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Introduction

The general problem of counting the number of geometric objects of a given
type is classical in algebraic geometry, and these questions make up the field
of enumerative geometry. In the early 90’s the question of counting curves
in a given ambient space received much attention due to the discovery that
ideas from string theory could be applied successfully to these problems. One
result of this development was the introduction of Gromov-Witten invariants.
These are numbers associated to a scheme X which, roughly speaking, count
the number of maps of curves to X with given genus and homology class in
X.

In especially nice cases, these invariants do coincide with what one would
expect from a classical count of curves, supposing this is defined, and Gromov-
Witten theory has led to new answers to questions from classical enumera-
tive geometry. One famous example is Kontsevich’s complete solution of the
problem of counting the number of rational nodal curves of degree d passing
through 3d − 2 general points in the plane.

In general, however, the Gromov-Witten invariants behave rather dif-
ferently from a naive count, and their enumerative meaning, if any, is not
always obvious. For example, the Gromov-Witten count of curves might be
a finite number when the naive count would be infinite, and the invariants
can take both rational and negative numbers.

On the other hand Gromov-Witten invariants are in important ways bet-
ter behaved than the ordinary counts. One example is the fact that they are
invariant under deformations of the space X on which one is counting, some-
thing which fails for the naive count.

The case of counting curves lying on a threefold turns out to be of partic-
ular interest. In 2000, Thomas proved [28] the existence of a new invariant
counting curves on a threefold, later known as Donaldson-Thomas invari-
ants. These share many properties with the Gromov-Witten invariants, and
are constructed in a similar way. The important difference between the two
curve counts lies in what one means by the word curve. In Donaldson-
Thomas theory one takes curves to mean one-dimensional subschemes of X,
in contrast to the Gromov-Witten meaning of maps of curves to X.

It the later (2006) articles [21] and [22] by Maulik, Nekrasov, Okounkov
and Pandharipande three conjectures were posed about Donaldson-Thomas
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invariants. One of them stated that the Gromov-Witten invariants and
Donaldson-Thomas invariants of a threefold X, are essentially equivalent.
These conjectures are referred to as the MNOP conjectures, and the conjec-
tured equivalence between the two curve counts is known as the GW/DT-
correspondence.

Yet other curve counting invariants exist, both physical and mathemati-
cal, but we will restrict our attention to the two we have mentioned so far.
Of the two, our focus will be on Donaldson-Thomas invariants, restricting
mostly to definitions and examples in Gromov-Witten theory.

The text is divided into three chapters. In the first chapter we present
the general theory used in the construction of both invariants. We try to
motivate the definition of the invariants, as well as give the precise definitions
of both invariants. We also give the formulation of the MNOP conjectures.

In the second chapter we present some techniques for calculating Donaldson-
Thomas invariants. The first is known as toric localization, and is applicable
in the cases where there is a group action of a torus T ∼= (C∗)n on X. We
present part of an article showing how this technique can be used to calculate
Donaldson-Thomas invariants of a toric threefold.

We also give a presentation of the local Donaldson-Thomas theory of
curves, where the threefold on which we count is a rank two bundle over a
smooth proper curve C. Ordinarily this invariant would not be well defined,
as the moduli space of curves on this threefold is nonproper, but we shall see
how invariants can still be defined via localization.

The second important technique goes by expressing Donaldson-Thomas
invariants as a certain weighted sum of Euler characteristics. This can in
some cases allow stratification arguments to be used in calculating Donaldson-
Thomas invariants. This tool is however only applicable in the case where the
threefold X has trivial canonical class. We present an article demonstrating
this technique in action, obtaining expressions for some of the Donaldson-
Thomas invariants of a quintic threefold.

The final chapter concerns the problem of computing Donaldson-Thomas
invariants of a threefold X that admits a locally trivial elliptic fibration, i.e.
that admits a morphism to a surface S such that all fibers are isomorphic to
a fixed elliptic curve E. In the article [10] Edidin and Qin calculated some
of the Donaldson-Thomas invariants of a product threefold E × S. Using
the expression of Donaldson-Thomas invariants as a weighted Euler charac-
teristic we extend some of these results to Calabi-Yau threefolds admitting
locally trivial elliptic fibrations.

Conventions and cautions

All schemes are over C. Throughout the text we shall reserve the letter X
to denote the smooth, projective threefold on which we count curves.
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By saying that a scheme Calabi-Yau we mean that it has trivial canonical
class.

In the first chapter, we generally ignore the possibility that our moduli
schemes could instead be stacks, even though most of the constructions and
results work just as well in this more general setting. In later chapters we
are working with Donaldson-Thomas theory, where the moduli space is the
Hilbert scheme, so stackiness is not an issue.

I would like to express my thanks towards my advisor, Prof. Ragni Piene,
for suggesting the topic of this thesis, and otherwise providing valuable guid-
ance through the entire writing process. Gentle reminders of the approaching
deadline months before it would have crossed my mind have probably been
essential.
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Chapter 1

Background material

We begin with describing the common framework of the two curve count-
ing theories. One starts with a moduli space M parametrizing curves on
X. The basic difference between the two theories lies in the choice of the
precise mathematical meaning of the expression “curve on X”. In Donaldson-
Thomas theory a curve is a closed subscheme of X of dimension not greater
than 1. Thus the moduli space M is in this case a certain Hilbert scheme
of X. In Gromov-Witten theory one takes curve to mean a so-called stable
map from a curve C to X. This notion of a curve gives a different moduli
space Mg,r(X,β).

Assume we are given a curve C in X represented by a point p in the
moduli space M . One can use information about the space of deformations
of C to find an expected dimension of M in p. For the two moduli spaces we
consider this dimension will be the same at every point, and so we can assign
to the entire space an expected or virtual dimension. This virtual dimension
will in our cases depend rather simply on the discrete invariants of the curve
and of the threefold X. For various reasons it will often not be the same as
the usual dimension of M . It will, however, always be a lower bound for the
actual dimension.

1.1 The virtual fundamental class

An essential part of the definition of both Gromov-Witten and Donaldson-
Thomas theory is the construction of a virtual fundamental class, which is
a homology class on the moduli space having dimension the same as the
virtual dimension of the moduli space. In order to explain why we need such
a class, we first describe how we could naively try to count curves, and look
at what goes wrong with the simple approach.

Say we have a smooth, projective threefold X, and a moduli space of
curves on it, M . If there are only finitely many curves in M , so M is
0-dimensional, we can define the count of the number of curves in M by
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taking the degree of its fundamental class, e.g. #(M) =
∫
[M ] 1. If M has

positive dimension, we have to add restrictions on which curves we want
to count. These restrictions are given as cohomology classes γi ∈ H∗(X),
typically representing subschemes of X.

These classes can then in some way, depending on which moduli space
is used, be pulled back to cohomology classes on M , say ωi ∈ H∗(M).
Intuitively intersecting with ωi should be the same as imposing the constraint
that a curve meets the subscheme corresponding to γi. If the codimensions
of ωi add up to the dimension of M we can calculate a number,

∫

[M ]

∏
ωi,

which is then a count of all curves in M meeting the subschemes represented
by the γi.

There are several problems with this way of doing things. First of all,
we would like the numbers we get to be invariant under deformations of X,
something which is not achieved by this definition. To take one example, it
is well known that on a generic quintic threefold in P4 there are 2875 rational
curves of degree one. However, we may deform this threefold to the Fermat
quintic, the threefold in P4 defined by

x5
0 + x5

1 + x5
2 + x5

3 + x5
4 = 0,

The lines on this threefold are all contained in one of 50 one-dimensional
families [1], in particular a naive count of lines would give an infinite number.

Another reason, related to the first, has to do with dimension. From
looking at deformations and obstructions to deformations of the curves we
get an expected (virtual) dimension of the moduli space, which is invariant
under deformations of X. We would like to count curves as if this dimension
was the actual one, but as these moduli spaces are quite irregular, M often
has components of larger dimension than what we expect.

In some cases this is because compactifying our moduli space M can cre-
ate, along with a “good” part containing the curves which behave as expected
another part of higher dimension. One example of this is the Hilbert scheme
of twisted cubics in P 3, which has expected dimension 12. We do get a nice
12-dimensional irreducible component containing twisted cubics, but there
is also a 15-dimensional component containing schemes that are the union
of plane cubics and a point [25].

Another example of how one might end up with a moduli space of higher
dimension than expected comes from degree 2 maps from a genus 0 curve to
a generic quintic threefold X. The moduli space of such maps has expected
dimension 0, and there is a 0-dimensional component consisting of maps to
the finite number of conics on X. However, in addition to this there is also
a collection of one-dimensional families of maps, one for each line on X,
representing double covers of this line.
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There are typically two ways around these problems. The first is to prove
that one can always deform X to another space X ′ such that the moduli
space of curves on X ′ has the correct dimension. We can then calculate the
numbers we want on X ′, and check that they do not depend on which X ′

we deform to. In the setting of algebraic geometry such a strategy is not
viable, as there are far too few deformations to have any hope of a general
result stating that one can always deform X to a space with a moduli space
of correct dimension.

Instead, one takes the second approach. The idea here is to use the
deformation theory of the moduli problem to construct a homology class on
the moduli space which has the dimension we want. We can then integrate
against it to define the invariants, and check that the numbers we get are
indeed invariant under deformations of X. This class is what is known as a
virtual fundamental class.

Motivating the construction

We give an example illustrating the idea of the construction of the virtual
fundamental class in a concrete setting. The following way of motivating
the virtual class is taken from [28, p.10]. The construction of the “virtual
fundamental class” in this model case can be found in [12], sections 14.1 and
6.1.

We let Z be a scheme of dimension n with a rank r vector bundle E on
it, and let s be a section of this bundle. We let M , which will eventually
be our moduli scheme, be defined as the zero set Z(s) of the section. We
may say that the virtual dimension of M is the dimension it would have if
s were a transverse section, which in this case will be n − r. In case s is
transverse, the pushforward of the fundamental class [M ] is e(E) · [Z], where
e(E) denotes the euler class of E.

If s is not transverse, we can still construct a class [M ]vir of the correct
dimension, i.e. lying in An−r(M). Furthermore, pushing forward this class to
A∗(Z) gives the answer we would expect from the case where s is transverse,
that is e(E) · [Z].

The construction of this class goes as follows. In the bundle E we consider
a deformation of the graph of the section s, parametrized by λ and given by
λ · s. Letting λ go to ∞, this gives a cone in E|M , informally speaking this
is s made vertical. This cone can then be intersected with M inside E|M ,
and the result is the correct cycle in A∗(M).

