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Abstract

This paper analyses and compares optimal relational contracts be-

tween a principal/�rm and a set of agents when (a) only aggregate out-

put can be observed, and (b) individual outputs can be observed. We

show that the optimal contract under (a) is a team incentive scheme

where each agent is paid a maximal bonus for aggregate output above

a threshold and a minimal (no) bonus otherwise. The team�s e¢ -

ciency decreases with its size (number of agents) when outputs are

non-negatively correlated, but may increase considerably with size if

outputs are negatively correlated. In the case where individual output

can be observed, we show that the optimal contract is a tournament

scheme where the conditions for an agent to obtain the (single) bonus

are stricter for negatively compared to positively correlated outputs.

We �nally show that if agents have bargaining power, �rms may delib-

erately choose to organize production as a team where only aggregate

output is observable. The team alternative is more likely to be supe-

rior under negatively correlated outputs.

�We thank Eirik Kristiansen, Steve Tadelis, Joel Watson and seminar participants at
NHH, UC Berkeley and UCSD for comments and suggestions.

yUniversity of Stavanger Business School.
zDepartment of Business and Management Science, Norwegian School of Economics.
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1 Introduction

An increasing number of �rms tie compensation to their workers� perfor-

mance, but the way �rms arrange their incentive programs varies enormously

(see Lemieux et al, 2009 and Bloom and Van Reenen, 2010). Some �rms rely

on team incentives in which bonuses are tied to the joint output of a team of

workers. Other �rms rely on tournament schemes in which workers compete

against each other for bonuses or other rewards. And many �rms combine

both tournaments and team incentive schemes.

An important reason for this variation in how �rms provide incentives to

their employees may be attributed to technological di¤erences. First, it is a

matter of observability. Some �rms only observe the aggregate output from

teams of workers, while other �rms may be able to get an exact measure of

each individual�s output. Second, it is a matter of technological or stochas-

tic dependence between the workers. Some workers�outputs are positively

correlated, such as sales agents who are exposed to the same business cycles.

In other situations, workers�outputs are negatively correlated, for instance

when specialists with di¤erent expertise meet di¤erent sets of demand from

customers or superiors.

In this paper we study how these issues a¤ect optimal incentive design. In

contrast to previous literature, we focus on repeated game relational con-

tracts. A relational contract includes variables that are hard to verify by a

third party, such as the quality of a service or the value of a performance. As a

result, the contract cannot be enforced by a court of law and needs to be self-

enforcing. We study how observability and technological/stochastic depen-

dence between workers a¤ect the conditions for implementing self-enforcing

relational contracts, and furthermore, what the optimal relational contract

looks like in di¤erent situations.

In particular, we analyze and compare optimal relational contracts between

a principal and a set of agents when (a) only aggregate output can be ob-

served, and (b) individual outputs can be observed. We �rst show that the
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optimal contract under (a) is a team incentive scheme where each agent is

paid a maximal bonus for aggregate output above a threshold and a minimal

(no) bonus otherwise. This parallels Levin�s (2003) characterization for the

single-agent case. We show that the team�s e¢ ciency decreases with its size

(number of agents, n) when outputs are non-negatively correlated, but that

e¢ ciency may increase considerably with size if outputs are negatively corre-

lated. Negative correlation is bene�cial for the team because it increases the

marginal incentives for each team member to provide e¤ort. This indicates
that diversity and heterogeneity among team members can yield considerably

e¢ ciency improvements (see Horwitz and Horwitz, 2007, for a meta-analytic

review documenting positive e¤ects from team diversity).

We further allow agents to have ex post bargaining power over the values

they have created. In such a setting, a team of agents can also create values

in case the relational contract breaks down. Due to the well know free-rider

problem, this outside value decreases in the number of agents. However, the

weaker outside option strengthens the relational contract and thereby allows

for a higher bonus and thus cet. par higher e¤ort. In other words, the 1=n

free-rider problem might be a blessing in relational contracts.

In case (b), where individual output is observable, Levin (2002) have shown

that for independent outputs the optimal relational contract entails a stark

RPE scheme (relative performance evaluation); a form of a tournament,

where at most one agent is paid a (maximal) bonus. We point out that the

e¢ ciency of this tournament scheme increases with the number of agents,

and hence becomes progressively better compared to a team when the num-

ber of independent agents increases.Then we extend the analysis to corelated

variables, and show, for a parametric (normal) distribution, that the optimal

contract is an RPE scheme where the conditions for an agent to obtain the

(single) bonus are stricter for negatively compared to positively correlated

outputs. The e¢ ciency of this tournament contract is shown to improve with

higher correlation (both positive and negative).

We �nally point out that, if the �rm can initially choose between organi-
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zations (technologies) that allow for either (a) only aggregate output or (b)

individual outputs to be observed, and a subsequent reorganization is costly,

the �rm may choose (a), i.e. organize production as a team. Thus, even if

alternatives (a) and (b) are equally costly to set up initially (e.g. in terms of

output measurement investments), the team alternative may yield a higher

subsequent surplus. This occurs because relational contract constraints may

be a¤ected in a way to favor the team alternative. We show that, although

production e¢ ciency in both alternatives increases with more negatively cor-

related outputs, the team alternative is more likely to be superior under such

conditions.

Related literature: The closest related paper is the above mentioned Levin

(2002). He considers a multilateral relational contract between a principal

and n agents, and shows among other things that the stark RPE (tourna-

ment) scheme is optimal. Unlike Levin, we also consider the case where only

aggregate output is observable. Moreover, we extend Levin�s characterization

to correlated outputs. Our paper is also related to the few papers considering

team incentives in relational contracts, like Kvaløy and Olsen (2006, 2008),

Rayo (2007) and Baldenius and Glover (2010). But in these papers individual

outputs are observable, and so they do not consider how both observability

and stochastic dependence between agents a¤ect the optimal contract.1

Previous literature on incentive provision to multiple agents have mainly

focused on risk sharing issues and the scope for cooperation. The informa-

tiveness principle (Holmström, 1979, 1982) states that an incentive contract

should be based on all variables that provide information about the agents�

actions. Stochastic and/or technological dependences between agents then

typically call for "peer-dependent" incentive schemes such as teams or tour-

naments. By tying compensation to an agent�s relative performance, the

principal can �lter out common noise and thereby exposing them to less risk

(see Holmström, 1982; and Mookherjee, 1984).2 And by tying compensa-

1Seminal contributions to the (formal) literature on relational contracting include Klein
and Le er (1981), Shapiro and Stiglitz (1984), Bull (1987) and MacLeod and Malcomson
(1989).

2See also Lazear and Rosen (1981), Nalebu¤ and Stiglitz (1983) and Green and Stokey
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tion to the joint performance of a team of agents, the principal can exploit

complementarities between the agents� e¤orts and foster cooperation, see

Holmström and Milgrom, 1990; Itoh (1991, 1992) and Macho-Stadler and

Perez-Castrillo, 1993).3Our paper shows that stochastic dependence between

agents is highly important for incentive design even in the absence of risk

considerations, and that team incentives may be optimal even without clas-

sical team e¤ects such as complementarities in production, peer pressure or

peer monitoring.

Our paper is also related to a recent literature on endogenous formation of

teams. While there is a vast agency literature that studies optimal incentives

for teams4, there is only a few papers that explore how and why �rms may

only hold a team of agents accountable for their joint output, even if indi-

vidual accountability is technologically feasible. Mukherjee and Vasconcelos

(2011) and Corts (2007) show that team production might help mitigate

multitask problems, while Bar-Isaac (2007) show that teams consisting of

juniors and seniors can restore the reputation concerns of seniors. We show

that �rms may use team production (team accountability) as a commitment

device. By deliberately choose team assignment instead of individual assign-

ment, the �rm makes it more costly to breach the relational contract. But

we also show that there is a limit to how many agents the �rm should hold

accountable. The optimal team size depends both on the agents� ex post

bargaining power and on the type of dependence between the agents.

Finally, our paper is related to a literature on asset ownership and bargaining

power in relational contracts, such as Baker, Gibbons and Murphy (2002),

Halonen (2002) and Kvaløy and Olsen (2012). A central point here is that

(1983) for analyses of RPE�s special form, rank-order tournaments.
3In addition, team incentives can provide implicit incentives not to shirk (or exert low

e¤ort), since shirking may have social costs (as in Kandel and Lazear, 1992), or induce
other agents to shirk (as in Che and Yoo, 2001).

4Economists studying teams with unobservable individual ouputs, beginning with
Alchian and Demsetz (1972), have mainly focused on the free-rider problem, in partic-
ular under what conditions the �rst-best outcome will be achieved, or what parameters
a¤ect the relative e¢ ciency of teamwork. In�uential papers include Holmstrom (1982)
Rasmusen (1987), McAfee and McMillan (1991) and Legros and Matthews (1993).
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agents�bargaining power may negatively a¤ect the scope for relational con-

tracting. In particular Halonen (2002) shows that agents may consider joint

ownership of assets (similar to team production) in order to reduce outside

options and thereby strengthen the relational contract between them. But

Halonen does not consider principal-multiagent incentive problem, like we

do.

The rest of the paper is organized as follows. Section 2 presents the model

and analyses team incentives, given that only total output can be observed.

Section 3 deals with the case where individual outputs can be observed, and

Section 4 contains a comparative analysis of the two cases. The last section

concludes.

2 Model

We analyze an ongoing economic relationship between a principal and n

(symmetric) agents. All parties are risk neutral. Each period, each agent

i exerts e¤ort ei incurring a private cost c(ei). Costs are strictly increasing

and convex in e¤ort, i.e., c0(ei) > 0, c00(ei) > 0 and c(0) = c0(0) = 0. Each

agent�s e¤ort generates a stochastic output xi, with marginal density f(xi; ei).

Expected outputs are given by �x(ei) = E(xij ei) =
R
xif(xi; ei)dxi and total

surplus per agent is W (ei) = �x(ei)� c(ei). First best is then achieved when
�x0(eFBi )� c0(eFBi ) = 0.

However, the parties cannot contract on e¤ort provision. We assume that

e¤ort ei is hidden and only observed by agent i. With respect to output, we

consider two cases: Either individual outputs xi are observable (IO), or only

total output y = �xi is observable. In both cases, we assume that outputs

are non-veri�able by a third party. Hence, the parties cannot write a legally

enforceable contract on output provision, but has to rely on self-enforcing

relational contracts.
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2.1 Team: only total output observed

We �rst consider the case where individual output is unobservable, and hence

the parties can only contract on total output provision. Each period, the

principal and the agents then face the following contracting situation. First,

the principal o¤ers a contract saying that agent i receives a non-contingent

�xed salary �i plus a bonus �i(y), i = 1:::n conditional on total output

y = �xi from the n agents5. Second, the agents simultaneously choose

e¤orts, and value realization y = �xi is revealed. Third, the parties observe

y and the �xed salary �i is paid. Then the parties choose whether or not to

honor the contingent bonus contract �i(y).

