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OPTIMAL PORTFOLIOS THROUGH BELLMAN NUMERICS

ERIK BØLVIKEN AND PÅL NICOLAI HENRIKSEN

Abstract. A numerical strategy for solving low-dimensional Bellman equations through

the traditional backwards recursion is formulated. A simple error analysis suggests that

the approach handles many multi-period portfolio selection problems, and a number of

examples confirm this experimentally. Minimum downside risk procedures are studied

and it is demonstrated how multi-period efficient frontiers can be calculated for such

criteria. A closing example examines the impact of heavy-tailed distributions on optimal,

multi-period risk.

1. Introduction

Financial portfolios that are optimal over many periods are solutions of stochastic control

problems and Hamilton Jacobi Bellman equations. There is an enormous literature on their

theoretical and numerical properties. Continuous-time summaries are, for example, Fleming and

Soner [14], Kushner and Dupuis [23], Pham [26] and in insurance Schmidli [31]. The present paper

is concerned with the matematically less demanding discrete-time view, but practical computation

is still a major problem. One approach is the fairly recent suggestion in Rogers [29], but the

traditional answers are stochastic, dynamic programming (Wallace and Ziemba [34]) and the

Bellman principle that goes back to Bellman [3]. High-dimensional portfolio selection through

stochastic, dynamic programming has been reported for example in Hilli, Koivu, Pennanen and

Ranne [17] and Krokhmal, Uryasev and Palmquist [22], and it is in Krokhmal and Uryasev [21] and

Rockafeller and Uryasev [28] shown how this approach reduces conditional-value-at-risk criteria

to convex programming. The Bellman line works through recursions running backwards in time,

and optimal strategies are inferred from the preceding one one time step ahead. This technique

is used to determine optimal financial portfolios in Balduzzi and Lynch [1] and Barberis [2]

with more algorithmic contributions in Brandt, Goyal, Santa-Clara and Stroud [9], Garlappi and

Skoulakis [16] and van Binsbergen and Brandt [33] while Dickson and Waters [12] and Korn and

Wiese [20] are contributions in insurance.

Numerical solutions of the Bellman recursion go far back, see Tapiero and Sulem [32] and

references therein. Time is discrete, but the state space is not, and the traditional way is to
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replace continuous models and distributions by discrete analogues. This is known as the Markov

chain approximating method, related to, but not quite the same as the idea advocated here.

Bellman schemes run on a grid of say N points in the state space, and each time step demands

N optimizations of functions that are multi-dimensional integrals. The integrands depend on the

solution from the preceding calculation, but the latter is only available on the grid that has been

selected for it, and this is not enough to proceed further. The Markov chain approximation stays

clear of this problem by working on a discrete state space all along, but another way to break

the deadlock is to use function approximation where values we need are determined numerically

from those we have. A modern application of that idea is the much cited paper by Longstaff and

Schwartz [24] on financial options, but it goes far back, almost half a century (at least) to Bellman,

Kalaba and Kotkin [4]. The discretization of the state space is now a purely numerical issue and

not something that takes place in the model sphere as with the Markov chain approximation.

An advantage of this viewpoint is that we draw on the high accuracy of function approximation.

Many criteria in finance vary fairly slowly which creates a good basis for interpolation or even

regression methodology.

The purpose of this paper is to formulate a general numerical strategy and examine the solutions

that is obtained with it when it is put to work on several interesting and not quite common

low-dimensional problems. A simple error analysis of the basic scheme is developed in the next

section. It will suggest that N may not have to be overwhelmingly large, and practical experience

reported in Sections 4 and 5 offer support. This would be particularly important when the state

space has higher dimension than in our examples. All grids in this paper are cartesian products.

With n points for each variable N = nd which grows rapidly with the dimension d, but it is

quite possible that more sophisticated grid design could reduce it. If we can’t afford to make N

high enough, the solutions become sub-optimal, but they might still represent sensible investment

strategies. Successful algorithms require for each time step optimization, numerical integration

and function approximation. Quasi Monte Carlo (or even ordinary Monte Carlo) may be used to

evaluate the integrals (it’s done in Sections 5 and 6), but care must be exercised to make critera

smooth functions so that optimization methodology works as intended. The approach handles

criteria like probable or expected shortfall. Those are not differentiable, but often this is only in

the beginning as they from the second round on have entered integrals that make them smooth

functions with derivatives of any order.

2. Computational approach

2.1. The Bellman equation. Let X0,X1, . . . be a vectorial Markov process influenced by deci-

sion vectors π0, π1, . . . under our control. The problem addressed is how πk = πk(Xk) should be

selected to steer XK at some terminal point in time towards a result to our advantage. This will

here mean a strategy leading to the minimum of E{H(XK)} for some criterion H(x), for example

one of those in 2.4 below. The target is in all our examples in terms of accumulated capital, a

single variable, but nothing is gained by bringing that in at this stage. Optimal decisions may

clearly depend on other variables as well, see Section 3. The formal condition behind everything is
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that history and future (X0, . . . ,Xk−1) and (Xk+1, . . . XK) are for all k stochastically independent

given Xk = x and the decision πk = πk(x).

