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Abstract

This paper extends the Mirrlees (1971) model of optimal non-linear income taxation with
a monitoring technology that allows the government to verify labor effort at a positive,
but non-infinite cost. We analyze the joint determination of the non-linear monitoring and
tax schedules and the conditions under which these can be implemented. Monitoring of
labor effort reduces the distortions created by income taxation and raises optimal marginal
tax rates, possibly above 100 percent. The optimal intensity of monitoring increases with
the marginal tax rate and the labor-supply elasticity. Our simulations demonstrate that
monitoring strongly alleviates the trade-off between equity and efficiency as welfare gains
of monitoring are around 1.4 percent of total output. The optimal intensity of monitoring
follows a U-shaped pattern, similar to that of optimal marginal tax rates. Our paper can
explain why large welfare states optimally rely on work-dependent tax credits, active labor-
market policies, benefit sanctions and work bonuses in welfare programs to redistribute
income efficiently.
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“Informational frictions are a specification of a particular type of technology. For
example, when we say “effort is hidden”, we are really saying that it is infinitely
costly for society to monitor effort. The desired approach would be to devise optimal
tax systems for different specifications of the costs of monitoring different activities
and/or individual attributes. To be able to implement this approach, we need to ...
extend our modes of technical analysis to allow for costs of monitoring other than
zero or infinity.” Kocherlakota (2006, pp. 295-296)

1 Introduction

Redistribution of income is one of the most important tasks of modern welfare states. How-

ever, redistribution is expensive as it distorts the incentives to supply labor. As a result, there

is a trade-off between equity and efficiency. On a fundamental level, Mirrlees (1971) demon-

strates that the trade-off between equity and efficiency originates from an information problem.

Earnings ability and labor hours are private information, and the government cannot condi-

tion redistributive taxes and transfers on earnings ability. Therefore, the government cannot

distinguish individuals that are unable to work from individuals that are unwilling to work,

and redistribution from high-income to low-income earners inevitably distorts the incentives to

supply labor hours.

In practice, labor supply is not completely non-verifiable, as assumed by Mirrlees (1971).

Indeed, some welfare states do condition the tax burden on some measure of hours worked. For

example, in the UK low-income individuals receive a tax credit if they work more than 30 hours.

This policy can only be implemented if the government is able to verify hours worked. Similar

restrictions apply to in-work tax credits in Ireland and New Zealand, see also OECD (2011).

Clearly, the assumption that hours worked and earnings ability are not verifiable is a too strong

assumption. In the real world, the government does verify hours worked of some individuals to

some extent, albeit at a cost. Consequently, the government can – to some extent – separate

shirking high-ability individuals from hard-working low-ability individuals.

This paper extends Mirrlees (1971) by allowing the government to operate a monitoring

technology. The monitoring technology allows the government to verify labor hours of an in-

dividual at a positive, but finite cost. The government optimally sets the monitoring schedule

as a function of gross income. That is, the probability that an individual is monitored de-

pends (possibly non-linearly) on his/her gross labor earnings. If an individual is monitored, the

government perfectly verifies his/her labor supply and can thus deduce a worker’s ability. By

monitoring hours worked the government can thus provide incentives to individuals to change

their labor supply in a direction that the government desires. How exactly these incentives are

provided is immaterial. We can formulate our model such that individuals receive a work bonus

when they meet a certain reference level of labor hours. This would correspond to the type of

work bonuses observed in the UK, Ireland and New Zealand. Alternatively, we can formulate

our model such that monitored individuals receive a penalty when their hours worked fall short

of a minimum reference level of hours worked, which corresponds to observed work requirements

and conditional welfare benefits in most advanced welfare states.

Each individual is aware of the monitoring and tax schedules before making labor-supply
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decisions. Hence, individuals can alter their monitoring probability by adjusting their hours

worked. The total wedge on labor supply consists of the explicit income tax rate and an

implicit subsidy on labor supply due to monitoring. Monitoring of hours worked acts as an

implicit subsidy on labor supply for two reasons. First, the expected bonus increases (penalty

decreases) in the difference between hours worked and the reference level of hours worked.

Second, the monitoring intensity may decrease with gross earnings, depending on the shape of

the monitoring schedule. For a given tax rate, monitoring can thus reduce the distortions of

the income tax on labor supply, thereby increasing both equity and efficiency.

The government maximizes social welfare by optimally setting the non-linear monitoring

intensity, alongside the optimal non-linear income tax.1 We solve for the optimal non-linear tax

and monitoring schedules by decentralizing the optimal, incentive-compatible direct mechanism

that induces truthful revelation of ability types. We do not deviate from Mirrlees (1971) in

that individuals always truthfully report earnings.2 The schedule of optimal non-linear labor

wedges is affected in two important ways in comparison to Mirrlees (1971). First, the monitoring

intensity reduces the efficiency costs of the labor wedge, and thus allows for higher marginal

tax rates. Second, a decrease in labor supply directly increases the penalties (or decreases work

bonuses). Monitoring generates within-ability inequality between monitored and non-monitored

individuals. Therefore, higher marginal taxes result in a distributional loss due to monitoring

activities. The net effect of monitoring on the optimal wedge is thus theoretically ambiguous.

In Mirrlees (1971) tax rates at, or above, 100 percent can never be optimal. In contrast

to Mirrlees (1971), we demonstrate that marginal tax rates could optimally be larger than 100

percent due to optimal monitoring. In particular, individuals may supply labor even if the

marginal income tax rate is above 100 percent, as long as the total wedge on labor remains

below 100 percent. This could explain why effective marginal tax rates of close to, or even

higher than, 100 percent are observed in real-world tax-benefit systems in the phase-out range

of means-tested benefits. See Immervoll (2004), Spadaro (2005), Brewer et al. (2010) and

OECD (2011) for examples in OECD countries. The non-linear monitoring schedule is set so

as to equate the marginal cost of monitoring to the marginal efficiency gain associated with

monitoring at each gross income level. The efficiency gain of monitoring is increasing in the

distortion created by the wedge on labor. Therefore, the optimal monitoring intensity increases

with both the total labor wedge and the labor-supply elasticity.

Unfortunately, there is no closed-form solution for the optimal tax and monitoring schedules.

Therefore, we resort to numerical simulations based on a realistic calibration of the model to

US data. Our simulations demonstrate that the optimal tax schedule follows a U-shape, which

closely resembles those in the simulations of Saez (2001). Moreover, the monitoring schedule

also follows a U-shape. This confirms that the monitoring intensity should indeed be large

1In our model, first-best can generally not be obtained, because the penalty function is exogenous. If the
government would be able to optimize the penalty function a trivial first-best outcome would result by either
raising the penalty to infinity or adjusting the penalty function such that the implicit subsidy on work exactly
off-sets the explicit tax on work.

2We realize that the assumption of truthful reporting of earnings is not always realistic due to, for example tax
evasion and avoidance. This issue has been discussed in, amongst others, Cremer and Gahvari (1996), Schroyen
(1997) and Chander and Wilde (1998). In most developed countries, however, firms are required to report gross
labor earnings directly to the tax authorities, which prevents underreporting of earnings for a very large fraction
of labor earnings (see e.g. Kleven et al., 2011).
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when tax distortions on labor supply are large. The simulations demonstrate that the marginal

tax rates with monitoring are generally higher than without monitoring. Hence, monitoring

always results in more redistribution of income from high- to low-ability individuals, despite the

inequality within-ability groups that results due to monitoring and penalizing individuals.

Strikingly, our simulations demonstrate that the optimal tax rate at the bottom end of

the income scale is substantially above 100 percent. This implies that the implicit subsidy

on labor supply due to monitoring is very effective in reducing the total tax wedge on labor

supply at the lower end of the income scale. Indeed, the optimal monitoring probability is

close to one at the bottom, but it drops substantially towards middle-income levels. There

is a slight increase in the monitoring probability towards the top, as tax rates increase. We

conclude from our simulations that monitoring is most important at the bottom of the income

distribution. Strongly redistributive governments should therefore optimally employ a high

monitoring intensity at the low end of the income scale, for example, via job-search requirements,

benefit sanctions, work bonuses, and active labor-market programs. Moreover, our findings

suggest that work-dependent tax credits for low-income earners, like those in the UK, Ireland

and New Zealand, are indeed part of an optimal redistributive tax policy.

The welfare gains of monitoring are shown to be large. Compared to the optimal non-

linear tax schedule without monitoring, monitoring increases total output by 1.35 percent in our

baseline simulation. Moreover, the transfer increases by about 4 percent. The monetized welfare

gain of monitoring is about 1.4 percent of total output. The optimal monitoring probability

does not exceed 20 percent anywhere except at the lower end of the income distribution. In

our baseline simulations, the cost of monitoring is a small fraction of average labor earnings.

Extensive sensitivity analyses demonstrate that the results are robust to parameter changes in

the monitoring technology, on which little empirical evidence exists.

The setup of the paper is the following. The next section gives a brief overview of the

related literature. The third section introduces the model and derives the conditions for first-

and second-order incentive compatibility. The fourth section derives the optimality conditions

for monitoring and redistribution. The fifth section presents the simulations. Finally, the sixth

section concludes.