Conditional on e¤orts, agent i�s expected wage in the contract is then wi =

E(�i(y)j e1:::en) + �i, while the principal expects � = E(yj e1:::en)��wi =
�iE(xij ei)��wi. If the contract is expected to be honored, agent i chooses
e¤ort ei to maximize his payo¤, ie

ei = argmax
e0i

(E(�i(y)j e0i; e�i)� c(e0i)) (IC)

If the contract is not honored, the parties instead bargain over the realized

values. Given a realization y, we assume that they agree on a spot price �y,

where � < 1 is the agents�share. More speci�cally, we assume that the spot

price is determined by Nash bargaining. The agents are able to attain �y,

� 2 [0; 1] in an alternative market. In Nash bargaining, the agents will then
receive �y plus a share � of the surplus from trade i.e. the spot price will be

S = �y+ �i(y� �iy) = �y where � = �+ �(1� �). The parameter � can be
interpreted as an index of the agents�total hold-up power.

In a one shot relationship, the parties have no incentives to honor the bonus

contract, and so they have to rely on spot contracting. The expected spot

price is then �E(yj e1:::en) = ���x(ei): Agent i thus chooses spot e¤ort es

according to 1
n
��x0(es) � c0(es) = 0, and so the expected spot price can be

5We thus assume stationary contracts, which have been shown to be optimal in settings
like this (Levin 2002, 2003).
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written S = ��y(es), while the principal�s expected spot pro�t is given by

�s = (1� �)�y(es).

Now consider the repeated game. Like Levin (2002) we consider a multi-

lateral punishment structure where any deviation by the principal triggers

punishment from all agents. The principal honors the contract only if all

agents honored the contract in the previous period. The agents honor the

contract only if the principal honored the contract with all agents in the

previous period. Thus, if the principal reneges on the relational contract, all

agents insist on spot contracting forever after. And vice versa: if one (or all)

of the agents renege, the principal insists on spot contracting forever after. A

natural explanation for this is that the agents interpret a unilateral contract

breach (i.e. the principal deviates from the contract with only one or some of

the agents) as evidence that the principal is not trustworthy (see discussion

in Bewley, 1999 Levin, 2002).

Now, (given that (IC) holds) the principal will honor the contract with all

agents i = 1; 2; :::; n if

��i�i(y) +
�

1� �� � ��y +
�

1� ��s (EP)

where � is a common discount factor. The LHS of the inequality shows

the principal�s expected present value from honoring the contract, which

involves paying out the promised bonuses and then receiving the expected

value from relational contracting in all future periods. The RHS shows the

expected present value from reneging, which involves spot trading of the

realized outputs, and then receiving the expected value associated with spot

trading in all future periods.

Agent i will honor the contract if

�i(y) +
�

1� � (wi � c(ei)) �
1

n
�y +

�

1� � (
1

n
S � c(es)) (EA)

where similarly the LHS shows the agent�s expected present value from hon-
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oring the contract, while the RHS shows the expected present value from

reneging.

Recall the de�nition W (ei) = E(xij ei)� c(ei) as the total surplus associated
with agent i, and de�ne �modi�ed�bonuses as follows:

bi(y) = �i(y)�
1

n
�y: (1)

Following established procedures (e.g.Levin 2002) we obtain the following::

Lemma 1 For given e¤orts e = (e1:::en) there is a wage scheme that satis�es
(IC,EP,EA) and hence implements e, i¤ there are bonuses � and �xed salaries

� with bi(y) = �i(y) � 1
n
�y � 0, such that (IC) and condition (EC) below

holds:

�ibi(y) �
�

1� ��i(W (ei)�W (e
s)); (EC)

To see su¢ ciency, set the �xed wages � such that each agent�s payo¤ in the

contract equals his spot payo¤, i.e. �i+E(�i(y)j e)�c(ei) = 1
n
S�c(es) � us.

Then EA holds since �i(y) � 1
n
�y � 0. Moreover, the principal�s payo¤ in

the contract will be will be � = �i(W (ei)� us) = �i(W (ei)�W (es)) + �s,
i.e. the surplus generated by the contract plus her spot pro�ts. Then EC

and (1) imply that EP holds. Necessity is veri�ed in the appendix.

Following the standard assumption in the literature, we assume that the �rst

order approach (FOA) is valid, and hence that each agent�s optimal e¤ort

choice is given by the �rst-order condition (FOC):

@

@ei
E(�i(y)j e1:::en)� c0(ei) = 0

It is convenient to use the �modi�ed�(net) bonuses bi when analyzing the

contract. Since Ey = �j�x(ej), the FOC can then be written

@

@ei
E(bi(y)j e1:::en) +

1

n
��x0(ei) = c

0(ei) (2)
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Given that FOA is valid, the agents�optimal choices are characterized by the

condition (2), which we will refer to as a �modi�ed�IC constraint. We will

further assume that the �monotone likelihood ratio property�(MLRP) holds

for aggregate output y in the following sense: its density is assumed to be of

the form g(y; l(e1:::en)) with lei(e1:::en) > 0, and such that
gl(y;l)
g(y;l)

is increasing

in y.

The optimal contract now maximizes total surplus (�iW (ei) = �i(E(xij ei)�
c(ei))) subject to EC and the �modi�ed�IC constraint (2). Then we have the

following:

Proposition 1 The optimal symmetric scheme pays a maximal bonus to
each agent for output above a threshold (y > y0) and no bonus otherwise.

The threshold is given by gl(y0;l(e))
g(y0;l(e))

= 0. For l(e1:::en) = �iei no asymmetric

scheme can be optimal.

The maximal symmetric bonus is by EC bi(y) = b(y) = �
1�� (W (e)�W (e

s))

when ei = e for all i. This result parallels that of Levin (2003) for the single

agent case. The threshold property comes from the fact that incentives should

be maximal (minimal) where the likelihood ratio is positive (negative). Since

this ratio is monotone increasing, there is a threshold y0 where it shifts from

being negative to positive, and hence incentives should optimally shift from

being minimal to maximal at that point.

2.2 Team size and e¢ ciency

We will now study team size and e¢ ciency. To see how size (i.e. number

of agents in the team) a¤ects e¢ ciency, note from Proposition 1 that the IC

constraint (2) can now be written

c0(ei) = b

Z
y>y0

gi(y; e1:::en)dy +
1

n
��x0(ei)
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where gi denotes partial derivative of the density wrt ei, and hence that the

optimal solution ei = e (the maximal e¤ort per agent that can be imple-

mented) is given by

c0(e)� 1
n
��x0(e)R

y>y0
gi(y; e:::e)dy

= b =
�

1� � (W (e)�W (e
s(n))) (3)

The �rst equality shows the required bonus (per agent) to implement e¤ort e

(from the IC constraint). The second equality shows the feasible (maximal)

bonus. When n increases, a single agent�s marginal in�uence on his expected

bonus payment (i.e. b
R
y>y0

gi(y; e:::e)dy) will be a¤ected. If this marginal

in�uence is reduced (as it typically will be for independent outputs), a larger

bonus is required to maintain e¤ort incentives (the �rst equality). A higher

bonus is also required because the �automatic incentive�( 1
n
��x0(ei)) is reduced

when n increases. But a higher bonus is also feasible (the second equality)

because the outside spot value W (es(n)) is decreasing in n. Which of these

e¤ects dominates will determine whether e¤ort (per agent) will increase or

decrease when the number of agents increases.

It is of particular interest to analyse teams with stochastic dependencies

among the individual team members�contributions to total output. To make

this analytically tractable we will assume that outputs are (multi)normally

distributed and correlated. Given this assumption, and (by symmetry) each

xi being N(ei; s2), then total output y = �xi is also normal with expectation

Ey = �ei and variance

s2n = var(y) = �ivar(xi) + �i6=jcov(xi; xj) = ns
2 + s2�i6=jcorr(xi; xj)

It follows from the form of the normal density that the likelihood ratio is

linear and given by gi(y;e1:::en)
g(y;e1:::en)

= (y � �ei)=sn. As shown above, the optimal
bonus is maximal (minimal) for outcomes where the likelihood ratio is pos-

itive (negative), and hence has a threshold y0 = �ei. Applying the normal

distribution, it then follows (as shown below, see (6) ) that the marginal
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return to e¤ort for each agent in equilibrium is given by

b

Z
y>y0

gi(y; e:::e)dy = b=(Msn), M =
p
2� (4)

Since by assumption now �x(ei) = Exi = ei, the IC condition (2) for each

agent�s (symmetric) equilibrium e¤ort is therefore c0(ei)� 1
n
� = b

sn
1
M
. It then

follows from (3) that the maximal e¤ort per agent that can be sustained, is

now given by�
c0(e)� 1

n
�

�
snM = b =

�

1� � (W (e)�W (e
s(n)) (5)

Consider now variation in team size. In line with the discussion above, a

higher n has here three speci�c e¤ects:

1. It reduces the outside spot value and thereby allows for a higher bonus,

and thus cet par for higher e¤ort.

2. It reduces the �automatic incentive� 1
n
� and thereby cet par the e¤ort.

3. it a¤ects the variance s2n of the performance measure (y = �xi)

If all agents�outputs are fully symmetric in the sense that all correlations

as well as all variances are equal across agents, i.e. var(xi) = s2 and

corr(xi; xj) = � for all i; j, then the variance in total output will be

s2n = ns
2 + s2�i6=jcorr(xi; xj) = ns

2(1 + �(n� 1))

If � � 0 the variance will increase with n and the third e¤ect discussed above
is detrimental for e¢ ciency. Optimal n should therefore be smaller with

larger �. Moreover, the standard deviation of total output (sn) increases

rapidly with n when � � 0 (at least of order
p
n), while all other terms in

the relation (5) stay bounded, hence the e¤ort per agent that can be sustained

will then decrease rapidly with n. Large teams are therefore very ine¢ cient

if all agents�outputs are non-negatively correlated.
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For negative correlations the situation is quite di¤erent. If � < 0 one can in

principle reduce the variance to (almost) zero by including su¢ ciently many

agents. The model then indicates that adding more and more agents to the

team is bene�cial, at least as long as 1+ �(n� 1) > 0 and the conditions for
FOA to be valid is ful�lled. (We show below that for this to be the case, the

variance of the performance measure, here s2n, cannot be too small.)

Note that assuming symmetric pairwise negative correlations among n sto-

chastic variables only makes sense if the sum has nonnegative variance, and

hence 1 + �(n � 1) � 0.6 Given � < 0, there can thus only be a maxi-

mum number n of such variables (agents). And given n > 2, we must have

� > � 1
n�1 .

Note also that for given negative � > �1
2
, the variance is �rst increasing,

then decreasing in n (it is maximal for n = 1
2
(1 � 1

�
)). Hence the optimal

team size in this setting is either very small (n = 2) or �very large�(include

all).

Proposition 2 For symmetric agents, e¢ ciency decreases rapidly with size
if outputs are non-negatively correlated. For symmetric agents with negatively

correlated outputs, e¢ ciency �rst decreases (for n > 2) and then increases

with increasing team size, hence e¢ ciency is maximal either for a small or

for a large team.

The assumption of equal pairwise correlations among all involved agents is

admittedly somewhat special, but illustrates in a simple way the forces at

play when the team size varies. In reality there might be positive as well

as negative correlations among agents. A procedure to pick agents for least

variance would then be for each n, to pick those n that yield the smallest

variance. Then compare across n, weighting the three e¤ects discussed above.

6Indeed, as shown in the appendix, 1+ �(n� 1) > 0 is the condition for the covariance
matrix to be positive de�nit, and hence for the multinormal model to be well speci�ed.
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2.3 When is the FOA valid?

