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Abstract

Copulae is a growing field of interest and application for dependency modelling. There is

however no predominant way of choosing the copula model that best fits a given data set. We

introduce a new goodness-of-fit test, based on the probability integral transform. The test is

consistent, numerically efficient and incorporates a weighting functionality. Results show that

the test performs well and that the weighting functionality is very powerful. Applied to stock

portfolios the test strongly rejects the Gaussian and the Clayton copulae, while the Student’s

t copula provides a good fit.
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1 Introduction

Copulae have proved to be a very useful tool in the analysis of dependency structures. The
concept of copulae was introduced by Sklar (1959), but was first used for financial applications by
Embrechts et al. (1999). Since then we have seen a tremendous increase of copula related research
and applications. One of the most attractive properties of copulae is the decoupling of the copula
and the margins, enabling us to capture the full dependency structure without considering the
margins. Another very attractive feature is the invariance to strictly increasing transformations.
For a thorough analysis of copulae, see Joe (1997) or Nelsen (1999).

The limitation of the copula approach is the lack of a predominant way of choosing the copula
model that best fits a given data set. Prior to the use of goodness-of-fit (GOF) tests, various
information criterions were employed, such as Aikaike’s Information Criterion (AIC). These are
suboptimal tests that do not provide us with any understanding of the size of the decision rule
employed, nor its power. Hence, GOF tests are preferred.

Lately, several copula GOF tests have been proposed in literature. Chen et al. (2004) propose a
test based on the probability integral transform (PIT) of Rosenblatt (1952). The PIT transforms
a set of dependent variables into a set of independent U(0, 1) variables, given the multivariate
distribution. Genest et al. (2005) propose a GOF test based on the Kendall’s process, while
Panchenko (Panchenko) propose a test based on positive definite bilinear forms.

Chen et al. (2004) propose two tests. The first suffers the curse of dimensionality, while the
second test, which is based on the test by Breymann et al. (2003), does not have this problem. It is
however not consistent. This means that the test is not strictly increasing for every deviance from
the null hypothesis, there may be deviations cancelling each other. Chen et al. (2004)’s test weight
the tails of the copulae, implicitly, through the squared inverse gaussian cumulative distribution
function (cdf).

We introduce a new test which is consistent and numerically efficient. The test decouples the
estimation of deviance from the null hypothesis and the weighting, such that any weight function
or no weight at all may be applied. This flexibility in the weighting function is appropriate for
instance in applications where one wishes to focus more on specific areas of the copulae, e.g. the
tails.

The paper is organized as follows. In Section 2 we present some basic copula theory. Section
3 presents our new test statistic. In Section 4 we present mixing results, visualizing the power of
our test in distinguishing the Gaussian copula from the Student’s t and the Clayton copulae. In
section 5 we analyze the dependency structure of stock portfolios, using our test statistic. Finally,
section 6 summarizes our results and concludes.

2 Copulae

Consider d continuous real-valued random variables X1, · · · ,Xd with cumulative marginal dis-
tribution functions F1, · · · , Fd. Their dependence structure is described by the joint cumulative
distribution function (henceforth referred to as cdf) F

F (x1, · · · , xd) = P (X1 ≤ x1, · · · ,Xd ≤ xd) .

The quantile functions F−1
i are defined as F−1

i (α) = inf{x|F (x) ≥ α}, α ∈ [0, 1], and are the
inverse transforms of the univariate cdfs.

Theorem 2.1. Assuming that F is a univariate cdf with quantile function F−1:

1. If U ∼ U(0, 1), then F−1(U) ∼ F ,

2. If F is continuous and X ∼ F , then F (X) ∼ U(0, 1).

Proof. See Ripley (1952).
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2.1 Definition

The copula is the dependence structure of the cdf, independent of the marginals. Thus, F is
split into two components, the dependence structure and the marginal distributions. The formal
definition of a copula function is (Embrechts et al., 1999):

Definition 2.1 (COPULA). A d-copula is the distribution of a random vector in R
d with uniform-

(0, 1) marginals or equivalently a d-copula is any function C : [0, 1]d → [0, 1] which has the following
three properties:

1. C(u1, . . . , ud) is increasing in each component ui,

2. C(1, . . . , 1, ui, 1, . . . , 1) = ui, ∀i ∈ [1, . . . , d], ui ∈ [0, 1],

3. ∀(a1, . . . , ad), (b1, . . . , bd) ∈ [0, 1] with ai ≤ bi we have

2∑

i1=1

. . .

