-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by NORA - Norwegian Open Research Archives

Curves of genus 2 on rational normal scrolls
and scrollar syzygies

Andrea Hofmann

December 2010


https://core.ac.uk/display/30840248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© Andrea Hofmann, 2011

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 1065

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Inger Sandved Anfinsen.
Printed in Norway: AIT Oslo AS.

Produced in co-operation with Unipub.

The thesis is produced by Unipub merely in connection with the

thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.



Acknowledgements

First of all, I would like to thank my advisor Kristian Ranestad for interesting discus-
sions and encouragement throughout the process of writing this thesis.

During this process there have been a number of people more who I am grateful to:

I would like to thank Ragni Piene for good advice, Arne B. Sletsjge for always having
been enthusiastic about discussing all kind of mathematical questions, Lars Halle for
giving good advice on some parts of the thesis and Hans-Christian v. Bothmer and
Frank-Olaf Schreyer for fruitful discussions during their stays at the University of Oslo.
I would also like to thank the rest of the algebra group at the University of Oslo, in
particular fellow Ph.D. students and master students for some really nice discussions
and fellowship in our student seminar and Abdul Moeed Mohammad for discussions
both about mathematics and non-mathematical subjects.

Furthermore, I would like to take the opportunity to thank Nadia S. Larsen for nice
fellow lunches and Ragnar E. Pettersen for his humour and encouraging conversations.
Finally, special thanks go to my friends for their warm support.

Oslo, December 2010
Andrea Hofmann






Contents

1 Introduction

2 Scrolls containing '
2.1 Preliminaries . . . . . ... ... L
2.2 Rolling factor coordinates . . . . . . ... ..o
2.3 g3(C)-scrolls and g3(C)-scrolls . . . . . . ... ... L
2.4 Possible scroll types . . . . . ... oo

3 The ideal of C
3.1 d>7odd, e=0,i.e. S of scroll type (%7 ‘%3 .............
3.2 d>6even, e=1,1ie S of scroll type (%2, 52)

33 d>T7odd, e=2 ie Sofscroll type (%1, 952) . ... ...
3.4 d>6even, e=3, ie S of scroll type (
3.5 An alternative presentation when 7 < d

4 The minimal free resolution of Oq
4.1 Free resolutions and Betti diagrams . . . . . . . .. ... ... .. ...
4.2 The resolution of Og as Opa—2-module ford >5 . . . . . . . ... ...
4.3 The differentials in the mapping cone complex . . . . . . . ... .. ..

5 The ideal of C as a sum of scrollar ideals

6 Quadrics of low rank containing a curve of degree 6

6.1 Smooth curves of degree 6 . . . . . .. ...
6.1.1 Smooth curves C having a smooth gi(C)-scroll . . . . . ... ..

6.1.2  Smooth curves C' with a singular g3(C)-scroll . . . . ... ...

6.2 Examples of singular curves of degree 6 . . . . . . ... ... ... ...
6.2.1 Examples of singular curves C as the complete intersection of a

smooth scroll and a quadric . . . . . . ... ... ... ...

6.2.2 Examples of singular curves as the complete intersection of a
singular scroll and a quadric . . . . . . .. ... ... L.

7 The first syzygies of I where C is a curve of degree 7
7.1 Preliminary definitions and motivation . . . . ... .. ... ... ...
7.2 Curves C on a two-dimensional scroll of type (2,2) . . ... ... ...
721 Asmoothexample . ... ... ... ... ... ... ... .
7.2.2 A family of curves where [y =l and I3 =14. . . . . .. ... ..
7.2.3 A family of curves in the case [y =l and lo =1y, . . . . ... ..
7.3 Curves C on a two-dimensional scroll of type (3,1) . . ... ... ...

[y

S 00 =3 ot ¢

27
32
34
37
40

45
45
48
52

57

79
79
81
82
83

83



7.3.1 Asmoothexample . ... ... ... ... ... .. ...... 94
7.3.2 A family of curves in the case [y =l and I3 =14 . . . . . .. .. 94
7.3.3 A family of curves where [y, =lzand b =14. . . . . .. ... .. 95
8 The degree of Sec3(C) 97
8.1 Preliminaries . . . . . . . . . . ... 97
8.1.1 The Poincaré line bundle £ . . . . . . . ... ... ... .... 101
8.1.2 The Chern classes of the Poincaré line bundle £ . . . . . . . .. 103
81.3 The Chernclassesof H . . . . . . . . .. ... .. ... ..... 104
814 The Chernclassesof G . . . . . . . . .. ... ... ... .... 104
815 (3 asaPl-bundleover Jac(C). . . ... ... ... . ... ... 105
8.2 Computations of the degree of Secs(C) . . . .. ... ... ... ... .. 106
82.1 First method . . . . . . . . . ... .. ... 107
8.2.2 Second method . . .. ... . ... ... ... 115
8.2.3 Third method: Berzolari’s formula for the number of trisecant
lines to a smooth curve of genus ¢ and degree d in P* . . . . . . 118
A Appendix to Chapter 4 121
Al d=7. . . e 121
A2 d=8 . . . 122



Chapter 1

Introduction

Given a variety X C P", one interesting aspect is to analyze the syzygy modules of its
homogeneous ideal Iy, e.g. via the minimal free resolution of Ix.

The first interesting problem that arises is to look for a decomposition of the ideal I'x.
Since for any two projective varieties X and Y such that X C Y, we have the reverse
inclusion of the ideals, i.e. Iy C Ix, in order to describe the structure of Iy, it is
natural to look for varieties Y7,...,Y,, that contain X and such that the union of the
ideals Iy,, ..., Iy, generates Ix. The first engaging question that now arises is whether
we can find varieties Y7, ...,Y,, that contain X and such that Iy is generated by the
union of the ideals Iy,,..., Iy, . In addition, we naturally want m to be as small as
possible.

Continuing in this direction, we may pose the same question for the higher syzygy
modules of I'x. Denoting by the Oth syzygy module the ideal Iy and by r the length
of the minimal free resolution of Iy, one motivating question is the following:

For all 7 in the range 0 < ¢ < r, can we find varieties Y1,...,Y,,
(¥) such that the ith syzygy module of Iy is generated by the union
of the ith syzygy modules of the ideals Iy,, ..., Iy, 7

m

This question is for instance considered for elliptic normal curves and their secant
varieties and bielliptic canonical curves in [HvB04] and for canonical curves in [vB07].
In all these cases that have been studied, rational normal scrolls are natural candidates
for the varieties Y7,...,Y,,. One nice property that turns rational normal scrolls into
good candidates for these varieties Y7, ..., Y,, is the fact that for a curve C' lying inside
a rational normal scroll Y generated by some g; on C, the resolution of I is obtained
via a mapping cone construction using the minimal free resolution of Iy in P", and
thus for 0 < ¢ < codim(Y), there is a natural inclusion of the ith syzygy modules,
Syz;(Y) C Syz;(C).

In this thesis we study smooth curves C of genus 2, embedded in P?~2 by a complete
linear system of degree d > 5.

We use the notation g} (C) to denote a gi on C.

We are interested in rational normal scrolls defined by linear systems g3 (C') and g3 (C)’s.

A simple use of the Riemann-Roch Theorem for curves shows that there exists exactly
one g3 on C, and that this is equal to the canonical system |K¢| on C, and that the
family of gi’s on C' is two-dimensional.

The unique g3(C') gives rise to one scroll S of dimension 2:

1



2 CHAPTER 1. INTRODUCTION

S = U span(E).

Eegj(C)

We will denote a g3(C) by |D|. Each g3(C) gives rise to a scroll V = V|p; of dimension
3

Vip| = U span(D').

D’e|D|

This gives a two-dimensional family of three-dimensional rational normal scrolls that
contain the curve C.

For d > 6 the ideal I is generated by quadrics, for d = 5 the ideal I is generated
by one quadric and two cubics. Since the ideal of a rational normal scroll is generated
by quadrics as well, we will mostly only consider the case d > 6 and mention the case
d = 5 occasionally as some exceptional example.

It will be shown, from the minimal free resolution of I in Chapter 4, that the ith
syzygy module of I can be generated by linear syzygies for 1 < i < d — 5. Moreover,
it is a well-known fact that, for ¢ > 1, the ith syzygy-module of Iy, where X is a
rational normal scroll, can be generated by linear syzygies. We will thus focus on the
linear syzygies and for any variety Z denote by Syz,(Iz) the vector space of linear ith
syzygies of I7. In our cases, all varieties are arithmetically Cohen-Macaulay, and thus
the length of the minimal free resolution is equal to the codimension, which is equal to
d — 5 for a gi(C)-scroll.

Now, Question (*) becomes in this case our following motivating question:

Let S be the gi(C)-scroll, and let V' run through the two-
dimensional family of g}(C)-scrolls. For fixed i such that

(#x) 0<1i<d—>5,is the space of the ith linear syzygies of C
spanned by the ith linear syzygies of I and the ith linear
syzygies of all Iy?

We will give a positive answer to this question in the case ¢ = 0, i.e. for the ideal of
C. More precisely, we will show that I is generated by the union of Ig and the ideal
of one g3(C)-scroll V, that obviously does not contain S.

Considering the higher syzygies of I we restrict ourselves to the first syzygies and the
case when the degree of C' is equal to d = 7, the first interesting case.

We provide examples of smooth curves C' and two gi(C)-scrolls V; and V5 such that
the first szyygies of Io are generated by the first syzygies of I and the first syyzgies
of Iy, and Iy,.

The thesis is organized as follows:

In Chapter 2 we introduce rational normal scrolls, in particular rational normal scrolls
of dimension 2 and 3 that contain the curve C' and give a description of rolling factor
coordinates on a scroll, which will be useful in Chapter 3.

Moreover, we give a connection between |H|, the complete linear system that embeds
C into P*"2, and the scroll types of the g3(C)-scroll S and a g3(C)-scroll V = V|p), for
a given g}(C) |D].



In Chapter 3 we let d > 6. We use rolling factor coordinates on the gi(C)-scroll S to
give quadrics that together with Ig generate the ideal of C'.

Chapter 4 deals with the minimal free resolution of O¢ as Opa-2-module. We will give
the Betti diagram of Og. The description of the quadrics in Chapter 3 that together
with Ig generate I is useful here in order to describe the differentials in the resolution
explicitly.

Chapter 5 contains a proof of the following main result in this chapter:

Theorem 5.1. Let C be a curve of genus 2, linearly normal embedded in P2 by a
complete linear system |H| of degree d > 6. Then

Is+ 1y = I¢
Jor a g3(C)-scroll V that does not contain the g3(C)-scroll S.

In Chapter 6 we first study quadrics of rank 3 and 4 containing a curve C' of degree
d = 6 and discover a connection to a quartic Kummer surface in P}, = P(H°(Z¢(2))).
We will give examples of smooth, singular and reducible curves of degree 6 using the
computer algebra system Macaulay 2 ([GS]).

In Chapter 7 the motivating problem is to find, for a given smooth curve C C P? of
genus 2 and degree 7, gi(C)-scrolls V4, ..., V,, that do not contain the gi(C)-scroll S
such that the space of first syzygies of I is spanned by the first syzygies of Is and the
first syzygies of Iy,,..., Iy, .
We will find examples of smooth curves C' and two gi(C)-scrolls Vi and V3 such that
the space of the first syzygies of I¢ is spanned by the first syzygies of Ig, the first
syzygies of Iy, and the first syzygies of Iy, and consequently prove by semi-continuity
the following theorem:

Theorem 7.4. For a general curve C € My and a general Oc(H) € Pic’(C) such
that the complete linear system |H| embeds C into P® as a smooth curve, there exist
two gi(C)-scrolls Vi and Vy such that the space of first syzygies of Ic is generaled by
the first syzygies of Is, the first syzygies of Iy, and the first syzygies of Iy,.

Moreover, we give families of singular and reducible curves C' and three-dimensional
rational normal scrolls V; containing C' such that the space of first syzygies of I is
spanned by the first syzygies of Ig and the first syzygies of all Iy,. In most of the
cases two three-dimensional scrolls V; and V, are enough, in one case we give three
three-dimensional scrolls Vi, V5 and V.

In Chapter 8 we use the description of the third secant variety of C, Secs(C), as the
union of all g3(C)-scrolls and thus give, for d > 8, another proof of the formula of the
degree of Sec3(C'), which is also known as Berzolari’s formula, namely that the number
of trisecant lines to a smooth curve of genus 2 and degree d in P* is equal to

(d;2> —2(d —4).
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In Appendix A we list the matrices that give the maps in the resolutions we found in
Chapter 4 for curves of degree d = 7 and d = 8 such that the gi(C)-scroll is maximally
balanced.

In this thesis we will use basic results in algebraic geometry as in [Har77], [Ful98] and
[ACGHS85], sometimes without further reference.



Chapter 2

Scrolls containing C

2.1 Preliminaries

In this thesis, if not mentioned otherwise, by a curve we will always mean a non-singular
and irreducible curve of genus 2.

For a positive integer m we denote by a gl (C) a linear system of projective dimension
1 and degree m on the curve C. In this thesis we are only interested in the cases m = 2
and m = 3 and denote by G3(C) the family of g}(C)’s.

Proposition 2.1. There exists exactly one ga(C), and this is equal to the canonical
system |Kc|. The family G3(C) := {g3(C)'s} is two-dimensional.

Proof. We use the Riemann-Roch Theorem for curves (see e.g. [Har77], Thm. 1.3 in
Chapter IV.1):
If D is a divisor of degree 2, then

1 if D¢ |Kel,

h(Oc(D)) = 1+ h(Oc(Ke — D)) = { 2 if De|Kel|.

Hence we can conclude that the linear system |D| is a g3(C) if and only if |D| = |K¢|.
If D is a divisor of degree 3 on C, then h°(Oc(D)) = 2, i.e. each linear system |D|
of degree 3 is a gi(C). The set of all effective divisors of degree 3 on C' is given by
C3 .= (C x C x C)/S3, where S denotes the symmetric group on 3 letters. The
dimension of this family is equal to 3, and since each linear system |D| of degree 3 has
dimension 1, as shown above, the family of gi(C)’s has to be two-dimensional. O

Let now |H| be a complete linear system on C' of degree d > 5. Since d > 29+ 1, |H|
is very ample, and thus |H| embeds the curve into projective space. By the Riemann-
Roch Theorem for curves we obtain h°(Oc¢(H)) = d — 1, and this yields an embedding

11|
(SN

C P2

Since |H| is complete, the embedded curve C' C P92 is linearly normal.

In this thesis we will work with rational normal scrolls of dimension 2 and 3 that contain
the curve C. There are several different presentations of a rational normal scroll. We

will use the following two (cf. [Sch86], [Ste02]):

5



6 CHAPTER 2. SCROLLS CONTAINING C

A first definition of rational normal scrolls

Let £ = Opi(e1) ® Opi(ey) @ - --® Opi(er,) be alocally free sheaf of rank k on P!, and
let 7 : P(£) — P! be the corresponding P*~'-bundle. Moreover, let e; > ey > --- >
e, >0and ey +ex+ - +e, > 2.

Definition 2.2. A rational normal scroll X is the image of v : P(E) — PV :=
PHO(P(E), Op(e)(1)).

We define the scroll type of X to be equal to (e1,€ea,- -+ ,€x).

We say that a scroll X of scroll type (e, ea, . .., ex) is mazimally balanced if e —ey, < 1.

Remark 2.3. The dimension of X is equal to k, and the degree of X is equal to the
degree of € which is equal to f := Zle e;. Moreover, by the Riemann-Roch Theorem
for vector bundles, h°(P(E), Ope) (1)) = hO(PY,E) = 1k(E) + deg(E) = k + 3 ¢,
i.e. the dimension of the ambient projective space is equal to N =k + Zle e; — 1.
Thus for a rational normal scroll X we obtain dim(X)+deg(X) = k+ 31, e; = N+1,
and consequently a rational normal scroll X C PN is a non-degenerate irreducible
variety of minimal degree f = codim(X) + 1.

Remark 2.4. The scroll X is smooth if and only if all e;, i = 1,...,k, are positive.
If this is the case, then 1 : P(£) — X C P¥ is an isomorphism. If X is singular, then
t:P(E) — X C PV is a resolution of singularities.

Proposition 2.5. Each linearly normal scroll X over P! is a rational normal scroll.

Proof. If X is a linearly normal scroll over P!, then X = ((P(£)), where £ = 1,.0p(g)(1)
is a vector bundle over P! and ¢ : P(£) — P(H°(&)). By Grothendieck’s splitting
Theorem (cf. [HM82|) every vector bundle over P! splits, i.e. £ is of the form £ =
®;0p1(e;). O

From now on by a scroll we will always mean a rational normal scroll.

An alternative description of rational normal scrolls

Now we will come to a more geometric description of a rational normal scroll X:
With the e; as above, let fori = 1,....k, ¢ : P! — C; C P% C PV, where N =
Zle e; — k — 1, parametrize a rational normal curve of degree e;, i = 1,...,k such
that P, ..., P span the whole PV. Then

Pep!

is a rational normal scroll of dimension k, degree e;+- - -+¢; and scroll type (e1, .. ., ex).
In other words, each fiber of X is spanned by k points where each of these lies on a
different rational normal curve. We call these k rational normal curves C; directrix
curves of the scroll.

The Picard group of rational normal scrolls

Let H = [t*Opn~(1)] denote the hyperplane class and F = [7*Op:1(1)] be the class of
a fiber of P(€). In the following we will use H and F' to denote both the classes and
divisors in the respective classes.
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The Picard group of P(£) is generated by H and F:
Pic(P(&)) = Z[H] @ Z[F).
We have the following intersection products:

HY=f HM'F=1  F*=0.

A minimal section of P(€) is given by [Bo] = H — rF where r € N is maximal such
that H — rF is effective, in other words, [By] = H — e, F.

2.2 Rolling factor coordinates

We can describe coordinates on the scroll P(€) via coordinates on P! and coordinates
in each fiber of P(E). These are called rolling factor coordinates. We will now describe
how we can choose coordinates in P? in such a way that they restrict to these rolling
factor coordinates on P(&):

Let (s : t) be the homogeneous coordinates in P! and (z; : 25 : ... : 2;) be the
homogeneous coordinates on a fiber of P(£). Then we can choose coordinates w;;,
i=1,...,k j=0,...,¢; on PV such that

i
Iij|p(5) =35 thzi.

We assign the degree —e; to z;, i.e. the coordinates all have weighted degree 0.
It is straightforward to check that the (2 x 2)-minors of the matrix

sz sz e sty sk 2, sz oo sterTly
sz sB1722, t1 2y e 7 e L R tk 2

are equal to 0. In fact, the ideal of P(£) in PV is generated by the (2 x 2)-minors of
the following matrix:

M= Tio Ti11 - Tile—-1 " Tpo Tel -~ Tkep—1
11 T2 - T1,ey o Tkl Tk ot Tkey, '
Proposition 2.6. Let £ = Opi(e1) ® Opi(ez) ® - - - @ Op1(er) with all e; > 0.
For all a > 0 there is an isomorphism

HO(P(E), Op(ey(aH + bF)) = HO(P', Sym*(€) @ Op:1 (b)).

Proof. By the rolling factor coordinate construction each divisor in H°(Opg)(aH+bF))
can be represented by a bihomogeneous polynomial of degree a in the z; and total degree
b. O

Corollary 2.7. Set f := Zf;l e;. Foralla>0,b>—1

hO(P(E), Op(ey(aH + bF)) = f(“ * Z - 1) +(b+1) (“Zfl 1),

in particular, this dimension does not depend on the scroll type of X, only the degree
and the dimension of X.
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Proof. We will use the isomorphism in Proposition 2.6 and consequently compute the
dimension of

HO(P17 Sym“(Opl (61) ©---D Opl (ek)) ® Opl (b))

Since
SyIIla(Opl (61) @ s @ Opl (Gk)) ® Opl (b)
= @;":1(91)1(0,62‘ +b) @ 69;{:1 Dt Opi((a—1)e; + e; + b)
[e2) @le @j#i(’)pl((a — 2)61 +e;+e+ b) &b
we obtain

WO(PY, Sym®(Ops(er) & - & Opi (ex)) © Opa (b))
fg(a—i)(k_?H) +(b+1)g§ <k_13+l>

f <a<a2512) —iz(kgf;ﬂ)) +(b+1)(k_a1+a)
_ szé(k;j;i)ﬂﬁn(k;ja)

- f(‘”llzl) +(b+1)<azkll).

Proposition 2.8. A rational normal scroll X is projectively normal.

Proof. In order to show that
HO(Ops (mH)) — H(Ox (mH))

is surjective for all integers m > 1, we will use rolling factor coordinates on X.
By Proposition 2.6 there is an isomorphism

HO(X, Ox(mH)) = HO(P17Symm(Op1 (61) ) Opl (62) b---D Opl (ek))),

and we find that a section in H°(X, Ox(mH)) can be identified with a polynomial of
degree m in the z;’s and of degree rieq + -+ + riep with 11 + -+« +rp = m in (s,t).

