculations?
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We demonstrate in both papers II and III that the accuracy is very good,
provided that the interatomic potentials are highly accurate, including the
long-range Van der Waals coefficients.

There are several difficulties involved in solving the close-coupled equa-
tions (5.18). Two atoms infinitely well separated are best described in a
two-atom basis, with states similar to

|φ〉 = |qF1MF1
F2MF2

〉 (5.22)

where q denotes all quantum numbers besides the total angular momentum
quantum numbers Fi, and their projections MFi

. As the two atoms approach
each other, they interact and behaves as a diatomic molecule when the separ-
ation is small. At this point it is very convenient to write the matrix elements
in Eqs. (5.19) - (5.21) in terms of molecular basis states, exemplified by the
Hund’s case (a) states

|φ〉 = |qΛSΣIΩIFMF 〉. (5.23)

Here q denotes additional quantum numbers, Λ is the projection of the elec-
tronic orbital angular momentum on the internuclear axis, S is the total
electronic spin quantum number and Σ is the projection on the internuclear
axis, similarly with I and ΩI for the nuclear spin, and finally, F is the total
angular momentum quantum number for the complete system with MF as
the projection onto the space-fixed z-axis. Relating the two-atom basis states
in Eq. (5.22) to the Hund’s case basis set in Eq. (5.23) is not trivial. In
particular this is due to the Pauli exclusion principle for identical nuclei.

Most studies do not use molecular basis states and completely ignore the
molecular hyperfine interaction. One of the questions we wanted to provide
an answer to was then: Under what conditions may the molecular hyperfine
interaction be neglected, and is it possible to use molecular basis states to
considerably simplify the calculations? These questions are addressed in
papers II and III included in the present work, and we will not reiterate the
arguments here.

5.3 Applications of Feshbach resonances

To communicate the importance of the Feshbach resonances in atomic- and
molecular physics today we end this thesis with a few examples of how Fesh-
bach resonances are utilized in experiments world wide.
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5.3.1 Molecular BEC

In 2003, eight years after the first atomic BEC was observed (see page one
of the first chapter), D. Jin et al. [56] wrote in Nature:

...Here we report the direct observation of a molecular Bose-
Einstein condensate created solely by adjusting the interaction
strength in an ultracold Fermi gas of atoms....

At the same time, several other groups observed molecular Bose-Einstein
condensates as well [57, 58].

Ultracold molecules may be produced by sweeping the magnetic field
strength across a Feshbach resonance (see Fig. 5.6), trapping the initial
pairs of atoms in highly excited molecular levels. The spatial wave functions
of these molecules extend to extremely large internuclear separations.
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Figure 5.6: Two free atoms are bound in a molecular level of the by a mag-
netic sweep through a Feshbach resonance at B = B0. The red curve shows
the energy of a bound molecular state, whereas the blue curve is the energy
of two free atoms.

The conversion of atoms to molecules can be very efficient under the right
conditions. This depends in particular on the magnetic sweep velocity, i.e dB

dt
.

If the sweep velocity is slow the conversion from atoms to molecules occurs
without any increase in temperature. The lifetimes of the highly excited
molecular levels depend on the spin statistic. Bosonic species have short
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lifetimes, of the order of milliseconds, whereas fermionic species can have
lifetimes of the order of seconds.

The highly excited molecules decay through collisions with free atoms.
In bosonic species an atom and a molecule composed of identical atoms
are allowed to collide. However, in fermionic species, a fermion may try
to collide with a molecule, only to find itself unsuccessful as the fermion is
identical to one of the atoms in the molecule. To create diatomic molecules
of fermionic atomic species, the two atoms need to be in different states, as
s-wave collisions between identical fermions are not permitted by the Pauli
exclusion principle.

Homonuclear diatomic molecules have been created from Feshbach reson-
ances for the species Cs[59], Na[60], 87Rb[61], 6Li[62], 40K[63], among others.
Heteronuclear diatomic molecules have also been created, e.g. 6Li40K[64],85Rb87Rb[65]
and 41K87Rb[66].

5.3.2 BCS-BEC crossover

The abbreviation BCS stands for Bardeen, Cooper and Schrieffer who pro-
posed the first microscopic theory for superconductivity in 1957 [67]. They
later received the Nobel prize in physics for their achievements.

The first definite proof of superfluidity in a system of fermionic atoms
came in 2005, when quantized vortices were observed [68]. Somewhat sim-
plified we say that this superfluid is at least approximately described by the
BCS theory. The topic of this section is the remarkable possibility of a cros-
sover from a BEC of diatomic molecules to a BCS superfluid of loosely bound
atom pairs. We aim to give a short qualitative introduction to the topic.

Several identical fermions can not occupy the same state at the same time,
and as a consequence, when T = 0, N identical fermions will occupy the N
lowest quantum states. By lowest we mean lowest energy. This collection
of fermions is sometimes referred to as the Fermi sea, and the energy of the
fermions in the most energetic quantum states is called the Fermi energy and
is denoted EF .

Consider two fermions outside the Fermi sea. Their corresponding wave
vectors kF are equal in magnitude but point in opposite directions. The wave

vector kF is defined by the relation EF =
k2

F

2m
. This situation was considered

by Cooper [69], who found that the energy of the two fermions is less than
2EF for an arbitrary weak attractive interaction between the fermions. This
somewhat strange effect is due to the Pauli exclusion principle, and is called
Cooper pairing.

However, one should also take into account that the Fermi sea contributes
to the Cooper pairing. In fact, Cooper pairing is expected to continue until
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the Fermi sea is sufficiently disturbed so that equilibrium is reached. The
BCS theory offers an approximate solution to this challenging many-body
problem and describes loosely connected fermion pairs. The different pairs
overlap spatially in contrast to a diatomic molecule.

Consider a BEC of diatomic molecules composed of fermions in different
spin states. A positive scattering length α is to be associated with a stable
condensate. Using a Feshbach resonance the scattering length, and hence
the interactions between the fermions, can be adjusted from repulsive to
attractive interactions via a region where the scattering length diverges and
the interactions are determined by other quantities. At the “attractive side”
of the Feshbach resonance, Cooper pairing can occur (see Fig. 5.7). In

a) b) c)

Figure 5.7: Sketch showing the transition from BEC to BCS. a) Pairs of
fermions are strongly interacting and has formed composite bosons in a BEC.
The scattering length is positive and the interactions are repulsive. b) This
is the intermediate region, the “crossover” between a BEC and BCS state.
The scattering length |α| is large. The interactions are determined by a
different parameter. c) Cooper paring of fermionic atoms, the scattering
length is moderate and negative, and the interactions are weak and attractive.
Different colors are used to indicate fermions in different spin states.

particular the crossover regime has attracted considerable interest in recent
years. The gas is both dilute and strongly interacting. An exact solution to
the many-body problem in this regime does not exist at present. Therefore,
numerical techniques such as quantum Monte-Carlo simulations are used to
investigate the physics in this regime.

5.4 Further reading

The review article by Köhler, Góral and Julienne [70] was used in prepar-
ing the section on cold molecule formation with Feshbach resonances. The
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presentation of the BCS - BEC crossover is based on the qualitative descrip-
tion given by Cindy Regal in her thesis [71], together with the review article
by Giorgini, Pitaevskii and Stringari [72]. Both these references contain vast
amounts of information and provide far more advanced treatments.





Summary

We provide here a brief summary of the thesis and a few thoughts on how
future projects may extend upon the present work.

In this thesis we have seen how the properties of collisions are central both
to the atomic and molecular cooling methods, as well as to the dynamics
of the cold and ultracold gases. We have seen why elastic collisions are
often referred to as good collisions whereas inelastic collisions are referred
to as bad collisions. We have encountered cold collisions between different
types of particles, i.e. atom-atom collisions, atom-molecule collisions and
molecule-molecule collisions. Properties of the latter were not calculated,
not because these are not relevant, but because of the complexity involved
in such calculations.

Buffer-gas cooling was presented as a completely general cooling method
for diatomic molecules, although paramagnetic molecules are preferred as
these may be magnetically trapped. In paper I we obtained cross-sections
for elastic and inelastic collisions relevant for buffer-gas cooling experiments.
Finally we simulated the translational and rotational cooling processes that
occur in a buffer-gas cell. There are several possible extensions to this work.
For one, the magnetic field should be introduced and its effect on the collisions
investigated. Secondly, can we obtain potential energy surfaces of higher
accuracy, and what is there to gain by doing this? Finally, how can the
vibrational transitions be included?

The Feshbach resonance, introduced in chapter 5, is an important, if not
invaluable tool in cold atomic and molecular physics today. Many of its prop-
erties were introduced through a toy model with only two channels. However,
atom-atom collisions are far more complex, many states need to be included
along with an accurate description of the important interactions between
them. We have obtained the magnetic field positions of Feshbach resonances
in several atomic species (papers II and III), and investigated the effect of
the molecular hyperfine structure (paper II) on these. Transition rates for
selected processes in atom-atom collisions have been computed (paper III).

We obtained these results by solving the full set of close-coupled equa-

71
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tions. The construction of the model and the results provided us with valu-
able insight. To solve the close-coupled equations requires a rather involved
numerical calculation. We present two proposals for future extensions of
papers II and III

Firstly, is it possible to simplify the calculations by using a small number
of channels and an effective Hamiltonian? Such models are available, and
it would be interesting to compare the results obtained from them to the
results obtained from the full close-coupled model we have used.

Secondly, as we have seen, fermions in identical spin states do not col-
lide through s-wave collisions. However, collisions through p-waves occur,
although suppressed at low temperatures. In many respects the p-wave scat-
tering volume replaces the scattering length as the important parameter,
describing the properties of such collisions. But to what extent is this ana-
logy meaningful? For instance, how does the scattering volume depend on
the position of the bound states in the potential?

In paper IV we consider atom interferometry based on the existence of
the de-Broglie matter waves. Collisions between atoms in a gas cell and the
atomic or molecular beam in an interferometer are studied. The gas cell is
located on one of the paths of the interferometer and collisions between the
beam and the gas induces a measurable phase shift. In our calculations we
assumed a target gas of cold inert atoms, and computed quantities directly
observable in matter-wave interferometry experiments. Compared to exper-
iments, the results may provide valuable information about the interatomic
interactions, and the accuracy of the Born-Oppenheimer potentials. Pos-
sible extensions to this project would preferably be determined in close col-
laboration with experimentalists, to make comparison between theory and
experiment feasible.
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gases for matter waves: Effect of the motion of the gas particles on the
calculation of the index. Phys. Rev. A, 77(1):013621, Jan 2008.

[53] R. B. Bernstein. Semiclassical analysis of the extrema in the velocity
dependence of total elastic-scattering cross sections: Relation to the
bound states. J. Chem. Phys., 38:2599, 1963.

[54] Dimitri Michael Egorov. Buffer-Gas Cooling of Diatomic Molecules.
PhD thesis, Harvard University, Cambridge, Massachusetts, 2004.

[55] Alexander D. Cronin, Jörg Schmiedmayer, and David E. Pritchard. Op-
tics and interferometry with atoms and molecules. Rev. Mod. Phys.,
81(3):1051–1129, Jul 2009.

[56] Markus Greiner, Cindy A. Regal, and Deborah S Jin. Emergence of a
molecular bose-einstein condensate from a fermi gas. Nature, 426:537,
2003.

[57] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin,
J. H. Denschlag, and R. Grimm. unknown. unknown, 302:2101, 2003.



78 BIBLIOGRAPHY

[58] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta,
Z. Hadzibabic, and W. Ketterle. Observation of bose-einstein condens-
ation of molecules. Phys. Rev. Lett., 91(25):250401, Dec 2003.

[59] Jens Herbig, Tobias Kraemer, Michael Mark, Tino Weber, Cheng Chin,
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Collision cross sections are calculated for the three systems O2-He, Na2-Na and K2-K at cold and ultracold
temperatures. We discuss their relevance for cold molecule formation by buffer-gas cooling and by other
cooling methods where collisions between molecules and atoms are important, e.g photoassociation. The
molecule is treated as a rigid rotator in the electronic and vibrational ground state. We have calculated ab initio
the potential energy surfaces for the three systems with special emphasis on the long range potential which is
very important at low energies. With relevance to buffer gas cooling, we have also studied the thermalization
process between O2 molecules and He atoms as determined by the calculated cross sections.

DOI: 10.1103/PhysRevA.77.032721 PACS number�s�: 34.20.�b, 31.50.Bc, 34.50.�s

I. INTRODUCTION

Ultracold molecules are now regularly produced in many
laboratories around the world. The cooling of molecules re-
quires some rather sophisticated techniques, due to the fact
that molecules cannot be cooled to very low temperatures by
the methods applicable to atoms, e.g., laser cooling. Laser
cooling is efficient only for two-level systems, whereas mol-
ecules are in general multilevel systems �1�.

New methods are therefore needed to produce ultracold
molecules. One approach that works in particular for the al-
kalis is to start from samples of ultracold atoms. With
samples of ultracold atoms available several procedures have
in fact been able to produce even molecular Bose-Einstein
condensates, which were first observed in 2003 �2–4�.

Feshbach resonances �5� have proved to be a valuable tool
in ultracold atomic physics, indeed, also in ultracold mol-
ecule formation. In fact the first molecular Bose-Einstein
condensates were created from ultracold atoms, converted to
molecules by utilizing Feshbach resonances. Unfortunately
molecules formed from Feshbach resonances will generally
have short lifetimes, and they will normally be formed in
highly excited vibrational levels, i.e., be vibrationally very
hot.

Different one- or two-color photoassociation �6,7� proce-
dures have also been widely used to create molecules in the
ultracold ��1 �K� temperature range. Molecules formed by
use of photoassociation techniques will also generally end up
in high vibrational states, but the end products will in this
case depend very much on the atomic species and the de-
tailed photoassociation scheme. In addition, use of the above
mentioned methods requires detailed spectroscopic informa-
tion that may not be available in an accurate manner.

A different and very general cooling method is buffer-gas
cooling, first proposed by Stwalley �8�. The method is appli-
cable to atoms as well as molecules. Buffer-gas cooling re-
quires no knowledge of spectroscopic details; the only re-
quirement is of course that reactive collisions with the buffer
gas are avoided. Any inert gas may be used as a buffer gas,
although 3He is preferred due to its high vapor pressure at

low temperatures. The initially hot molecules disperse their
energy onto the buffer-gas atoms and are rethermalized. Un-
fortunately, buffer-gas cooling does not lead to temperatures
that are low enough to enable Bose-Einstein condensates.
However, by combining buffer-gas cooling with magnetic
trapping �9�, molecules may be evaporatively cooled to ul-
tracold temperatures.

For buffer-gas cooling and subsequent evaporative cool-
ing to be effective, it is of paramount importance that the
relevant cross sections are favorable. Buffer-gas cooling will
be most effective when elastic cross sections are large. In-
elastic collisions �state changing collisions� are often referred
to as bad collisions in this context. This is not necessarily
true, e.g., collisions where the rotational quantum number is
reduced will help to cool the rotational degree of freedom.
However, inelastic collisions are often associated with trap
loss. Collisions that change the Zeeman level from high-field
seeking to low-field seeking will certainly cause trap loss for
magnetic trapping.

In the present work we have investigated a particular type
of cold collisions, namely cold spin-changing collisions be-
tween nonpolar diatomic molecules and atoms. Throughout
this paper we assume that the molecules are in their ground
electronic state and also in their lowest vibrational level
�v=0�.

Collisions involving molecules represent an extra chal-
lenge, as the atom-molecule interaction is certainly more
complex than that for atom-atom collisions. In addition, even
for cold collisions molecules will have a large variety of
available final states �open channels�.

Whereas interatomic potentials are often known or can be
readily calculated with high accuracy, potential energy sur-
faces �PES� related to molecular interactions are harder to
obtain and might be less accurate. However, the low tem-
perature allows for simplifications. It will, for instance, gen-
erally be sufficient to treat the molecule as a rigid rotator
with the internuclear separation fixed at the equilibrium dis-
tance.

Both atomic- and molecular cross sections are known to
be very sensitive to the long-range potential. Often the long-
range potential is simply written as V�r�=−C6 /r6 with C6
determined from fitting V�r� to the long range part of the
calculated PES. In this study we adopt a different approach
and calculate what we believe to be very accurate long-range*marius.lysebo@fys.uio.no
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potentials based on the atomic and molecular polarizabilities
Studies similar to the present one on cold atom–diatomic

molecule collisions have been presented in several other re-
cent works. Bohn �10� has previously calculated selected
cross sections for the O2-He interaction with different O2
isotopes �10�. Ultracold collisions between Na2�3�u

+�v=1��
and Na have also been studied �11�, as well as collisions
involving the same electronic and vibrational states for the
systems Li2-Li �12� and K2-K �13�.

II. SCATTERING CALCULATIONS

A. Obtaining the S matrix

Computation of cross sections require solving a large set
of coupled differential equations. The method used to solve
these equations in the present study has been described else-
where by several authors �10,14,15�. Here we only provide
an overview of the method, starting with the Hamiltonian for
the whole system �molecule+atom�

H = −
�2

2�
�2 + Hint + V�r,�� . �1�

r and � are defined according to Fig. 1 and Hint is the internal
Hamiltonian for both systems including the molecular fine
structure. The total wave function with internal quantum
numbers collectively labeled p, and orbital angular momen-
tum L with projection M may be written

�pLM =
1

r
	pLM

J �r�	p�r1�YLM���,
�� , �2�

with 	p�r1� as eigenstates of Hint. �� ,
� is the orientation of
a vector from the molecular center of mass to the atom re-
ferred to in the laboratory system. The N coupled differential
equations are obtained from the Schrödinger equation and
may be written �15�

� d2

dr2 + kp
2 −

L�L + 1�
r2 �	p

J�r�

= �
p�

	pL;J

2�

�2 V�r,��
p�L�;J�	p�
J . �3�

In Eq. �3� p and p� are internal states for both molecule and
atom and 	p

J�r� is the radial wave function for total angular
momentum J. kp is defined as

kp
2 �

2�

�2 �E − Ep� , �4�

with � as the reduced mass and Ep as the asymptotic energy
in a channel with internal quantum numbers p. The number
of channels involved in a calculation can be large. All rel-
evant internal molecular states must be included, along with
an adequate number of partial waves to ensure convergence
for the given energy. Although we include many channels it
is important to remember that we do not allow for reactive
scattering; thus the molecular bonds cannot be broken during
a collision. Reactive scattering should be very limited at
most of the temperatures we investigate.

The total angular momentum quantum number J is de-
fined as

J = N + S + s + L , �5�

where we have assumed that the atom is without angular
momentum �s state�. N is the molecular angular momentum,
S is the molecular spin, whereas s is the atomic spin. L is the
partial wave angular momentum representing rotation of
molecule�atom about their center of mass. We also intro-
duce Jm=N+S as the total molecular angular momentum,
and J1=s+L.

For a given collision, without a magnetic field, the total
angular momentum J is conserved. However, we do allow N
and L �and thereby Jm and J1� to change in a collision.

To calculate the matrix elements 	pL ;J
U
p�L� ;J� the
first step is to express the anisotropic potential V�r ,�� in
terms of Legendre polynomials Pl�cos ��

V�r,�� = �
l

vl�r�Pl�cos���� . �6�

Generally the number of Legendre polynomials included
in the sum in Eq. �6� will be large when the potential is
strongly anisotropic. With Eq. �6� we may write

	pL;J
U
p�L�;J� =
2�

�2 �
l

vl�r�	pL;J
Pl�cos ��
p�L�;J� .

�7�

Equation �7� may be further simplified by use of the addition
theorem for renormalized spherical harmonics

Pl�cos �� = Cl�R� · Cl�R�� . �8�

In Eq. �8� R= ��m ,
m� is the direction of the molecular axis
referred to the laboratory system. With this definition we
have �=�m−��.

Next we use the Wigner-Eckart theorem to obtain

FIG. 1. Definition of r and �. The diatomic molecule is indi-
cated by the solid circles.
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	pL;J
Pl�cos ��
p�L�;J�

= �Jm��J1��N��L��Jm� ��J1���N���L��

��− 1�J−S−s+3J2+J2�+2J1+2J1�+N+N�+L+L�
Jm Jm� l

J1� J1 J�
�
 N N� l

Jm� Jm S
�
 L L� l

J1� J1 s
�� l N� N

0 0 0
�� l L� L

0 0 0
� .

�9�

To ease the notation we have defined �Jm����2Jm+1� and
so on. Upon deriving Eq. �9� we have used Eqs. �4.17� and
�5.13� of �16�. In Eq. �9� �. . .� denotes 6j symbols and �. . .�
are 3j symbols.

To define the scattering matrix we construct a superposi-
tion of the wave functions 	p�r� which in general defines the
electronic, vibrational, and rotational states of the two collid-
ing systems. Before and after a collision the whole system
must be represented by the superposition

��r1� = �
p

ap	p�r1� , �10�

where 
ap
2 represents the probability of finding the system in
eigenstate 	p�r1�. Clearly the coefficients a define the state
completely for a finite set of quantum numbers p. We use the
vector A= �ap1

,ap2
, . . . ,apn

�T to formally define the scattering
matrix by the equation

Af = SAi. �11�

Ai and Af are the asymptotic states of the system before and
after the collision, respectively. This important scattering
matrix �S matrix� is obtained numerically with the log de-
rivative method first introduced by Johnsen �17�. We have
implemented this algorithm and used a local cluster of 30
1.00 GHz Linux PCs to do the actual calculations; this was
achieved with a trivial parallelization where each machine
gets assigned a specific energy.

B. Calculation of cross sections

The vast majority of the total CPU time needed for scat-
tering calculations is spent solving the coupled differential
equations to obtain the S matrix. Once the S matrix is found,
the state to state cross sections can be calculated as a sum
over the relevant S-matrix elements.

The asymptotic solution 	pLM outside the range of the
potential V�r ,�� has to satisfy the equation

−
�2

2�

 d2

dr2 −
L�L + 1�

r2 �	pLM
J �r� = �E − Ep�	pLM

J �r� .

�12�

Thus 	pLM
J �r� can be written

	pLM
J �r� =

1

kp
�ApLMe−i�kpr−L
/2� + BpLMei�kpr−L
/2�� . �13�

The relevant coefficients ApLM and BpLM are found out of a
comparison with the total wave function for a plane incom-

ing wave with wave vector kp in the direction given by
��k ,
k�

eikp·R�	p =
2


kpr
�
LM

�iLYLM
� ��k,
k�

��ei�kpr−L
/2� − e−i�kpr−L
/2��YLM���,
���	p.

�14�

It is found that ApLM =−BpLM =−�2
 / ikp�iLYLM
� ��k ,
k�. From

the definition of the S-matrix elements we may write

Bp�L�M�=SpLM
p�L�M�ApLM. We use this to construct a total wave

function with an incoming plane wave in internal state p and
an outgoing spherical wave in a superposition of different
internal states p�

�p =
2


irkp
1/2��

LM

iLYLM
� ��k,
k�kp

−1/2e−i�kpr−L
/2�YLM���,
��	p

+ �
p�L�M�

iL�YLM
� ��k,
k�kp�

−1/2SpLM
p�L�M�

�ei�kp�r−L�
/2�YL�M����,
��	p�� . �15�

By comparison with the well known total wave function for
large r

�p = 	peikp·r + �
p�

fp�
eikp�r

r
	p�, �16�

it is possible to identify the scattering amplitude fp���� ,
��
for scattering in direction ��� ,
��,

fp����,
�� =
2


i�kpkp��
1/2�

LM

iLYLM
� ��k,
k� �

L�M�

e−iL
/2

��SpLM
p�L�M� − �pp��LL��MM��YL�M����,
�� .

�17�

Closely related to the scattering amplitude is the differential
cross section, which may be calculated from the connection
d� /d�= �kp� /kp�
fp�


2. In addition, we average over the inci-
dent directions ��k ,
k� to find that the cross section is given
by the equation

�p→p� =



kp
2 �

LML�M�


SpLM
p�L�M� − �pp��LL��MM�


2. �18�

III. POTENTIAL ENERGY SURFACES

A. Short range potential

We have investigated the three systems O2-He, Na2-Na,
and K2-K. For all systems we have needed to calculate po-
tential energy surfaces �PES�. For small internuclear separa-
tions �r�20 a.u.� we have used the quantum chemistry
package GAMESS �18�. In these calculations we started with
a UHF self-consistent field molecular wave functions for all
the systems. In particular, for the O2-He complex we need
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the UHF wave function due to the Hartee-Fock instability of
O2 as reported previously by van Lenthe and van Duijneveldt
�19�. The Hartree-Fock wave function is used as a starting
point for a more accurate treatment based on the Møller-
Plesset perturbation theory.