This is the set-up of Markovian decision processes and leads to the classical equation in Bell-

man [3]. Introduce the function

(2.1) Ck(x, π) = E{H(XK)|Xk = x, πk = π)

and suppose π for given x is selected as the decision vector π̂k = π̂k(x) that minimizes Ck(x, π).

This is done for all x and k, and buried inside the function Ck(x, π) is the condition that all

future decisions are optimal in this sense. There is a joint recursion that applies to Ck(x, π) and

their minima Ĉk(x). If pk+1(x
′|x, π) is the conditional density function for Xk+1 given Xk = x

and πk = π at time k, then

(2.2) Ck(x, π) =

∫ ∞

−∞

Ĉk+1(x
′)pk+1(x

′|x, π)dx′;

where

(2.3) Ĉk(x) = inf
π

Ck(x, π);

see Bellman [3]. The scheme works backwards, starting at expiry where ĈK(x) = H(x). Next

CK−1(x, π) is obtained by (2.2) and ĈK−1(x) by (2.3), and we go on until the initial X0 = x0 and

its optimal decision vector π̂0(x0) has been reached. The sequence of vectors π̂k(x) so computed

can then be used to control the process whatever happens after X0 = x0 in the beginning.

2.2. Numerical solutions. Let C†
k(x, π) and Ĉ†

k(x) be numerical approximations of the exact

functions Ck(x, π) and Ĉk(x) defined by the Bellman scheme (2.2) and (2.3). Suppose they are

run on a grid of N points, say xi
k for i = 1, . . . , N . How we choose it is important, but N does not

necessarily have to be huge; see Sections 4 and 5. Details of grid selection are presented among

the examples. With the grid taken care of the analogy of (2.2) and (2.3) becomes

(2.4) C†
k(x

i
k, ω) =

∫ ∞

−∞

Ĉ†
k+1

(x)pk+1(x|xi
k, π)dx, i = 1, . . . , N

and

(2.5) Ĉ†
k(x

i
k) = inf

π
C†

k(x
i
k, π), i = 1, . . . , N.

As before, the scheme runs backwards, starting at Ĉ†
K(x) = H(x).

Implementing such a scheme demands the integral (2.4) and the minimum (2.5) which take

numerical methods. There are for the minimization highly developed optimization procedures

that are globally convergent and guaranteed to locate a local minimum; see Fletcher [15]. They

will not work well with Monte Carlo inaccuracies in the functions Ĉ†
k(x

i
k, π), and care must be

exercised to avoid that. The integration step raises a number of points. Fastest by far is Gaussian

quadrature; see Press, Teukolsky, Vetterling and Flannery [27]. Those requires the integrand to

have derivatives of high order which may seem incompatible with expected shortfall or value-at-

risk, but the problem only occurs at the start of the recursion where Ĉ†
K(x) = H(x), and Ĉ†

k(x) is

typically smooth further down. Sometimes the density function pk+1(x|xi
k, π) is not available in
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closed form and can only be sampled. Integration must now be carried out by ordinary or quasi

Monte Carlo.

Whatever method employed there is the problem from the second round on that the integrand

is typically in demand where it has not been computed. Gaussian quadrature grids sometimes

take us around this obstacle so that Ĉ†
k(x) is being computed on exactly those abscissas xi

k needed

for the evaluation of the next integral. Such techniques have been successfuly used in stochastic

particle filtering, see Bølviken and Storvik [11] and references therein, and they did work when

tried on some of the examples of this paper. Yet the range of application seems too narrow, and

Monte Carlo evaluation of integrals wouldn’t be covered at all. Extrapolation of Ĉ†
k(x) beyond

the grid xi
k where it has been computed therefore seems inavoidable. Almost half a century has

passed since Bellman, Kalaba and Kotkin [4] suggested function approximation as a solution.

Their motivation was problems in physics, but the idea is all the more attractive in finance where

the underlying criterion often change slowly from one x to another. Lagrange interpolation and

two-dimensional splines are used with the examples below, but there are many other possibilities,

and with Monte Carlo integration regression smoothing as in Longstaff and Schwarz [24] may be

more attractive than strict interpolation. There is also a choice between local approximations as

in Section 4 and global ones as in the Longstaff-Schwarz article.