More precisely, the sections of the form smerfrzezt—fraen=lyl e o0 where 1y +
cootrp=mand [ =0,...,7e; +raeg + - - - + 1gey, form a basis of HO(X, Ox(mH)).
Obviously, all these sections can be realized as polynomials of degree m in the restric-
tions of the z;;. U

2.3 g3(C)-scrolls and g}(C)-scrolls

Now we consider our curve C' C P42 of genus 2 and degree d > 6. From the g3(C) and
the g3(C)’s we construct rational normal scrolls that contain the curve C' in a natural
way:
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Set
S = U span(E),

Eegi(C)

where by span(FE) we denote the line between the two points in F.
For each |D| € G3(C) we set

Vip| = U span(D’),

D'e|D|
where by span(D’) we denote the plane spanned by the three points in D’.

Proposition 2.9. Let C C P%2 be a linearly normal curve of degree d and genus 2,
let S be the g3(C)-scroll, and for a g3(C) |D| let Vip| be the gi(C)-scroll associated to
|D|. The scrolls S and Vip| are rational normal scrolls.

Proof. The rationality of S and each V|p, is obvious. For the rest notice that if a scroll
X contains a linearly normal curve C, then also X has to be linearly normal: If X
was the image of a non-degenerate variety in higher-dimensional projective space under
some projection, then C had to be as well. We conclude that since C' is linearly normal,
all V|p; and S are linearly normal. By Proposition 2.5 we can conclude that S and all
V|p| are rational normal scrolls. O

Note that the dimension of S is equal to dim |K¢| + dimspan(E) = 2 and that the
dimension of Vjp, is equal to dim |D| + dimspan(D’) = 3. By Proposition 2.9 S and
Vip| are rational normal scrolls which implies by the observations in Remark 2.3 that
we obtain the following degrees:

deg S =d — 3, degVip) = d — 4. (2.1)

The next proposition will be useful in Chapter 4, when we study the resolution of O¢
as Opa—2-module via the resolution of O¢ as Og-module and the resolution of Og as
Opai—2-module:

Proposition 2.10. If X C PV is a rational normal scroll of degree f, then the minimal
free resolution of Ox as Opn~-module is linear.

Proof. The minimal free resolution of Ox as Opw~-module is given by the Eagon-
Northcott complex associated to the map

PO

pd—2 (71) - O%(i*%

which is given by multiplication with the matrix M as described above, which (2 x 2)-
minors generate the ideal Iy . O

Proposition 2.11. Let C be a curve of genus 2, and let £ be a P-bundle such that
the image of v : P(E) — P72 is the g3(C)-scroll S.

(i) The class of C on P(E) is equal to [C] = 2H — (d — 6)F.

(it) The class of the canonical divisor Kpg) on P(E) is given by [Kpg)) = —2H +
(d—5)F.
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Proof. (i) Write [C] = aH + bF with a,b € Z. Since [C].F = 2, we obtain a = 2,
and [C].H = d implies that d = 2(d — 3) + b, i.e. b=6 —d.

11 rite |Kp)| = aH + with a,b € Z and use the adjunction formula: —2 =
ii) Write [Kp(e) H + bF with a,b € Z and he adj ion f 1 2
([Kp(g)] +F).F=aand -2 = ([Kp(g)] +H)H=—(d—-3)+bie. b=d—5.

Cl

Proposition 2.12. Let C be a curve of genus 2, and let £ be a P -bundle such that
the image of 1 : P(€) — P*2 is a gi(C)-scroll V such that C does not pass through
the (possibly empty) singular locus of V.

The class of C on P(E) is equal to [C] = 3H? —2(d — 6)H.F.

Proof. Since C is of codimension 2 on P(£), we can write the class of C on P(€) as
[C] = aH? + bH.F with a,b € Z. Since [C].F = 3, we obtain a = 3 and [C].H = d
implies that d = 3(d — 4) + b, i.e. b=2(6—d). O

2.4 Possible scroll types
Proposition 2.13. For the scroll type (e1,e3) of S we have ey — ey < 3.

Proof. Let [Cy] = H — e, F as described as [By] in general in Section 2.1.

Since C' and Cj are effective and C' is smooth, so Cy € C, we have [C].[Cy] > 0,
which means by Proposition 2.11 that (2H — (d — 6)F).(H — e;F) > 0, consequently
2e1 + 2e5 — 2e; — (d — 6) > 0. Since d = e1 + e5 + 3 the result follows. O

Proposition 2.14. If V is a gi(C)-scroll such that the curve C does not intersect
the (possibly empty) singular locus of V', then for its scroll type (e1, e, e3) we have
261—62—63S4,

Proof. Since h°(Oy(H — By)) = h%(Ov(e1F)) = e; + 1 > 1, By is contained in at
least one hyperplane, consequently By does not span all of P?~2. Since C spans all of
P?2 By cannot contain C, thus we have that [C].[By] > 0, i.e. by Proposition 2.12
(3H?—2(d—6)HF).(H—e; F) > 0, which means that 3e; +3ey+3e3—3e; —2(d—6) > 0.
The result follows from d = e + ey + e3 + 4. O

Proposition 2.15. If V' = V|p| is a singular scroll of scroll type (e1,e3,0) such that
the curve C intersects the singular locus of V', then ey and es satisfy the following:
€1 — €3 S 3.

Proof. If V= V|p, is a singular g3(C)-scroll of type (ej, es,0) such that C intersects its
singular locus, then a point P € sing(V')NC is a basepoint of |D|, i.e. |D| = |K¢c+ P|.
The projection from P maps C to a curve C’ of degree d — 1 in P?~3 and it maps V|p,
to the gi(C”)-scroll of type (ey, es). By Proposition 2.13 we obtain e; — e < 3. O

We will come to the converse of Proposition 2.15, namely the existence part, after we
have described a method to find the scroll type of the g3(C')-scroll S and a g2 (C)-scroll
V = V|p), given a class |H| of degree d on C' that embeds the curve into P42, This
method we found in [Sch86], p. 114.
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(1) The scroll type of S:
Set

do = h°(Oc(H)) —h*(Oc(H — K¢)),
dy = hO(OC(H - K¢)) — hO(OC(H —2K¢)),
dy = W(Ou(H —2Ke)) — (0o (H — 3K0)),

dg) = WOc(H ~ | §1Ke) ~ H(Oc(H — (1] +1)Ke)).

2

=0

Then the scroll type (e, e2) of S is given by
€1 = #{7‘dj Z 1} - 17
€2 = #{j‘dj 2 2} -1

(2) The scroll type of V = V|py:
Here we will distinguish between two cases, namely whether | D| is basepoint-free
or has one basepoint:

(a) If | D| is basepoint-free, then we set

dy = h'(Oc(H)) = h*(Oc(H — D)),
di = h(Oc(H — D)) —h*(Oc(H - 2D)),
dy = h%(Oc(H —2D)) — h°(Oc(H — 3D)),

day = W(Oc(H ~ D) = (Oc(H ~ (5] + 1)D).

=0

Then the scroll type (e1, ez, e3) of V' is given by

#ild; = 1} — 1,
€ #{ild; = 2} — 1,
es = #{jld; =23} - L

€1

(b) If the g}(C) |D| has one basepoint, i.e. |D|=|Kc + P|, then we set
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dy = h°(Oc(H))—h’(Oc(H — D)),

dy = h(Oc(H — D)) = h(Oc(H — P —2K¢)),

dy = h(Oc(H — P —2Ke)) — h(Oc(H — P — 3K¢)),
Q) = W(Oc(H P~ 11 ]Ke))

~ W(Oo(H - P~ | T Ke)).

=0

The scroll type (eq, ez, e3) of V' is given by

er = #{jld; 21} -1,
€ #ild; = 2} - 1,
es = #{jld; >3} -1
We will now discuss the connection between the scroll type and |H| and thus give

alternative proofs of Propositions 2.13 and 2.14.
Let us first take a look at the scroll type (eq, es) of S:

(1) Let us first consider the case when d is even:
Since every linear system of degree 2 is non-empty by the Riemann-Roch Theo-
rem for curves we can always write |H| = |22 K¢+ P+ Q)|, and there are exactly
two possibilities for P + @, namely it is either a divisor in |K¢| or it is not.

(a) If |[H| = |£K¢|, then the d; are as follows:

dy = d—1—(d—3)=2,

da_y = h(Oc(3Kc)) — h°(Oc(2Ke)) = 2,
di_y = h'(Oc(2Kc)) = h*(Oc(Kc)) = 1,
diy = h(Oc(Kc)) - h'(Oc) =1,

ds = (O¢) =1

‘Thus, elzgand 622373.‘
(b) In the case |H| = |52 K¢ + P+ Q| with P+ Q ¢ |Kc¢| we have
d—1—(d—3) =2,

U
S
I

2 . W(Oc(Ko+ P+Q)) — h*(Oc(P+Q)) =2,
h(Oc(P+Q)) =1,
d%z = 0.

QU
[T
|
—
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‘Thus, elzg—landezzg—Z‘

(2) If d is odd, then there are also two possibilities for |H|:
Since every linear system of degree 3 is non-empty by the Riemann-Roch Theorem
for curves, we can write |H| = |52 K¢ + P + Q + R|, where either one of P+ Q,
P+ R or @+ R is a divisor in |K¢| or none of those three sums is a divisor in
[Kcl.

(a) If |H| = |51 K¢ + P|, then we obtain

dy = d—1—(d—3) =2,

daa 5, = h(Oc(2Kc + P)) — k°(Oc(K¢c + P)) =2,

dis_; = h(Oc(Kc+ P))—h(Oc(P)) =1,
das = K(Oc(P)) =1.
‘Hence, er =% and e = &1 —2.‘

(b) If |H| = |“2K¢ + P + Q + R|, where none of the divisors P + Q, P + R,
Q@ + R lies in |K(¢|, then we have

dy = d—1—(d—3)=2,

dis y = h(Oc(Ko+P+Q+R) = h(Oc(P+Q+R)) =2,
diiy = h(Oc(P+Q+R)) =2,
dan = 0.

2

d—3 ‘

Consequently, e; = ey = %5=.

Now we will study the scroll type (e1,es,e3) of V' = Vip| in the case when |D| is
basepoint-free:

(1) Let us first consider the case d =) 0:
Since every linear system of degree 3 is non-empty by the Riemann-Roch Theorem
for curves, we can write |H| = [952D + P+ Q + R|, where either P+ Q + R is a
divisor in |D| or it is not. If it is not a divisor in |D|, then since h®(Oc(P + Q +
R)) =2, P+ Q+ R is a divisor in some other pencil |D'|.

(a) If [H| = |4D|, then
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dy = d—1—(d—4)=3,

di, = 1(0u(D)) - 1°(Oc(D)) = 3,
diy = h(Oc(D)) - h'(Oc) =1,
1

L
wla
Il
>
©
—~
&
Q
ol
Il

‘Consequently, e = g, ey = e3 = g — 2.‘

(b) If |H| = |42 D + D'| with |D'| # |D|, then:

dy = d—1—(d—4)=3,

‘Thus, 61262:%—1and63:§—2.‘

(2) The next case to consider is the case when d =3 1: By similar arguments as in
(1) we can write |H| = |%*D + Py + P + P3 + P;| where either one combination
P, + P; + Py is a divisor in |D| or else some combination P, + P; + P is a divisor
in a suitable linear system |D’|.

(a) If [H| = |%'D + P|, then

disy = W(OCED+ P) ~ W(Oc(D+ P) =3,
dir, = W(Oc(D+ P)~ K(Oc(P)) =2,
dn = K(Oc(P)) = 1.

‘Thus7 elzd’l,egzd;gl—l, 63:%—2.‘

(b) If |H| = |%*D + D’ + P|, then

dO = 37

diry = W(Oc(D+ D'+ P))—h(Oc(D' + P)) = 3,
dos, = W(Oc(D'+P))=3,
daes = 0.
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d—1
‘Thus, 61:62:(33:7—1.‘

(3) The last case to consider is the case when d =(3) 2:
Since every linear system of degree 2 is non-empty by the Riemann-Roch Theorem
for curves, we have two possibilities for |H|:
Either |H| = |d5—2D+KC| or |H| = |%D+P+Q|, P+Q ¢ |Kco|.

(a) If [H| = |42 D + Kc|, then the d;’s are of the following form:

dy = 3,
d‘]:;;Q—Q = hO(OC(QD + Kc)) — hO(OC(D + KC» =3,
diz = h(Oc(D+ Kc)) = h*(Oc(Kc)) =2,
diz = h'(Oc(Kc)) =2.
‘Consequently, €1 =ey = ‘13;2 and e; = ‘13;2 -2 ‘

(b) If |H| = |%2D + P+ Q|, P+ Q ¢ | K¢/, then we have

dy = 3,

diz_y = h°(Oc(2D+ P+ Q)) —h*(Oc(D+ P +Q)) =3,

diz_; = h(Oc(D+P+Q))—h(Oc(P+Q)) =3,
dez = W(Oc(P+Q))=1.
‘Hence7 er = % and ey = e3 = ’13;2—1.‘

Finally, we will study the connection between |H| and the scroll type of Vjp| in the case
when the linear system | D| has one basepoint, i.e. |D| = |K¢+ P|. Since a gi(C)-scroll
in the case d = 5 is all of P2, the interesting cases here are given by d > 6. Notice that
if | D| has one basepoint, then the scroll V|p| is necessarily singular, the curve C' passes
through the singular locus. Thus we already know that ez = 0.

We divide again into the cases d =) 0, d =@3) 1 and d =(3) 2.

There is the following connection between |H| and the scroll type of Vip;:
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(1) d =(3) 0:

| |H| | scroll type of Vjp|

(2,0,0) ifd=6
14D] = |§Kc + 5P| (1%%),1%51),0) ifd>9,2P ¢ |Kc|
(151],1%5°],0) ifd>09,2P € |Kc|
|Z2D + D
= |9*Ke+ PP+ D), | (1%5).1%).0)
|D’| basepoint-free
|%3D + D] d=3| | d=4 o d-1
‘ d=3| 1441 0) if |[H—-P—|%L|Ke| =
_ |gKC+d:;33P+Q‘7 (I_ijl_zjv) 1‘ |_2J C‘ 0
D'| with one basepoint @, _ _ . _
b e PO (14501458 0) it 17 - P |45 Ko £
|d73D+D/| (47170) lfd:9
= |d+3K + P| d—3 d—4 . >
|D'| with one basepoint Q, (157 1%7),0) ifd=12.P#Q
P+Qe€ K _ 6 .
@ € Kol (15],158],0) ifd>12,P=Q
‘ |H| | scroll type of Vip| |
455D+ Q| (152, 1552),0) if [H - P~ [ ]Ke| =10
= |G Ko+ P+ Q)
P+Q ¢ |Kc| (152, [%58),0) if|[H—P— |5t Ke|#0
(3,0,0) ifd=17
15ED + Q|
= |S1Ke+ 5P+ Q) (4,2,0) if d=10
= ‘%Kc+d 4P|
- \*4D+2Kp| (1452, 19452),0) ifd>13,P #Q
P+Q e |Kc| e as .
; (141, 1%5],0) ifd>13,P=Q
a4p 4 ; _ _ . _
_ }L R T | (SL0) - P - L5l =
i|=|Kc+R+ R _ _ . _
> AT | (g5 1550 )0) i - P |25 K| £ 0
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(3) d=@ 2
‘ |H] | Scroll type of Vip, ‘
(3.1,0) ifd=38
42D 4 Kol 3] 4541 0)
=3 144 0) ifd>11,2P ¢ |K
= |¢lKe + 42p| (L%°), 1%7),0) ifd=11,2P ¢ |Kc
(1451, 1%58],0) ifd>11,2P € |K¢|
2D+ Q1+ Qi (121 157),0) i [H-P— [T ]Kc[=0
= |92Ko 4 422 2P+Q1+Q2\
(151, 1%58],0) if |[H—P— |51 Ko #0

As an example we do the computations in the case d =) 0:
Since every linear system of degree 3 is non-empty by the Riemann-Roch Theorem for
curves, we can write |H| = |‘13;3D+Q1 + Q2+ Q3|, where either Q1+ Q2+ Q3 is a divisor
in | D] or it is not. If it is not a divisor in | D], then since h%(Oc(Q1 + Q2 + Q3)) = 2
Q1+ Q2+ Q3 is a divisor in some other pencil |D’|, and |D’| is basepoint-free or it has
one basepoint, say @, i.e. |D'| = |K¢ + Q1.

(a) If |[H| = |4D| = |4K¢c + 4P|, then

dy = fO(OC(H)) h(Oc(H — D)) =3
di = O(*(H Kc — P)) = h%(Oc(H — 2K¢ — P))
B if d =6,
- if d > 12,
3 if d=6,
die = § 1 (Oc (5P + KtKo))
’ 1 (0c (G2 P + 1274 Kc)) =2 it d > 12
h(Oc(P + Kc)) — h°(Oc(P)) =1 itd=6
B (Oc (43P + 124K C))
dis = § =W (Oc (53P+ %5%Ke)) =1 ifd > 12 and 2P € |K¢|
d—4 c\ 73 c cls
B R e e )
—h(Oc (%3P + %59Ke)) =2 ifd > 12 and 2P ¢ |K¢|,
RO(Oc(P)) =1 if d = 6,
die = ¢ h0(Oc (3P + %K) =1 ifd> 12 and 2P € | K|,
’ W (Oc (453 P + %9Kc)) =0 if d > 12 and 2P ¢ |Kc|.

We obtain the following conclusion:
If d =6, then (e, es,e3) = (2,0,0).
If d > 12 and 2P € |K¢|, then
‘61:%762: 63:0.‘

If d > 12 and 2P ¢ |K¢|, then

d——6
2

—4

2762 d46370‘

o=
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(b) If |H| = |§D| = |43D + D'| such that |D'| has one basepoint Q1, i.e. |H| =
|%KC + %P + Ql‘, then

do h(Oc(H)) = h°(Oc(H — D)) = 3,
dy = h°(Oc(H - K¢ — P)) — h°(Oc(H - 2K¢ — P))
_ { h(Oc(Kc + Q1)) = h(Oc(Qr)) =1 ifd =6,

2 if d> 12,
3 if d =6,

die = R(Oc (43P + B4 K ()

2 B

—h(0c(FEP+ 24Ke)) =2 ifd > 12,
h(Oc(P + K¢)) — h°(Oc(P)) =1 ifd =6,
h(Oc (453 P + 24K ()

dia = —h(Oc (453 P + 24K ) =1 if d > 12 and 2P € |K¢l|,
W (Oc (452 P + 24 K¢))
—h(Oc (2P + 4K ) =2 if d > 12 and 2P ¢ |K¢|,
h(Oc(@1)) =1 if d=6,

diz = § h(Oc(552P + Ko+ Q1) =1 if d > 12 and 2P € Ko,
R(Oc(F2P + 54K ) =0, if d > 12 and 2P ¢ |K¢|.

(c) If |H| = |52D + D'| = |53 K¢ + 42 P + D'| with |D'| basepoint-free, then:

dy = h°(Oc(H)) - h’(Oc(H - D)) =3,
di = h%Oc(H — K¢ — P)) — h°(Oc(H — 2K¢ — P)) =2,

das = hO(OC(ﬁ%dKC + ?P + DY)
2
- hO(Oc(%ch + %P + D)) =2.
Thus, e; = €5 = % and ez = 0.

We will now come to the converse of Proposition 2.15, i.e. the existence part:

Proposition 2.16. If e; and ey are integers with ey > ey > 0, e — ey < 3 and
e1+ ey =d—4 with d > 6, then there exists a curve C of genus 2 and a divisor class
|H| on C of degree d that embeds C' into P42 such that there exists a gi(C)-scroll of
type (€1, e2,0) such that its singular locus intersects the curve C.

Proof. Let e; > e3 > 0 be integers with e; —e; < 3 and e +e3 = d —4. By the method
just described above there exists a curve C' of genus 2, embedded with a system |H’|
of degree d — 1 into P473 such that its g1(C)-scroll is of type (e1,e2). Take a point P
on C' and reembed the curve C' with the linear system |H| := |H' + P| into P?~2. The
cone over the g3(C)-scroll in P?~3 with P as vertex is a g3(C)-scroll in P472 of type
(e1,€2,0), and the point P lies in the intersection of its singular locus and the curve

C. O
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As suggested in Proposition 2.16, given |H| and |D| = |K¢ + P|, we can also find the
scroll type of V|p| by projecting from the point P and using the analysis of the scroll
type of the gi(C")-scroll, where C” is the image of C' under the projection. Let in this
situation P’ always denote the point in |Ko — P)|.