We have calculated second order energy corrections with
MP2 �20�. The basis sets used are reported in Table I
�21–24�.

No frozen core orbitals have been kept in our MP2 calcu-
lations. To obtain the internuclear interactions we have used
the supermolecular approach �25�. This implies that for all
geometries three calculations are needed. First we calculate
the MP2 energy for the total system consisting of atom
+molecule; thereafter, we perform calculations with the mol-
ecule together with a ghost atom.

A ghost atom does not have a positively charged nucleus
but the atomic orbitals are kept. Here we use the counter-
poise correction method �26� with ghost atoms to reduce the
basis set superposition error. For each geometry this involves
also a calculation of the MP2 energy with the atom and the
ghost molecule. Finally, to obtain the PES, the energies of
the two calculations involving ghost basis sets are added and
the result is subtracted from the energy of the whole com-
plex. Generally for two atoms or molecules A and B at ge-
ometry G we calculate

VAB�G� = EAB�G� − EA�G� − EB�G� , �19�

with EAB as the energy obtained for both systems A and B,
whereas EA and EB are the respective energies obtained with
only system A or system B. For all calculations the basis sets
are the same as for the full calculation AB.

B. Long range potentials

At long distances the interaction potential between an
atom and a nonpolar diatomic molecule takes the approxi-
mate form �cf. Fig. 1�:

V�r,�� = −
1

r6 �C6
�0� + C6

�2�P2�cos ���

−
1

r8 �C8
�0� + C8

�2�P2�cos �� + C8
�4�P4�cos ��� .

�20�

The dispersion coefficients �Van der Waals coefficients� C6
�0�,

C6
�2�, C8

�0�, C8
�2�, and C8

�4� may be expressed in terms of the
polarizabilities of the atom and the molecule. The lowest-
order coefficients C6

�0� and C6
�2� are determined by the dipole

polarizabilities, whereas quadrupole and octupole polariz-
abilities are needed to determine the coefficients C8

�0�, C8
�2�,

and C8
�4�.

The frequency dependent �dynamic� dipole polarizability
for an atom is given by the expression

�1
A��� = − �

k��n�


		k
�i=1

N
zi
	n�
2

En − Ek � �
, �21�

where Ek and 
	k� respectively denote eigenvalues and eigen-
states of the atomic system with N electrons. The double sign
in the denominator indicates a sum of two terms, one with +
and the other with −. For a diatomic molecule one has to
consider the polarizability �����=�zz along the molecular
axis and the polarizability �����=�xx���=�yy��� perpen-
dicular to the axis. The expression for ����� is identical to
that of Eq. �21�, whereas ����� is obtained from Eq. �21� by
replacing zi with xi or yi. Finally, the polarizabilities that will
be needed for a diatomic molecule are the average polariz-
ability

�̄��� =
1

3
�2����� + ������ �22�

and the anisotropy

����� = ����� − ����� . �23�

Unfortunately, Eq. �21� is not very useful to compute dy-
namic polarizabilities, as singular frequencies will be en-
countered at the excited energies Ek. However, it turns out
that the dispersion coefficients are actually determined by the
polarizabilities at imaginary frequencies i�. At imaginary
frequencies there are no singularities and the polarizabilities
are real positive numbers that decrease monotonically from
their maximum at �=0. Similar properties are also found for
the quadrupole and octupole polarizabilities at imaginary fre-
quencies.

A method for accurate computation of dynamic polariz-
abilities at imaginary frequencies has been presented in a
previous work by one of the present authors �27�. Diagram-
matic many-body theory is used, with complete inclusion of
all diagrams representing up to two interactions with the
electronic repulsion term 1 /r12. This means a substantial in-
clusion of electron correlation and, with reference to Eq.
�21�, that the polarizabilities are expected to be computed
with very accurate eigenvalues and eigenstates. The same
technique also applies to the quadrupole and octupole polar-
izabilities; the dipole components merely have to be replaced
by the relevant quadrupole or octupole moments.

The expressions for the dispersion coefficients C6
�0� and

C6
�2� are fairly simple �28,29�:

C6
�0� =

3�



�

0

�

�1
A�i���̄�i��d� , �24�

TABLE I. Basis sets used with GAMESS to calculate the dif-
ferent short range potential energy surfaces. Similar types of Dun-
ning’s correlation consistent basis sets are used for O2-He and
Na2-Na, whereas the TZV �triple valence� basis set is used for
K2-K.

System Basis set used for atoms
in the molecule

Basis set for
the lone atom

Basis
ref.

O2-He aug-cc-pCVTZ aug-cc-pCVTZ �21–23�
Na2-Na cc-pVTZ cc-pVTZ �23�
Ka2-Ka TZV TZV �24�
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C6
�2� =

�



�

0

�

�1
A�i�����i��d� . �25�

The expressions for the higher-order dispersion coefficients
C8

�0�, C8
�2�, and C8

�4� are rather complex and are not reproduced
here. Complete expressions can be found in the papers by
Bishop and Pipin �28� and Hohm �29�, and references
therein. Table II gives computed dipole polarizabilities at
some selected imaginary frequencies for the diatomic mol-
ecules O2 and Na2. The computed dispersion coefficients are
shown in Table III. The results presented are for the systems
He-O2, Na-Na2, and K-K2, which are the systems of current
interest.

IV. O2-He SYSTEM

In the present work we consider the 3He isotope and cal-
culate cross sections for collisions with 16O2 molecules. The
O2 molecule is treated as a rigid rotator with an internuclear
separation of re=1.2165 Å. We discuss how the calculated
cross sections are relevant for both buffer-gas cooling of O2
molecules as well as for magnetic trapping of O2 molecules
with He atoms present.

The ground state of the O2 molecule has the designation
3�g

−. The rotational structure together with the J=N+S fine
structure are shown in Fig. 2 for the ground electronic and
vibrational state �30�. Note that even rotational levels are not
allowed in the ground state due to the Pauli principle which
requires the total molecular wave function to be symmetric
whenever the nuclear spin is equal to zero �31�.

The calculated, short range PES is reported in Table IV.
From Table IV and the PES it is readily seen that the He
atom is most strongly repelled from the O2 molecule when

approaching at an angle �=0°. Least repulsion is experi-
enced for �=90°, where the PES is also deepest with a maxi-
mum depth of 110�Eh for r=5.95 a.u.

The PES is expanded in Legendre polynomials; cf. Eq.
�6�. The functions vl�r� are easily found by using the or-
thogonality relation for the Legendre polynomials and by
performing the relevant integrals numerically. The functions
v0�r�−v10�r� are shown in Fig. 3.

Figure 3 reveals that the isotropic term v0�r� dominates
over the anisotropic terms. The PES is in fact quite isotropic
which can also be seen from Table IV; the anisotropic effects
present in the PES are largely carried by the terms v2�r� and
v4�r�. The long range part of the potential becomes more
important as the temperature decreases, and for ultracold
temperatures it is necessary to integrate the coupled equa-
tions �Eq. �3�� to large values of r. We have integrated from
r=5 a.u. out to r=2000 a.u. to ensure proper convergence
of the cross sections. For temperatures around 1 �K, only
the L=0 partial wave �s wave� contributes. To obtain a sat-
isfactory convergence of the cross sections we include an
increasing number of partial waves with increasing tempera-
ture. For the highest calculated temperature, 20 K, we in-
clude all partial waves L=0–35 to achieve sufficient conver-
gence of the cross sections. Both closed and open channels
were included, this meaning that the total number of chan-
nels involved exceeds 1000.

A. Cross sections

Here we report both elastic and inelastic cross sections for
O2-He collisions. We consider O2 molecules in the N=1 ro-
tational level as well as the excited N=3 level. The state to
state cross sections we present may be relevant for magnetic
trapping, thus we have included the different Zeeman levels
Mj. See �15� or �10� for details on how to convert the
S-matrix to the appropriate basis in which cross sections in-
volving magnetic quantum numbers can be computed. Cross
sections for N=1 at temperatures T=10−6−10 K are shown
in Fig. 4.

TABLE II. Computed dipole polarizabilities �a.u.� at the imagi-
nary frequencies i��a.u.� for the electronic ground states of O2 and
Na2. The computed values are at the respective equilibrium inter-
nuclear distances.

O2 Na2

� �� �� �� ��

0.00 14.68 5.73 347.2 184.3

0.10 13.84 5.60 164.0 109.5

0.20 12.28 5.28 45.5 42.3

0.30 10.63 4.88 15.9 18.5

0.40 9.09 4.45 7.17 9.76

0.50 7.74 4.03 3.81 5.95

TABLE III. Computed dispersion coefficients �a.u.� �cf. Eq.
�20��.

C6
�0� C6

�2� C8
�0� C8

�2� C8
�4�

He-O2 7.05 1.67 142.2 134.2 70.0

Na-Na2 2701.8 512.8 328170 157820 129350

K-K2 4786.1 1540.4 518920 394400 260420
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FIG. 2. Rotational structure for the O2 electronic ground state,
v=0. Values for the fine structure are from �30�. The energy differ-
ence between some of the levels are too small to be fully resolved
in the figure.
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The cross sections are calculated at zero magnetic field.
From a computational point of view, zero magnetic field is
convenient as the different J values do not interact and may
be computed separately. The cross sections will of course be
somewhat modified by the presence of a magnetic field, in
particular the energies at which different resonances occur.
The resonance seen in Fig. 4 at T�0.9 K will most certainly
reassert itself at a different energy in a magnetic field, al-
though we expect the general behavior of the cross sections
to be similar. Even though a magnetic field may alter the
cross sections, we comment below on their relevance for
magnetic trapping. At the center of a magnetic trap, the mag-
netic field will be small or simply vanish. Thus the perturba-

tion on the system caused by the magnetic field should yield
only small changes in the overall behavior of the cross sec-
tions, in particular for geometries close to the center of the
trap.

It is evident from Fig. 4 that the inelastic cross sections
are several orders of magnitudes smaller than the elastic
cross sections. This is certainly encouraging for experiments
that involve buffer-gas cooling of magnetically trapped O2
molecules. In particular for low temperatures elastic scatter-
ing is seen to be by far dominating �in the lowest rotational
level�, thus minimizing the number of collisions between O2
molecules and He atoms that lead to trap loss. One also
needs to be aware that inelastic scattering does not necessar-

TABLE IV. Calculated PES for O2-He. Distances r in a.u. and angles � in degrees. Energies in �Eh. We have used the basis set
aug-cc-pCVTZ �21–23� for both the O2 atom and the He atom. All values obtained with the quantum chemistry package GAMESS �18�.

�

r 0 10 20 30 40 50 60 70 80 90

5.00 5496 5324 4854 4148 3266 2327 1401 839.1 450.7 321.2

5.50 1466 1429 1314 1123 867.6 585.9 326.6 127.1 5.878 −34.53

6.00 271.8 267.8 250.3 212.7 151.7 76.55 3.967 −53.53 −89.34 −107.4

6.50 −40.28 −37.42 −24.72 −21.21 −22.77 −36.94 −58.10 −77.89 −91.42 −95.99

7.00 −94.86 −92.18 −85.14 −76.74 −70.79 −68.53 −68.84 −69.92 −71.26 −71.19

8.00 −60.75 −59.48 −56.15 −51.85 −47.28 −43.03 −39.45 −36.74 −35.12 −34.59

9.00 −29.65 −29.26 −27.83 −26.07 −23.85 −21.73 −19.85 −18.26 −17.12 −17.02

10.0 −14.88 −14.65 −14.08 −13.27 −12.26 −11.23 −10.30 −9.525 −9.045 −8.892

11.0 −7.956 −8.020 −7.584 −7.165 −6.665 −6.142 −5.655 −5.270 −5.119 −4.939

12.0 −4.532 −4.515 −4.278 −4.106 −2.330 −3.548 −3.945 −3.076 −2.969 −2.894

14.0 −1.704 −1.674 −1.548 −1.548 −1.847 −1.362 −1.278 −1.190 −1.030 −1.128

16.0 −0.7425 −0.7145 −0.6808 −0.6437 −0.6281 −0.5951 −0.5558 −0.5280 0.5000 −0.5011

FIG. 3. vl�r� for l
=0,2 ,4 ,6 ,8 ,10. vl�r� is zero for
odd l since the PES is symmetric
about �=90°. The isotropic contri-
bution is plotted as a solid line.

M. LYSEBO AND L. VESETH PHYSICAL REVIEW A 77, 032721 �2008�

032721-6



ily result in trap loss as the final channel may involve MJ
quantum numbers larger than zero, making the final state
magnetically trapable. In Fig. 5 we give the partial waves
L=0,1 ,2 for the elastic scattering process 
N=1,J=1,MJ
=1�→ 
1,1 ,1�. The Wigner threshold law �32� �for elastic
scattering�

�el � E2L �26�

can be seen to be obeyed in Fig. 5 for temperatures T
�10−3 K. From Fig. 5 it is also evident that partial waves
L�0 give only a negligible contribution to the total cross
section for temperatures in the mK range.
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In addition we have calculated cross sections for rotation-
ally excited molecules in the N=3 rotational level. Accurate
calculations of the different inelastic cross sections from ex-
cited rotational levels are computationally more demanding,
as there are many more partial waves that need to be in-
cluded even at low energies. We show cross sections for
molecules initially in the 
3,3 ,3� state �see Fig. 2� in Fig. 6.
The elastic cross section is calculated to be of the order
10−14 cm2 and is largely temperature independent away from
any resonances, with a slight increase for larger tempera-
tures. The inelastic cross sections are again several orders of
magnitudes smaller for temperatures around 1 K; thus rota-
tional cooling as a result of collisions with He is a very
limited possibility. The inelastic cross sections are further
seen to increase rapidly as the temperature is lowered. Cool-
ing of the translational degree of freedom by elastic colli-
sions may therefore result in more efficient rotational cool-
ing, since the inelastic cross sections for scattering N=3
→N=1 increases as the temperature is lowered. The behav-
ior of the inelastic cross sections in Fig. 6 can be understood
from the Wigner threshold law �32� for inelastic scattering

�inelastic � EL−1/2, �27�

with L=0. A prominent feature in Fig. 6 is the appearance of
a resonance at an energy corresponding to T�0.8 K. This
represents a shape resonance in the L=3 partial wave, con-
firmed by calculating the elastic partial wave cross sections
with only the isotropic part of the potential included:
V�r ,��=v0�r�.

As previously mentioned, evaporative cooling is needed
to reach Bose-Einstein relevant temperatures. However, our
calculations cannot be used to predict how efficient O2 can
be evaporatively cooled as this would require knowledge of
the O2−O2 cross sections. As far as the authors are aware,
cross sections for O2-O2 have never been calculated due to
the complexity of the intramolecular interaction.

We have however studied the buffer cooling process in
some detail, based on the cross sections we have calculated.
In Table V we report selected calculated cross sections for
scattering between the different rotational levels, which are
important for the next subsection on buffer-gas cooling.

B. Buffer-gas cooling

Diatomic molecules have noncentral interactions �cf. Eq.
�20�� with the buffer gas, thus it is possible to cool both the
translational and the rotational degree of freedom. We have
simulated the buffer-gas cooling process numerically based
on our calculated cross sections �N→N�. For this purpose we
have used the direct simulation Monte Carlo �DSMC�
method �33,34� with cross sections from our calculations.
The DSMC method is developed from the physics of gas
flow and has a close relationship with the Boltzmann equa-
tion. The philosophy of the DSMC method is to model a real
gas flow with a relative small number of simulated molecules
�in general particles�. The simulated region in space �three-
dimensional� is divided into cells of equal size, with different
numbers of molecules in each cell. Initially the molecules are
distributed randomly with a random number generator. At
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FIG. 6. Cross sections for
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=3,J=3,MJ=3. Cross sections
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figure are negligible. Solid line
represents elastic scattering.
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each time step the molecules are moved ri→ri+vi�t and
may of course in this process change cell. One of the key
ideas to the method is the decoupling of translation and col-
lision; the molecules are first moved without any interaction
from other molecules or atoms. External forces, e.g., a mag-
netic field or gravity may be included in the moving step.
Interaction with other molecules then proceeds in a collision
step after the molecules are moved. At each time step some
of the molecules are selected to collide and the outcome of
these collisions depends on the different cross sections. The
energy in each collision is found from the relative velocity
and the cross section is estimated from an interpolation in a
table of calculated cross sections as a function of energy.
Throughout the process each molecule is monitored and in-
formation about velocity and rotational levels are updated at
every time step. The number of simulated collisions Ncoll in a
cell during a timestep �t is determined by kinetic theory and
is given by

Ncoll =
Nc�Nc − 1��vmax�t

2Vc
, �28�

where Nc is the number of molecules in a given cell and Vc is
the volume of that cell. vmax is an upper limit for the relative
velocities. We have used bounce-back �reflecting walls�
boundary conditions in the simulations.

For the DSMC method to be reliable the time step �t
must be chosen in such a way that it is smaller than or of the
same order as the mean collision time �. Correspondingly,
the cell length should be smaller than the mean free path.
The physical parameters used in our simulations yield a
mean collision time �=4.2�10−4 s and a mean free path l
=1.3�10−2 cm.

For our simulation to be as realistic as possible we have
assumed a buffer-gas density of 1015 cm−3. In the simula-
tions we use 106 He atoms and 2000 O2 molecules. The
physical size of the box is determined from the density and
number of atoms and molecules. The He atoms are initially

at a temperature T=1.0 K, while the initial velocity distri-
bution for the O2 molecules is a delta function with a veloc-
ity corresponding to the temperature T=20 K, estimated
from the relation E= 3

2kBT.
Our simulations only account for collisions between the

He buffer-gas and the O2 molecules. Collisions among the
O2 molecules themselves should be rare, whereas collisions
between He atoms are rather uninteresting. Initially, the ro-
tational quantum numbers for the O2 molecules are distrib-
uted according to the Boltzmann distribution; see Fig. 7.

After simulation of the buffer gas cooling process for
some time we find that the O2 molecules have been thermal-
ized to a temperature close to the buffer-gas temperature.
This is confirmed by plotting the speed distribution together
with the Maxwell speed distribution D�v� for T=1.0 K, to
observe the excellent agreement. Upon thermalization we
also observe the mean speed of the O2 molecules fluctuate
around a mean value.

Figure 8 shows plots of the results of the thermalization
process. The �mean� number of collisions per molecule are
8.22, 14.7, 21.5, and 28.7 corresponding to the times t

TABLE V. Cross sections �N→N� for the scattering processes N→N� at selected temperatures. All values are given in 10−17 cm−2.

T�K� �11 �33 �31 �55 �53 �51 �77 �75 �73 �71

0.01 1981 1791 134.6 1793 286.1 99.32 1839 112.0 44.27 10.11

0.1 2077 1939 59.25 1930 117.5 42.81 1939 169.1 46.87 8.339

1.0 3830 1448 170.9 2621 571.3 135.2 2622 721.7 45.51 7.101

3.0 3239 1615 52.52 3044 128.5 36.41 3015 175.4 42.14 5.116

5.0 4396 1992 46.17 3990 127.1 35.30 3173 175.1 41.83 3.971

7.0 3745 2611 34.52 3542 90.46 25.70 3417 174.4 41.78 3.611

9.0 3922 2554 31.58 3754 79.14 22.16 3771 151.8 39.40 3.402

11.0 3568 2598 25.75 3467 84.55 19.91 3102 136.3 37.71 3.089

13.0 3211 2689 23.95 3211 75.58 19.18 3615 130.9 35.51 3.012

15.0 3121 2807 23.28 3415 70.84 17.54 3694 125.6 30.57 3.883

17.0 3120 2808 21.25 3268 69.59 15.43 3667 123.6 28.87 3.339

19.0 3063 2762 59.25 3178 66.14 16.99 3594 115.4 22.77 3.735
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FIG. 7. Probability distribution for different rotational levels N
in O2 at T=20 K.
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=0.01, 0.02, 0.03, and 0.04 s. We conclude that thermal-
ization of the translational degree of freedom for O2 mol-
ecules initially at T=20 K with a buffer gas at 1 K requires
the O2 molecules undergo roughly 20 collisions with He.

In our simulations we have also included collisions in
which the rotational quantum number N is changed. In a
collision with energy E we calculate the probabilities for an
allowed transition based on the cross sections. A random
number is then generated to determine the outcome of the
collision. We do allow for rotational excitations provided that
the energy involved is sufficient. It is easily seen from the
cross sections that most collisions will be elastic and this
should be expected from the calculated PES which is quite
isotropic.

Due to the small probabilities for change of the rotational
level in a collision, the rotational degree of freedom requires
many more collisions to attain a population typical for 1 K
�99.9% in N=1 according to the Boltzmann distriubution�. In
Fig. 9 we show the rotational population numbers after times
t=0, 0.03, 0.1, and 0.5 s. The initial distribution of rota-
tional levels for the O2 molecules follow the Boltzmann dis-
tribution for T=20 K �see Fig. 7�.

The efficiency of translational and rotational cooling may
be compared most easily by the number of collisions re-
quired to reach equilibrium. Whereas cooling of the transla-
tional freedom is seen to require 15–20 collisions with the
buffer gas, the rotational distribution has still not reached an
equilibrium distribution after 71 collisions.

V. Na2-Na SYSTEM

We now turn our attention to Na and study collisions be-
tween 23Na2 molecules and Na atoms. The Na2 internuclear
separation is kept fixed at re=3.0786 Å. The Na2 ground
state, 1�g

+, has neither spin nor angular momenta. Na2 mol-
ecules are usually cooled with other cooling methods apart
from buffer-gas cooling. Since the ground state is not mag-
netically trapable it is also challenging to employ the evapo-

rative cooling technique. Ultracold ground state molecules
may instead be a likely result of molecule formation in pho-
toassociation experiments. A two color photoassociation
scheme is one example of a cooling method likely to yield
ground state Na2 molecules residing in the lowest attainable
vibrational level �v=0� �7�. These ultracold ground state
molecules will collide with Na atoms not yet photoassociated
to a an excited electronic state. As both molecule and atom
have temperatures in the �K temperature range, the colli-
sions between them will necessarily be cold. We have com-
puted cross sections for both elastic and inelastic collisions at
temperatures ranging from 10−9 K to 10−2 K, as this should
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FIG. 8. Speed distribution for
O2 molecules at times t=0.01 s,
0.02 s, 0.03 s, and 0.04 s �aster-
isks�, compared to the Maxwell
distribution �sold line� plotted at
T=1 K.
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be the most relevant temperature range. In the calculations
we have included partial waves up to L=25.

In Table VI we list the short range PES calculated for r
=4.00 a.u. to r=16.0 a.u.. For r�16.0 a.u. we use Eq. �20�
with coefficients from Table IV. Small inconsistencies be-
tween the long-range PES and the GAMESS PES are re-
solved by making a smooth transition between the two with
a polynomial fit. We do believe that our dispersion coeffi-

cients give the most accurate description of the PES at r
=16 a.u.; thus we have matched the GAMESS PES to the
long range PES calculated from dispersion coefficients.
Again we have integrated the close coupled Eqs. �3� out to
r=2000 a.u., starting from r=4.0 a.u.

In Fig. 10 we give vl�r� for the calculated PES. Whereas
the O2-He interaction was given in �Eh, the Na2-Na interac-
tion is reported in mEh. This increased interaction energy is

TABLE VI. Calculated PES for the Na2-Na interaction. Distances r in a.u. and angles � in degrees. Energies are given in mEh. We use
the basis set cc-pCTZ �22� for all atoms involved in the calculation.