2.3. Numerical error. The question is how numerical error propagates as the recursion evolves.

A partial answer is provided by the following lemma:

Lemma Suppose function approximation is the only source of error. The approximate and exact

values of the objective functions then satisfy

(2.6) max
i

|Ĉ†
k(x

i
k) − Ĉk(x

i
k)| ≤ sup

x
|Ĉ†

k+1
(x) − Ĉk+1(x)|

for k = 0, . . . ,K − 1.

This is an error diminishing property. The maximum error at time k among the grid points

is smaller than its maximum at k +1, but of course inaccuracy goes further up when the function

Ĉ†
k(x) during the next iteration is extrapolated beyond the points xi

k where it has been computed.

It is possible to run a similar argument when integration error is included. Again there is in the

set-up an contraction of old error as the recursion proceeds, but when Monte Carlo and quasi

Monte Carlo are used as in Sections 5 and 6 numerical inaccuracy is larger. By contrast the

optimization step may not bring much more error if C†
k(x, π) are smooth functions of π.

Some control of the aggregate is obtained by introducing ǫ as the maximum error of all function

approximations involved. With integration and optimization error disregarded it follows from the

lemma that (K − k)ǫ is an upper bound on the error in Ĉ†
k(x). Numerical methods may gurantee

a very small ǫ. With Lagrange interpolation in the next section we may for the smooth and slowly

varying value functions in finance organize things so that ǫ is of order say 10−6 and smaller. The

algorithm may under such circumstances run for a long time without being much disturbed by

numerical error.



OPTIMAL PORTFOLIO 5

The lemma is proved by subtracting the exact C(xi
k, π) from its approximation C†

k(x
i
k, π). It

then follows by (2.2) and (2.4) that

C†
k(x

i
k, π) − Ck(x

i
k, π) =

∫ ∞

−∞

{Ĉ†
k+1

(x′) − Ĉk+1(x
′)}pk+1(x

′|xi
k, π)dx′.

Hence

|C†
k(x

i
k, π) − Ck(x

i
k, π)| ≤

∫ ∞

−∞

|Ĉ†
k+1

(x′) − Ĉk+1(x
′)|pk+1(x

′|xi
k, π)dx′

so that

(2.7) sup
xi

k
,π

|C†
k(x

i
k, π) − Ck(x

i
k, π)| ≤ sup

x
|Ĉ†

k+1
(x) − Ĉk+1(x)|

since the integral over the density function pk+1(x
′|xi

k, π) is one. Fix j, let δ > 0 and select πδ so

that Ck(x
j
k, πδ) ≤ infπ Ck(x

j
k, π) + δ. Then

inf
π

C†
k(x

j
k, π)−inf

π
Ck(x

j
k, π) ≤ C†

k(x
j
k, πδ)−Ck(x

j
k, πδ)+δ ≤ sup

xi

k
,π

|C†
k(x

i
k, π)−Ck(x

i
k, π)|+δ.

Since this holds for all δ > 0, we must have

inf
π

C†
k(x

j
k, π) − inf

π
Ck(x

j
k, π) ≤ sup

xi

k
,π

|C†
k(x

i
k, π) − Ck(x

i
k, π)|,

and this must be equally valid if C†
k(x

j
k, π) and Ck(x

j
k, π) change places so that

| inf
π

C†
k(x

j
k, π) − inf

π
Ck(x

j
k, π)| ≤ sup

xi

k
,π

|C†
k(x

i
k, π) − Ck(x

i
k, π)|.

The right hand side is the left hand side of (2.7) so that for all j

| inf
π

C†
k(x

j
k, π) − inf

π
Ck(x

j
k, π)| ≤ sup

x
|Ĉ†

k+1
(x) − Ĉk+1(x)|,

and the lemma follows.

2.4. Criteria. Optimal solutions depend heavily on what optimal means. In the examples below

the target is capital YK at some terminal date, but the specification of H(y) still remains. One

possibility is H(y) = −U(y) where U is one of the utility functions in economic literature. This

leads to the maximization of expected utility, but the thrust of the present paper is more towards

downside criteria such as

(2.8) H(YK) = I(YK < b) and H(YK) = (b − YK)+

where I(YK < b) = 1 and (b − YK)+ = b − YK if YK < b with both being zero otherwise. Their

expected terminal values E{H(YK)} are then probable and expected shortfall, P (YK < b) and

E(b − YK)+. Schemes that minimize them will be developed below.

It is also possible to introduce Lagrange set-ups and through those get hold of minimum risk

procedures with expectations E(YK) assigned a given level. For example, let

(2.9) H(YK) = −YK + λY 2
K
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where λ > 0 is a fixed coefficient. Suppose we have found decision functions π̂0, . . . , π̂K−1 that

minimize the expectation of (2.9). This means that

−Ê(YK) + λÊ(Y 2
K) ≤ −E(YK) + λE(Y 2

K)

where Ê operates under the optimal strategies π̂0, . . . , π̂K−1 and E under an arbitrary different one

π0, . . . , πK−1. But if expectations are equal so that Ê(YK) = E(YK), then Ê(Y 2
K) ≤ E(Y 2

K) which

implies that v̂ar(Y 2
K) ≤ var(Y 2

K) as well. All these optimum strategies are therefore minimum

variance ones, and the efficient K-period mean/variance frontier is computed by varying λ. This

can be done for all models and in all situations where numerical Bellman recursions work.