2∑

id=1

(−1)i1+...+idC(u1i1 , . . . , udid
) ≥ 0 (2.1)

where uj1 = aj , uj2 = bj∀j ∈ [1, . . . , d].

Equation (2.1) is equivalent with P (a1 ≤ U1 ≤ b1, . . . , ad ≤ Ud ≤ bd).

The relation between the joint cdf and the copula is given by Sklar (1959):

Theorem 2.2. Let F be an d-dimensional distribution function with marginals F1, . . . , Fd. Then
there exists an d-copula C such that ∀x ∈ R

n

F (x) = C(F1(x1), . . . , Fd(xd)). (2.2)

If all Fi are continuous, then C is unique.

The copula function can be extracted from Equation (2.2):

Theorem 2.3. If F is a continuous d-variate distribution function with univariate margins
F1, . . . , Fd and quantile functions F−1

1 , . . . , F−1
d , then

C(u) = F (F−1
1 (u1), . . . , F

−1
d (ud)) (2.3)

is the unique choice of C in Equation (2.2).

Proof. The proof is based on Theorem 2.1: If Xi ∼ Fi and Ui ∼ U(0, 1), then Xi ∼ F−1
i (Ui) and

Fi(X) ∼ Ui. By expressing Xi as a function of Ui in Equation (2.2), Equation (2.3) is obtained.

The copula is a multivariate distribution with all univariate margins being U(0, 1). Hence if
C is a copula, then it is the cdf of a multivariate uniform random vector. The copula can, as all
cdfs, be represented by its density function τ(u):

C(u) =

∫ u1

0

· · ·

∫ ud

0

τ(u)du. (2.4)

This density function can also be written as

τ(u) =
f(F−1

1 (u1), . . . , F
−1
d (ud))

f1(F
−1
1 (u1)) . . . fd(F

−1
d (ud))

, (2.5)

where f is the density of the joint distribution function and f1, . . . , fd are the marginal densities.
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2.2 Transformation Invariance

A very attractive feature of copulae, is the invariance under increasing and continuous transfor-
mations of the marginals.

Theorem 2.4. If x1, . . . , xd have copula C and T1, . . . , Td are increasing continuous functions,
then T1(x1), . . . , Td(xd) also have copula C.

Proof. See Embrechts et al. (1999).

Intuitively, this is due to the independence of the marginal distributions: The copula is only
related to the dependence structure between the variables. Since e.g. the probability of survival,
ps, for a certain time (using the Merton (1974) default model) is a strictly increasing transformation
of the stock prices, their associated copula equals the copula of the stock prices. Thus, the survival
probability copula can be found, and the parameters estimated using commonly available stock
data. Obviously, the corresponding default probability, pd, is a strictly decreasing transformation
of the survival probability, pd = 1 − ps, and the survival copula of the stock prices can be used
for the modelling of these default probabilities, given the marginal distributions (Mashal et al.,
2003).

3 Goodness-of-fit tests

One fundamental problem with copulae is to determine which copula that provides the best fit to
an observed data set. Prior to the use of GOF tests, various information criterions were employed,
such as Aikaike’s Information Criterion (AIC). These are suboptimal tests that do not provide us
with any understanding of the size of the decision rule employed nor its power, i.e. they will not
give us any way of concluding whether or not one copula fits the data significantly better than
another. Hence, GOF tests are preferred.

For univariate distributions, the GOF assessment can be performed by e.g. the well-known
Anderson-Darling (Anderson and Darling, 1954) test, or less quantitatively using a QQ-plot. In
the multivariate domain there are fewer alternatives. In addition, economic theory sheds little
light on the dependence structure between financial assets, and multivariate normality is often
assumed a priori. Evidence shows, however, that more appropriate dependence structures are
available (Chen et al., 2004; Dobrić and Schmid, 2005).

GOF tests for copulae is basically a special case of the more general problem of testing mul-
tivariate density models, but is complicated due to the unspecified marginal distributions. Em-
pirical margins are used since we are interested in the fit of the copula itself, not the copula and
the margins together. In short, the use of empirical margins introduces infinitely many nuisance
parameters. This complicates the deduction of the asymptotic distribution properties for the tests.
Thus p-values are found by simulation.