The above construction is not applicable to more general moduli prob-
lems, as the setup is too restrictive to allow the moduli space to be written
as Z(s) as above. However, the idea is that the construction of the class
above was essentially done on M , and could therefore be carried out even
without having an ambient space. From the above construction we really
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only need the infinitesimal data on M

0 → TM → TZ |M
ds
→ E|M → ob → 0

where ob is some sheaf that can be thought of as containing obstructions to
M being cut out by a transverse section of E.

Now, for a general moduli space M we have the tangent sheaf on M , and
in many cases an obstruction sheaf ob naturally arising from the deformation
theory of the moduli problem. The virtual dimension of the moduli problem
is the dimension of TM over a point p in M minus that of ob over p. Unless
M is smooth, these dimensions differ for different p, but in the cases where
a virtual fundamental class can be constructed the difference is constant, so
the virtual dimension is well defined. What is needed for the construction
of a virtual fundamental class is a two-term locally free resolution of these
sheaves, which is to say an exact sequence

0 → TM → E0 → E1 → ob → 0,

where E0 and E1 are vector bundles. Here E0 and E1 play the roles of TZ |M
and E|M in the above example, respectively.

Given such a resolution the virtual fundamental class is contructed in [5].
Briefly, the construction goes by defining a suitable cone inside E1, which is
then intersected with M , giving the class [M ]vir that we want.

Obstruction theory

We give the definition of a perfect obstruction theory on a scheme M . It is
included here mostly as a reference point for some later invariant calculations
that directly involve the obstruction theory. From [15] we get the following:

Definition 1. A perfect obstruction theory consists of the following data:

1. A two term complex of vector bundles E• = [E−1 → E0] on M .

2. A morphism φ in the derived category (of quasi-coherent sheaf com-
plexes bounded from above) from E• to the cotangent complex L•M of
M satisfying the following properties.

(a) φ induces an isomorphism in cohomology degree 0

(b) φ induces a surjection in cohomology in degree -1.

Although we will not mention the cotangent complex L•M again, the
definition and basic properties can be found in [11], p.226. We note that
there is an isomorphism with the cotangent sheaf h0(L•

M ) ∼= ΩM , so that by
property (a) an obstruction theory E• will satisfy h0(E•) ∼= ΩM .

It is common to abuse notation by referring to the complex E• as the
obstruction theory, suppressing mention of the map φ.
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We note that the virtual dimension vd of M , and hence the dimension of
the virtual fundamental class, is the rank of the obstruction theory used to
define it. That is, if E• = E−1 → E0 is a complex of vector bundles defining
an obstruction theory, the dimension of the virtual fundamental class defined
from it will be

dim[M ]vir = rkE• = rkE0 − rkE−1.

We denote the dual complex to E• by

E• = E0 → E1.

The obstruction sheaf of the obstruction theory is the cokernel of this dual
complex, i.e. we have

ob = h1(E•).

This gives an alternative expression for the virtual dimension of M . For
every point p in X we have

vd = rkE0
p − rkE1

p = rkh0(E•)p − rkh−1(E•)p

= rkh0(E•)p − rkh1(E•)p = rkΩM,p − rk (ob)p,

so the virtual dimension is equal to the dimension of the tangent space of M
in p minus the dimension of the space of obstructions in p.

There is a quite explicit formula for the virtual fundamental class, namely,
it is the part of

c(E1 − E0) ∩ [cF (M)],

living in the virtual dimension part of A∗(M) [26, Theorem 4.6]. Here cF (M)
is Fulton’s total Chern class of the scheme M , see [12, 4.2.6].

In two special cases the virtual fundamental class is easily described
(see [29, Chap. 26] for a further discussion of these in the Gromov-Witten
setting). If the moduli problem is unobstructed, i.e. if ob = 0, the vir-
tual fundamental class [M ]vir is equal to the usual fundamental class [M ].
This happens for instance in the case of Gromov-Witten invariants counting
maps of genus 0 curves to projective space, where the obstruction theory on
M0,r(P

n, β) gives a vanishing obstruction bundle.
The second easy case is that where the moduli space M is nonsingular.

In this case the obstruction sheaf is in fact a bundle, and the virtual funda-
mental class is then the Euler class of ob times the usual fundamental class,
i. e.

[M ]vir = e(ob) · [M ]. (1.1)

One example where this applies is the Hilbert scheme of one, two or three
points on a threefold, which occurs in Donaldson-Thomas theory. In the
chapter on elliptic fibrations we shall see other examples of smooth Hilbert
schemes of curves, arising from an isomorphism with the Hilbert scheme of
points on a surface, which is known to be smooth.
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A simple example demonstrating both of the above properties is the
Hilbert scheme of lines in projective space, I1(P

3, L), which is a Grassman-
nian of dimension 4. By Proposition 1 in section 1.2 the virtual dimension
is given by the formula −KP3 · L, and so is also 4. As the moduli space is
smooth the obstruction sheaf is a bundle, and as the rank of E• must be 4,
we get

rk ob = rk h1(E•) = rk h0(E•) − rk E• = rk TX − 4 = 0.

Hence the moduli space is unobstructed and the virtual fundamental class
is the ordinary fundamental class.

Defining invariants from a virtual fundamental class

Equipped with a virtual fundamental class of the correct dimension we may
now define invariants from this class. If this virtual dimension is zero, we
simply integrate the fundamental class over the moduli space to obtain a
number. This number will be the invariant, which we denote

#vir(M) =

∫

[M ]vir

1.

More generally, if the virtual dimension is greater than zero, we first pick
cohomology classes γi ∈ H∗(X) informally representing restrictions on the
curves to be counted, i.e. we count only the curves meeting all of the classes
γi. These γi can then be lifted to cohomology classes on the moduli space,
and intersecting the virtual fundamental class with the lifted classes we get
a zero-dimensional class on the moduli space. We then define the invariants
to be the degree of this class. In this way we get more general invariants of
the threefold, dependent on a choice of cohomology classes γi.

1.2 Donaldson-Thomas invariants

Getting somewhat more concrete, we begin with an outline of the definition
of Donaldson-Thomas invariants. The moduli spaces will in this setting
be Hilbert schemes parametrizing subschemes of X of dimension at most
one, i.e. curves and points. Given such a subscheme Z, we let Z ′ be the
largest purely one-dimensional subscheme of Z, that is Z with any isolated
or embedded points removed. The curve class of Z is then defined as to be
the fundamental class of this one-dimensional component, [Z ′] ∈ H2(X; Z).

Specifying a class β ∈ H2(X; Z) and an integer n, we denote by

In(X,β)

the Hilbert scheme parametrizing schemes Z with curve class β and such that
the Euler characteristic of the structure sheaf χ(OZ) is n. Note the special
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case where β = 0, where we have In(X, 0) = X [n], the Hilbert scheme of n
points on X.

There is an alternative way of describing this scheme, which we discuss
briefly. There is a coarse moduli space parametrizing Gieseker semistable
sheaves on X with given rank, Chern classes and determinant. See [17] for
the definition of semistable as well as the existence of this moduli space
(Theorem 4.3.4).

We may consider the special case of the moduli space M of rank 1
semistable sheaves on X with Chern classes (c0, c1, c2, c3) = (1, 0,−β, n)
and trivial determinant. It can be shown that semistable rank 1 sheaves
with trivial determinant naturally inject into OX , which is the same as say-
ing that they are ideal sheaves on X. Therefore, to each sheaf in M there is
an associated closed subscheme of X, which by the choice of Chern classes
will lie in In(X,β). It can be shown that this correspondence gives an iso-
morphism between M and In(X,β).

In [28] Thomas uses the deformation theory of sheaves to construct a
perfect obstruction theory on such a moduli space of sheaves, assuming that
the anticanonical divisor of X is effective, plus some other mild hypothesis
which is satisfied in the case we are interested in, see [28, Corollary 3.39]. If
we restrict to the case of appropriate Chern classes and determinant, by the
isomorphism above this gives a perfect obstruction theory on In(X,β), and
hence a virtual fundamental class [In(X,β)]vir.

Proposition 1. The virtual dimension of In(X,β) with this obstruction the-
orys is −KX · β.

Proof. See [22, Lemma 1].

Definition 2. Let X be a smooth, projective threefold with an effective an-
ticanonical divisor. We define the Donaldson-Thomas invariant of X with
respect to β and n to be

Dn,β = #vir(In(X,β)) =

∫

[In(X,β)]vir

1.

For general X and β this number will be trivially 0, as the virtual dimen-
sion of the Hilbert scheme is likely to be nonzero. As mentioned previously,
this can be remedied by intersecting [In(X,β)]vir with cohomology classes of
appropriate dimension to get a 0-dimensional class. We will see how this is
done in the Donaldson-Thomas setting later. We now consider some natural
classes of examples of cases that do give virtual dimension 0.

The first example we consider is when X has trivial canonical divisor.
Here it can be shown that the obstruction sheaf ob on In(X,β) is isomor-
phic to the cotangent sheaf ΩIn(X,β). If In(X,β) happens to be smooth of
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dimension d, by using (1.1) the Donaldson-Thomas invariant reduces up to
sign to the Euler characteristic of In(X,β).

Dn,β =

∫

[In(X,β)]vir

1 =

∫

[In(X,β)]
e(ob) =

∫

[In(X,β)]
e(ΩIn(X,β))

=

∫

[In(X,β)]
(−1)de(TIn(X,β)) = (−1)dχ(In(X,β)).

Another case in which Donaldson-Thomas invarants coincide with Euler
characteristics is when X is a Calabi-Yau threefold and β = 0, so the moduli
space is the Hilbert scheme of points on X. Here the formula

Dn,0 = (−1)nχ(In(X, 0)) (1.2)

has been shown to hold for all n. In case n = 1, 2, 3 the space In(X, 0) is
smooth so this is just a consequence of the previous paragraph. For bigger n
different methods are needed. Several proofs of (1.2) exist, see for example
[6].

When the moduli space is not smooth or X is not Calabi-Yau, the
Donaldson-Thomas invariants are in general different from the Euler charac-
teristic of the moduli space. For example we may consider the simplest non-
trivial Donaldson-Thomas invariant, D1,0, where the moduli space I1(X, 0)
is isomorphic to the threefold X itself. Here it can be shown ([21, Lemma
3]) that the obstruction sheaf is

ob ∼= (TX ⊗ KX)∨.

Using the fact that I1(X, 0) ∼= X is smooth, we get

D1,0 = −

∫

[X]
e(TX ⊗ KX) =

∫

[X]
c1(TX)c2(TX) − c3(TX).