The same trick may be attempted when probable and expected shortfall replace variance as

risk measure. Now similar to (2.9)

(2.10) H(YK) = −YK + λI(YK < b) and H(YK) = −YK + λ(b − YK)+.

Suppose E{H(YK)} has been minimized for one of them, say the first one. Then the shortfall

probability P̂ (YK < b) for the optimum strategies is less than P (YK < b) for any other strategy

for which E(YK) = Ê(YK), and an efficient frontier is found when λ is varied. If a value-at-risk

calculation rather than a shortfall one is sought, we must adjust b so that P̂ (YK < b) = ǫ for

a given ǫ. The solution b̂ǫ of this equation is then a maximum value-at-risk value, and as λ

is varied, Ê(YK) and b̂ǫ define an efficient frontier. When the argument is applied to expected

instead of probable shortfall, we obtain an efficient conditional value-at-risk frontier of the same

type. Examples of such calculations are presented in Section 5.

2.5. Numerical illustration. A simple example where numerical approximations can be com-

pared to an exact solution is provided by the Merton problem where the investor chooses between

one risky asset following a geometric Brownian motion and another one earning fixed return, see

Merton [25]. It is convenient to write the value process St of the risky asset as

(2.11)
dSt

St
= ξRdt + σRdWt

where ξR and σR are the same parameters as in the discrete time analogue (4.1) and (5.1) below,

and Wt is the standardized Wiener process. With πt being the weight on the risky asset at time

t the portfolio value Yt grows according to dYt = (1− πt)r0dt + πtdSt where r0 is a risk-free spot

rate of interest.

The optimal choice of πt reduces to a strikingly simple form if the goal of the investor is to

maximize at some terminal time T the expected CRRA utility E{U(YT )} where U(y) = yc/c for

a risk aversion parameter c < 1. This is a popular choice in academic literature, perhaps because

it makes optimal solutions independent of wealth, see Brandt, Goyal, Santa-Clara and Stroud [9]

for an application in our context. It can be shown (Boyle, Imai and Tan [8]) that the optimal

value of πt is

(2.12) π̂t =
ξR − r0

σ2
R(1 − c)

which defines the fixed mix strategy where the weight depends neither on t nor on what happens

in the market.
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U(y) = −y−2/2 U(y) = −y−5/5 U(y) = −y−10/10

K 4 12 100 Merton 4 12 100 Merton 4 12 100 Merton

π̂0 .3330 .3332 .3333 .3333 .1662 .1665 .1666 .1667 .0906 .0908 .0909 .0909

Table 1. Optimal weight π̂0 for the discrete time Merton problem when the

number of rebalances K is varied.

This situation is a continuous time special case of the model in Section 5, and we have tested

whether one of our programs there (the quadrature version) is able to reconstruct this solution.

Investments were followed over one year with ξR = 0.08, σR = 0.20 and r0 = 0.04 with the

number of rebalances K varied from 4 (quarterly) to 100 (twice a week) as shown in Table 1

for three utility functions. The exact Merton weight (corresponding to infinite K) is reproduced

quite closely even when K = 4.

3. Markov modelling

How examples are entered the framework defined above is now illustrated when the target is

the capital YK accumulated at some termination date. Processes must be Markovian, and this

means additional variables in the state vectors Xk. The dimension should be kept low to make

algorithms work as effictively as possible. Detailed models are not needed at this stage.

3.1. Cash and equity. How investments should be divided between cash and equity is one of

the classics and will here serve as a core example to be extended in several directions. With a

single asset of equity the capital Yk of the investor evolves according to the recursion

(3.1) Yk+1 = {1 + (1 − πk)rk+1 + πkRk+1}Yk, k = 0, . . . K − 1

where πk is the weight on equity at time k, Rk+1 its return during the ensuing period and rk+1

the interest rate earned by the cash account. The problem is to choose the weights π0, . . . , πK−1

dynamically as the process unfolds. Standard assumptions are interest rates following a Markov

process (for example Cox-Ingersol-Ross or Vasic̆ek) and equity returns that are stochastically

independent. Random terms driving the two processes may well be correlated. Under these

circumstances all information about the future resides in Yk and rk and the state process is the

two-dimensional Xk = (Yk, rk) with optimum weights of the form π̂k = π̂k(y, r).