We will now examine under what conditions the FOA is valid for the model

analyzed in the previous section. Thus consider y normally distributed with

expectation Ey = �ei and a variance that will be denoted by s2 = var(y)

in this section (to simplify notation). As already noted, this distribution

satis�es MLRP. Each agent is o¤ered a �gross�bonus �(y) = b(y)+�y, where

� = �=n < 1=2, and b(y) is the net �bang-bang�bonus with threshold at y0.

Given that the principal seeks to implement e¤ort e�i from each agent this

way, the optimal threshold is y0 = �e�i . Agent i�s expected payo¤, given own

e¤ort ei and e¤orts e�j = e
�
i from the other agents, is then

bPr(y > y0j ei) + �E(yj ei)� c(ei)

= bPr(y � �j 6=ie�j � ei > e�i � ei) + �ei + 0 � c(ei)

= b(1�H(e�i � ei)) + �ei + 0 � c(ei)

where H() is the CDF for a N(0; s2) distribution and 0 = ��j 6=ie
�
j . The

FOC for the agent�s choice is

bh(e�i � ei) + �� c0(ei) = 0

where h() is the density; h() = H 0(). The FOA is valid if the agent�s optimal

choice is e�i and is given by this �rst-order condition, i.e. if

bh(0) + �� c0(e�i ) = 0 (6)

and no other e¤ort ei 6= e�i yields a higher payo¤ for the agent. We note in
passing that h(0) = 1=

p
2�var(y), verifying the formula (4) above.

Due to the shape of the normal density, the agent�s payo¤ is generally not

concave. The second derivative is �bh0(e�i �ei)�c00(ei), where h0(e�i �ei) < 0
for ei < e�i . The payo¤ is locally concave at ei = e

�
i (since h

0(0) = 0), hence e�i
is a local maximum, but there may be other local maxima (other solutions to

FOC) for ei < e�i . The situation is illustrated in Figure 1, which depicts the

agent�s marginal revenue (bh(e�i � ei) + �) and marginal cost for two values
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Figure 1: Illustration of FOC

of the variance s2 = var(y) (and for � = 0). If the variance is su¢ ciently

small there is a local maximum at some ei < e�i (satisfying the FOC), and

the �gure indicates (comparing areas under MC and MR) that this local

maximum dominates that at e�i . Indeed, since the density h(0) is inversely

proportional to the standard deviation s, we must have b ! 0 as s ! 0

(keeping e�i �xed). Since the probability of obtaining the bonus stays �xed in

equilibrium (equal to 1�H(0) = 1
2
), independently of s, the expected bonus

payment will go to zero as s! 0, and the agent will surely deviate, because

these expected payments will not cover the additional e¤ort costs.

This shows that the FOA is valid here only if the variance of the performance

measure (y) is not too small, and is con�rmed in the following proposition,

which also gives an estimate of which magnitude of s2 is su¢ cient for the

FOA to be valid for a parametric case (iso-elastic e¤ort costs).

Proposition 3 Given e�i < eFBi (where 1 = c0(eFBi )) and � 2
�
0; 1

2

�
, � <

c0(e�i ), there is s
0 > 0 such that for var(y) = s2 > s0 the FOA is valid (i.e.

the agent�s optimal choice is given by the FOC (6)). Moreover, it is then

valid for any �0 2 (�; 1
2
), � < c0(e�i ). There is also s

00 > 0 such that FOA is

not valid for var(y) = s2 < s00

For iso-elastic costs (c(e) = kem, m � 2) it further holds: For � = 0 FOA is
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valid if e
�
i

s
< K = K0

p
m� 1, where K0 � 2:216. For m = 2 FOA is valid if

e�i��=2k
s

< K 0 � 2: 216

Remarks. The conditions pertaining to iso-elastic costs are conditions that
ensure a unique solution to the agent�s FOC, and are hence su¢ cient, but

not necessary conditions for FOA to be valid. Since e�i is expected output per

agent in the model, the condition e�i
s
< K says that the standard deviation

(SD) of total output relative to the individual mean should exceed the number

1=K = 1
K0
p
m�1 , which is decreasing in (the cost elasticity) m and is equal

to 1
2: 216

= 0:451 (45 %) for m = 2. This may seem like a relatively large

fraction, but two remarks are relevant. First, since total expected output

with n agents is ne�i , the condition says that the standard deviation of total

output relative to the mean should exceed the number 1=Kn, which amounts

to 4.5 % for n = 10 agents when m = 2 Second, the model could have been

speci�ed with expected output per agent being ei + p, with p > 0 being the

expected output corresponding to "whistle as you work" e¤ort, and hence

the required ratio of s to expected output would be smaller.

2.4 A modi�ed scheme

We saw in the previous section that for negatively correlated agents, the

variance in the performance measure y could be made quite small by including

many agents in the team. And we saw that this was bene�cial for incentives

and consequently for e¢ ciency as long as the analysis building on FOA was

valid. But for su¢ ciently small variance FOA is not valid, so this immediately

raises the question of what a team can acheive under such circumstances. In

the following we will consider a scheme that is at least approximately optimal

for small variance, in the sense that it generates a surplus that converges to

the optimal surplus when the variance goes to zero.

Mainly to simplify notation, consider here the case � = 0, so that the EC
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constraint is 0 � b(y) � �
1��W (e).

7 To provide incentives, the bonus cannot

be maximal for all outputs y, hence the expected bonus payment for an agent

must be less than the maximal bonus, i.e. E(b(y)j e) < �
1��W (e). On the

other hand, the agent�s expected payo¤ from exerting e¤ort must be non-

negative; E(b(y)j e) � c(e) � E(b(y)j e = 0) � 0, so in any equilibrium

we must have c(e) < �
1��W (e). It follows from this that the e¤ort e�u and

associated surplus W (e�u) de�ned by

c(e�u) =
�

1� �W (e
�
u) (7)

constitute upper bounds for, respectively, the e¤ort and surplus (per agent)

that can be acheived in a relational contract. Note also that this upper bound

can be acheived if there is no uncertainty, i.e. if (team) e¤ort can be observed

without noise; namely by paying the maximal bonus b = c(e�u) to each agent

conditional on total e¤ort being at least ne�u.

We will now provide an incentive compatible and feasible scheme that con-

verges to the upper bound as the variance in the performance measure goes

to zero. The scheme is a simple modi�cation of the threshold bonus scheme

identi�ed in Proposition 1, and consists of a relaxation of the threshold com-

bined with an increase of the bonus relative to the latter scheme.

The problem we identi�ed with the latter scheme was that for su¢ ciently

small s the agent�s payo¤ had two local maxima, at e� and at e0 < e�,

respectively, and that e0 gave the highest payo¤, so the agent would deviate

from the supposed equilibrium e¤ort e�. The critical s is where the two local

maxima yield the same payo¤; i.e. b(1 � H(0; s)) � c(e�) = b(1 � H(e� �
e0; s))� c(e0), where we as above have Pr(y > y0j e) = 1�H(e� � e; s) and
H(�; s) is the CDF for a N(0; s2) variable. In addition they both satisfy FOC,
so bh(e� � e0; s) = c0(e0) and bh(0; s) = c0(e�).

For s below this critical level, the agent�s payo¤ is higher at e0. Now, this

can be recti�ed by setting a lower threshold y00 < y0 = ne�, i..e making it

7Also, to simplify notation, we drop subscripts, so e; b etc are scalars here.

17



easier to obtain the bonus, and at the same time increase the bonus level.

For y00 = y0 � � we have

Pr(y > y00j ej 6=i = e�; ei) = Pr(y � �kek > ne� � � � �kekj ej 6=i = e�; ei) =

1�H(e� � ei � � ; s)

We can then choose � and the bonus b such that e� satis�es FOC and yields

a payo¤ at least as high as the other local maximum e0, i.e. such that we

have

b(1�H(�� ; s))� c(e�) � b(1�H(e� � e0 � � ; s))� c(e0) (8)

and

bh(�� ; s)� c0(e�) = 0 = bh(e� � e0 � � ; s)� c0(e0) (9)

The smaller is � , the smaller is the required bonus to satisfy FOC for e�. The

minimal such � yields equality between the payo¤s.

Now, this scheme can at most allow a bonus

b =
�

1� �W (e
�) (10a)

Hence we see that the highest e¤ort e that can be implemented by this scheme

is the e¤ort e� de�ned by these conditions (8 - 10a); including equality in the

�rst one.

For given s (below the critical level where FOA ceases to be valid), we cannot

say whether the scheme is optimal. But we can show that the e¤ort e� it

induces converges to the upper bound e�u identi�ed above (see the appendix).

Hence it induces an e¤ort e� and associated surplus W (e�) that are, for

su¢ ciently small s, arbtrariliy close to the upper bounds for these entities

that can be achieved in any relational contract. Thus we have

Proposition 4 The modi�ed threshold bonus scheme de�ned by (8 - 10a) is
asymptotically optimal as the variance of output y goes to zero.

It may be noted that for the set of variances s2 = var(y) su¢ ciently large

to make FOA valid, the largest e¤ort per agent that can be implemented
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must satsify 2c(e�) � �
1��W (e

�), and hence be considerably smaller than the

upper bound e�u de�ned in (7). This is so because the agent obtains the

bonus (b) with probability 1
2
in equilibrium in the FOA scheme, hence we

must have b1
2
� c(e�) in that setting. This illustrates that a more precise

performance measure can yield considerable bene�ts in relational contracting.

The bene�ts are not associated with risk reduction (since all agents are risk

neutral by assumption), neither with sharper competition, since in the team

setting there is none. The bene�ts arise because a more precise measure

strengthens individual incentives for e¤ort, for a given bonus level. Since

the bonuses in the relational contract are discretionary and hence must be

kept within bounds, the added e¤ort incentives coming from a more precise

performance measure are valuable. And the value added may be considerable,

as we have seen.

Thus far we have in this subsection taken the output variance (s2 = var(y))

as an exogenous parameter. In Section 2.2 we pointed out that this variance

can be substantially reduced if a team can be put together, consisting of

several agents whose individual outputs are negatively correlated. As we

now have illustrated, this may be of considerable value for the participants

in the relational contract.

3 Individual outputs observed

Consider now the case where individual outputs are observable. The princi-

pal can then o¤er a bonus contract �i(x1:::xn), to each agent i = 1:::n,

conditional on all individual outputs. Now, if the contract is expected

to be honored, agent i�s expected wage is then, for given e¤orts, wi =

E(�i(x1:::xn)j e1:::en) + �i, while the principal expects ��x(ei) � �wi. The
agent then chooses e¤ort

ei = argmax
e0i

(E(�i(x1:::xn)j e0i; e�i)� c(e0i)) (11)
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Like in the case where individual output is unobservable, we assume that

if the contract is not honored, the parties instead bargain over the realized

values. But now the principal agrees on a spot price �xi with each individual

agent. In a one shot relationship, the parties still have no incentives to honor

the bonus contract, and so they have to rely on spot contracting. Expected

spot price is then S = ��x(esi ): Agent i thus chooses spot e¤ort e
s according

to ��x0(esi )� c0(esi ) = 0, while the principal�s expected spot pro�t is given by
�s = (1� �)�x(esi ). Note here that spot e¤ort is higher than in the team case

since the marginal revenue from e¤ort ��x0(esi ) is not divided by n.

In a repeated relationship, we still assume that the principal honors the

contract only if all agents honored the contract in the previous period, and

that the agents honor the contract only if the principal honored the contract

with all agents in the previous period.