Several GOF tests have been proposed, but there are no general guidelines for optimal para-
metric copula selection. Genest and Rivest (1993) have developed an empirical method to identify
the best copula in the Archimedean case. Diebold et al. (1998), Diebold et al. (1999), Hong (2000),
Berkowitz (2001), Thompson (2002) and Chen et al. (2004) focus on the probability integral trans-
form of the data in the evaluation of density models. Genest et al. (2005) utilize the Kendall’s
process, while Panchenko (Panchenko) focus on positive definite bilinear forms.

Most tests project the multivariate problem to a univariate problem, then apply a univariate
test. This leads to numerically efficient algorithms for problems of high dimension. Any univariate
test may be used, e.g. Kolmogorov-Smirnov (KS), Anderson-Darling (AD), Cramér-von Mises
(CvM) and kernel smoothing (KDE) based L2 tests. We will, in this paper, focus on the AD test,
which is an unbiased cdf test.
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3.1 The Probability Integral Transform

The PIT transforms a set of dependent variables into a new set of independent U(0, 1) variables,
given the multivariate distribution. The PIT is a universally applicable way of creating a set of
iid U(0, 1) variables from any data set with known distribution. Given a test for multivariate,
independent uniformity, this transformation can be used to test whether any assumed model fits
or not. The concept was first introduced by Rosenblatt (1952) and can be interpreted as the
inverse of simulation.

Definition 3.1 (PROBABILITY INTEGRAL TRANSFORM). Let X = (X1, . . . ,Xd) denote
a random vector with marginal distributions Fi(xi) = P (Xi ≤ xi) and conditional distributions
F (Xi ≤ xi|X1 = x1, . . . ,Xi−1 = xi−1) for i = [1, . . . , d]. The PIT of X is defined as T (X) =
(T1(X1), . . . , Td(Xd)) where Ti(Xi) is defined as follows:

T1(X1) = P (X1 ≤ x1) = FX1(x1),

T2(X2) = P (X2 ≤ x2|X1 = x1) = FX2|X1
(x2|x1),

...

Td(Xd) = P (Xd ≤ xd|X1 = x1, . . . ,Xd−1 = xd−1) = FXd|X1...Xd−1
(xd|x1, . . . , xd−1).

The random variables Zi = Ti(Xi), for i = 1, . . . , d are uniformly and independently distributed
on [0, 1]d.

For more details on the PIT see e.g. Rosenblatt (1952) or Breymann et al. (2003).
A recent application of the PIT has been multivariate GOF tests. Hong and Li (2002) report

Monte Carlo evidence of tests using the PIT variables outperforming tests using the original
random variables. Chen et al. (2004) believe that a similar conclusion also applies to GOF tests
for copulae. Hence, a PIT-based approach seems to be preferred.

3.2 New Test

The new test B, proposed in this paper, was developed with three purposes in mind. We want it
to be consistent, numerically efficient and unbiased. The test is somewhat similar to the test G by
Breymann et al. (2003) and Chen et al. (2004). However, their test is inconsistent, meaning that
some deviations from the null hypothesis may be neglected. Our new test solves this problem by
transforming the data before projecting the multivariate problem to a univariate problem.

Let Z be the uniformly and independently distributed variables on [0, 1]d, obtained from ap-
plying the PIT to a multivariate data set X. Define a new vector Z∗ as

Z∗
i = P (ri ≤ Z̃i|r1, . . . , ri−1) =


1 −

(
1 − Z̃i

1 − ri−1

)d−(i−1)

 · I(Z̃i ≥ ri−1), (3.1)

for i = 1, . . . , d, where Z̃ = (Z̃1, . . . , Z̃d) is the sorted counterpart of Z, ri is rank variable i1 from
Z and I(x) is the indicator function (I(x) = 0 for x < 0, I(x) = 1 for x ≥ 0). Let

Y =
d∑

i=1

γ(Zi;α) · Φ−1(Z∗
i )2, (3.2)

where γ is a weight function used for weighting Φ−1(Z∗
i )2 depending on its corresponding value

Zi, and α is the set of weight parameters. Further let FY (·) be the cdf of Y , i.e. the cdf of a linear
combination of squared normal variables. The new test B is then defined as the cdf of FY (Y ):

B(w) = P [FY (Y ) ≤ w] , w ∈ [0, 1]. (3.3)

1Rank variables are the observed variables, ordered ascendingly.
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Under the null hypothesis B(w) = w. The density function of B(w) is b(w) = 1.