(1) If d is even, then, since each linear system of degree 2 is non-empty, we can write
[H| = [§Kc| = 45K+ P+ P'lor [H| = |52 Ko + Q1 + Qo = |5 Ko + Q1 +
Q2+ P+ P'|, s.t. Q1+ Q2 ¢ |Kc|. Projecting from P yields a curve C’ which is
embedded in P?3 by the linear system |H’| := |H — P|. Under this projection
the scroll Vjp maps to the g3(C”)-scroll S”. The scroll Vip, is thus the cone over
S" with P as vertex, so if S is of scroll type (eq, e2), then Vip is of scroll type
(61./ €2, 0)

Either |H'| = |%2Kc+ P'| or |H'| = |2 K¢ + Q1+ Q2 + P'|. From our analysis
above we obtain the following:

‘ |H| | Conditions [ Scroll type of Vip| |
| %2 Ko+ P+ P d-2 d—6
2 (5% 5%0)
_ P+ Q1 ¢ |Kcl, 4 d-
d—4 - P+ P 1 ’ d—4 d—4
‘2 C‘JFQ1+QQ+ + | P,+Q2¢‘Kc| (2’ 2’)
_ P+ Q; € |K¢| 9 d—
d—4 / g d—2 d—6
[T Kot Qut Qe+ P+ P for at least one i (2’ 2’0)

(2) If d is odd, then we can write |H| = |5 Ko + Q| = |52Ke +Q + P+ P'| or
[H| = %Ko + 30, Qil = 152 Ko + 0, Qi+ P+ Pl st Qi+ Q; ¢ | Kol
fori,j €{1,2,3}, i #j.

|H| | Conditions ‘ Scroll type of V|p ‘
|d_3KC+Q+P+P'| PI+Q¢‘KC| (d23770)
d23KC+Q+P+P’| P'+Q € |Ko| (51, 7,0
5 3 ] /
E RN QPRI bR ke | (158, 452,0)

_Q.

“3Ke+P+R+R|

Another approach to the connection between |H| and scroll types

In this section we want to analyze the connection between |H| and scroll types of the
g3(C)-scroll S and the gi(C)-scrolls V. We start with the cases d = 6 and d = 7 and
end with a description of the connection between |H|, expressed with respect to |K¢|,
and the scroll type of the gi(C)-scroll S for arbitrary d > 6.

d=6

(1) Here the degree of S is equal to 3, we have two possible scroll types: (2,1) and
(3,0).

(a) S has scrolltype (2,1): A general hyperplane section of the scroll that con-
tains the directrix line is the union of this line and two fibers of S.
In this case |H| = [2K¢ + P + ()| for two points P, @ on C such that P+ Q
is not a divisor in the system |K¢|.
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(b) S has scrolltype (3,0): A general hyperplane section of the scroll that con-
tains the singular point of the scroll is the union of three fibers of .S which
all meet in this singular point.

In this case |H| = |3K¢|.

(2) The degree of each V' = Vp, is equal to 2, there are two possible scroll types:
(1,1,0) and (2,0,0).

(a) A scroll of type (1,1,0) is the cone over a smooth quadric in P3 with one
vertex point P, and thus it is a quadric of rank 4 in P*. A general hyperplane
section of such a scroll which contains the singular point and a directrix line
of the scroll decomposes into two planes, A; and Aj, where A; is spanned
by P and a line in one family of lines on P' x P!, and A, is spanned by P
and a line in the other family of lines on P! x P!. These two planes A; and
A, intersect in a line.

(b) A scroll of type (2,0, 0) is the cone over a singular quadric in P3 with a line
as vertex and thus a quadric of rank 3 in P*.
A general hyperplane section of such a scroll that contains the vertex line is
the union of two planes intersecting in this vertex line.

The g3(C)-scroll Vjp, is a quadric of rank 3 if |[H — D| = |D|. Since |D| and
|H — D] can be basepoint-free or have one basepoint, there are the following

possibilities:
|H | Conditions on basepoint loci | Scrolltype of Vp,
or Vip,, 1 € {1,2}
|D1 + Dsl, | |D;| and |Ds| basepoint-free (1,1,0)
|D1| # | Dy
|D1 + Do| | |D1| basepointfree, (1,1,0)
Ds| with one basepoint
|2D| D| basepoint-free (2,0,0)
[2D| D] with one basepoint (2,0,0)
|D1 + Do| | |D1| with one basepoint P, (2,0,0)
| D3| with one basepoint P,
P # P
d="17

(1) Here the degree of S is equal to 4, we have two possible scroll types: (2,2) and
(3,1).

(a) S has scroll type (2,2):
A general hyperplane section of the scroll that contains a directrix conic
decomposes into this conic and two fibers of S.
In this situation |H| = [2K¢c+ P+ Q + R|, P, Q, R points on the curve with
all P+ @, P+ R and @ + R not divisors in |K¢|.

(b) S has scroll type (3,1):
A general hyperplane section of the scroll that contains the directrix line
consists of this line and three fibers of S. In this case |H| = |3K¢ + P|.
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(2) The degree of V = Vp is equal to 3, there are three possible scroll types: (1,1,1),
(2,1,0) and (3,0,0).

(a) A scroll of type (1,1,1) is smooth, which means that the gi(C) |D| is
basepoint-free. Since two fibers in the scroll do not intersect and two fibers

span a P° we have |[H — 2D| = .

(b) A scroll of type (2,1,0) is the cone over the smooth scrollar surface in P*.
Since two fibers in the scroll meet at one point, namely the singular point
of the scroll, |H — 2D| # 0.

(¢) Two fibers in a scroll of type (3,0,0) intersect in a line, i.e. the span of
the union of two fibers is a P3. The gi(C) |D| has a basepoint, which
means a point on the line along which the scroll is singular. In this case
|H| = |3Kc + P|.

As conclusion, we give three descriptions of the connection between |H| and the
scroll type of Vp:

|H| Conditions on basepoint | Scroll type of Vp,
locus of |D|
|H—-2D|=0 No basepoints (1,1,1)
|2D + P| No basepoints (2,1,0)
|2Kc + P+ Q + R|, One basepoint P (2,1,0)
P+Q,P+R Q+R¢|Kc|
|3K¢c + P One basepoint P (3,0,0)

The system |H — 3K | is of degree 1, and thus it is either empty or consists of

one point.
|H — 3K¢| | Conditions on basepoint | Scroll type of V|p,
locus of |D|
0 No basepoints (1,1,1)
0 One basepoint (2,1,0)
P No basepoints (2,1,0)
P One basepoint P (3,0,0)

Since deg(H — D — K¢) = 2, the linear system |H — D — K¢| is non-empty by
the Riemann-Roch Theorem for curves. There are exactly two possibilities for
|H—D— Kc¢|, namely |H— D — K¢| = |K¢| and |H— D — K¢| = |P+Q)|, where
P + @ is not a divisor in |K¢|. Hence we obtain the following third description
of the connection between |H| and the scroll type of V|p:
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|H | Conditions on basepoint | Scroll type of Vip,
locus of | D]
|D +2K¢| No basepoints (1,1,1)
|D+ K¢+ P+ @), | No basepoints (2,1,0)
P+Q¢|Kc
|2K¢ + P + Q + R|, | One basepoint R (2,1,0)
P+Q¢ K
[3Kc + R| One basepoint R (3,0,0)

More generally, we can study the connection between |H| with respect to |K¢| and the
scroll type of S in the following way:

(1) d even:

The scroll S has scroll type (d;QQ, d%“) or (g, %). We describe |H| in these two

cases:

(a) If the scroll type of S is equal to (d;ZQ, %), then a minimal section Cj is
of degree 9% and a general hyperplane section of S containing C{ consists
of Cp and 52 fibers of S. Consequently, |H| = |52K¢ + P + Q|, where P
and () are points on Co N C and P+ Q ¢ |K¢|.

(b) In the case when S is of scroll type (g, d;26), a general hyperplane section of
S that contains a minimal section Cy, which is of degree %, decomposes
into Cp and ¢ fibers of S. Hence |H| = |2K¢|.

(2) d odd:

The scroll S is of scroll type (%, %) or (%, %)

(a) If S is of scroll type (%, %), then a general hyperplane section of S
containing Cj is equal to the union of Cj and % fibers of S. We obtain
that |H| = \d—?‘KC + P+ @+ R|, where P,Q, R are points lying on Cy N C
and none of P+ @, P+ R or Q)+ R is a divisor in |K¢|.

(b) If the scroll type of S is equal to (%, d;25), then a general hyperplane section
of S that contains Cjy decomposes into Cy and d—gl fibers of S. Consequently,

|H| = |d2;1KC—|—P| where P is a point on Cy N C.

In Chapters 5 and 7 we will only be interested in g3(C)-scrolls Vip| that do not contain
the ga(C)-scroll S. For this purpose we will now give a criterion for when a given
g3(C)-scroll Vjp| does not contain the g3(C)-scroll S. We will distinguish between the
cases d =6,d =7 and d > 8.

Proposition 2.17. Let C C P%2 be a curve of genus 2 and degree d > 6, embedded
with the system |H|, and let S be the g3(C)-scroll. A g3(C)-scroll V = Vp| contains S
if and only if at least one of the following holds:

e |D| has a basepoint,
e d =6 and |H — D] has a basepoint or

e d="Tand |H|=|D +2K¢|.
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Proof. If |D| has a basepoint, then |D| = | K¢ + P|, hence each fiber of S is contained
in a fiber of V|p|, and consequently V|p| contains S.

Conversely, if S C Vjp| and |D| is basepoint-free, then each fiber of V|p intersects each
fiber of S in one point, since if it did not, then each fiber of S had to be contained
in a fiber of V' which meant that |D| had a basepoint. This implies that each fiber
of V|p|, which is a plane, intersects the scroll S in a directrix curve of S. This curve
is a smooth rational planar curve, consequently the degree of this curve is equal to 1
or 2. This means that, since the degree of C' is greater or equal to 6, the scroll type
of S is equal to (2,1) or (2,2), i.e. d =6 and |H| = |D+ K¢+ P|, or d = 7 and
|H|=|D + 2Kc|. O
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Chapter 3

The i1deal of C

Let C' C P92 be a smooth curve of genus 2 and degree d > 6.

In this chapter we will first prove that the ideal of C' is generated by quadrics and then
describe quadrics which together with the quadrics in Ig generate Ic.

As we have shown in Proposition 2.11, [C] = 2H —(d—6)F on S, so each curve of genus
2 and degree d > 6 can be seen as a section in H°(S, Os(2H — (d — 6)F), and via the
rolling factor coordinates s%~Jt/x, s~Jt/y on S, each such curve can be represented by
an equation fo in H(P!, S2 ® Op1(d —6)), where P(£) — S C P42 Moreover, the
intersection of a quadric with the scroll .S consists of a curve C' of genus 2 and degree
d plus d — 6 lines on the scroll. So in order to describe the ideal of a curve of genus 2
and degree d on S, we will give d — 5 quadrics that together cut out the curve on S.
We will now focus on the lines L; and Ly on S, where L; is given by s = 0 and L,
is given by ¢t = 0. We want to give d — 5 quadrics ¢y, ...,q4—5 in such a way that
qlﬂS:C’U(d—G)Ll, QQQS: OU(d—?)LluLQ, Cay qd,5ﬂS: CU(d—G)LQ for
one and the same curve C' of genus 2.

Theorem 3.1. Let C be a curve of genus 2 embedded with a complete linear system
|H| of degree d > 6 in P42, The ideal of C is generated by (dgd) +d —5 quadrics.

Proof. Theorem (4.a.1) in [Gre84] shows that I is generated by quadrics for all d > 6.

For another proof of this fact we use the rolling factor coordinates on S. Since Z¢ g =
Os(—C), showing that the ideal I of C' on S is generated by quadrics is equivalent
to showing that the map

H'(S,05(2H — C)) @ H°(S,0s((n — 2)H)) — H’(S,0s(nH — C)),

q® hw— qh,

is surjective for all n > 2.

Since [C] = 2H — (d — 6)F on S by Proposition 2.11 and H°(S,Os(aH + bF)) =
HO(P!, Sym*(Opi(e1) @ Opi(ez)) ® Opi (b)) with e; + e = d — 3 by Proposition 2.6
this is equivalent to showing that the map

25
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¢ H'(P', Opi(d — 6)) @ H'(P', &7=3Op1((n — 2 — j)e1 + jes))
— I’IO(].:)l7 @?:_OZOPI((TL —1- l)€1 + (l + 1)62 - 3)),

w(Sd*O’ﬂ'ti ® 8(7L727j)61+j627kth"727jyj)
o gld=6igi | (n—2-j)ertjer—hyk n—2j

J
_ S(n—1—j)e1+(j+1)eg—37(i+k)ti+kxn—2—jyyj7
is surjective. This is straightforward, since a basis of
H° (P!, Sym"~*(Opi(e1) @ Opi(e2)) @ Opi1 (d — 6))
is exactly given by

l=0,...,n—2
(n—1-l)e1+(l+1)e2—3—mym .n—2—1, 1 s ’ ’
{S e 4 m=0,...,(’n*171)61+(l+1)6273}.

It remains to show that h®(Zo(2)) = ‘12—2 -4l

We use the following exact sequence of ideal sheaves:
0— Is<2) — 10(2) - IC,S<2) — 0
and the associated exact sequence in cohomology:

0 — H(Z5(2)) — H*(Zc(2)) — H'(Zc,5(2)) — 0.

Here we know that H'(Z5(2)) = 0 since S is projectively normal by Proposition 2.9.
From the last exact sequence we obtain

R(Zc(2)) = h°(Zs(2)) + A (Ze,s(2))

d—3
()

Corollary 3.2. Let C C P42 be a curve of genus 2 embedded as a smooth and irre-
ducible curve with a complete linear system of degree d > 6. Then C has no trisecant
lines.

(I

Proof. Since the ideal of C' is generated by quadrics, we can write C = Q1N ... NQ,,
where 7 = h%(Z¢(2)) and the @; are quadrics. Any line that intersects C' in three
points intersects each @; in at least three points, consequently it is contained in each
Q;, hence in the intersection of all );’s which is equal to C. 1

Remark 3.3. The condition that the ideal I is generated by quadrics is important for
Corollary 3.2. For instance, the ideal of a curve C C P3 of genus 2 and degree 5 is
generated by one quadric and two cubics. The curve C is of type (2,3) on a quadric
which is isomorphic to P' x P, and thus it has infinitely many trisecants.
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Let (e1, e2) with e; > e3 > 0 be the scroll type of S, and set e := e; —ey. In Proposition
2.13 we proved that e € {0,1,2,3}. In Sections 3.1, 3.2, 3.3, 3.4 we will give a set of
quadrics that together with Ig generate I in each of the cases e =0, e =1, e = 2 and
e=3.

Our aim is to find d — 5 quadrics that together with Ig generate H°(Zo(2)) using
rolling factor coordinates on S. We will use rolling factor coordinates in order to find
a basis for H(S,Os(2H + (d — 6)F)) and thus the equation of C' on S and then
afterwards find d — 5 quadrics in P?~2 that cut out the curve on S. The dimension of
HY(S,05(2H + (d — 6)F)) is independent of d and is equal to 12, a fact that also can
be verified with the Riemann-Roch Theorem for surfaces.

3.1 d>7odd, e=0,i.e. S of scroll type (d—g‘g, %)

In this section we will consider curves C' of odd degree d > 7 such that the g3 (C)-scroll
S is maximally balanced. In this case S = P(&,) where

d—-3 d—3
gd:OPl (2) @Opl (2) .

Motivating examples

(1) d=T:
In this case the g3(C')-scroll S has scroll type (2,2).
After possibly a coordinate change, the ideal of the scroll S is generated by the
(2 x 2)-minors of the following matrix:

Tog L1 I3 X4
Ty Ty Ty Ty )

The rolling factor coordinates take the following form:

Tols = s,
zri|ls = stz,
1ol = ti,
T35 = s°y,
T4ls = sty,
Tsls = t2y.

The curve C can be identified with a section in H°(S, Og(2H —F)), and by Propo-
sition 2.6 the curve C is represented by a polynomial fc in H°(P!, (S%&7)(—1))
via the rolling factor coordinates, where

& = Opi(2) & Opi1 (2),

50
(5257)(—1) = Op1(3) ® Op1(3) ® Op1(3).
A basis for HY(P!, (S?&;)(—1)) is given by

{s%2%, s*ta?, st®a? t*a?, sPwy, s*tay, st’vy, 2wy, 22, s*ty?, st*y?, 3y?},
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i.e. the equation of C on S is given by

fe = w 32?4+ a252t:c2 + a35t2x2 + a4t3:c2 + a553xy + a652txy

+a7st2.ry + agthy + a983y2 + amszty2 + a118t2y2 + a12t3y2.

Now we want to find two quadrics ¢; and ¢o such that ¢; = sfc and ¢ = tfo on
S. The result is the following:

2
Q1 = a1y + a2ToT1 + A3ToTo + 41T + A5Tox3 + AgToTy
2
+a7x0T5 + asT1T5 + agx3 + A10T3T4 + A11T3T5 + A12X4Ts5,
2 2
Q2 = Q1ToT1 + Ax] + A3T1T2 + A4T5 + A5T1T3 + AgT1X4

2
+a7T1T5 + AgTaTs + A9T3T4 + A10T3T5 + A11T4T5 + A12T5.

d=09:
Here the g3(C)-scroll S has type (3,3). After possibly a coordinate change the
ideal Ig is generated by the (2 x 2)-minors of the following matrix:

To X1 X9 X4 Ty Tg
Ty Ty T3 Tz Tg Tr )
The rolling factor coordinates take the following form:

3

xols = s°w,
Tl = sz,
Tylg = stim,
r3lg = tiz,
Talg = Sgy-,
zsls = sty,
zsls = sty,
rrls = tPy.

By Proposition 2.6 the curve C is represented by a polynomial fo in
HO(P', (S%&9)(—3)) via the rolling factor coordinates, where

Ey = Op1(3) ® Op1(3),

SO

(5259)(—3) = Op1(3) ® Op1(3) ® Op:1(3).

In fact, we will see later that (S2&,)(6 — d) is independent of d, so from now we
will only write £ instead &;, and it will be clear from the context which degree
we consider.

Consequently, we obtain the same equation fo for the curve C' on S as in the
case d = T.
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Here we want to find four quadrics qi, ¢2, g3 and ¢, such that ¢, = sfc, o =
s%tfe, q3 = st’fe and g4 = t3fo on S. The result is the following:

@ = alxﬁ + a2x0T1 + a3ToT2 + A4ToT3 + A5ToLy + AeTOL5
+arToTe + AsToTr + A9T] + A10T4T5 + A11T4T6 + A12T4T7,
Q@ = a1Tor;+ agﬁ + a3T1 T + A4T1T3 + A5T1T4 + QX1 X5
+arx1T6 + agx1T7 + A9T4T5 + amx§ + 117526 + A12T527,
g3 = a1To%2 + Q22172 + agzg + a4Tox3 + a5Tox4 + AgT2Ty
+a7T9xg + A8T2T7 + A9T4Te + A10T5T6 + auxg + a12T6x7,
qs = MmToT3+ A2X1T3 + A3T2T3 + a4ff§ + asx3T4 + AsT3Ts

2
+a723%6 + AgT3T7 + A9T4T7 + A10T527 + A11T6X7 + Q1227

(3) The main pattern will be visible when we consider the next example, d = 11:
In this case the ga(C)-scroll S has type (4,4). After possibly a coordinate change
the ideal Ig is generated by the (2 x 2)-minors of the following matrix:

Top 1 X9 X3 Ty Tg L7 I
Iy Ty T3 Xg4 Tg L7 Ty T9 ’

The rolling factor coordinates take the following form:

zols = s'z,
X1 |S = 33t337
Tls = s,
r3|lg = stm,
T4lg = thz,
zsls = sy,
zels = sity,
wls = sy,
rsls = st’y,
Tols = thy.

By Proposition 2.6 the curve C' is represented by a polynomial fo in

HO(PY, (52€)(—5)) where & = Op1(4) ® Op1(4). As mentioned above, we will see later
that S2(£;)(6 — d) is independent of d, so we obtain the same equation f¢ for C on S
as in the two previous examples.

Now we want to find six quadrics qi, . . ., gs such that ¢ = s®fc, o = s*tfc, q3 = s> f¢,
4= s’ fo, g5 = st fo and gs = t° fc on S.