Now, (given that the IC condition (11) holds) the principal will honor the

contract with all agents i = 1; 2; :::; n if

��i�i(x1:::xn) +
�

1� �� � ��i�xi +
�

1� � [n�s] (12)

Agent i will honor the contract if

�i(x1:::xn) +
�

1� � (wi � c(ei)) � �xi +
�

1� � (S � c(e
s
i )) (13)

These enforcement constraints are stricter than in the team case where indi-

vidual output is not observable. The reason is that the spot surplus is higher,

and so the long-term costs from deviating from the relational contract are

lower. This in turn makes it possible to implement higher e¤ort under team

incentives, as will be discussed later.

De�ne �modi�ed� (net) bonuses: bi(x1:::xn) = �i(x1:::xn) � �xi:It is then
straightforward to show (as in the previous case where only y = �ixi is

observed) that we have:
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Lemma 2 For given e¤orts e = (e1:::en) there is a wage scheme that sat-

is�es (11),(13)-(12) and hence implements e, i¤ there are bonuses � and

�xed salaries � with bi(x1:::xn) = �i(x1:::xn) � �xi � 0, such that (11) and
condition (14) below holds:

�ibi(x1:::xn) �
�

1� � (�iW (ei)� nW (e
s)) (14)

Here W () denotes as before surplus per agent; W (ei) = E(xij ei) � c(ei).
Assuming as before that FOA is valid, we can replace the IC constraint (11)

with the �rst-order condition:

@

@ei
(E(bi(x1:::xn)j e1:::en) + ��x0(ei) = c0(ei) (15)

The optimal contract then maximizes total surplus (�iW (ei)) subject to (14)

and (15).

3.1 Independent outputs

Consider �rst independent outputs. This was analyzed by Levin (2002), who

showed that the optimal contract is RPE with a bonus paid to at most one

agent, namely the agent whose outcome yields the highest likelihood ratio.

Moreover, the bonus is paid to this agent only if the likelihood ratio is pos-

itive. Given symmetric agents and strictly increasing likelihood ratios, this

means that the agent with the largest output wins the bonus, but provided

that his output exceeds some threshold x0 (where the likelihood ratio
fe(xi;ei)
f(xi;ei)

is positive for xi > x0).

We will now use this result to analyze how the e¢ ciency of this scheme

varies with the number of agents (for independent ouputs). The next section

considers correlated outputs.

With n agents, agent i�s probability of winning the bonus b, given own

output xi = x > x0, and given e¤orts ej = e from all others is now
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Pr(maxj xj < x) = F (x; e)
n�1. Hence the expected bonus payment to agent

i is b
R1
x0
F (xi; e)

n�1f(xi; ei)dxi, and the IC condition (15) takes the form:

b

Z 1

x0

F (xi; e)
n�1fe(xi; ei)dxi + ��x

0(ei) = c
0(ei) (16)

In passing, it is worth noting that the integral here extends only over values

of xi where fe(xi; ei) > 0. In a standard tournament, where agent i would

obtain a bonus when he had the largest output, the integral would extend

over all values of xi. The payment scheme here, which we may call a modi�ed

tournament, thus provides stronger incentives (for a given bonus b) than a

standard tournament scheme.

The optimal RPE bonus is maximal, i.e. b = �
1�� (�iW (ei)�nW (e

s)), where

W (ei) is total surplus (for agent i) and W (es) is the outside spot surplus per

agent. Hence from (16) we have, in symmetric equilibrium

c0(e)� ��x0(e)R1
x0
F (x; e)n�1fe(x; e)dx

= b =
�

1� �n(W (e)�W (e
s)) (17)

It should be noted that the threshold x0, which is de�ned by fe(x0; e) = 0,

will generally depend on the equilibrium e¤ort e.

Consider now variations in the number of agents. Higher n increases the

competition to obtain the bonus (the probability of winning is reduced),

so the bonus must be increased to maintain e¤ort; this is captured by the

�rst equality in (17). The second equality shows how much the bonus can

be increased; namely by the increased total surplus. The question is then

whether the latter is su¢ cient to compensate for the reduced probability of

winning.

The answer is a¢ rmative, and the reason is essentially that while the surplus

on the RHS increases proportionally with n, the margnal probability (in the

denominator) on the LHS decreases less rapidly, so that n
R1
x0
F (x; e)n�1fe(x; e)dx

increases with n. This allows a higher e¤ort (per agent) to be implemented,
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so we have:

Proposition 5 For observable and independent individual outputs, e¤ort per
agent in the RPE scheme (the modi�ed tournament) increases with the num-

ber of agents.

When individual output measures are available, and these outputs are inde-

pendent, we thus see that e¢ ciency in the (modi�ed) tournament is improved

by including more agents. This is in sharp contrast to e¢ ciency in a team for

independent outputs: as we saw above the team e¢ ciency rapidly decreases

under such conditions.

3.2 Correlated outputs

Consider now correlated outputs. For tractability reasons we will then again

consider normal distributions, and moreover limit attention to symmetric

agents. A convenient feature of the multinormal distribution is that likeli-

hood ratios are linear functions of the variables, and this simpli�es compar-

isons of such ratios for these variables.

So assume now x = (x1:::xn) multinormal with Exi = ei, var(xi) = s2 and

(identical) correlations corr(xi; xj) = �. From the form of the multinormal

distribution (see the appendix) the likelihood ratio for xi is then

fei(xj e1:::en)
f(xj e1:::en)

= k1(xi � ei) + k2�i6=j(xj � ej) (18)

with

k1 =
1+(n�2)�

(1+(n�1)�)(1��)s2 > 0, k2 =
��

(1+(n�1)�)(1��)s2

Note that k1 � k2 = 1
(1��)s2 > 0

As we show in the appendix, for symmetric agents the optimal symmetric

scheme pays a maximal bonus to the agent with the highest likelihood ratio,

provided this ratio is positive, and no bonus to the other agents. From
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symmetry (including symmetric e¤orts in equilibrium; ei = e� all i) the

agent with the highest output has the highest likelihood ratio, and this ratio

is positive i¤

xi > e
� +

�

(n� 2)�+ 1�j 6=i(xj � e
�) = E(xijx�i) (19)

This condition says that agent i�s performance must exceed his expected

performance, conditional on the performance of all other agents. Thus we

have:

Proposition 6 The optimal symmetric scheme pays a maximal bonus to
the agent (say i) with the highest output, provided this output satis�es xi >

E(xijx�i).

Condition (19) can alternatively be interpreted as saying that the agent�s

deviation from the mean (xi�e�) must exceed some factor K (K = (n�1)�
(n�2)�+1)

of the average performance deviation ( 1
n�1�j 6=i(xj � e

�)) for all the other

agents. The factor K is increasing in � and varies from �(n � 1) to 1 over
the permissible range for � 2 (� 1

n�1 ; 1).

For positive correlation (� > 0) condition (19) is irrelevant if the other agents

on average overperforms ( 1
n�1�j 6=ixj > e�). To get the bonus agent i must

then have the highest output; this must therefore exceed the average out-

put from the others, and hence exceed the fraction K < 1 of this output.

But if the other agents underperform, the required condition (19) says that

agent i is allowed to underperform by at most a fraction K of their average

underperformance.

For negative correlation (� < 0) the condition is again relevant only if the

other agents on average underperforms ( 1
n�1�j 6=ixj < e

�). If that is the case,

the condition then requires that agent i must overperform by at least a factor

jKj = (n�1)j�j
(n�2)�+1 of their underperformance.

8

8So if they on average underperform by 1% (
1

n�1�j 6=1xj�e1
e1

= � 1
100 ), agent i must
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For n = 2 agents we now have that agent 1 gets the bonus if and only if he

has the highest output (x1 > x2) and x1� e� > �(x2� e�). This is illustrated
in the �gure below for � = 1

2
(left) and � = �1

2
(right). Agent 1 is to get the

bonus for outcomes to the right of the broken line.

1 2 3
0

1

2

3

x1

x2

Figure 2a

1 2 3
0

1

2

3

x1

x2

Figure 2b

In both cases the agent with the highest output gets the bonus if both of

them have outputs that are above average (x1; x2 > Exi = e�) . If agent 2

has below average output (x2 < Exi = e�) the requirement for agent 1 to

get the bonus is less strict when there is positive correlation than when there

is negative correlation. In the latter case, agent 1 must have an output well

above average to obtain the bonus, and more so the worse is the output for

agent 2. Under negative (positive) correlation, a bad performance by agent

2 raises (lowers) the expected conditonal performance of agent 1, and thus

raises (lowers) the requirement �the hurdle�for agent1 to get the bonus.9

Having characterized the optimal scheme, we will now consider its incentive

properties. To make the analysis tractable, we restrict attention to n = 2

agents. Consider then agent 1�s incentives in this scheme, with �reference

overperform by at least jKj% (x1�e1e1
> (n�1)�

(n�2)�+1 (
1

n�1�j 6=1xj�e1
e1

) = K(� 1
100 ) =

jKj
100 ).

9To illustrate these points, if � = :5, and agent 2 has output 10% below expected
(x2=e� = :9), agent 1 can only win if his output no more than 5% below expected. But if
� = �:5, agent 1 must perform at least 5% better than expected in order to be eligible for
the bonus (if in addition he wins).
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point�(equilibrium) e�1 = e
�
2. His probability of obtaining the bonus is

Pr(x1 > max[x2; e
�
1 + �(x2 � e�2)]) � Pr(B) =

Z
x2B

f(xj e1e�2) (20)

So the marginal gain from e¤ort is
R
B
fe1(xj e1e�2) and in symmetric equilib-

rium e�1 = e
�
2 = e

� we will then have (given FOA valid)

b
R
B
fei(xj e�; e�) + � � c0(e�) = 0

An interesting question is then: for given e¤ort e� to be implemented, how do

marginal incentives vary with correlation �? E.g. do these marginal incentives

get stronger when � increases, implying that a lower bonus is required to

implement the same e¤ort? We should bear in mind that this is a RPE

scheme and that such schemes generally work well both for positive and

negative correlations in other settings. Perhaps not surprisingly a similar

property turns out to be true here.

Proposition 7 For correlated variables and n = 2: Provided FOA is valid,
the agent�s FOC for (symmetric) equilibrium e¤ort is

b
1p
2�s

1

2

 
1p
1� �2

+
1p
1� �

1p
2

!
+ � = c0(e�) (21)

The marginal incentive in FOC (i.e. the expression on the LHS) is increasing

in � for � > �0 � �0:236 and decreasing in � for � < �0. Hence, imple-

menting a given e¤ort requires a lower (higher) bonus when the correlation

� increases for � > �0 (for � < �0).

This is illustrated in Figure 2, which depicts the marginal incentive as a

function of � for the RPE scheme and for a standard tournament (dashed

line).

As a function of �, the marginal incentive (MI) for e¤ort is thus U-shaped in

the optimal scheme, which again is a modi�ed tournament. In comparison,
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Figure 2: Marginal incentives as function of �

in a standard tournament the MI is monotone increasing in � (as shown

by the dotted line; this MI is given by d
de1
Pr(x1 > x2) =

1p
2�sd

, where

sd =
p
2(1� �)s is the SD of x1 � x2, and the formula follows from the

normal distribution). In comparison the modi�ed tournament yields higher

MI for e¤ort for every � (which allows a higher e¤ort to be implemented with

the same bonus), and the MI is high both for strongly positively correlated

and for strongly negatively correlated outputs.