Given n observations of the d-dimensional vector Z, the empirical version of B(w), B̂(w),
equals:

B̂(w) =
1

n + 1

n∑

j=1

I (FY (Y ) ≤ w) , w =
1

n + 1
, . . . ,

n

n + 1
. (3.4)

The rationale behind equation (3.1) can be explained as follows. The test G by Breymann
et al. (2003) and Chen et al. (2004) projects the multivariate problem to a univariate problem by

computing Y =
∑d

i=1 Φ−1(Zi)
2. This test is inconsistent, as the authors themselves point out.

To avoid this problem we transform the data Z to Z∗. We wish to find P (ri < Z̃i|r1, . . . , ri−1) =

1−P (ri ≥ Z̃i|r1, . . . , ri−1). The only way ri can be greater than or equal to Z̃i is if all remaining

d − (i − 1) variables are greater than or equal to Z̃i. Since the remaining d − (i − 1) variables

are independent the probability of all being greater than or equal to Z̃i is the product of each rk

being greater than or equal to Z̃i:

P (Z̃i ≤ rk < 1|rk > ri−1) =
P (rk ≥ Z̃i ∩ rk > ri−1)

P (rk > ri−1)
=

P (rk ≥ Z̃i)

P (rk > ri−1)
=

1 − Z̃i

1 − ri−1
, k ∈ [i, d].

The indicator function in equation (3.1) is included since Z̃i must be greater than or equal to ri−1.

The problem of obtaining the distribution of a linear combination of squared normal variables
has been addressed by many authors. Hence, several representations for the cdf and density can
be found in the literature, including i.a. power series expansions (Shah and Khatri, 1961), χ2

series (Ruben, 1962) and Laguerre series (Shah, 1963; Kotz et al., 1967a,b). For computational
purposes we use simulation to obtain FY .

The use of the squared inverse gaussian cdf, Φ−1(Z∗)2, in equation (3.2), weights large de-
viances from the null hypothesis more than small deviances. We may also wish to weight certain
regions of the original copula, e.g. the tails like Breymann et al. (2003) and Chen et al. (2004)
implicitly do. The weighting function γ is introduced for this purpose.

3.2.1 Weighting Functionality

The weighting functionality, incorporated in the test through γ, adds extra flexibility compared
to the G test of Breymann et al. (2003) and Chen et al. (2004). This test weights the tails of the
copula implicitly through the use of Φ−1(Zi)

2. Our test opens for a much more general weighting
procedure. The weight function can be of any form, for example:

• Power tail weighting: γ(Zi;α) = (Zi −
1
2 )α, α ∈ (2, 4, . . .).

• Left/Right power tail weighting:

1. Left power tail: γ(Zi;α) = 1 − Z
1/α
i ,

2. Right power tail: γ(Zi;α) = 1 − (1 − Zi)
1/α.

• Inverse Student’s t tail weighting: t−1
ν (Zi)

2.

We may also choose to not weight any specific region at all. Figure 3.1 shows the effect of power-
and Student’s t tail weighting as well as left- and right power tail weighting. We see that as we
increase α (or decrease ν) the weight is increasingly pushed into the tails. Tail weighting means
that we weight the tails of the copula, i.e. in the bivariate case the upper right corner and the
bottom left corner of the copula. For some applications these regions may be of special interest
to us. For simplicity we only consider power tail weighting in this paper.
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Figure 3.1: The effect of tail weighting.

3.2.2 Testing Procedure

Suppose we have n independent observations from a d-dimensional copula X. The testing proce-
dure would then be as follows: First, PIT X under a H0 copula. The resulting copula, Z, should
be the independent copula if H0 is true. Then, for each j = 1, . . . , n do:

• From Zj = (zj1, . . . , zjd), compute the weights γ(zji;α), i = 1, . . . , d, for a given weight
function γ and weight parameters α.

• Compute Z∗
j according to equation (3.1). These variables are iid U(0, 1)d under H0.

• Compute the univariate variable Yj according to equation (3.2).