The result is the following:
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2
a1xy + AoXox1 + az3ToT2 + A4ToT3

q1
a5ToTs + AgToTe + A7ToT7 + ATOTS

+ +

2
9Ty + A10T5T6 + A11T5T7 + A12T5Ts,

2
q2 1201 + A2X] + A3T1T2 + A421T3

a5T125 + AgX1Te + Q7127 + AgT1 T3

+ +

. 2 .
A9T5Tg + a10$6 + A11Tely + a12TeTg,

2
qs3 a1T0T2 + A2T1T2 + A3T5 + A4T2T3

A5T2T5 + AgTaTe + A7ToT7 + AgT2TY

+ +

2
A9T5T7 + AgTeX7 + A7T7 + AgT7 Ty,

2
q4 a120T3 + a2T1T3 + a3T2T3 + a4y

A5T3T5 + AgT3Te + A7T3T7 + TIT3Tg

+ +

2
9Z5x8 + A10T6T8 + A11T7T8 + 12T,

qs A1T0T4 + Q2104 + A3T2T4 + A4T3T4

A524T5 + AgT4T6 + A7T4T7 + AgT4 X3

+ +

A9T5T9 + A10T6T9 + A11T7T9 + A12T8T9,

2
Qs A1T1T4 + A2T2T4 + A3T3T4 + Q4T

a5T1Tg + AgTaTg + A7X3Tg + A8T4Tg

+ o+

2
A9TeLy + A1T7L9 + A11T8T9 + A12Ly.

General d > 9

(52,552,

7

Let now d > 9 be arbitrary. The scroll type of the gi(C)-scroll S is equal to 5
and the ideal I is, possibly after a coordinate change, generated by the (2 x 2)-minors
of the following matrix:

T X s+ Td-3 T d-3 e Tg—
0 ol T =3 )
Try T - Xd—3 T d—3 s Tg—2
p 2

We have seen that for the class of C' on S we can write [C] = 2H — (d — 6)F.
Moreover, S = ¢(P(Op1(%52) ® Opi(42))), where ¢ is the map as in Definition 2.2,
L P(Op1(%52) @ Opi(45?)) — P2 . Then by Proposition 2.6 C is represented by a
polynomial in

H° (Pl, 52 <(’)p1 <d;3) @® Op1 (‘Z;?’)) ® Op1 (6 — d))
=~ H(P',0p:(3) ® Op1(3) ® Op1(3)).
A basis for the vector space H(P!, Op1(3) & Op1(3) & Op1(3)) is given by

{2283, 2?52, w?st?, %% wys® wys*t, wyst®, ayt?, y*s, y?s*t, yPst?, g2 3.
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We obtain thus the following equation of the curve C on S (i.e. Ics = (fc)):

fe = a1x2s3 + a2x252t + a3x2st2 + a4x2t3 + a5xys3 + a(,xys2t
+a7xy5t2 + agxyt3 + a9y253 + aloyzszt + a11y25t2 + a12y2t3,

for ay,...,a12 € k.

Here we immediately see that h°(S, Og(2H — (d — 6)F)) = 12, a fact that also can be
verified by the Riemann-Roch Theorem for surfaces (cf. also Corollary 2.7).

Varying the coefficients ay, ..., a1z produces all members in [2H — (d — 6)F|.

The adjunction formula

20,(C)—2=(2H - (d—6)F).F =2
yields that the arithmetic genus of C' is equal to p,(C) = 2. By the Bertini Theorem
(cf. [Har77], Theorem II.8.18) a general curve in the system |2H — (d — 6)F| on S is
smooth, so its geometric genus is equal to 2.
Now we are able to state and prove the following result:

Theorem 3.4. Let C be a curve on S, and let its ideal on S be given by Ics = (fc),
where

fe = a1 225> + asx?s’t + a3x2st2 + ag?t® + a5my53 + agxyszt
+a7xyst2 + agzryt3 + agy2s3 + a10y252t + a11y25t2 + a12y2t3,

with ay, ..., a2 € k and where (s,t) are the homogeneous coordinates on P* and (z,y)
are the homogeneous coordinates on a fiber F = P of the scroll S.

Ford > 9 the quadrics qq, . . ., qa—s given by the following formula cut out the curve C' in
the linear system |2H — (d—6)F| on S, more precisely, the restrictions qi|s, - . ., qa—s
form a basis for the vector space H*(Zc 5(2)):

S

A1TOTi—1 + A2T1Ti—1 + A3T2Ti—1 + A4T3Ti—1
+a5Ti-1%d-1 + Q6Ti—1T d+1 + A7T;—1T d+3
2 2 2

+agx; 1T d+s + A9Td-1Td=1,; |
2 2 2
TP LTty T ANTLT iy

S od—1
+a12x%x%+iil, for  1<i< ,

w ‘

q' =
' Q1T d—9%;_d—7 + AT -1 X, a7
2 2 2 2

+a3Ta—sx;, a7 + Q4T a-3T, a1

3 T3 3 773
+a5%d—9 Tiy3 + AT a-_1Ti43

2 2
+a7% a5 Ti43 + 8T a_3Ti43

2 2
+a9T3—5Ti+3 + A10Td—4Ti+3

d+l ~ ;

+a11T4-3Ti43 + A12T4—2Ti13, for H1 <i<d-5.

Proof. With the equation f¢ of C on S as above we have the following for 1 <i < ‘12;1:

qi|S — alsd7271t1711,2 + a25d7371tzx2 4 a35d7472t1+1x2 + a45d7571tz+2m2
+assT 2T ey 4+ agsTP T ay + ars¥THHE ay + ags? T 2
d7272t271y2 + G10<9d7371t2y2 + a118d7472t2+1

Y
e
d—>5 zt1+272

+ags y2 + ajas Y

— Sd—5—iti—1 fC~
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For % < ¢ < d— 5 we obtain the same:

als = 7 fe
Consequently, g1, ..., q4_s cut out a curve C in H°(S,2H — (d — 6)F) which equation
on S is given by the polynomial f¢. (I
Our system of choosing the quadrics ¢z, . . ., g4—5 continues in Sections 3.2, 3.3 and 3.4.

3.2 d>6even, e=1,ie. S of scroll type (52, &2)

9

After possibly a coordinate change the ideal Ig is generated by the (2 x 2)-minors of
the following matrix:

X T crr o Td-2 Td—2 e Tg—
0 ol Al -3 )
ry Lo - Xd—2 l’@_‘_Q s Tg—2

In terms of rolling factor coordinates the above matrix looks like:

3
d=d_ d=d_ d—2 d=d_ d=d_ d—a
tr sz t2x .- t 2z s 2 1zfy s 2 2t2y t 2y

N

d—2 d=2_ d=2_ d—d d—a_y d—a_y
sz s2 “tzx -+ Sst2 Tx s2yY sz “ty --- st Y
o4 _

By Proposition 2.6 we have

H° <P (Opl (%) @ Op: (%)) J2H + (6 — d)F)
~ O <P1,52 <OP1 (?) @ Opr (%)) ® Op1(6 — d))

which in turn is isomorphic to
}]0(1:)17 OPI (4) @ OPI (3) @ OPI (2))
with a basis given by
{s*a?, s3ta?, s*t22?, st®a? t'a?, sPwy, s*tay, st*vy, 2wy, s%y2, sty?, t2y* ).
Consequently, the equation of C' on S is of the following form:

fe = arsta? + ays3ta? + a352t2x2 + ayst®2? + a5t4x2 + a653xy
+a732txy + agsthy + a9t3my + a1032y2 + allsty2 + a12t2y2

with ay,...,a;2 € k.

Theorem 3.5. Let

fo = a1541‘2 + a283tx2 + a352t21:2 + a4st3z2 + a5t41‘2 + a6531:y
—|—a7s2txy + a85t2xy + a9t3xy + a1052y2 + allstyz + alztzyz,

where ay, ...,a12 € k, be the equation of a curve C' on S.
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For d > 10 the quadrics qi,. .., qq_5 cut out the curve C on S':

1T0Ti—1 + Q221251 + A3T2T;—1 + A4T3T;—1
+as5x4T; 1+ agT;i_1Tda + A7T; 1T ar2
2 2
+a8x; 1T d+a + A9T;—1T d+6
2 2

+a10m%x%+i71 + aux%mgﬂ.il

IN
A
I
\.l\.')

+a19Td+4Td | . or 1
12 Hatd i1 f

di A1Td-10T; d—8 + A2Td—8T; d—8
2 2 2 2
+a3Td—6T; _d—8 + A4Td-aT; d—s
2 2 2 2
+a5Td—2%; d—s + A6Td—8 T3
2 2 2
+a7x# Tit3 + agl‘% Tit3
“+agx dgz Tit3 + A10Td—4Ti+3

+a1124-3Ti+3 + @12T4—2Ti+3, for

vl
IN
IN
IS8
I
ot

Proof. The proof is analogous to the proof of Theorem 3.4. O

Remark 3.6. In the statement of Theorem 3.5 we have to exclude the lowest values
for d. However, as in Section 3.4, we can still find the desired quadrics qi, ..., qq—s for
these values for d, i.e. ford =6 and d =8:

(1) The case d = 6 is probably the easiest to consider: Here we know that Ic =
Is+ (Q) for a general quadric Q that does not lie in Ig.
The ideal of S is probably after a coordinate change generated by the (2x2)-minors

of the following matrix:
o T1 I3
1 T2 X4 '

The rolling factor coordinates are given as follows:

Tols = s°m,
x1ls = stz
Tols = tim,
r3ls = sy,
Tals = ty.

We have that h°(Og(2H)) = 12 which is exactly equal to the dimension of the
vector space of quadrics in P4 minus h®(Zs(2)). Notice that if we set

2 2
Q = 1Ty + A2Xox1 + A3ToT2 + A4T1T2 + A5T5 + AgToL3

2 2
+a7x0T4 + AsT1T4 + A9T2T4 + Q1023 + A11T3T4 + Q127

then Q|5 = fc.
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(2) In the case d = 8 we obtain the following:
After possibly a coordinate change the ideal Is is generated by the (2 X 2)-minors
of the following matrix:

To T1 To9 Tyg4 Ty
T Ty T3 Ty Te )
The rolling factor coordinates are given as follows:

3

Tols = sz,
Tl = sz,
Tolg = stim,
13l = tir,
Tyls = 321/7
r5|ls = sty,
r6ls = tz.

As above, the equation of C on S is given by

21222 + agst®z? + a5t4x2 + a653acy

2

fe = arstz? + assPta? + ags

+ a732txy + agsthy + agtsmy + a1052y2 + allsty2 + a12t2y

with ay, ... ,a10 € k.

The aim is now to find three quadrics g, ¢ and qs such that ¢ = s>fc, g = stfc
and g3 = t2fc on S.

The result is the following:

q = alxﬁ + axxoT1 + azxoT2 + A4ToT3 + A5T1T3 + A6ToLa

+  a7ToTs + agToTe + A9T1Tg + awxi + A1124%5 + A12T4%6,
G2 = @mToT1 + asz + a3T1T2 + A417T3 + A5T2T3 + A1

+ a7y + asT1x6 + AgT2Te + A10T4T5 + A11T5 + A12T5T6,
g3 = a1ToT2 + asx1x9 + Clgl'% + a4x0x3 + a5x§ + agToxy

2
+  arxoxs + agToke + A9T3Te + A10T4Te + A11T5T6 + A12TG.

3.3 d>T7odd, e=2,ie. S of scroll type (5}, £2)

After possibly a coordinate change the ideal of the scroll S is generated by the (2 X 2)-
minors of the following matrix:

To T1 e Tda Td-1 cee X
0 Fol Tt =3 ]
Ty X v Td-1  Td-1 ot Tg-2
2
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In terms of rolling factor coordinates the above matrix becomes

—1

d—1 d—1_4 d—1_1q d—5 d=5_1

s 2T s2 tex --- stz x s2y sz 'ty
d—1 d d—5 d—5
sz M sz %z --- tzax sz Mty sz 2y

By Proposition 2.6 we obtain

H° (P <0P1 <d21 @ Op <d25>>> 2H + (6 — d)F)
~ [0 <P1,52 (Opl (d21> o Op <d25>> ®0p1(6d)>

=~ H°(Op1(5) ® Op1(3) ® Op:1(1))

with a basis given by

{s°2% s'ta?, s*120%, 210 a? stha? t°2? ) sPwy, sPtwy, st’xy, oy, sy, ty? ).

As before, we observe thus that I g = (fc) where the equation fo of C on S is of the

following form:

fe = a185x2 + a284tx2 + a353t2x2 + a452t3x2 + a55t4x2 + a6t5902

+a7s3:ry + angtxy + agsthy + a10t3xy + an sy2 + algtyz

with ay,...,012 € k.

Theorem 3.7. Let

fo = a1551‘2 + a284tx2 + a353t21:2 + a452t3x2 + a5st4x2 + a6t5x2

+a733xy + a852t1:y + a95t2xy + a10t3acy + an sy2 + algty2

with aq, ...,a12 € k be the equation of a curve C on S.
For d > 11 the quadrics qi, . .., qq—5 cut out the curve C on S:

A1T0Ti—1 + A21%—1 + A3T2Ti—1 + A4T3T;—1
+a5x42i—1 + a6T52Ti—1 + A7T;i—1T d+1
2
+a8T;i—1% d+3 + A9T;—1T d+5
2 2
+010Ti—1%d+7 + Q11T d1 i1
2 2 5 i1
+a12m%1‘%+i71, for
qi =
1T d-11T; d—9 + A2Td—9T; d—9
2 2 2 2
+a3Ta—1x;_d-9 + A4Td—5T, -9
3 T2 3 T2
+a5xd-3%;, a9 + ALd-1T; d-9
3 T2 3 T2
Fa7Ta-1 %43 + AgTa_5Ti43
2 2

+a9T -3 %43 + A10T d-1Ti43
2 2

+a1124-3Ti+3 + @12T4—2Ti+3,

Proof. The proof is analogous to the proof of Theorem 3.4.

for %Sigd—&



36

CHAPTER 3. THE IDEAL OF ('

Remark 3.8. Again, when we state Theorem 3.7 we have to exclude the lowest values

for d. We give the quadrics qq, . ..

,qq—5 in the cases when d =7 and d =9:

(1) d ="17: The g3(C)-scroll S has type (3,1), its ideal Is is after possibly a coordinate
change generated by the (2 x 2)-minors of the following matriz:

To Tq1
Ty T2

The rolling factor coordinates are of the following form:

Tols
-?71\5
Iz\s
3]s
I4\s

Is\s

o)
z3

X4
Ty ’

sz,

8225.%7
st21’,
tg;v,
5Y,
ty.

Since also in the case e = 2 we obtained that the equation fc for C' on S is
independent of d, we want to find two quadrics q1 and gz such that 1 = sfc and

G2 =tfc on S.

The result is the following:

q1

q2

+

a1x2 “+ asTox1 + a3xoTo + A4ToT3 + a5r1T3 + AgTaTs3
0

2
A7T0T4 + AgTox5 + A9 1 X5 + G10T2T5 + Q11X + A12T4T5,

2
A1T0T1 + A2XpT2 + A3TeX3 + A4T1T3 + A5T2T3 + ATy

2
A7T0T5 + agT1T5 + AgTals + A10T3T5 + A11T4T5 + A12X5.

(2) d = 9: In this case the gi(C)-scroll has type (4,2) and the ideal Is is generated
by the (2 x 2)-minors of the following matriz:

To I1
Ty T2

T2
T3

T3
Ty

L5
Te

T
T ’

The rolling factor coordinates take the following form:

Io\s
xl‘S
962\5
35
934\5
55
65

I?\s

sz,

53tac,
52752967
st3:177
t4x7
%y,

sty,
t2y.
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Now we want to find four quadrics qi, qs, q3 and qu such that ¢, = s*fc, ¢ =
s°tfe, q3 = st’fo and qu = t3fo on S. The result is the following:

G = T+ asTox1 + a3ToTs + A4Tols + AsTTa + AeT1 T4,

+  arToxs + agxoTe + A9Tox7 + A10T1X7 + anxg + Q1275%¢,
G2 = a1ToT1+ GQI% + a3T1T2 + 42173 + A5T1T4 + AeT2Ty

+  a7r1x5 + agx1T6 + A9T1T7 + A10T2T7 + A11T5%6 + algwg,
g3 = a1Tox2 + Q22172 + agwg + 42273 + A5T2T4 + AT3T4

+  arZTas + AgTale + A9ToX7 + A10T3%7 + A11T527 + A12T6 27,
g4 = Q1Tox3 + X123 + A3T2T3 + a4x§ + as5xr3T4 + ab-;ri

2
+  arx3%5 + agT3Te + A9T3T7 + A10T4T7 + A11TeX7 + A1227.

3.4 d>6even, e=3,1i.e. S of scroll type (2, d—;6)

In this case Ig is after possibly a coordinate change generated by the (2 x 2)-minors of
the following matrix:

To T1 - Xd Xd cee o Xg-
0 1 41 441 d—3 .
X1 Ty - Td  Td cee o Xg-
1 T2 g 419 d—2
In terms of rolling factor coordinates this corresponds to:
d d_q d_q da—6 @_1 d=6_q
s2x s2 "ty ... st2Tx s2y ty -+ stz
41 d_2,9 d -1 4=6_9,9 =6 ’
s2 "t s2“ttw t2x ty s 2 "ty -+ tzy

By Proposition 2.6 we obtain

oo () (457)) an 000
~ KO <P1 52 <<9P1 ( ) @ Op (‘1;6)) ® Op1 (6 — d)>

=~ H(P', Op1(6) ® Op1(3) ® Op1)
with a basis given by
{s%22 s5ta?, s*2a?, s330%, s*ta?, ston? 1507, Sy, s*twy, st?xy, oy, y? ).

Consequently, we see that the equation of C on S is of the following form:

3322 + a552t41;2 + a65t5x2

+a7t6x2 + ags3xy + a952txy + alost%y + a11t3xy + a12y2,

fo = a15°2% + as5°ta® + ags*t?z? + aus

with ay,...,a12 € k.
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Theorem 3.9. Let

fc = a156x2 + ags5tx2 + a334t23:2 + a433t3w2 + a532t43:2 + aﬁst5x2

+a7t61:2 + ags31:y + a932txy + alost%y + a11t3xy + alng,

with ay,...,a13 € k, be the equation of a curve C' on S.

For d > 12 the quadrics qi, .. .,qq—s given by the following formula cut out the curve
ConS:

a1T0Ti—1 + A2T1T;—1 + A3T2T;—1 + A4T3Ti—1
+a5T4%i—1 + A6T52i—1 + A7TETi—1
+a8Ti—1T d+2 + AQT;—1T dta

2 2

+0a10%;i—1% d+6 + A11Ti—1T d+8
2 2

IN

IA
&
~

+ai12Tdr2Tdr2 . or 1
U D f

qi A1Td-12T; d—10 + AT d—10T. d—10
3 T3 3 T2

+a3ra—sT; d-10 + A4Td—6T;_ d-10
2 2 2 2

+asra—a®; d-10 + A6Ta-2T;_ d-10
2 p) 2 2

+a7$g T, 2-10 + agz%e Tit3

+a9T -1 Ti13 + A10T d—2Ti43
2 2

TanTaTits + G12Ta-2Ti+3, for 52 <i<d-5.
Proof. The proof is analogous to the proof of Theorem 3.4. |

Remark 3.10. As in the previous sections we have to exclude the lowest values for
d when stating Theorem 3.9. We will now give the quadrics qq,...,qq—5 when d = 6,
d=38,d=10:

(1) d = 6: In this case the scroll type of the g3(C)-scroll S is equal to (3,0), the ideal
Is is after possibly a coordinate change generated by the (2 x 2)-minors of the

following matrix:
To T1 T2
T Ty Ty )

The rolling factor coordinates are given as follows:

Tols = sz,

1l = s*tx,
Tolg = stim,
T3l = t,

T4l = .

Note again that Ic = Is+(Q) for a general quadric Q in P* that is not contained
mn ]5.

If we set
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2
Q = 1Ty + A2Xox1 + A3Tox2 + A4ToT3 + A5T1T3 + AgLaT3

2 2
+  arx3 + agroTy + A9X1T4 + A10T2T4 + A11T3T4 + A12TY,

which is a general quadric in P* modulo Ig, then Q|s = fc.

(2) d = 8: Here the g3(C)-scroll S is of type (4,1), the ideal Ig 1is, possibly after a
coordinate change, generated by the (2 x 2)-minors of the following matriz:

Top L1 To2 T3 Ts
1 T2 I3 T4 T ’

The rolling factor coordinates take the following form:

zols = s'z,
1l = stw,
1ol = s*ti,
r3lg = stiw,
14ls = thm,
rsls = sy,
Tels = ty.

We want to find three quadrics qi, qa and qz such that ¢, = s>fc, ¢ = stfc and
g3 = t2fc. The result is the following:

G = alxﬁ + Aoy + agxoT2 + 4T3 + A5ToT4 + AeT124

+  ar@ams + asToTs + agTols + A10T1T6 + A11TaT6 + A12T3,
G = Ty + asxT + a3T1 Ty + AT1T3 + AsT1Ty + AeTaTs

+  a7T3x4 + agx1T5 + A9T1T6 + A10T2X6 + A11T3%6 + A12X5T6,
G = 1Tl + AsT1To + A3T5 + AToT3 + AsTaTy + AeT3Ts

2 2
+ a7z + agroxs + AgTaTe + A10T3Te + A11T4Te + Q12T

(3) d = 10: Here the scroll type of the gi(C)-scroll S is equal to (5,2), the ideal
Is is, possibly after a coordinate change, generated by the (2 x 2)-minors of the
following matriz:

Top 1 To T3 T4 Tg I7
1 T2 I3 Xy X5 Ty Tg ’

The rolling factor coordinates are given as follows:
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Tols = sz,
wls = s'tz,
Tolg = s,
13l = s,
T4ls = stim,
rslg = to,
966\5 = 521/7
r7ls = sty,
rgls = t%y.