�

r 0 10 20 30 40 50 60 70 80 90

4.00 2742 2088 1027 425.9 203.8 142.45 30.65 24.80 21.51 18.98

5.00 837.3 656.1 353.9 167.6 85.12 51.24 12.30 5.110 2.968 2.927

6.00 122.1 108.3 78.49 48.89 25.84 10.33 1.314 −3.07 −3.912 −3.460

7.00 33.01 29.66 21.38 11.89 4.068 −1.007 −3.570 −4.389 −4.316 −4.182

8.00 6.008 5.189 2.968 0.4552 −1.723 −3.139 −3.606 −3.535 −3.333 −3.240

9.00 −0.4639 −0.7722 −1.528 −2.318 −2.797 −2.884 −2.709 −2.461 −2.271 −2.202

10.0 −2.406 −2.444 −2.507 −2.494 −2.347 −2.101 −1.836 −1.621 −1.487 −1.443

11.0 −2.223 −2.186 −2.070 −1.879 −1.640 −1.400 −1.194 −1.050 −0.9671 −0.9402

12.0 −1.573 −1.531 −1.415 −1.247 −1.064 −0.8960 −0.7653 −0.6776 −0.6288 −0.6133

13.0 −1.010 −0.9800 −0.8992 −0.7881 −0.6712 −0.5679 −0.4892 −0.4374 −0.4093 −0.4006

14.0 −0.6249 −0.6066 −0.5574 −0.4907 −0.4214 −0.3606 −0.3142 −0.2837 −0.2673 −0.2623

15.0 −0.3843 −0.3737 −0.3453 −0.3067 −0.2665 −0.2312 −0.2039 −0.1857 −0.1759 −0.1728

16.0 −0.2389 −0.2328 −0.2166 −0.1944 −0.1711 −0.1504 −0.1343 −0.1233 −0.1173 −0.1153
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FIG. 10. Different terms vl�r�
�cf. Eq. �6�� for the Na2-Na
interaction.
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largely due to the valence electron of Na. It is also evident
from Fig. 10, that the larger contributions stem from v0�r�,
v2�r�, v4�r�, and v6�r�. v8�r� and v10�r�, on the other hand,
provide only small corrections. The anisotropic terms in the
PES, v2�r� and v4�r�, are largely responsible for the inelastic
scattering between different rotational levels. By comparing
Fig. 10 to Fig. 4, the anisotropic terms can be seen to give a
larger contribution for the Na2-Na system than for the O2-He
system. We would thus expect a larger fraction of the total
cross section to be inelastic.

All rotational levels are allowed in the 23Na2 molecule as
the nuclear spin of the Na atom is I= 3

2 . Due to the small
rotational constant Be=0.154 71 cm−1, the rotational levels
are packed close together; see Fig. 11. The molecular spin is
zero �S=0�; thus N=J and there is no fine structure in the
ground state. The Na atom do however have an open shell,
giving a spin s= 1

2 .

Inelastic scattering processes are only allowed between
rotational levels with the same parity. This is a direct conse-
quence of the fact that the Na2 molecule is homonuclear with
only even values of l allowed in the sum in Eq. �6�. For the
3j symbol involving N and N� in Eq. �9� to be nonzero, N
+N� must be an even number. This makes transitions be-
tween neighboring rotational levels forbidden, making it im-
possible for molecules in the N=1 rotational level to reach
the N=0 level through collisions with Na.

The inelastic and elastic cross sections for the four lowest
rotational levels are shown in Fig. 12. The cross sections are
seen to be several magnitudes larger than for the O2-He sys-
tem; this should not be surprising as Na is heavier and ex-
tends further in space than both the O and the He atoms. The
alkalis are further known to have large cross sections, which
is one of the reasons why Bose-Einstein condensates were
first obtained with alkalis and not with hydrogen.

The elastic cross sections for the different rotational levels
are all of similar size and show many of the same features.
Away from any resonances, at mK temperatures, the elastic
cross sections are in fact almost identical. This should prob-
ably be expected as the rotational constant is small; the en-
ergy difference between the rotational levels become more
and more negligible as the temperature increases.

The inelastic cross sections do of course increase at low
temperatures, as predicted by the Wigner threshold. It is in-
teresting to see that the inelastic cross section, in particular
for the N=3→N�=1 transition, completely dominates over
the elastic N=3→N�=3 transition for temperatures T
�1 �K. This indicates that very efficient rotational cooling
can be achieved for collisions at these low temperatures. At
mK temperatures, the inelastic cross sections are roughly a
factor 1

40 of the elastic ones; thus the possibility of rotational
cooling is severely restricted. As we will see, the situation is
quite similar for the K2-K system.
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VI. K2-K SYSTEM

We now turn our attention to a heavier alkali system,
namely the 39K2-39K system. As K and Na have many of the
chemical properties in common the cross sections may be
expected to behave similarly.

Both species have attracted considerable interest in recent
years, and translationally ultracold samples of both Na2 and
K2 molecules may nowdays be produced in the laboratory.
As K is heavier than Na it is also more challenging to reli-
ably calculate the interaction between the K2 molecules and
the K atom. Here we report cross sections obtained with the
PES calculated with GAMESS at short range and by using
the dispersion coefficients �see Sec. III� to reliably model the
long range potential. The short range PES obtained is re-
ported in Table VII for r� �6.00–20.00 a.u.�.

For all geometries the Hartree-Fock calculations are con-
vergent ��E�10−6 a.u.�, although at some geometries the
convergence was rather slow. Indeed this was the case for
some geometries ��=0–50°� at r=15 a.u. and for a few
other spread geometries. The problem is most easily solved
by simply performing an additional number of Hartree-Fock
iterations or by using a level shift. That is, lifting the diago-
nal elements of the Fock matrix up �in energy� to uncouple
the occupied and unoccupied orbitals. This is a clear indica-
tion that the slow convergence stems from electronic states
which lie close together, although not exactly degenerate, at
least not at the geometries we have investigated. This prob-
lem is of course also encountered for atom-atom collisions,
although more frequently for atom-molecule collisions as the
number of electronic states are much larger.

The internuclear distance for the K2 molecule was kept at
the equilibrium distance of re=3.923 Å. At r=20 a.u. we
connect the short-range PES to the long-range PES. Addi-
tional consideration is needed to do this as the short-range

PES is in fact repulsive for some of the larger values of �
even at r=20 a.u., whereas the long-range PES of course is
attractive �cf. Eq. �20��. As a solution we make a smooth
transition between the two energy surfaces for r
=20–25 a.u.. For r�25 a.u. we use solely the long range
PES. This inconsistency is of course evidence of inaccura-
cies in one or both of the calculated surfaces. As we do
believe the long-range PES is the most reliable of the two
surfaces, we have modified the short range PES to match the
long range PES at r=25 a.u.

The K2-K PES is expanded in Legendre polynomials �cf.
Eq. �6��. As the PES is quite anisotropic we have needed to
include Legendre polynomials for l� �0,40� to ensure a rep-
resentation of the PES with at least two leading digits of
accuracy for all geometries. Figure 13 gives the first func-
tions vl for l=0–10 and should be compared to Fig. 10. The
strong anisotropy in the PES �Table VII� affects the behavior
of the plotted terms vl�r�; all terms yield significant contri-
butions.

K2 molecules have a ground state rotational constant Be
=0.056 22 cm−1 with a rotational structure as shown in Fig.
14. We give the cross sections for the lowest rotational lev-
els, of relevance for cold and ultracold collisions.

From Fig. 15 we may note the following. �1� The elastic
cross section is a factor 10 larger for elastic collisions N=1
→N�=1 than for any other elastic collision process at ul-
tralow energies. The N=1→N�=1 elastic cross section is
several orders of magnitude larger than the N=0→N�=0
elastic cross section. �2� For temperatures in the mK range,
away from any resonances, the different elastic cross sec-
tions are of equal magnitude, whereas inelastic collisions are
suppressed. �3� The Wigner threshold law is obeyed at ul-
tralow energies.

Cross sections are known to be very sensitive for changes
in the scattering potential, in particular at low energies. To

TABLE VII. Calculated PES for the K2-K interaction. Distances r in a.u. and angles � in degrees. Energies are given i mEh. We have
used the triple zeta valence �TZV� �23� basis set augmented with polarization functions of type d.

�

r 0 10 20 30 40 50 60 70 80 90

6.00 2351 1844 966.0 396.8 155.9 70.76 38.78 24.20 21.92 15.65

7.00 437.3 360.6 214.8 108.7 55.42 29.80 15.84 8.148 4.828 10.97

8.00 99.89 87.63 61.94 38.50 21.70 10.40 3.418 −0.2382 −1.475 4.836

9.00 33.29 30.03 22.16 13.22 5.619 0.3255 −2.710 −4.016 −4.158 2.138

10.0 9.678 8.319 4.948 1.048 −2.169 −4.218 −5.188 −5.394 −5.134 1.025

11.0 −1.018 −1.539 −2.809 −4.213 −5.260 −5.794 −5.898 −5.735 −1.947 0.5370

12.0 −5.087 −5.238 −5.586 −5.922 −6.098 −6.085 −5.939 −3.612 0.2887 0.2950

13.0 −6.140 −6.158 −6.187 −6.177 −6.102 −5.969 −3.612 0.1240 0.1548 0.1643

14.0 −6.139 −6.126 −6.084 −6.011 −4.782 −0.07322 0.007790 0.05768 0.08340 0.09118

15.0 −4.783 −4.813 −4.894 −0.2582 −0.1503 −0.06121 −0.007089 0.02748 0.04485 0.05003

16.0 −0.3229 −0.3007 −0.2425 −0.1684 −0.09840 −0.04397 −0.007683 0.01356 0.02403 0.02712

17.0 −0.1912 −0.1778 −0.1431 −0.09899 −0.05763 −0.02587 −0.008761 0.006983 0.01283 0.01540

18.0 −0.1054 −0.09793 −0.07850 −0.05401 −0.03121 −0.03289 −0.01034 0.003745 0.006824 0.007716

19.0 −0.05487 −0.05092 −0.04067 −0.04830 −0.02910 −0.03129 −0.01238 0.001454 0.003613 0.004059

20.0 −0.04821 −0.04551 −0.03771 −0.04445 −0.02832 −0.028760 −0.01436 0.001157 0.001900 0.002113
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see just how sensitive the scattering cross sections are for
changes in the long range potential, we increased the disper-
sion coefficients �Table III� for the K2-K system by 10% and
recalculated the cross sections for N=0. The elastic cross
section at T=1 nK increased by about 1000%, whereas the
elastic cross section at T=1 mK decreased by 30%. This
certainly demonstrates how sensitive the scattering cross sec-
tions are for changes in the long range PES at ultracold tem-
peratures and shows the importance of a reliable long range
PES. Similar demonstrations can be made for the O2-He and
Na2-Na systems, although the effect is not as dramatic.

VII. CONCLUSIONS

We have calculated the PES for three different systems,
O2-He, Na2-Na, and K2-K, with special emphasis on the long
range interaction, which as we have seen is of utmost impor-
tance for reliable scattering calculations. The van der Waals

coefficients defining the long range PES have been calcu-
lated from the polarizabilities and are expected to be of high
accuracy. With the obtained potential energy surfaces we
have solved the coupled equations to obtain elastic and in-
elastic cross sections for transitions between different rota-
tional levels and Zeeman levels �for O2-He�.

All reported cross sections have been calculated with a
large number of partial waves included, to ensure satisfac-
tory convergence. Most calculations have involved partial
waves with L�20.

For buffer-gas cooling of O2 molecules with He atoms we
predict macroscopic properties such as speed distributions,
temperature, and number of collisions needed to thermalize
the O2 molecules based on the calculated cross sections.
Magnetic trapping of O2 molecules in the ground electronic
and rovibrational state is predicted to be feasible and trap
loss from collisions with He is expected to be limited. De-
tailed predictions can however not be given as all cross sec-
tions are calculated in zero magnetic field.

For all systems the Wigner threshold law is obeyed at low
energies and we have found the inelastic cross sections to be
larger than the corresponding elastic ones when the energy is
sufficiently low, yielding efficient rotational cooling at ultra-
cold temperatures. For O2-He, the inelastic transitions N=3
→1 dominates over the corresponding elastic transition for
T�10−5 K, whereas the temperatures are respectively T
�10−6 K and T�10−8 K for the same phenomena to occur
in the Na2-Na and K2-K systems.

Further, the elastic cross sections for the K2 molecule are
different by several orders of magnitude depending on the
rotational level, favoring the N=1 level. This is in contrast to
the Na2-Na system where the elastic cross section for differ-
ent rotational levels is of a similar magnitude for all calcu-
lated temperatures. Inelastic rotational scattering is for all
systems seen to be suppressed for temperatures in the mK
range.
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For future studies it would be interesting to include mag-
netic fields and calculate their influence on the cross sec-
tions. With relevance to photoassociation experiments it
would furthermore be of considerable interest to include ex-
cited vibrational levels in a similar study.
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Ab initio calculation of Feshbach resonances in cold atomic collisions:
s- and p-wave Feshbach resonances in 6Li2
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We present a model applicable to cold diatomic collisions and solve the close-coupled equations for the
particular 6Li2 system. Feshbach resonances are determined ab initio for both s and p waves. The s-wave
scattering lengths are reported for all possible hyperfine states as a function of magnetic field strengths between
0 and 1500 G. In addition, p-wave scattering lengths are calculated for selected hyperfine states. Matrix
elements for the hyperfine, Zeeman, and rotational Hamiltonian were worked out by the use of the molecular
Hund’s case �a� basis set. All relevant matrix elements are reported. The short-range hyperfine interaction has
been included in the calculations, and its effect on the scattering length are investigated. Hyperfine parameters
were obtained from separate ab initio calculations.

DOI: 10.1103/PhysRevA.79.062704 PACS number�s�: 34.50.Cx, 32.10.Fn

I. INTRODUCTION

Feshbach resonances �1� named after Herman Feshbach
have become very important in ultracold atomic and molecu-
lar physics for the last ten years. Feshbach resonances are
important ingredients in the ongoing exploration of these
systems and in the tremendous progress made after the first
successful creation of a Fermi gas �2�. In ultracold atomic
and molecular physics, the important and relevant Feshbach
resonances occur when the energy of a bound molecular state
coincides with that of two colliding atoms. The coupling
between the bound molecular state and the continuum of
states is caused by the hyperfine interaction in homonuclear
molecules and by the hyperfine interaction together with
electronic spin-dependent interactions in heteronuclear mol-
ecules. Thus, the hyperfine interaction plays an important
role. The experimental and theoretical focus this far has been
on alkali atoms.

The attractive properties of these systems stem from the
possibility of tuning the interatomic interaction by varying
the magnetic field around a Feshbach resonance. The scatter-
ing length is the important parameter which characterizes the
atom-atom interaction in ultracold gases �3� �together with
the Pauli principle�. The scattering length behaves in a pecu-
liar way as one passes through a Feshbach resonance—it
diverges and changes sign �see, e.g., Fig. 6�. This makes it
possible for the experimentalists to attain full control of the
interactions by varying the magnetic field strength. Many
systems have Feshbach resonances that are accessible
through relatively low magnetic field strengths.

The Feshbach resonances also offer the opportunity to
produce weakly bound ultracold molecules �4�. Using a se-
quence of magnetic pulses, the ultracold atoms can be con-
verted into molecules with lifetimes of several seconds
�5–9�. Initially, one thought that such highly excited mol-
ecules would decay very fast. This is true for bosonic atoms,
where inelastic collisions with other atoms or molecules give
a rapid decay. However, for fermionic atoms, the molecules

have a much longer lifetime due to quenching of the inelastic
collision rates as a result of the Pauli principle. In part, this is
why the fermionic isotope 6Li are preferred over the bosonic
isotope 7Li, which is far less studied. The first molecular
Bose-Einstein condensates �BECs� observed in November
2003 utilized molecules created from Feshbach resonances.
Jochim et al. �10� used 40K atoms, while Greiner et al. �11�
and Bartenstein et al. �12� worked with 6Li atoms. The nK
temperature range and BEC were eventually reached by
evaporative cooling.

Finally, the ability to tune the scattering length made the
so-called BEC-BCS transition experimentally accessible
�13,14�. In short, this is a transition from a molecular BEC to
atomic Cooper pairs via a regime where the scattering length
diverges and becomes infinite. In the crossover regime, the
interaction is independent of the scattering length as well as
the range and details of the interatomic potential �15�.

This paper focuses on cold diatomic collisions in general,
and, in particular, the 6Li2 system and on the Feshbach reso-
nances in this system. Most attention is given to the wave
Feshbach resonances, but we also calculate Feshbach reso-
nances occurring in p waves. Rather than to set up a model
with one or more tunable parameters, our philosophy has
been to perform ab initio calculations of the various reso-
nances using a fully coupled-channel approach. No empirical
data have been included in the calculations. The calculations
are performed with the diatomic Hund’s case �a� basis set,
describing the system as a molecule rather than two free
atoms. This allows for a realistic and more accurate descrip-
tion of the short-range hyperfine interaction through the cal-
culation of only a few molecular hyperfine parameters. Most,
if not all, studies of diatomic collisions make no distinction
between the short-range and the long-range hyperfine inter-
action, i.e., the hyperfine interaction is assumed to be inde-
pendent of the internuclear separation. Our approach to the
hyperfine interaction enables us to test this approximation.
However, in the present case we find that the long-range
atomic hyperfine interaction makes a reasonable approxima-
tion to the short-range case. This fact is due to the very
shallow character of the relevant molecular state. In the next
sections, we give a thorough explanation of the particular*marius.lysebo@fys.uio.no
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model that we use and relate the Hund’s case �a� basis set to
the more standard atomic FF-coupled basis sets.

The model and the expressions we present in this paper
are not fully general. Some simplifications have been pos-
sible due to the particular alkali system studied. However, we
do make it clear whenever special assumptions have been
made. Throughout this paper, atomic units �=me=e=a0=1
are used, and we work within the Born-Oppenheimer
approximation.

II. THEORY

The diatomic Hamiltonian can be written as

H = −
1

2�
�2 + Hev�r,x� + Hhf�r,x� + HZ�r,x� , �1�

where r is the internuclear vector pointing from nuclei A to
nuclei B and x= �x1 ,x2 , . . . ,xn�T contains the electronic coor-
dinates. Hev is the electronic and vibrational Hamiltonian,
Hhf is the hyperfine Hamiltonian, and finally HZ denotes the
Zeeman interaction. Hev can also include all types of relativ-
istic contributions such as spin-orbit and spin-spin interac-
tions if needed. � is the reduced mass. The first task is to
expand the total wave function in a chosen basis, e.g., the
eigenstates of Hev or some other operator. At short range, the
eigenstates of Hev are well suited; whereas at long range the
eigenstates of Hhf+HZ diagonalizes the interaction. To solve
the time-independent Schrödinger equation for the whole
molecule

H��r,x� = E��r,x� , �2�

we write

��r,x� = �
b

1

r
	b�r�
b�r,x� , �3�

where 	b�r� is the radial-wave functions for the relative mo-
tion of the two nuclei for a molecule in electronic state b.
The angular part of the relative motion is included in

b�r ,x�. Thus, we may write the time-independent
Schrödinger equation �2� as

−
1

2�
�2�

b

1

r
	b�r�
b�r,x� + �Hev + Hhf + HZ�

��
b

	b�r�
r


b�r,x�

= E�
b

	b�r�
r


b�r,x� . �4�

Multiplying with 
a
��r ,x� and integrating over the electronic

coordinates yields

−
1

2�

d2	a�r�
dr2 +

la�la + 1�
2�r2 	a�r� + �

b

�Vab
ev + Vab

hf + Vab
Z �	b�r�

= E	a�r� , �5�

where

Vab
ev�r� = 	
a�r,x�
Hev

b�r,x�� , �6�

Vab
hf �r� = 	
a�r,x�
Hhf

b�r,x�� , �7�

Vab
Z = 	
a�r,x�
HZ

b�r,x�� , �8�

and la is the quantum number associated with the angular
momentum of the relative motion of the two atoms. Deriving
Eq. �5� from Eq. �4�, it has been assumed that the nonadia-
batic coupling terms can be ignored, and we make the ap-
proximation �16�

�
b
� 
a�r,x���2
b�r,x�

	b�r�
r

dx =
d2	a

dr2 +
la�la + 1�

r2 	a�r� .

�9�

Finally, we have the boundary conditions 	a�0�=0 and

	a�r� →
r→�

�
b


b�r,x�
1

�kb

�jb�kbr��ab + gb�kbr�Kba� , �10�

where K is the so-called reaction matrix determined from Eq.
�10�. jl�x� and gl�x� are the Riccati-Bessel functions �17� for
real kb=�2��E−Eb� �i.e., open channels E�Eb� but must be
replaced with the modified spherical Bessel functions �17� of
first and third kinds multiplied with kb

�r for all closed chan-
nels. The important S matrix can be determined once K is
known �18�,

S =
I + iK00

I − iK00
, �11�

where K00 is a submatrix of K containing all the elements
connecting open channels �I is the identity matrix�. The
S-matrix elements readily yield the important phase shift �l
from the simple expression

Saa = e2i�l, �12�

where l is the partial-wave quantum number.

A. Choice of basis set

To simplify the equations presented in this section, the
two colliding atoms have been assumed to be in S states. For
atoms in other states, e.g., P states, a nonzero angular mo-
mentum must be included. See the Appendix for more
details.

1. Long-range basis: FF-coupled states

The long-range electronic potential energy V�r� for two
atoms, where Li=0 is proportional to r−6 �19�. Asymptoti-
cally, as r→�, we are then left with the hyperfine Hamil-
tonian together with the Zeeman interaction set up by an
external magnetic field. To fulfill the boundary condition im-
posed as r→�, we choose a basis in which these interactions
are diagonal. Consider the situation where atom 1 has total
angular momentum F1 and atom 2 has total angular momen-
tum F2. The atomic hyperfine interaction is diagonal in this
basis if J1�L1+S1, J2�L2+S2, I1 and I2 are good quantum
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numbers together with MF1
and MF2

. The total two-atom
angular-momentum states are constructed by adding the
single atom angular momentum Fi from both atoms together
with the mechanical rotation of the relative motion L �not to
be confused with L1 or L2� to give the total angular momen-
tum F. First, we define the total atomic angular momentum
Fa=F1+F2,


F1F2FaMFa
� = �

MF1
,MF2

	F1MF1
F2MF2


FaMFa
�
F1MF1

�

�
F2MF2
� . �13�

Finally, we include also the angular momentum L from the
relative motion of the two collision partners and construct
the total angular momentum F=Fa+L. The quantum num-
bers l and ml are introduced as eigenvalues of the operators
L2 and Lz, respectively, with the spherical harmonics
	r 
 lml�=Ylml

�� ,
� as their eigenfunctions,


FalFMF� = �
MFa

,ml

	FaMFa
lml
FMF�
FaMFa

�
lml� . �14�

We will refer to this basis as the FF-coupled basis.
Whenever an external magnetic field B is introduced, the

Zeeman interaction couples the magnetic field to the elec-
tronic spins and 
FalFMF� are no longer eigenstates of the
long-range interaction. The long-range interaction is the sum
Hhf+HZ which are diagonalized numerically. The remaining
good quantum numbers in an external magnetic field are the
total projection MF=MF1

+MF2
on a space-fixed axis and the

mechanical rotation quantum number l.

2. Short-range basis: Molecular Hund’s case (a) states

Here we define the molecular Hund’s case �a� states. The
matrix elements of the different interactions will be repre-
sented in this basis. For small distances r, the intuitive choice
is a basis which describes the system as a molecule rather
than two atoms. One possible choice is then to quantize S2

= �S1+S2�2 together with Sz and Lz with quantum numbers
S ,�, and �. The quantum numbers � and � are projections
on the interatomic axis in a molecule-fixed system. We also
need the nuclear-spin states 
I1�I1

� and 
I2�I2
�. Similarly, �I1

and �I2
are projections of the nuclear spin on the internu-

clear axis in the molecule-fixed system. Combined to give
the total angular momentum F �see the Appendix�, we obtain
the basis states


q�S��I1
�I2

F�FMF� = 
q�S��
�I1
�I2

�
F�FMF� , �15�

where �F=�+�+�I1
+�I2

is the projection of the total spin
on the internuclear axis. These are the Hund’s case �a� basis
states. The letter q in the state symbol represents the other
quantum numbers necessary to specify the electronic state.
The quantum numbers I1 and I2 are constants and have been
suppressed in the notation.

3. Unitary transformation between the short-range basis and the
long-range basis

Although we will be mostly concerned with the molecular
Hund’s case �a� states, we obtain the useful unitary transfor-
mation between the FF-coupled states, where the K matrix is
defined �see Eq. �10��, and the Hund’s case �a� states. The
unitary transformation has been worked out in detail in the
Appendix; here we merely give the final expression in terms
of 3j-symbols,

	qS��I1
�I2

FMF�F
qF1F2FalFMF�

= �− 1� f �
MFa

,ml

MF1
,MF2

�
MS1

,MS2
,

MI1
,MI2

�
J,I,

MS

�2J + 1��2I + 1��2F + 1��Fa��F1��F2��S��l�� l Fa F

ml MFa
− MF

�� F1 F2 Fa

MF1
MF2

− MFa

�
�� S1 I1 F1

MS1
MI1

− MF1

�� S2 I2 F2

MS2
MI2

− MF2

�� S1 S2 S

MS1
MS2

− MS
�� S l J

MS ml − MJ
��S l J

� 0 − �
�

�� I1 I2 I

MI1
MI2

− MI
�� I1 I2 I

�I1
�I2

− �I
�� J I F

MJ MI − MF
�� J I F

� �I − �F
� , �16�

with f =Fa− l+F1−F2+MFa
+2S1− I1+MF1

− I2+MF2
+MS

+�+�I+�F−MJ−MI, �Fa�=�2Fa+1, and similar for other
quantities in square brackets. When Li�0, the unitary trans-
formation �16� is no longer valid.