Taking X = P3, for example, we get D1,0 = 20, in contrast to χ(P3) = 4.

Donaldson-Thomas partition functions

Working with Donaldson-Thomas invariants it is convenient to gather all
the invariants in a power series, known as the Donaldson-Thomas partition
function:

ZDT (X; q, v) =
∑

β∈H2(X;Z)

∑

n∈Z

Dn,β qnvβ .

The case β = 0 plays a special role in the theory, and we collect the
invariants for the degree 0 case in

ZDT (X,β)0 =
∑

n∈Z

Dn,0 qn.
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In both curve counting theories we have a notion of reduced invariants,
which informally is what you get from disregarding the contribution from
objects in the moduli space that have components representing points. In
Gromov-Witten theory this can be achieved geometrically, as there is a nat-
ural moduli space of curve maps which do not collapse any connected com-
ponent of the curve to a point in X, so that the image of the curve is purely
1-dimensional.

This is not an option in Donaldson-Thomas theory, because the ideal
sheaves in In(X,β) corresponding to subschemes Z ⊂ X with no zero-
dimensional component do not form a proper subscheme. Instead we re-
move the contribution of points by a formal method. This definition mirrors
the algebraic relation between reduced and nonreduced partition functions
of Gromov-Witten invariants. We define the reduced Donaldson-Thomas
partition function of X by

Z ′
DT (X; q, v) = ZDT (X; q, v)/ZDT (X; q)0. (1.3)

As a final definition in this section, we isolate the reduced invariants
coming from a curve class β in a single power series, defined by

Z ′
DT (X; q, v) = 1 +

∑

β 6=0

Z ′
DT (X; q)βqnvβ .

Donaldson-Thomas invariants with insertions

We shall now deal with the more general case of Donaldson-Thomas in-
variants dependent on cohomology classes γi on X. These invariants are
sometimes called descendent invariants, by virtue of having some connection
with so-called descendent fields in physics. They were first defined in [22].

Consider the space In(X,β)×X and let π1 and π2 be the projections to
the first and second factors, respectively. As In(X,β) is a fine moduli space,
we have the universal ideal sheaf I defined on In(X,β) × X.

For γ ∈ H l(X, Z), we let chk+2(γi) denote the following operation on the
homology of In(X,β):

chk+2(γ) : H∗(In(X,β); Q) → H∗−l−2k+2(In(X,β); Q),

chk+2(γ)(ξ) = π1∗(Chk+2(I) · π2
∗(γ) ∩ π∗

1(ξ)).

Here Chk+2(I) denotes the k + 2-th term of the Chern character of I.
We let τ̃k(γ) correspond to the operation (−1)k+1chk+2(γ). We choose r

cohomology classes γ1, . . . γr ∈ H∗(X, Z), and r integers k1, . . . , kr. We then
have

Definition 3. Let X be a smooth projective threefold with effective anti-
canonical divisor. We define the Donaldson-Thomas invariants of X, de-
pending on β ∈ H2(X; Z), γ1, . . . , γr ∈ H∗(X; Z) and n, k1, . . . , kr ∈ Z, to
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be

〈τ̃k1(γ1) · · · τ̃kr
(γr)〉n,β =

∫

[In(X,β)]vir

∏
(−1)ki+1chki+2(γi).

The integral above is to be interpreted as the push-forward to a point of
the class

(−1)k1+1chk1+2(γ1) ◦ · · · ◦ (−1)kr+2chkr+1(γr)
(
[In(X,β)]vir

)
.

Note that taking r to be zero we get Definition 2 of the original invariants.
In contrast with ordinary Donaldson-Thomas invariants, the descendent in-
variants may take rational instead of integer values, on account of the fact
that the Chern character has rational coefficients.

The meaning of these invariants is easiest to see where the ki are all equal
to 0. This is also known as the case of invariants with primary insertions or
primary fields for physics reasons. The operation τ̃0(γ) roughly represents
imposing the condition that the curve [Z] ∈ In(X,β) meet γ.

An illustration of this is the result from [10] stating that given γ ∈
H2(X; Z) and ξ ∈ H∗(In(X,β); Q) such that ξ can be represented by an
algebraic cycle, we have

τ̃0(γ)(ξ) =

∫

β
γ · ξ.

This is what one would expect from imposing the enumerative condition
that curves of class β meet a cohomology class γ. We note that the equation
above is also expected to hold for more general ξ, i.e. for those not necessarily
represented by an algebraic cycle.

We may also note that taking the invariants to have primary insertions
〈τ̃0(γ1) · · · τ̃0(γr)〉n,β we get integer values. This can be seen as follows. Let
Z ⊂ In(X,β) × X be the universal closed subscheme. We then have

Ch2(I) = −Ch2(OZ) = −c2(OZ) +
c1(OZ)

2
= −c2(OZ),

where the last equality holds because the support of OZ has codimension 2,
implying that c1(OZ) = 0. Thus no denominators occur in the definition of
τ̃0(γ), giving the integrality of 〈τ̃0(γ1) · · · τ̃0(γr)〉n,β.

Finally we mention that as in the case of the Donaldson-Thomas in-
variants without insertions, the general DT-invariants can be collected in a
partition function

ZDT

(
X; q |

r∏

i=1

τ̃ki
(γi)

)

β

=
∑

n∈Z

〈τ̃k1(γ1) · · · τ̃kr
(γr)〉n,β qn.

There is also a reduced partition function, given by

Z ′
DT

(
X; q |

r∏

i=1

τ̃ki
(γi)

)

β

=
ZDT (X; q |

∏r
i=1 τ̃ki

(γi))β

ZDT (X; q)0
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1.3 Gromov-Witten invariants

Having seen one way of parametrizing and counting curves on X, we now
turn to Gromov-Witten theory, where we use a different notion of a curve
on X, namely a map from a curve to X. Ideally, we could want to form the
moduli space of isomorphism classes of maps from a smooth curve of genus g
to X, with the natural definitions of what constitutes a family of such maps
and isomorphisms between families.

There are a few problems with this naive approach. First of all, such a
space is likely to be non-proper. This defect can be amended by allowing the
source curves to be reducible and to have nodal singularities. Secondly, the
curve maps can turn out to have non-trivial automorphisms, which makes it
impossible to define universal families over the spaces. The solution to this
problem is first to add to the notion of a curve map µ : C → X the data
of r marked points on the curve C, and secondly restricting to those result-
ing objects that have finite automorphism group. The possible existence of
nontrivial automorphisms still excludes the possibility of finding a moduli
scheme, but as automorphism groups are finite it is possible to construct a
Deligne-Mumford moduli stack M g,r(X,β) parametrizing maps of curves to
X [7, Theorem 3.14].

The added data of r marked points on a curve also allows us to define
more general invariants depending on r cohomology classes in H∗(X) which
informally represent conditions on the curves to be counted.

We give the precise definition of the notions involved in defining Gromov-
Witten invariants, following the presentation in [13].

An r-pointed, genus g, quasi-stable curve (C, p1, . . . , pr) is a projective,
connected, reduced curve with at most nodal singularities, together with r
distinct, nonsingular points of the curve. A family of quasi-stable curves
over a scheme S is a flat projective map π : C → S together with sections
pi : S → C such that each geometric fibre (Cs, p1(s), . . . , pr(s)) is a quasi-
stable curve.

Given a scheme X a family of maps from r-pointed, genus g curves to
X consists of the data (π : C → S, {pi}

r
i=1, µ : C → X), where (π : C →

S, {pi}
r
i=1) is a family of r-pointed, genus g, quasi-stable curves, and µ is

any morphism.
An isomorphism of two families of maps over S,

(π : C → S, {pi}
r
i=1, µ : C → X), (π′ : C′ → S, {p′i}

r
i=1, µ

′ : C′ → X)

is an isomorphism of schemes γ : C → C′ such that π = π′ ◦ γ, p′i = γ ◦ pi

and µ = µ′ ◦ µ.
For every irreducible component E of a quasi-stable curve C we let the

special points of E be the ones which are either intersections of different
components or marked points. We say a map µ : C → X is stable if the
following two conditions hold, for every irreducible component E of C:
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1. If E ∼= P1 and E is mapped to a point, there are at least 3 special
points on E.

2. If E has arithmetic genus 1 and is mapped to a point, there is at least
one special point on E.

An automorphism of an r-pointed curve map (C, {pi}, µ) is an automorphism
γ of C such that γ(pi) = pi for all i and γ ◦ µ = µ. It is easily checked that
the two conditions for stability are equivalent to the curve map having finite
automorphism group. This finiteness is needed in order to get a good moduli
space of maps.

A family of stable maps of r-pointed, genus g curves is a family of maps
such that each geometric fibre in the family is stable. Let β ∈ H2(X; Z).
We say a map of a curve µ : C → X represents β if the pushforward of the
fundamental class of C is β. We now arrive at the definition of our moduli
functor, which is the contravariant functor from the category of complex
algebraic schemes to sets sending a scheme S to the set of isomorphism
classes of families over S of stable maps of r-pointed, genus g curves to X
representing β. There is a proper Deligne-Mumford stack Mg,r(X,β) which
is a moduli space for this functor.

As in the case of the Hilbert scheme, there exists a perfect obstruction
theory on M g,r(X,β), which allows for the construction of a virtual funda-
mental class [Mg,r(X,β)]vir in the Chow group of Mg,r(X,β).

Note that all of the definitions and constructions above apply to a general
smooth scheme X, not necessarily of dimension 3. As a simple example,
taking X to be a point we get

M g,r(pt, 0) ∼= Mg,r,

where Mg,r is a moduli space parametrizing stable curves with r marked
points, that is quasistable curves with finite automorphism group.

In the case where X is a threefold, the virtual dimension of Mg,r(X,β)
and hence the dimension of this virtual fundamental class is −KX · β + r.

Definition 4. Let X be a projective, smooth threefold. The Gromov-Witten
invariant of X with respect to n and β is

Ng,β =

∫

[Mg,0(X,β)]vir

1.

As a consequence of the fact that Mg,0(X,β) is a stack, this number may
be rational, as opposed to the Donaldson-Thomas invariant Dn,β, which is
always an integer.

As with Donaldson-Thomas invariants, we may collect all the Gromov-
Witten invariants of X in power series. We define the reduced Gromov-
Witten potential to be the series

F ′
GW (X;u, v) =

∑

β 6=0

∑

g≥0

Ng,β u2g−2vβ.
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The reduced partition function is then

Z ′
GW (X;u, v) = exp F ′

GW (X;u, v).