2 Review of the literature

Our model builds upon two strands in the mechanism-design literature. Mirrlees (1971), Dia-

mond (1998) and Saez (2001) develop the theory of the optimal non-linear income tax under the

assumption that both hours worked and ability are completely private information, implicitly

assuming that verification of either hours worked or ability is infinitely costly. On the other

hand, the literature on costly state verification develops principal-agent models where the out-

come of a project is a function of both the state of the world and the action of the agent (see,

e.g., Mirrlees, 1999, 1976, Holmstrom, 1979, and Townsend, 1979). The outcome is observed,

but the action and the state of the world can only be verified through costly monitoring. Mon-

itoring can then improve the ex-ante utility of both the principal and the agent. We apply the

theory of costly state verification to the Mirrlees (1971) model and show that monitoring of
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labor supply can increase welfare significantly.

In a related paper, Armenter and Mertens (2013) study the effect of optimal monitoring of

ability types on the optimal tax schedule. They analyze a dynamic model of optimal taxation

where the government can use a monitoring technology to establish the ability of an agent.

In their model, the monitoring intensity is exogenous, while penalties are endogenous. In

equilibrium, individuals do not misreport their ability, and are therefore never penalized. Indeed,

the economy is shown to converge to first best in an infinite-horizon setting. We, instead,

analyze the case where monitoring is endogenous and penalties are exogenously given. Because

penalties are exogenously given, individuals may misreport their ability type in equilibrium.

Consequently, our model does not converge to a first-best outcome. An advantage of allowing for

an endogenous monitoring intensity is that we do not need to worry about a tax-riot equilibrium

in which all individuals misreport their type when they expect other individuals to do the same

(Bassetto and Phelan, 2008).

The effect of monitoring has also been studied in the literature on tax evasion and the

literature on unemployment insurance. The literature on tax evasion (see, e.g., Allingham

and Sandmo, 1972, Sandmo, 1981, Mookherjee and Png, 1989, Slemrod, 1994, Cremer and

Gahvari, 1994, 1996, Chander and Wilde, 1998, and Slemrod and Kopczuk, 2002) extends the

Mirrlees (1971) framework by allowing individuals to underreport their earned income to the

tax authorities.3 Compared to the standard Mirrlees (1971) model, income taxation is more

distortionary, because it not only reduces labor supply, but also increases tax evasion. However,

the government can monitor individuals by auditing their tax returns and fine them when

they evade taxes. In a two-type economy with non-linear taxation and monitoring Cremer and

Gahvari (1994, 1996) show that the welfare-maximizing policy is to levy a positive marginal tax

rate on the bottom type and a zero tax rate at the top. All individuals reporting income below a

threshold level should be monitored with positive probability. The tax rate and the monitoring

schedules are strategic complements for the government, because a higher tax rate induces an

increase in tax evasion, thereby increasing the social value of monitoring. In our model the only

choice variable of individuals is their labor supply.4 The monitoring instrument is therefore

aimed at measuring hours worked instead of evasion. We extend the literature by considering

optimal non-linear tax and monitoring under a continuum of skill types. This allows us to derive

an elasticity-based formula for the optimal non-linear tax and monitoring schedule in the spirit

of Diamond (1998) and Saez (2001). Moreover, we can determine the shape of non-linear tax

and monitoring schedules over the entire income distribution through simulations.

In the literature on unemployment insurance, Ljungqvist and Sargent (1995a,b) study the

effect of monitoring on equilibrium employment in welfare states.5 In their model, unemployed

workers may receive a job offer each period. In the absence of monitoring, the benefits in-

duce workers to decline an inefficiently large number of job offers. Monitoring can help raising

efficiency by punishing those workers who decline job offers. Simulations using Swedish data

3A comprehensive survey of the literature can be found in Slemrod and Yitzhaki (2002).
4An alternative interpretation would be that individuals exogenously supply labor, but can use a costly evasion

technology.
5A large literature exists on optimal unemployment insurance, see Fredriksson and Holmlund (2006) for a

survey of this literature. However, this literature typically does not consider monitoring of search effort.
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demonstrate that welfare states with large benefits and progressive taxation can have low equi-

librium unemployment rates, provided the monitoring probability and sanctions are sufficiently

large. In a model of optimal income redistribution with search, Boadway and Cuff (1999) de-

termine the welfare-maximizing monitoring probability and demonstrate that it is increasing in

the level of the benefits. Boone and Van Ours (2006) and Boone et al. (2007) develop a search

model where the government can actively monitor and sanction job-search effort. They show

that monitoring and sanctioning may be more effective in reducing unemployment than cutting

the replacement rate. In addition, they show that monitoring may be effective, even when the

duration of unemployment benefits is limited. This literature has focused on monitoring the

search effort of unemployed workers. We contribute to this literature by studying the effect of

monitoring on employed workers.

Finally, we contribute to the literature on optimal non-linear tax simulations (see, for exam-

ple, Mirrlees, 1971, Tuomala, 1984, Saez, 2001, Brewer et al., 2010 and Zoutman et al., 2013).

We show that monitoring can lead to significant improvements in both equity and efficiency.

3 Model

3.1 Households

The setup of our model closely follows Mirrlees (1971). Individuals are heterogeneous in their

earnings ability, n, which denotes the productivity per hour worked. Ability is distributed

according to cumulative distribution function F (n) with support [n, n], where n could be infinite.

The density function is denoted by f(n). Workers are perfect substitutes in production and the

wage rate per efficiency unit of labor is constant and normalized to one. n therefore corresponds

to the number of efficiency units of labor of each worker. Gross labor income of an individual is

the product of his/her ability and his/her labor hours zn = nln. Individuals derive utility from

consumption cn and disutility from hours worked ln.

We introduce the model using a formulation where individuals may receive a work bonuses

when they supply a given level of work effort. Then, we demonstrate that a tax implementa-

tion where individuals receive a penalty if they fail to meet a given level of working hours is

equivalent. The critical part of our analysis is therefore the monitoring of labor supply, not the

particular tax implementation through bonuses or penalties.

To fix ideas, we assume that the tax schedule consists of two parts. First, individuals pay

income taxes T̂ (zn) based on their earned income zn. Second, individuals can apply for a

working tax credit, T , if their hours worked exceed an exogenously given work requirement,

l∗. The work requirement is the same for all individuals.6 This tax schedule corresponds

closely to what we observe in the UK, New Zealand and Ireland – see the remarks in the

introduction. Consequently, total tax payments for individuals applying for the tax credit are

given by T (zn) ≡ T̂ (zn) − T . Similarly, tax payments of the individuals who do not apply for

the tax credit are simply T̂ (zn).

6Zoutman and Jacobs (2014) show that it is straightforward to extend the analysis with a non-linear work
requirement that is dependent on ability. However, no additional insights are gained and the analysis becomes
more complex as incentive-compatibility constraints will be affected by the work-requirement schedule as well.
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We make the technical assumption that all individuals apply for the tax credit. This as-

sumption is nearly without loss of generality as we can always ensure that all individuals apply

for the credit by simultaneously adjusting tax payments without the tax credit T̂ (zn) and the

tax credit T by similar amounts.7 Below we demonstrate that such a policy is in the best

interest of the government, since monitoring effectively alleviates the equity-efficiency trade-off

and moves the optimal second-best allocation closer to the first-best allocation.

Individuals can misreport their hours worked to the tax authorities, and can therefore claim

the tax credit while not satisfying the minimum-hours requirement. The government, however,

can operate a monitoring technology to verify actual hours worked of an individual applying for

the tax credit. π(zn) denotes the probability that an individual with earnings zn is monitored by

the government. π(zn) is also referred to as the monitoring intensity. We assume the government

receives a perfect signal of the individual’s labor supply ln if the individual is monitored. The

government only monitors the individuals that claim the tax credit.

Monitored individuals receive a penalty if they are found to misrepresent their hours worked.

The size of the penalty depends on the difference between the required working hours l∗ and

actual hours ln worked:

P ≡

{
P (l∗ − ln) if l∗ > ln

0 if l∗ ≤ ln
, P (·), P ′(·) ≥ 0. (1)

We will refer to P (·) as the penalty function. We restrict penalties to be non-negative. The

penalty function P (·) is exogenously given and assumed to be continuous and twice differ-

entiable. Penalties increase when individuals are found to supply less labor than the hours

requirement (P ′(·) > 0). Therefore, penalties decrease in hours worked. For a given gross

income level zn penalties thus increase in ability, since higher ability individuals need to supply

less hours in order to attain a given gross income level. Finally, we assume that the government

does not penalize individuals that applied to the working tax credit and supplied the required

minimum amount of hours.

We believe that constraining the penalty function P (·) is realistic for two reasons. First, the

legal system practically imposes limitations on the government’s ability to use infinite penalties.8

Second, we assume perfect monitoring as the labor supply of each individual is verified with

perfect certainty. If we would more realistically assume that monitoring is imperfect, hard-

working individuals could inadvertently be monitored as shirking individuals. Then, we would

be able to endogenize both the penalty function and the monitoring function, and infinite

penalties would never be socially optimal, see e.g. Stern (1982), Diamond and Sheshinski

(1995), and Jacquet (2014). We leave this extension for future research as it would severely

complicate our analysis without affecting the main result: monitoring alleviates the equity-

efficiency trade-off.