3.2. Many equity classes. Suppose there are several sub-classes of equity as in Brandt, Goyal,

Santa-Clara and Stroud [9]. With J such classes the recursion (3.1) becomes

(3.2) Yk+1 =



1 + (1 −
J∑

j=1

πjk)rk+1 +
J∑

j=1

πjkRjk+1



Yk,

with J equity returns R1k+1, . . . , RJk+1 and J weights π1k, . . . , πJk. This seemingly more compli-

cated problem might not be that much harder computationally. A joint model such as a dependent

log-normal is needed for the equity returns, but in the absence of transaction costs the state vec-

tor can still be Xk = (Yk, rk), and the optimum weights π̂jk = π̂jk(y, r) are cast in the same



8 BØLVIKEN AND HENRIKSEN

mould as before. What will be a bit more laborious is the optimization step (2.3) which is now

with respect to J weights instead of one, but modern optimization software is equal to the task.

Another problem is the density function pk+1(x
′|x, ω) of transitions from Xk to Xk+1 now being

unavailable in closed form since a sum of dependent log-normal variables is involved, but that

can be overcome by Monte Carlo.

3.3. Bonds added. Suppose a bond earning risk premium over bank accounts is added. Writ-

ing Rek and Rbk for the returns on equity and bond and πek and πbk for their weights the

recursion (3.1) now is extended to

(3.3) Yk+1 = {1 + (1 − πbk − πek)rk+1 + πbkRbk+1 + πekRek+1}Yk.

The state vector depends on the model for the bond. A simple version is the one in Korn and

Kraft [19] where the risk premium is fixed and the distribution of Rbk+1 determined by the interest

rate rk. This would leave the same state vector Xk = (Yk, rk) as before.

3.4. Transaction costs. Expenses due to rebalancing expand the state space. Consider again

the cash and equity example (3.1), and suppose selling or buying stock entails cost that must be

subtracted. Let wk be the weight on equity at time k before is has been changed to the value we

want. The recursion can then be written

Yk+1 = {1 + (1 − πk)rk+1 + πkRk+1}(1 − η|πk − wk|)Yk(3.4)

wk+1 = πkRk+1/(1 + (1 − πk)rk+1 + πkRk+1)(3.5)

where η > 0 defines rebalance cost. To make the the future Markovian we now need the three-

dimensional process Xk = (Yk, rk, wk). If there are J equity classes, we must keep track on the

weights of all of them, and the state vector becomes J + 2-dimensional.

4. Minimum expected shortfall

The first example is strategies minimizing expected shortfall when there is a choice between

one stock index and one money market investent. Their returns Rk and rk run over an equidistant

time sequence with increment h > 0 according to the recursions

log(1 + Rk) = ξRh + σR

√
h εRk,(4.1)

log

(
rk

ξr

)
= − σ2

rh

4 − 2ah
+ (1 − ah) log

(
rk−1

ξr

)
+ σr

√
h εrk(4.2)

for k = 0, 1, . . . . Here ξR, σR, ξr, σr and a are parameters and εrk and εRk independent N(0, 1)

variables. Our implementation allows pairwise correlated error terms εrk and εRk at the same

point in time, but the experiments below assume independence. Equity log-returns log(1 + Rk)

has mean ξR, and the model tends to a geometric Brownian motion as h → 0. Interest rates rk

evolve through a first order auto-regression on log-scale, sometimes called the Black-Karisinsky

model, see James and Webber [18]. The first term on the right makes ξr mean rate of interest.

There are no transaction costs. It then follows as in Section 3 that Xk = (Yk, rk) is a Markov

process, and optimal weights on equity are of the form πk = πk(y, r) where y is accumulated

capital and r the interest rate at time k. The scheme in Section 2.2 was implemented with an
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Figure 1. Optimal ten-year expected shortfall (left) and optimal ten-year

weights on equity (right) as a function of initial capital for different levels of

the initial interest.

equidistant grid in the state space and local four-point Lagrange interpolation for the function

approximation. Gaussian quadrature was used to evaluate integrals (the Legendre type with

twelve weights/abscissas) and Brent’s inverse parabola method to find the optima; consult Press,

Teukolsky, Vetterling and Flannery [27] for descriptions of these methods. Distributions were

truncated at the 2.5 · 10−7 percentile. Both Lagrange interpolation and Gaussian quadrature are

one-dimensional methods that had to be applied in the y and r directions successively. The first

integral required special care since the integrand has discontinuities in the first derivative, but

this problem disappears thereafter, as remarked earlier. The grid was construced as follows. If b

is the threshold of the expected shortfall, then the optimum Ĉk(y) = 0 and π̂k(y, r) = 0 if y > b

since the investor is certain to reach the goal by placing everything in the money market. We may

therefore limit y to the interval (0, b), and similarly r to a finite interval that ignores variation

below or above extreme percentiles (2.5 · 10−7 with the experiments).