This series can alternatively be defined as the generating function for Gromov-
Witten invariants defined from moduli spaces M

′
g,r(X,β) of stable maps of

curves where the source curve is possibly disconnected and no connected
component is mapped to a point.

We let Z ′
GW (X;u)β denote the reduced degree β partition function,

Z ′
GW (X;u, v) = 1 +

∑

β 6=0

Z ′
GW (X;u)β vβ .

Notice that we do not include the terms where β = 0, i.e. the moduli space
of curves mapping to a point. This is the reason for the qualifier “reduced”
for the partition functions and the primes. We may alternatively first define
the unreduced potential

FGW (X;u, v) =
∑

β

∑

g≥0

Ng,β u2g−2vβ

giving the unreduced partition function ZGW (X;u, v). Then define the de-
gree 0 potential by

FGW (X;u)0 =
∑

g≥0

Ng,0u
2g−2,

giving the degree 0 partition function ZGW (X;u)0. The reduced partition
function is then obtained by taking

Z ′
GW (X;u, v) = ZGW (X;u, v)/ZGW (X;u)0.

This is precisely the algebraic relation (1.3) used to define the reduced
Donaldson-Thomas partition functions Z ′

DT (X;u, q).

Gromov-Witten invariants with insertions

More general Gromov-Witten invariants may be defined by considering the
space Mg,r(X,β) with r > 0. There are evaluation maps evi on M g,r(X,β)

evi : Mg,r(X,β) → X

sending a point representing a curve map µ : C → X to the image of the i-th
marked point µ(pi) of the curve. We use these to define so-called Gromov-
Witten invariants with insertions.
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Definition 5. Given a threefold X, we define Gromov-Witten invariants
〈τ0(γ1) · · · τ0(γr)〉g,β depending on β ∈ H2(X; Z), g ∈ Z and γ1, . . . , γr ∈
H∗(X; Z) by

〈τ0(γ1) · · · τ0(γr)〉g,β =

∫

[Mg,r(X,β)]vir

ev1
∗(γ1) ∪ · · · ∪ evr

∗(γr).

In the cases where Gromov-Witten invariants correspond with classical
enumerative counts, this definition corresponds to imposing conditions on the
curves to be counted by the cohomology classes γi. Note also that taking
r = 0 gives the previous definition of Gromov-Witten invariants without
intersection with cohomology classes γi.

The seemingly superfluous τ0’s in the notation for Gromov-Witten in-
variants appear because there exist still more general invariants, known as
descendent invariants, defined via homology operations τk(γ) and denoted
〈τk1(γ1) · · · τkr

(γr)〉g,β. We will not be using or seeing more of these descen-
dant invariants.

As usual we may collect the invariants in generating functions. We have
the reduced Gromov-Witten potential

F ′
GW

(
X;u, v|

r∏

i=1

τ0(γi)

)
=
∑

β 6=0

∑

g≥0

〈τ0(γ1) · · · τ0(γr)〉g,βu2g−2vβ.

For β 6= 0, we get a reduced Gromov-Witten partition function

Z ′
GW

(
X;u|

r∏

i=1

τ0(γi)

)

β

defined by

1 +
∑

β 6=0

Z ′
GW

(
X;u|

r∏

i=1

τ0(γi)

)

β

vβ = exp F ′
GW

(
X;u, v|

r∏

i=1

τ0(γi)

)
.

1.4 The MNOP conjectures

In [21] three conjectures were proposed regarding the Donaldson-Thomas
invariants and a relation to Gromov-Witten invariants. The first of these
describes the degree 0 part of Donaldson-Thomas theory.

Conjecture 1. The degree 0 partition function is determined by

ZDT (X; q, v)0 = M(−q)
R

[X] c3(TX⊗KX)
.

In particular, if X is Calabi-Yau, we have

ZDT (X; q, v)0 = M(−q)χ(X).
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Here M(q) is the MacMahon function, defined by

M(q) =

∞∏

n=1

(1 − qn)−n.

MacMahon proved this to be the generating series for the number of 3-
dimensional partitions (see Definition 6) of size n. The MacMahon function
turns up a lot in Donaldson-Thomas computations, we will see one natural
way this happens in section 2.3.

Cheah proved in [8] that for a smooth threefold X the generating function
for the Euler characteristic of the Hilbert scheme of n points on X is

∑

n≥0

χ(X [n])qn = M(q)χ(X).

Hence in the case where X is Calabi-Yau the result above can be inter-
preted as saying that up to sign the virtual count of X [n] equals the Euler
characteristic.

Conjecture 2. The reduced series ZDT (X; q)β is a rational function of q.
If X is Calabi-Yau, this function is symmetric under the transformation
q 7→ 1/q.

The symmetry under inversion of q when X is Calabi-Yau can be seen
as a consequence of the fact that Gromov-Witten invariants are real. The
Gromov-Witten series should be invariant under the substitution eiu 7→ e−iu,
and assuming the Donaldson-Thomas/Gromov-Witten correspondence be-
low this makes the Donaldson-Thomas partition function invariant under
q 7→ 1/q.

The final conjecture relates the reduced Donaldson-Thomas partition
function to the reduced Gromov-Witten partition function.

Conjecture 3 (Donaldson-Thomas/Gromov-Witten correspondence).
Let d = −KX · β. Making the substitution q = −eiu, we have

(−iu)dZ ′
GW (X;u)β = (−q)−d/2Z ′

DT (X; q)β .

In particular, if X is Calabi-Yau, after substituting q = −eiu we get

Z ′
GW (X;u, v) = Z ′

DT (X; q, v).

Progress on the conjectures

Conjecture 1 on the degree 0 Donaldson-Thomas invariants is now a theo-
rem, as is several of its generalizations to settings where X is not a proper
threefold. Several proofs exist, see [6], [19] and [20]. Conjecture 2 and 3 are
proved in special cases, for instance when X is toric [23], and the analogue
conjectures for the case where X is a rank 2 bundle over a curve [24].
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Chapter 2

Computation techniques

2.1 Equivariant theory

In order to explain the technique of toric localization, we give a brief intro-
duction to equivariant cohomology, following Fulton’s lectures [14] on equiv-
ariant cohomology in algebraic geometry. This will also be of use in one of
the arguments in the calculations on trivial elliptic fibrations to be presented
later.

The idea of equivariant cohomology is most easily formulated in the set-
ting of algebraic topology. We begin with a Lie group G and a topological
space X on which G acts on the left. We let EG be a contractible space on
which G acts freely. Form the new space

EG ×G X = EG × X/(e · g, x) ∼ (e, g · x).

We may then define the equivariant cohomology of X with respect to G,
written as H∗

G(X). It is defined as the usual singular cohomology of EG×G

X, that is
H∗

G(X) = H∗(EG ×G X).

It can be shown that this definition does not depend on the choice of con-
tractible G-space EG.

The equivariant cohomology theory enjoys most of the properties of an
ordinary cohomology theory, such as pullback and characteristic classes of
(equivariant) vector bundles. We let BG = EG/G, otherwise known as the
classifying space of G. The equivariant cohomology of a point is

H∗
G(pt) = H∗(EG ×G pt) = H∗(BG).

We let ΛG = H∗(BG). From the map X → pt we get a map

ΛG = H∗(BG) → H∗
G(X),

hence the G-equivariant cohomology ring of a space X has a canonical ΛG-
algebra structure.

25
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If F is a G-equivariant complex vector bundle on X, there are equivariant
Chern classes cG

i (F ) ∈ H2i
G (X), defined as follows: As F is equivariant, we

get a vector bundle over EG ×G X which is

EG ×G F → EG ×G X.

We may then define the equivariant Chern class cG
i (F ) to be the ordinary

i-th Chern class of this bundle, which is a class in H2i(EG×G X). Note that
this equivariant Chern class depends on the G-equivariant structure of F in
addition to the usual vector bundle properties. In particular, even if F is a
vector bundle over a point, the Chern classes of F may be non-trivial.

Example of G being a torus

The most useful example for our purposes is the one where the group is a
torus T ∼= C∗. In this case we get the contractible space

ET = C∞\{0},

while the classifying space is

BT = CP∞,

the infinite dimensional complex projective space. This has cohomology ring

ΛT = H∗(BT ) = H∗(CP∞) ∼= Z[t],

where t is the first Chern class of the tautological line bundle O(−1) on
CP∞.

More generally, if T is an n-dimensional torus T ∼= (C∗)n, we get the
classifying space

BT = (CP∞)n

and the cohomology ring

ΛT = H∗((CP∞)n) = Z[t1, . . . , tn].

Equivariant intersection theory

The spaces EG and BG involved in the definition of equivariant cohomology
are often far from being algebraic, as they are typically infinite-dimensional.
Nevertheless, the existence of an algebraic analogue to equivariant cohomol-
ogy, that is of equivariant Chow groups, has been shown in [9]. Briefly, the
algebraic definition goes by finding finite-dimensional algebraic approxima-
tions EGm → BGm for every integer m and taking the equivariant Chow
group AG

k (X) to be the Chow groups of

X ×G EGm(k),
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for some m(k) chosen large enough. It can be checked that this equivariant
Chow group is independent of the choice of approximation spaces. The re-
sulting theory has many of the standard properties of ordinary Chow groups,
such as Chern classes of equivariant bundles and proper push-forward.

Localization techniques

The reason for introducing equivariant cohomology and intersection theory
is to be able to describe an important technique for calculating Donaldson-
Thomas invariants, namely that of localization. In general localization is
a way of expressing equivariant classes on a scheme with a group action
by classes on the fixed point locus of the group action. The localization
formula appearing in the context of virtual fundamental classes is proved in
the article [15]. It is similar to and in some sense a generalization of the
classical Atiyah-Bott localization formula [2] in equivariant cohomology.

The basic setup is as follows. We have a moduli space Y with an action
of an algebraic torus T = (C∗)n on it. There is a virtual obstruction theory
defined on Y that is equivariant with respect to the action of T . From the
T -action we get a closed subscheme Y T ⊂ Y , defined as the largest closed
subscheme of Y such that the restriction of the T -action is trivial.

We assume for simplicity that the virtual dimension of Y is 0, so that
our goal is to evaluate the integral of the virtual fundamental class [Y ]vir

over Y . Since the obstruction theory on Y is T -equivariant, we may define
an equivariant virtual fundamental class in AT

∗ (Y ), which we by abuse of
notation also denote by [Y ]vir. We further assume that we may calculate
the invariant we are after using this equivariant virtual class, by taking the
image of [Y ]vir under the map

AT
0 (Y ) → AT

0 (pt) = Z.