Here we want to find five quadrics qi, qa, g3, qu and qs such that ¢ = s*fc,
G2 = $°tfo, g3 = 22 fo, qu = st3fc and qs = t* fo. The result is the following:

q = alxg + Q2o + A3ToTo + T4XoX3 + A5ToT4 + AToTs

4+ ar15 + asTol + AgToT7 + A1pToTs + A1 T1Ts + A1,
G2 = @ToT1 + Cbzl“% + a3T1T2 + T4T123 + A5T104 + AeT125

+  7%2%5 + AgT1%6 + A9T1T7 + A1021T8 + A11T2T8 + A12T627,
g3 = a1ToT2 + G122 + agxg + T4X9%3 + A5ToXT4 + AgT2T5

+ 72375 + AgT2%6 + A9T2T7 + A10T2T8 + A11T3T8 + 01210?,
Q1 = T3+ AsT1T3 + A3TaT3 + T4T; + A5T3T4 + A6T3T

+  a7T4x5 + agT3Te + A9T3T7 + A10T3T8 + A11T4X8 + A12T72g,
Q5 = 120T4 + QX104 + A3T2T4 + T4T3Ty + G5Ii + asx4Ts

2 2
+  arx5 + agryTe + Q9T4T7 + A10T4T8 + A11T5X8 + A12T5.

3.5 An alternative presentation when 7 < d < 12

Inspired by Theorems 3.4, 3.5, 3.7 and 3.9 we will now list sets of quadrics that together
with Is generate I- in the cases where the degree d of C satisfies 7 < d < 12. In
order to give a compact form which will be more practical in Chapter 4 where we
look at resolutions of I, we will instead of using the coefficients aq,...,a12 € k use
general linear forms I; € k[xg,..., 24 2]. Modulo Ig this gives the same result. For
d = 10,11,12 we cannot use this notation with the linear forms /; but have to use a
mixed version with /; and a;’s. For d > 13 we have to entirely go back to the notation
with the a;’s as in Theorems 3.4, 3.5, 3.7, 3.9, since e.g. we would need that the term
lzo in terms of rolling factor coordinates contains s*~¢. But if | € klzo, ..., x40 is a
general linear form, then the monomial xgx4_ o appears in lxg, and in terms of rolling
factor coordinates we have zors_o = s't“xy, where (eq, e2) is the scroll type of S. But
in all cases we have e; < %, so e; < d— 6 for all d > 13. For the cases d = 11 and
d = 12 we have two versions depending on the scroll type.
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Table 3.1: Generators

deg(C) Generating matrix for Ig Generators of I
modulo g
7 < To X1 T3 T4 ) @ = hxo+loxy + l3z3 + 2y,
T1 Ty Ty Ts @2 = hxy +lwy + l3zs + L5
7 ( To X1 To T4 ) @ = hxo+loxy + l3ze + 2y,
1 To X3 Ty Qo = 115111 + ZQ.’L'Q + ld.’Lg + Z4.’L‘5
( Bo Ty By T4 Ts ) q1 = liwo + lowy + 324,
8 G2 = L1y + lowo + 35,
r1 X9 X3 X5 Tg
g3 = l1wo + loxs + 36
< B0 Ty @3 T3 Ts > q1 = liwo + lowy + 329,
8 G2 = L1y + lowo + 33,
Ty T2 X3 T4 Te
g3 = l1wg + lhws + 324
q = liwg + Iy,
9 ( To T1 T2 T4 Ts Te > g2 = liwy + lyws,
T1 Ty Ty Tz Te Ty q3 = L1z + Iy,
qs = Lz + lhay
q1 = liwg + Iy,
9 < To T1 Ty T3 Ty Te > g2 = L1y + Iy,
T1 Ty Ty T4 Te Ty g3 = l1wa + lpxs,
q1 = L3 + lpwy
@ = lLzo+ amwé
+  a11%5%T6 + A12T527,
@ = L1+ a10T5%6
+ anai+ apvery,
10 < o L1 T2 I3 Ty Tg Xy > qs = ll.’lfz + a10x5T7 )
T1 Ty T3 T4 Te Ty Tg + anTer7 + a1277,
@ = hr3+arsrs
+  11T6Ts + A12T7 s,
g5 = lLiwy+ 107678
+ anwrrs + apprd
@ = Lo+ arxixs
4+ anzizs + apag,
@ = Lz + arzazs
+ A11X9X8 + a12Tex7,
10 ( To Ty T2 Tz Tg4 Te T7 > g3 = bLiwy+ arxsws )
T1 To T3 Ty Ty Ty Xy +  apx3xs + apry,
@ = hirs+ arwyws
+  a11T4Ts + Q127778
g5 = hLxy+azad
4+ anwsrs + a1}
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| deg(C) ‘ e ‘

Generating matrix for Ig

Generators of I modulo Ig

11 0

(

Lo
L1

T
Z2

z2

T3 T5
T4 Tg

Te 7
7 Ig

s
Zg9

)

q1

q2

q3

q4

g5

g6

[T e [ e

JF
J’_

xo Zf:o @j+1T5
o Z?=5 ;T
Ts5 Z?:s Q44T
21 Y0 a1z
21 Y5 i
Tg Z§:5 Aj44T5,
T2 Z?:o Ai4+1T4
T2 Z?:5 a;T;
X7 Z?:s) Ai44T5,
x3 Z?:o Aj+1T5
23> 5 i
xg Zizs j4-4T 5,
T4 Z?:o Qi 125
T4 Y5 i
T9 Z?:5 Aj44T5,
T4 Y A
Zg Z?:1 @447
X9 2?16 Ai+3T;4

11 2

(

Zo
1

Ty
z2

x2
3

T3 x4
T4

Te I7

rs X7 Xg

T8
L9

)

q1
q2
q3
q4
q5
g6

= lizo + a11 3 + ar2w6a7,
= 171 + a1 w7 + a1272,
= l1z2 + a117628 + a12T77s,
= l1x3 + a11%T6T9 + a1227T9,
= liz4 + a112729 + 122879,
=lix5 + aj1r8T9 + algl‘g

12 1

(

Lo
L1

&1
Z2

x2
z3

Tr3 T4
X4 X5

]
x7

7 T8
ry X9

10

T9

q1

q2

q3

q4

g5

g6

q7

h++1n++10++1++1++1++

+ +

xo Z?:o Ay 125
o Z?:a AT

e Zfza Aj44T;5,
21 Yt i1
X1 Z?:S ;X5

T7 36 iy,
T2 Z?:o Q41T
2y Y M

T Z?:G Aj+4 T,
T3 Z?:o Ai+1%4
T3 Y AT

) Z?:ﬁ Q425
T4 Y Gif 1T
Tq Z?:G AT
T10 306 AitaTi,
T4 Y @i

9 Z?:z Ai4+4T;
29 30108 Qi
o5 Y0y A
10 Z?:z Q44T
210 Y108 iy,
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‘ deg(C) ‘ e ‘ Generating matrix for Ig ‘ Generators of I modulo Ig ‘

q1 = lizo + a122?,

g2 = lix1 + ajpx7as,
g3 = l1we + a122779,

) q1 = liz3 + apw7210,
g5 = lixy + a12x3719,

46 = liz5 + a12w9710,

qr = lixg + algl’%o

19 3 g X1 X2 I3 T4 X5 X7 T I9
Ty T2 T3 T4 Ts Te T8 T9 T10

A third presentation of generators, namely as matrix product

Using the generators of I modulo Ig as listed in the above tables we give, in the
cases d = 7, d = 8 and d = 9, a matrix A with as few columns as possible such that
the entries in the matrix product M - A give us all generators of I where M is the
generating matrix of Is as given in Table 3.1.

d=7

In the case when S is maximally balanced, i.e. when e = 0, the matrix A is given as
follows:

d=38

In the case e = 1 the matrix A is given as follows:

In the case e = 3 the matrix A is given as follows:
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ll 0 T T3 Ty Te 0 0
lg ll —r1 —X9 —I3 —T

A=1|1l3 Il O 0 0 0
0 l3 0 0 0 0 T2 —I5
00 0 0 0 0

d=9

In the case e = 0 the matrix A is given as follows:

ll 0 T2 XT3 Ts Te ZT7 0 0 0 0
0 0 —xy —x9 —x4 —x5 —x¢ O 0 0 0
e 0 6L 0 0 0 0 0 0 0 0 0
lb 0 0 0 0 0 0 —z3 O 0 0
0 l2 0 0 0 0 0 X9 —x3 —Ty —Tg
0 0 0 0 0 0 0 0 Ty Ty T

0, O 0 0 0 0 T
0 0 0 0 0 0 0 0 -3 —x4 —u6
0 0 O 0 0 0 0 0 Ty X3 Ts



Chapter 4

The minimal free resolution of Op

Let C be a smooth curve of genus 2 and degree d > 5 embedded in P4~2, and let S
be the g3(C)-scroll. In this chapter we will find the minimal free resolution of O¢ as
Opa-2-module, using the minimal free resolution of Og as Opa—2-module and a mapping
cone technique.

4.1 Free resolutions and Betti diagrams

First we recall the definition of a minimal free resolution of a module M over a ring R:

Definition 4.1. Let R be a commutative ring and M an R-module. A free resolution
of M as an R-module is an exact complex of R-modules:

0 — @y R(—5)%5 2% 2 @ R(—5)%9 5 @55, R(—=1)% — M — 0.

The resolution is minimal if the image of ¢; is contained in the mazimal ideal of R for
all i.

The non-negative integers (3; ;, i.e. the ranks of the R-modules, are called the graded
Betti numbers of M.

For our varieties X, several Betti numbers of Ox are equal to 0. If X is a rational
normal scroll, then Ox is resolved by the Eagon-Northcott complex, which means that
the only non-zero Betti numbers are equal to foo = 1 and 3; ;41 fori = 1,..., codim(X).
Let now V = H(C,Oc¢(H)), R = Sym(V) and Rc = R/Ic = ®,ezH(C,Oc(qH)).
The following proposition states which Betti numbers of R¢ definitely are equal to 0:

Proposition 4.2. The only possible non-zero Betti numbers of Rc are Boo, Bii+1,
i=1,...,d—4, Bg4a2 and By 341

Proof. There is the following Koszul complex:
p+1 p p—1
— AV @ (Re)gr 25 AV @ (Ro)g 25 AV @ (Re)gsr — -
Let K, ,(Rc, V) be the Koszul cohomology group
kerd,, ,

1 dp+1,q—1

Kpqa(Re, V) =

45
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Moreover, let
= Bz Mg ® R(—q) = Bgzgo Mo, @ R(—q) = Re — 0

be the minimal free resolution of Re¢.
Then by the Syzygy Theorem ([MG1], Thm. (1.b.4)) there is the following isomor-
phism:

Kp,q(RC: V) = ]\/[pmﬂ'
Theorem (4.a.1) in [Gre84] then gives us that K, ,(Rc,V) = 0 for ¢ > 3, since
hY(Oc(H)) =0, and K,2(Rc, V) = 0if d > 5+ p. That is, we have two candidates for
KCp2 not to be zero, namely for p=d —3 and p =d — 4-
In order to show that Ky_31(Rc, V) = 0 we need the following theorem:

Theorem 4.3. (The Duality Theorem, Thm. (2.c.6) in [Gre84])

Let X be a compact complex manifold of dimension n, let L — X be a line bundle and
let F — X be a vector bundle.

Set B = @z HY (X, F @ L), If V. C HY(X, L) is basepoint-free and of dimension
r+1 and

H'(X,F® L")
Hl(X.7:® ‘quifl)

=0, +=1,...,n—1,
-0, i=1,....n—1,
then
’Cpafl(B7 V)* = ’C'r‘f'nfp,nJrlfq(B/) V)a
where B’ := @,ez H) (X, wxy @ F* ® L2).
Here we use the Duality Theorem with X = C, £L = O¢(H), F = O¢ and V =
H°(C,0¢(H)) and obtain that
Kas1(Rc, V)" = Ko1(®ezH"(C, Oc(qH + K¢), V).
By definition we have that
ker do 1
Ko1(C,Ke,Oc(H)) = ——=
0,1( 3 C C( )) im dl’o
where

HO(C, 0c(H)) @ HY(C, 0c(Ke)) % HY(C, Oc(Ko + H)) 25 0.

Consider the map
Y HY(C,0c(H)) ® H(C,0c(K¢)) — H(C,Oc(Ke + H)),

D, ® Dy Dy + Ds.

The image of v is spanned by those divisors in H%(C,O¢(H + K¢)) that contain a
divisor in H°(O¢(K¢)). Each divisor in H*(O¢(K(¢)) spans a fiber of S, i.e. the image
of ¢ is spanned by those hyperplanes in P(H°(Oc(H + K¢))) = P? that contain a
fiber of S C P9. Consequently, 9 is surjective if and only if there is no common point
for all fibres, i.e. if and only if S C P is smooth. By Proposition 2.13 in Chapter 2
S C P? is smooth for all d > 5. This implies that Ko ,(C, K¢, Oc(H)) = 0 and thus
also Ky_31(C,Oc(H)) =0 for d > 5. O



4.1. FREE RESOLUTIONS AND BETTI DIAGRAMS 47

We write the Betti numbers in a Betti diagram, and our notation will be the following,
where a dash indicates that the corresponding Betti number is equal to 0:

- = = .. - Ba-s,d-2 Bi-3d-1
— b2 Pos oo Basd-a Ba-a4d-3 -
Boo — — ... - - -

For an Opa-2-module V' we denote by S;V' the symmetric algebra of V', by D;V the
divided power algebra of V and by A’ V' the jth wedge product of V. Notice that there
is an isomorphism D;V = S;V*. We will also use the following natural isomorphisms:

2 2 i+1
D03 = 5,035, , = Ok,

and '
A o (),
/\ Of:)dEZ (71) = Opd]—2 (7J)~
In this chapter we will use the following coordinates:
After possibly a coordinate change we can assume that I is generated by the (2 x 2)-
minors of the following matrix:

T cen Tey—1 X 1 ... Tg—
JVI_< 0 e e1+ (13>.

rr ... Tey Tey+2 -+ Tg—2

Let @ : Of,ﬁz(—l) — 0%, be the map given by multiplication with the matrix M.

Define a complex C® by defining the jth term as

Cb = { ) l/\j O;’;i(_l) & Sbfj(l)%dfz, 0<j<b
J /\]7L O%;iQ(—l) ® ijbflofjdfg, ] >bt1

and with differentials C? — C?_, given by the multiplication with ® € Ho(P*2, 0123(51,13) (1))
d—3
for j#b+1and \°® € HO(Pd‘Q,(’)( ; )(2)) for j=b+1.

pPd—2
Theorem 4.4. ([Sch86], §1)
For a,b € Z, b > —1, C%a) is a minimal resolution of Os(aH + bF) as an Opi-2-
module.

In particular, C° is a minimal resolution of Og as an Opa-2-module. Since [C] =
2H + (6 — d)F' in Pic(S), we have Z¢ g = Og(—C) = Og(—2H + (d — 6)F), and thus
C476(—2) is a minimal resolution of I¢ g as an Opa-2-module.

Definition 4.5. (Mapping cone)(cf. [Eis95], Appendiz A3.12): If F, and G, are
complexes with differentials ¢; : F; — F;_1 and ; : G; — Gi_1 and if v : FF — G is a
map, then the mapping cone complex H, is defined as follows:
Fin 22 F, = F
lwﬂ@/ i% @/ l
/¢z+1 /wi
Gi+1 — G —=Gi

Yi—1

H; := F; ® G;11 with differential

—¢i 0 )
61' = : Hz Hi, .
( Vi Yin - !
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In the next section we will describe how we obtain a resolution of O¢ as Opa—2-module
from the mapping cone C46(—2) — C°.

First we will describe in one example how we obtain the minimal free resolution of I¢
with the mapping cone technique:

Example 4.6. d = 6:

A resolution of a curve of genus 2 and degree 6 is given by the mapping cone C°(—2) —
co.

The complex C° is given by

3 2 0
0— /\ Opi(—1) @ $108: — \ Opi(=1) ® Se0ps — J\ Ops(—1) @ S0 — 0,

which is equal to

0 — O0pi(—3) — Opi(—2) — Ops — 0.

Consequently C°(=2) is equal to

0 — 0%,(=5) = Opi(—4) — Ops(—2) — 0.

Now we form the mapping cone C°(—=2) — C°:

0 — O0pi(=5) — 0}i(—4) — Ops(—2) —=0
/ - - e
/@ l /@ | l /eB l /@
0~ O0pi(=3) — 0}.(—2) Ops 0

and finally obtain the following resolution of O¢ as an Opa-module:

0 — 03:(=5) — Ops(—4) © Opi(—3) — Ops(—2) — Ops — Og — 0.

Since all entries in the matrices that give the differentials in the above complex have
degree at least 1, we observe that this resolution is in fact minimal.

4.2 The resolution of O¢ as Ops2-module for d > 5

Let C be a smooth curve of genus 2 and degree d > 5 embedded in P%2,

Set O := Opa-2.

We will now describe a way to obtain a resolution of O¢ as an Opa—2-module. Having
obtained this resolution we will see that it is in fact minimal.

We refer to [Sch86| for further details.

(1) Construct C°:
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d—3 d—4
0 - N0 (-1)® 850 = \ 073 (-1)
d—5

® S4-60°

- NO(-1)®5,70° = — /\Od ’(-1) ® S0?

3

2
— NO¥(-1) ©8,0° - \ 0 (~1) ® S,0°

0

- N0 (1) ® $0% -0

which is equal to

0 — O(=(d=3)"* = O(~(d = ) — O(—(d —5))
2’ - O —0.

= 5 0= S 0=3)2%Y) s o—2)

(2) Find C¥5(~2):

(a) €46 is given by

0 — /\(9“ ®5102Hd/\40d3 1) ® $0°
- /\od3 1) ® $0° — ---—>/\c9'f3 1) ®5,0°
- /\(9”13 ) ® S,0? — --~—>/\(’)d(i ) ® Sg-100?
— /\od (=1) ® 8490 —>/\od 5(=1) ® 84507

1

0
— N0 (1) ® 8470 — \ O (-1

which is equal to

(
~(@ =7 - o(—(d -8+’

—4)
1)(d 6)(d— d) Od75 = 0.

Ll

) ® Sd,GOQ —0

) ..

@) - 0(=3)@-9("3") — O(—2)@(2")

d—3)
2
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(b) Therefore C?~%(—2) is the following complex:

0 — O(~(d—1))* = O(~(d —2))“ — O(~(d - 4))(%)
— O(=(d—-5)"T) S o(=(d—6)(5) ..
— 0(=6)@9() - 0(=5)@-8("°) - O(—g)@D("F)
- O(=3)[9E=3) _ 0(-2)¢5 .

(3) Now form the mapping cone C46(—2) — C:
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—2-MODULE FOR d > 5

4.2. THE RESOLUTION OF O¢ AS Opa

|

@

e

<~ ep(C)0 =~ (¢-p)(o-n(E7)O

\,\
\

w-p»((E@—P) )0

52

e—p)e—p)(F—P)")0<— (e —P)-)O=—0

P

_— %\\%

{(1=-P)-)o<—0
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From the above mapping cone we obtain the following resolution of O¢ as Opa-2-
module:

O(=(d=1))* = O(=(d = 2))“"Y © O(—(d - 3))""
O(—(d - 4))(‘1;3)+(d75)(d73) — O(—(d - 5))2(d;3)+(d76)(d;3)

N (9(_4)(d77)(d53)+3(d23) N @(_3)<d76>(d73>+2(453)
(9(—2)(1153)4"1_5 -0 —0c¢—0.

I A

Since all maps in the complexes are given by multiplication with matrices with poly-
nomial entries of degree at least 1, this resolution is in fact minimal. Hence we obtain
the following Betti numbers:

Boo = 1,
d—3 d—3
- = —4—3 i=1,...,d—4
ﬁl,l‘H Z(Z+1)+(d Z)(Z'].)’Z ) 7d 3
Bi—a,4-2 = d—3,
Bi-3d4-1 = 2.
Consequently, the Betti diagram looks like this:
— — — — — 129
_ _ _ . _ d—3] =
a=3 a=3
- (2) 2(3) (dlg)(df?’) d—4] —
+(d=5) | +(d—6)(d~3) +(%%)
1 — — _ I

Remark 4.7. We can also find the Betti numbers 3;; via the Hilbert polynomial of Oc,
Hc(t) =dt —1:
By Proposition 4.2 we know that the only possible non-zero Betti numbers are (oo, P12,

Baz, -y Ba—ad—3, Bi—ad—2, Bi-sd-1. In particular, for each j there is at most one i
such that B;; # 0. Now, by [Eis05], Chapter 1B, Corollary 1.10., we have the following

recursive formula:
. d—24j—k
BJ—HC(J)—ZBk( i )

k<j
where By = Zizo(*l)i@j‘
We can start with Byg = 1 and obtain the other 3;; recursively.