The unitary transformation from the case �a� basis to the
FF-coupled basis is often called a frame transformation in
the present context �see �20,21��. For further discussion of

other convenient basis states and a more in-depth treatment,
we refer to �16,22� and references therein.

B. Pauli exclusion principle

Due to the Pauli principle, the wave function describing
our system must have certain symmetries upon the inter-
change of identical particles. Working with two identical at-
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oms, the proper wave function must fulfill two requirements.
�1� Interchanging an even �odd� number of electrons should
yield a phase factor +1�−1�, whereas �2� interchanging the
nuclei should give +1 or −1 depending on whether I1= I2 is
integer or half integer �boson or fermion, respectively�. The
long-range and short-range states introduced in Sec. II A
must respect these symmetries. The following discussion is,
in particular, relevant for two alkali atoms with identical nu-
clei L1=L2=0 and S1=S2�0. However, for L1=L2�0, the
modifications to the expressions given are rather straightfor-
ward.

In addition to the previously mentioned Hund’s case �a�
basis, we introduce the Hund’s case �b� basis as the symme-
tries are easier to deduce in this basis. This is due to the fact
that both the electronic and the nuclear spin is quantized in a
space-fixed system ��→MS, �I1

→MI1
, and �I2

→MI2
� in a

case �b� basis. See �23� for a further discussion of the differ-
ent Hund’s cases.

Both basis set 
q�S�� �case �a�� and 
q�SMS� �case �b��
can be constructed as eigenstates for the total inversion op-
erator It �spatial inversion in a space-fixed system� for all
diatomic molecules. We denote the eigenvalues of It with �.
Assuming ML1

=ML2
=0, it can be shown that the only pos-

sible eigenvalue for It is +1 �24�. For homonuclear diatomic
molecules, there are two additional symmetry operations.
These are inversion of the spatial nuclear coordinates In and
inversion of the spatial electronic coordinates Ie with eigen-
value �−1�ie. For all operators, inversion is performed in a
space-fixed coordinate system. Electronic states with ie=1
are denoted u �ungerade�, whereas states with ie=0 are g
states �gerade�. These three symmetry operations are also
related through the relation It= InIe. We will assume that we
are working with states 
q�S�� and 
q�SMS� that are eigen-
states for the symmetry operators It , Ie and In.

The electronic case �b� states 
q�SMS� are linear combi-
nations of spin orbitals q��x ,r�
SMS�. To determine their be-
havior under symmetry operations, it suffices to consider
q��x ,r� and 
SMS� separately �25,26�. However, it is impor-
tant to realize that the separation 
q�SMS�= 
q��
SMS� is
only generally valid for one- and two-electron molecules.

Next we introduce the electronic permutation operator Pe
that permutes all the electrons. Both the spatial and the spin
part of 
q�SMS� are eigenstates of Pe. The eigenvalues cor-
responding to the spatial functions q��x ,r� are �−1�pe where
pe=0 �symmetric� and pe=1 �antisymmetric�. There exists an
intimate but not obvious connection between the eigenvalues
of the operators Ie and Pe when acting on q��x ,r�. It can be
shown �26� that the eigenvalues are related through the rela-
tion �−1�ie = � �−1�pe, where � are the eigenvalues of the It
operator, restricted to +1 for the present system. It then fol-
lows that �−1�ie = �−1�pe, hence Pe and Ie have identical ei-
genvalues acting on q��x ,r�.

The result of the operation Pe
SMS� is easily worked out
due to the symmetry of the Clebsch-Gordan coefficients, and
one obtains Pe
SMS�= �−1�2S1−S
SMS�. To summarize, we
may then write

Pe
q�SMS� = �− 1�ie+2S1−S
q�SMS� . �17�

However, the Pauli principle requires

Pe
q�SMS� = �− 1�N1
q�SMS� , �18�

where N1 is the number of electron permutations. Combined
with Eq. �17�, this implies �−1�ie+2S1−S= �−1�N1. Since
�−1�2S1 = �−1�N1, it follows that only electronic states where
�−1�ie−S=+1 are allowed. These are the 1�g

+ and 3�u
+ states

found in diatomic alkali molecules.
In general, the allowed combinations of g /u and elec-

tronic spin S can be worked out from the Wigner-Witmer
rules �27�. See also �26� and references therein for a more
accessible derivation of the Wigner-Witmer rules.

We have found that It
q�SMS�=+1
q�SMS� and that
Ie
q�SMS�= �−1�ie
q�SMS� �It , Ie and In only act on the spa-
tial coordinates, leaving the spin states 
SMS� unaffected�.
From the relation In= ItIe, it then follows that In
q�SMS�
= �−1�ie
q�SMS�. However, inversion and permutation of two
nuclei �in a diatomic molecule� in space-fixed axis with ori-
gin at the center-of-mass position are the same two opera-
tions. Thus we conclude

In
q�SMS� = Pn
q�SMS� = �− 1�ie
q�SMS� . �19�

However, it is not obvious how the electronic case �a�
states defined in molecule-fixed axes are affected by Pn. To
determine this, we use the relation between case �a� and case
�b� states


q�SMS� = �
�

DMS,�
S �
,�,0��
q�S�� , �20�

where D is the rotation matrix �28� that rotates the space-
fixed component of MS into the molecule-fixed � compo-
nent. The effect of Pn is the same as a rotation of the axis of
the molecule by an angle 
, which is equivalent to the trans-
formation ��� ,
�→ �
−� ,
+
��. The property

PnDMS,�
S �
,�,0�� = DMS,�

S �
 + 
,
 − �,0��

= �− 1�SDMS,−�
S �
,�,0��, �21�

which follows from the definition of the D matrix elements
is then very useful. Knowing how Pn acts on both 
q�SMS�
and DMS�

S �
 ,� ,0��, it is seen from Eq. �20� that

Pn
q�S�� = �− 1�−S+ie
q�S − �� , �22�

in agreement with �29�. For a more detailed treatment, see
Zare et al. �25� and references therein.

We also need to consider the nuclear-spin states

I1MI1

�
I2MI2
�= 
I1MI1

I2MI2
� under permutation of the nuclei

Pn. Working with the case �b� basis in space-fixed axis, it
follows immediately that Pn
I1MI1

I2MI2
�= 
I2MI2

I1MI1
�.

However, to obtain Pn
I1�I1
I2�I2

� we write


I1MI1
I2MI2

� = �
�I1

DMI1
,�I1

I1 �
,�,0��
I1�I1
I2MI2

� , �23�

or alternatively
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I2MI2
I1MI1

� = �
�I1

DMI1
,�I1

I1 �
,�,0��
I2MI2
I1�I1

�

= Pn��
�I1

DMI1
,�I1

I1 �
,�,0��
I1�I1
I2MI2

��
= �− 1�I1�

�I1

DMI1
,−�I1

I1 �
,�,0��Pn
I1�I1
I2MI2

� , �24�

hence Pn
I1�I1
I2MI2

�= �−1�−I1
I2MI2
I1−�I1

�. Similarly, rotat-
ing MI2

into �I2
yields

Pn
I1�I1
I2�I2

� = �− 1�−2I1
I2 − �I2
I1 − �I1

� . �25�

Finally, we determine the effect of Pn on the total angular-
momentum states 
FMF�F�. 	r 
FMF�F� are given in terms
of the DMF�F

F �
 ,� ,0�� rotation matrix elements �30�,

�FMF�F
�
,�� = 	r
FMF�F� =�2F + 1

4

DMF�F

F �
,�,0��,

�26�

and the phase factor is easily determined from Eq. �21� with
F in place of S, and with similar replacements for MF and
�F. The result is

Pn
FMF�F� = �− 1�F
FMF − �F� . �27�

Combining Eqs. �22�, �25�, and �27�, we obtain

Pn
q�S��I1
�I2

FMF�F�

= �− 1�−S+ie−2I1+F
q�S − � − �I1
− �I2

FMF − �F� ,

�28�

and case �a� states that are eigenstates for the Pn operator
and, fulfill, the Pauli principle can be constructed,


q�S��I1
�I2

FMF�F� =
1
�2

�
q�S��I1
�I2

FMF�F�

+ �− 1�−S+ie+F
q − �S − � − �I2

− �I2
FMF − �F� . �29�

The Pauli principle requires the states 
q�S��I1
�I2

FMF�F�
to have the following symmetry:

Pn
q�S��I1
�I2

FMF�F� = �− 1�2I1
q�S��I1
�I2

FMF�F� ,

�30�

which has been used to obtain Eq. �29�.
Similarly, the long-range basis must also fulfill the Pauli

principle. The long-range basis is defined in Eq. �14� and is a
linear combination of basis states 
F1F2FAMFa

� and 
lml�.
The two atoms may or may not be in the same hyperfine
state. Permuting the nuclei in the states 
FaMFa

� gives

Pn
F1F2FaMFa
� = �

MF1
,MF2

�
MS1

,MI1

�
MS2

,MI2

	F1MF1
F2MF2


FaMFa
�

�	S1MS1
I1MI1


F1MF1
�

�	S1MS2
I1MI2


F2MF2
�Pn�
qS1MS1

S2MS2
�

�
I1MI1
I2MI2

�� . �31�

To continue, we decouple the electronic spin S in the sates

q�SMS�,


qS1MS1
S2MS2

� = �
S,MS

	S1MS1
S1MS2


SMS�
q�SMS� ,

�32�

and obtain Pn
qS1MS1
S1MS2

�,

Pn
qS1MS1
S1MS2

� = �
S,MS

	S1MS1
S1MS2


SMS��− 1�ie
q�SMS� ,

�33�

where we have used Eq. �19� and �−1�ie = �−1�S−2S1+N1, which
follows from Eq. �17� and requirement �18�. Finally, we ex-
ploit the symmetry of the Clebsch-Gordan coefficients and
write 	S1MS1

S2MS2

SMS�= �−1�S1+S2−S	S2MS2

S1MS1

SMS� to

obtain

Pn
qS1MS1
S2MS2

� = �
S,MS

	S2MS2
S1MS1


SMS��− 1�N1
q�SMS�

= �− 1�N1
qS2MS2
S1MS1

� . �34�

The nuclear-spin states 
I1MI1
I1MI2

� can be permuted without
introducing any phase factor and we can conclude

Pn
F1F2FaMFa
� = �

MF1
,MF2

�
MS1

,MI1

�
MS2

,MI2

	F1MF1
F2MF2


FaMFa
�

�	S1MS1
I1MI1


F1MF1
�	S1MS2

I1MI2

F2MF2

�

��− 1�N1
qS2MS2
S1MS1

�
I2MI2
I1MI1

�

= �− 1�N1+F1+F2−Fa
F2F1FaMFa
� . �35�

The phase factor �−1�F1+F2−Fa stems from a rearrangement of
the Clebsch-Gordan coefficient. Finally, we determine the
sign of the states 
lml� under nuclear permutation

Pn
lml� = �− 1�l
lml� , �36�

which follows from the properties of the spherical harmon-
ics. All together, the FF-coupled basis states fulfill the equa-
tion

Pn
F1F2FalFMF� = �− 1�N1+F1+F2−Fa+l
F2F1FalFMF� ,

�37�

hence we can construct eigenstates for the Pn operator,
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F1F2FalFMF� =
1
�2

�
F1F2FalFMF�

+ �− 1�N1+F2+F2−Fa+l+2I1
F2F1FalFMF�� .

�38�

The phase factor is in agreement with the expression ob-
tained by Bo Gao �16� working with similar basis states.

III. INTERACTIONS

Consider again the diatomic Hamiltonian, now written in
the abbreviated form

H = −
�2

2�

d2

dr2 + Hev + Hhf + Hss + HZ + Hrot, �39�

where Hev denotes the electronic and vibrational contribu-
tion. Hhf represents the hyperfine operator, HZ is the Zeeman
interaction operator, and Hrot is the rotational energy opera-
tor. Hss is the spin-spin interaction operator included explic-
itly. Other relativistic effects are included in Hev. In this sec-
tion, we obtain the matrix elements for these operators in the
molecular Hund’s case �a� basis. Working with the case �a�
basis enables rather compact expressions for the relevant ma-
trix elements. The CPU time is also reduced by avoiding the
all too familiar Clebsch-Gordan coefficients often present in
large numbers in both hyperfine and Zeeman interaction
terms. Furthermore, it is very easy to write down the differ-
ent matrices in this basis, yielding an easy and transparent
algorithm less susceptible to errors.

A. Diatomic magnetic hyperfine interaction
in Hund’s case (a) basis

The general diatomic hyperfine Hamiltonian is given in
�31�. Only interactions that depend on the electronic spin are
of current interest. We will start with a microscopic hyperfine
Hamiltonian that takes the form

Hhf = �
j=1

2

�
�=−1

1

�− 1��Ij−��
i=1

N

si�a�rij� , �40�

where N is the total number of electrons. Ij−� and si�, respec-
tively, denote spherical components of the nuclear spin I j and
the electronic spin si. The quantity a�rij� depends on the
position of electron i relative to nucleus j. The Hamiltonian
in Eq. �40�, in particular, applies to the dominant Fermi-
contact interaction, with a�rij� defined by

a�rij� =
16


3
gIj

�0�N��rij� , �41�

where gIj
denotes the g factor of nucleus j.

We are considering the states 
qS��I1
�I2

� and have omit-
ted 
FMF�� as the hyperfine interaction is diagonal in the
corresponding quantum numbers. � is also ignored as it is
zero in alkali-metal diatomic molecules �or it may be in-
cluded in the collective quantum number q�. The relevant
matrix element can then be written as

	qS��I1
�I2


Hhf
q�S����I1
� �I2

� �

= �
�=−1

1

�− 1��	�I1

I1−�
�I1

� �	qS�
�
i=1

N

si�a�ri1�

�
q�S������I2
,�I2

� + �
�=−1

1

�− 1��	�I2

I2−�
�I2

� �

�	qS�
�
i=1

N

si�a�ri2�
q�S������I1
,�I1

� . �42�

For the elements diagonal in spin �S=S��, it follows from Eq.
�42� and the Wigner-Eckart theorem

	qS�
�
i=1

N

si�a�ri1�
qS���

= �
i=1

N

	S�
si�
S���	qS��
a�ri1�
qS���

= 	S�
S�
S����
i=1

N

	S

si

S�	qS��
a�ri1�
qS���

= 	S�
S�
S���b1, �43�

where b1 has been defined as

b1 � �
i=1

N

	S

si

S�	qS��
a�ri1�
qS��� , �44�

and a similar definition holds for b2 related to the other
nucleus. S� is the spherical component � of the total elec-
tronic spin. For two identical nuclei b1=b2=b. Combining
Eqs. �42�–�44�, the hyperfine interaction diagonal in S can be
written as

	qS��I1
�I2


Hhf
qS���I1
� �I2

� �

= b�	qS��I1
�I2


I1 · S
qS���I1
� �I2

� ���I2
,�I2

�

+ 	qS��I1
�I2


I2 · S
qS���I1
� �I2

� ���I1
,�I1

� � , �45�

where the matrix elements in Eq. �45� are defined by

	qS��I1
�I2


I j · S
qS���I1
� �I2

� �

= ��Ij
��,����Ij

,�Ij
� +

1

2
�S�S + 1� − ��� − 1��1/2

��Ij�Ij + 1� − �Ij
��Ij

+ 1��1/2���,�−1��Ij
� ,�Ij

+1

+
1

2
�S�S + 1� − ��� + 1��1/2

��Ij�Ij + 1� − �Ij
��Ij

− 1��1/2���,�+1��Ij
� ,�Ij

−1, �46�

with j=1,2. Equation �46� has been worked out by standard
ladder operator techniques.

We now return to Eq. �42� and to the part of the hyperfine
interaction off diagonal in S. Again, using the Wigner-Eckart
theorem,
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	qS�
�
i=1

N

si�a�ri1�
q�S���� = �
i=1

N

	qS�
si�
q�S����	qS�
a�ri1�

�
q�S���� , �47�

=	1�S���
S���
i=1

N

	S

si

S��	q
a�ri1�
q�� = g1	1�S���
S�� ,

�48�

where g1 has been defined

g1 �
1

	1�S���
S��
	qS�
�

i=1

N

si�a�ri1�
q�S����

= �
i=1

N

	S

si

S��	q
a�ri1�
q�� . �49�

A similar expression applies to g2 for the other nucleus.
We will return to the explicit connection between g1 and g2
later on. We note, however, that g1 and g2 are independent of
�. 	1�S��� 
S�� denotes the Clebsch-Gordan coefficient
from the Wigner-Eckart theorem that couples a spherical ten-
sor of rank 1 to the electronic spin S� to yield S. The off-
diagonal matrix elements in terms of g1 and g2 are written as
�combining Eqs. �42� and �48��

	qS��I1
�I2


Hhf
qS����I1
� �I2

� �

= g1 �
�=−1

1

�− 1��	1�S���
S��	�I1

I1−�
�I1

� ���I2
,�I2

�

+ g2 �
�=−1

1

�− 1��	1�S���
S��	�I2

I2−�
�I2

� ���I1
,�I1

� .

�50�

The matrix elements in Eq. �50� are readily calculated, and
the results are

	�Ii

Ii�1
�Ii

�� = �
1
�2

�Ii�Ii + 1� − �Ii
��Ii

� 1��1/2��Ii
�,�Ii

�1,

�51�

	�Ii

Ii0
�Ii

�� = �Ii
��Ii

�,�Ii
. �52�

Finally, we specialize to the alkali atoms where S1=S2

= 1
2 and S� �0,1�. It is readily seen from Eq. �49� that g1 and

g2 are independent of �. To simplify the calculation of g1
and g2, we set �=1 which yields 	1100 
11�=1�S�=0,��
=0�. The relation between g1 and g2 is obtained by decou-
pling the total electronic spin S,


q,S = 1,� = 1� = 
q,S1,�1 = 1/2,S2,�2 = 1/2� , �53�


q,S = 0,� = 0� =
1
�2

�
q�,S1,�1 = 1/2,S2,�2 = − 1/2�

− 
q�S1�1 = − 1/2,S2,�2 = 1/2�� , �54�

and we obtain

g1 = −
1
�2

	qS1,�1 = 1/2
�
i=1

N

si1a�ri1�
q�S1,�1� = − 1/2� .

�55�

In a similar way, we obtain for g2

g2 =
1

�2
	qS2�2 = 1/2
�

i=1

N

si1a�ri2�
q�S2,�2� = − 1/2� ,

�56�

which means that we have g1=−g2. Thus, we see that just
two hyperfine parameters are needed. For the 3� state the
only parameter is b, and for the 3�− 1� hyperfine interaction
there is a single parameter g1=−g2.

B. Ab initio calculation of the molecular hyperfine parameters

First, we consider the Fermi-contact hyperfine interaction.
The parameter b1 of Eq. �44� is then denoted b1F, and in the
case of two identical nuclei b1F=b2F=bF. The Fermi-contact
parameter bF, which is independent of �, is from Eqs. �43�
and �41� given by

bF =
16


3
gI�0�N

1

�
	qS�
�

i=1

N

siz��ri1�
qS�� . �57�

The expressions for bF above applies to the interaction that is
diagonal in the spin �S=S��, i.e., to the triplet state for the
alkali molecules.

For the Fermi-contact interaction that is off diagonal in S,
i.e., triplet-singlet interaction in the alkali case, the corre-
sponding parameters b1F� =g1 and b2F� =g2 are obtained from
Eq. �49�. Specializing to the diatomic alkali molecules, we
see from Eqs. �55� and �56� that b1F� =−b2F� , and

bF� = b1F� = −
16


3
gI�0�N

1
�2
�q,S1 =

1

2
,� =

1

2
��

i=1

N

si1��ri1�

��q�S1 =
1

2
,�1� = −

1

2
� . �58�

For a diatomic molecule, there is furthermore an aniso-
tropic spin-dependent hyperfine interaction that is generally
included through the parameter c �cf. �31��. In this case, the
quantity a�rij� in the Hamiltonian of Eq. �40� will also de-
pend on the component �. The Fermi-contact hyperfine pa-
rameters bF and bF� were computed ab initio for 6Li2 for
several internuclear separations. Extensive configuration in-
teraction �CI� calculations were performed to obtain ab initio
values of the parameters bF and bF� in 6Li2. The results are
shown in Fig. 10, with a corresponding discussion in Sec.
VI C 1.

The anisotropic part of the diatomic hyperfine Hamil-
tonian yields two additional hyperfine parameters. For inter-
actions diagonal in the spin S, there is an extra parameter c,
and terms off diagonal in S �singlet-triplet interaction� intro-
duces a parameter c� �cf. �31��. Basically, the anisotropic part
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adds corrections to the Fermi-contact parameters bF and bF�
in the matrix elements of the hyperfine Hamiltonian as fol-
lows:

bF → bF +
2

3
c, � = 0,

bF → bF −
1

3
c, � = � 1,

bF� → bF� +
2

3
c�, � = 0,

bF� → bF� −
1

3
c�, � = � 1. �59�

Ab initio values for the parameters c and c� were obtained
from calculations similar to those performed to obtain values
for bF and bF� . The results are shown in Fig. 10 for the 6Li2
molecule. We notice that the contribution from the aniso-
tropic hyperfine interaction is rather insignificant compared
with the dominant Fermi-contact interaction.

C. Diatomic molecular Zeeman interaction
in Hund’s case (a) basis

Calculations similar to those presented in this section can
be found in �32�, although this reference only considers di-
atomic molecules with one nuclear spin I. We extend the
theory to include atoms with two nuclear spins I1 and I2, but
we ignore some of the smaller second-order effects treated in
�32�. We write the Zeeman Hamiltonian as

HZ = �0gSS · B = �0gS �
�=−1

1

�− 1��S�B−�, �60�

and neglect the terms �0�gII+gNN� ·B ��0 is the Bohr mag-
neton�, which are all expected to be much smaller than the
electronic spin contribution. In Eq. �60�, it has been assumed
that L=0. S� and B−� refer to space-fixed spherical compo-
nents. The space-fixed components S� are related to the
molecule-fixed components S��

� by the usual D matrix ele-
ments

S� = �
��

D���
1 �
,�,0��S��

� . �61�

Inserted in Eq. �60�, this gives the Hamiltonian

HZ = �0gS �
�,��=−1

1

�− 1��D���
1 �
,�,0��S��

� B−�. �62�

Labeling all quantum numbers except the total angular mo-
mentum F by w�
w�= 
qS��I1

�I2
��, the matrix elements are

worked out as

	wFM�F
HZ
w�F�M��F��

= �0gS �
�,��=−1

1

�− 1��	w
S��
� B−�
w��

�	FMF�F
D�,��
1 �
,�,0��
F�MF��F�� . �63�

The integral 	w
D1�
 ,� ,0��
w�� is easily evaluated as an in-
tegral over the product of three D matrices �cf. Eq. �26��. By
convention we assume that the magnetic field is along the
space-fixed z axis with magnetic field strength B. Thus, there
is only a contribution from �=0 in Eq. �63� and we obtain

	wFMF�F
HZ
w�F�MF��F��

= B�0gS
��2F + 1��2F� + 1� �

��=−1

1 � F 1 F�

MF 0 − MF
�

�� F 1 F�

�F − �� − �F�
��− 1�MF−�F�−��	w
S��

� 
w���MF,MF�
.