Results shown are for a period of 10 years with annual portfolio rebalances. Equity weights

had to be between 0 and 0.8. Parameters were selected as h = 1, ξR = 5.1%, σR = 22.85%,

ξr = 4%, σr = 0.357 and a = 0.3. Annual volatilites of Rk and rk are then 18.5% and 2.1%

respectively, and interest rate may go up to 10 − 12% due to the heavy skewness of log-normal

distributions. Figure 1 shows the solutions for planning ten years ahead when there are nine

future possibilities for adjusting the portfolio. The threshold was b = 1, and n = 20 grid points

was used in each direction (which took around 10 seconds to compute). On the left the minimum

expected shortfall Ĉ0(y, r) is plotted as functions of y for the 20 different values of the interest

rates. The higher the interest rate the lower the curve. Note the smoothness that is so important

for the iterative scheme to work well. The optimum weights π̂0(y, r) on the right are downwards
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percentiles (%)

n 0.1 1 5 25 50 75 90 99

5 -.609 -.389 -.076 .472 .682 .779 .892 1.243

10 -.600 -.379 -.061 .499 .632 .715 .838 1.323

20 -.600 -.381 -.063 .503 .623 .708 .825 1.335

50 -.602 -.384 -.066 .504 .624 .710 .828 1.336

Table 2. Percentiles for ten-year returns when the number of grid points n per

variable is varied.

monotone functions of y; i.e the less capital accumulated the more risk a downside risk criterion

forces us to take on. There is again an ordering of the curves according to the interest rate. When

money market earnings are moderate, more is placed in the stock market and quite sensitively

so. The strange pattern in the extreme lower right corner is the combined effect of a discrete grid

and lack of uniqueness. When zero expected shortfall is reachable, the optimum is an interval of

weights.

The optimal solution was simulated to examine sensitivity of the size of the grid and to compare

the solution with the fixed mix strategy. It was then assumed that the investor wanted 5% return

of his investment per year or 62.9% over ten years which was used as the benchmark for the

expected shortfall. Interest rate was 2% in the beginning. Monte Carlo simulations were run for

ten years with annual rebalances, taking the weights from the optimal functions that had been

computed (which required interpolation from the table of values available). Table 4 compares

percentiles of ten-year returns for grids based on n = 5, 10, 20 and 50 points per variable. Results

are quite stable and not heavily influenced by n. One million simulations were used (recycled for

the four experiments), and random error is small. We might go down to 10 and perhaps even

lower which is an important consideration when addressing problems of higher dimension.

Figure 2 shows ten-year returns. Those from the optimum expected shortfall strategy are

plotted on the left against returns from equity only. The conservative line when the benchmark

is likely to be reached is evident as simulations are kept back by the benchmark line once it

has been exceeded. Comparisons with results from fixed mix strategy (Section 2.5) is presented

on the right. The procedures were calibrated so that the medians were approximately equal

which lead to much higher equity weights for fixed mix (w = 0.76 against the average 0.25 for

minimum shortfall). This accounts for the much flatter percentile curves for expected shortfall

corresponding to a much higher downside and much lower upside.

5. Comparisons

This section compares different criteria and integration methods. It will be demonstrated that

quasi-Monte Carlo (slower computationally, but more widely applicable) may replace quadrature.

There are as in the previous section two risky assets with models

log(1 + Rk) = ξRh + σR

√
h εRk,(5.1)

rk = aξrh + (1 − ah)rk−1 + σr
√

rk

√
h εrk.(5.2)
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for k = 1, 2, . . . , using the same mathematical notation as before. Interest rates rk now follow

the popular Cox-Ingersoll-Ross model, see James and Webber [18], but optimal investments are

still of the form πk = πk(y, r).

The experiments below are run with a second implementation of the algorithm in Section 2.2

with interpolation in the state space carried out by two-dimensional splines. There is a number

of variants here, see Duchon [13]. We have used univariate splines of the cubic type made two-

dimensional through tensor products. Grids were equidistant with the same mesh everywhere,

but dynamic in the number of points n used per variable. The spread of wealth (and to some

degree interest rate) is highest in the beginning of the recursion. A possible strategy is therefore

to reduce n gradually after specifying an initial maximum, and this line was followed in Sections

5 and 6 with n = 5 acting as a floor. Integrals were evaluated by Gaussian quadrature (the

Hermite version with 20 abscissas/weights) and quasi Monte Carlo (one of the Sobols with 10000

simulations). Gauss-Hermite quadrature works excellently with the smooth CRRA criterion, but

it could also be used with the downside risk provided some care was exercised with the first,

non-smooth integrand, as remarked earlier. Optimization was carried out by Brent’s method as

in Section 4.