4.3 The differentials in the mapping cone complex

d=5

Let us consider a curve C of degree 5 on a smooth g4(C)-scroll S, i.e. S is a smooth
quadric Q = P! x P! — P3. After possibly a coordinate change the ideal Ig is
generated by the determinant of the matrix
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M= ( To T2 > .
Ty 3
Recall that if C is a curve of genus 2 and degree 5 in P3, then Iog = Os(—2H — F).
Hence by Theorem 4.4, a minimal free resolution of I ¢ as an Ops-module is given by
the complex C~(—2). Moreover, again by Theorem 4.4, C° gives a minimal resolution of
Os as an Ops-module. The mapping cone C~!(—2) — C°, corresponding to I¢,s — Og,

yields a minimal resolution of O¢ as an Ops-module.
Hence we look at the following double complex:

O—>02(—4) L 02(—3) —>IC,S —

lcl lco J/
det(M)

0——=0(-2) (@] Og 0,

where
Co = (=212 + x3¢1, —ToG2 + 122),
C, = (Qh QZ)

and ¢i, g2 € k[zo, 21, T2, 23] are quadratic forms.
Taking the mapping cone complex we now obtain

0— O(-4) -2 0(=3)280(-2) -5 0 — 0,

where 1 is given by multiplication with the matrix

( —T1G2 + T3q1, —Toq2 + Q1 T2, ToT3z — T17T2 )

and ¢ is given by multiplication with the matrix

—To —I2
—x1 —I3
q1 q2

d=26
Let S be a smooth scroll in P* which ideal is generated by the (2 x 2)-minors of the

following matrix:
M= < Lo T1 T3 > .
Tr1 To X4

If we take a general quadric @, then as we have seen before, Q NS is a smooth curve
C of degree 6 and genus 2. The resolution of O¢ as an Ops-module is given by the
mapping cone C°(—2) — C°.

That is, we consider the following complex:

Ay Ao
—_— —_—

0— 0*(-5) O3 (—4) O(-2)—Ics—0

o, L k]

0— 02(—3) > 03(-2) 0] Oy 0,
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where

Ay=DBy = (%952*15%7 ToTy — 2123, I1$4*I2I3)7
XT3 Ty
AlzBl = —T1 —X9
) T
Q 0 0
C() - 0 Q 0 )
00 Q
0
(- (20).

The mapping cone complex is then given by
0— O(=5)2 -2 O(—4)* & 0(-3)2 -5 O(=2)* 2 I — 0,

where ¢ is given by multiplication with the matrix

—T3 —T4
I T2
—ZTo —I1 s
Q 0
0 @
1) is given by multiplication with the matrix
—ToTo + 12 —ToT4 + 3173 —T1T4 + Towz O 0
Q 0 0 xI3 Ty
0 Q 0 —X1 —I2
0 0 Q Zo Ty

and p is given by multiplication with the matrix

( Q x0Ty — T} ToTy — T T3 TIT4 — ToT3 ) )

M= < Lo T1 T3 T4 > :
L1 T2 T4 Ts
and let S be the two-dimensional rational normal scroll defined by the (2 X 2)-minors

of M.
Let 1, ..., g denote the (2 x 2)-minors of M, let Iy, ls, I3, 4 in k[zo, T1, T2, T3, T4, T5) be
general linear forms, and set

Q1 = hxo+lhry + l3zs + lyay,
Q2 = hxy+lhxy +lszy + 1425,
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In Section 3.5 we have seen that the ideal (q1, g2, g3, qu, G5, @6, @1, Q2) =: I defines a
smooth curve C' of genus 2 and degree 7 with associated gi(C)-scroll S.

The mapping cone C'(—2) — C° is a minimal resolution of O¢ as Ops-module.

That is, we consider the following complex:

0—= O%(—6) 2= 04 (—5) 2= 04 (—3) 2% 02(~2) — = s —=0
iCQ Cy lCo l(*@z,Ql) \L

Bo

0 —= O03(—4) 22 03(—3) 2~ 05(-2) 0] Os 0

where the maps are given by multiplication with the matrices Ag, Ay, A, By, By, Bo,
Cy, C1 and Cy which can be found in Appendix A.1.

d=38

Let S be a maximally balanced scroll, defined by the (2 x 2)-minors of the following

matrix:
To T1 T2 Ty Ts
T1 To T3 Ty Tg )

In Section 3.5 we found the following description of the ideal I of a curve C' of genus
2 and degree 8:
Ic = Is 4 (Q1, @2, Q3), where @1, Q2 and Q3 are the following quadrics:

Q1 = hzo+ bz + I3z,
Q2 = hzy+lbzy + l375,
Qs = hxy+ lbas + I3z,

with general linear forms Uy, ls, I3 € k[zo, . .., zg).
The mapping cone C46(—2) — C° gives a resolution of O¢ as Ops-module.

A A A A
00— O%(—7) —2> O5(—6) ——> O10(—4) — > O10(—3) —2> O3(—2) Oc 0

lca ics lcz lcl jco
B By

B B
0 ——> O4(=5) —> O15(—4) —> O (—3) — > O10(-2) 16 Os 0

The maps in the above complex are given by multiplication with the matrices that can
be found in Appendix A.2.



96

CHAPTER 4. THE MINIMAL FREE RESOLUTION OF O¢




Chapter 5

The 1deal of C' as a sum of scrollar
ideals

In this chapter we will show that the ideal I- of a linearly normal embedded curve
C C P92 of genus 2 and degree d > 6 is generated by the ideals Ig and Iy, where S
is the g3(C)-scroll and V = V|p| is a g3(C)-scroll not containing S. In other words, we
will prove the following main theorem in this section:

Theorem 5.1. Let C' be a non-singular and irreducible curve of genus 2, linearly
normal embedded in P42 by a complete linear system |H| of degree d > 6. Then

Is+ 1y =1
for a gi(C)-scroll V that does not contain the g3(C)-scroll S.

We will first give an inductive proof of this theorem. We will then give a proof of a
slightly weaker result, this proof goes via the quadric P! x P! C P3.
Before we will take a look at the ideals we show that SNV = C:

Proposition 5.2. Let C C P%2 be a smooth and irreducible curve of genus 2 and
degree d > 6. For a g3(C)-scroll V = V|p| that does not contain the g3(C)-scroll S the
following holds:

SNV =C.

Proof. Obviously, C' C SNV. In the case d = 6 the claim follows by Bézout’s Theorem,
since then SNV is of degree 6 and dimension 1. Let now d > 7. If SNV is more than
C, then it must at least contain one line: If SNV O C'U P for a point P that does not
lie on C, then P lies on one fiber Fy of the scroll S. But since P does not lie on the
curve, each quadric that contains V' intersects Fp in at least three points, consequently
the whole fiber Fy must be contained in each quadric that contains V', and since the
ideal Iy is generated by quadrics Fy is contained in S NV. Now there are a priori two
possibilities for a fiber F' of S to be contained in V:

(1) F is contained in one of the fibers of V = V|py; this implies that the g3(C) |D|
has a basepoint, |D| = |K¢ + P|, and consequently S C V.

(2) F is intersecting each fiber of V' in one point. Since F is a fiber of S, the point
of intersection lies on C' for exactly two fibers of V. Projecting from F yields a
curve C’ of genus 2 and degree d — 2, linearly normal embedded in P4~* with

o7
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the linear system |H — K¢|. The curve C” lies on the surface scroll S” which is
the image of V' under the projection from F. A general fiber of V' is projected
to a fiber in S’; and the three points in the intersection of C' with a general fiber
in V will be projected to three points on a fiber in S’ which is impossible by
Corollary 3.2 unless C was a curve of degree 7 in P?. If C' is a curve of degree 7
that projects to a curve C’ of degree 5 on P' x P!, then |H| = |D + 2K| and
the g5(C)-scroll V = V|p, contains the g3(C)-scroll S by Proposition 2.17.

This proves that the intersection SNV cannot contain any line, i.e. in total we obtain
SNnv=C. O

In our proof of Theorem 5.1 we will give an inductive argument. We will divide the
proof into the cases when d is an even number and when d is an odd number. When
d is an even number the induction starts with the case d = 6, and when d is an odd
number the induction start is the case d = 7.

Our strategy will be the following:

As usual, let S be the g3(C)-scroll, and let V' = V|p| be a gj(C)-scroll that does not
contain S. There is the following short exact sequence of ideal sheaves:

0— Zsuy — Iy — Zsnv]s — 0.

By Propositon 5.2 we have SNV = C, and moreover we know that Z¢|g = Og(—C).
We thus obtain the following short exact sequence:

0— ISUV %IV — Os(*C) — 0.
Tensoring with Opa—2(2H) yields the following exact sequence:

0— ISUv(QH) — Iv(QH) - 05(2H - C) — 0.

Taking the long exact sequence in cohomology yields

0 — H°(Zsuy(2)) — H(Zy(2)) — H°(Os(2H — C)) — H*(Zsuv(2)) — 0.

Note that h'(Zy(2)) = 0 since V is projectively normal.
Since [C] = 2H — (d — 6)F on S, we can write the above sequence in the following
form:

0 — H(Zouy (2)) — H(Zv(2)) 5 H(Os((d = 6)F)) — H"(Zouv (2)) — 0.
Our aim is now to show the following claim:

Claim 5.3. For each |D| € G§(C) such that Vip| does not contain S, the map ¥ :
HYZy(2)) — HY(Os((d — 6)F)) defined via

B 0 if SCQ,
w@f—{QmS—CGW—mﬂ if SZQ

1S surjective.
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If the claim is true, then we have h'(Zsuy(2)) = 0, and thus the short exact sequence
0—Zsuv(2) = Zs(2) ©Iv(2) = Ig Ay (2) = 0
—c
gives the following long exact sequence in cohomology:

0 — H°(Zsuv(2)) — H°(Zs(2)) ® H(Zy(2)) — H°(Zo(2)) — 0.
This implies that

h(Ze(2)) dim(H°(Zs(2)) ® H(Zv(2))) — h*(Zsuv (2))

dim(H(Ts(2)) + HO(Ty (2)))
This argument implies that, since H%(Zg(2)) + H(Zy(2)) C H%(Z¢(2)),
H°(Zs(2)) + H*(Zv(2)) = H*(Zc(2)),

but since all Iy, Iy and Io are generated by quadrics, we obtain Ig + Iy = I¢.
Proof of Claim 5.3:
Now we will prove by induction that the map

Y HY(Iy(2)) — H(Os((d - 6)F))

as defined above is surjective. We divide our argument into the cases when d is even
and when d is odd.

The case when d is even, d = 2m for m > 3:

The induction start: d = 6:

For d = 6 the surjectivity of ¢ is obvious. More precisely, if |D] is a basepoint-free
g3(C) such that |H — D also is basepoint-free, then by Proposition 2.17 Vip| =: Qg is
a quadric that does not contain S.

The induction step: d =2m > 8:

In the induction step we have to consider the case d = 8 separately, since by Proposition
2.17 the condition that | D] is basepoint-free is not enough to ensure that V|p| does not
contain the gi(C)-scroll S in the case when the degree of C is equal to 6. Let now
C C PS be a curve embedded by a linear system |H| of degree 8. The problematic
case is when |H| = |D + 2K + P, since then |H — K¢| = |D + D’| where |D/|
has one basepoint P. In this case let Ry # P and Ry # P be two points on C
such that Ry + Ry is not a divisor in |K¢|, and let R} and R} be two points on
C such that R; + R} and R, + R} are divisors in |K¢|. Projecting from the line
Ly spanned by R; and R yields a curve C’ of degree 6, embedded with the system
|H'|:=|H— Ry — Ry| = |D+ R} + R, + P| = |D + D'| with |D’| basepoint-free. Under
this projection the g3(C)-scroll S maps to the g3(C”)-scroll S’, and the g3(C)-scroll Vip,
maps to a g3(C")-scroll VI;DI which does not contain S’. By the induction hypothesis
there exists a quadric Qg that contains the gi(C”)-scroll V\b| and that does not contain
the gi(C")-scroll §’. The cone over this quadric Qg with the line Ly as vertex is a
quadric ) that contains V|p| but not S and that in addition contains two fibers of S:
The fiber Fg, spanned by R; and R} intersects the quadric Qg in three points, counted
with multiplicity: The quadric Qg intersects this line in at least the two points R; and
R!, and since the quadric is singular along the line Ly the quadric Qg intersects Fg, in
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the point R; with at least multiplicity 2. Consequently Qs must contain the line Fpg,,
and the same argument applies to the fiber Ff, which is spanned by the points Rs and
R),. By degree reasons QsNS = C'U Fg, U Fg,, and since the divisors Fg, + Fg,, where
Ry and R, run through the set of all points on C, span the linear system |2F| and ¢
is linear, v is surjective.

Let now C' be a curve of degree d = 2m > 8 in P?~2 such that |H| # |D + 2K¢ + P|
if d = 8. Pick 2m — 7 fibers F' = Fy, F,..., Fy,_g on S and project from F' into
P?m~% Under this projection the curve C' maps to a curve C’ of degree 2m — 2,
the g3(C)-scroll S maps to the g3(C”)-scroll S” and the gj(C)-scroll Vip; maps to a
g3(C")-scroll V|33\ which does not contain S’. By the induction hypothesis we find
a quadric Qa,_2 C P?™* which contains WDI but not S’, and which contains the
fibers Fy,...F},, _q where F} for i = 1,...,2m — 8 denotes the image of F; under the
projection.

The cone over (Jam,—2 with F' as vertex is then a quadric @, which contains V|p| and
not S. Moreover, (s, contains the fibers Fy, ..., F5,,_g and the fiber F'. Since F lies in
the singular locus of @)5,,,, F' is contained in (s, with multiplicity at least 2. By degree
reasons (s, N S cannot contain more than C', F of multiplicity 2 and Fi, ..., Fo,_s.
Consequently, ¥(Qam) = 2F UF,U. . .UFy,_s. Since the divisors 2F + Fy+- - -+ Fyy,_g
where F, Fy, ..., Fon,_s run through all fibers of S, span the linear system |(2m — 6)F|,
varying the fibers F' and Fi, ..., Fy,,_g yields the surjectivity of .

Alternatively, we can argue in the following way: Polynomials of degree 2m — 6 with
one double root generate all polynomials of degree 2m — 6, using the isomorphism
HO(P(E),0p(e)((d—6)F)) = H(P', Op1(d — 6)) gives the desired result.

The case when d is odd, d =2m+ 1 for m > 3:

The induction start: d = T:

For a curve C' of degree 7 let Vjp| be a g3(C)-scroll that does not contain the g3(C)-scroll
S. For any two quadrics Q1 # (2 their intersection Q1 N ()7 is a complete intersection
of dimension 3 and degree 4, hence if (); and @2 both contained S and V', then we
have Q1 N Qs = V UP3. Since S C Q1 NQ, and S is irreducible, we must have S C V
or S C P2, but since S spans all of P® and by hypothesis S is not contained in V', both
cases are impossible.

This shows that h°(Zsui(2)) < 1, and consequently we obtain

dim(H"(Zs(2)) + H'(Zv(2))) > h°(Zs(2)) + h(Zv(2)) — 1 = 8 = h°(Zc(2)),
and thus 1 is surjective.

The induction step: d =2m+12>9:

The induction step goes analogously to the induction step in the case when d is even:
In the case when C' is a curve of degree d = 9 and |H| = |D + 3K¢| we cannot
use the projection from a fiber on S, spanned by a divisor in |K¢|, since if C' is
embedded in P® by the linear system |D 4 2K¢/|, the g3(C)-scroll Vip, contains the
ga(C)-scroll S by Proposition 2.17. Consequently, analogous to the above case d = 8,
|H| = |D + 2Kc + P|, we will deal with this case first using a different projection and
then go over to the induction step in the remaining cases.

We pick two points Ry and Rs on C such that R; + Ry is not a divisor in |K¢|, and
moreover we pick two points R} and R) on C such that R+ R} and Ry+ R} are divisors
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in |K¢|. We project from the line L spanned by the two points R; and R and obtain
a curve C’ embedded with the system |H'| := |H — Ry — Ro| = |D + K¢ + R} + R}|.
Under this projection the gi(C)-scroll S maps to the gi(C’)-scroll S, and the gi(C)-
scroll Vip maps to a g3(C")-scroll V[j,.
By the induction hypothesis there exists a quadric Q7 that contains V|}, but not 5’
and that in addition contains one fiber Fy of S’. The cone over this quadric Q7 with
the line Lp as vertex is a quadric Qg that contains V|p| but not S and that in addition
contains a fiber Fy of S. In addition, Q9 contains two more fibers of S, namely the
fiber Fg, spanned by R; and R/ and the fiber F, spanned by Ry and Rj, by the same
reasons as in the case d = 8, |H| =|D + 2K + P|.
Let now C' C P?2 be a curve of degree d = 2m + 1 > 9 such that |H| # [3K¢ + P| if
d=9.
Let F' = Fy, Fy, ..., Fy,_7 be fibers on S and project from F into P?"~3. Under this
projection the curve C' maps to a curve C” of degree 2m — 1, the g4(C)-scroll S maps
to the g;(C")-scroll S', and the g3(C)-scroll Vip| maps to a g3(C")-scroll V7, that does
not contain S’. By the induction hypothesis we find a quadric Q2,_1 € P?™3 which
contains V|j, but not 5" and which moreover contains the fibers FY, ..., Fj, _; of 5.
The cone over Qy,,,_; With I as vertex is then a quadric Qa1 in P?™~! which contains
Vip| and not S and that in addition contains the fibers F1, ..., Fy,_7. Moreover, Qam41
contains the fiber F' with at least multiplicity 2 since F lies in the singular locus of
Qom+1- Again, by degree reasons we have Qo1 NS = CU2F U Fy ... U Fyy, 7, ie.
V(Qamy1) = 2F + Fy + -+ + Fop 1.
Since divisors of the form 2F + Fy + - - - + Fy,,_7 where F, Fy, ..., Fy,,_7 vary, span the
linear system |(2m — 5)F'| and 1 is linear we conclude that 1 is surjective.

]

Remark 5.4. As a biproduct we have shown in the proof for the case d = 7 that for
every fiber Fy on S and every |D| € G§(C) such that Vip| does not contain S there is
a quadric Q7 which contains Fy and Vip| but not S.

We want to mention that we can find a quadric of this kind explicitly, we will pick such
a quadric of rank 4:

Since the g3(C)-scroll Vip| does not contain the g3(C)-scroll S, |D] is basepoint-free
and |H| = |D + K¢ + P+ Q| where P+ Q is not a divisor in |K¢| (¢f. Proposition
2.17). Let us pick a point R on C N Fy such that R # P, R # Q. There is one more
point in C' N Fy which we denote by R’ (note that R’ might be equal to P or Q). We
project from the point R into P*. Under this projection the curve C maps to a curve
C' of genus 2 and degree 6, the gi(C)-scroll S maps to the gi(C')-scroll S’, and the
g3(C)-scroll Vip; maps to a g3(C")-scroll p|- Since the curve C" is embedded into p!
with the linear system |H'| ;== |H — R| and |H — D — R| = |R'4+ P+ Q)| is basepoint-free,
there exists, as we have seen above, a quadric Qg of rank 4 which is equal to Vlb‘ and
which does not contain S’. Taking the cone over Qg with R as vertex gives a quadric
Q7 of rank 4 in P® that contains Vip| but not S.

Now it remains to show that Q7 contains the fiber Fy: Any line L which is not contained
in Qy intersects Q7 in 2 points, counted with multiplicity. Obviously, both R and R’
lie on Q7 N Fy, and since R is a singular point of Qr, Fy and Qr intersect in at least 3
points counted with multiplicity. Thus Fy is contained in Q.

Now we will present a proof of a slightly weaker result. Here we need to decompose
d = 3a+ 2b, with a and bin Z, a > 2, b > 3, i.e. the proof only works for d = 12 and
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d>14.

Theorem 5.5. Let C' be a non-singular and irreducible curve of genus 2, linearly
normal embedded in P42 by a complete linear system |H| of degree d = 12 or d > 14.
Suppose that we can find a basepoint-free |D| € GA(C) such that |H| = |aD + bKc¢| for
integers a > 2, b > 3.

Then

Is+ 1y =I¢

where V. = Vip| is the scroll associated to | D).

Remark 5.6. Since the map
Pic(C) — Pic*(C),
L—al,

is surjective, there exists a |D| € Gi(C) such that |H — bK¢| = a|D|, i.e. |H| =
|aD + bK¢|. In Chapter 6.1 we will see that if a = 2 there actually exists a basepoint-
free |D| such that |H| = |2D + bK¢|. For a > 3 we have to make the assumption in
Theorem 5.5 that we can find a basepoint-free | D].

In order to prove Theorem 5.5 our strategy will be to proceed in the following steps:

(1) Let C be a non-singular curve of genus 2, and let |H| be a complete linear system
of degree d on C, where d = 12 or d > 14. Moreover, let a > 2 and b > 3 be
integers such that 3a + 2b = d.

Embed now the curve C into P? with the linear system |D + Kc|. The image
curve in P?, which we also will denote by C, lies on exactly one smooth quadric
Q' = P! x PL. On P! x P! C is of type (2,3).

(2) The hyperplane class |H'| = (a,b) on P! x P! restricts to |H| on C. Use |H’|
to embed into P"#)-1 Denote the embedding by @z and set Q = &/ (Q").
The embedding of a divisor in the system E = (0, 1) is a rational normal curve
of degree a which spans a P?, i.e. the linear system F gives rise to an (a + 1)-
dimensional scroll X over P!. In a similar way the linear system D’ = (1,0)
gives rise to a (b + 1)-dimensional scroll Xps over PL. Both scrolls are linearly
normal since they contain the linearly normal ). Hence by Proposition 2.5 Xg
and Xp/ are rational normal scrolls.