7To see this, suppose that the tax credit T and the tax schedule T̂ (zn) are given. Next, add an arbitrarily
large number to both. The incentive to apply for the tax credit then increases, but it does not affect total tax
payments T (zn). Consequently, there always exists a level of the tax credit T beyond which everyone applies for
it.

8A more thorough discussion on these issues can be found in Schroyen (1997), Mirrlees (1997), and Mirrlees
(1999).
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Figure 1 displays an example of a penalty function. As can be seen, the penalty decreases

quadratically in labor supply up to ln = l∗, after which it remains constant at 0. Such a penalty

function will be used in the simulations later.

Figure 1: Example of a penalty function

Rather than using work bonuses, the government could, equivalently, use a negative tax

credit T , i.e. a work penalty, for all individuals not supplying the optimal level of labor.

Individuals would then be required to report to the government whether they met the work

requirement to avoid having to pay T , and the government then needs to verify whether these

work reports are indeed truthful. The total tax schedule T (zn) would remain the same. Hence,

the particular tax implementation with either work bonuses or non-work penalties is immaterial

to our main findings. In the remainder of this paper we will, therefore, focus on determining

the optimal total tax schedule T (zn) including the tax credit.

The consumption of an individual who is not monitored is thus given by cUn ≡ zn − T (zn).

The consumption of a monitored (and penalized if hours worked are less than required for the

credit) individual is given by cPn ≡ zn−T (zn)−P (l∗− ln). Individuals are assumed to maximize

expected utility subject to their budget constraints in monitored and unmonitored states. We

follow Diamond (1998) by assuming that all individuals have an identical quasi-linear expected

utility function:

u(zn, n) ≡ π(zn)cPn + (1− π(zn))cUn − v(ln), v′(·) > 0, v′′(·) > 0, (2)

= zn − T (zn)− π(zn)P (l∗ − zn/n)− v(zn/n), ∀n,

where we substituted the household budget constraint and ln = zn/n in the second line. An im-

portant analytical advantage of this quasi-linear-in-consumption utility function is that individ-

uals are risk-neutral.9 The first term in the first line represents the non-monitoring probability

9We could allow for risk-aversion in the utility function. In that case we are only able to solve for the optimal
non-linear tax and monitoring schedules if the social welfare function is utilitarian. Intuitively, the problem
becomes analytically untractable if the government has a different degree of risk-aversion – which is implied by
a non-utilitarian social welfare function – than households have. Without risk aversion, this problem is always
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times the consumption of an individual that is not monitored. The second term in the first line

is the monitoring probability times the consumption of an individual that is monitored. The

last term in the first line is the disutility of labor supply.

Individuals choose the optimal amount of gross income based on their productivity n, the

tax function T (·), the monitoring function π(·), and the penalty function P (·). An income level

zn is incentive compatible if it maximizes u(zn, n). The first-order condition for optimal labor

supply is given by:

v′(zn/n) =
(
1− T ′(zn)− π′(zn)P (l∗ − zn/n)

)
n+ π(zn)P ′(l∗ − zn/n), ∀n. (3)

On the right-hand side, we see that policy drives a wedge between the private and social benefits

of labor supply. The total labor wedge Wn is given by:

Wn ≡
n− v′(zn/n)

n
= T ′(zn)︸ ︷︷ ︸

explicit tax

+ π′(zn)P (l∗ − zn/n)− π(zn)

n
P ′(l∗ − zn/n)︸ ︷︷ ︸

implicit tax

, ∀n. (4)

In a laissez-faire equilibrium the right-hand side of eq. (3) equals n and the total labor wedge

Wn is zero. The total labor wedge consists of the explicit marginal tax on labor (T ′) and the

implicit marginal tax (subsidy) on labor due to monitoring (π′P −πP ′). If T ′+π′P −πP ′ > 0,

the redistributive tax and monitoring policy reduces optimal labor supply below the laissez-

faire level, and vice versa if it is smaller than zero. The wedge is naturally increasing in the

explicit marginal rate T ′. Furthermore, it increases in the marginal monitoring probability,

π′, if penalties are positive, i.e. P > 0. π′ gives the marginal increase in the monitoring

probability as a function of gross earnings. If the monitoring probability increases (decreases)

with income, this reduces (increases) the incentive to supply labor, because a higher labor

income increases (decreases) the probability of receiving a penalty. Therefore, an increase in

the marginal monitoring probability decreases the incentive to supply labor.

Proposition 1 shows that without loss of generality we can assume that expected consump-

tion, C(zn) ≡ zn − T (zn)− π(zn)P (l∗ − zn/n), is non-decreasing in earnings zn. Consequently,

the total labor wedge Wn can never be larger than one, i.e. larger than 100 percent.

Proposition 1 All implementable continuous allocations can be implemented through a con-

tinuous non-decreasing expected consumption function C(zn), ∀n. If C(zn) is continuous and

differentiable, the wedge Wn can never exceed 1.

Proof. The proof directly follows Mirrlees (1971). Let C̃(z) be any continuous expected con-

sumption function. The individual maximization problem is given by:

zn = arg max
zn
C̃(zn)− v(zn/n), ∀n. (5)

Now consider function C(zn) = maxz̃n≤zn C̃(z̃n). Clearly, C(·) is non-decreasing and continuous,

absent and we can allow for any degree of inequality aversion in the social welfare function.
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because C̃(·) is continuous. Now, consider the maximization problem:

max
zn
C(zn)− v(zn/n) = max

zn

[
max
z̃n≤zn

C̃(z̃n)

]
− v(zn/n), ∀n. (6)

Assume zn is the solution to problem (5). The solution to this second maximization problem

must also be zn. To see this, evaluate C(·) at zn: C(zn) = maxz̃n≤zn C̃(z̃n). Either C(zn) = C̃(zn)

or C(zn) = C(z̄n) with z̄n < zn. In the first case, maximization problems (6) and (5) are

equivalent, and hence, they must have the same solution. In the second case, because v′(·) is

strictly increasing in zn, z̄n must give a higher value to the objective function in eq. (5) than does

zn. Hence, we arrive at a contradiction, because zn could not have been the solution to problem

(5) in the first place. Therefore, without loss of generality we can focus on non-decreasing

functions C(·). Now, suppose C(·) is differentiable and consider its derivative.

C′(zn) = 1− T ′(zn)− π′(zn)P (l∗ − zn/n) +
π(zn)

n
P ′(l∗ − zn/n) = 1−Wn, ∀n. (7)

C(zn) is non-decreasing if its derivative is greater than or equal to zero: C′(zn) ≥ 0⇔Wn ≤ 1.

Proposition 1 has an intuitive interpretation. Suppose, an individual has a budget constraint

such that expected consumption is decreasing in gross income over some interval. Then, this

individual will never choose gross income in this interval, because he can work less and consume

more, both yielding higher utility. Consequently, the government can never increase social

welfare by setting the wedgeWn above 1. The explicit marginal tax rate T ′(zn), however, could

be above 1, provided that monitoring implies a sufficiently large implicit marginal subsidy on

work, i.e. π′P − πP ′ < 0, such that the overall wedge remains below 1. This is the case if the

expected penalty increases sufficiently fast in the difference between expected and required labor

supply such that πP ′ > π′P . Therefore, monitoring can improve the incentives for supplying

labor.

3.2 Government

The government designs an optimal income tax system and monitoring schedule so as to maxi-

mize social welfare, subject to resource and incentive constraints. The government’s objective

function is a concave sum of individual utilities:

ˆ n

n
(1− π(zn))G(uUn ) + π(zn)G(uPn )dF (n), G′(·) > 0, G′′(·) < 0, (8)

where uUn ≡ cn− v(zn/n) and uPn ≡ uUn −P (l∗− zn/n) denote the utility levels of the penalized

and unpenalized individuals respectively. G(·) is the social welfare function. Redistribution from

high-income individuals to low-income individuals raises social welfare because the government is

inequality averse. Due to quasi-linearity of private utility there is no social desire to redistribute

income if the social welfare function is utilitarian. The government is constrained in its ability

to redistribute income, because the ability of individuals is private information. However, the

government can infer the ability of an individual from costly monitoring activities or it can
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induce self-selection by sacrificing on redistribution.

The total cost of monitoring is given by:

ˆ n

n
k(π(zn))dF (n), k(0) = 0, k′(·), k′′(·) > 0. (9)

The cost of monitoring is increasing and convex in the monitoring probability π. Since there is

a perfect mapping between skill n and labor earnings zn, we can also write π(·) as a function

of the skill level n, where we use the short-hand notation π(zn) = πn. However, π′(zn) ≡ dπn
dzn

always denotes the derivative of monitoring with respect to gross earnings.