�64�

As expected, it is clear from Eq. �64� that different MF quan-
tum numbers are not mixed. After a short piece of algebra,
we obtain the matrix elements with F�=F,

	wFMF�F
HZ
wFMF�F���=0 = B�0gs
MF�F

F�F + 1�
� , �65�

	wFMF�F
HZ
w�FMF�F����=�1

= − B�0gs
MF

��F � �F��F � �F + 1�
2F�F + 1�

	w
S�1� 
w��

���F� ,�F�1, �66�

and for F�=F+1,

	wFMF�F
HZ
w�F + 1�MF�F���=0 = − B�0gs��F − �F + 1��F + �F + 1��F − MF + 1��F + MF + 1�
�F + 1�2�2F + 1��2F + 3�

� , �67�

	wFMF�F
HZ
w��F + 1�MF�F����=�1 = � B�0gs��F − MF + 1��F + MF + 1��F � �F + 1��F � �F + 2�
�2F + 2�2�2F + 1��2F + 3�

	w
S�1� 
w����F� ,�F�1,

�68�

finally for F=F−1,
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	wFMF�F
HZ
w�F − 1�MF�F���=0 =

− B�0gs

�F2 − MF
2

F
� F2 − �F

2

�2F − 1��2F + 1�
� , �69�

	wFMF�F
HZ
w��F − 1�MF�F����=�1

= � B�0gs

�F2 − MF
2

2F

���F � �F − 1��F � �F�
�2F − 1��2F + 1�

	w
S�1� 
w����F� ,�F�1. �70�

Deriving these matrix elements from Eq. �64�, it is important
to be aware that the total angular momentum F has compo-
nents that obey anomalous commutation relations �33�. For
completeness, we also give

	w
S�1� 
w�� = 	qS��I1
�I2


S�1� 
q�S����I1
� �I2

� �

= �S�S + 1� − ��� � 1�

��q,q��S,S���I1
,�I1

� ��I2
,�I2

� ���,��1. �71�

D. Diatomic molecular rotational interaction in Hund’s case
(a) basis

The rotational energy operator is simply written B�r�R2

with B�r�= �2

2�r2 , where R is the orbital angular momentum of
the relative motion of the nuclei A and B. However, the case
�a� states are not eigenstates for this operator and the Hamil-
tonian is rewritten as

Hrot = B�r��F − �L + S + I��2

= B�r��F − Fa�2 = B�r��F2 − 2F · Fa + Fa
2� . �72�

Hrot is in general diagonal in the quantum numbers
q ,S , I1 , I2 ,F ,MF but off diagonal in ���=�+��, �I1

, and
�I2

.

To work out the diagonal contribution, it is convenient to
define Ja�L+S. Consider

	��I1
�I2


Fa
2
��I1

�I2
� = 	��I1

�I2

�Ja + I1 + I2�2
��I1

�I2
�

= 	��I1
�I2


Ja
2
��I1

�I2
� + I1�I1 + 1�

+ I2�I2 + 1� + 2�I1
�I2

+ 2���I1

+ �I2
� . �73�

The remaining element in Eq. �73� can be worked out:
	��I1

�I2

Ja

2
��I1
�I2

�= 	��I1
�I2


L2+2L ·S
��I1
�I2

�+S�S
+1�. Effectively, this gives S�S+1� when L=0. However, if
L�0 the terms 	��I1

�I2

L2+2L ·S
��I1

�I2
� can be in-

cluded in Hev. Hence, we obtain for the diagonal matrix el-
ement

	��I1
�I2


Hrot
��I1
�I2

� = B�r��F�F + 1� − 2�� + �I1
+ �I2

�2

+ S�S + 1� + I1�I1 + 1� + I2�I2 + 1�

+ 2�I1
�I2

+ 2���I1
+ �I2

�� . �74�

Next we turn to the off-diagonal elements. Consider first
the elements off diagonal in both �I1

and �I2
. The only

relevant operator in this case is 2B�r�I1 ·I2 and the corre-
sponding matrix element is

2B�r�	��I1
�I2


I1 · I2
��I1
� �I2

� �

= B�r���I1 + �I1
��I1 − �I1

+ 1��I2 + �I2
+ 1��I2 − �I2

�

���I1
� ,�I1

−1��I2
� ,�I2

+1 + B�r�

���I1 − �I1
��I1 + �I1

+ 1��I2 + �I2
��I2 − �I2

+ 1�

���I1�
,�I1

� ��I2
� ,�I2

−1. �75�

The operator −2B�r�Fa ·F will yield matrix elements off
diagonal in �I1

��I2
� but diagonal in both �I2

��I1
� and �.

Keeping in mind that F obeys anomalous commutation rela-
tions, we obtain

− 2B�r�	��I1
�I2


Fa · F
��I1
� �I2

� = − B�r���I1 � �I1
+ 1��I1 � �I1

��F � �F + 1��F � �F���I1
� ,�I1

�1, �76�

with a similar expression for the elements off diagonal in
�I2

.
In Eq. �72� we also have additional operators of the type

2BJa ·I j with j=1,2. The corresponding matrix elements are
off diagonal in both � and �Ii

,

2B�r�	��Ii
�Ij


Ja · Ii
���Ii
��Ij

�

= B�r�	�
L� + S�
�����Ii � �Ii
+ 1��Ii � �Ii

���Ii
�,�Ii

�1,

�77�

with j=1,2 and j� i. The matrix element in Eq. �77� is eas-

ily evaluated: 	�
L�+S�
���=�S�S+1�−����1����,��1,
when L=0 is assumed.

Finally, we give the matrix elements off diagonal in � but
diagonal in both �I1

and �I2
coupled by the operator Ja ·F,

− 2B	��I1
�I2


Ja · F
���I1
�I2

�

= − B�S�S + 1� − ��� � 1�

���F � �F + 1��F � �F����,��1. �78�

All other matrix elements for the rotational Hamiltonian are
zero.
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E. Diatomic 3� spin-spin interaction in Hund’s case (a) basis

The electronic spin-spin Hamiltonian takes the form �34�

Hss = D�Sz
2 −

1

3
S2� + E�Sx

2 − Sy
2� . �79�

For 3� states, E=0 and D is equal to twice the standard
spin-splitting parameter ��r�. Ab initio calculations of the
spin-spin parameter ��r� seem to be nonstandard, an imple-
mentation of such a calculation is found in �35�. The spin-
spin interaction is diagonal in the basis 
q�S��, and the ma-
trix element can be written as

	qS�
Hss
qS�� = 2��r���2 −
1

3
S�S + 1�� . �80�

If we omit the constant diagonal contribution equal to
− D

3 S�S+1�, the spin-spin matrix elements take the simple
form,

	qS�
Hss
qS�� = 2��r��2, �81�

i.e., �= �1 are degenerate and shifted up or down in energy
relative to states with �=0, depending on the sign of ��r�.

IV. COMPUTATIONAL DETAILS

To solve the coupled Eq. �5�, we have implemented the
log-derivative method of Johnson �18�. Our routine deter-
mines which basis states to include based on the input from
the user. The basis should be chosen in such a way that the
important interactions are well represented. The restrictions
imposed by the Pauli principle are also important as nonex-
isting states would interact with the allowed states otherwise.
Computationally, the Pauli principle is also convenient in the
sense that it restricts the number of states included in the
calculation and thereby the dimension of the matrices. The
interactions are set up in the Hund’s case �a� basis using the
matrix elements worked out in the previous section. Inter-
atomic potentials are necessary input along with values for
the hyperfine parameters, which were handled in Sec. III B.

The various matrix elements in Eq. �5� must be evaluated
at different values of r. However, the Zeeman interaction is
independent of r and the Zeeman matrix elements are set up
only once. Similarly, the matrix elements of the rotational
operator �72� depend on r only through B�r�. This is in con-
trast with the hyperfine interaction which depends on r in a
more complex manner; hence the matrix elements repeatedly
need to be updated. The spin-spin interaction is diagonal and
depends on r through ��r�.

The integration of Eq. �5� extends from 2.75 to 300 a.u.
Interpolation in the interatomic potentials, hyperfine interac-
tion parameters, and the spin-spin parameter ��r� were per-
formed with cubic splines. The reduced mass used for 6Li is
5482.264721 a.u. calculated with the isotope mass obtained
from �36�.

The unitary transformation given in Sec. II A 3 is used to
transform from Hund’s case �a� basis to the FF-coupled ba-
sis. Finally, we perform another unitary transformation to a
basis that diagonalizes both the hyperfine interaction and the

Zeeman interaction terms. This final transformation defines
the K matrix. From the output, we can extract the S matrix
and the scattering lengths, in principle, for any partial wave l.

V. SINGLET AND TRIPLET INTERACTION
POTENTIAL CURVES

Reliable interaction potentials are very important in ultra-
cold physics. Fortunately, the Li2 interatomic potentials have
been extensively studied experimentally and theoretically,
both for the ground state X 1�g

+ and for the lowest electronic
triplet state A 3�u

+.
For the X 1�g

+ Li2 interatomic potential, we use the ab
initio potential calculated by Zavitsas �37� for distances be-
tween 3.4a0 and 12.0a0. We extend the data of Zavitsas �37�
with three values from Barakat et al. �38� at 12.6a0 , 13.4a0,
and 14.5a0. In addition, we use two values from Konowalow
and Olsen �39� at 2.75a0 and 3.00a0, and a value of Schmidt
Mink et al. �40� at 3.25a0. The interatomic potential curve
was smoothly joined with cubic splines to the long-range
potential in Eq. �82�.

For the 3�u
+ state, we use the interatomic potential dis-

cussed by Zemke and Stwalley �41� for distances between
6.39a0 and 15.5a0. We have supplemented this potential with
seven values �at 3.00a0, 3.50a0, 4.00a0, 4.50a0, 5.00a0,
5.50a0, and 6.00a0� from Konowalow et al. �42�. Cubic
splines were used to join the short- and long-range poten-
tials.

At large separations, both the singlet and triplet interac-
tion potentials can be written as a sum of dispersion terms
�43�

V�r� = −
C6

r6 −
C8

r6 −
C10

r10 . �82�

The dispersion coefficients �also called van der Waals coef-
ficients� C6 , C8, and C10 for Li2 have been calculated by
several authors. In Table I, we compare some of the most
recent calculations which show rather good agreement. We
have adopted the values obtained by Yan et al. for C6 , C8,
and C10.

The adopted singlet and triplet interatomic potentials are
shown in Fig. 1. The long-range potential was used for dis-
tances greater than �16.5a0.

With the combined short- and long-range interatomic po-
tentials described in this section, we obtained the elastic
s-wave scattering lengths as

T=−2090.94a0 and as
S

TABLE I. Comparison of the van der Waals coefficients
C6 ,C8 ,C10. All numbers in atomic units.

Yan et al.a Zemke and Stwalleyb Marinescu et al.c

C6 1393.39�16� 1381�8 1388

C8 83425.8�4.2� 82616�2288 83240

C10 73721�1��102 �64250�5140��102 73650�102

aReference �44�.
bReference �41�.
cReference �45�.
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=45.558 2a0 for the triplet �T� and singlet �S� potentials,
respectively. The singlet elastic-scattering length is experi-
mentally determined with rather high accuracy to be as

S

=45.151 9�16�a0 �46�, whereas the triplet scattering length is
not that well known. Abraham et al. �47� reported the value
as

T=−2160�250a0.
The different short- and long-range interatomic potentials

available in the literature yield deviating results for the scat-
tering lengths. Thus it seems hard to obtain ab initio scatter-
ing lengths with an accuracy comparable with the experi-
mental values, without of course somehow fitting the
combined �short and long range� potential to reproduce the
experimental results. Ab initio scattering lengths are there-
fore very demanding to calculate. Without the experimental
values available to guide the search for reliable interatomic
potentials, as

S and, in particular, as
T would be reported with

large uncertainties. One should also be aware that a com-
pletely inadequate interatomic potential can give excellent
values for the scattering lengths; thus there are no one-to-one
correspondence.

It has been reported previously that most s-wave Fesh-
bach resonances observed in 6Li are very sensitive to the
singlet potential and rather insensitive to the triplet potential
curve. An exception is the broad well-known Feshbach reso-
nance at B�837 G �see next section�, which is highly sen-
sitive to both. Thus, the rather small difference between the
ab initio calculated as

S compared to the experimental value

may indicate that the calculated resonance positions are sys-
tematically shifted relative to the observed positions. We ex-
plore this further in the next section and we will see that this
shift is roughly plus a few Gauss for all resonances.

VI. RESULTS

A. Calculation of s-wave scattering lengths and Feshbach
resonances

In this section, we report s-wave scattering lengths and
Feshbach resonances for two colliding 6Li atoms. The
s-wave scattering length is defined as

as = − lim
k→0

tan �0�k�
k

, �83�

where the phase shift �0 has been defined in Eq. �12�. In
alkali-metal diatomic molecules where L1=L2=0, the mo-
lecular mechanical rotation quantum number N corresponds
to the partial-wave quantum number l. In the following, N
= l and we write N rather than l.

The 6Li isotope has a nuclear spin I1=1 and an electronic
spin S1=1 /2 with a total angular momentum F1=S1+I1

� � 1
2 , 3

2 �, i.e., two hyperfine levels for zero external magnetic
field. The subscript 1 is used as a label to distinguish atom 1
from atom 2. Collisions can occur between atoms in the hy-
perfine levels F1=F2= 1

2 , F1=F2= 3
2 and Fi=

1
2 , Fj =

3
2 , �i , j�

=1,2 and i� j. Experimentally, most studied are collisions
between atoms in the lowest-allowed energetic states

F1MF1�= 
 1

2 , 1
2 � and 
F2MF2�= 
 1

2 ,− 1
2 �. Collisions between at-

oms in excited states may be inelastic and give spin relax-
ation. We have calculated s-wave scattering lengths for all
possible collisions, including atoms in different hyperfine
levels. The results are presented in Fig. 3 for magnetic field
strengths up to 1500 G �1 G=10−4 T�.

The states are identified by the quantum numbers N and
MF and in addition a label n to distinguish states with equal
quantum numbers N and MF. The new notation is motivated
by the fact that the quantum numbers F1 ,F2 ,Fa and F are
generally mixed in external magnetic fields. Table II lists all
relevant states 
nNMF� and their correspondence with the
low- or zero-field states 
F1F2FMF�. Since N=0, the quan-
tum number Fa=F and is suppressed in the notation. The
possible molecular levels corresponding to N=0 �no me-
chanical rotation, lowest rotational level� are shown sche-
matically in Fig. 2.

From the discussion in Sec. II A, it is clear that the states

F1F2FMF� can be written as linear combinations of states

5 10 15 20 25
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

r (a.u.)

V
(a
.u
.)

FIG. 1. Interatomic potential curves for the electronic states 1�g
+

�solid line� and 3�u
+ in Li2.

TABLE II. Correspondence between the states 
n ,N ,MF� and the zero-field states 
F1 ,F2 ,F ,MF�. F1 ,F2

and F are good quantum numbers only at zero magnetic field.


nNMF� 
F1F2FMF� 
nNMF� 
F1F2FMF� 
nNMF� 
F1F2FMF�


1,0 ,0� 
 1
2 , 1

2 ,0 ,0� 
1,0 ,−2� 
 3
2 , 1

2 ,2 ,−2� 
2,0 ,1� 
 3
2 , 1

2 ,2 ,1�

2,0 ,0� 
 3

2 , 1
2 ,2 ,0� 
2,0 ,−2� 
 3

2 , 3
2 ,2 ,−2� 
3,0 ,1� 
 3

2 , 1
2 ,1 ,1�


3,0 ,0� 
 3
2 , 1

2 ,1 ,0� 
1,0 ,2� 
 3
2 , 3

2 ,2 ,2� 
1,0 ,−1� 
 3
2 , 1

2 ,1 ,−1�

4,0 ,0� 
 3

2 , 1
2 ,2 ,0� 
2,0 ,2� 
 3

2 , 1
2 ,2 ,2� 
2,0 ,−1� 
 3

2 , 1
2 ,2 ,−1�


5,0 ,0� 
 3
2 , 3

2 ,0 ,0� 
1,0 ,1� 
 3
2 , 3

2 ,2 ,1� 
3,0 ,−1� 
 3
2 , 3

2 ,2 ,−1�
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n� which are eigenstates for the total electronic spin opera-
tor S2= �S1+S2�2 �e.g., Hund’s case �a� or Hund’s case �b�
states�


F1F2FMF� = �
n

cmn

n� . �84�

At zero field, none of the states 
nNMF� can be written as
linear combinations of only singlet states 

n�S=0�� as such

states would have zero hyperfine energy as r→�. However,
pure triplet states 
nNMF� do exist. In fact, at zero magnetic
field the states 
3,0 ,0�, 
3,0 ,1�, and 
2,0 ,−1� have total
electronic spin S=1, and corresponding s-wave scattering
lengths equal to as

T. As the magnetic field is increased from
zero, singlet states are introduced in the linear combinations
�84�, and the sensitive s-wave scattering length changes very
rapidly. This particular behavior is not resolved in Fig. 3.

The states 
4,0 ,0�, 
1,0 ,2�, and 
1,0 ,1� have s-wave
scattering lengths that show a steep decrease when the mag-
netic field is increased. At zero magnetic field, the scattering
lengths are moderate, but at higher magnetic field strengths
they attain the triplet scattering length as

T. In fact, at B
�1000 G these states are almost pure triplet states. To con-
firm, this we have plotted the sum of coefficients �n
cmn�S
=1�
2 vs magnetic field for the states 
4,0 ,0�, 
2,0 ,−1�, and

2,0 ,2� in Fig. 4. The states 
2,0 ,−1� and 
2,0 ,2� are also
included for comparison and are seen to have rather different
behaviors.
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FIG. 3. �Color online� Scattering lengths �s wave� vs magnetic field B for all states with N=0. Upper left panel includes all states with
MF=0, lower left panel includes all states with MF�2, whereas the right panel includes all states with MF�1. Each of the three panels
shows one well-resolved Feshbach resonance.

FIG. 2. Schematic diagram of the hyperfine energy levels in
6Li2 consistent with N=0. Quantum numbers at short range in ac-
cordance with Hund’s case �b� are indicated. Missing levels are
excluded by the Pauli exclusion principle �e.g., all N= I=0 levels�.
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In general, the scattering length varies only weakly with
the magnetic field, a property that is seen to hold for a ma-
jority of the states in Fig. 3. In fact, most states appear
largely unaffected by the magnetic field, e.g., the states

2,0 ,0�, 
2,0 ,2�, 
5,0 ,0�, 
3,0 ,−1�, 
2,0 ,1�, and 
2,0 ,−2�
all have moderate scattering lengths at all investigated mag-
netic field strengths. There are several reasons for this, some
of which will be discussed later on.

The states 
3,0 ,1� and 
2,0 ,−1� share a particular prop-
erty. Their energy eigenvalues are not affected by the in-
creasing magnetic field strength. Both states are part of �dif-
ferent� three level systems of interacting states in which one
of the eigenvalues retains a nearly constant value due to par-
ticular relations among the matrix elements for the hyperfine
and Zeeman interactions. At large magnetic fields, both

3,0 ,1� and 
2,0 ,−1� have scattering lengths of roughly
−6a0 and are found to be in a 50/50 superposition of singlet
and triplet basis states �see also Fig. 4�.

Further, the states 
2,0 ,−2�, 
2,0 ,2�, and 
2,0 ,0� have
energy eigenvalues that approach zero when the magnetic
field strength increases. Hence, in larger magnetic fields
these states are almost pure singlet states with a moderate
scattering length as

S. Finally, 
3,0 ,−1� shares much of the
same behavior, although the energy is decreasing toward
zero more slowly.

The most prominent features in Fig. 3 are the three clearly
visible Feshbach resonances, among them the broad well-
known 6Li2, F1=F2= 1

2 resonance in 
1,0 ,0�. All Feshbach
resonances reported in the present paper originate when the
hyperfine energy levels of the colliding atoms are Zeeman
shifted into resonance with the highest vibrational level �v
=38� of the X 1�g

+ electronic state �the molecular ground
state�. The precise resonance positions are shifted by the hy-
perfine interaction and depend upon the state in question and
its interacting partners. We remark that states where F1=F2

= 3
2 �low-field quantum numbers� will not have Feshbach

resonances as the corresponding energy eigenvalues are
larger than zero even at the highest magnetic field strengths
investigated. In the upper left panel of Fig. 3, we recognize

the broad Feshbach resonance. In our calculation it is located
at B=837.13 G, experimentally it is found at B0� �822
−834� G �46�. Part of this discrepancy might be caused by
the ab initio singlet and triplet potential curves which do not
reproduce the precise experimental scattering lengths. Simi-
lar discrepancies can be seen in the positions of all calculated
Feshbach resonances. The B�837 G resonance is accessible
through collisions of atoms in the states 
F1MF1

�= 
 1
2 , 1

2 � and

F2MF2

�= 
 1
2 ,− 1

2 �. This is a very broad resonance which
makes it well suited for experiments as it is easy to control
the scattering length with high precision.

Two additional broad Feshbach resonances are visible in
Fig. 3 �lower left and right panels�. In the lower left panel,
we report a Feshbach resonance experimentally less acces-
sible as it occurs in 
1,0 ,−1� which is a linear combination
�see Eq. �13�� of the FF-coupled states 
 3

2 ,− 3
2 , 1

2 , 1
2 � and 
 3

2 ,
− 1

2 , 1
2 ,− 1

2 �. The precise location of this Feshbach resonance
is B=692.89 G in our calculation. Furthermore, we also find
a Feshbach resonance in 
1,0 ,−2� accessible through colli-
sions of atomic pairs in the atomic states �
Fi ,MFi

��
 3
2 ,− 3

2 ,�
and 
 1

2 ,− 1
2 � �low-field quantum numbers�, with a combined

total angular-momentum projection MF=−2. The resonance
is clearly visible in Fig. 3 �lower left plot�. A detailed calcu-
lation locates this resonance at B=813.98 G.

In addition to the three s-wave resonances at B
�690–840 G discussed above, a narrow Feshbach reso-
nance in the state 
1,0 ,0� can be seen in Fig. 6 at the precise
magnetic field strength B=544.90 G. Experimentally, the
resonance is observed at 543.28�0.08 G �46�. It has been
reported that this particular resonance has a total nuclear spin
I=2, whereas the broad B�837 G resonance has I=0 �46�.
In contrast to 
1,0 ,0�, the states 
1,0 ,−1� and 
1,0 ,−2� do
not have two Feshbach resonances as they do not interact
with any I=0 states. However, at much larger field strengths
the v=37 singlet vibrational level will become energetically
accessible and make additional Feshbach resonances pos-
sible �48�.

Figure 5 sums up the discussion of the s-wave scattering
lengths as a function of magnetic field. States with corre-
sponding energy eigenvalues that are easily tunable by mag-
netic fields will become pure triplet states in high magnetic
fields with large and negative scattering lengths �as

T. States
with energy eigenvalues that are Zeeman shifted to lower
energies may be tuned into resonance with the singlet v
=38 vibrational level and give rise to Feshbach resonances.
However, most states are only weakly influenced by the ap-
plied field, with moderate scattering lengths that show small
dependencies on the magnetic field strength.

B. Calculation of the p-wave scattering volume

It is well known that s-wave collisions between two fer-
mions in identical spin states are forbidden by the Pauli prin-
ciple. However, p-wave collisions are possible although sup-
pressed at ultracold temperatures as �p�E3/2, whereas �s
�E1/2. Whenever s-wave scattering is not allowed, the
p-wave scattering volume Vp replaces the usual s-wave scat-
tering length as one of the important parameters. The p-wave
scattering volume is defined as
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Vp � − lim
k→0

tan �p�k�
k3 , �85�

and ap=�3Vp is sometimes referred to as the p-wave scatter-
ing length. �p is the p-wave phase shift and as usual k is the
wave number. To avoid the cube root, we report Vp instead of
ap.

Knowledge of the p-wave scattering volume is in general
of importance for experiments involving fermions. The
p-wave scattering volume has also been discussed in relation
with p-wave Cooper pairs �49� and p-wave scattering is an
important mechanism in a three-body recombination of iden-
tical spin-polarized fermions �50�.

We present calculations of the p-wave scattering volume
as a function of magnetic field for selected spin states. We
have focused on states where s-wave scattering is forbidden
and restricted the calculations to states corresponding to the
lowest atomic hyperfine level, that is, F1=F2= 1

2 . A sketch of
molecular hyperfine levels corresponding to N=1 is pre-
sented in Fig. 7.

We have used the same singlet and triplet potentials as
described in Sec. V. The corresponding singlet and triplet
p-wave scattering volumes are Vp

S =62 298a0
3 and Vp

T=
−48 252a0

3, respectively. This yields p-wave scattering
lengths ap

S =39.6a0 and ap
T=−36.4a0. The ap

T value should be
compared to −45a0 obtained in �51�.

Vp as a function of B is shown in Fig. 8. Because of the
Pauli principle, the total atomic spin Fa=F1+F2=1 for all
zero-field states. The definition and correspondence between
the states 
nNMF� and the zero-field states 
F1F2FaFMF� are
given in Table III.

Three different Feshbach resonances are visible in Fig. 8,
at the magnetic fields B1=162.99 G, B2=189.02 G, and
B3=218.72 G. All states corresponding to the lowest hyper-

fine level F1=F2= 1
2 at zero field show one of these reso-

nances, which one depends on the detailed interaction, i.e.,
the response to the magnetic field.