Let ι : Y T → Y be the inclusion. The idea is to find a class [Y T ]′ in the
equivariant cohomology ring AT

∗ (Y T ) such that we have ι∗([Y
T ]′) = [Y ]vir.

Finding such a class we may calculate our original integral
∫

[Y ]vir as the
integral of [Y T ]′ over Y T . As Y T in good cases is a disjoint union of T -fixed
points, we have reduced our calculation to a sum of fixed point contributions.
The bulk of the work in such a calculation is then to describe what the
contributions from given fixed points are.

Precisely, the localization formula is

[Y ]vir = ι∗
∑ [Yi]

vir

e(Nvir
i )

.

Here Yi are the connected components of Y T . Note that to be able to divide
by e(Nvir

i ) we must add inverses to the Chow ring AT
∗ (Y ), so the equation

is to be interpreted as holding in the localized ring

AT
∗ (Y ) ⊗ Q(t1, . . . , tn),
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where the tensor product is taken over ΛT
∼= Z[t1, . . . , tn].

The obstruction theory on each connected component Yi comes from
taking the original obstruction theory restricted to Yi

E−1|Yi
→ E0|Yi

and considering the part of this that is fixed under the action of T .
The Nvir

i appearing in the denominator is the virtual normal bundle of
Yi, defined by first taking the complex

E0 → E1

restricted to Yi. We consider the moving part of this complex, that is in
each bundle we take the maximal subbundle such that the action of T on
the bundle has no fixed points, and so get a new complex Nvir

i

E0|
m
Yi

→ E1|
m
Yi

.

The Euler class is defined “K-theoretically”, so the Euler class of a complex
[B0 → B1] is taken to be e(B0)/e(B1).

In the case of Donaldson-Thomas theory the T -action on the moduli
space Y typically stems from a an action of T on the threefold X. Such an
action naturally induces a T -action on the Hilbert scheme In(X,β). This
T -action also induces a T -equivariant structure on the obstruction theory of
In(X,β).

Likewise, in Gromov-Witten theory a T -action on X gives a natural
T -action on the space Mg,r(X,β). The method of localization in Gromov-
Witten theory was first used by Kontsevich in [18].

The localization formula above may be used to define invariants in set-
tings where the moduli space is nonproper if the fixed point scheme is proper.
One such case is in the local Donaldson-Thomas theory of curves treated in
[24], which we now present.

2.2 The local Donaldson-Thomas theory of curves

In this variant of Donaldson-Thomas theory, the three-dimensional scheme
on which one counts curves is a rank 2 vector bundle over a smooth, proper
curve C. In this particular setting we shall denote the threefold N rather
than the usual X, following the notation in [24], from which the material
presented here is gathered.

The Hilbert scheme in question is denoted In(N, d), parametrizing proper
subschemes Z ⊂ N of dimension not greater than 1. As usual, n denotes
the Euler characteristic χ(OZ). The integer d is an analogue of specifying
the curve class β ∈ H2(N ; Z) in the normal Donaldson-Thomas theory. We
define d as the length of the intersection

Z ∩ Np
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where Np is the fibre over a generic point p of C.
As N is not projective but only quasi-projective, the Hilbert scheme

In(N, d) is not proper. Hence we cannot integrate the virtual fundamen-
tal class as in the definition of Donaldson-Thomas, but we may still de-
fine Donaldson-Thomas invariants using localization techniques. For conve-
nience, we assume that N is isomorphic to the direct sum of two line bundles
over C. There is then an action of a two-dimensional torus T on N , defined
by taking the direct sum of the scaling action of C∗ on each of the line
bundles. If N is not decomposable in this manner, we can still define the
equivariant Donaldson-Thomas invariants with respect to the scaling action
of C∗ on N . However, any rank two bundle is deformation equivalent to
a split bundle over C. Thus we can obtain the invariants of the indecom-
posable case by deforming to a split bundle and restricting to the diagonal
torus.

Ideally, we would define the Donaldson-Thomas invariants of N as
∫

[In(N,d)]vir

1,

but because In(N, d) is not proper this does not make sense. Instead, by
considering the virtual localization formula we see that a sensible definition
for the Donaldson-Thomas invariants of In(N, d) would be

∫

[In(N,d)T ]vir

1

e(Normvir)
. (2.1)

Here Normvir is the virtual normal bundle of the embedding

In(N, d)T → In(N, d),

and the Euler class is the equivariant one. The integral is defined by taking
the pushforward to a point, hence the invariants in this case take values in
the equivariant cohomology ring of a point, suitably localized to accomodate
the denominator in (2.1):

H∗
T (pt)t1,t2

∼= Q[t1, t2, t
−1
1 , t−1

2 ].

As in the case of absolute Donaldson-Thomas invariants, we may collect
the invariants for different values of n in one generating function. We fix d,
and let

Z(N)d =
∑

n∈Z

∫

[In(N,d)]vir

1

e(Norm)vir
qn

As before, we wish to disregard the contribution of degree 0 invariants, so
we form the reduced series

Z ′(N)d = Z(N)d/Z(N)0.
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With these partition functions and the similar ones on the Gromov-Witten
side, Okounkov and Pandharipande [24] prove the local versions of the three
MNOP conjectures, which we state. The first concerns the degree 0 Donaldson-
Thomas partition function, which as in the absolute case is described in terms
of the MacMahon function M(q).

Theorem 1. The degree 0 local Donaldson-Thomas partition function is
determined by

Z(N ; q)0 = M(−q)
R

N
c3(TN⊗KN ).

The integral in the exponent is here defined by (classical) T -localization
on N , ∫

N
c3(TN ⊗ KN ) =

∫

C

c3(TN ⊗ KN )

e(N)
.

Notice that the second integral is over the proper curve C and that the
normal bundle of C in N is N itself, so we divide by e(N) in localization.

Secondly, the reduced local Donaldson-Thomas series satsisfy a rational-
ity condition:

Theorem 2. The reduced series Z ′(N ; q, t1, t2)d is a rational function in the
variables t1, t2 and q.

Thirdly, the local Gromov-Witten and the local Donaldson-Thomas the-
ories are shown to be equivalent. Let the splitting of N be

N = L1 ⊕ L2,

where Li are line bundles on C, and define ki to be the degree of Li. Let g
be the genus of C. With these notations, we have

Theorem 3. After the change of variables eiu = −q,

(−iu)d(2−2g+k1+k2)Z ′
GW (N)d = (−q)−

d
2
(2−2g+k1+k2)Z ′

DT (N)d.

All of these theorems are formulated and proved in [24], as a byproduct
of the complete solution of the local Donaldson-Thomas theory of curves.
The strategy is to use certain so-called degeneration formulas for the theory.
These formulas express the partition function of invariants over a curve by
partition functions over curves of lower genus. Repeated application of these
reduces the problem to that of describing the local Donaldson-Thomas theory
of P1, which is subsequently solved.

2.3 Toric threefolds

One class of examples especially suited to localization techniques are the toric
threefolds. Throughout this section, we shall let X be a smooth, complete
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toric threefold, and let T be the three-dimensional torus acting on X. In the
articles [21] and [22] the foundations are laid for calculating the Donaldson-
Thomas invariants of such X by localization. We will present some parts of
the articles, as an example of how toric localization may be used to compute
integrals of virtual classes.

T -fixed ideal sheaves

The first step in employing localization techniques is to describe the T -fixed
part of the space of ideal sheaves In(X,β)T ⊂ In(X,β). We begin by noting
that as X is toric, smooth and proper, there is a convex polyhedron

∆(X) ⊂ R3

associated to X. The vertices of ∆(X) correspond bijectively to T -fixed
points of X. The fixed point scheme XT ⊂ X is a set of isolated points
{Xα}.

1 For each such point Xα, there is a canonical, T -invariant, open
affine

Uα
∼= A3

centered at Xα. For every such Uα we may choose coordinates ti on T and
xi on Uα such that the T -action is such that the map T × Uα → Uα is

((t1, t2, t3), (x1, x2, x3)) 7→ (t−1
1 x1, t

−1
2 x2, t

−1
3 x3).

The edges in the Newton polyhedron ∆(X) correspond to the T -invariant
1-dimensional subschemes of X. Precisely, if we have a T -invariant line
Cαβ

∼= P1 incident to two points Xα and Xβ, it corresponds to an edge in
∆(X) connecting the two vertices Xα and Xβ. To every such line Cαβ we
assign integers mαβ and mαβ by saying that the normal bundle of Cαβ in X
is

NCαβ/X
∼= O(mαβ) ⊕O(m′

αβ).

We are now in a position to describe the T -fixed ideal sheaves. If [I] ∈
In(X,β) is T -fixed, the same must be true of the closed subscheme Z ⊂ X
associated to I. Hence, as Z has dimension at most 1, it must be sup-
ported on the T -fixed points Xα of X together with the T -invariant lines
Cαβ between them.

Over an open affine Uα with standard coordinates matching the torus
action as above, the ideal

Iα = I|Uα ⊂ C[x1, x2, x3]

1We follow [21], [22] in using Greek letters for indexing fixed points of X. As a con-
sequence β is doing double duty as an index and as a homology class, but no confusion
should occur from this.
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must be T -fixed. If we have a polynomial f ∈ Iα such that

f =
∑

k∈Z3

ckx
k,

by the T -invariance of I, we see that for every triple a = (a1, a2, a3) ∈ (C∗)3

the polynomial

fa =
∑

k∈Z3

a−kckx
k

lies in Iα as well. We see that by taking a suitable C-linear combination of
such fa we may obtain every monomial appearing in f . As every monomial
in f lies in Iα, this ideal is generated by monomials.

Definition 6. By a n-dimensional partition we mean a subset P of Zn
≥0.

We demand that if
(a1, . . . , an) ∈ P

and
(b1, . . . , bn) ∈ Zn

≥0

is such that bi ≤ ai for all i, we have

(b1, . . . , bn) ∈ P.

We mention that this is in conflict with more classical definitions of par-
tition, where the dimension of a partition is one lower than the dimension
we use. For example, MacMahon referred to our 3-dimensional partitions as
plane partitions, and what is commonly know as a partition is in our use a
2-dimensional partition. We choose to use this convention in order to high-
light the fact that n-dimensional partitions corresponds to ideals containing
what is essentially n-dimensional information.

The fact that Iα is generated by monomials allows us to describe it com-
pletely by giving the three-dimensional partition

πα =
{

(k1, k2, k3) |x
k1
1 xk2

2 xk3
3 6∈ Iα

}
⊂ Z3

≥0.