The economy’s resource constraint implies that total labor earnings equal aggregate con-

sumption plus monitoring costs:

ˆ n

n
zndF (n) =

ˆ n

n

(
(1− π(zn))cUn + π(zn)cPn + k(π(zn))

)
dF (n). (10)

By defining unpenalized consumption as cn ≡ cUn = cPn + P (zn, n), we can write for aggregate

consumption:

ˆ n

n

(
(1− π(zn))cUn + π(zn)cPn

)
dF (n) =

ˆ n

n
(cn − π(zn)P (l∗ − zn/n))dF (n). (11)

Hence, using eq. (11) the economy’s resource constraint (10) can be rewritten as:

ˆ n

n
(zn + π(zn)P (l∗ − zn/n))dF (n) =

ˆ n

n
(cn + k(π(zn)))dF (n). (12)

We do not need to consider the government budget constraint, since it is automatically implied

by Walras’ law if the individual budget constraints and the economy’s resource constraint are

satisfied.

The timing of the model is as follows:

1. The government announces the exogenously given penalty function, as well as the optimal

non-linear income tax and monitoring schedules.

2. Each individual optimally chooses hours worked.

3. The government observes the labor incomes chosen by each individual and taxes income

and monitors individuals accordingly. The government penalizes all monitored individuals

according to the penalty function.

4. Individuals receive utility from consumption and leisure.

By the revelation principle any indirect mechanism can be replicated with an incentive-

compatible direct mechanism (Myerson, 1979; Harris and Townsend, 1981). Therefore, we

can find the optimal second-best allocation by maximizing welfare subject to feasibility and

incentive-compatibility constraints. We can decentralize the optimal second-best allocation as

a competitive market outcome through the non-linear tax and monitoring schedules.

11



3.3 First-order incentive compatibility

By using the envelope theorem we can derive a differential equation for the indirect utility

function un which is a necessary condition for incentive compatibility. The next subsection

derives the conditions under which the first-order condition is indeed sufficient. The incentive

compatibility constraint is found by totally differentiating eq. (2) with respect to n:

dun
dn

=
∂u(zn, n)

∂n
+
∂u(zn, n)

∂zn

dzn
dn

=
ln
n

(v′(ln)− π(zn)P ′(l∗ − ln)), ∀n, (13)

where ∂u(zn,n)
∂zn

= 0 due to the individual’s first-order condition in eq. (3). Thus, if the optimal

allocation satisfies eq. (13), individuals’ first-order conditions for utility maximization are also

satisfied.

3.4 Second-order incentive compatibility

Without further restrictions we cannot be certain that the optimal allocation derived under

the first-order incentive compatibility constraint (13) is also implementable. An implementable

allocation should satisfy additional requirements to ensure that the first-order approach also

respects the second-order conditions for utility maximization. The next Lemma summarizes

the requirements for second-order incentive compatibility.

Lemma 1 Second-order conditions for utility maximization are satisfied under the first-order

approach if the following conditions hold at the optimal allocation for all n:

i) single-crossing conditions on the utility and penalty functions are satisfied:

∂(v′(ln)/n)

∂n
− π(zn)P ′(l∗ − ln)

n2

(
εPn − 1

)
+
lnπ
′(zn)

n
P ′(l∗ − ln) ≤ 0, (14)

where εPn ≡
P ′′(l∗−ln)ln
P ′(l∗−ln) is the elasticity of the penalty function,

ii) zn is non-decreasing in ability:
dzn
dn
≥ 0. (15)

Proof. The second-order condition for the utility-maximization problem (2) is given by:

∂2u(zn, n)

∂z2
n

≤ 0, ∀n. (16)

This second-order condition can be rewritten in a number of steps. Totally differentiating the

first-order condition (3) gives:

∂2u(zn, n)

∂z2
n

dzn
dn

+
∂2u(zn, n)

∂zn∂n
= 0, ∀n. (17)
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Substitution of this result in eq. (16) implies that the second-order condition is equivalent to:

∂2u(zn, n)

∂zn∂n

(
dzn
dn

)−1

≥ 0, ∀n. (18)

Differentiating the first-order condition (3) with respect to n and substituting the result yields:(
∂(v′/n)

∂n
+
πP ′

n2

(
1− P ′′ln

P ′

)
+
lnπ
′

n
P ′
)(

dzn
dn

)−1

≤ 0, ∀n. (19)

The inequality holds if all conditions of the Lemma are satisfied.

The single-crossing condition and the monotonicity of gross earnings are well-known from

the Mirrlees model (Mirrlees, 1971; Ebert, 1992). The single-crossing condition ensures that – at

the same consumption-earnings bundle – individuals with a higher ability have a larger marginal

willingness to work. In our model, the single-crossing condition contains three elements. The

first is the standard Spence-Mirrlees condition on the utility function, i.e. ∂(v′(ln)/n)
∂n < 0. If

this term is negative, the marginal disutility of work for individuals with a higher ability level

is lower. Most utility functions considered in the literature exhibit this property, including our

own. The sign of the second term is determined by πP ′
(
εPn − 1

)
/n2. Intuitively, it is more

costly for high-ability individual to mimick a low-ability individual if ∂(P ′/n)
∂n > 0. That is, the

marginal penalty of earning a lower income increases with ability. ∂(P ′/n)
∂n > 0 is equivalent

to εPn > 1. Intuitively, if the elasticity of the marginal penalty is larger, penalties become

increasingly more severe for high-ability individuals mimicking low-ability individuals. The

third term, lnπ
′P ′/n, concerns the slope of the monitoring schedule, and its sign is determined

by the monitoring schedule, since P ′ > 0. If the marginal monitoring probability decreases

in gross earnings (π′ < 0) individuals will work harder in order to decrease the probability of

being monitored and penalized. The sign of the last term is determined by the endogenous

monitoring schedule. Hence, high-ability individuals can be induced to self-select into higher

income-consumption bundles, unless the monitoring probability increases too fast with ability.

A second requirement to induce self-selection is that gross earnings are indeed increasing

with ability at the optimal schedule. Consequently, a tax schedule that provides higher income

to higher ability individuals induces self-selection of higher ability types into higher income-

consumption bundles. In the remainder we assume that all the conditions derived in Lemma

1 hold at the optimal allocation. In our simulations, we check the second-order sufficiency

conditions ex-post and we always confirm that they are respected.
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4 Optimal second-best allocation with monitoring

The optimization problem with monitoring can be specified formally as:

max

ˆ n

n
[(1− πn)G(un + πnP (l∗ − zn/n)) + πnG(un − (1− πn)P (l∗ − zn/n))]f(n)dn, (20)

s.t.

ˆ n

n
[zn + πnP (l∗ − zn/n)− cn − k(πn)]f(n)dn = 0, (21)

dun
dn

=
ln
n

(v′(ln)− πnP ′(l∗ − zn/n)), (22)

un = cn − πnP (l∗ − zn/n)− v(zn/n), ∀n, (23)

πn ≥ 0, ∀n, (24)

where utility of unpenalized and penalized individuals is, respectively, written as uUn = un +

πnP (l∗ − zn/n) and uPn = un − (1− πn)P (l∗ − zn/n). The final constraint assumes that the

probability of monitoring cannot be smaller than zero. We assume that the cost of monitoring

is sufficiently large to ensure that the constraint πn ≤ 1 is never binding.

The Hamiltonian function for this problem is given by:

H ≡ [(1− πn)G(un + πnP (l∗ − zn/n)) + πnG(un − (1− πn)P (l∗ − zn/n))]f(n) (25)

+ λ[zn + πnP (l∗ − zn/n)− cn − k(πn)]f(n)

− θnzn
n2

[
v′(zn/n)− πnP ′(l∗ − zn/n)

]
+ µn[un − cn + v(zn/n) + πnP (l∗ − zn/n)] + ηnπn,

cn, zn and πn are the control variables. un is the state variable with θn as its associated co-state

variable. µn is the Lagrange multiplier for the definition of utility. λ is the Lagrange multiplier

of the economy’s resource constraint. ηn is the Kuhn-Tucker multiplier of the non-negativity

constraint on πn. The necessary first-order conditions are given by:

∂H
∂cn

= 0 : −λf(n)− µn = 0, ∀n, (26)

∂H
∂zn

= 0 :

[
(1− πn)πn

P ′(·)
n

(G′(uPn )−G′(uUn )) + λ

(
1− πnP

′(·)
n

)]
f(n) (27)

− θn
(
v′(·) + znv

′′(·)/n− πn(P ′(·)− znP ′′(·)/n)

n2

)
+ µn

(
v′(·)− πnP ′(·)

n

)
= 0, ∀n,

∂H
∂πn

= 0 :
[
−G(uUn ) + (1− πn)P (·)G′(uUn ) + πnP (·)G′(uPn ) +G(uPn )− λ

(
k′(πn)− P (·)

)]
f(n)

(28)

+
znθn
n2

P ′(·) + µnP (·) + ηn = 0, ∀n,

∂H
∂un

=
dθn
dn

:
dθn
dn

=
[
(1− πn)G′(uUn ) + πnG

′(uPn )
]
f(n) + µn, ∀n, (29)

ηnπn = 0, ηn ≥ 0, πn ≥ 0, ∀n, (30)

lim
n→n

θn = lim
n→n̄

θn = 0. (31)
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Compared to the analysis of Mirrlees there are two new first-order conditions. Eq. (28) states

the optimal monitoring condition, and eqs. (30) state the Kuhn-Tucker conditions for the

non-negativity constraint on πn.