To find FY we repeatedly (10000 times) simulate an independent U(0, 1)d vector Z on which we
perform the three steps above. Given FY we can compute B̂(w) according to equation (3.4). The
variables B̂(w) are now, under H0, iid U(0, 1)n. The next step is to perform a univariate GOF
test on B̂: T (B̂), where T is any univariate GOF test. We use the Anderson-Darling test:

T AD = n

∫
(
F̂ (γ) − γ

)2

γ(1 − γ)
dF (γ). (3.5)

The resulting test value for our observed copula is T AD(B̂). Since the cdf’s are discrete, the
integral in equation (3.5) becomes a sum. The discrete AD test statistic can be shown to be
(Marsaglia and Marsaglia, 2004):

T AD = −n −
1

n

n∑

j=1

(2j − 1)

[
ln

(
F̂

(
j

n + 1

))
+ ln

(
1 − F̂

(
n + 1 − j

n + 1

))]
,

and straightforward insertion of densities into this equation gives:

T AD(B̂) = −n −
1

n

n∑

j=1

(2j − 1)

[
ln

(
B̂(

j

n + 1
)

)
+ ln

(
1 − B̂(

n + 1 − j

n + 1
)

)]
. (3.6)
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To obtain p-values we simulate a copula of dimension n × d under H0. We perform the entire
testing procedure, with the same weight parameters as we used for our observed copula. This
gives us a value for T AD

H0
(B̂) when we know H0 is true. We repeat this 10000 times and obtain

a distribution for T AD
H0

. This distribution can be used to find the p-value of the H0 copula for
our observed copula. For a discussion of the number of simulations required to obtain the desired
confidence, see Appendix A.

4 Results

In this section we assess the power of our new test statistic. By performing mixing tests we
get an impression of the tests ability to detect tail heaviness and skewness properties. The tests
ability to distinguish the Gaussian from the Student’s t copula indicates the power at detecting
tail heaviness, while the ability to distinguish the Gaussian from the Clayton copula indicates the
power at detecting skewness. Similar mixing tests are performed in Chen et al. (2004).

The mixing tests are performed by mixing a Gaussian copula with a Student’s t or a Clayton
copula to construct a mixed copula Cmix:

Cmix = (1 − p) · Cg + p · Ca, p ∈ [0, 1],

where Cg denotes the Gaussian copula and Ca denotes the alternative copula. In this paper the
alternative copulae considered are the Student’s t copula, Ct, and the Clayton copula, Cc. For
p = 0, Cmix is a Gaussian copula while for p = 1, Cmix is a Student’s t copula or a Clayton
copula. For 0 < p < 1 we sample from the Gaussian copula with probability (1− p) and from the
alternative copula with probability p. In a financial setting, for a portfolio of d stocks, this can be
interpreted as follows. Some days the dependency structure follow a Gaussian copula and other
days a Student’s t copula.

Our null hypothesis is that the mixed copula is a Gaussian copula. We PIT Cmix under this
null hypothesis and compute T AD(B̂) and the corresponding p-value, given some weighting type
and parameter. This is repeated 1000 times in order to obtain rejection rates and corresponding
power curves.

For both the Gaussian-Student’s t and the Gaussian-Clayton mixing we examined the general
case of no weighting and the case of power tail weighting with α ∈ (2, 4, 10, 20).

Figure 1(a) shows the effect the number of observations has on the power of the test for
Gaussian-Student’s t mixing. We see that the power increases dramatically as the number of
observations increase from 500 to 2500, which is to be expected. The effect of the dimension
on Gaussian-Student’s t mixing is shown in Figure 1(b). The dimension seems to have an even
greater effect on the power of the test than the number of observations, at least when we move
from bivariate copulae to higher dimensions. This is also as expected, since we used the same
degrees-of-freedom for the Student’s t copula for all dimensions, and the distance between the
Gaussian and the Student’s t copula increases with the dimension(see Appendix B for a discussion
of distance between distributions). In Figure 1(c) we have used power tail weighting for the
Gaussian-Student’s t mixing and we see that it is very powerful. Figure 4.2 compares our new test
B with the G test and we see that by applying heavy power tail weighting our test performs almost
as good as the G test for tail heaviness. It seems like the B test performs very well at determining
skewness for the chosen d and n, and that the performance increases as we add some tail weight.
However, as we increase the tail weight too much the performance decreases dramatically. This
may be why the G test breaks down here, because this test implicitly adds heavy tail weight. We
see similar results for other combinations of d and n.