The latter property is caused by the speci�c criteria to obtain the bonus

in the modi�ed tournament, cfr the �gures depicted above. In a standard

tournament (ST) agent 1 wins and gets a bonus if x1 > x2, while in the

modi�ed tournament he gets a bonus only if x1 > x2 and x1�e� > �(x2�e�).
So the probability of obtaining the bonus is (all else equal) higher in ST, but

the marginal e¤ect of own e¤ort on the probability (the marginal incentive

MI), is higher in the modi�ed tournament.

3.3 The validity of FOA

So far we have assumed FOA to be valid; this issue will now be examined more

closely for the RPE scheme derived above. The question is then whether,
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for given symmetric e¤orts e�1 = e
�
2 to be implemented by the modi�ed tour-

nament scheme, these e¤orts are indeed optimal choices for the respective

agents.

In the appendix we show that the marginal gain to e¤ort for agent 1 in the

modi�ed tournament scheme can be written as

b

s
�(
e1 � e�1
s

; �) + � � c0(e1)

where �(a; �) is a bell-shaped function de�ned as follows

�(a; �) =
1p
1� �2

1

2
�(

ap
1� �2

)+
1p
1� �

1p
2
�(

ap
2
p
1� �

)(1��( �a
p
1 + �

p
2
));

(22)

where �(z) is the standard normal density and �(z) its CDF. The FOC

for e1 = e�1 to be optimal (as stated in the Proposition above) can thus be

written as b
s
�(0; �) + 1

2
� � c0(e�1) = 0, and the local second order condition

takes the form b
s
�a(0; �)

1
s
� c00(e�1) � 0 Since �a(0; �) turns out to be positive,

these conditions imply that the standard deviation s cannot be too small.

This is thus a necessary requirement for FOA to be valid in this setting.

Moreover, we can also see that a �large� s is su¢ cient for FOC to have a

unique solution, and hence su¢ cient for FOA to be valid. More speci�cally

we have the following result.

Proposition 8 For given e¤ort e�i � eFBi , a necessary condition for FOA

to be valid is that

e�i
s
� m0

1� �=c0(e�i )
p
�(
p
2 +

p
1 + �)

where m0 is the (local) elasticity of the marginal cost function; m0 = e�i
c00(e�i )
c0(e�i )

.

Moreover, there is s0 > 0 such that FOA is valid for s > s0.

Since � < 1 then for � = 0 the necessary condition implies e�i
s
� m0K, with

K = 2
p
2� � 5:01, and hence that he standard deviation s of individual
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output must exceed a fraction 1
m0K � 0:2

m0 of its mean (e�i ). Moreover, for �

smaller this fraction must be larger, and in the limit (�! �1) twice as large
( 1
m0K=2). Numerical calculations for iso-elastic costs with m

0 = 1; 2 indicate

that s exceeding the latter fraction is also su¢ cient. For � > 0 the fraction

can be smaller.

4 Teams or tournaments?

If individual outputs are observable, the principal may of course choose to

base any discretionary bonuses only on aggregate output. Hence, if the re-

lational contract constraints are una¤ected by such a choice, the principal

cannot do better with a scheme of the latter type. The RPE scheme based

on individual outputs will then always be optimal. It follows that, if there

is a choice between two equally costly technologies allowing for observation

of, respectively, individual or aggregate output, the technology allowing in-

dividual output to be observed will be chosen. A (modi�ed) tournament will

then dominate a team.

However, if a chosen technology is costly to modify later on, the picture is

no longer so clear. The reason is that relational contract constraints may be

a¤ected, in the sense that the respective outside options associated with spot

trading will be di¤erent under the two technologies. Due to the free rider

problem, spot trading is less e¢ cient when only team output can be observed.

Hence, if a team setup is chosen initially, then if the relational contract should

break down, either a costly reorganization to individual output measurements

and subsequent spot trading will take place, or (if reorganization costs are

su¢ ciently high) spot trading based on team output will be the way the

parties proceed. In any case the spot surplus will be smaller if the team

organization was chosen initially. This implies in turn that the relational

contract constraints are a¤ected by the initial choice, and then it is no longer

so clear that the team organization will be inferior. We will now examine

this issue.
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In the following we will assume that a reorganization of the team is so costly

(relative to its bene�ts) that it will not take place if contract breakdown

and subsequent spot trading should occur. The issue to be considered is

then whether the surplus generated by the relational contract for the team

(analyzed in Section 2) may dominate the surplus under the relational RPE

contract based on individual outputs (analyzed in Section 3). Now, for each

contract there will be a critical magnitude of the discount factor, say �FB,

such that the contract generates the �rst-best surplus for � � �FB, but not so
for � < �FB. A relatively simple way to compare the contracts is to compare

their respective critical factors. The contract with the lower �FB will, for a

range of �0s exceeding the lower �FB strictly dominate the other.

For independent outputs, we know that the e¢ ciency of the RPE tournament

scheme improves with increasing number of agents, while the team�s e¢ ciency

rapidly decreases with more agents. The team can thus only dominate if

the number of agents is relatively small. In fact, for iso-elastic costs and

independent outputs, the optimal team size (with respect to e¢ ciency) turns

typically out to be quite small (n = 2 or n = 3, depending on the magnitude

of the elasticity and the magnitude of �). For quadratic costs (elasticity 2)

we have the following.

Proposition 9 For independent outputs and quadratic e¤ort costs we have:
the optimal team size (in the sense of having the lowest critical �FB) is n = 2

if � < �0 � 0:805 , and n = 3 if � > �0. Moreover, for n = 2 agents,

the team dominates the RPE tournament (in the same sense) if and only if

� > �1 � 0:739.

Consider next correlated outputs. For negatively correlated outputs, we know

that the optimal team size may be large (Section 2.2), and that the e¢ ciency

of the team may be quite high. It thus seems reasonable to conjecture that,

under such conditions, a team may dominate the RPE tournament even for

n large. The analysis of this issue is hindered, however, by the optimal RPE

scheme being di¢ cult to analyze for correlated outputs and arbitrary n > 2.
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So we must at this stage con�ne the analysis to a comparison of the two

schemes for n = 2 when outputs are correlated.

From the previous analysis we know that the RPE tournament has high

e¢ ciency both for strongly positive and strongly negative correlation. Since

the team�s e¢ ciency is decreasing in �, it is thus to be expected that the

tournament will tend to dominate for positive �. However, for negative � both

schemes become more e¢ cient with stronger (negative) correlation, hence it

is not so clear what will happen there. It turns out that that the team�s

e¢ ciency improves relatively more for strongly negative �, as shown in the

following proposition.

Proposition 10 For correlated multinormal outputs, quadratic costs and
n = 2 we have: A Team dominates the RPE tournament in the sense of hav-

ing a lower �FB i¤ � > �0(�), where �0(�) is increasing in � with �0(�)! 0

as �! �1, �0(�)! 1 as �! 1, and �0(0) � 0:739 . This holds irrespective
of the magnitude of s (the standard deviation for individual output), but for

each �, s must be su¢ ciently large so that FOA is valid.

The function �0(�) is depicted in Figure 3. The RPE tournament has high-

est critical �FB above the curve, and is hence dominated by the team there.

For high � the RPE tournament does comparatively better in the sense that

the the parameter set for which it is dominated is smaller. For strong neg-

ative correlations the opposite occurs: the team dominates there even for

comparatively small parameter �.

5 Concluding remarks

Many businesses organize their employees in teams. According to Lawler

(2001), 72 percent of Fortune 1000 companies make use of work teams, de-

�ned as groups of employees with shared goals or objectives. A large man-

agement literature has thus emerged investigating team composition, team
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Figure 3: Illustration for Proposition 10

compensation, team leadership, and so forth. However, this literature is

mainly empirical, and the theoretical literature is conceptual rather than

formal.

The economics literature on teams is, in comparison, rather small. Theory

has mainly focused on how the well-known free-rider problem can be solved

or mitigated, while questions related to team size and team composition has

remained unanswered, or not even asked. Moreover, endogenous formation

of teams, in which �rms deliberately choose to hold a team of workers ac-

countable for their joint output, is not well understood.

Our paper contributes to the literature by deriving testable theoretical pre-

dictions on team incentives, team size, team composition and team formation.

We�ve done so by analyzing optimal self-enforcing (relational) contracts be-

tween a principal and a set of agents where only aggregate output can be

observed. We have then considered how the e¢ ciency of the contract is af-

fected by variations in the number of agents and in the correlations between

the agents. Finally, we have compared with a situation where individual

output is observable.

First, we showed that the optimal team contract entails an incentive scheme

in which each agent is paid a maximal bonus for aggregate output above

a threshold and a minimal bonus otherwise. We then considered optimal
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team size. To the extent this is studied in the formal literature, the standard

result is that more agents increases the free-rider problem and thus weakens

incentives and e¤ort. In our model, this is not necessarily the case. More

agents in a team have three e¤ects: First, it reduces the marginal incentive

e¤ect of a given bonus, which is the standard 1/n free-rider problem. Second,

it also reduces the teams�outside option. This strengthens the relational

contract and thus allows for higher-powered incentives and thus higher e¤ort.

This positive e¤ect of more agents is particularly strong if the agents�ex post

bargaining power is high. Finally, it a¤ects the variance of the performance

measure. For positive correlations between the agents�outputs, the variance

increases, while for negative correlations the variance is reduced. The latter

is bene�cial for the team because it increases the marginal incentives for each

team member to provide e¤ort.

Our model thus predicts that teamwork is more robust and more e¢ cient

when the team has high (ex post) bargaining power and when the team

members�outputs are negatively correlated. The former implies that team-

work is more e¢ cient (or prevalent) when the team is in a position to hold

up values and sell their products in an alternative market. This is typically

the case in human capital-intensive industries where groups of employees can

potentially walk away with ideas, clients, innovations, etc

The latter - negative correlations - relates to questions concerning opti-

mal team composition. In the management literature a central question

is whether teams should be homogenous or heterogeneous with respect to

both tasks (functional expertise, education, organizational tenure) and bio-

demographic charachteresics (age, gender, ethnicity). One can conjecture

that negative correlations are more associated with heterogeneous teams than

homogenous teams, and also more associated with task-related diversity than

with bio-demographic diversity. There is no reason to believe that e.g. men

and women�s outputs are negatively correlated. However, workers with dif-

ferent functional expertise may be di¤erently exposed to common shocks, or

meet di¤erent sets of demands from customers or superiors. This can create

negative output correlations.
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Interestingly, a comprehensive meta-study by Horwitz and Horwitz (2007),

investigating 35 papers on the topic, �nds no relationship between bio-

demographic diversity and performance, but a strong positive relationship

between team performance and task-related diversity. An explanation is that

task-related diversity creates positive complementarity e¤ects. We point to

an alternative explanation, namely that diversity may create negative corre-

lations that reduces variance and thereby increases marginal incentives for

e¤ort. The team members �must step forward when others fail�. Diver-

sity and heterogeneity among team members can thus yield considerably

e¢ ciency improvements.10

We have also compared with a situation where individual output is observ-

able. For a parametric (normal) distribution, we have shown that the op-

timal contract is an RPE (relative performance evaluation) scheme; a form

of a tournament, where the conditions for an agent to obtain the (single)

bonus are stricter for negatively compared to positively correlated outputs.

The e¢ ciency of the RPE contract is shown to increase with the number of

agents, and to improve with higher correlation (both positive and negative).