4.1 Optimal wedge on labor

Proposition 2 gives the conditions for optimal income redistribution.

Proposition 2 The optimal net marginal wedge on labor Wn at each ability level satisfies:

Wn

1−Wn
= AnBnCn −Dn, ∀n, (32)

where

An ≡ 1 +
1

εn
+ πn

P ′(·)
v′(·)

(
εPn − 1

)
, (33)

Bn ≡
´ n
n (1− gm)f(m)dm

1− F (n)
, (34)

Cn ≡
1− F (n)

nf(n)
, (35)

Dn ≡
P ′(·)
v′(·)

σn, (36)

σn ≡ (1−πn)πn(G′(uPn )−G′(uUn ))
λ > 0 is a measure for the welfare cost of inequality between penalized

and unpenalized individuals at ability level n, εn ≡
(
lnv′′(ln)
v′(ln)

)−1
> 0 is the compensated wage

elasticity of labor supply, and gn ≡ (1−πn)G′(uUn )+πnG′(uPn )
λ > 0 is the average, marginal social

value of income, expressed in money units, for individuals at ability level n.

Proof. Integrate eq. (29) using a transversality condition from eq. (31). If follows that

θn = λ
´ n
n (1 − gm)f(m)dm. Substitute this result and eq. (26) in eq. (27), use eq. (4), and

simplify to obtain the Proposition.

The An-term is related to the inverse of the efficiency cost of the labor wedge at income

level zn. The second term in An, 1/εn, is the inverse of the labor-supply elasticity and it enters

because the deadweight loss of the wedge increases in the labor-supply elasticity. The third

term represents the efficiency gains of monitoring. As noted in before, penalties are useful in

seperating high- and low-ability individuals if the elasticity of the penalty function εP is larger

than 1. Penalties are more effective if the elasticity increases. The latter effect is stronger if the

monitoring intensity π is larger. Finally, penalties are better at providing work incentives if the

marginal penalty becomes relatively more important relative to the marginal disutility of labor,
P ′

v′ . Hence, in comparison to the optimal wedge without monitoring (cf. Diamond, 1998; Saez,

2001) monitoring reduces the efficiency cost of taxation provided the elasticity of the penalty

function is larger than 1.

The Bn-term measures the equity gain of an increase in the labor wedge at income level zn.

The first term, 1, captures the revenue gain of a larger marginal labor wedge at n, such that

individuals with an income level above zn pay one unit of extra income tax. The welfare loss
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of extracting one unit of income from the individuals above n is gm for all individuals m ≥ n.

Therefore,
´ n
n (1− gm)dF (m) measures the redistributional gain of the labor wedge at n. The

Bn-term is not directly affected by monitoring. Since welfare weights gn are always declining

with income, Bn always rises with income, see also Diamond (1998).

Cn is the inverse relative hazard rate of the skill distribution. Its numerator is the fraction

of the population whose net income is decreased by increasing the wedge and its denominator

captures the size of the tax base that is distorted by the wedge. Hence, the numerator in Cn

gives weights to average equity gains in Bn and the denominator to average efficiency losses

in An – as in the Mirrlees model without monitoring. The numerator of Cn always declines

with income; there are fewer individuals paying marginal taxes if the tax rate is increased at a

higher income level. Hence, for a given Bn the total distributional benefits of raising the labor

wedge fall as the income level rises. For a unimodal skill distribution the denominator of Cn

always increases with income before the mode, since both n and f(n) are rising. Thus, labor

wedges always decrease with income before modal income. After the mode, f(n) falls, although

n continues to rise with income. Hence, it depends on the empirical distribution of n whether

Cn rises or falls with income after modal income. For most empirical distributions, Cn appears

to rise after the mode and converges to a constant at the top. See also Diamond (1998), Saez

(2001) and Zoutman et al. (2013).

Finally, Dn measures the welfare loss associated with within-ability inequality. Earnings

at n decrease if the labor wedge increases. Therefore, the penalty at n increases, which in

turn increases inequality between monitored and unmonitored individuals. σn measures the

marginal welfare cost of this within-ability inequality. The effect of a wedge on within-ability

inequality is increasing in the relative importance of the penalty function with respect to the

marginal disutility of labor (expressed in monetary units), P ′

v′ . Dn increases in the monitoring

probability for πn < .5 because the within-ability variance of monitoring is increasing in πn for

πn < .5. Finally, Dn is increasing in the concavity of the welfare function, because the difference

in welfare weights between penalized and unpenalized individuals, G′(upn)−G′(uun)
λ , is larger if the

government is more inequality averse.

We can summarize the impact of monitoring on optimal labor wedges as follows. Monitor-

ing decreases the efficiency cost of setting a higher labor wedge, but introduces within-ability

inequality. Therefore, the total effect of monitoring on the optimal labor wedge is theoretically

ambiguous. Our simulations below demonstrate that the efficiency gains of monitoring outweigh

the distributional loss due to inequality between monitored and non-monitored individuals.

We can derive the non-linear tax function, which implements the second-best allocation as

the outcome of decentralized decision making in a competitive labor market. Substituting eq.

(3) into eq. (32) yields:

T ′(zn) + π′(zn)P (l∗ − zn/n)− π(zn)P ′(l∗ − zn/n)/n

1− T ′(zn)− π′(zn)P (l∗ − zn/n) + π(zn)P ′(l∗ − zn/n)n
= AnBnCn −Dn, ∀n. (37)

Thus, when we know the optimal monitoring schedule π(zn), this equation implicitly defines

the optimal non-linear income tax function T (zn).
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4.2 Optimal monitoring

The next proposition derives the optimal monitoring schedule.

Proposition 3 The optimal level of monitoring at each ability level follows from:

k′(πn) + ∆n − gnP (·) ≥

( Wn
1−Wn

+Dn

An

)
lnP

′(·) ∀n, (38)

where ∆n ≡ G(uUn )−G(uPn )
λ is the welfare difference between a penalized and an unpenalized indi-

vidual expressed in money units. If πn > 0, the equation holds with equality.

Proof. Substitute eq. (26) into eq. (28), rearrange terms, employ the definitions for Bn and Cn,

and use the fact that ηn ≥ 0. Finally, substitute eq. (32) for BnCn to obtain the expression. By

eq. (30) ηn only equals zero if πn > 0 and therefore the equation holds with equality if πn > 0.

The first term on the left-hand side in condition (38) is the marginal cost of raising the

monitoring intensity. The second and third terms on the left-hand side jointly represent the

welfare effect of a compensated increase in the monitoring probability. That is, the welfare

effect of an increase in the monitoring probability, while keeping expected utility at skill level n

unchanged. The second term represents the uncompensated, direct welfare loss of an increase in

the monitoring probability. If the monitoring probability increases, there will be more penalized

and less unpenalized individuals. Therefore, the loss is equal to the welfare difference between

penalized and unpenalized individuals. The third term represents the welfare gain associated

with the compensation to keep expected utility unchanged if the monitoring probability is

increased. The compensation at ability level n requires a transfer of P and its associated

welfare effect is thus given by gnP . In Lemma 2 we derive how the compensated welfare effect

of monitoring changes with the monitoring probability for given levels of utility in monitored

and unmonitored states.

Lemma 2 The compensated welfare effect of the monitoring probability is decreasing in πn,

positive if πn = 0 and negative if πn = 1 for given levels of utility in penalized and unpenalized

states.

Proof. By a first-order Taylor expansion around uUn we can write ∆n as:

∆n =
G(uUn )−G(uPn )

λ
=
G′(uUn )(uUn − uPn ) +R(P )

λ
=
G′(uUn )P

λ
+R(P ). (39)

where R(P ) is a second-order remainder term. Similarly, a first-order Taylor expansion around

uP yields:

∆n =
G′(uPn )P

λ
− R̂(P ), (40)

where R̂(P ) is again a second-order remainder term. By concavity of G both remainder terms

are positive for P > 0: R(P ), R̂(P ) > 0. Now multiply eq. (39) with (1− πn) and eq. (40) with
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πn and add them to find:

∆n − gnP = (1− πn)R(P )− πnR̂(P ). (41)

The right-hand side gives the compensated welfare effect of the monitoring probability, which

is decreasing in πn, always positive if πn = 0, and always negative if πn = 1, ceteris paribus.

The right-hand side of eq. (38) represents the marginal benefits of monitoring. The benefits

of monitoring increase in the marginal penalty P ′(·), which can be interpreted as the power of

the penalty function. In addition, the marginal benefits of monitoring increase if labor-supply

distortions are larger, i.e. if the labor wedge Wn
1−Wn

is larger or if the efficiency cost of taxation is

larger, as captured by 1/An. The benefits of monitoring also increase in within-ability inequality

Dn. Intuitively, as more monitoring leads to larger labor supply, the expected penalty decreases.

Hence, monitoring helps to reduce within-ability inequality.