Evaluations below are annual and based on 20 rebalances of the portfolio free of charge, about

two weeks and a half between each. Parameters were ξR = 0.08, σR = 0.20, ξr = 0.04 σr = 0.0364

and a = 0.0824 with h = 0.05. Initial values of capital and interest rate were Y0 = 1 and r0 = 0.04.

The optimal weight π̂0 on equity for the coming year (with 19 additional rebalances planned) is

shown in Table 3 under variation of technical features of the implementation. Its value is quite
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Figure 2. Left: Simulated ten-year returns for the the minimum shortfall strat-

egy against those for equity with the benchmark as the horizontal line. Right:

Percentiles curves for minimum shortfall and fixed mix.
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U(y) = −y−2/2 H(y) = −y + 1.35(1.025 − y)+
Maximum n Quadrature quasi Monte Carlo Quadrature Quasi Monte Carlo

y r π̂0 CPU π̂0 CPU π̂0 CPU π̂0 CPU

49 21 0.3333 435 0.3326 3118 0.1882 4541 0.1889 1015

49 12 0.3333 242 0.3326 1809 0.1890 2569 0.1897 567

32 12 0.3336 148 0.3329 1223 0.1991 1633 0.1998 340

49 6 0.3333 123 0.3326 1025 0.1891 1353 0.1898 287

32 6 0.3336 81 0.3329 697 0.1991 950 0.1998 185

19 6 0.3341 49 0.3333 426 0.2700 560 0.2710 106

9 6 0.3396 29 0.3389 249 0.3274 470 0.3284 54

6 6 0.3229 23 0.3222 201 0.4230 344 0.4245 40

Table 3. The initial optimal weight π̂0 and computer time (seconds) for different

number of points n in the y and r-space.

robust towards n, and the initial maxima (first two columns) may be lowered a good deal before

much change can be observed. Nor does the choice of integration method amount to much, though

quasi-Monte Carlo is distinctly slower computationally. The weights vary with the criterion as

they must.

How strongly optimal risk depends on the criterion chosen is illustrated in Figure 3 where

density functions of annual returns have been computed from 10000 simulated scenarios. Imple-

mentation was as in Section 4 with optimal weights for the twenty rebalances throughout the year

taken from those calculated (interpolation necessary). The CRRA utilities on the left of Figure

3 yields allmost Gaussian risk with spread depending on the risk aversion factor c. Losses are

punished harder as c is raised which leads to less use of the stock market and less uncertainty.

The Gaussian form is entirely understandable through the central limit theorem since the optimal

strategy is close to the fixed weight one. With downside criteria given by Equation (2.9) this is

different. Minimizing expected shortfall as on the right of Figure 3 lead to spike-like risk profiles

in a fairly narrow band with occasional large losses or gains. The ten-year returns in Figure 2

were similar. Shortfall at 0% or 4% means that losses are proclaimed for earnings less than 0%

and 4%.

The last round of experiments was an attempt to calculate multi-period efficient frontiers in

the Markowitz sense, but with value-at-risk instead of standard deviation. Value-at-risk is linked

to probable shortfall as explained in Section 2.4. The risk profile under the latter has the same

spiky behaviour as under expected shortfall and is shown in Figure 4 left. Efficient frontiers are

plotted on the right. They contain some Monte Carlo error (10000 simulations used), but they

do convey a general picture. Curves are quite steep which means that raising value-at-risk means

serious losses in expected value. Indeed, they become progressively larger as we move from 90%

value-at-risk to 99% since the curves become steeper and steeper.
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Figure 3. Density functions for annual returns under optimal strategies under

CRRA utility (left) and expected shortfall right (right).

−0.6 −0.2 0.0 0.2 0.4 0.6 0.8

0
2

4
6

8
10

Return

Shortfall:
left 4%

right 0%

Probable shortfall

−0.4 −0.3 −0.2 −0.1 0.0

0.
04

5
0.

05
5

0.
06

5
0.

07
5

Value−at−Risk

Expected

Efficient value−at−risk frontiers

99% 90%95%

Figure 4. Density functions for annual returns under optimal strategies for

probable shortfall (left) and mean/value-at-risk efficient frontiers for the same

criterion (right).

6. Heavy-tailed distributions

What is the impact of heavy-tailed distributions on optimal portfolio strategies and risk? The

problem is conveniently addressed through the Normal Inverse Gaussian (NIG) distributions for
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U(y) = −y−2/2 H(y) = −y + (0.975 − y)+
week year week year

GBM 0.294 0.251 0.170 0.962

NIG 0.303 0.254 0.075 0.579

Table 4. Optimal weights π̂0 under GBM and NIG models for weekly and annual

time horizons.

which the density function is

f(x) =
δα

π
exp

(
δ
√

α2 − β2 + β(x − µ)
) K1(α

√
δ2 + (x − µ)2)√

δ2 + (x − µ)2
, −∞ < x < ∞

where K1 is the first-order modified Bessel function of the second kind. Among the four parame-

ters, µ, δ, α and β, the second and third are positive and α > |β|. The model has been popular in

finance, and optimal investment under it has been studied in Benth, Karlsen and Reikvam[5, 6].