Along each coordinate axis of Z3, the partition πα is described by a
two-dimensional partition. Specifically, in the direction corresponding to the
T -invariant curve Cαβ we have the partition

λαβ =
{
(k2, k3) | ∀k1, xk1

1 xk2
2 xk3

3 /∈ Iα

}
.

This is equivalent to saying that

λαβ =
{
(k2, k3) |x

k2
2 xk3

3 /∈ Iαβ

}
,
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where
Iαβ = I|Uα∩Uβ

⊂ C[x−1
1 , x1, x2, x3].

Matching up these partitions, we see that the data specifying a T -invariant
ideal sheaf on X can be organized as

• A three dimensional partition πα for every fixed point Xα

• A two-dimensional partition λαβ for every T -invariant line Cαβ, com-
patible with the partitions πα in the sense that the asymptotic two-
dimensional partition of πα along the axis corresponding to Cαβ is λαβ.

Degree and Euler characteristic

The discrete invariants n and β occuring in the definitions of the Hilbert
scheme In(X,β) are easy to calculate from the combinatorial data {πα, λαα′}.
We let |λαβ | be the size of the partition λαβ, defined simply as the number
of elements (or “boxes”) in the partition. Then we see that

β =
∑

|λαβ |[Cαβ ].

The size of a three-dimensional partition can be similarly defined as the
number of boxes. If there are T -invariant lines incident to Xα, the partition
πα will be infinite along one of the coordinate axes, making the size so defined
infinite. Hence we introduce the renormalized size |πα|, defined as follows.
If the asymptotics of πα along the coordinate axes are λαβi

, we let

πα = #{πα ∩ [0, . . . , N ]} − (N + 1)
3∑

1

|λαβ|, N >> 0.

The volume defined in this way may be negative.
Given m,m′ ∈ Z and a two-dimensional partition λ, we define

fm,m′(λ) =
∑

(i,j)∈λ)

(−mi − m′j + 1).

Every edge of ∆(X) is assigned a pair of integers (mαβ,mαβ), determined
by the splitting of the normal bundle

NCαβ/X = O(mαβ) ⊕O(m′
αβ)

We define
f(α, β) = fmαβ ,m′

αβ
(λαβ).

If the ideal sheaf I is determined by the partition data {πα, λαα′} and
the subscheme associated to I is Z, we have

χ(OZ) =
∑

α

|πα| +
∑

α,β

f(α, β).
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The proof of this is a simple computation in C̆ech-cohomology, using the open
covering of Z induced by intersecting the elements of the covering {Uα} with
Z.

The obstruction theory

We let the Donaldson-Thomas obstruction theory of In(X,β) be

E0 → E1,

and note that it can be checked that this is T -equivariant, as per the require-
ments of [15]. We assume that the virtual dimension of In(X,β) is 0, and
want to apply the virtual localization formula. The virtual normal bundle
on In(X,β)T is

Em
0 → Em

1 ,

where Em
i is the part of Ei (restricted to In(X,β)T ) where T has nontrivial

action. Taking the Euler class of this gives us

e(NIn(X,β)T )vir) =
e(Em

0 )

e(Em
1 )

.

The induced obstruction theory on In(X,β)T is the T -fixed part of the orig-
inal obstruction theory restricted to In(X,β)T . Letting S(I) be the closed
subscheme of In(X,β)T with support in [I], this obstruction theory gives a
virtual class [S(I)]vir. Applying the virtual localization formula then gives

∫

[In(X,β)]vir

1 =
∑

[I]∈In(X,β)T

∫

[S(I)]vir

e(Em
1 )

e(Em
0 )

.

In the toric case it is shown in [21] that S(I) is a closed point, and that
the T -fixed obstruction theory is trival. As a consequence, the virtual class
[S(I)]vir is trivial, and the moving part of the virtual normal bundle is the
entire bundle. We have the exact sequence of sheaves on In(X,β)

0 → TIn(X,β) → E0 → E1 → ob → 0.

It can be shown that the Zariski tangent space at the point [I] is Ext1(I,I),
and the fibre of the obstruction sheaf over [I] is Ext2(I,I). Hence over [I]
we get

e(Em
1 )

e(Em
0 )

=
e(E1)

e(E0)
=

e(Ext2(I,I))

e(Ext1(I,I))
.

This gives us the following formulation of the virtual localization formula:

∫

[In(X,β)]vir

1 =
∑

[I]∈In(X,β)T

e(Ext2(I,I))

e(Ext1(I,I))
.
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As the Euler classes in the above formula are the equivariant ones,
the evaluation involves an examination of the action of T on the spaces
Ext1(I,I) and Ext2(I,I). We will not go into the details of such a cal-
culation, instead we mention one case in which the evaluation of the Euler
classes is especially simple.

We let S be a complete toric surface with an effective anticanonical divi-
sor, and consider the total space of the bundle KS . This has an embedding
into the projective bundle X = P(OS ⊕ KS), and it is shown in [21, Sec
3.2] that X has an anticanonical section. Thus the Donaldson-Thomas the-
ory of X is well defined, and we may define the reduced Donaldson-Thomas
partition function of the surface S by

Z ′
DT (S; q)β = Z ′

DT (X; q)β

for β ∈ H2(S; Z). Let D = X\KS , the divisor at infinity. As β is a class
on S, it can be shown that the support of the curve Z associated to T -fixed
ideal sheaf must be in KS , except possibly for a finite union of 0-dimensional
subschemes supported on D.

We note that if I and J have associated subschemes with disjoint sup-
port, and letting K = I ⊕ J , we get

Exti(K,K) = Exti(I,I)⊕ Exti(J ,J ).

This implies the following relation on the Euler classes:

e(Ext2(K,K))

e(Ext1(K,K))
=

e(Ext2(I,I))

e(Ext1(I,I))
·
e(Ext2(J ,J ))

e(Ext1(J ,J ))

Putting together the above facts shows that

ZDT (X; q)β =
∑

n

qn
∑

[I]∈In(X,β)T

e(Ext2(I,I))

e(Ext1(I,I))

=



∑

n

qn
∑

[I]∈In(KS ,β)T

e(Ext2(I,I))

e(Ext1(I,I))





∑

n

qn
∑

[I]∈In(D,0)T

e(Ext2(I,I))

e(Ext1(I,I))


 .

The same equation holds for the degree 0 series ZDT (X; q)0, replacing β with
0 everywhere. This gives us

Z ′
DT (S; q)β = ZDT (X; q)β/ZDT (X; q)0

=

∑
n qn

∑
[I]∈In(KS ,β)T e(Ext2(I,I))/e(Ext1(I,I))

∑
n qn

∑
[I]∈In(KS ,0)T e(Ext2(I,I))/e(Ext1(I,I))

.

In particular we see that the Donaldson-Thomas theory of S does not depend
on the compactification chosen.

In this case of a local Calabi-Yau threefold we have the following simple
evaluation of the Euler class of the virtual normal bundle in [I]. ([21, theorem
2].)
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Theorem 4. Let I be a T -fixed ideal sheaf in In(KS , β), such that the closed
subscheme associated to I is Z. Then

e(Ext2(I,I))

e(Ext1(I,I))
= (−1)χ(OZ )+

P

αβ mαβ |λαβ |

where the sum in the exponent is over all edges and

O(mαβ) ⊕O(m′
αβ)

is the normal bundle to the edge curve Cαβ.

Note in particular the case where I is the ideal sheaf of a zero-dimensional
subscheme of length n, where we get

e(Ext2(I,I))

e(Ext1(I,I))
= (−1)n.

Recall the MacMahon function M(q) which is the generating function for the
number of three-dimensional partitions with k elements. On a toric threefold
X, the number of fix-points is equal to the Euler characteristic χ(X). As
T -invariant 0-dimensional subschemes are described by a three-dimensional
partition in each fixed point, we see that M(q)χ(X) is the generating function
for the number of T -fixed subschemes of X of length k. This can then
together with the equation above be used to give a proof of the first MNOP
conjecture in the case of toric Calabi-Yau threefolds, i.e.

ZDT (X; q)0 =
∑

n∈Z

Dn,0 = M(−q)χ(X).

2.4 Weighted Euler characteristics

In the article [3] Behrend introduced a new tool for calculating integrals
of virtual fundamental classes. Before stating the results, we need a few
definitions.

Definition 7. A constructible subset of a scheme Y is one that is obtained
from subschemes and finitely many uses of the set-theoretic operations of
union and intersection. A constructible function on a scheme Y is one such
that Y has a finite partition into constructible subsets such that the function
is constant on each constructible subset.

We let Y be any scheme, where the typical example to bear in mind is the
one where Y is a moduli space with a perfect obstruction theory on it. This
obstruction theory should further be symmetric. This is a property which for
example is fulfilled by the obstruction theory defined on the Hilbert scheme
In(X,β) when X is a Calabi-Yau threefold.

On such a scheme Y , Behrend constructs a canonical constructible func-
tion νY : Y → Z. Using this function we may define a new invariant of Y as
follows.
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Definition 8. Given a scheme Y , we define the Euler characteristic of Y
relative to a constructible function f : Y → Z to be

χ(Y, f) =
∑

n∈Z

nχ(f−1(n)).

We define the weighted Euler characteristic of Y to be

χ̃(Y ) = χ(Y, νY ) =
∑

n∈Z

nχ(ν−1
Y (n)).

We mention a few properties of the function νY .

• If Y is smooth in P , we have νY (P ) = (−1)dim Y .

• Multiplicativity holds: νY ×Z(P,Q) = νY (P )νZ(Q).

• The function νY is an invariant of the analytic structure of Y . See [3,
Lemma 4.22]. As a consequence, if f : Y → Z is an étale morphism,
we have νY = f∗νZ .

Symmetric obstruction theories

We assume now that Y has a perfect obstruction theory defined on it. Fur-
thermore, we demand that this obstruction theory be symmetric.

Definition 9. A perfect obstruction theory E → LX is called symmetric, if
there is an isomorphism θ : E → E∗[1], satisfying θ∗[1] = θ.

The morphism θ is here a morphism in the derived category, and the dual
complex E∗ is the dual of E in the derived category sense. The [1] denotes
shifting the complex one place to the left.

As our complex [E−1 → E0] has components that are locally free, the
dual complex is obtained by taking the component-wise dual. Hence

E∗[1] = (E0)∗ → (E−1)∗

lying in degrees −1 and 0. We note a few consequences of an obstruction
theory being symmetric. First of all, by the isomorphism θ we have the
following equations on the ranks of E and E∗[1]:

rkE0 − rkE−1 = rk (E−1)∗ − rk (E0)∗ = −
(
rkE0 − rkE−1

)
.