From Proposition 3 it follows that the government does not engage in monitoring if and only

if (evaluated at a no-monitoring equilibrium with πn = 0):

k′(0) + ∆n − gnP (·) ≥

( Wn
1−Wn

+Dn

An

)
lnP

′(·), ∀n. (42)

That is, if the marginal cost of monitoring are higher than the marginal benefits for all types.

By evaluating eq. (32) at πn = 0 it easily follows that the optimal allocation is the allocation

derived in Mirrlees (1971). Mirrlees (1971) is thus a special case of our model where monitoring

is prohibitively expensive.

4.3 Boundary results

In the next Proposition we derive the optimal wedge and monitoring probability at the bottom

and the top of the ability distribution.10

Proposition 4 If the income distribution is bounded at the top, n <∞, the optimal wedge and

monitoring probabilities at the extremes are:

Wn =Wn = πn = πn = 0. (43)

If the penalties are zero at the first-best levels of earnings, marginal tax rates are also zero at

the endpoints:

T ′(zn) = T ′(zn) = 0. (44)

Proof. From eq. (32) it follows that
(
Wn

1−Wn
+Dn

)
/An = BnCn. The transversality conditions

(31) imply BnCn = BnCn = 0. At the extremes, the optimal monitoring condition (38),

therefore simplifies to: ∆n − gnP + k′(πn) ≥ 0. Evaluate this expression at π = 0:

∆n − gnP + k′(0) = R(P ) + k′(0) ≥ 0. (45)

10Due to the absence of income effects in labor supply, bunching at zero labor earnings is not an issue in
deriving the boundary results, see also Seade (1977).
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where R(P ) > 0 is a second-order remainder term, and the second step follows from Lemma

2. The condition is always satisfied at πn = 0. Hence, πn = 0 is optimal at the extremes.

The optimal wedges in eq. (32) at the extremes are zero, because the product BnCn is zero

by the transversality conditions, and Dn is zero, since πn = 0. If the penalties are zero when

labor supply is at a first-best level, then P (·) = 0 at the endpoints, since labor supply is

undistorted if the wedges are zero. Using πn = P (·) = 0 in eq. (4) then demonstrates that

Wn =Wn = T ′(zn) = T ′(zn) = 0.

Proposition 4 establishes that the optimal zero wedge at the bottom and top of the model

without monitoring carries over to the model with monitoring (Sadka, 1976; Seade, 1977).

Intuitively, the wedge at n redistributes income from individuals above n to the government,

and, hence indirectly to individuals below n. There are no individuals above n and no individuals

below n. Therefore, there are no benefits associated to a positive wedge at these points of the

ability distribution. However, the wedge does distort the labor-supply decision. Hence, the

optimal wedge must be zero. Because the wedge is zero, there is no efficiency gain of monitoring.

As a result, the optimal monitoring probability is also zero.

However, marginal tax rates at the endpoints do not necessarily need to be zero. This

critically depends on the penalty function. In particular, if the marginal monitoring probability

is non-zero at the end-points (π′(zn) 6= 0) and the expected penalty is positive, marginal tax

rates at the endpoints have to be non-zero in order to compensate for the distortion caused by

the change in monitoring intensity. In particular, marginal tax rates at the endpoints should

be positive (negative) if π′(zn)P (·) < 0 (> 0). Only if penalties are zero if earnings at the end-

points correspond to the first-best levels of earnings, then marginal tax rates at the end-points

are zero as well.

5 Simulations

In this section we use numerical simulations to establish the shape of the optimal tax and

monitoring schedules. The simulations require four main ingredients: the ability distribution,

the individual preferences, the social preferences and the monitoring technology. First, we

use the skill distribution from Mankiw et al. (2009). The hourly wage is used as a proxy for

earnings ability. We follow Mankiw et al. (2009) by assuming that wage rates follow a log-

normal distribution, which is extended with a Pareto distribution for the top tail of the wage

distribution. In addition, we assume that there is an exogenous fraction of 5 percent disabled

individuals having zero earning ability (n = 0), which is also based on Mankiw et al. (2009).

The earnings distribution is estimated from March 2007 CPS data. This resulted in a mean

log-ability of m = 2.76 and a standard deviation of log ability of s = 0.56. The Pareto tail starts

at the top 1 percent of the earnings distribution and features a Pareto parameter of α = 2. The

latter is in accordance with estimates of Saez (2001).

Second, a description of individual preferences is needed. For the purpose of our simulations

it is convenient if optimal labor supply is restricted between zero and one. In addition, we follow

the literature in assuming a constant elasticity of taxable income (see, e.g., Saez, 2001). The
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following utility function abides both features:

u(cn, ln) = cn −
n

1 + 1/ε
l1+1/ε
n , ε > 0. (46)

ε is the (un)compensated elasticity of taxable income. This utility function has been used in

Brewer et al. (2010). We follow the empirical literature estimating the elasticity of taxable

income (see, e.g., Saez et al., 2012) and set ε = 0.25.

The third ingredient is the social welfare function. We assume an Atkinson social-welfare

function featuring a constant elasticity of relative inequality aversion β:

G(un) =
u1−β
n

1− β
, β ≥ 0, β 6= 1, (47)

G(un) = ln(un), β = 1.

The utilitarian objective is obtained by assuming β = 0. A Rawlsian social welfare function

results if β → ∞. The baseline assumes a moderately redistributive government with β =

0.99 ≈ 1. In the robustness analysis we also consider less redistributive governments (β = 0.5)

and more redistributive governments (β = 1.5).

Finally, we need to make specific assumptions on the monitoring technology and the penalty

function. Unfortunately, no empirical evidence is available that guides us to calibrate these func-

tions. However, our theoretical model provides some restrictions on the choice of the functions.

Also, we perform robustness checks on the parameter choices we have made for these functions.

The cost of monitoring should be increasing and convex in the monitoring intensity π. We

assume that the cost of monitoring is quadratic:

k(πn) =
κ

2
π2
n, κ > 0, (48)

where κ is a cost parameter indicating the marginal cost of a higher monitoring probability.

In the baseline we assume κ = 1. In the robustness analysis we vary κ between 0.25 and

4. We provide economic justification for these parameter values by showing in the robustness

analysis that the change in the monitoring probability induced by the different values of κ is

relatively large. In addition, we show that in our calibration total monitoring cost is a small,

but significant fraction of total income earned in the economy.

In our baseline simulations, we assume that the reference level of labor supply l∗ equals:

l∗ ≡

{
1 ∀n > n

0 if n = 0
. (49)

Therefore, all working individuals, i.e. those with positive earning ability (n > n), should supply

the first-best level of hours to avoid being penalized. Individuals that cannot work (n = n = 0)

are not required to work. In the robustness analysis we analyze the case where hours required

is only half of the first-best labor supply, i.e. l∗n = 0.5 for n > n. We will demonstrate that such

changes result in significant changes in the optimal monitoring intensity.
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Table 1: Calibration for simulations

Parameter Description Base value High value Low value

m Mean log ability 2.76 N/A N/A
s Standard deviation log ability 0.56 N/A N/A
α Pareto parameter 2.00 N/A N/A
d Fraction of disabled individuals 0.05 N/A N/A
ε Compensated elasticity 0.25 N/A N/A
r Government revenue as fraction of GDP 0.10 N/A N/A
κ Cost of monitoring 1.00 0.25 4.00
p Penalty parameter 3.00 5.00 1.00
l∗ Reference labor effort 1.00 N/A 0.50
β Relative inequality aversion 1.00 1.50 0.50

We assume that the penalty function is quadratic in labor hours ln and is given by:11

P =
p

2
(max{0, l∗ − ln})2, p > 0, (50)

where p is a parameter determining the severity of the penalty. The penalty is a function of the

reference level of labor hours l∗. All individuals facing a positive labor wedge supply fewer hours

work than socially desired. Therefore, they are subject to a penalty when monitored, and in-

creasingly so if their hours worked deviate more from the reference level of hours. Consequently,

monitoring will be effective in boosting labor supply at all income levels. In the baseline we set

p = 3. In the robustness checks we employ values of p = 1 and p = 5.

The government-revenue requirement is exogenous and set to 10 percent of labor earnings

in the baseline specification without monitoring, following Tuomala (1984) and Zoutman et al.

(2013). The choices for all the parameters can be found in Table 1.

In the table, the first column on the right-hand side gives the base value of the parame-

ter. In addition, we perform robustness checks with high and low parameter values for the

welfare function, all parameters of the penalty function and all parameters of the monitoring

technology.12

5.1 Results

Figure 2 gives the optimal wedge, tax and monitoring schedules as a function of yearly income in

US dollars. The fat solid line represents the optimal tax schedule with monitoring. The dashed

line is the optimal tax schedule without monitoring. The circled line is the optimal total labor

wedge with monitoring. And, the thin solid line is the optimal monitoring schedule. Recall that

the optimal tax schedule coincides with the optimal labor wedge if there is no monitoring.

As can be seen, the optimal labor wedge follows a U-shape both with and without monitoring.

11Note that with this specification of the penalty function the elasticity εP is not unambiguously larger than
1 so that violations of second-order conditions might occur, see Lemma 1. In none of our reported simulations
this is the case, however.