5 Application

The dependency structure can have big impacts in several applications, e.g. capital allocation or
the pricing of credit derivatives, such as basket default swaps.
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Figure 4.1: Power curves for the B test, for varying parameters. On the x-axis we see the mixing
parameter while on the y-axis we see the portion of times the Gaussian copula is rejected.
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(b) G test versus B test for d = 5 and n = 500. No
weight and various power tail weights for the B test.
Gaussian-Clayton mixing, ρ = 0.5, δ = 0.5, 5%
significance level.

Figure 4.2: Power comparison for the G and B tests. On the x-axis we see the mixing parameter
while on the y-axis we see the portion of times the Gaussian copula is rejected.
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Table 5.1: Rejection rates of the Gaussian, Student’s t and Clayton copulae, applied to the raw
returns. 5% significance level.

Gaussian copula
No Weight / Power tail weight (parameter α)

Dimension No weight α = 2 α = 4 α = 10 α = 20
2 0.076 0.132 0.176 0.466 0.512
5 0.700 0.930 0.930 0.920 0.910
10 0.740 1.000 1.000 1.000 1.000

Student’s t copula
No Weight / Power tail weight (parameter α)

Dimension No weight α = 2 α = 4 α = 10 α = 20
2 0.042 0.022 0.032 0.044 0.034
5 0.120 0.090 0.060 0.050 0.070
10 0.260 0.040 0.150 0.130 0.190

Clayton copula
No Weight / Power tail weight (parameter α)

Dimension No weight α = 2 α = 4 α = 10 α = 20
2 0.622 0.354 0.792 0.434 0.396
5 0.980 0.990 0.980 0.970 0.950
10 1.000 1.000 1.000 1.000 1.000

We analyze the dependency structure of stock portfolios by looking at their daily log returns.
The total portfolio consists of 1000 observations of 50 large cap stocks from the New York Stock
Exchange, spanning the period September 26th, 2001 to September 16th, 2005.

Asset collections of dimension 2, 5 and 10 were randomly selected 100 times from the full data
set. As in Chen et al. (2004) and Panchenko (Panchenko) we examine the raw returns and the
GARCH(1, 1) filtered returns, i.e. each individual assets return is filtered through a standard
GARCH(1, 1) process. This filtering is done to remove serial dependence in each individual time
series. For details of GARCH processes, see e.g. Bollerslev (1986). Next, we fit a Gaussian,
Student’s t and Clayton copula to the portfolios and apply our B test to investigate which copula
that provides the best fit. When fitting copulae to the data the parameters of the copulae are
estimated by numerically optimizing the likelihood. For the Student’s t copula a semi-parametric
approach is followed. This method is denoted the pseudo-likelihood (Demarta and McNeil, 2005)
or the canonical maximum likelihood (CML) method (Romano, Romano), and is described in
Genest et al. (1995).

Tables 5.1 and 5.2 show the rejection rates for the raw and GARCH(1, 1) filtered returns,
respectively. The Clayton copula seems to provide the worst fit, as expected for stock data. In
addition we have only considered Clayton copula with one parameter, hence the poor performance
for higher dimensions is not surprising. The Gaussian copula is not that easily rejected for the
bivariate case, even though we see an increasing rejection rate for the raw returns as we increase
the tail weight. For higher dimensions we see that the Gaussian copula is strongly rejected, for
both raw and GARCH filtered returns. The Student’s t copula seems to provide a very good fit
for all dimensions and for both raw and GARCH filtered returns. It is not surprising that the
Student’s t copula outperforms the Gaussian copula since it has one extra parameter. However,
the low rejection rates for the Student’s t copula are interesting.

6 Conclusion

We have introduced a new copula goodness-of-fit test B, which merges the efficiency of one-
dimensional tests with the consistency of multi-dimensional tests. The test is consistent and can
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Table 5.2: Rejection rates for the Gaussian, Student’s t and Clayton copulae, applied to the
GARCH(1, 1) filtered returns. 5% significance level.