Hence

rkE = rkE0 − rkE−1 = 0,

so the virtual dimension of Y is 0.
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Another consequence of an obstruction theory being symmetric is an
isomorphism between the obstruction sheaf ob and the cotangent sheaf ΩY .
Namely, we have

ob = h1(E∗) = h0(E∗[1]) = h0(E) = ΩY ,

where the last equality follows from one of the conditions for E being an
obstruction theory.

As the virtual dimension of Y is 0 whenever we have a perfect symmet-
ric obstruction theory on Y , we get a virtual fundamental class [Y ]vir of
dimension 0 on Y . Hence we have the virtual count of Y :

#vir(Y ) =

∫

[Y ]vir

1.

The main result of the paper [3] is that this virtual count is equal to the
weighted Euler characteristic, that is

#vir(Y ) = χ̃(Y ).

One interesting consequence of this is that the virtual count on Y de-
pends only on the scheme structure of Y and not on the particular perfect
symmetric obstruction theory used to define it.

Donaldson-Thomas invariants of super-rigid curves

As we have seen, the Donaldson-Thomas invariants Dn,β of a threefold X
with trivial canonical class is expressible as the weighted Euler characteristic
χ̃(In(X,β)). An application of this is given by Behrend and Bryan in [4].
Given a Calabi-Yau threefold X, they calculate the contribution from super-
rigid rational curves on X to the Donaldson-Thomas invariants of X.

We say a smoothly embedded rational curve C on a Calabi-Yau threefold
X is super-rigid if the normal bundle of C in X is

NC/X
∼= O(−1) ⊕O(−1).

Let E be the effective cycle
∑

niCi where Ci are pairwise disjoint super-rigid
curves, and ni > 0. We let β be the class of E in homology. We may consider
the one-dimensional subschemes Z ⊂ X such that the associated cycle of Z
is E. It can be shown that such one-dimensional subschemes form an open
and closed subscheme

Jn(X,E) ⊂ In(X,β).

This is essentially because superrigidity shows that the Ci have no infinites-
imal deformations, and hence the fundamental cycle of a subscheme Z with
associated cycle E must be fixed when Z varies continuously in In(X,β).
See [4, Remark 2.2].
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As Jn(X,E) is open in In(X,β), the symmetric obstruction theory on
In(X,β) induces by restriction a symmetric obstruction theory on Jn(X,E),
giving a virtual fundamental class [Jn(X,E)]vir of dimension 0. Since Jn(X,E)
is closed in In(X,β), it is proper and we may integrate the virtual funda-
mental class over Jn(X,E), giving an integer

Dn,E = #vir(Jn(X,E)) =

∫

[Jn(X,E)]vir

1.

We call this number the contribution of Jn(X,E) to Dn,β.
A subscheme Z ⊂ X lying in Jn(X,E) consists of the union of sub-

schemes of two types:

1. Curves supported on Ci, possibly with embedded points

2. 0-dimensional subschemes with support disjoint from each Ci.

The contribution from Jn(X,E) to the Donaldson-Thomas invariant is cal-
culated in the following manner. We may stratify Jn(X,E) using products
of spaces each containing only subschemes of type 1 or 2. Hence we may ex-
press the weighted Euler characteristic χ̃(Jn(X,E)) by Euler characteristics
relative to νJn(X,E) of spaces containing only subschemes of type 1 or 2.

Let J̃m(X,Ci) be the closed subset of Jm(X,E) consisting of subschemes
supported on Ci. (We use m rather than n here because we are considering
only a component of a scheme [Z] ∈ Jn(X,E)). First note that there is an
analytic neighborhood of Ci isomorphic to the total space of the bundle on
P1

N = NCi/X
∼= O(−1) ⊕O(−1).

Because of this, and because the weight function νJm(X,E) only depends on
the analytic structure on Jm(X,E), it can be shown that we may calculate
the weighted Euler characteristic χ(J̃m(X,Ci), νJm(X,E)) as if Ci were the
zero section of N . As N is toric, this can then be handled by localization,
giving an expression for χ(Jm(X,Ci), νJm(X,E)).

For the spaces of subschemes of type 2, which are Hilbert schemes of
points on X, the weighted Euler characteristic is already computed in a
different article [6]. Stratifying Jn(X,E) by products of spaces of these two
types, it is possible to make a complete calculation of the contribution from
Jn(X,E) to Dn,β.

A parallel definition of the contribution from curves with cycle E can be
given on the Gromov-Witten side. There is an open and closed component
Mg(X,E) ⊂ Mg(X,β) of curve maps sending the fundamental cycle of the
curve to the cycle E. We can then in the same manner define the contri-
bution Ng,E of Mg(X,E) to the Gromov-Witten invariant to be the inte-
gral of the virtual fundamental class [M g(X,E)]vir. There is a Donaldson-
Thomas/Gromov-Witten correspondence for contributions from super-rigid
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curves which parallels the usual correspondence (Conjecture 3), replacing
Dn,β and Ng,β with Dn,E and Ng,E in the definitions.

Using the calculation of Donaldson-Thomas invariants from super-rigid
curves above, this DT/GW-correspondence is shown to hold. As a conse-
quence of the super-rigid correspondence we get the following corollary.

Corollary 1. Let X be a Calabi-Yau threefold, and let β ∈ H2(X; Z) be
a curve class such that all cycle representatives of β are supported on a
collection of pairwise dijoint, super-rigid rational curves. Then the degree β
DT/GW-correspondence holds, that is

Z ′
GW (X;u)β = Z ′

DT (X;−eiu)β .

As a concrete example, we get

Corollary 2. Let X ⊂ P4 be a quintic threefold, and let L be the class of a
line. Then, for β equal to L or 2L, the DT/GW-correspondence holds.

Proof. By the deformation invariance of both DT- and GW-invariants, we
may assume that X is a generic quintic threefold. It is known that there are
2875 pairwise disjoint lines on X, and that these are super-rigid. Similarly it
is known that there are 609250 pairwise disjoint conics on X, and that these
are super-rigid as well. As curves of class L or 2L are either lines, conics or
unions of lines, the conditions of Corollary 1 hold.

It is known for all degrees d < 5 that there are finitely many ratio-
nal curves of degree d on a generic quintic X, each smoothly embedded and
super-rigid. However, one still cannot prove the Donaldson-Thomas/Gromov-
Witten correspondence for β = kL with k > 3 by Corollary 1. The reason for
this is simply that in degree 3 and above we get contributions from elliptic
curves on X, causing the conditions of Corollary 1 to fail.



Chapter 3

Elliptic fibrations

3.1 Trivial elliptic fibrations

In the article [10] Edidin and Qin investigate the GW/DT-correspondence
for the special case where the threefold is a trivial elliptic fibration. By a
trivial elliptic fibration we mean a threefold X that is isomorphic to E × S,
where E is an elliptic curve and S is a smooth surface.

In a previous article by Katz, Li and Qin Donaldson-Thomas invariants
were computed for the moduli spaces I0(X, dβ0) and I1(X, dβ0), where β0 is
the class of a fibre of E×S → S. The moduli spaces involved were shown to
be smooth, allowing the virtual counts to be expressed up to sign as Euler
characteristics, which were then computed.

The question answered by the main theorem of [10] concerns the general
GW/DT-correspondence with primary insertions, see Definitions 3 and 5.
We state this conjecture here as it appears in the article.

Conjecture 4. Let β ∈ H2(X; Z)\{ 0}, and d = −
∫
β KX . Then after the

change of variables eiu = −q, we have

(−iu)dZ ′
GW

(
X;u |

r∏

i=1

τ0(γi)

)

β

= (−q)−d/2Z ′
DT

(
X; q |

r∏

i=1

τ̃0(γi)

)

β

.

Under some conditions on S or on the intersection classes γi, this con-
jecture is shown to hold. Precisely, we have the following theorem.

Theorem 5. Let f : X = E×S → S be the projection where E is an elliptic
curve and S is a smooth surface and β ∈ H2(X; Z). Then the Gromov-
Witten/Donaldson-Thomas correspondence above holds if either

∫
β KX =∫

β f∗KS = 0, or

γ1, . . . , γr ∈ f∗H∗(S; Q) ⊂ H∗(X; Q).

41
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As a special case we get the following corollary.

Corollary 3. Let E be an elliptic curve and S a smooth surface with nu-
merically trivial canonical class KS. Then the Gromov-Witten/Donaldson-
Thomas correspondence above holds for the threefold X = E × S.

We give a summary of the arguments of the article, which provide an
example of equivariant theory being used in a different setting than toric
localization. For simplicity we restrict to the case of r = 0, that is of the
DT- and GW-invariants without insertions Dn,β and Ng,β. Throughout this
chapter, let X be a trivial elliptic fibration, and let f : X = E × S → S be
the projection map. We let β0 ∈ H2(X, Z) be the class of a fibre of f . We
fix an identity point e ∈ E, giving E the structure of a group, which has a
natural action on X.

The two sides of the Donaldson-Thomas/Gromov-Witten correspondence
are each calculated separately, and afterwards shown to match as conjec-
tured. The overall strategies of the two cases are similar, we shall focus here
on the Donaldson-Thomas case.

The main idea of the paper is to make use of the group action of E on X.
This action naturally induces an E-action on the Hilbert scheme In(X,β).
We first note the following.

Lemma 1. If n 6= 0 or β 6= dβ0 for some integer d, the action of E on
In(X,β) has no fixed points.

Proof. If [I] is an E-fixed point in In(X,β), we see that the associated
closed subscheme Z ⊂ X is also E-fixed. For this to be true Z must be
the inverse image under f of some subscheme Q of S. Since Z is at most
one-dimensional, Q must be zero-dimensional. Taking d to be the length of
Q, we find n = χ(OZ) = 0, and β = dβ0.

Lemma 2. Let n and β be such that E acts without fixed points on In(X,β).
Then

Dn,β = 0.

Proof. The stabilizer of a point [I] ∈ In(X,β) under the action of E is a
closed subscheme of E. As there are no fixed points, this stabilizer cannot
be E itself, and so must be a finite set of points in E. We wish to show
that there is an N > 0 such that for every [I] ∈ In(X,β), the cardinality of
the stabilizer of [I] is less than N . We note that the stabilizers of points in
In(X;β) together form a closed subscheme

Y ⊂ E × In(X,β)

such that the fibre Y[I] over a point [I] ∈ In(X,β) is, considered as a sub-
scheme of E, the stabilizer of [I]. As In(X,β) is proper the image of Y
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under the projection to E, which is the same as the union of all stabilizer
subgroups of E, is a closed subset of E. Since this image is the union of
finite subgroups of E, it must be strictly smaller than E. Hence the union
of all stabilizer subgroups is a finite set of points, and we may take N to be
this number of points.