Now, if the �rm can initially choose between organizations that allow for

(a) only aggregate output or (b) individual outputs to be observed, we show

that the �rm may choose (a), i.e. to organize production as a team. Thus,

even if alternatives (a) and (b) are equally costly to set up initially, the team

alternative may yield a higher subsequent surplus.

There are two reasons for this. One is that teams create worse outside op-

tions. This is particularly the case under high ex post bargaining power.

When individual outputs are observable, high bargaining power creates quite

e¢ cient spot contracts, while under team production the free-rider problem

dampens the e¢ ciency of the spot contract. Hence, since worse outside op-

tions strengthens the relational contract, higher bargaining power favor the

team alternative.
10Hamilton et al (2003) provides one of a very few empirical studies on teams within the

economics literature. They �nd that more heterogeneous teams (with respect to ability)
were more productive (average ability held constant).
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Second, negative correlations are even more bene�cial for the relational team

contract than for the relational RPE contract. That is, although e¢ ciency

in both alternatives increases with more negatively correlated outputs, the

team alternative is more likely to be superior under such conditions. Hence,

according to our model, team work is not only more robust and e¢ cient under

high bargaining power and negatively correlated outputs. The likelihood for

�rms to deliberately choose the team alternative, even if individual output

is observable, is also higher under these conditions.
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APPENDIX

Proof of Lemma 1:

It remains to verify that the conditions are necessary. Given a scheme ~�; ~�

that satis�es (IC, EA, EP) and hence implements e. Let infy(~�i(y)� 1
n
�y) �

�i, and let �i(y) = ~�i(y) � �i and �i = ~�i +
1
�
�i. Then IC holds for �.

Moreover, infy(�i(y)� 1
n
�y) = 0 and EA holds for (�; �), since each agent�s

payo¤ is (by construction) unchanged for each realization y:

�i(y)+
�
1�� (�i+E(�i(y)j e)�c(ei)) = ~�i(y)+

�
1�� (~�i+E(

~�i(y)
��� e)�c(ei))

Then EP also holds, since the principal�s payo¤ must be unchanged as well:

��i�i(y)+ �
1���i(E(xij e)�E(�i(y)j e)��i) = ��i~�i(y)+

�
1���i(E(xij e)�

E~�i(y)� ~�i).

Taking inf and sup in EA and EP, respectively, and adding, we get

supy (�i�i(y)� �y)� �i infy
�
�i(y)� 1

n
�y
�
� �

1���i(W (ei)�Wn(e
s)

This shows that EC holds for �, since infy
�
�i(y)� 1

n
�y
�
= 0 for all i. This

completes the proof.

Proof of Proposition 1.

The Lagrangian for the problem of maximizing total surplus (�iW (ei) �
�i(E(xij ei)� c(ei))) subject to EC and the �modi�ed�IC constraint (2) is:

L = �iW (ei) +
R �

�
1�� (�iW (ei)� nWs)� �ibi(y)

�
�(y)dy

+�i�i
�R
bi(y)gl(y; l)lei(e1:::en)dy +

1
n
��x0(ei)� c0(ei)

�
where we have used @

@ei
E(bi(y)j e1:::en) =

R
bi(y)gl(y; l)lei(e1:::en)dy. This

yields

@L
@bi(y)

= �igl(y; l)lei(e1:::en)� �(y) � 0, bi(y) � 0, (compl slack)

If �i = 0, then bi(y) = 0 for all y, hence ei = esi . For bi(y) > 0 we have

�igl(y; l)lei = �(y) and hence from (2)
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�i(c
0(ei)� 1

n
��x0(ei)) =

R
bi(y)�(y)dy � 0

Thus for ei > esi we cannot have �i < 0. Hence we must have all �i > 0.

For y > y0 we have gl(y; l) > 0 and hence �(y) > 0, implying that EC

is binding and at least one bonus is positive. In a symmetric solution the

bonuses will thus all be equal and maximal for y > y0.

On the other hand, for y < y0 we have gl(y; l) < 0 by MLRP and hence

bi(y) = 0 for all i.

Finally suppose l(e1:::en) = �iei, and assume the solution is asymmetric; say

that ei < ej. Let b0 = (bi + bj)=2 and considerR
b0(y)gl(y; l(e1:::en))dy =

1
2

R
bi(y)gl(y; l(e1:::en))dy+

1
2

R
bj(y)gl(y; l(e1:::en))dy

= 1
2
c0(ei) +

1
2
c0(ej) � c0( ei+ej2

)

Hence the bonus b0(y) to each of i and j is feasible and would induce e¤ort at

least ei+ej
2
= e0 from each. Thus a slightly lower bonus to each is feasible and

will induce e¤ort e0 from each. This yields higher value since the objective

is concave. QED

Proof of Proposition 3.

To get a contradiction, suppose for given e�i that FOA is not valid for arbitrar-

ily large s2, and hence that, for any such s the agent�s payo¤ is maximal for

some ei = ei(s) < e�i . This optimum cannot be for ei(s) = 0, since that would

give payo¤ b(1�H(e�i )) + 0, where bh(0) + �� c0(e�i ) = 0, and hence payo¤
(excluding 0) c0(e�i )��

h(0)
(1 � H(e�i )) = (c0(e�i ) � �)

R1
e�i
e�

x2

2s2 dx, which would

become arbitrarily small for s su¢ ciently large. In comparison, the corre-

sponding payo¤ for ei = e�i is b(1�H(0))+�e�i�c(e�i ) =
c0(e�i )��
h(0)

1
2
+�e�i�c(e�i ),

which is large for s large since h(0) = 1p
2�s
.

Now, for ei = ei(s) > 0 being an optimum, we must have bh(e�i � ei) +
�� c0(ei) = 0, where bh(0) + �� c0(e�i ) = 0 and hence bh(0)(

h(e�i�ei)
h(0)

� 1) =
c0(ei)�c0(e�i ), where bh(0) = c0(e�i )�� = const. This implies (since

h(e�i�ei)
h(0)

=

exp(� (e�i�ei)2
2s2

)) that ei = ei(s) ! e�i , and hence that FOC has a solution
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ei = ei(s) arbitrarily close to e�i for s su¢ ciently large. But this is impossible,

since the slope of the FOC expression at e�i is bh
0(0)� c00(e�i ) = �c00(e�i ), and

hence there must be a left neighborhood where this expression is strictly

positive for all s. This proves the �rst statement in the proposition.

The formulas for the agent�s payo¤s for ei = 0 and ei = e�i , i.e. (c
0(e�i ) �

�)
R1
e�i
e�

x2

2s2 dx+0 and c0(e�i )��
h(0)

1
2
+�e�i �c(e�i )+0, respectively, show that the

former will dominate for s su¢ ciently small (since h(0) � 1
s
) Hence FOA

cannot be valid for s su¢ ciently small.

Now consider variations in �. Suppose FOA is valid for � 2
�
0; 1

2

�
and hence

that b(1�H(e�i � ei))+�ei� c(ei) < b(1�H(0))+�e�i � c(e�i ) for all ei < e�i
when bh(0) + �� c0(e�i ) = 0. Consider �0 > � and let b0 < b be given by

b0h(0) + �0 � c0(e�i ) = 0, i.e. b0h(0) + �0 = bh(0) + �

Then consider

b0(H(e�i � ei)�H(0)) + �0(e�i � ei)

= (b0 � b)(H(e�i � ei)�H(0)) + (�0 � �)(e�i � ei)

+b(H(e�i � ei)�H(0)) + �(e�i � ei)

> (b0 � b)(H(e�i � ei)�H(0)� h(0)(e�i � ei)) + (c(e�i )� c(ei));

where the inequality follows from FOA being valid for (�; b). The CDF

H(x) is concave for x > 0 (since then H 00(x) = h0(x) < 0), hence the term

multiplying (b0 � b) is negative. Since b0 < b we then see that FOA is valid
also for (b0; �0).

Finally consider the case of iso-elastic costs. In general, a su¢ cient condition

for FOA to be valid is that the agent�s FOC has no solution for ei < e�i . Due

to the bell-shaped form of the normal density, this will occur if the variance

s2 exceeds a critical value that yields tangency between the agent�s marginal

revenue and marginal cost curves at some ei < e�i This critical s
2 is de�ned
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by the following conditions:

bh(0) + �� c0(e�i ) = 0 = bh(e�i � ei) + �� c0(ei) (23)

�bh0(e�i � ei) = c00(ei) (24)

We have h(x) = �(x
s
)1
s
, where �(z) = e�z

2=2=
p
2� is the standard normal

density. For iso-elastic costs the above conditions (23 - 24) thus take the

form

b
s
�(0) + �� km(e�i )m�1 = 0 = b

s
�(

e�i�ei
s
) + �� km(ei)m�1 and

b
s
�(

e�i�ei
s
)
e�i�ei
s

1
s
= km(m� 1)(ei)m�2

Letting now

B = b
sm
�(0); �0 = �

sm�1 , d� =
e�i
s
, d = ei

s
;

the above conditions, re�ecting (23 - 24) can be written as

B + �0 � km(d�)m�1 = 0 = B exp(� (d��d)2
2

) + �0 � kmdm�1 and

B exp(� (d��d)2
2

)(d� � d) = km(m� 1)dm�2

For � = 0 this yields

exp( (d
��d)2
2

) = (d
�

d
)m�1 and (d� � d) = (m� 1)d�1

Letting x = d�

d
this yields

d2(x� 1)2=2 = (m� 1) lnx and (x� 1)d2 = m� 1

and hence x is the solution to x � 1 = 2 lnx, i.e. x � 3:512 9. So we

have (d�)2 = d2x2 = m�1
x�1 x

2, and hence e�i
s
= d� = K0

p
m� 1, where K0 =q

x2

x�1 � 2:216. This proves the �rst assertion for iso-elastic costs.

To verify the second assertion, note that for m = 2 the conditions (23 - 24)

de�ning the critical s take the form
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B + �0 � 2kd� = 0 = B exp(� (d��d)2
2

) + �0 � 2kd and

B exp(� (d��d)2
2

)(d� � d) = 2k

This yields

2k(d��d) = B
�
1� exp(� (d��d)2

2
)
�
= 2k exp( (d

��d)2
2

)(d��d)�1
�
1� exp(� (d��d)2

2
)
�

and hence

(d� � d)2 =
�
exp( (d

��d)2
2

)� 1
�
:

So (d� � d)2 = z where ln(z + 1) = z=2, i.e. z � 2:513. This yields

B + �0 � 2kd� = 0 and B exp(� z
2
)
p
z = 2k

where �0 = �
s
and d� = e�i

s
. Hence we have

e�i��=2k
s

= d� � �0

2k
= B

2k
= exp( z

2
)=
p
z � 2: 216

This completes the proof.

Proof of Proposition 4

We have H(x; s) = �(x
s
), and h(x; s) = �(x

s
)1
s
where �() is the N(0,1) CDF

and �() its density. The relations (8 - 10a) can then be written as

b(1� �(��
s
))� c(e�) � b(1� �(e

� � e0 � �
s

))� c(e0) (25)

b�(
��
s
)
1

s
� c0(e�) = 0 = b�(e

� � e0 � �
s

)
1

s
� c0(e0) (26)

b � �

1� �W (e
�) (27)

Note �rst that for the minimal s = sc for which the FOA is valid, all relations

hold with equality, and � = 0. Denote the associated e¤ort and bonus by

e� = e�c and b = bc, respectively.