There are three different FF-coupled states 
F1MF1
F2MF2

�
corresponding to F1=F2= 1

2 . These are 
 1
2 , 1

2 , 1
2 , 1

2 �, 
 1
2 , 1

2
1
2 ,

− 1
2 �, and 
 1

2 ,− 1
2 , 1

2 ,− 1
2 �. The magnetic field only interacts

with the atomic spin; thus the corresponding energies should
only depend on the quantum numbers F1 ,MF1

,F2 ,MF2
. The

energy eigenvalues corresponding to the states 
FMF� will
therefore be degenerate with only three distinct values at all
magnetic field strengths. Figure 9 show the energy of all
states as a function of magnetic fields B� �0,100� G.

Collisions between atoms with MF1
=MF2

= 1
2 enable a

p-wave Feshbach resonances at B1, whereas collisions be-
tween atoms in MF1

=MF2
=− 1

2 enables a p-wave Feshbach
resonance at B3. Finally, there exists a p-wave Feshbach
resonance at B2 from collisions between atoms in MF1

= 1
2 ,

MF2
=− 1

2 . The different magnetic field strengths where the
resonances occur reflect the different Zeeman shifts experi-
enced in the various states, i.e., states that resonate at B1
have eigenvalues that are most easily perturbed to lower val-
ues by an external magnetic field. The resonances reported
here have all been experimentally observed in �46� at the
magnetic field strengths B1e=159.14 G, B2e=185.09 G, and
B3e=214.94 G. As previously emphasized, the calculated
values are a result of an ab inito calculation and the small
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FIG. 5. �Color online� Schematic presentation of the Zeeman
shift for different states as a function of the magnetic field strength.
At zero field, there are only three hyperfine levels. At nonzero mag-
netic field, three states with different MF quantum numbers are
shifted sufficiently low in energy to enable Feshbach resonances.
The energy differences are not correctly displayed in this figure.
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FIG. 7. Schematic diagram of the hyperfine structure in the N
=1 rotational level of 6Li2. The Pauli exclusion principle has been
taken into account.
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deviation in the resonance positions can be contributed to
small errors in the singlet potential. All the p-wave reso-
nances are found to be insensitive to the triplet potential.

Note that the relative positions of the calculated and ex-
perimentally observed resonances are in almost perfect
agreement: B2−B1=26.03 G in the present ab initio calcu-
lation whereas the experimental value is 25.95 G. Corre-
spondingly, B3−B2=29.70 G ab initio and B3−B2
=29.85 G experimentally.

Whereas the s-wave resonances had a total nuclear spin of
I=0 or I=2, the relevant nuclear spin for p-wave resonances
is I=1. In analogy with the s-wave scattering lengths, the
value of the p-wave scattering volume approaches the triplet
value Vp

T at high magnetic field strengths. The total electronic
spin together with the total nuclear spin are both approxi-
mately good quantum numbers at high magnetic field
strengths with the values 1 and 2, respectively.

The p-wave scattering volume as a function of magnetic
field strength for states with F1=F2=3 /2 �zero field� has a
behavior which resembles that of the s-wave scattering
length. Many states have p-wave scattering volumes that are
approximately constant, whereas a few attains the triplet
p-wave scattering volume in stronger fields.

C. Short-range hyperfine- and spin-spin interaction

1. Hyperfine interaction

The convenient representation of the hyperfine interaction
in the Hund’s case �a� basis easily allows for experimentation
with the short-range �r�20 a.u.� interaction. At r
�20 a.u. the hyperfine interaction is well described by the
simpler atomic hyperfine Hamiltonian

Hhf = bf�S1 · I1 + S2 · I2� , �86�

but this is not the case for r�20 a.u. as the electronic spin
of atom 2 will start to couple to the nuclear spin of atom 1
and vice versa. In Sec. III A, it has been described how the
hyperfine interaction is determined for all r by the four mo-
lecular parameters bf�r�, bf��r�, c�r�, and c��r�. These hyper-
fine parameters were calculated as described in Sec. III B
and are plotted in Fig. 10. For reference, the atomic values
are indicated with dotted lines. We see from Fig. 10 that the
calculated hyperfine parameters are rather similar to the
atomic hyperfine parameters. As expected the difference is
completely negligible for r�20 a.u., whereas there are only
minor differences for 20 a.u.�r�9 a.u.; in fact the only
difference is the bf� parameter that slowly decreases, coupling
the singlet and triplet states. For r�9 a.u., the molecular
hyperfine parameters are rather different from the atomic val-
ues, hence the molecular hyperfine interactions deviates from
the atomic interaction.

In scattering calculations, it is often assumed that the mo-
lecular hyperfine interaction at short range is equal to the
atomic hyperfine interaction. It can be argued from Fig. 10
that one can safely use the atomic hyperfine interaction also
at small distances for the present and similar systems without
introducing significant errors, as the hyperfine parameters are
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scattering volume as a function of
magnetic field strength for all
channels with F1=F2=1 /2.

TABLE III. Correspondence between the states 
nNMF� and the
zero-field states 
F1F2FalFMF�. F1 ,F2 ,Fa and F are good quantum
numbers only at zero magnetic field. At zero field F1=F2= 1

2 , Fa

=1, and N=1 for all states.


nNMF� 
FMF� 
nNMF� 
FMF� 
nNMF� 
FMF�


1,1 ,0� 
0,0� 
1,1 ,1� 
1,1� 
2,1 ,−1� 
2,−1�

2,1 ,0� 
1,0� 
2,1 ,1� 
2,1� 
1,1 ,2� 
2,2�

3,1 ,0� 
2,0� 
1,1 ,−1� 
1,−1� 
1,1 ,−2� 
2,−2�
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only slowly varying. On the other hand, the molecular hy-
perfine parameters show significant deviations from the
atomic values for small r.

We have tested the effect of the short-range molecular
interaction by repeating some of the s-wave scattering calcu-
lations. The results obtained using the atomic hyperfine in-
teraction have been compared with the results from a calcu-
lation including the complete r-dependent molecular
hyperfine interaction. To investigate this effect, we have
looked at the broad Feshbach resonance located at B
�837 G and calculated how much the resonance position is
shifted upon changes in the short-range hyperfine interaction.
As expected the resonance position is rather insensitive to

the detailed short-range molecular hyperfine interaction. The
shift is only +0.02 G when we replace the molecular inter-
action with the asymptotic atomic interaction. The much
more narrow resonance at B�545 G is even less affected.
Thus, we are led to conclude that the scattering length is
quite insensitive to small changes in the hyperfine energy in
the region of small r.

The strength of the short-range hyperfine interaction has
been varied and the effect calculated. The hyperfine param-
eters were varied by multiplying the functions bf�r�, c�r�,
bf��r�, and c��r� with a factor m to yield a stronger or weaker
short-range hyperfine interaction. The atomic hyperfine inter-
action valid at r�20 was left unchanged. Again we used the
Feshbach resonance at B�837 G to test the reaction. The
results are presented in Fig. 11, which shows that the short-
range hyperfine interaction needs a substantial increase to
shift the resonance positions in a significant way. Finally, we
also investigated the position of a p-wave Feshbach reso-
nance and found the same insensitivity to changes in the
short-range molecular hyperfine interaction.

It seems reasonable to expect that systems with similar
electronic structures �i.e., other alkali molecules� have hyper-
fine interactions that are well described by the atomic inter-
action. This conclusion is valid with respect to cold colli-
sions where the results are rather insensitive to small changes
in the short-range potential. Diatomic molecules with several
open-shell electrons that couple to the nuclear spin may have
a much stronger short-range hyperfine interaction. Figure 11
shows that in such cases, the above conclusion does not hold
and the short-range molecular hyperfine interaction becomes
important also in cold collisions.
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2. Spin-spin interaction

The spin-spin interaction was treated in Sec. III E. The
spin-spin parameter ��r� has been calculated ab initio in �52�
for selected values of r between 3.77 and 18.9 a.u. In Li2 the
spin-spin parameter ��r� is very small, on the order of
−0.01 cm−1. We have, however, included the spin-spin inter-
action in the present calculations and investigated its effect
on the various Feshbach resonances.

As might be expected, Feshbach resonances that are sen-
sitive to the triplet interatomic potential are also very sensi-
tive to the spin-spin interaction. For 6Li2, this means that the
Feshbach resonances at B�837, 814, and 693 G are sensi-
tive to the spin-spin interaction, whereas the other ones are
not.

To enable a more quantitative conclusion regarding the
effect of the spin-spin interaction, the calculations were re-
peated for a series of different choices of ��r�. In these re-
peated calculations, the function ��r� from �52� was multi-
plied by a factor m, with m ranging from −5 to 5. The results
are presented in Fig. 12, which shows the results for three
representative Feshbach resonances.

The three different Feshbach resonances investigated in
Fig. 12 are representable for all the Feshbach resonances
calculated. The three broad s-wave resonances behave simi-
lar to the 850 G resonance, whereas the p-wave resonances
behave similarly to the p-wave resonance in 12. We have let
the spin-spin parameter ��r� go to zero at r�21 a.u. as a
natural continuation of the function D�r�=2��r� plotted in
Fig. 3 in �52�.

We conclude that Feshbach resonances in states sensitive
to the triplet potential are affected by the spin-spin interac-
tion. For these states, the spin-spin interaction is important

�see also Fig. 12�. Feshbach resonances in states insensitive
to the triplet potential are also insensitive to the spin-spin
interaction as S�0 with �=0 in such states.

VII. SUMMARY

We have used rather accurate ab initio potentials available
for 6Li2 and solved the coupled equations to obtain s- and
p-waves scattering lengths for magnetic field strengths up to
1500 G. Hund’s case �a� basis states were used to work out
the molecular matrix elements required for the hyperfine,
Zeeman, and rotational operators. Basis states which are in
accordance with the Pauli principle upon the interchange of
identical nuclei were constructed and used. Emphasis was
put on including and working with the molecular hyperfine
interaction in the short-range regime. However, it was found
that the results of the scattering calculations were rather in-
sensitive to the short-range hyperfine structure.

Several Feshbach resonances of both s and p types were
found. The Feshbach resonance positions determined ab ini-
tio deviated with plus 2–4 G from the experimentally mea-
sured positions available for comparison. By inspection, the
deviations are found to be well represented by a constant
shift. Using the p-wave resonance at B=218.72 G as a ref-
erence, one obtains Bshift=Bab initio−Bexp=3.78 G. Subtract-
ing Bshift from the calculated Feshbach resonance positions
yields corrected positions Bcorrected which are in very good
agreement with the experimental values. Table IV summa-
rizes the discussion above. The constant shift is determined
from a reference state which is sensitive to the singlet poten-
tial curve but insensitive to the triplet potential curve. Hence,
Bshift can be seen as a correction to the singlet potential. The
broad s-wave resonances at B=837, 814, and 693 G are in
addition sensitive to the triplet potential, but there is no ob-
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vious way to obtain an additional correction for the triplet
state that would affect only those particular resonances.

APPENDIX: TRANSFORMATION BETWEEN
FF-COUPLED STATES AND MOLECULAR HUND’S CASE

(A) STATES

We start with the FF-coupled states 
qS1MS1
S2MS2

� and
specialize to alkali atoms where L1=L2=0. For this reason,
L1 and L2 are suppressed in the notation. The FF-coupled
states 
qS1MS1

S2MS2
� have both a spatial part with collective

quantum number q and an electronic spin part. To obtain the
connection with the Hund’s case �a� states, we form the total
electronic spin S=S1+S2,


qSMS� = �
MS1

,MS2

	S1MS1
S2MS2


SMS�
qS1MS1
S2MS2

� .

�A1�

The states 
qSMS� are assumed to be eigenstates of the op-
erators It , Ie and In �see Sec. II B�. It follows from Eq. �A1�
that the states 
qS1MS1

S2MS2
� can be written as


qS1MS1
S2MS2

� = �
SMS

	S1MS1
S2MS2


SMS�
qSMS� , �A2�

thus they are in general not eigenstates for the symmetry
operators Ie and In. At this point, it is appropriate to make a
comment regarding the situation when Li�0. In such cases,

the expression �A1� would still be valid although the replace-
ment 
qSMS�→ 
qL1L2ML1

ML2
S�� is needed. To form the

states 
q�SMS�, we would then write


q�SMS� = �
ML1

+ML2
=�

CML1
,ML2


L1L2ML1
ML2

SMS� ,

�A3�

where the coefficients CML1
,ML2

are determined by the inter-

action between the atoms. In Eqs. �A1� and �A3� the quan-
tum number MS refers to the space-fixed axis. The relation
between space-fixed and molecule-fixed states is


qSMS� = �
�

DMS,�
S �
,�,0��
qS�� , �A4�

where D is the rotation matrix �28�. We also need the di-
atomic rotational wave function �53�,

�NMN��
,�� = �2N + 1

4

�1/2

DMN,�
N �
,�,0��. �A5�

N is the total molecular angular momentum excluding elec-
tronic and nuclear spin. When Li=0, N represents only the
mechanical rotation. In addition, whenever �=0, the rota-
tional wave function simplifies to the spherical harmonics
�NMN0�
 ,��=YN,MN

�� ,
�.
Multiplying the states 
qSMS� and 
NMN��, using Eq.

�A5� for the rotational wave function and contracting the two
D matrices gives

�qSMSNMN� = �2N + 1

4

�1/2

�
�

DMS,�
S �
,�,0��DMN,�

N �
,�,0��	qS�,

=�2N + 1

4

�1/2

�
�,J

�2J + 1�� S N J

MS MN − MJ
��S N J

� � − �
�D−MJ,−�

J �
,�,0�	qS�,

=�2N + 1

4

�1/2

�− 1��−MJ�
�,J

�2J + 1�� S N J

MS MN − MJ
��S N J

� � − �
�DMJ,�

J �
,�,0��	qS�. �A6�

TABLE IV. Summary of calculated Feshbach resonances compared with experimentally observed ones.
�B=Bab initio−Bexp. See the text for a definition of Bcorrected and a further discussion of this quantity. The star
� �� indicates that there is no one-to-one correspondence between the state 
nNMF� and a unique free-atom
state 
F1MF1

F2MF2
�.

State 
nNMF� 
F1MF1
�
F2MF2

�
Bab initio

�G�
Bexp

�G�
�B
�G�

Bcorrected

�G�


1,0 ,0� 
 1
2 , 1

2 �
 1
2 ,− 1

2 � 837.13 822–834 3.70–15.1 833.35


1,0 ,0� 
 1
2 , 1

2 �
 1
2 ,− 1

2 � 544.90 543.28�0.08 1.62�0.08 541.12


1,0 ,−1� � 692.89 689.11


1,0 ,−2� 
 3
2 ,− 3

2 �
 1
2 ,− 1

2 � 813.98 810.20


1,1 ,0� , 
1,1 ,−1� , 
1,1 ,−2� 
 1
2 ,− 1

2 �
 1
2 ,− 1

2 � 218.72 214.94�0.08 3.78�0.08 214.94


2,1 ,0� , 
1,1 ,1� , 
1,1 ,2� 
 1
2 , 1

2 �
 1
2 , 1

2 � 162.99 159.14�0.14 3.85�0.14 159.21


3,1 ,0� , 
2,1 ,1� , 
2,1 ,−1� 
 1
2 , 1

2 �
 1
2 ,− 1

2 � 189.02 185.09�0.08 3.93�0.08 185.24
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At this point, we introduce the nuclear-spin states 
I1MI1
� 
I2MI2

� and rotate them into the molecule-fixed coordinate system.
The projections MI1

and MI2
are defined on the space-fixed axis. We have the relations


IiMIi
� = �

�Ii

DMIi
,�Ii

Ii �
,�,0��
Ii�Ii
� , �A7�

for i=1,2. Contracting the matrices DMI1
,�I1

I1 �
 ,� ,0��DMI2
,�I2

I2 �
 ,� ,0�� �I=I1+I2�, and using D−MI,�I

I �
 ,� ,0�= �
−1��I−MIDMI,�I

I �
 ,� ,0��, we may write

�qNMN�S�I1MI1
I2MI2

= �2N + 1

4

�1/2

�
�,J,I,

�I1
,�I2

�− 1��−MJ+�I−MI�2J + 1��2I + 1�� S N J

MS MN − MJ
��S N J

� � − �
�� I1 I2 I

MI1
MI2

− MI
�

�� I1 I2 I

�I1
�I2

− �I
�DMI,�I

I �
,�,0��DMJ,�
J �
,�,0��	qS�I1�I1

I2�I2
, �A8�

or if we define F=J+I together with the total angular-momentum function �53�

�FMF�F
�
,�� = �2F + 1

4

�1/2

DMF,�F

F �
,�,0��, �A9�

this can be written as


qSMS�
NMN��
I1MI1
�
I2MI2

� = ��2N + 1� �
�,J,I,F

�I1
,�I2

�− 1��+�I+�F−MJ−MI−MF�2J + 1��2I + 1��2F + 1� S N J

MS MN − MJ
�

��S N J

� � − �
�� I1 I2 I

MI1
MI2

− MI
�� I1 I2 I

�I1
�I2

− �I
�� J I F

MJ MI − MF
�� J I F

� �I − �F
�

�
qS��
I1�I1
�
I2�I2

�
FMF�F� . �A10�

To establish Eq. �A10�, we have contracted DMJ,�J

J �
 ,� ,0�� and DMI,�I

I �
 ,� ,0��.
The FF-coupled basis states 
qF1F2FalFMF� are easily written in terms of the states 
qS1MS1

S2MS2
� together with the

nuclear-spin states 
I1MI1
� 
 I2MI2

�, and after a piece of algebra one obtains the transformation to the

qSMS�
NMN�
I1MI1

�
I2MI2
� basis,


qF1F2FalFMF� = �
MFa

,ml,

MF1
,MF2

�
MS1

,MS2

MI1
,MI2

�
S,MS

�− 1�Fa−l+MF+F1−F2+MFa
+S1−I1+MF1

+S2−I2+MF2
+S1−S2+MS

���2F + 1��2Fa + 1��2F1 + 1��2F2 + 1��2S + 1�� l Fa F

ml MFa
− MF

�� F1 F2 Fa

MF1
MF2

− MFa

�
� � S1 I1 F1

MS1
MI1

− MF1

�� S2 I2 F2

MS2
MI2

− MF2

�� S1 S2 S

MS1
MS2

− MS
�
qSMS�
NMN��
I1MI1

�
I2MI2
� ,

�A11�

an expression which is lengthy, but rather easy to derive. Combining Eqs. �A10� and �A11� yields the relevant transformation
matrix elements 	qS��I1

�I2
FMF�F 
qF1F2FalFMF� reported in Eq. �16�.
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Feshbach resonances and transition rates for cold homonuclear collisions
between 39K and 41K atoms
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We report results from close-coupling calculations for homonuclear ultracold collisions between potassium
atoms, using the most up-to-date Born-Oppenheimer potential curves. The present study includes both of the
bosonic isotopes 39K and 41K. The s-wave scattering lengths as functions of the magnetic field strength for
collisions between atoms in identical and different hyperfine states are obtained. Several Feshbach resonances
are located and characterized for both isotopes. Comparison with experiments, where such data are available,
show excellent agreement. We also study weakly bound molecular states of the K2 molecule in close relation to
the calculated Feshbach resonances. Another objective of the present work is to study inelastic collisions in which
the hyperfine states of the colliding atoms are changed. From this type of calculation we obtain transition rates
as functions of the magnetic field strength. Finally, we discuss how such transition rates might be of importance
for experimental work.
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I. INTRODUCTION

Today ultracold atoms are routinely produced and subject
to experimental studies in laboratories all around the world.
Collisions and collision properties play an important role in
most of these experiments. We focus on collisions between
neutral atoms in the absence of light, with particular emphasis
on the ultracold regime below 1 μK.
Collisions can be divided into three groups, elastic, inelas-

tic, and reactive. In the present article we will only consider
elastic and inelastic collisions, since reactive collisions are
negligible at ultracold temperatures. Several methods for
producing ultracold molecules rely on the properties of atom-
atom collisions and the ability to manipulate these properties
with external fields. One example is buffer-gas cooling, which
relies on repeated elastic collisions to transfer energy from
the hot molecules to the cold buffer gas. This is a very
effective and general method, although it has in the past not
quite managed to cool below the milli-Kelvin temperature
range. Recent results, however, show that this is possible [1].
Another example is cold dimer production through the method
of photoassociation [2–5].
The present study is ofmost relevance to ultracold Feshbach

molecules, which are formed via what is known as a Feshbach
resonance. They are created when the energy of a bound
diatomic vibrational state coincideswith that of two free atoms,
called a zero-energy resonance. This is possible in a magnetic
field assuming that the energy of two free atoms and that of
the bound molecular state can be tuned relative to each other
by varying the magnetic field strength. When the energies of
the bound molecular state and the two free atoms coincide, the
phase shift induced by the interaction between the two atoms
diverges and thereby so does the s-wave scattering length. This
is recognized as a Feshbach resonance [6]. The ability to con-
trol the interatomic interaction in ultracold atomic gases is the
fundamental reason why Feshbach resonances have become
of such great importance. Feshbach resonances have been
used to convert atomic gases into molecular Bose-Einstein
condensates [7], to explore the BEC-BCS crossover [8], and
to observe Efimov trimer states [9].

At low temperatures T , the de-Broglie wavelength, propor-
tional to T −1/2, is large. Only collisions with the very lowest
value of the orbital angular momentum l allow the atoms to get
close enough to experience the interatomic potential; that is,
the colliding atoms have no relative orbital angularmomentum.
In fact, the kinetic energy involved in ultracold atom-atom
collisions is small enough to resolve even the hyperfine
structure. In this regime the effect of the atom-atom interaction
can be expressed in terms of the two-body scattering length
as [10]. This makes the s-wave scattering length an extremely
important parameter in the ultracold regime.
In this article we investigate the stable bosonic isotopes

of potassium, namely, 39K and 41K. We study homonuclear
atom-atom collisions between atoms in different hyperfine
states. We use the most up-to-date, accurate interatomic
potentials available and solve the full close-coupled equations.
We calculate the s-wave scattering length as a function of
the magnetic field and search for Feshbach resonances. In
addition, we determine transition rates for s-wave atom-atom
collisions for different hyperfine states and as a function of the
magnetic field strength. The most obvious reason for studying
these rates is to identify possible sources of trap loss. For
magnetic trapping to work, the atoms have to be either in a
low-field-seeking or a high-field-seeking state. Thus, therewill
be trap loss if a collision process induces a transition from a
low-field-seeking state to a high-field-seeking state, or vice
versa.
Feshbach resonances have been studied for most homonu-

clear alkali-metal species, although for the two potassium
isotopes 39K and 41K there are at present few theoretical or
experimental studies. However, some of the states that are
subject to our calculations have been studied experimentally
by D’Errico et al. [11]. In the case of the rather few theoretical
predictions made in the past [11–13], we present more
extensive calculations.
The study of Feshbach resonances in heteronuclear alkali-

metal species is also a very active field, closely related to the
topic of the present work. See, for example, the recent article
by Gacesa et al. [14], and references therein.
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Finally, we remark that only a small portion of this article
is devoted to the theory behind the model we have used in our
computations. However, we emphasize that the present study
basically uses the same approach to the coupled equations
as previous studies. The interactions are, however, worked
out in the molecular Hund’s case (a) basis, which enables
rather compact expressions for thematrix elements, alongwith
the possibility to include the molecular short-range hyperfine
interaction through calculation of only a few molecular
hyperfine parameters. See [15] and references therein for
an in-depth treatment of the model. The hyperfine energy
levels of alkali-metal dimers has also been studied recently
by Aldegunde et al. [16].
Throughout this article atomic units h̄ = me = e = a0 = 1

are used, and we work within the Born-Oppenheimer
approximation.

II. THEORY

A detailed description of the present model has been
provided elsewhere [15]; thus, only a brief review is presented
here. The Hamiltonian is written as

Ĥ = − 1

2μ
∇2 + Ĥev + Ĥhf + ĤZ, (1)

with Ĥev as the electronic and vibrational Hamiltonian, Ĥhf

as the hyperfine Hamiltonian, and ĤZ as the Zeeman Hamil-
tonian. The first term in Eq. (1) represents the kinetic energy
for the reduced mass μ. The time-independent Schrödinger
equation must be solved to obtain the wave function �(r, x),

Ĥ�(r, x) = E�(r, x), (2)

where r = (r, θ, φ), r is the internuclear separation, and θ

and φ specify the orientation of the molecular axis in a
space-fixed system. The electronic coordinates are collectively
denoted x = [x1, x2, . . . , xn]. In the present context E > 0,
although very small due to the low temperature. Furthermore,
�(r, x) is expanded in the electronic functions φb(r, x) as

�(r, x) =
∑

a

ψa(r)

r
φa(r, x), (3)

whereψa(r) represents the relativemotion of the collision part-
ners. The functions φa(r, x) are eigenfunctions for the relative
orbital angular momentum operator. Using Eq. (3) and inte-
grating over the electronic coordinates x = [x1, x2, . . . , xN ],
the Schrödinger equation can be written as

− 1

2μ

d2

dr2
ψa(r)+ l(l + 1)

2μr2
ψa(r)

+
∑

b

{
V ev

ab +V hf
ab (r)ψb(r)+V Z

ab

}
ψb(r) = Eψa(r). (4)

In Eq. (4) the matrix elements V ev
ab , V hf

ab and V Z
ab are defined as

V ev
ab (r) = 〈φa(r, x)|Ĥev|φb(r, x)〉, (5)

V hf
ab (r) = 〈φa(r, x)|Ĥhf |φb(r, x)〉, (6)

V Z
ab = 〈φa(r, x)|ĤZ|φb(r, x)〉, (7)

and the nonadiabatic coupling terms arising from the kinetic
energy terms have been neglected. The boundary conditions

which are enforced on the wave function ψa are ψa(0) = 0
and

ψa(r) −−−→
r→∞

∑
b

φb(r, x)
1√
kb

[jb(kbr)δab + gb(kbr)Kba].