12The numerical procedure we use to solve for the optimal allocation is a so-called shooting method. We solve
the differential equations (13) and (29) numerically for given initial values θn, un, and λ. Subsequently, we ‘shoot’
for initial values until we meet boundary conditions (12) and (31). The wedge, tax, and monitoring schedule can
be found using eq. (37). A more detailed explanation of the numerical procedure can be found in the Appendix.
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Figure 2: The optimal wedge, tax and monitoring schedules in the baseline scenario. Baseline
parameter values of the model can be found in Table 1.

Marginal wedges are extremely large at the bottom of the labor market, relatively small for

middle-income levels and somewhat higher at the top. The shape of these schedules is largely

explained by the Bn and Cn terms in eq. (32). The Bn-term increases with income as the welfare

loss of taxing away one unit of income unit from individuals above zn decreases in zn, see our

previous discussion. The Cn-term follows a U-shape. At the bottom of the earnings distribution,

the density of tax payers is small, and hence, efficiency costs of marginal taxes are low. In

addition, the redistributional benefits of a higher marginal tax rate are large as it is paid by

almost the entire population. Towards middle-income levels, the efficiency cost increases as the

population density increases, whereas the redistributive benefits decrease as fewer individuals

are paying a higher tax rate. After modal income marginal tax distortions decline more rapidly

than distributional benefits of marginal taxes, hence marginal taxes increase. These results are

entirely in line with previous simulations performed in e.g. Saez (2001), Brewer et al. (2010),

and Zoutman et al. (2013).

Recall from the previous section, that the effect of monitoring on the labor wedge was the-

oretically ambiguous. However, in our simulations we see that the efficiency gain of monitoring

in reducing labor distortions outweighs the distributional cost of raising within-skill group in-

equality. The optimal monitoring schedule also follows a U-shape. In eq. (38) the labor wedge

determines the shape of the monitoring schedule, as the other elements of the monitoring sched-

ule do not exhibit a very strong dependence on income. The monitoring intensity decreases very

steeply at the bottom of the income distribution. This gives individuals a strong incentive to

increase their labor supply. At middle-income levels the monitoring intensity is relatively low.

The monitoring intensity increases slightly towards top-income levels. However, the effect of

monitoring on the labor wedge and the tax schedule is very small at these high income levels.

The optimal tax schedule exhibits extremely large tax rates at the bottom of the earnings
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distribution. Indeed, the government can levy tax rates above 100 percent at the lowest income

earners. The sharp decrease in the monitoring intensity works as an implicit subsidy on labor

supply and partially offsets the high explicit tax on labor supply. The poverty trap found

in many countries (see, e.g., Spadaro, 2005, Brewer et al., 2010 and OECD, 2011) can thus

be optimal in the presence of monitoring. Indeed, there may not be a poverty trap if the

monitoring schedule provides sufficient incentives, even if the tax-benefit system itself does not

provide incentives to supply labor.

Note that the optimal wedge and monitoring probability at the top do not equal zero, as

was derived in Proposition 4 for a bounded income distribution. Mirrlees (1971), Diamond

(1998), and Saez (2001) show theoretically that the optimal wedge converges to a constant if

the right tail of the ability distribution is Pareto distributed. In the Pareto tail of the earnings

distribution, the ratio of marginal distributional benefits and marginal efficiency costs of taxes

becomes constant, and the tax wedge converges to a constant. Our simulations confirm that

this result holds as well in the model with monitoring. In addition, we find that the optimal

monitoring probability also converges to a positive constant.

5.2 Sensitivity analysis

In this subsection we present the sensitivity analysis of the results obtained in the previous

subsection. We especially explore the sensitivity of our simulation outcomes with respect to the

monitoring technology and penalty function.

Figure 3 summarizes the simulations when the cost of monitoring is decreased (κ = 0.25)

or increased (κ = 4). As expected, the monitoring schedule moves up if the monitoring cost

decreases and down if the cost increases. However, the optimal tax schedule largely remains

unaffected. From the optimal tax expression in eq. (37) we can infer that monitoring increases

the optimal tax rate if the allocation remains unchanged. However, the allocation changes,

since an increase in the monitoring probability increases revenue from taxation for any given

tax rate. Therefore, the redistributive benefit of a marginal tax decreases at the same time. In

our simulations, these two effects roughly cancel out and the optimal tax rates remain largely

unaffected.

Figure 4 gives the optimal tax and monitoring schedules when the penalty parameter is

decreased (p = 1) or increased (p = 5). As can be seen, for very low levels of income, both an

increase and a decrease in the penalty parameter lead to a decrease in the monitoring intensity.

This may seem counter-intuitive, but can be explained. An increase in the penalty parameter

raises the effectiveness of monitoring, but it also increases within-skill level inequality. For low

levels of income, the first effect dominates when penalties decrease, whereas the second effect

dominates when penalties increase. However, beyond about 10,000 dollars of income, within-

ability inequality becomes less relevant, and therefore, monitoring intensities always increase

when the penalty parameter rises.

From the optimal tax formula in eq. (37) it follows that an increase in the penalty parameter

affects the optimal tax rate through six channels. First, an increase in the marginal penalty

raises the marginal tax rate for a given wedge. Second, an increase in the penalty itself may

increase or decrease the optimal marginal tax rate for a given wedge depending on the sign
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Figure 3: Optimal tax and monitoring schedules for high (κ = 4) and low (κ = 0.25) marginal
cost of monitoring. All other parameters take baseline values, see Table 1.

Figure 4: Optimal tax and monitoring schedules for strong (p = 5) and weak (p = 1) penalties.
All other parameters take baseline values, see Table 1.
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of π′(zn). Third, an increase in the convexity of the penalty function decreases the efficiency

cost of a wedge. Fourth, the penalty affects the monitoring probability, although the effect

is ambiguous. Fifth, an increase in the penalty increases within skill-level inequality, which

decreases the optimal wedge. Finally, the allocation itself is affected, but it is a priori unclear

whether higher penalties lead to more or less redistribution. The simulation outcomes confirm

these theoretical ambiguities. The net effect is positive for very low income levels, negative for

medium-income levels, and negligible for higher income-levels.

Figure 5 illustrates the effect of a decrease in the reference level of working hours (l∗n = 0.5).

As can be seen, the monitoring probability very quickly drops to zero, because all individuals

find it in their best interest to work at least the reference amount of labor hours without moni-

toring. Surprisingly, the tax schedule remains virtually unaffected. This outcome demonstrates

monitoring hours worked is most important at the bottom of the earnings distribution, where

the labor wedge is highest. Still, marginal tax rates can be substantially above 100 percent at

the bottom of the earnings distribution.

Finally, in Figure 6 we simulated the optimal tax and monitoring schedules for a higher

degree of inequality aversion (β = 1.5) and a lower degree (β = 0.5) of inequality aversion. As

can be seen, the optimal tax rate increases in inequality aversion as should be expected, although

the difference at the bottom of the income distribution is small. Intuitively, monitoring decreases

the distortion of a higher tax rate, but it also creates within skill-group inequality. The poorest

individuals in society are the low-income individuals who are penalized. Hence, within-ability

inequality is particularly costly if the government is strongly inequality-averse. For low levels of

income, both an increase and a decrease of inequality aversion decrease the optimal monitoring

intensity. At higher levels of income, within-skill group inequality aversion is less important,

and the monitoring intensity unambiguously increases with inequality aversion as labor wedges

are set higher when redistributive desires are stronger.

5.3 Allocations and welfare

Clearly, monitoring is part of the optimal redistributive tax-benefit system. But, how important

is monitoring for the optimal allocation and welfare? Table 2 reports the average monitoring

cost k̄/z̄, the average penalty P̄ /z̄, the penalty for the lowest working individual, P (n)/z̄, the

transfer paid out to individuals having zero earnings, −T (0)/z̄, and the change in average

earnings, ∆z̄/z̄. All table entries are in percentages of average earnings.

From the first column we can infer that the average monitoring cost k̄/z̄ is a relatively small

percentage of average labor earnings: about 0.5 percent of average earnings in the baseline. An

increase in the marginal cost of monitoring raises total monitoring costs very little, since the

increase in marginal cost is accompanied by a decrease in the optimal monitoring intensity at

the optimum. A change in the reference level of labor hours reduces the total monitoring cost to

almost zero, because monitoring is only used at the bottom if the labor requirement is low. In

addition, the cost of monitoring is sensitive to the severity of the penalty as monitoring outlays

rise (fall) with a stronger (weaker) penalty. A government having access to a stronger penalty

technology will on average rely more heavily on monitoring to provide work incentives. Mon-

itoring costs also increase with inequality aversion, since a more inequality-averse government
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Figure 5: Optimal tax and monitoring schedules for a lower reference level of work effort (l∗n =
0.5). All other parameters take baseline values, see Table 1.

Figure 6: The tax and monitoring schedule for higher (β = 1.5) and a lower (β = 0.5) degree
of of inequality aversion. All other parameters take baseline values, see Table 1.
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relies on average more heavily on monitoring to alleviate the equity-efficiency trade-off.