We show below that for any s < sc, the optimal threshold scheme of this

type has all relations (25 - 27) binding, and implements some e� 2 (e�c ; e�u):
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Given the latter property, it is straightforward to see that e� ! e�u as s! 0.

For suppose that (at least along a subsequence) e� ! e�l < e
�
u as s! 0. Note

that we then must have �
s
! 1 as s ! 0. For if not, then b ! 0 by FOC

for e� in (26), which implies a negative payo¤ at e�. For the same reason we

must also have e��e0��
s

!1. Then we must have e0 ! e0l = 0 as s! 0, for

otherwise the payo¤ at e0 would converge to �c(e0l ) < 0. This is impossible,
since the payo¤ at e0 exceeds that at e = 0, and hence must be non-negative.

Taking limits in the �rst relation (25) with equality, we then get lim b � 1 �
c(e�l ) = 0, and hence from the last equation (for b) that c(e�l ) =

�
1��W (e

�
l ).

This cannot hold for e�l < e
�
u, hence we must have e

�
l = e

�
u.

It remains to prove the claim that for any s < sc, the optimal threshold

scheme of this type has all relations (25 - 27) binding, and implements some

e� 2 (e�c ; e�u):

We �rst show that for any s < sc, e¤ort e� = e�c can be implemented with

b = bc, and a suitable choice of � . Indeed, �x e� = e�c and b = bc, and let

�(s) and e0(s) be de�ned by the FOCs (26) for e� and e0, respectively. For

s = sc we have � = 0 and all relations hold with equality. We can show that

the payo¤ di¤erence will increase as s decreases; this follows from (as shown

below) d�
ds
< 0, where � is the payo¤ di¤erence;

� = b(�(
e� � e0 � �

s
)� �(��

s
))� (c(e�)� c(e0)); (28)

and � = �(s) and e0 = e0(s).

This shows that for any s less than the critical level sc, it is feasible to

implement the e¤ort e� = e�c associated with sc, and that this can be done

by adjusting the threshold downwards, keeping the bonus �xed at b = bc

(the FOA bonus associated with sc). Moreover, the agent�s payo¤ at e� is

then strictly larger (� > 0) than his payo¤ at the other local maximum e0.

(And the payo¤ at e0 is positive, since it exceeds the payo¤ at e = 0.) For

�xed s < sc this leaves room for increasing the bonus and/or the threshold

(reducing �), thereby increasing the implemented e¤ort.
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Note that by increasing b, keeping � �xed, e¤ort e� will increase (by FOC),

and the payo¤di¤erence will also increase, since d�
db
= �( e

��e0��
s

)��(��
s
) > 0

(by the envelope property). Hence b and e� can be increased if the EC

constraint b � �
1��W (e

�) is not binding.

By reducing � , keeping b �xed, e¤ort e� will increase (by FOC), and the

payo¤ di¤erence will decrease, since d�
d�
= (c0(e�) � c0(e0))1

s
> 0. Moreover,

this relaxes the EC constraint b � �
1��W (e

�), and is hence feasible. Thus �

can be reduced and e¤ort e� increased if the payo¤ constraint � � 0 is not
binding.

These arguments show that, for given s < sc, the optimal (feasible) threshold

bonus has the EC constraint as well as the payo¤ constraint binding. Thus

all the relations (25 - 27) will be binding, and the scheme implements an

e¤ort e� > e�c . This veri�es the claim.

It remains to prove d�
ds
< 0, where � is given by (28), � = �(s) and e0 = e0(s)

are given by the FOCs in (26), and b and e� are kept �xed (e� = e�c ; b = bc).

To this end, note that we have, for the payo¤ at e0:

d
ds

�
b(1� �( e��e0��

s
))� c(e0)

�
= �b�( e��e0��

s
) d
ds
( e

��e0��
s

)� c0(e0)de0
ds

= �b�( e��e0��
s

) 1
s2

�
�d(e0+�)

ds
s� (e� � e0 � �)

�
� c0(e0)de0

ds

= c0(e0)1
s

�
d(e0+�)
ds

s+ (e� � e0 � �)
�
� c0(e0)de0

ds

= c0(e0)
�
d�
ds
+ e��e0��

s

�
Similarly, for the payo¤ at e�:

d
ds

�
b(1� �(��

s
))� c(e�)

�
= �b�(��

s
) d
ds
(��
s
)

= b�(��
s
) 1
s2
(sd�
ds
� �) = c0(e�)(d�

ds
� �

s
)

Hence

d�
ds
= c0(e�)(d�

ds
� �

s
)� c0(e0)

�
d�
ds
+ e��e0��

s

�
= (c0(e�)� c0(e0))(d�

ds
� �

s
)� c0(e0) e��e0

s
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From the FOCs (26) and the fact that �0(z) = �z�(z) we obtain

�0(��
s
)(� s� 0��

s2
) = 1

b
c0(e�) ie

�(��
s
)�(��

s
)(� s� 0��

s2
) = 1

b
c0(e�) ie

� �
s
s
b
c0(e�)( s�

0��
s2
) = 1

b
c0(e�) ie

��( s� 0��
s2
) = 1 ie �

s
(d�
ds
� �

s
) = �1

This yields

d�
ds
= (c0(e�)� c0(e0))(� s

�
)� c0(e0) e��e0

s
< 0

This completes the proof.

Proof of Proposition 5

From (17) we have

c0(e)� ��x0(ei)
n
R1
x0
F (x; e)n�1fe(x; e)dx

=
b(n)

n
=

�

1� � (W (e)�W (es))

Consider

s(n) = n

Z 1

x0

F (x; e)n�1fe(x; e)dx =

Z 1

x0

d

dx
(F (x; e)n)

fe(x; e)

f(x; e)
dx

Letting h(x) = fe(x;e)
f(x;e)

here denote the likelihood ratio, we have, integrating

by parts

s(n) =

Z 1

x0

d

dx
(F (x; e)n � 1)h(x)dx = h(x0) +

Z 1

x0

(1� F (x; e)n)h0(x)dx

where h(x0) = 0 by de�nition of x0. Given MLRP we have h0(x) > 0 and

hence we see that s(n) is increasing in n.

This implies that c0(e)���x0(ei)
s(n;e)

shifts down with n, and hence that e¤ort per

agent (e) increases.
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Proof of Proposition 6

Consider the problem of maximizing total surplus (�iW (ei) = �i(E(xij ei)�
c(ei))) subject to (14) and the �modi�ed�IC constraint (15). Letting x =

(x1:::xn) and e = (e1:::en), the Lagrangian for the problem is

L = �iW (ei) +
R �

�
1�� (�iW (ei)� nWs)� �ibi(y)

�
�(x)

+�i�i
�R
bi(x)fei(x; e) +

1
n
��x0(ei)� c0(ei)

�
;

where we have used @
@ei
E(bi(x)j e) =

R
bi(x)fei(x; e) (and the integrals are

multiple integrals over vector x). This yields

@L

@bi(x)
= �ifei(x; e)� �(x) � 0, bi(x) � 0, (compl slack)

If two agents are paid a positive bonus, then �ifei(x; e) = �(x) = �jfej(x; e),

so their weighted likelihood ratios must be equal; �i
fei (x;e)

f(x;e)
= �j

fej (x;e)

f(x;e)
. But

this can only occur for a set of measure zero, hence at most one agent is paid

a bonus (almost surely).

If fei(x; e) < 0 then bi(x) = 0. If fei(x; e) > 0 then �(x) > 0, and agent

i is paid the bonus (bi(x) > 0) if and only if he has the largest weighted

likelihood ratio. Also, the bonus is maximal since EC is binding.

In a symmetric solution the weights (multipliers) �i will be equal, and hence

the agent with the largest likelihood ratio will get the bonus, provided this

ratio is positive.

Now consider variables with identical variances and identical correlations

(corr(xi; xj) = � all i 6= j.). The multinormal density has the form

C exp(�1
2
(x� e)0��1(x� e))

where � is the covariance matrix. Under our assumptions we have � = s2R,

where the correlation matrix R can be written as

R = (1� �)I + �J;
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where each element of J is Jik = 1. Note that J2 = nJ . We will show below

that

R�1 =
1

(1 + (n� 1)�)(1� �)Q, where Q = (1 + (n� 1)�)I � �J (29)

Note that the matrix Q has elements (1+ (n� 2)�) on the diagonal, and ��
o¤ the diagonal.

From the formula for R�1 and the de�nitions of k1; k2 in the text it follows

that the quadratic form in the multinormal density can be written

�1
2
(x� e)0��1(x� e) = �1

2
(k1�iz

2
i + k2�i6=jzizj) ; zi = xi � ei

Di¤erentiation of the density wrt ei then yields the formula (18) for the

likelihood ratio in the text

From the formula (18) it follows that agent i0s likelihood ratio is positive i¤

the inequality in (19) holds. We now verify the last equality in (19), i.e. the

validity of the expression for E(xijx�i). To this end note that for the normal
distribution the conditional expectation of, say x1 can be written

E(x1jx�1) = E(x1) + �12��122 (x�1 � Ex�1);

where �12 = s2(�; :::; �) is the (n � 1)�dimensional vecor of covariances
cov(x1; xj), j > 1, and �22 is the covariance matrix for x�1 = (x2:::xn)0. It

follows from (29) that s2��122 has the same form as R�1, with n replaced by

n� 1. Hence �12��122 = (�:::�)R�1n�1, and each element of this (1� n) matrix
is, from (29):

((�:::�)R�1n�1)i =
�

(1+(n�2)�)(1��)((1 + (n� 3)�)� (n� 2)�) =
�

(1+(n�2)�)

This veri�es the last equality in (19).

It remains to verify the formula (29) for R�1. To this end consider

RQ = ((1� �)I + �J)((1 + (n� 1)�)I � �J)

= (1� �)(1 + (n� 1)�)I + (1 + (n� 1)�)�J � (1� �)�J � �2nJ
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= (1� �)(1 + (n� 1)�)I + 0J

This proves the formula for R�1.

Finally we check positive de�niteness, and verify that R is positive de�nit i¤

1 + (n� 1)� > 0. To verify this we will show that the determinant of R is

�n = (1� �)n�1 ((n� 1)�+ 1)

To see this, note that the element qij in the inverse matrix Q = R�1 equals

Cji=�n, where Cji is the cofactor of element ji in matrix R. So for element

nn we have qnn = Cnn=�n = �n�1=�n, hence
1+(n�2)�

(1+(n�1)�)(1��) = �n�1=�n.

The formula for �n then follows by induction.

Proof of Proposition 7

We will show that for e�1 = e
�
2 the marginal gain from e¤ort isR

B
fe1(xj e1e�2) = 1

s
�(

e1�e�1
s
; �)

where �(a; �) is the function de�ned in (22) in the text. The agent�s FOC

then takes the form b
s
�(0; �)��=2�c0(e�1) = 0, which is precisely the formula

(21) stated in the proposition.