The degree of Xg is equal to (a+ 1)(b+ 1) — (a+ 1) = (a + 1)b, and the degree
of Xprisequal to (a+1)(b+1)—(b+1) = (b+ 1)a.

Note that the image of the curve C' under the embedding ®5 is a curve on @ of
degree 3a + 2b = d. We will denote this image curve also by C'.

Let k[s,t] ® k[u,v] denote the homogeneous coordinate ring of P! x P! We
choose coordinates z;;, i = 0,...,a, j = 0,...,b, in P*)~1in such a way that
the restriction of x;; to the quadric @ is given by

N gamigiy bej
Tijlo = s*"tu .

The ideal of a rational normal scroll is generated by the (2 x 2)-minors of a
(2 x m)-matrix, where m is the degree of the scroll.
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Fori=0,...,aand j =0,...,b define the following blocks:

. ga—ifigb saigig =1y ... ga—ifigb1
1T saf’btzubfl,v safztzub72,u2 . sufztz,ub
and
3 = sfub=ipd  gr T lpbmigd L sty byl
J sOhub Iy g0 2p2bmagd o byl

The (2 x 2)-minors of the following matrices Mg and Mp, vanish:

Mz = (o] on | [ ),

Mpo= (6o Br]-[B).

In the coordinates x;; of P* ()= the blocks take the following form:

[ = Tio Tix o Tip-1
;=
Tyl T2 o Lip
and
vo= | Foi T Ta-1j
= .
Il] I2] DEEEEY Ia]

In the coordinates x;; of PhO(H/>’1, Ix, and Ix_, are in fact generated by the

(2 x 2)-minors of Mg and Mp respectively:
Mg = (polp| | ),

MD/I(I/o‘I/l""|I/b).

We notice that Mg consists of a + 1 blocks of length b each. The (2 x 2)-minors
in each block p; generate the ideal of a rational normal curve of degree b. So we
obtain a + 1 rational normal curves of degree b which are directrix curves of the
scroll X, i.e. if ¢; : P! — C;, i = 0,...,a, parametrize these rational normal
curves, then for each point P € P!, span{¢;(P)|i = 0,...,a} is a fiber in the
scroll Xg, and moreover, all fibers in the scroll can be described in this way, i.e.

Xg = U span{¢;(P)|i =0,...,a}.

Pep!

The number of blocks in the matrix Mg is equal to the dimension of Xz which
is equal to a + 1.

In the same way we can take a closer look at the scroll Xp: The matrix Mp:
consists of b+ 1 blocks of length a each. The (2 x 2)-minors in each block v;
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generate the ideal of a rational normal curve of degree a. These b + 1 rational
normal curves of degree a are directrix curves of the scroll Xp/. In this way we
can describe the scroll as

Xp = | span{y(P)|i =0,...,b},

PeP!

where ¢, : P — C;, i =0, ...,b, parametrize the directrix curves.

Also, the number of blocks in Mp is equal to the dimension of Xp/, which is
equal to b+ 1.

Notice that these observations imply that the scrolls Xz and Xp, are maximally
balanced, in particular these scrolls are smooth, and as bundles over P! we have

Xp & P(OPI (b) ® Op1 (b) ® - Op1 (b))

a+1

and
Xp 2 P(Opi(a) ® Opi(a) @ - - - Opi(a)).

b+1

(3) We show that
dim(HO(P"" ()71 Ty (2)) + HOPM 71 Ty (2))) = BO(PPHI T5(2))
, and thus we obtain that Iy, + Ix,, = Ig.

(4) Finally, we intersect with a linear subspace P 22 Ph*(H)-h"(H'-C)~1 _ pd-2 e
show that PNQ = C, PNXg = S and PN Xp = V|p| with |D| = D’ and obtain
in this way that Is + ]V\m =Ic.

The situation is the following:
(2,3) =C,(a,b)=H C P! x P!
¢H/

Q C Xp, Xpy C phot)-1

]

ccsvep

Proposition 5.7. With the notations as above we have
Ix, +Ix,, = 1o

Before we will prove this proposition, we will need some preliminary lemmata and
definitions:

Lemma 5.8. We have the following:

(a+1)(b+1)+1

R°(Zg(2)) = ( 5 )—(2a+1)(2b+1).
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Proof. From the exact sequence
0 — Zg(2) = Oproun-1(2) — Og(2) — 0
we obtain the long exact sequence in cohomology
0 — H*(Z(2)) — H*(Opnoun-(2)) — H'(Oq(2)) — H'(Ig(2)) — -+

Since @ is projectively normal we have h'(Zo(2)) = 0, so we obtain the short exact

sequence
0 — H(Z(2)) = H*(Opuon-1(2) = H'(Og(2)) = 0

and thus

h(Zg(2)) = h(Opuour-1(2)) — h*(Og(2))

<(“ + 1)([’; D+ 1) (204 1)(2b+1).

Definition 5.9. We define an order < on the set
{ZapTrs — TarpTys|a, /v,y €40,...,a},8,3,6,8 €{0,...,b}}
in the following way:
(1) First we will consider the set of monomials {xapx+s} ordered in such a way that

(a <) or (=7 and 3 <9).

(2) Now assume that the set of monomials {x.px+s} is ordered according to (1). Then
for two elements in this set we can define

TapTs < Twplyy & (a<d)or(a=a and 8 <)
or (a=a" and =0 and vy <)
or(a=a and B3=03 andy=+" and § < ¢).

We write x.p2,5 < Togxyy if at least one of the strict inequalities o < o/,
B<pB,v<+,8< holds.

(3) Now we can define for two binomials TagXas — Torg Ty WNA TuaTpy — Tt Ty

Taplys — Lo/ B Ty < TATpy — Tr/NTply!
& (Tapoys < TurTuy)

OT (Taflnys = LTy A T3 Trer < Tyt n Ty )
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Definition 5.10. (1) We define an equivalence relation ~g on the set of monomials
{Zapys|Tagtys is @ monomial in a minor in Mg} in the following way:

Taplns ~YE To/3 Ty s
S TaBlys — TogrTyry € [XE'
(2) Similarly we define an equivalence relation ~p: on the set of monomials

{TapTys|Tapys is @ monomial in a minor in Mp:}

Laplys D Lot Lyt st
= TapTys — To/pTys € [XD"

Lemma 5.11. Let ~ be one of the equivalence relations ~g, ~p: as given in Definition
5.10. Then we have the following:

If two monomials Ty Ty, and Tpexys are in the same equivalence class with respect to
the equivalence relation ~, then k+m =p+r andl+n=q+ s.

Proof. (1) If &y, and x,,2.s are in the same equivalence class with respect to the
equivalence relation ~p, then
Lpq

ITS
'/L.TILTL

is a column in Mg, and

is another column in Mg.
By the structure of Mg we obtain

k = p,
I = q—1,
m =,
n = s+ 1.

Consequently, k+m=p+randl+n=q+s.

(2) Similarly, if @@, and T2, are in the same equivalence class with respect to
the equivalence relation ~p/, then

is a column in Mp/, and
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is another column in Mp:.
By the structure of Mp we obtain

k = p-1,
Il =g,
m = r+1,
n = S.

Consequently, k+m=p+rand l+n = q+ s.
O

Remark 5.12. (1) We will denote the equivalence class of Ty Tmn with respect to the
equivalence relation ~g bY Qkgm i4n-
For some indices (i,j) there exist several (disjoint) equivalence classes o, we
will distinguish between those in the following way:
All elements in the equivalence class of TyTmn are of the form
ThyTms, ¥+ 0 = L+ n, so denote the equivalence class containing TyTp, by
ag:’—:'?,l—b—n'

(2) Similarly, we will denote the equivalence class of Tgxmn with respect to the equiv-

alence relation ~p by Brimitn- All elements in this equivalence class are of the
form . x5,, v+ 0 = k 4+ m, so if there exist more than one equivalence class

with a fized index (i,j), we will distinguish between these by denoting the one

(L)

containing TiTmn Oy By i 1in-

Now we are able to formulate the proof of Proposition 5.7:

Proof of Proposition 5.7

Obviously we have Ix, + Ix,, C Ig. Our strategy is now to determine the dimension
of H(Ix,(2))+H"(Zx,,(2)) and consequently show that H%(Zx,(2))+H"(Zx,,(2)) =
H%(Zy(2)). More precisely, we will study the (2 x 2)-minors of Mp, and find the ones
independent over the ideal generated by the (2 x 2)-minors of M.

In order to pick enough minors in Mps that are independent over H°(Zx,(2)), we
will study the sets Qp, kK =0,...,a —2,1=0,...,b, of quadrics, where Qj; contains
minors in Mp that start with xy,, i.e. that are of the form zyx,s — 2p+1,2,_1,5, ordered
according to the order in Definition 5.9, and that are independent over H°(Zx,(2)).
We choose the elements in the sets Qy; in the following way:

First we will study those minors of the form

TroTrs — Tk+1,00r—1,s5

k=0,...,a—2,r=k+2,...,a,5s=0,...,b,

i.e. those minors where the first variable in the first monomial appears in the first row
of the first block in Mp.
We start with the coordinate xgg and consider all minors of the form

LooLrs — L10Tr—1,s5
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where now r = 2,...,a, i.e. we skip the minors which start with the monomial xgz1s,
s =0,...,b where z, apparently is the first entry in the second row of each block in
Mpy.

In general we will consider the minors of the form

TroTrs — Tk+1,0Lr—1,s,

k=0,...,a—2,r=k+2,...,a,5s=0,...,b,

i.e. we will skip the minors where the second variable in the first monomial is among
the first k£ + 1 entries in the second row of each block of Mp:.

Afterwards we will study the minors that start with the coordinates xy;,, k =1,...,a—2,
l=0,...,b. Here we will only study the minors where the second coordinate in the
first monomial appears in the second row of the last block in Mp/, i.e. we will consider
the minors of the form

TpiTrh — Th41,1Tr—1,b,
r=k+2,...,a.

Summarizing, we are considering the following quadrics which are sorted in ascending
order in the sense of the order < from Definition 5.9:

| Ouo | 910 ... Qu—20 |
TooT20 — x%o
TooT30 — T10T20 T10T30 — I%o

T10T40 — T20L30

T00La0 — L10La—1,0 | L10La0 — L20Lag—1,0 | - -+ | La—2,0La0 — La—1,0La—1,0
LooT21 — T10L11
TooL31 — T10T21 T10T31 — T20L21

ZL0o0Lal — L10La—1,1 | L10Tal — L20La—1,1 | - -+ | La—2,0Tal — La—1,0La—1,1

ZTooT2b — L10T1b

LTooL3p — L10L2b T10T3p — L20L2h
T0o0Lab — T10Ta—1,b | L10Tab — T20TLa—1b | -+ | La—2,0Lab — La—1,0La—1,b
Forli=1,... b
| Qui ‘ Qu [ ] Qa2
ooy — T1L1b
LT3y — L11L2b T1T3p — L2L2b
TolTab — T1ULa—1b | LUTab — T2ALa—1b | +-- | La—21Tab — LTa—1,1Ta—1b

(1) First we list the equivalence classes «;; with respect to the equivalence relation ~g
as defined in Definition 5.10, part (1). We will order the monomials within each
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equivalence class in ascending order with respect to the order given in Definition
5.9:

(k,k)

042]675 = {$k0xks>ffk1$k,s—1,- . '7IkaL§JIk,L%J}7
k=0,...,a,8=2,....,b,
(k) _ .
O‘]ﬁu,«’s - {xkoxrs> xklxr,sfh ey lksxro}a
k=0,....,.a—1L,r=k+1,...;a,5s=1,...,b,
(kk)
Aok 1hp {Tuhn, T Trp-1, - - 1 L, bt | U, | bt | h
k=0,...,a,l=1,....,b—2,
(k) _ .
vy = {Trary, Vo1 1, - - Tepnr ),

k=0,...,a—1,r=k+1,...,a,0l=1,...;b—1.

(2) For the sets Qi we have:

QkO = {xkomrs _xk+170'r1’71,s|74: k+2,...,a,s:(),...,b},
k=0,...,a—2,
Ou = {xuzm — Tppgtr1plr =k+2,...,a},

k=0,...,a—2,1=1,...,b.

Now we form equivalence classes from the sets Qp; with respect to the equiva-
lence relations ~ps. Order the monomials in each of these equivalence classes in
ascending order with respect to the order as defined in Definition 5.9. Note that
each equivalence class (i, ; consists of exactly two elements and the difference
of these two monomials gives exactly one of the minors in Qy;. This minor we
will refer to as the minor defined by By .

ﬂk+r,s = {xkoxra xk+1,0xr71,5}7
k=0,....,.a—2,r=k+2,...,a,5=0,...,b,
Brtrits = {ZTrTrp, Thr11Tr—1},

k=0,....,a—2,r=k+2,...,a,l=1,...,b.

(3) Now we will prove that the minor defined by the class fy.,; is independent over
Ix,, of the minors defined by the other classes 3.
Pick an equivalence class (g1, ;. One of the following three things will happen:

(I) j € {0,2b}: There exists no class ojtrj, k+7 = 2,...,2a—2, which implies,
by Lemma 5.11, that the minor defined by By, ; does not lie in Ix, and is
moreover independent of all the other minors in Mp/ over Ix,.

(I1) j e{1,...,2b—1}:
For each k +r = 0,...,2a — 2 there exist either only one class a4, ; or at
(k,r (k+1,r—1)

)
least two classes a3,/ and oy,
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(IL.1) If there exists only one class ajy,;, then the class Byirj, k& + 1 =
0,...,2a — 2, has exactly one monomial in common with this class
Qjtrj. Since the second monomial in By, ; does not appear in ajgi,j,
we know by Lemma 5.11 that the minor defined by By, ; does not lie
in Ix,. Since the second monomial in By, ; does not appear in any of
the other classes a,,, the minor defined by Sy, ; is also independent

of all other minors over Ix,.
(k+1,r—1
k+r,j

(k,r

hrr ) then the class

C . kyr .
Br+r,; has one monomial in common with the class oz,<C _(T)j and one with
(k+1,r—1)

k+r,j .
. k, k1,r—1 L .
Since O‘1<<+:)j and oz,(cJ; jr ) are disjoint, the minor defined by B4, ; does

not lie in the ideal Ix,. Moreover, by Lemma 5.11 this minor is inde-
pendent of all other minors in Mp: over Ix, .

(I1.2) If there exist at least two classes « ?j and «

the class «

In total we obtain at least

a—2

Z #Ou = Z#Qko +
Kl k=0
2

a—2

b
> #Qu

k=0

_ i(a—(k+1))(b+1)+bi(a—(k+1))

= (2+1) ((a 12— (a=2(-1) 2)2(“ - 1)>

= a’b—ab+ %aQ — %a
quadrics in H%(Zx,,(2)) that are independent over H%(Zy,(2)).
Notice that we have only given a lower bound for the number of elements of all sets Qy;,
since we actually did not show that the minors in Mp, which we skipped are dependent
of the ones we chose over H%(Zx,,(2)). But since we have by construction H°(Zx,,(2))+
HO(Tx,y (2)) C HO(To(2)), the inequality dim(H(Tx, (2)) + H'(Tx,, (2))) < W(Tq(2))
always holds. Consequently we are done as soon as we can show that h°(Zg(2)) —
h°(Zx,(2)) is equal to the above number a?b — ab + 3a* — ia.
By Lemma 5.8 we have that

W (To(2)) <(a+1)(b2+1)+1

> — (20 +1)(2b+ 1)

1, 3

1

1 1 1
= §a21)2+a2b+ab2+§a2+ 50~ §b
and thus

1 1 1 3
§a2b2 +ad®b+ ab® + Eag + 51)2 — éab

e ()

1 ].
2 2

= b - - b—* .

a +2(1 a 2Cl

This proves the claim. (I
Let us illustrate the proof of Proposition 5.7 with an example:

h(Ig(2)) — h*(Txp()
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Example 5.13. Let H = (2,3), then we consider the following matrices Mg and Mp:

Mo = Too Tor To2 Tio Ti1 Ti2 T20 T21 T22
B =
To1 Lo2 Loz Li1 Ti2 T13 T2 L2 23

and
Moy — Too Zi0 Lo1 Ti1 To2 Ti2 Top3 T13
D= .
Tio 20 L11 L21 Ti2 T2 13 T23
(1) Let us first list the equivalence classes with respect to the equivalence relation ~g
from Definition 5.10, (1):

2
Qo2 = {900093027 1301}7
Qo3 = {9300%3, $01$02}7
_ 2
apr = {Zo1%o3, -7502}7
a1 = {9600-76117 17019610}7
Q12 = {100I127 L0111, 1029010},
Q13 = {90009613, To1X12, To2T11, 96033710},
g = {37019613, L2712, 37039611},
Q15 = {I021°137 I03I12}7
Q21 = {$00$21, $011’20}7
0,2)  _
Qg9 = {IOOI% L0121, 93029520}7
(1) _ 2
Qo9 = {Ilol’l%xn}:
Qo3 = {ZooTa3, To1T22, ToaT21, To3%20 },
(1,1) L
a5y = {10713, 111712},
02)  _
Aoy = {370135237 Lo2X22, 37033321},
(1) _ 2
Qg = {rnws, vy},
Qo5 = {900251523, $031’22}7
a3 = {961033217 13119520}7
Q3o = {9310I227 L1121, 93129320}7
Q33 = {-701095237 T11T22, T12221, -”6139020},
34 = {961195237 L1222, 96133321}>
Q35 = {I121’237 I13l“22}7
. 2
Qga = {96209622, Lo }7
Q43 = {96209523, 95219622}7
2
Qyq = {I21$237 I22}~

(2) Here the sets Qi to be considered are the following:

2
Qoo = {JL'00$20 — T10,L00T21 — 10211, L00T22 — T10L12, LOOL23 — JL'101'13}7
Qo1 = {zo1z23 — r11713},
Qo2 = {moawa3 — T12713},

{zoswa3 — 73}

o
I
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From the minors in Mp, we listed above we form equivalence classes with respect
to the equivalence relation ~p: as defined in Definition 5.10, (2):

Bao = {DUOOIZO, Ifo}n

521 {Ioole, l’10$11}a

B = {Iooxzz, j3101'12}a
P2z = {TooT23, T10T13},
B = {1019323, I11$13},
B2s = {1029323, x12$13},
P = {To3was, 95%3}

(8) Now we go through the process as described in the proof of Proposition 5.7:

o We consider the class Bag. There is no equivalence class gy, consequently

the minor defined by B, namely TogTag — 3., is not an element in the ideal
Ix,.

The next class we consider is equal to Ba1. the first monomial in Ba1, TooTar,
is also an element of a1, while the second one, x19x11, is not. This implies
that the minor xooxer — x10r11 defined by B does not lie in Ix,.

Nezxt we consider the class Bao: The first monomial in Baa, TeoTag is also an
0,2 . o C
element of aéj ), while the second monomial in Pas, T10x12, also lies in the
1,1 . 0,2 1,1 L .
class aé2 ). Since a§2 ) and aé2 ) are disjoint, the minor xooTea — T10T12

defined by (oo is not an element of Ix,.

The next class we consider is Bo3. The first monomial in (B3 is also an ele-
(0,2) : : (1,1) ; (0,2) (1,1)
ment of ass”’, and the second one lies also in a3 ™. Since qys™ and oy,

are disjoint, the minor Tooxes — T1013 defined by Pog does not lie in Ix,,.

Next we study (oq. The first monomial in Poy is also an element of ozgi’m
and the second one lies also in aéi’l). Since a§3’2> and agi’l) are disjoint, the

MINOT To1xe3 — T11213 defined by Bay does not lie in Ix,,.

The first monomial in the next class, a5, is also an element of ags, while
the other one is not. This implies that the minor xoax23 — T12x13 defined by
Bas does not lie in the ideal Ix,.

The last class we consider is (Bag. Since [(ag is disjoint with all the classes
a;j, the minor defined by Bog, To3Tas — a2, is not an element of the ideal

Ix, and is independent of all the preceding minors we studied over Ix,.

Since the indices (i, j) of the equivalence classes B;; are increasing, the indepen-
dence of some minor of all the preceding minors over Ix, follows automatically.
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In total we obtain 7 quadrics in H°(Zx,(2)) that are independent over
HY%(Zx,(2)), and by Lemma 5.8 this number is ezactly equal to h°(Zg(2))—h°(Tx,(2)) =

13 9
(2) — 35— (2)

Now we are able to prove Theorem 5.5:
Proof of Theorem 5.5:

With Xg, Xpr and @ as above we have shown that Ix, + Ix,, = Ig. We will now
show the following:

(a) We can choose a linear space P =2 P42 in such a way that QNP = C.

With exactly the same P as in (a) we obtain:
(b) Xg NP =S, S being the g3(C)-scroll in P.
(¢) Xp NP =V, where V =V|p| is a g3(C)-scroll in P with |D| = D’
(d) H(Zx,np(2)) + H'(Zx,,np(2)) — H°(Zgnp(2)) is surjective.
From this it then follows that

h*(Zc(2)) W (Zore(2)) < dim(H"(Zx,p(2)) + H (Zx e (2)))

dim(H°(Zs(2)) + H*(Zv(2))),

but since the other inequality always holds, we obtain equality.