Gaussian copula
No Weight / Power tail weight (parameter α)

Dimension No weight α = 2 α = 4 α = 10 α = 20
2 0.216 0.176 0.062 0.058 0.156
5 0.170 0.470 0.570 0.470 0.500
10 0.620 0.530 0.840 0.620 0.770

Student’s t copula
No Weight / Power tail weight (parameter α)

Dimension No weight α = 2 α = 4 α = 10 α = 20
2 0.048 0.114 0.008 0.012 0.006
5 0.100 0.010 0.000 0.010 0.010
10 0.220 0.000 0.010 0.070 0.030

Clayton copula
No Weight / Power tail weight (parameter α)

Dimension No weight α = 2 α = 4 α = 10 α = 20
2 0.436 0.282 0.100 0.248 0.076
5 0.680 0.770 0.970 0.870 0.920
10 0.980 1.000 1.000 0.970 0.990

be considered a modification of the tests by Breymann et al. (2003) and Chen et al. (2004). The
novelty of the test is the transformation Z∗, making the projection from a multivariate problem
to a univariate problem consistent, and the weighting functionality. The test enables the user to
weight any region of the copula in any way desirable. We believe that this weighting functionality
adds a very attractive flexibility to the user.

Mixing results show that the test has good power and that the weighting functionality is very
powerful. They also show that by applying heavy power tail weighting we can achieve almost
the same power as Breymann et al. (2003) and Chen et al. (2004) at distinguishing the Gaussian
copula from the Student’s t copula. For distinguishing the Gaussian copula from the Clayton
copula, the test by Breymann et al. (2003) and Chen et al. (2004) breaks down for lower values
of n whereas our new test performs well.

Application to stock portfolios show that the Student’s t copula provide a fairly good fit to the
data while the Gaussian copula is strongly rejected for higher dimensions. This is in accordance
with the findings of i.a. Dobrić and Schmid (2005) and Chen et al. (2004).

Further work involve comparison of our new test with the tests of Genest et al. (2005) and
Panchenko (Panchenko), which both seem to be promising tests with sound theoretical foundation.
We also believe that the transformation Z∗ may be utilized to improve the latter. Further tests
of various weight functions will also be of interest as will studies of the impact on the p-values of
the order in which we PIT the data.
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A Iterations required

Given α, the level of significance for the test, it is imperative to have an acceptable resolution for
the empirical distribution in the vicinity of this critical limit.

For a number of simulations N , the resolution will improve for values of α closer to 50% since
there then is a higher probability for an even distribution of simulations above and below the
critical limit. We suggest a method for determining the amount of iterations required that is
based on confidence intervals.

The actual probability of rejection of H0 when it is true (Type I error) is α, the probability of
accepting it is 1− α. For N simulations, this becomes a regular binomial distribution, Bin(N,α),
with expected value µ = Nα and variance σ2 = Nα(1−α). In addition, as N becomes large, this
distribution is well approximated by a univariate Gaussian distribution. Define a as the number
of simulations that are rejected, even though H0 is true. Then,

a ∼ N (Nα,Nα(1 − α)),

given that N is large. The choice of N is then determined by the allowed deviation that we allow a
to have from α. Given the significance level γ and fractional deviation β, the following confidence
intervals can be constructed:

P (|a − Nα| ≤ Nα · β) ≤ 1 − γ, α ≤ 0.5,

P (|a − Nα| ≤ N(1 − α) · β) ≤ 1 − γ, α > 0.5.

The reason why the problem is twofold, is that when α is larger than 0.5, the allowed fractional
deviation determined by β is smaller for (1 − α) than α and the former becomes the dominating
limit. This implies that N(α) is symmetric around 0.5, N(α) = N(1 − α). Hence, the α ≤ 0.5
case is considered and applied similarly to α > 0.5. The probability that the empirical significance
level a/N deviates with more than a fraction β from the actual level α is required to be less than
1 − γ. This can be rewritten as

P (Nα · (1 − β) ≤ a ≤ Nα · (1 + β)) ≤ 1 − γ, α ≤ 0.5.

Since a is normally distributed and due to distribution symmetry,

P

(
Z ≤

Nα(1 + β) − Nα√
Nα(1 − α)

)
≤ 1 −

γ

2
, α ≤ 0.5.

The corresponding Z-value z1−γ/2 can then be expressed as

z1−γ/2 = β

√
Nα

1 − α
, α ≤ 0.5.