(8)

The matrixK is determined from the calculated solutionψa(r)
together with Eq. (8). In Eq. (8) jl(x) and gl(x) are the Riccati-
Bessel functions [17] for E > Eb (i.e., open channels) and

kb =
√
2μ|E − Eb|. (9)

However, jl(x) and gl(x) must be replaced with the modified
spherical Bessel functions [17] of first and third kindmultiplied
with kb

√
r whenever E < Eb. A channel state represents the

quantum state of the system long before or long after the
collision. The coupling between the open and the closed
channels is very important for the existence of Feshbach
resonances. This coupling is due to the hyperfine interaction
for the present homonuclear system.
The matrix elements in Eqs. (5)–(7) are worked out in a

molecular Hund’s case (b) basis set and are given in detail
in [15], together with a description of the molecular Hund’s
case (b) basis and its properties. Again we refer to [15] for
further details. The channel states are constructed to respect
the Pauli principle under the exchange of identical nuclei;
see [18] for a detailed treatment.
Furthermore, the scattering matrix S can be calculated as

S = 1+ iK

1− iK
, (10)

once the K matrix defined in Eq. (8) is known. The elements
of the S matrix are the scattering amplitudes. The s-wave
scattering length as is related to the diagonal elements of the
S matrix as

Saa → e−2ikaas , (11)

when ka → 0. Once the S matrix is obtained, the off-diagonal
entries can be used to calculate the transition rateGa→b as [19]

Ga→b = lim
ka→0

πh̄

μka

|Sab − δab|2, (12)

whereGa→b is measured in m3/s. The expression forGa→b is
valid if the thermal energy is much smaller than the hyperfine
and Zeeman energies. The rateGa→b gives information about
the amount of decay from channel |ψa〉 to a different channel
|ψb〉 during a two-body collision. Thus, the rates can be used
to predict the population of hyperfine state in a gas of trapped
atoms or molecules. The transition rate Ga→b depends on the
magnetic field strength B through the matrix element Sab.
The treatment of the hyperfine interaction warrants extra

attention; see [15] and references therein. For diatomic
homonuclear alkali-metal molecules, the coupling between
the 3�+

u −1 �+
g states is due to this interaction. The molecular

hyperfine interaction can be described by the four parameters
bf , c, b′

f , and c′, where bf is the Fermi-contact hyperfine
interaction and c is a parameter associated with the anisotropic
part of the hyperfine Hamiltonian. The primed parameters b′

f

and c′ have a similar definition, but refer to the part of the
interaction that is off-diagonal in the total molecular electronic

032702-2
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TABLE I. Correspondence between the channel states |nMF 〉 and the two-atom states |F1MF1F2MF2 〉. At B = 0, the channel states and
the two-atom states are identical. The orbital angular momentum quantum number is zero for all tabulated states. The two atoms are identical,
and the two-atom states are symmetrized to respect the Pauli principle; that is, they are generally not simple product states of the type
|F1MF1〉|F2MF2 〉.

|nMF 〉 |F1MF1F2MF2 〉 |nMF 〉 |F1MF1F2MF2 〉 |nMF 〉 |F1MF1F2MF2 〉
|0, ±2〉 |1,±1, 1, ±1〉 |0, ±1〉 |1, ±1, 1, 0〉 |0, 0〉 |1, 0, 1, 0〉
|1, −2〉 |1, 0, 2, −2〉 |1, −1〉 |1, 1, 2, −2〉 |1, 0〉 |1, −1, 1, 1〉
|1, 2〉 |1, 1, 2, 1〉 |1, 1〉 |1, 1, 2, 0〉 |2, 0〉 |1, 1, 2, −1〉
|2, −2〉 |1,−1, 2, −1〉 |2, ±1〉 |1, 0, 2, ±11〉 |3, 0〉 |1, 0, 2, 0〉
|2, 2〉 |1, 0, 2, 2〉 |3, −1〉 |1, −1, 2, 0〉 |4, 0〉 |1, −1, 2, 1〉
|3, ±2〉 |2, 0, 2, ±2〉 |3, 1〉 |1, −1, 2, 2〉 |5, 0〉 |2, −2, 2, 2〉
|4, ±2〉 |2,±1, 2, ±1〉 |4, ±1〉 |2, ±2, 2,∓1〉 |6, 0〉 |2, −1, 2, 1〉

|5, ±1〉 |2, ±1, 2, 0〉 |7, 0〉 |2, 0, 2, 0〉

spin S. At long range the molecular hyperfine interaction
simplifies and correlates with the atomic hyperfine splitting. In
this limit, c = c′ = 0 and bf as well as b′

f can be determined
from the atomic hyperfine splitting.
For the present calculations the long-range description of

the hyperfine interaction will be sufficient. The inclusion of the
full molecular hyperfine interactionwill influence the results in
a rather insignificant way, as was shown and discussed in [15].
The standard Hund’s case (b) states may in some sense

represent the most convenient coupling model for a diatomic
molecule. However, in the present case the interaction between
the triplet and the singlet states render the total electronic
spin useless as a good quantum number. The good quantum
numbers are then the total atomic angular momenta F1 and F2
(for atom 1 and atom 2, respectively) and their projectionsMF1

andMF2 , along with the rotational quantum number l and the
projection MF = MF1 + MF2 + Ml . However, in a magnetic
field only l and MF remain good quantum numbers. Thus,
the channels are written |n, l,MF 〉, where n is introduced to
distinguish between channels with equal l and MF quantum
numbers. The channels are assigned labels n according to
their energies, where the channel with the lowest energy is
labeled n = 0. We will be concerned with s-wave channel
states, which means l = 0, and we will omit l when specifying
the channels; thus, |n, 0,MF 〉 = |n,MF 〉. The channel states
are eigenfunctions for the complete Hamiltonian in the limit
r → ∞, and they are constructed to respect the Pauli exclusion
principle upon interchange of nuclei and electrons. Table I
shows the correspondence between the channel states and the
two-atom hyperfine states.

III. SINGLET AND TRIPLET INTERACTION
POTENTIAL CURVES

Calculations of properties associated with ultracold col-
lisions between two atoms require reliable interatomic
Born-Oppenheimer potential curves. Formally, the Born-
Oppenheimer potential curve Ea(r) for the electronic state a

can be obtained by solving the time-independent Schrödinger
equation

Ĥevφa(r, x) = Ea(r)φa(r, x), (13)

where Ĥev is the electronic Hamiltonian including the kinetic
energy for all electrons and the Coulomb potential for

N electrons and the two nuclei. Again r is the internuclear
vector and x = [x1, x2, . . . , xN ] contains the electronic co-
ordinates. One should be aware that ab initio calculations
of highly accurate Born-Oppenheimer potentials represent a
very challenging many-body problem.We will therefore make
use of available interatomic potentials recently obtained from
molecular spectroscopy by Falke et al. [20].
The ground states of the two potassium atoms have

electronic spin S1 = S2 = 1
2 , and angular momentum L1 =

L2 = 0; that is, the atomic ground state is 2S.
The possible molecular electronic states are then the singlet

state 1�+
g and the triplet state 3�+

u [21,22](see Fig. 1). At
long range the molecular potentials can be written as a sum
of dispersion terms and an exchange type of potential which
diminishes exponentially,

V (r) = −C6

r6
− C8

r8
− C10

r10
∓ Arγ e−βr , (14)

where the − sign applies to the 1�+
g state, and the + sign

to the 3�+
u state. The constants C6, C8, C10, A, γ , and β are

given in [20]. We have used the same interatomic potential
for both isotopes of K2, thereby assuming the validity of the
Born-Oppenheimer approximation.
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FIG. 1. Interatomic potential curves for the electronic states 1�+
g

(solid line) and 3�+
u (dotted line) in K2.

032702-3



M. LYSEBO AND L. VESETH PHYSICAL REVIEW A 81, 032702 (2010)

IV. COMPUTATIONAL DETAILS

The (improved [23]) log-derivative method of Johnson [24]
was implemented in the C++ programming language to obtain
solutions to the set of coupled differential equations in Eq. (4).
The matrix elements in Eqs. (5)–(7) were worked out in [15]
and the expressions presented there have formed the basis for
the present calculations. To give a complete representation of
the relevant interactions in a system, one needs to includemany
more states than the few we want to study. The proper states to
include can be found by studying how the interactions couple
states with different quantum numbers. The Pauli principle is
taken into account to ensure that we only include states that
are allowed to exist in nature.
Included in the code is also the possibility to change be-

tween different basis states. These are the scattering channels,
the two-atom basis and different molecular Hund’s cases.
The actual interactions are represented in the Hund’s case
(b) basis set. In the following sections we will occasionally
include the quantum numbers for the total electronic spin S

and the total nuclear spin I for the different channel states.
Information regarding these quantum numbers are obtained
by transforming from a basis where the channel states are
defined to a suitable molecular Hund’s case basis.
For the present system there is no need to perform

interpolation in the the singlet and triplet potential curves,
as Falke et al. [20] provides an analytical function which is
adequate for all values of r .
The atomic hyperfine splitting� between the two hyperfine

levels with quantum numbers F = 2 and F = 1 for the 39K
isotope is taken to be� = 461.719720 MHz, a value obtained
from [25]. Correspondingly, the splitting between the levels
F = 2 and F = 1 is 254.013870 MHz for 41K, obtained from
the same reference. Based on thesemeasurements we calculate
the molecular hyperfine parameters bf and b′

f (see [15] for
more details regarding the molecular hyperfine parameters) as
bf = �

4 and b′
f = −bf . Furthermore, the reduced mass for the

39K2 system is taken to be 35 513.24612 a.u., obtained from
the isotope mass reported in [26]. Similarly, the reduced mass
for the 41K2 system is taken to be 37 334.4202 a.u.
The scattering lengths for two spinless atoms interacting

via the singlet potential curve are 138.80a0 and 85.41a0 for
39K and 41K, respectively [20]. For the triplet potential, the
scattering lengths are −33.41a0 and 60.27a0 for 39K and 41K,
respectively [20]. These numbers are determined solely from
theBorn-Oppenheimer potentials. In the following sectionswe
will refer to these values as the singlet and triplet background
scattering lengths for the relevant isotope.

V. RESULTS

A. Feshbach resonances and s-wave scattering lengths
for the 39K2 system

With the model outlined in Sec. II and in Ref. [15], together
with the interatomic potentials described in Sec. IV, we have
calculated s-wave scattering lengths for two colliding 39K
atoms. The 39K isotope has a nuclear spin I = 3

2 and one
unpaired electron; hence, there are two possible quantized
values for the total atomic angular momentum, that is, F = 2
andF = 1.With the two atoms infinitely separated, this system
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FIG. 2. (Color online) Energy as a function of magnetic field
strength for all channels corresponding to l = 0 in 39K2. At zero
field only the three different hyperfine channels are resolved (blue
solid lines, F1 = F2 = 2; black dash-dot lines, F1 = 1, F2 = 2; red
dashed lines, F1 = F2 = 1). For B > 100 G, it is evident that F1 and
F2 are no longer good quantum numbers.

has three degenerate energy levels, assuming zero magnetic
field and no relative orbital angular momentum. The energy
depends on the atomic hyperfine state specified by the quantum
numbers F1 and F2, which denote the total atomic angular
momentum for atoms 1 and 2, respectively. The three possible
combinations ofF1 andF2 areF1 = F2 = 1,F1 = F2 = 2 and
F1 = 1, F2 = 2 (same as F1 = 2, F1 = 1), which means that
there are three hyperfine manifolds (see also Fig. 2).
The channel states |n,MF 〉 respond differently to the

magnetic field which affects the system through the Zeeman
interaction. Figure 2 shows the energy as a function of the
magnetic field strength for all channels (corresponding to the
states |F1MF1F2MF2〉 at zero magnetic field; see Table I). Ten
channels have large negative Zeeman shifts and are possible
candidates for Feshbach resonances. Six of these channels
correspond to the lowest hyperfine manifold F1 = F2 = 1
at zero magnetic field. In addition, the three channel states
(|n,MF 〉) |1,−1〉, |1,−2〉, and |0,−3〉 from the F1 = 1, F2 =
2 manifold and the |0,−4〉 channel from the F1 = F2 = 2
hyperfine manifold also have large negative Zeeman shifts.
All relevant channels for the present discussion are defined in
Fig. 3 and Table I.
We will now consider collisions between two atoms in the

lowest atomic hyperfine state withF1 = F2 = 1. These atomic
states are not susceptible to spin relaxation and may therefore
be most convenient for experimental work. Figure 4 shows the
s-wave scattering lengths as as a function of the magnetic field
strength B.
The most prominent feature seen in Fig. 4 is a number of

Feshbach resonances, that is, the divergences in the scattering
length as(B). The number of resonances and the corresponding
field strength vary from channel to channel.
Channels with the quantum numbersMF = ±2 and l = 0,

originating from the lowest hyperfine manifold, represent
collisions between atoms in the two atomic hyperfine states
|F1MF1〉 = |1,±1〉A and |F2MF2〉 = |1,±1〉A. To avoid any
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FIG. 3. (Color online) Energy vs magnetic field defining the channel states |n, MF 〉, whereMF = MF1 + MF2 and n is used as an additional
label to distinguish channels with the same value ofMF . The channel with the lowest energy is labeled n = 0. Only channels corresponding to
zero orbital angular momentum are shown and the magnetic field strength varies between 0 and 500 G (cf. Fig. 2).

possible confusion, we will use the subscript A for atomic
states, whereas no subscript will be used for scattering
channels. In the right panel of Fig. 4 (MF = ±2) we see the
characteristic features of six Feshbach resonances, three in the
|0,−2〉 channel and three in the |0, 2〉 channel. Away from all
resonances as(B) attains moderate negative values 
 −35a0.
The Feshbach resonances occur at different magnetic field
strengths for the |0, 2〉 and |0,−2〉 channels, as they respond
differently to the magnetic field. More detailed information
about each resonance is given in Table II. We note that there
are threewide resonances in the |0,−2〉 channel and also one in
the |0, 2〉 channel. The remaining two resonances, which both
occur in the |0, 2〉 channel, are narrow with a width below 1 G.
Experimentally, the wide resonances are the most favorable
and the resonances occurring in the MF = ±2 channels
are experimentally the best studied Feshbach resonances for
this isotope [11]. All available experimental data have been
included for comparison in Table II. The comparison shows
excellent agreement.
In the top left panel of Fig. 4 we report the s-wave scat-

tering lengths for channels with MF = ±1. Three Feshbach
resonances are found in both channels |0, 1〉 and |0,−1〉. The
|0,±1〉 channels correspond to collisions between atoms in
the atomic hyperfine states |1, 0〉A and |1,±1〉A. Note that
these collisions are between atoms in different hyperfine states.
One broad and two narrow resonances are found in the |0, 1〉

channel. The broad resonance occurs at B 
 450 G and is
about 40 G wide. Two broad resonances are also found in the
|0,−1〉 channel, at B 
 100 G and at B 
 500 G, together
with a narrow resonance at B 
 720 G. Far away from all
resonance, as(B) attains a value close to −35a0.
Finally, in the bottom left panel of Fig. 4 we have plotted

the s-wave scattering lengths as(B) for collisions between
atoms in the identical atomic hyperfine state |1, 0〉A (dashed
blue line), and for collisions between atoms in the different
hyperfine states |1,−1〉A and |1, 1〉A (Recall that the subscript
A is used to denote atomic states). The functions as(B) are
seen to vary rapidly at the relevant magnetic field strengths B.
This is in particular true for the |0, 0〉 channel which exhibits
six Feshbach resonances, two broad (at B = 470 and 490
G) and four narrow (at B = 58, 65.6, 825.0, and 832.3 G)
[cf. Fig. (4)].
The results presented here show that the resonance widths

varies from 100 to 0.10 G for the present isotope. The width
depends on the hyperfine interaction strength.
Tiesinga et al. [27] found that the scattering length as a

function of the magnetic field strengthB could be expressed as

as(B) = abg

(
1− �

B − B0

)
, (15)

close to a Feshbach resonance. In Eq. (15) the symbol �

represents the width of a given resonance, B0 is the field at the
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FIG. 4. (Color online) Scattering lengths as (s-wave) as a function of the magnetic field strength B. The top left panel refers to channels
with |MF | = 1, the bottom left panel shows channels withMF = 0, whereas channels with |MF | = 2 are plotted in the right panel. Notice the
two narrow Feshbach resonances in the |0, 1〉 channel at magnetic field strengths (B 
 25–40 G), visible in the upper left panel. Two narrow
Feshbach resonances are also found in the |0, 0〉 channel at the magnetic field strengths B = 50–60 G, less visible in the bottom left panel.
There is also a narrow Feshbach resonance in the channel |0,−2〉 at B 
 30 G, visible in the right panel where the solid line diverges to −∞.
See Table II for further details regarding the Feshbach resonances.

center of the resonance, and abg is the background scattering
length, that is, the scattering length away from the resonance
where B − B0 is large. To further characterize the calculated
Feshbach resonances we report abg, �, and B0 in Table II.
Furthermore, we calculate the s-wave scattering lengths

as(B) for channels corresponding to the F1 = 1, F2 = 2
hyperfine manifold, that is, collisions between atomic states
|F1MF1〉A and |F2MF2〉A with F1 = 1 and F2 = 2. Selected
results are collected in the top panel of Fig. 5. Four channels are
chosen to depict the typical behavior of as(B) for this group of
channels. Among them are the two channels |0,±3〉 accessible
through collisions between atoms in the atomic hyperfine
states |1,±1〉A and |2,±2〉A. Whereas the |0,−3〉 and |0, 3〉
channels have an almost pure triplet character and therefore
attain the background triplet scattering length 
 −34a0, this
is not seen for the two channels |2, 2〉 and |3, 0〉. Collisions
between atoms in the atomic hyperfine states |1, 0〉A and
|2, 2〉A are represented by the channel |2, 2〉, whereas collisions
between atoms in the states |1, 0〉A and |2, 0〉A are represented
by the channel |3, 0〉. The scattering length aS(B) for channel
|3, 0〉, depicted in the top panel of Fig. 5, show a resonancelike
structure. This is not a Feshbach resonances in the sense that
we have previously discussed. The s-wave scattering length
does not diverge to ±∞. Instead, as(B) evolves rapidly and
changes sign at B 
 257 G, but as(B) never exceeds 250a0

and never goes below −600a0. We remark that this is not due
to the finite resolution in our calculations.
To complete the discussion, we report the s-wave scattering

length as(B) for collisions between two atoms in the identical
hyperfine states |2,MF1〉A, with MF1 = MF2 = 0,±1,±2.
The results are shown in the bottom panel of Fig. 5. The
selected channels are chosen to give a flavor of the typical
behavior for aS(B) for this group of channels.
Channels with MF = ±3,±4 have s-wave scattering

lengths which attain the background triplet scattering length
because of their triplet character. Additional channels have
their scattering lengths determined by the triplet and singlet
scattering lengths and vary slowly and continuously between
the two. This type of behavior is exemplified by the channels
|2, 2〉 (top panel) and |4,−2〉 (bottompanel) in Fig. 5. The Zee-
man shifts drives these channels to either a dominantly singlet
or triplet character as the magnetic field strength increases.
As discussed previously, the Feshbach resonances evident

in Fig. 4 arise because the energy of the atom pair coincides in
energy with that of a bound molecular state. By calculating the
bound molecular levels, it is possible to study this relationship
in more detail (see Fig. 6). The energy of a bound molecular
state corresponding to zero rotation is determined from the
vibrational energy together with the hyperfine and Zeeman
interactions. The singlet and triplet character of the bound
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TABLE II. Characterization of Feshbach resonances found in channels corresponding to the lowest hyperfine level, that is, withF1 = F2 = 1.
The second column shows experimentally measured values for the calculated Feshbach resonances. Experimental data are from D’Errico et al.
Btheory denotes the theoretical predictions for the center of the different Feshbach resonances. Referring to Eq. (15), Btheory should be used for
B0 in the parametrization of these resonances. See the text for a discussion of the column with heading S, I, F . The background scattering
length abg [cf. Eq. (15)] are given in units of a0. Finally, � denotes the theoretical predictions for the resonance widths, measured in gauss. In
addition to their experimental observations, D’Errico et al. [11] performed theoretical calculations of resonances in the channels |0, ±2〉 and
|0, 0〉. Their results are in good agreement with those of the present work.

|nMF 〉 Bexpt (G) Btheory (G) S, I, F abg (units of a0) � (G)

|0, 2〉 25.85± 0.10 25.90 1,3,3 −35.73 −0.4315
|0, 2〉 403.4± 0.7 402.9 −,−, − −29.48 −51.39
|0, 2〉 752.3± 0.1 752.8 −35.29 −0.3971
|0, −2〉 32.6± 0.15 33.61 1,1,(2) −13.46 79.82
|0, −2〉 162.89± 0.9 162.5 1,3,(3) −11.75 −60.58
|0, −2〉 562.2± 0.15 561.4 0,−,(3) −29.19 −55.22
|0, 1〉 25.80 1,3,3 −38.02 −1.252
|0, 1〉 39.86 1,1,1 −38.46 −2.196
|0, 1〉 445.6 (0),−,− −30.15 −37.82
|0, −1〉 113.9 1,3,− −25.75 −29.48
|0, −1〉 526.4 −,−,3 −30.90 −28.39
|0, −1〉 719.0 −36.94 −0.9820
|0, 0〉 59.3± 0.6 58.86 1,3,3 −15.92 −10.45
|0, 0〉 66.0± 0.9 66.49 1,1,− −21.09 −5.403
|0, 0〉 472.5 (0),2,1 −22.56 −88.11
|0, 0〉 491.4 (0),3,− −80.11 −12.37
|0, 0〉 825.0 −32.41 −0.0361
|0, 0〉 832.4 −36.31 −0.5249
|1, 0〉 77.78 1,3,3 −17.23 −150.9
|1, 0〉 501.9 (0),3,− −40.01 −22.31

molecular levels is in part lost for these highly excited
vibrational levels, as the hyperfine interaction couples the
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FIG. 5. (Color online) Calculated s-wave scattering lengths as
a function of the magnetic field. (Top) Selected channels from the
F1 = 1, F2 = 2 hyperfine manifold. Notice the large variation in the
scattering length for the |3, 0〉 channel. (Bottom) Scattering lengths
for atoms with F1 = F2 = 2 and MF1 = MF2 = 0, ±1, ±2 (at zero
magnetic field) corresponding to the channels |7, 0〉, |4, ±2〉, and
|0, ±4〉, respectively.

electronic states 1�+
g and 3�+

u . Thus, S is in general not a
good quantum number in this regime.
We start from pure bound singlet and triplet vibrational

states and introduce the hyperfine and Zeeman interactions.
To analyze the weakly bound molecular levels, we need only a
few parameters. These are themolecular hyperfine parameters,
the rotational constant B, and the vibrational energies for both
the singlet and the triplet states. The hyperfine parameters
are very well approximated by the atomic values for such
highly excited states. A reasonable value for the rotational
constant can be easily calculated. The vibrational energies are
unknown, but approximate values can be obtained from the
resonance positions. For the most weakly bound singlet and
triplet vibrational energies, we find the values 
 −1590 and

 −510MHz, respectively. The energy is measured relative to
the disassociation limit for two free atoms without hyperfine
structure at B = 0.
Through the hyperfine interaction the triplet and the singlet

vibrational levels interact and this system holds bound molec-
ular levels. Depending on the interaction, Feshbach molecules
in these loosely bound molecular levels can be characterized
more or less by the quantum numbers S, I , and F . In
Table II we have included these quantum numbers whenever
it is meaningful to do so. Blank entries signals that the
corresponding resonances cannot be fully explainedwithin this
simple two-vibrationalmodel; that is, one needs to include also
additional vibrational levels. Finally, we remark that the quan-
tum numbers S, I , and F are quantum numbers for the bound
Feshbach molecules, not for the open scattering channels.
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FIG. 6. (Color online) Channel states (dashed black line) vs
weakly bound molecular states (red, black, and brown solid lines)
as a function of the magnetic field strength for different values of
MF . The energy is given in MHz relative to the dissociation limit
for two free atoms without hyperfine structure. Intersections between
the channel state energies and that of the bound molecular states
are shown as filled circles. These are Feshbach resonances. (Bottom
right) The channel state energies as a function of the magnetic field
for all channels |0, MF 〉 included in the other panels. The top line is
for the channel withMF = −2, followed by channels withMF = −1,
0, 1, and 2.