The normal density depends on (vector) x via a quadratic form in x � e�
hence it satis�es fei(x; e)dx = �fxi(x; e). Taking account of the de�nition of
the set B of outcomes (the set where agent 1 is paid a bonus) in (20) , we

thus haveR
B
fe1(xj e1e�2) = �

�R e�2
�1 dx2

R1
e�1+�(x2�e�2)

dx1 +
R1
e�2
dx2

R1
x2
dx1

�
fx1(xj e1e�2)

= �
�R e�2

�1 dx2 [f(xj e1e
�
2)]

x1=1
x1=e�1+�(x2�e�2)

+
R1
e�2
dx2 [f(xj e1e�2)]

x1=1
x1=x2

�
where

f(xj e1e�2) = k exp
�
� (x1�e1)2+(x2�e�2)2�2�(x1�e1)(x2�e�2)

2(1��2)s2

�
= k exp

�
� ((x1�e1)��(x2�e�2))2+(1��2)(x2�e�2)2

2(1��2)s2

�
, k = 1

2�s2
p
1��2

This implies
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[f(xj e1e�2)]
x1=1
x1=e�1+�(x2�e�2)

= k exp
�
� (x2�e�2)2

2s2

� h
0� exp

�
� ((x1�e1)��(x2�e�2))2

2(1��2)s2

�i
x1=e�1+�(x2�e�2)

= �k exp
�
� (x2�e�2)2

2s2

�
exp

�
� (e�1�e1)2
2(1��2)s2

�
and

[f(xj e1e�2)]
x1=1
x1=x2

= k exp
�
� (x2�e�2)2

2s2

� h
0� exp

�
� ((x2�e1)��(x2�e�2))2

2(1��2)s2

�i
= �k exp

�
� (x2�e�2)2

2s2

�
exp

�
� ((x2�e�2)+(e�2�e1)��(x2�e�2))2

2(1��2)s2

�
SoR
B
fe1(xj e1e�2) = k

R e�2
�1 exp

�
� (x2�e�2)2

2s2

�
dx2 exp

�
� (e�1�e1)2
2(1��2)s2

�
+k
R1
e�2
exp

�
� (x2�e�2)2+((x2�e�2)(1��)+(e�2�e1))2

2(1��2)s2

�
dx2 (z2 = x2 � e�2)

= k
R 0
�1 exp

�
� (z2)2

2s2

�
dz2 exp

�
� (e�1�e1)2
2(1��2)s2

�
+k
R1
0
exp

�
� z22(1��2)+(z2(1��)+(e�2�e1))2

2(1��2)s2

�
dz2

We have

z22(1� �2) + (z2(1� �) + (e�2 � e1))2

= z22(1� �2 + (1� �)2) + 2z2(1� �)(e�2 � e1) + (e�2 � e1)2

= 2(1� �)(z22 + z2(e�2 � e1) + 1
4
(e�2 � e1)2) + (e�2 � e1)2(1� 1

2
(1� �))

= 2(1� �)(z2 + 1
2
(e�2 � e1))2 + (e�2 � e1)2 12(1 + �)

HenceR1
0
exp

�
� z22(1��2)+(z2(1��)+(e�2�e1))2

2(1��2)s2

�
dz2

=
R1
0
exp

�
�2(1��)(z2+ 1

2
(e�2�e1)2

2(1��2)s2

�
dz2 exp

�
� (e�2�e1)2

1
2
(1+�)

2(1��2)s2

�
=
R1
0
exp

�
� (z2+

1
2
(e�2�e1))2

(1+�)s2

�
dz2 exp

�
� (e�2�e1)2
4(1��)s2

�
, (z02 =

z2+
1
2
(e�2�e1)p
1+�s

p
2)

=
R1
1
2 (e

�
2�e1)

p
2

s
p
1+�

exp
�
� (z2)2

2

�
dz2

s
p
1+�p
2
exp

�
� (e�2�e1)2
4(1��)s2

�
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Hence we haveR
B
fe1(xj e1e�2) = k 12

p
2�s exp

�
� (e�1�e1)2
2(1��2)s2

�
+k
R1

e�2�e1
s
p
1+�

p
2

e�
z2

2 dz s
p
1+�p
2
exp

�
� (e�2�e1)2
4(1��)s2

�
, k = 1

2�s2
p
1��2

Setting e�2 = e�1 and using �(z) =
1p
2�
e�z

2=2 veri�es the formula (21), and

completes the proof.

Proof of Proposition 8

Given that the marginal gain to e¤ort for agent 1 in the modi�ed tournament

scheme can be written as

b
s
�(

e1�e�1
s
; �) + � � c0(e1)

where �(a; �) is given by (22), the FOC for e1 = e�1 to be optimal is
b
s
�(0; �)+

1
2
��c0(e�1) = 0, and the local second order condition is bs�a(0; �)

1
s
�c00(e�1) � 0

Since �0(0) = 0 we see that

�a(0; �) =
1p
1��2

1
2
�(0)2 = 1p

1��2
1
4�

Since �(0) = 1
2
and �(0) = 1=

p
2�, this in turn implies

�a(0;�)
�(0;�)

=
1p
1��2

1
2
�(0)

1p
1��2

1
2
+ 1p

1��
1p
2
1
2

= �(0)

1+

p
1��2p
1��

1p
2

= 1=
p
�p

2+
p
1+�

From the FOC we have b
s
�(0; �) = c0(e�1)� �, hence the SOC can be written

as

c00(e�1) � b
s
�a(0; �)

1
s
=

c0(e�1)��
�(0;�)

�a(0; �)
1
s
=

c0(e�1)��
s

1=
p
�p

2+
p
1+�

This can be rearranged to yield the formula stated in the proposition.

We will now show that for s su¢ ciently large, the FOC has a single solution

(e1 = e�1), which then must be a maximum, since the local SOC holds strictly

for s large. To get a contradiction, suppose that, for every s0 > 0 there is

s > s0 such that FOC has a solution e1 = e1(s) 6= e�1, i.e. such that

b
s
�(

e1�e�1
s
; �) + � � c0(e1) = 0 = b

s
�(0; �) + � � c0(e�1);
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implying

�(
e1�e�1
s
; �)=�(0; �) = c0(e1)��

c0(e�1)��

Then letting s!1 (if necessary along a subsequence) we see that e1(s)!
e�1. Hence a(s) =

e1(s)!e�1
s

! 0, and the last equation above yields

1
a(s)
(�(a(s);�)
�(0;�)

� 1)1
s
=

c0(e1)�c0(e�1)
e1�e�1

1
c0(e�1)��

Letting now s ! 1, the LHS behaves like �a(0;�)
�(0;�)

1
s
and hence converges to

zero, while the RHS converges to c00(e�1)
c0(e�1)��

. This yields a contradiction and

thus completes the proof.

Proof of Proposition 9

It follows from (5) that the critical discount factor to implement �rst best

e¤ort eFB is for a team with n independent agents given by�
c0(eFB)� 1

n
�
�
snM = �FB

1��FB (W (e
FB)�Ws(n))

i.e., since c0(eFB) = 1 here:

�FB

1��FB =
(1� 1

n
�)M

W (eFB)�Ws(n)
sn

Consider now quadratic costs: c(e) = k
2
e2, with associated surplus per agent:

W (e) = e� k
2
e2

First-best e¤ort and surplus is then

: 1 = keFB; W FB =
�
1
k

�
� k

2
( 1
k
)2 = 1

2k

Spot e¤ort is given by �=n) = c0(es) = kes; and surplus is then:

W (es) =
�
�
nk

�
� k

2
( �
nk
)2 = 1

2kn2
� (2n� �)

Hence the critical discount rate is here given by

�FB

1��FB =
(1� 1

n
�)M

W (eFB)�Ws(n)
sn =

(1��=n)M
1
2k
� 1
2kn2

�(2n��)s
p
n = (1��=n)

p
nM

1� 1
n2
�(2n��)2ks

We have now
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d
dn

�
(1��=n)

p
n

1� 1
n2
�(2n��)

�
= 1

2

p
n

(n��)2 (n� 3�) > 0 iff n > 3�

Hence, if 3� � 2, i.e. � � 2
3
, then the critical discount rate �FB is increasing

for n � 2, meaning that teams with n > 2 do worse than teams with n = 2
with respect to achieving FB.

The critical discount rate �FB is always increasing for n > 3 (since � < 1),

hence teams with n > 3 will always do worse than teams with n = 3 regarding

achieving FB.

Comparing n = 2 and n = 3:

( �
1�� )

FB
n=2

( �
1�� )

FB
n=3

=

(1��=2)
p
2

1� 1
22

�(2�2��)

(1��=3)
p
3

1� 1
32

�(2�3��)

=
p
6 2��6
9��18 � 1 for � � �0 = 0:805 42

Hence we have (for quadratic costs): wrt achieving FB, the optimal team

size is n = 2 if � < �0 = 0:805 42, and n = 3 if � > �0.

This proves the �rst part of the proposition. The second part (comparison

with the RPE tournament) follows from the proof for Proposition10 below.

Proof of Proposition 10

For normal distributions, we have that e¤ort in the modi�ed tournament is

for given bonus given by FOC, see (21):

b 1p
2�s

1
2

�
1p
1��2

+ 1p
1��

1p
2

�
+ � = c0(e)

The EC conditon requires b � �
1��n(W (e) � Ws), hence e¤ort is given by

(when s =
p
v)

�
1�� (W (e)�Ws) =

b
n
= c0(e)��

1p
2�s

1
2

�
1p
1��2

+ 1p
1��

1p
2

�
2
= c0(e)��

1p
2

1p
1��2

+ 1p
1��

1
2

p
�v

Consider next the relational Team contract.

The maximal e¤ort per agent that can be sustained in the team is given by

(5), where now M =
p
2� and s22 = 2v(1 + �), and hence (5) is�

c0(e)� 1
n
�
�p
2�
p
2v(1 + �) = b = �

1�� (W (e)�Ws(n))
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Compare now critical �0s to implement FB. They are given by the following

conditions, for the tournament and the team, respectively

�
1�� =

c0(eFB)��
W (eFB)�Ws

p
v�

1p
2

1p
1��2

+ 1p
1��

1
2

= 1��
W (eFB)�Ws

2
p
v�p

2 1p
1��2

+ 1p
1��

�
1�� =

c0(eFB)��=2
W (eFB)�Ws(2)

p
2�
p
2v(1 + �) = 1��=2

W (eFB)�Ws(2)
2
p
v�
p
1 + �

For quadratic costs we have W (eFB) = 1
2k
, and

W (es(n = 2)) =
1

2kn2
� (2n� �)n=2 = 1

8k
� (4� �) ; Ws =

1
2k
� (2� �)

Hence the tournament has highest critical �FB i¤

1 <

�
1��

W (eFB)�Ws

2
p
v�p

2 1p
1��2

+ 1p
1��

�
=
�

1��=2
W (eFB)�Ws(2)

2
p
v�
p
1 + �

�
=

�
1��

1
2k
� 1
2k
�(2��)

1p
2 1p

1��2
+ 1p

1��

�
=
�

1��=2
1
2k
� 1
8k
�(4��)1

p
1 + �

�
= 1

2
2��
1��

p
2�
p
�+1p

1��

where the last equality follows from straightforward algebraic calulations.

Consider then the critical combination 1
2
2��
1��

p
2�
p
�+1p

1�� = 1, ie

� =
2(
p
��+1+

p
�+1�

p
2)

2
p
��+1+

p
�+1�

p
2

The tournament has highest critcal �FB above the curve de�ned by �(�).

Di¤erentiating, we obtain

d
d�

�
2(
p
��+1+

p
�+1�

p
2)

2
p
��+1+

p
�+1�

p
2

�
=

p
2(
p
2�
p
�+1)

p
1��

p
�+1(2

p
1��+

p
�+1�

p
2)
2 > 0

The increasing curve shows that the tournament gets relatively better vis-a-

vis the team when � increases.
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