Table 2: Change in allocation due to monitoring. (All numbers
are in percentages of average earnings)

k̄
z̄

P̄
z̄

P (n)
z̄

−T (0)
z̄

∆z̄
z̄

No Monitoring 0.00 0.00 0.00 29.46 0

Base scenario 0.49 0.35 7.83 33.65 1.35

Low monitoring cost 0.40 0.34 7.55 34.20 1.50

High monitoring cost 0.61 0.36 8.08 33.13 1.18

Low reference effort 0.03 0.02 5.63 34.85 1.07

Low penalty 0.24 0.14 3.53 29.67 0.43

High penalty 0.63 0.49 10.02 37.01 2.04

Low inequality aversion 0.32 0.23 8.20 30.25 5.55

High inequality aversion 0.61 0.42 7.62 35.23 −0.90

Note: z̄ is per capita labor income in the specified calibration, k̄ is the
per capita monitoring cost, P̄ is the average penalty over the monitored
population, P (n) is the penalty at the lowest skill level, −T (0) is the
transfer and ∆z̄ is the change in average labor earnings as compared
to the model without monitoring.

The second column represents the average penalty given to monitored individuals as a

percentage of average labor earnings P̄ /z̄. As can be seen, penalties are relatively small. In the

baseline, the average penalty equals 0.35 percent of average earnings. Penalties increase with

the monitoring cost, because monitoring decreases with its marginal cost, and as a consequence,

individuals work less and receive more severe penalties. The effects are very small, however. In

addition, the average penalty falls strongly when the reference level of labor supply is lower.

Similarly, the penalties increase (decrease) if the penalty parameter increases (decreases), as

expected. The penalty also increases (decreases) with stronger (weaker) inequality aversion

because a more (less) inequality-averse government sets higher (lower) wedges. The third column

represents the average penalty at the bottom of the income distribution P (n)/z̄. Penalties at

the bottom are relatively large, because the wedge at the bottom is large. Comparative-static

effects of the penalty at the bottom are roughly similar to the comparative statics of the average

penalty.

The fourth column represents the transfer as a fraction of earnings, −T (0)/z̄, and the

fifth column is the change in average labor earnings as compared to optimal taxation without

monitoring, ∆z̄/z̄. In almost all simulations, both the transfer and average labor earnings

increase, indicating an improvement in both equity and efficiency of the tax-transfer system.

This effect is surprisingly unsensitive to a change in the monitoring cost and to a change in the

reference level of labor hours. These outcomes can be explained by the fact that monitoring is

most effective at the bottom of the skill distribution. At this point in the earnings distribution,

monitoring costs are relatively unimportant as the density of monitored individuals is low. A

lower labor requirement is also unimportant, since individuals are working far less than any of

the work requirements we consider at the bottom end of the income scale. Results are more
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sensitive to the size of the penalty, since monitoring becomes less effective if the punishment

technology is less effective. However, even if penalties are relatively low, the increase in both

average labor earnings and the transfer is substantial. Finally, a change in the inequality aversion

changes the emphasis given to either equity (higher transfers T (0)) or efficiency (higher average

labor earnings z̄). In our scenario with low inequality aversion both increase. However, in the

scenario with high inequality aversion average labor earnings decreases slightly.

Table 3: Welfare effects of monitoring.

Marginal dead weight loss Welfare gain

No Monitoring 0.204 –

Base 0.203 1.421

Low monitoring cost 0.203 1.592

High monitoring cost 0.204 1.073

Low reference effort 0.203 0.969

Low penalty 0.204 0.267

High penalty 0.203 1.835

Low inequality aversion 0.170 1.015

High inequality aversion 0.214 1.76

Note: The marginal deadweight loss refers to the income-weighted average of
the marginal deadweight loss of all households as a consequence of increasing
the labor wedge on labor with one percent. Welfare gains are obtained by
calculating the compensating variation as a percentage of average earnings in
the specified simulation.

Finally, Table 3 reports the welfare effects of monitoring. The first column represents the

income-weighted average of the marginal deadweight loss of increasing the marginal tax rate by

one percent. As can be seen, monitoring decreases the marginal deadweight loss by about 0.5

percent in our baseline simulation from 0.204 to 0.203. This result is robust in our sensitivity

analyses.

The last column reports the monetized welfare gain of monitoring. We compute the com-

pensating variation by calculating the amount of resources that have to be injected into an

economy without monitoring in order to attain the same social welfare as the economy with

optimal monitoring. In our base scenario, the welfare gain is about 1.4 percent of average labor

earnings, i.e. 1.4 percent of total output. The welfare gain increases if the cost of monitoring

are lower and if penalties are higher. Interestingly, the welfare gain is almost unaffected by

a lower reference level of labor supply. The reason is that the reference level of labor supply

still generates positive penalties at the bottom of the earnings distribution, where the bene-

fits of monitoring are highest. Also, an increase in inequality aversion increases the welfare

gain of monitoring, because the efficiency gain of monitoring is increasing in the optimal labor

wedges, which are larger when the government is more inequality averse. We find quantitatively

substantial social welfare gains in all scenarios.
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6 Conclusions

In this paper we demonstrate that redistributive governments should optimally monitor labor

hours in order to redistribute income at the lowest efficiency cost. Monitoring of labor supply

alleviates the equity-efficiency trade-off and raises equity, efficiency, or both. The reason is that

distortions from redistribution derive from the informational problem that earning ability is

private information. By using a monitoring technology this informational asymmetry is reduced.

A first-best outcome cannot be reached, however, because monitoring is costly. Mirrlees (1971)

is a special case of our model when monitoring is infinitely costly.

We demonstrated that monitoring labor supply works as an implicit subsidy on labor supply,

which partially offsets the explicit tax on labor supply. We derived conditions on the desirability

of monitoring and demonstrated that the optimal non-linear monitoring schedule generally

follows the optimal labor wedge. Monitoring is more desirable when redistributive taxation

creates larger distortions in labor supply. Moreover, optimal labor taxes can optimally be

above 100 percent when monitoring is allowed for. At the endpoints of the earnings distribution

labor wedges – including taxes and the implicit subsidy on work due to monitoring – are zero

in the absence of bunching and with a finite skill level.

Simulations confirmed that the optimal monitoring intensity features a U-shaped pattern

with income; very high at the lower end of the earnings distribution, declining towards the

middle-income groups, increasing again towards the high-income groups, and becoming constant

at the top-income groups. Our simulations demonstrated that marginal tax rates will be higher

if the government monitors labor supply, while the labor wedges – including the explicit tax

and implicit subsidy of monitoring – decreases. Indeed, monitoring is very effective to alleviate

the equity efficiency trade-off.

In practice, monitoring is not infinitely costly as in Mirrlees (1971). By allowing for a mon-

itoring technology we can explain our why work-dependent tax credits for low-income earners,

that are employed in the UK, Ireland and New Zealand, are part of an optimal redistributive

tax policy. Our findings also show that sanctions for welfare recipients, bonuses for low-income

workers, and extensive monitoring of labor effort or working ability of low-earning individuals

are especially desirable in more generous welfare states. Moreover, we can also explain why

(large) penalties on hours worked supply (or high bonuses on hours worked) are more desir-

able when the government desires to redistribute more income. Finally, we find that marginal

tax rates larger than 100 percent at the lower end of the earnings distribution, as commonly

observed in many countries, can be optimal in the presence of monitoring of labor supply.
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A Simulation algorithm

The algorithm we use to solve for the optimal allocation consists of two steps. First, we find

the optimal allocation using a shooting method. Second, we calculate the implied wedge, tax,

and monitoring schedules.13

A.1 Finding the optimal allocation

We find the optimal allocation through four nested loops:

13All Matlab programs used in the computations are available from the authors upon request.
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1. The outer loop solves the resource constraint (12) for λ. A higher value of λ implies

a higher shadow value of resources, and thus, a lower resource deficit, and vice versa.

Therefore, we can satisfy the resource constraint arbitrarily by altering the value of λ.

2. The second loop solves the transversality condition at the top (31) for a given utility level

at the bottom un, and λ. The most important determinant in un is the transfer implied

by T (0). Therefore, one can think of this procedure as finding the intercept of the tax

function T (0). If the intercept is too low, the distortion at the top has to be positive to

finance the transfer, and vice versa if the intercept is set too high. As a consequence, by

varying the transfer T (0) we can satisfy the transversality condition arbitrarily closely.

3. The third loop solves the differential equations (13) and (29) for given un, λ, and θn using

a Runge-Kutta method to integrate over n.

4. The inner loop maximizes the Hamiltonian (25) with respect to πn and zn for a given

state un and costate variable θn at each n.

The above algorithm is known as a shooting method because it shoots for the initial values

of the differential equations that satisfy the boundary condition.

A.2 Finding the optimal wedge, tax, and monitoring schedules

The above algorithm gives us a numerical approximation of the allocation {un, θn, zn, πn} at

each n. π′(zn) can be approximated by taking the first difference:

π′(zn) ≈ ∆πn
∆zn

. (51)

With π′(zn) we have all the information we need to find the optimal tax schedule using eq. (37).

33