Figure 7 shows the quantum numbers S, I , and F as a
function of the magnetic field for three bound molecular states
withMF = 2. At zero magnetic field, the total nuclear spin I

and the total angularmomentumF are good quantumnumbers,
while the total electronic spin S is not, due to the hyperfine
singlet-triplet interaction.

B. Feshbach resonances and s-wave scattering lengths
for the 41K2 system

The potassium isotope 41K has nuclear spin I = 3
2 , which is

identical to the nuclear spin of the 39K isotope. The difference
between the two systems 39K2 and 41K2 are then: (i) the
reduced mass and (ii) the hyperfine splitting. The molecular
Fermi contact parameters bf and b′

f determine the strength
of the hyperfine interaction. These parameters are obtained
from the atomic hyperfine splitting [25] and the result is
bf = 63.5035 MHz = −b′

f . A large Fermi-contact parameter
bf implies a strong coupling between the electronic states
3�+

u and 1�+
g and vice versa. Generally, a weak coupling

gives narrow Feshbach resonances, whereas a strong coupling
leads to broad Feshbach resonances.
The s-wave scattering lengths are calculated for all channels

|n,MF 〉 corresponding to the F1 = F2 = 1 hyperfine mani-
fold, that is, two colliding atoms in the atomic hyperfine states
|1,MF1〉 and |1,MF2〉. In the right panel of Fig. 8 the s-wave

scattering lengths as(B) as functions of the magnetic field
strength are shown for the channels |0, 2〉. These channels
represent collisions between atoms in the atomic hyperfine
states |F1MF1〉A = |1, 1〉A and |F1MF2〉 = |1, 1〉A. In total
there are six Feshbach resonances, four in the MF = −2
channel and two in the MF = 2 channel. All the resonances
are rather narrow compared to the resonances in the 39K
isotope. Note that there may exist additional resonances that
are not resolved, resonances with a width below 0.01 G could
go undetected. To the best of our knowledge, none of the
calculated resonances for 41K have been observed. There are,
however, other theoretical predictions [11] for the resonances
in the channels |0,±2〉.
Furthermore, there are several Feshbach resonances in

the |0,±1〉 channels, seen in Fig. 8. Two resonances are in
the |0,−1〉 channel and one is seen in the |0, 1〉 channel. These
resonances are accessible in experiments where two atoms in
the atomic hyperfine states |1, 0〉A and |1,±1〉A are allowed to
collide, the ± sign is for the |0,±1〉 channel.
For the two channels with MF = 0 we find three res-

onances, one in the |0, 0〉 channel and two in the |1, 0〉
channel, shown in Fig. 8. The resonances in the |0, 0〉
channel correspond to collisions between atoms in the identical
hyperfine state |1, 0〉A, whereas the resonances in the |1, 0〉
channel can be realized form collisions between atoms in the
atomic hyperfine states |1,−1〉A and |1, 1〉A. At somemagnetic
field strengths Fig. 8 is somewhat misleading, with reference
the bottom left panel. At B 
 750 G, the scattering length
for the |1, 0〉 channel (dashed brown line) seems to diverge to
±∞ twice. However, this is due to the range on the y axis, the
s-wave scattering length diverges only once, but has a rapid
variation formagnetic field strengths in the vicinity of the reso-
nance position. Thus, Fig. 8 and Table III should be compared.

TABLE III. Feshbach resonances in s-wave channels for all
channels with quantum numbers F1 = F2 = 1 at low magnetic field
strengths. The results included in this table are for the 41K isotope. The
background scattering lengths are included in column 3, given in units
of a0. The resonances widths� are included in column 4. To our best
knowledge none of the calculated resonances have been observed.
However, D’Errico et al. [11] used their experimental observations
to optimize a model from which they obtained theoretical predictions
for Feshbach resonances in the channels |0, ±2〉 and |0, 0〉. Their
values are in good agreement with the present work.

|nMF 〉 Btheory (G) abg (units of a0) � (G)

|0, 2〉 409.6 60.48 0.007775
|0, 2〉 661.2 60.50 0.2212
|0, −2〉 51.17 64.74 −0.3623
|0, −2〉 500.8 60.41 0.004612
|0, −2〉 748.1 60.56 0.2237
|0, −2〉 947.4 59.90 0.002226
|0, 1〉 675.1 60.49 0.1558
|0, −1〉 51.95 63.29 −0.09760
|0, −1〉 717.6 60.34 0.1184
|0, 0〉 452.4 60.15 0.01176
|0, 0〉 703.8 60.31 0.2962
|1, 0〉 455.8 60.52 0.0003994
|1, 0〉 685.6 60.94 0.1165
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FIG. 7. (Color online) Expectation values 〈S〉, 〈I 〉, and 〈F 〉 as a function of the magnetic field for three weakly bound states with total
angular momentumMF = 2. These are identical with the bound molecular states shown in the top left panel of Fig. 6. The top line in the top
left panel of Fig. 6 denotes the same state as the solid lines in this figure, whereas the bottom line in the same panel of Fig. 6 corresponds to

the dash-dotted line in this figure. Note the definition 〈S〉 ≡ 〈 Ŝ2

(S+1) 〉, and similarly for 〈I 〉 and 〈F 〉. See the text for a further discussion.
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FIG. 8. (Color online) Scattering lengths (s-wave) as a function of the magnetic field strength for 41K2. The top left panel refers to channels
with |MF | = 1, the bottom left panel shows channels with MF = 0; channels with |MF | = 2 are plotted in the right panel. See the text for a
further discussion.
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Apart from the resonances, the s-wave scattering length
behaves smoothly as it decreases from 65a0 at B = 0 G to
60a0 at B = 1000 G. For comparison, the background triplet
scattering length is 60.50a0 while the singlet scattering length
is somewhat larger and equal to 85.49a0. From the calculated
scattering lengths as(B) reported in Fig. 8, it seems that the
majority of channels have scattering lengths comparable to the
triplet scattering length. Hence, most channels in the system
appear to have a triplet character away from resonances. By
calculating 〈S〉 as a function of the magnetic field strength for
the relevant channels, this hypothesis is confirmed (top panel
of Fig. 9). At highmagnetic field strengths S is a good quantum
number and S = 1. From the bottom panel of Fig. 9, where 〈I 〉
is calculated as a function of the magnetic field, we observe
that I is generally not a good quantum number.
Table III provides more detailed information about each

Feshbach resonance, its width and background scattering
length, in accordance with Eq. (15). We have performed
additional calculations of the s-wave scattering lengths for the
selected channels |4,±2〉, |7, 0〉, and |0,±4〉. These channels
correspond to collisions between atoms in the identical atomic
hyperfine states |2,±1〉A, |2, 0〉A, and |2,±2〉A. In addition to
the channels we have discussed previously, these are some of
the most important channels, experimentally. The results are
shown in Fig. 10. Channels with MF = ±4 are again seen to
have very predictable s-wave scattering lengths.

C. Transition rates

In this section we will investigate how cold atomic colli-
sions can change the hyperfine states of the collision partners.
Two atoms in the initial states |F1MF1〉A and |F2MF2〉A collide
and the final atomic states are |F ′

1M
′
F1

〉A and |F ′
2M

′
F2

〉A. As we
discussed earlier, the sumMF = M ′

F1
+ M ′

F2
= MF1 + MF2 is

conserved in such a collision.
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FIG. 9. (Color online) 〈S〉 (top) and 〈I 〉 (bottom) shown as a
functions of the magnetic field strength for channels corresponding
to two atoms with zero orbital angular momentum (l = 0) and
hyperfine quantum numbers F1 = F2 = 1. Note that 〈S〉 ≡ 〈 Ŝ2

(S+1) 〉,
and similarly for 〈I 〉.
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FIG. 10. (Color online) Scattering lengths (s-wave) as a function
of themagnetic field strength for collisions between atoms in identical
atomic hyperfine states |2, MF1 〉A.

We report results for the transition rate constants, previously
defined in Eq. (12), for homonuclear collisions between two
potassium atoms. It is clear from the definition in Eq. (12)
that the transition rate constants can be readily obtained once
the important S matrix has been calculated. In atomic or
molecular traps where the density is high, collisions between
the particles are of great importance. When the relevant rate
constants are known, predictions can be made for the lifetime
of a trapped sample of atoms or molecules, as we will show
in an example. Magnetic trapping relies on the system to be
in a trappable state, that is, a state where the Zeeman shift
is favorable for the relevant experimental setup. Transitions
between hyperfine states may then lead to trap loss whenever
a transition drives the system into an untrappable state. In
addition, an amount of internal energy will be transformed
to kinetic energy in a transition between hyperfine states.
Furthermore, the population of hyperfine states changes over
time due to two-body collisions. After some time, a steady-
state population of hyperfine states is established. The time
scale for this to happen can be estimated from the transition rate
constants, as we will demonstrate. In the past, and particular
in relation to the experiments leading to BEC, the transition
rates for hydrogen have been thoroughly investigated (see for
instance [28,29]). Tiesinga et al. studied collisions between
sodium atoms [30] and Houbiers et al. [31] reported rates for
collisions between lithium atoms.
As previously mentioned, the number of atoms lost from

an atomic trap due to hyperfine state-changing collisions can
be estimated. Knowledge of which processes lead to trap loss
is a necessity, together with the corresponding rates Ga→b.
Once these pieces of information are obtained, the decrease in
density due to atoms escaping the trap per time is given as [19]

dρ

dt
= −ρ2

∑
i

giGi(ai → bi), (16)
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where Gi(ai → bi) are the rate constants for the transitions
|ai〉 → |bi〉 and the scalars gi are the number of atoms lost in
transition i. The density ρ is given as ρ = N/V , where V is
the volume of the trap. Correspondingly, the density decays
over a time scale Tloss given as

Tloss = 1

ρ
∑

i giG(ai → bi)
. (17)

The population of different atomic hyperfine states within
the trap can also be studied. Initially, all atoms present in
the trap might be in just one single hyperfine state. As
hyperfine changing collisions occur, additional states will be
populated. After some time of the order Tex, a range of different
atomic hyperfine states coexist within the trap. This is a result
of transitions |a〉 → |b〉, where both |a〉 and |b〉 represent
trappable states. An estimate for Tex can be calculated once
the transition rates are known as

Tex = 1

ρ
∑

i Gi(ai → bi)
. (18)

Tex is only relevant when it is much smaller than Tloss.
For each of the two potassium isotopes considered in the

present work, there are in total 36 relevant channels with zero
orbital angular momentum, which means that the number of
allowed transitions is as high as 80. See also Fig. 3, where all
channels are defined together with their Zeeman shifts. Due
to this multitude of possible transitions, we will in the present
work only present calculations for some selected cases.
The transition rate constantsGa→b depend on the magnetic

field, and we report Ga→b(B) for B ∈ [10, 1000] G.
The complete Hamiltonian for the system is written

Ĥ = ĤZ + Ĥev + Ĥhf + Ĥrot, but the rotational and Zeeman
interactions are diagonal in the channel basis and do not
couple different channels. The hyperfine interaction Ĥhf is
in general not diagonal in the channel basis. This is because
the complete molecular hyperfine interaction depends on
the internuclear separation r through the molecular hyperfine
parameters bf (r), c(r), bf (r)′, and c(r)′ introduced and defined
in [15]. When r → ∞ the molecular hyperfine interaction
correlates with the well-known atomic hyperfine interaction
which does not couple different channel states. Unfortunately,
values for the molecular hyperfine parameters are not available
and we will therefore use the atomic hyperfine interaction
for all values of r . This is a valid approximation as the
distance between the collision partners is large due to the low
temperature. Hence, the transitionswe study are induced by the
electronic Hamiltonian Ĥev. This means that the total angular
momentum projection MF = MF1 + MF2 + ml is conserved
in a transition. The electronic Hamiltonian is most effective
in coupling channels with the same expectation values for the
total angular momentum F̂2 and the total electronic spin Ŝ2

operators. The channel states are not eigenstates for the Ŝ2

operator, nor for the total angular momentum operator F̂2 in a
magnetic field. A channel state |ψ〉 takes the general form

|ψ〉 =
∑

i

ci |q
SIFMF 〉i , (19)

where |q
S〉i are Born-Oppenheimer states, that is, eigen-
states for the Ĥev operator, and the state |q
SIFMF 〉 is

the result of coupling the nuclear spin states |IMI 〉 to the
Born-Oppenheimer states (F = S + I). We consider collisions
without orbital angular momentum, hence the molecular
rotational quantum number is zero. The coupling element
〈ψ1|Ĥev|ψ2〉 takes the form

〈ψ1|Ĥev|ψ2〉
=

∑
ij

cicjVi(r)〈qi
iSiIiFiMF |qj
jSj IjFjMF 〉, (20)

a useful relation for discussing transition rates. Vi(r) are the
Born-Oppenheimer potentials defined in Sec. III. In Fig. 11
we report transition rates for transitions between channels
with the largest positive Zeeman shifts to the largest negative
Zeeman shifts for states with MF = 2, 1,−1,−2. Results
for both isotopes are included. These transitions represent
collisions between atoms in an initial state with F1 = F2 = 2
(low magnetic field quantum numbers) and with large positive
Zeeman shifts. The final postcollision atomic states correspond
to the F1 = F2 = 1 hyperfine manifold (low magnetic field
quantum numbers) with large negative Zeeman shifts (see also
Fig. 3). Note that there is a significant conversion of internal
energy to kinetic energy during these collisions. The difference
between the isotopes is due to the different hyperfine splittings;
the mass difference is too small to have a significant impact
on the rates.
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FIG. 11. (Color online) Transition rates Ga→b as a function of
the magnetic field. Included are the following transitions: 1, |4, 2〉 →
|0, 2〉; 2, |5, 1〉 → |0, 1〉; 3, |5, −1〉 → |0, −1〉; and 4, |4, −2〉 →
|0, −2〉 between channels designated by |n,MF 〉. All rates are for
collisions between atomswith initial state |F1 = 2, MF1F2 = 2, MF2 〉
and with final state |F1 = 1,MF1 , F2 = 1, MF1〉A (low-field quantum
numbers). Hence, these transitions are important as they take the
atoms from low-field-seeking states to high-field-seeking states. See
Table I for the complete set of MF1 and MF2 quantum numbers
involved in the processes. Solid lines represent the 39K isotope,
whereas dashed lines are for the 41K isotope. The initial and final
channels have the same value ofMF = MF1 + MF2 . See the text for
further discussion.
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FIG. 12. (Color online) Transition rates Ga→b as a function
of the magnetic field for transitions |7, 0〉 → |n, 0〉. Included are
the following transitions: 1, |7, 0〉 → |0, 0〉; 2, |7, 0〉 → |4, 0〉; 3,
|7, 0〉 → |6, 0〉; and 4, |7, 0〉 → |3, 0〉. Solid lines represent the 39K
isotope, whereas dashed lines are for the 41K isotope.

Figure 12 shows additional transition rates among the
MF = 0 channels. We consider the transition rates from
the |7, 0〉 channel, with the low-field quantum numbers
|2, 0, 2, 0〉A, that is, a channel with two atoms in the

identical hyperfine state |2, 0〉A. Included in the figure are
the rates for the four most dominant processes from this
initial channel to a final state, specified by the low-field
quantum numbers: |1, 0, 1, 0〉, |1,−1, 2, 1〉, |2,−1, 2, 1〉,
and |1, 0, 2, 0〉 for transitions 1, 2, 3, and 4, respec-
tively. Other transitions induced by collisions from the
specified initial state are possible, but not likely, as the
transition rates for such processes are at least one or-
der of magnitude smaller than for the processes included
here.
Finally, we include in Fig. 13 the dominant transition

rates at large magnetic fields, for all values of MF . A rather
typical feature is that one or two processes have transition
rates that are an order of magnitude larger than all the
other transitions at large magnetic field strengths. This effect
generally tends to stem from the strong channel coupling
due to the electronic Hamiltonian Ĥev. Characteristic for the
expansions [cf. Eq. (19)] of the initial and final channels
involved in the strong transitions is the fact that they have
the same set of dominant terms, which leads to large matrix
elements of Ĥev. The Zeeman interaction also plays an
important role. Although it does not couple the two channels
directly, the Zeeman interaction affects the channel states and
changes their expectation values 〈S〉, 〈I 〉, and 〈F 〉, that is, the
coefficients in Eq. (19). This makes some transitions more
favorable as the matrix element for the Ĥev operator increases,
while other transitions are suppressed with only negligible
coupling elements.
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FIG. 13. (Color online) Transition rates Ga→b as a function of the magnetic field. Included are the following transitions: 1, |2, 2〉 → |1, 2〉
(blue, top left); 2, |3, 1〉 → |1, 1〉 (black, top right); 3, |4, −1〉 → |2, −1〉 (red, bottom left); and 4, |3, −2〉 → |2,−2〉 (brown, bottom right)
between channels |n,MF 〉. Solid lines represent the 39K isotope, whereas dashed lines represent the 41K isotope. We have also included dotted
black lines which show the transition rates for a group of transitions that are dominant at low magnetic-field strengths. These rates decrease
rapidly at high magnetic field strengths, as indicated in the individual panels. The included dotted lines are for the 39K isotope. Several
resonances are observed in the figure. Their rather subtle origins will, however, not be discussed here.
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The dominant transitions shown in Fig. 13 involve small
amounts of energy; the Zeeman shifts of the initial and the final
channels are very similar. In terms of the low-field quantum
numbers, transition 1 is expressed as |1, 1, 2, 1〉 → |1, 0, 2, 2〉,
while transition 2 is |1,−1, 2, 0〉 → |1, 1, 2,−2〉. Hence,
only the individual values of MF1 and MF2 change in these
collisions, keeping the sum MF1 + MF2 constant. Low-field
quantum numbers for transitions 3 and 4 are |2,−2, 2, 1〉 →
|1, 0, 2,−1〉 and |2,−2, 2, 0〉 → |1,−1, 2,−1〉, respectively.
The initial channels correspond to the F1 = F2 = 2 hyperfine
manifold, whereas the final channel corresponds to the
F1 = 1, F2 = 2 manifold.
As an example, consider an atomic trapfilledwith low-field-

seeking 39K atoms. The atoms are prepared in identical atomic
hyperfine states |2, 1〉A, such thatMF = MF1 + MF2 = 2, and
the collision partners are described by the channel state |4, 2〉
prior to collisions within the trap. Furthermore, we assume an
initial density ρ = 1012 cm−3. The possible transitions from
the channel |4, 2〉 are 1, |4, 2〉 → |0, 2〉; 2, |4, 2〉 → |1, 2〉; 3,
|4, 2〉 → |2, 1〉; and 4, |4, 2〉 → |3, 2〉. In Fig. 14 we have
plotted the transition rates for these four processes as a
function of the magnetic field. The channel |0, 2〉 represents
two atoms in the identical atomic hyperfine state |1,−1〉A.
This is a high-field-seeking state; hence, transition 1 leads
directly to trap loss. Channel |1, 2〉 denotes two atoms in
different atomic hyperfine states, with the low-field quantum
numbers |F1MF1F2MF2〉 = |1, 1, 2, 1〉. The channel |2, 2〉
has low-ield quantum numbers |F1MF1F2MF2〉 = |1, 0, 2, 2〉.
Both channels |1, 2〉 and |2, 2〉 consist of one low-field-seeking
atom and one high-field-seeking atom [cf. Fig. (3)]. Hence, one
atom is lost per collision process whenever |1, 2〉 or |2, 2〉 are
the final channels. Assuming a magnetic field of 100 G, the
number of atoms lost per unit time can then be calculated from
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FIG. 14. (Color online) Transition rates Ga→b(B) for the fol-
lowing transitions: 1, |4, 2〉 → |0, 2〉; 2, |4, 2〉 → |1, 2〉; 3, |4, 2〉 →
|2, 2〉; and 4, |4, 2〉 → |3, 2〉. Values at B = 100 G are used to calcu-
late the trap loss and the time scale for population of different hyper-
fine states in Eqs. (21) and (22). The initial channel |4, 2〉 represents
two atoms with large positive Zeeman shifts and low-field quantum
numbers F1 = F2 = 2 together withMF = MF1 + MF2 = 2.

Eq. (16):

dρ

dt
= −ρ2

3∑
i=0

giG4→i 
 −5× 10−11ρ2 cm3 s−1

= −5.0× 1013 cm−3/s−1. (21)

The sum of the rates
∑

i G4→i is approximately 5×
10−11 cm3/s with dominant contributions from transitions 2
and 3 (cf. Fig. 14). The meaning of gi is to count the number
of atoms lost in transition |4, 2〉 → |i, 2〉; hence, g0 = 2,
g1 = g2 = 1, and g3 = 0. However, the atoms that remain
trapped will evolve into a mixture of the three relevant and
trappable atomic hyperfine states, that is, |2, 1〉, |2, 2〉, and
|2, 0〉, on a time scale of the order Tex. We can estimate Tex
from the transition rate for process 4, since the other transitions
(1,2,3) primarily induce trap loss. In terms of the low-field
quantum numbers, process 4 can be written (cf. Table I)
|2, 1, 2, 1〉 → |2, 0, 2, 2〉. Following Eq. (18), we find

Tex = 1

ρG4→3

 1

ρ6× 10−12 cm3

 0.17 s. (22)

A rough estimate shows that Tloss is of the same order. The
fact that Tloss and Tex are of the same order in this example
is not surprising as the relevant rates are similar. This is seen
from Fig. 14. From the same figure we also conclude that
at higher magnetic fields, the rate for transition 4 is several
orders of magnitude smaller than the rates for transitions 2
and 3; that is, Tex > Tloss. Hence, a strong magnetic field
and the corresponding Zeeman interaction contributes as a
stabilizing mechanism for the trap. Both time scales Tex and
Tloss are important for experiments. A carefully prepared initial
population of atoms will decay on the time scale Tloss and be
destroyed by population of unwanted atomic hyperfine states
on the time scale Tex. In the present example, both effects are
present and destroy the initial population rapidly. As seen in
Fig. 14, the trap loss and the mixing time can be increased
by more than one order of magnitude by working at higher
magnetic field strengths.

VI. CONCLUSIONS

In summary, we have calculated the s-wave scattering
length for homonuclear collisions between atoms in identical
and different atomic hyperfine states as a function of the
magnetic field strength. Channel states with the proper sym-
metry under exchange of identical nuclei were used. We have
searched for Feshbach resonances and accurately determined
the magnetic field positions for 20 Feshbach resonances in 39K
and 13 in 41K (see Tables II and III). Resonance widths and
additional properties were obtained and are included in the
tables. A brief study of the weakly bound states in the 39K2
molecule was also performed. It was found that the majority
of the calculated Feshbach resonances can be explained within
a model involving only two vibrational levels, with hyperfine
structure and Zeeman interaction. Furthermore, we find large
differences in the widths and the positions of the Feshbach
resonances for the two isotopes. The 41K system has a small
hyperfine splitting relative to the 39K system and a weaker
hyperfine interaction. As a consequence, the resonance widths
for 41K are significantly smaller than those for 39K.
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Transition rate constants as a function of the magnetic field
were obtained for both potassium isotopes. Results for selected
channels have been presented. Generally, the transition rates
as a function of the magnetic field strength show a rather
complex and unpredictable behavior. The transitions rates
for 39K are of the order of 10−11–10−13 cm3/s at small
magnetic field strengths, whereas the corresponding rates for
41K an order of magnitude smaller. We have identified the
most probable transitions |n,MF 〉 → |m,MF 〉 (alternatively
written as |F1MF1F2MF2〉 → |F ′

1M
′
F1

F ′
2M

′
F2

〉 at low magnetic

field strengths) and also the most energetic transitions. We
have shown how these rates affect the lifetime of a trapped
atomic gas. Finally, it is our hope that the present results
may be useful for future investigations of ultracold atomic
and molecular systems.
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