By rewriting this expression with respect to N :

Proposition A.1. To find the distribution of the test statistic T of a GOF test using Monte Carlo
simulation, given the significance level α, the recommended number of simulations N ′ of T is

N ′(α) =

(
z1−γ/2

β

)2
1 − α

α
, α ≤ 0.5, (A.1)

N ′(α) =N ′(1 − α), α > 0.5. (A.2)

Remark A.1. Notice that only one parameter besides α is required for determination of N ′, namely
the fraction

z1−γ/2

β . There is thus one redundant parameter, one of the two parameters β and γ

can be locked at a constant value (e.g. β = 5%) without losing model flexibility.

Remark A.2. Note that the number of times the copula must be simulated is n ·N since each test
statistic measure is based upon n simulations.

Setting β = 10%, table A.1 displays the number of iterations recommended for varying α and
γ.

It is evident that α is the main driver for computational complexity. The number of calculations
increase exponentially as α reduces, and explodes as α → 0+.
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Table A.1: Recommended number of simulations for β = 10%.
β = 10% α = 10% α = 5% α = 1% α = 0.1%
γ = 10% 2435 5141 26785 270284
γ = 5% 3457 7299 38030 383762
γ = 1% 5971 12606 65685 662826

γ = 0.01% 9745 20572 107193 1081674

B The Kullbach-Leibler Information Criterion

When applying a GOF test for determining the best copula, the test’s usefulness is determined
by its ability to show how one alternative is clearly better than the other. It is likely that a test
statistic comparing the bivariate Gaussian copula with a bivariate t-copula with 50 degrees of
freedom would return approximately the same result for both copulae. This is due to the fact
that they are very similar and that the student t-copula converges towards the Gaussian copula
as ν → ∞. The difference can be illustrated by a measure of the relative distance, or information
entropy, between two sets of probability densities. From Cooke and Bedford (2002):

Definition B.1 (RELATIVE INFORMATION). Let ν and µ be probability measures on a prob-
ability space such that ν is absolutely continuous with respect to µ (ν ≪ µ) with Radon-Nikodym
derivative dν

dµ , then the relative information or Kullbach Leibler divergence I(ν|µ) of ν with respect
to µ is

I(ν|µ) =

∫
ln

(
dν

dµ
(x)

)
dν(x). (B.1)

The Radon-Nikodym-derivative is a probability density, specifically the density that transforms
the probability measure ν to µ, given that ν ≪ µ. The relative information equals 0 if and only
if ν = µ. For independent probability measures, ν is not absolutely continuous with respect to µ,
and we define I(ν|µ) = ∞. The measure can be interpreted as measuring the degree of uniformness
of ν with respect to µ and it is always non-negative.

In Nielsen and Chuang (2003), the relative information measure is used to calculate the Shan-
non entropy of a probability distribution: I(ν|µ) where µ is uniform. Shannon’s noiseless coding
theorem says that the minimal physical requirements needed to store an information source (a
probability density) equals the Shannon entropy. This can be used to calculate the optimal com-
pression rate of information, see Nielsen and Chuang (2003) Chapter 12 for proof.

From the measure of relative information, a distance measure between two copulae can derived:

Definition B.2 (KLIC DISTANCE). The Kullbach-Leibler Information Criterion (KLIC) be-
tween two copulae Ca(u) and Cb(u) with densities τa(u) and τb(u) is defined as:

KLIC(Ca : Cb) =

∫
ln

(
τa(u)

τb(u)

)
τa(u)du. (B.2)

This measure is always greater than or equal to zero. Also, KLIC(Ca : Cb) = KLIC(Cb : Ca).

We show by simulation that the KLIC distance between the Gaussian and Student-t copula
increases with dimension d, see Table B.1. Even though the distance between a ν = 50 Student-t
copula and a Gaussian copula is negligible for d = 2, for d = 30 it is twice as large as the bivariate
distance at ν = 4. Thus, the approximation that a Student-t copula with ν > 30 is very similar to
a Gaussian copula is valid only for few dimensions. The GOF tests will therefore produce sharper
contrasts when the number of assets are increased.
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Table B.1: KLIC distance between Gaussian and Student-t copulae
Degrees of freedom ν

Dimension 4 6 10 20 30 50
2 0.022 0.011 0.005 0.001 0.001 0.000
3 0.059 0.027 0.013 0.004 0.001 0.001
5 0.168 0.089 0.036 0.008 0.004 0.002
10 0.481 0.262 0.112 0.036 0.020 0.005
20 1.123 0.611 0.293 0.100 0.061 0.023
30 1.795 0.955 0.468 0.184 0.100 0.047
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