It becomes Gaussian if β = 0, δ = 1/
√

α and α → ∞ and is heavy-tailed when α is smaller.

There is also a convolution property which implies that NIG-distributed log-returns remain NIG

on all time scales with the same α and β and with µ and δ proportional to the time increment h;

for these results and also sampling consult Rydberg [30].

The NIG-distribution is in this section used for equity log-returns whereas the interest rate

model is the same as in Section 5. Its parameters were taken from the main index of the Oslo Stock

Exchange (OSEBX). Daily log-returns from March 2005 to March 2010 gave moment estimates

µ = 0.0032, δ = 0.0167, α = 42.7954 and β = −7.2915. This corresponds to skewness −0.6093

and kurtosis 7.7573. The large kurtosis bears evidence of heavier tails and a much better fit than

the log-normal would have produced (as has often been observed). Consequences for financial risk

will now be examined through optimal portfolios under both models. The parameters must then

be selected to make mean and volatility of equity returns under the log-normal equal to those

under NIG which requires ξR = 0.1270 and σR = 0.3205 in (5.1). Discrepancies between results

are then due to the unequal shapes of the two distributions only. Technical implementation was

as described in Section 5 except that numerical integration was carried out by ordinary Monte

Carlo (100000 simulations) to escape the intricacies of quasi Monte Carlo sampling with NIG;

but consult Benth, Groth and Kettler [7] to see how this could have been done.

The first round of experiments (in Table 4) illustrates how the optimum weight π̂0 in the

beginning may depend on equity model, criterion and time to expiry. The log-normal corresponds

to an ordinary geometric Brownian motion for equity and is referred to as GBM. Initial capital

and rate of interest were Y0 = 1 and r0 = 0.04, and there are four rebalances for the weekly

computation and 100 for the annual one. Note how little the distribution matters when we are

using the utility function on the left and how much more sensitive it becomes with the other

criterion on the right where losses are punished much harder.

Density functions of weekly returns following daily rebalancing are shown in Figure 5 when

the optimal strategy was expected shortfall with b = 0.975, λ = 1 and Y0 = 1 in the beginning.

Investment rules were adapted to both the log-normal and the NIG equity model. There were
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Figure 5. Weekly returns after daily rebalancing with a minimum shortfall strat-

egy. Left: Results under GBM and NIG models, right: GBM and NIG strategies

compared under the NIG model.

10000 Monte Carlo realisations of the portfolio with weights computed from the optimal ones

dependent on how the simulations evolve. How terminal wealth is distributed under the two

models are shown in Figure 5 left. The higher risk under the seemingly low-risk log-normal may

appear paradoxical, but it is caused by the minimum shortfall procedure now tolerating much

higher equity weights than under NIG. Another issue is performance when the model used to

plan investments isn’t the true one. That is illustrated in Figure 5 right where the optimal

weights calculated under the log-normal has been applied to NIG-distributed scenarios which is

the situation when the heavy-tailedness of daily equity returns is ignored. Risk now becomes much

larger since much more money is invested in equity than the shortfall criterion deems prudent

under NIG. The investor would be left with much less control than he or she imagines.

7. Conclusions and further work

Practical experimentation and a theoretical argument have shown the power of Bellman recur-

sions as a tool for the construction of optimal, multi-period financial strategies. Optimization,

numerical integration and function approximation are required. For optimization software to

work properly criteria functions must be kept smooth during the recursion. Only one-dimensional

minimization whas been tried, but extensions to portfolio weights πk that are vectors are straight-

forward. The dimension of the state space is much more critical. Not only does it blow up the

size of the numerical grid, but it also limits the numerical tools available. Some of the most

efficient ones like Lagrange or Chebyshev interpolation and Gaussian quadrature are inherently

one-dimensional, and the curse of the dimensionality limits the number of directions they can be
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applied. Quasi and even ordinary Monte Carlo (with common random numbers to impose as much

smoothness as possible) may take care of the integration step at higher cost computationally.

The biggest challenge when dealing with problems of higher dimension may be grid construction

and function approximation. Two-dimensional splines were used in Sections 5 and 6, and three-

dimensional ones are available as well, but perhaps efforts based on non-cartesian grids are more

promising. This may lead to computation on irregular patterns of points, but fast function

approximation is still possible through radial basis functions (Buhmann [10]) or even regression

(as in Longstaff and Schwartz [24]). It may also be that the criteria functions in finance that

tend to vary fairly slowly as strategies are varied, allow a good deal of sub-optimality before

the quality of the solution is degraded substantially. A lot remains before the potential of these

possibilities has been explored.
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