It is clear that for any cyclic subgroup G of E such that the order of G
is a prime greater than N , the action of G on In(X,β) is free.

Since the obstruction theory is equivariant for the action of any algebraic
group of automorphisms of X, the cycle [In(X,β)]vir defines an element of the
equivariant Borel-Moore homology group HG

∗ (In(X,β); Z) defined in [9]. If
the virtual dimension of In(X,β) is not 0, the invariants Dn,β vanish trivially.
Hence we may assume that [In(X,β)]vir gives an element in HG

0 (In(X,β); Z).
As G acts freely on In(X,β), it can be shown that any element in this group
is represented by a G-equivariant 0-cycle on In(X,β), whose degree is a
multiple of p. Hence p divides

deg[In(X,β)]vir = Dn,β

and as we may choose p arbitrarily large, we get Dn,β = 0.

We note that both of these lemmas work in the Gromov-Witten setting,
with the suitable adjustment of discrete invariants in Lemma 1. Specifically,
we see that unless g = 1 and β = dβ0 for d ≥ 0, E acts without fixed points
on Mg,0(X,β). Like in Lemma 2 it can be shown that when E acts without
fixed points on M g,0(X,β) the corresponding invariants Ng,β vanish.

Hence it is shown, for example, that when β 6= dβ0, we have

Z ′
DT (X; q)β = Z ′

GW (X;u)β = 0,

giving the Donaldson-Thomas/Gromov-Witten correspondence in this case.
What remains for a proof of Theorem 5 (restricting to r = 0) is to

calculate the Donaldson-Thomas invariants D0,dβ0 and the Gromov-Witten
invariants N1,dβ0 . For the Donaldson-Thomas case, we first note that it can
be shown that for every scheme Z on X lying in I0(X, dβ0) the ideal sheaf
I of Z satisfies

I = f∗J ,

for some ideal sheaf J of a dimension 0 subscheme on S of length d. This
correspondence gives an isomorphism

I0(X, dβ0) ∼= S[d].

The virtual count of points in I0(X, dβ0) is computed by explicitly de-
scribing the obstruction sheaf on I0(X, dβ0).

Lemma 3. The obstruction bundle over the moduli scheme I0(X, dβ0) ∼= S[d]

is isomorphic to the tangent bundle TS[d] of the Hilbert scheme S[d].
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We will not reproduce the proof of this lemma here. We simply note the
consequence, namely that as the moduli space is smooth, the Donaldson-
Thomas invariant is

D0,dβ0 = (−1)dimS[d]
deg e(TS[d]) = χ

(
S[d]
)

.

As the invariants Dn,0 vanish for n > 0 the reduced partition function
is the same as the unreduced. Putting all these results together, as well as
a calculation of the remaining Gromov-Witten invariants, we obtain a full
description of the invariants of X:

Z ′
GW (X;u, v) = Z ′

DT (X; q, v) =
∑

d≥0

χ(S[d])vdβ0 .

3.2 Locally trivial elliptic fibrations

Using Behrend’s description of the Donaldson-Thomas invariants of X as
a weighted Euler characteristic, we now extend some of the results of the
previous chapter to a slightly more general threefold than a trivial ellip-
tic fibration. Specifically, we are interested in the threefolds satisfying the
following definition:

Definition 10. Let S be a proper, smooth surface, and let E be an elliptic
curve. We say a morphism f from a threefold X to S is a locally trivial1

elliptic fibration over S with fibre E if the following criterium is met: There
is a covering of S by analytic open subsets such that for every U in the
covering we have the commutative diagram of analytic spaces

f−1(U)
∼=

−−−−→ E × U
yf

yproj

U U

(3.1)

Throughout this section we will deal with the Donaldson-Thomas in-
variants arising from spaces In(X, dβ0) where X is a locally trivial elliptic
fibration and β0 ∈ H2(X; Z) is the class of a fibre of the projection X → S.
In order to simplify notation slightly, we let In(X, d) := In(X, dβ0).

For any analytically open subset W ⊂ X, we let In(W,d) ⊂ In(X, d) be
the analytically open subset consisting of subschemes with support contained
in W . That this is well defined as an analytic space can be seen by the theory
of Douady spaces. These are analogues of the Hilbert scheme in the category
of complex analytic spaces, such that for a complex analytic space Y we have

1The naming of such morphisms is our own, intended to be relevant only for this
section, and could possibly be in conflict with some generally accepted definition of what
it means for an elliptic fibration to be locally trivial.
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a Douady space D(Y ), which is a complex analytic space parametrizing
proper closed analytic subspaces of Y . When Y is a projective complex
scheme, analytic subspaces of Y correspond to subschemes by GAGA, and
this gives an isomorphism of analytic spaces (see [16, Chapter VIII])

Hilban(X) ∼= D(Xan)

In particular, we may consider In(W,d) as the part of the Douady space
D(W ) contained in In(X, d)an.

Theorem 6. Let X be a proper, smooth threefold admitting a locally trivial
elliptic fibration f : X → S with fibre E, and assume that X has trivial
canonical class. Then

#vir(I0(X, d)) = χ(S[d]),

and for n > 0 we have

#vir(In(X, d)) = 0.

We let Y be the trivial elliptic fibration E × S and let g : Y → S be the
projection. We note that the theorem holds for the threefold Y by the results
of the previous chapter. As both X and Y have trivial canonical divisors,
the obstruction theories on In(X, d) and In(Y, d) are symmetric. Hence the
virtual count is equal to the weighted Euler characteristic, and to prove the
theorem it is enough to show that

χ(In(X, d), νIn(X,d)) = χ(In(Y, d), νIn(Y,d)). (3.2)

Before proving the above equation we need some lemmas.

Lemma 4. Given two open subsets A and B of a topological space X we
have the following formula:

χ(A ∪ B) = χ(A) + χ(B) − χ(A ∩ B).

Proof. See [27, p. 205].

Lemma 5. Let A and B be analytically open subsets of a scheme Y . Then
we have

χ(A ∪ B, νY |A∪B) = χ(A, νY |A) + χ(B, νY |B) − χ(A ∩ B, νY |A∩B).
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Proof. For every k ∈ Z, Lemma 4 gives

χ(νY |
−1
A∪B(k)) = χ(ν−1

Y (k) ∩ (A ∪ B))

= χ(ν−1
Y (k) ∩ A) + χ(ν−1

Y (k) ∩ B) − χ(ν−1
Y (k) ∩ (A ∩ B))

= χ(νY |
−1
A (k)) + χ(νY |

−1
B (k)) − χ(νY |

−1
A∩B(k)).

Summing the equality between the first and last expression over all k gives
the desired result, using Definition 8.

Lemma 6. There exists analytically open coverings {Ui}
k
1 and {Vi}

k
1 of

In(X, d) and In(Y, d) such that for any nonempty set J ⊂ {1, . . . , k} we
have isomorphisms as analytic spaces

⋂

j∈J

Uj
∼=
⋂

j∈J

Vj .

Proof. Let Z be a closed subscheme of X lying in In(X, d). The closed
subscheme f(Z) ⊂ S has support in a finite set of points {pi}. Choose
pairwise disjoint analytically open neighborhoods Wi for each of these points.
As X has a locally trivial fibration, we may choose the Wi small enough to
satisfy the trivializing diagram 3.1, in particular we have

f−1(Wi) ∼= E × Wi.

Letting W be the union of the Wi, as they are pairwise disjoint, we get

f−1(W ) ∼= E × W.

We also have

g−1(W ) ∼= E × W,

hence there is an isomorphism f−1(W ) ∼= g−1(W ).

This isomorphism induces an isomorphism In(f−1(W ), d) ∼= In(g−1(W ), d).
This can be seen by considering the two spaces as Douady spaces, so that
clearly their complex analytic structure depends only on f−1(W ) and g−1(W ).
As In(f−1(W ), d) is a neighborhood of [Z] it is clear that we may find a col-
lection {Wi} of open subsets of S such that

In(X, d) =
⋃

In(f−1(Wi), d)

and

In(Y, d) =
⋃

In(g−1(Wi), d).

As both In(X, d) and In(Y, d) are proper, finitely many Wi will suffice. Let
k be the number of Wi’s in this finite collection.
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We see that for a nonempty set J ⊂ {1, . . . , k}

⋂

j∈J

f−1 (Wj) ∼= E ×



⋂

j∈J

Wj


 ∼=

⋂

j∈J

g−1 (Wj) .

We let Ui := In(f−1(Wi), d) and Vi = In(g−1(Wi), d). Then
⋂

j∈J

Uj =
⋂

j∈J

In(f−1(Wj), d) = In(f−1(∩j∈JWj), d)

∼= In(g−1(∩j∈JWj), d) =
⋂

j∈J

In(g−1(Wj), d) =
⋂

j∈J

Vj,

which is what we wanted to prove.

We are now ready to give the proof of (3.2), which gives Theorem 6.

Proof of (3.2). Let {Ui}
k
1 and {Vi}

k
1 be open coverings of In(X, d) and In(Y, d)

as in Lemma 6. By [3, Proposition 4.22] the value of ν in a point P depends
only on an analytical neighborhood of P . Hence for J ⊂ {1, · · · k} the iso-
morphisms ⋂

j∈J

Uj
∼=
⋂

j∈J

Vj

give equalities of weighted Euler characteristics

χ



⋂

j∈J

Uj , νIn(x,d)


 = χ



⋂

j∈J

Vj , νIn(Y,d)


 .

By repeated applications of Lemma 5 we get the following equalities

χ(In(X, d), νIn(X,d)) =
∑

J⊂{1,··· ,k}

(−1)|J |+1χ



⋂

j∈J

Uj, νIn(X,d)




=
∑

J⊂{1,··· ,k}

(−1)|J |+1χ



⋂

j∈J

Vj, νIn(Y,d)




= χ(In(Y, d), νIn(Y,d)),

which is what we wanted.

It is not obvious that there are any locally trivial elliptic fibrations X
with trivial canonical divisor other than the trivial example of E × S with
KS = 0. One candidate for such an X would be an abelian threefold. We
then require that this threefold has at least one elliptic curve on it, and
furthermore that it is not isomorphic to any product E × S. We have not
been able to prove the existence of such a threefold, though it seems likely
that one exists.
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