Ad(a): To prove (a) we use the coordinates (s,t;u,v) in P! x P! and the monomials
syt =Iyd i =0,...,a, 7 =0,...,b which are the restrictions of the coordinates Tij
in PP@H)-1 6 ().

The equation of the curve C' in the system (2,3) on Q = P* x P! is given by

fc = a132u5 + a282u211 + a352uv2 + a4321}3 + a5stu5 + aGStu%

+ a78tuv2 + agstv3 + a9t2u3 + a10t2u2v + a11t2uv2 + a12t2v3,

with a1,...,a12 € k.

Set P :=P(H(H)) =V (fcH(H' - C)).

The sections in H(H' — C) can be represented as monomials s* 2 #ub=3"9y7 § =
0,...,a—2,7=0,...,b— 3, and the polynomials

fij = fso b3y i =0,...,a—2,j=0,...,b—3

define all hyperplane sections of ) that contain C.
Observe that h°(H') —h°(H'—C) —1=3a+2b—2=d — 2.

Ad (b): The embedding of a divisor Ey in the system E = (0,1) on P* x P! in P*"(H)-1
is a rational normal curve of degree a, which spans a P®. The equation of this rational
normal curve on @ is given by

g = bu + byv
with by, by € k. The sections in H(H'—FE) can be represented as monomials s~ *tu"~1=Jv7 |
1=0,...,a,7=0,...,b—1. Then

Gij = gVt I i=0,...,a,j=0,...,0—1
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are all hyperplane sections of () that contain Ej.

Now the vector space spanned by {f;;|i =0,...,a—2,j=0,...,b— 3} has dimension
h'(H' — C) = (a —1)(b—2), and the polynomials ¢;;,i =0,...,a, j =0,...,b—1,
span a vector space of dimension h°(H' — E) = (a + 1)b.

For a smooth curve C' these two vector spaces intersect in a vector space of dimension
H—-C—-E)=(a—1)(b-23).

Now we can consider the intersection of a fiber in Xz with the space P2 The
dimension of this intersection as vector space is equal to

ROH') -1 (H —C)—h"(H - E)+h°(H - C - E)=2.

This implies that the linear space P intersects each fiber of the scroll Xg in a projective
line. Since C = QNP C Xg NP and C intersects each rational normal curve that
spans a fibre in two points, Xg NP is equal to the g3(C)-scroll S.

Notice that the degree of S is equal to d — 1 — 2 = d — 3, and this number is equal to
WH —E)—h(H —C—-E)=deg Xp — h°(H —C - E).

Ad (c): Observations similar to the ones in (b) yield the following for D’ = (1,0):
Each rational normal curve of degree b which is the embedding of a divisor in the
system D' = (1,0) is given by an equation h = ¢18 + cot, ¢1,¢2 € k on Q.

The sections in H°(H' — D') can be represented as monomials s* ' ~itiub=Jp7, § =
0,...,a—1,5=0,...,b, and the polynomials

hij == hs® 1Ty, 1=0,...,a—1,7=0,...,b

define all hyperplane sections of @) that contain D’.
The sets {fi;|i =0,...,a—2,7=0,...,b—3} and {h;|i =0,...,a—1,7=0,...,b}
span vector spaces of dimensions h°(H' — C) and h°(H' — D’) respectively. These two
vector spaces intersect in a vector space of dimension h°(H' — C' — D) = (a —2)(b—2).
Consequently, each fiber in the scroll Xp. intersects the linear space P in a vector space
of dimension

RO(H') —h°(H'— C) — h°(H' — D)+ h°(H' —C — D) = 3,
i.e. the projective dimension of each such intersection is equal to 2. This implies that,
since C' C Xy NP and C intersects each fiber of the scroll X in 3 points, Xp NP
is equal to the g3(C)-scroll Vip| where |D| is isomorphic to D’.
Observe also that deg(Xp/) — hO(H' — C —D') = h(H' — D) —h'(H —C - D) =
ab+1)—(a—2)(b—-2)=3a+20—4=d—4=degVpy.

Ad (d):
In order to show that

H(Zs(2)) + H Ty, (2) — H"(Zc(2))

is surjective, we need to prove that h'(Zsuy, (2)) = 0. This was already shown in the
proof of Theorem 5.1, but we will sketch an alternative proof below:

Since S = Xg NP and Vipj = Xpr NP where P is an intersection of ab + a + b —
(3a+ 2b—2) = (a — 1)(b — 2) hyperplanes, we are done as soon as we have shown the
following proposition:
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Proposition 5.14. With X = Xz U Xp and r = (a — 1)(b — 2) we have
hl(IXmHm“nHr@)) =0.

In order to be able to prove this proposition we need some preliminary lemmata:

Lemma 5.15. Let Z be a scheme and H a hyperplane that does not contain any
component of Z. Moreover, assume that h'(Zz(k)) =0 forall1 <i<m,n <k <2
such that i+ k = 3.

Then W (Zzog(k)) =0 forall1<i<m—1,n+1<k<2 such thati+k = 3.

Proof. We have the following short exact sequence:

0— T,k — 1) 5 T,(k) — Tzom|u(k) — 0, (5.1)

where f is a linear form defining the hyperplane H.
The associated long exact sequence in cohomology is as follows:

c = H'(Zz(k)) = H'(Zzom|u (k) — H T (Zz(k = 1)) — -
From this the result follows immediately. O

Lemma 5.16. Let Z = Z, U F where Z, is a scheme and F = PN, and let H be a
hyperplane that contains Z1 but not F.
If KM (Z7(2)) =0, then h'(Zzqm(2)) = 0.

Proof. We have the following short exact sequence

0— Tp(1) -5 T,(2) — Tyon|u(2) — 0, (5.2)

where f is a linear form defining H, and the associated long exact sequence in coho-
mology:

= HY(Ip() = H'(Z2(2) = H(Zz0m(2)) — H*(Zp(1)) -+

=0 =0
Consequently, h'(Zz(2)) = M (Zznu|u(2)). O

Now in order to prove Proposition 5.14 we want to apply Lemma 5.15 and Lemma
5.16. We have to intersect with r := (@ — 1)(b — 2) hyperplanes,

SUVip=XNP=XNHnN..NH,

so we want to proceed by induction and start with Z = X, i.e. we need to check that
R(Zx(k)) =0forall 1 <i<r+1,2—r<k<2i+k=3 Wewil do so in the
following lemma.

We will then use the two methods of intersecting with a hyperplane as described in
Lemma 5.15 and Lemma 5.16. The method in Lemma 5.15 reduces the dimension but
not the degree, and the method in Lemma 5.16, taking F' to be a fiber in Xg or in
Xpr, reduces the degree but not the dimension.

In total we obtain that h'(Zxng,n.na, (k) = 0foralll <i<r+1—7r =1and
2—r+r < k < 2, iLe. 0= hl(IXﬂHlﬁ...ﬁHT(Q)) = hl(ZSuV‘D‘(Q)).

Lemma 5.17. (i) h'(Zx(2)) = 0.
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(ii) (Zx

(k)
for2 <i

< (a—l)(b—2)+1, —ab+2a+b<k<1,i+k=3.
For the proof of Lemma 5.17 we will need another lemma:

Lemma 5.18. (i) hi(Zx,(k)) =0
for2<i<(a—1)(b—2)+1, —ab+2a+b<k<1,i+k=3.

(it) hl( xp(k)) =0
for2<i<(a—1)(0b-2)+1, —ab+2a+b<k<1,i+k=3.

(iti) hi(Zg(k))=0for1<i<(a—1)(b—2)+1, —ab+2a+b<k<1l,i+k=2.

Proof. (1) We consider the short exact sequence

0— :ZXF(k) — Opab+0+b(k) — OXp(k) — 0

and the associated long exact sequence in cohomology

w7 Ox, (k) = H'(Zxp (k) = H(Oparaso (k) — -

Since 2 <i < (a—1)(b—2)+ 1 < ab+ a+ b, we have hi(Opas+ats(k)) = 0.
Thus it remains to check that hi(Ox,(k)) = 0 for 1 < i < (a — 1)(b — 2),
—ab+2a+b<k<landi+k=2.

To prove this we use the fact that Xg is totally maximally balanced of dimension
a+1,
Xp = P(Opl(b) @ Op1 (b) @@ 0p (b))7

a+1

thus Xg is isomorphic to P! x P¢,

By Kiinneth’s formula we have

i (Opiwpe(k)) = > 1 (Op1 (k) (Ope (k).

=i

Consequently, hi(Opiyxpa(k)) =0if i = j +1 with j > 2 or [ ¢ {0,a}. Thus the
cases we have to check are the following:

J=0 ., l=a,
J= =0,
j=1 , l=a

Let us check each of them:
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e j=0l=u
Then i = a, k =2 —a < 0, so here we have anyway only a problem if a = 2.
We thus obtain:

h(Opa(k)) = A (Ope(—a —1—k))
h(Opa(—a —1—2+a)) = h°(Opa(—3)) = 0.

e j=1,1=0:
Then i =1, k = 1. We obtain the following:

B (Op1 (K)) = h(Op1 (=2 — k)) = h*(Op1 (~3)) = 0.

e j=11l=ua
Then i =a+ 1, k =1 — a. Hence we obtain the following:

he(Opa(k)) = h(Opa(—a—1—k))

(ii) The proof of (ii) is completely analogous to the proof of (i). Notice that the cases
we have to check here are the following:

J=0, I=0b,
j=1,1=0,
j=1, l=a.

Ifj=0andl=0b,theni=0bk=2-b<0,so h®(Opi(k)) =0.

(iii) To prove (iii) we proceed in a similar way as in (i) and use the fact that Q@ =
P! x P’
We have the following short exact sequence

0 — Zg(k) — Opavrars(k) — Og(k) — 0

and the associated long exact sequence in cohomology

N Hi—l(oQ(k.)) N HZ(IQ(k)) — Hi(Opab+a+b(]€)) — -

Again, 2 < i < ab+ a + b, consequently hi(Opasiats(k)) = 0.

It remains to check that h'(Og(k)) =0for 1 <i < (a—1)(b—2), —ab+2a+b <
k<landi+k=2.

By Kiinneth’s formula we have

W (Opiwpr (k) = Y B(Opa(k))h! (Opr (k).

JH=i
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This implies that h*(Op1yp1(k)) = 0if i = j + 1 with j > 2 or [ > 2. Hence the
cases we have to check are the following:

e If one of j or [ is equal to 1 and the other one is equal to 0, then i = 1,
k = 1. Consequently we obtain:

K (Op1(k)) = h%(Op1(—2 — k) = h%(Opi1 (—3)) = 0.

e If both j and [ are equal to 1, then i = 2, k = 0. We thus obtain the
following;:

WY (Op1 (k) = hO(Op1 (=2 — k) = h%(Opi (—2)) = 0.

|
Proof of Lemma 5.17.
We have the following short exact sequence:
0= Ix(k) = Ix, (k) ® Ix, (k) — Zo(k) = 0 (5-3)

In the proof of Proposition 5.7 we have shown that the map
H"(Ix,(2)) ® H(Ix,(2)) — H*(Zo(2))

is surjective, this implies that h'(Zx(2)) = 0, i.e. (i) is proven.
For (ii), i.e. for the cases when 2 < i < (a — 1)(b—2) + 1, we can use the long exact
sequence in cohomology

p— Hl_l(IQ(k)) d HZ(IX(k)) - HZ(IXE(k)) + Hl(IXD(k)) o

and apply Lemma 5.18. ]

Explicit construction of H°(Zg y(2)) in the case d = 7 and when S is not
contained in V

Let now C' C P® be a curve of genus 2 and degree 7 and S be the g3(C)-scroll. In the
proof of Theorem 5.1 we saw that h°(Zs 1 (2)) < 1 for a g3(C)-scroll V that does not
contain S. In this section we will describe how we actually can find a quadric of rank
4 that contains both S and V.

Let | D| be a g3(C') such that V|p| does not contain S. In this case |H| = |D+K+P+Q)|
where P and @ are two points on C' such that P + @ is not a divisor in |K¢| (cf.
Proposition 2.17). We project from the line that P and @ span to P3. The curve
projects to a curve of degree 5, embedded in P2 by the linear system |D + Kg|. The
image curve lies on one smooth quadric which is isomorphic to P! x P1. The cone over
this quadric with the line spanned by P and ) as vertex is a quadric of rank 4 that
contains both S and V.



Chapter 6

Quadrics of low rank containing a
curve of degree 6

In this chapter we will study curves of genus 2 and degree 6 in P* more closely. Our
aim is to study the quadrics in the ideal I~ which by Proposition 3.1 is generated by
4 quadrics.

To a smooth curve C' we can associate the g3(C)-scroll S, by the equation (2.1) the
degree of S is equal to 3. Moreover, C is the complete intersection of S and a quadric
that contains C' but not S.

If C is a singular curve, then there is no obvious way to define a gi(C). Still C is
the complete intersection of a quadric with a scroll of degree 3 and dimension 2 that
contains the curve. In this way the singular curves become natural degenerations of
smooth curves. We will in this case also denote this scroll by S.

Since a general quadric in P* has rank 5 and a quadric of rank 2 or rank 1 is reducible
and does not contain any smooth curve of degree 6, we are in the case of smooth curves
interested in the quadrics of rank 3 and rank 4 that contain the curve, respectively the
scroll S.

For a smooth curve C' we will introduce the Kummer surface associated to C' and
discover a connection to quadrics of rank 3 and 4 in I¢.

For a singular curve C' we cannot define the Kummer surface, but we still have an
analogous description of the locus of quadrics of rank < 4 or < 3 in I¢.

After having discussed some general theory for smooth curves we will give examples of
singular and reducible curves.

6.1 Smooth curves of degree 6

In this section we will study smooth curves C'. From a smooth curve C' we can construct
a Kummer surface as described below. We will distinguish between the cases when the
g3(C)-scroll S is smooth and when the g3 (C)-scroll S has one singular point.

For any integer £ > 0 we denote by Pick(C) the set of all line bundles of degree k on
C modulo isomorphism.

Here we are interested in the cases k = 0 and k = 3.

Definition 6.1. The Jacobian variety of C, Jac(C), is defined as Pic’(C).

Note that by fixing a divisor Dy of degree 3 we obtain an isomorphism

79
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p: Pic?(C) — Pic*(C),
Oc(D) +— Oc(D + Dy).

Hence Pic?(C) 2 Jac(C'), and since h®(O¢(D)) = 2 for each divisor D on C' of degree
3, each gi(C) is a complete linear system, i.e. in total we obtain

G3(C) = Pic*(C) = Jac(0).

Definition 6.2. Let C' be a smooth curve of genus 2. The Kummer variety of the
Jacobian variety Jac(C') is the quotient of Jac(C) by the Kummer involution © — —x.

Remark 6.3. For a general curve C' the Kummer involution is the only automorphism
with fized points on Jac(C'), an abelian surface.

Definition 6.4. A quartic Kummer surface is a hypersurface of degree 4 in P3 with
16 singularities.

It is known that any such surface is the Kummer variety of the Jacobian variety of
a smooth curve of genus 2. The singular points of the quartic Kummer surface are
exactly the 16 fixed points of the Kummer involution.
Let now C C P* be a smooth curve of degree 6 and genus 2. By Proposition 3.1 we
know that I is generated by 4 quadrics.
Moreover, for any quadric Q in H°(Z¢(2)) — H%(Zs(2)) we have Ic = Is + (Q).
Each g3(C)-scroll Vjp, is a quadric of rank 4 or less.
Consider the map
12 G3(0) 2 Jac(C) — Jac(C) = G3(C),

|D| — |H — D|.
Since ¢ = ¢, ¢ is an involution on the Jacobian variety. A fixed point | D] of ¢ has the
property that |H| = [2D|. The associated g3(C)-scroll Vjp, to a fixed point |D| of ¢ is
a quadric of rank 3 in P*.
We will now prove that the locus X3 := {quadrics of rank < 3 in H%(Z¢(2))} is either
of dimension 0 and of degree 20 (as scheme) or infinite:

Lemma 6.5. Let X3 = {quadrics of rank <3 in H*(Zc(2))}. If X3 is 0-dimensional,
then the degree of X5 is equal to 20.

Proof. Following [Ful98|, Example 14.4.11, let o : Ops(—3)® — Ops(3)° be the map
given by multiplication with the symmetric coefficient matrix (that defines a quadric
in P*). Set ¢; := ¢;(O(3)%). The locus Xj is equal to the the locus where ¢ has at most
rank 3.

By Example 14.4.11 in [Ful98] X is O-dimensional, and the degree of X3 is equal to:

QQ.AQJ(C(O(%))) = 4'det(612 03>

(Cf. also [HT81]). O
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We have now shown that ¢ : Jac(C) — Jac(C) is an involution with at least one fixed
point, hence it is by Remark 6.3 isomorphic to the Kummer involution, and K :=
Jac(C)/((|D]) ~ |D|) maps birationally to a Kummer variety in P}, = P(H®(Z¢(2))),
and the 16 fixed points of ¢ are exactly the singular points of K, which parametrize
quadrics of rank 3 in H%(Z¢(2)).

All quadrics that contain S have rank at most 4, so we can describe the locus

{q € H*(Zc(2))|k(q) < 4} as the union of two components, P(H%(Zs(2))) U K =
PZUK. The component K is isomorphic to the Kummer variety, and moreover P%N K
is birationally equivalent to C'.

We will now give a more explicit construction of the Kummer surface K in P(H%(Z¢(2))):
We pick three quadrics q;, g2 and g3 such that {q1, ¢, q3) = H°(Z5(2)) and a general
quadric @ in P* which is not contained in Ig and then form a general quadric in I,
ie. we take ¢ = a1q1 + a2qs + asqs + a4Q with parameters aq, as, az and ay € k. The
projective space P(k[ay, ag, az, as]) = PH?(Z(2)) we denote by P3.

In terms of the a; we can form a parametrization of the locus of quadrics of rank less
or equal to 3 containing C' (respectively S) and the quadrics of rank less or equal to
4 containing C (respectively S): We form the symmetric (5 x 5)-coefficient matrix of
¢, the determinant of this matrix describes the locus of quadrics of rank 4 or less, the
(4 x4)-minors describe the locus of quadrics of rank 3 or less. The determinant will have
the factor a, and when dividing the determinant by a4, then we obtain the equation of
the quartic Kummer surface K in P3. The variety V (a4) describes P% = P(H%(Zs(2))).
Let now X3 denote the variety of quadrics of rank < 3 in H%(Z¢(2)) and Z3 denote
the variety of quadrics of rank < 3 in H°(Z¢(2)) — H%(Zs(2)). By Lemma 6.5 X3 has
degree 20.

Since a |D| with |H| = |2D| gives a quadric V|p| of rank 3, we obtain sing(K) C X,
and moreover Z3 C sing(K).

6.1.1 Smooth curves C having a smooth g}(C)-scroll

In this section we will study smooth curves C' where the associated gi(C)-scroll S is
smooth.
After possibly a coordinate change the ideal Ig is generated by the (2 x 2)-minors of

the following matrix:
Lo T1 T3
X1 To T4 '

Set g1 = Toxs — X2, g2 = ToT4 — T1T3, G3 = T1T4 — Tox3 and a general quadric in Ig to
be ¢ = a1q1 + asqs + azqs with parameters aq, as and ag in k.

The locus of quadrics of rank 3 in Is is one point in P3, namely given by V (as, as, ay).
The singular locus of K consists of 16 points. As discussed below, the point in X3 that
corresponds to the point V' (as, a3, as) can have multiplicity 4 or 5.

In order to illustrate the 16 singular points of the Kummer surface K, let us pick an
example of a smooth curve on a smooth scroll: Let C' be given by the ideal Io =
Is + (23 + 22 + 22 + 22 + 22). We found the following singular points of the Kummer
surface K (found with the computer algebra system [GS], in characteristic 32749):
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(0,0, +2,1),
(0,42,0,1),
(4,+15331,0,1),
(4,0, 415331, 1),

(8710, £639, +639, 1),
(—8708, 820, £820, 1).

It can easily be checked that all these 16 points correspond to quadrics of rank 3 that
do not contain S.

The curve intersects the directrix line V(zg, 21, 22) of the scroll S in two different
points, i.e. |H| = |D1 4+ Do| where |D1] # |Dy|, both |D;| and |Ds| have basepoints
and the point (1,0,0,0) which corresponds to the quadric ¢ = zowy — 22 does not
correspond to a fixed point of the Kummer involution.

In general, if I = Is + (f(z) + g(z)), where f(z) € (2o, x1,22) C klxo,...,24] Is a
quadratic polynomial and g(z) € (z3,24) C k[xo,...,24] is a quadratic polynomial
with two different roots such that the corresponding curve C'is smooth, then the curve
C' intersects the directrix line of the scroll V(zg,z1,22) in two different points and
|H| = |D1 + Dsl, |Dy| # |Ds|. The point (1,0,0,0) is thus not a singular point of the
Kummer surface, and the multiplicity of the point in X3 corresponding to (1,0,0,0) is
equal to 4.

On the other hand, if Ic = Is+(f(z)+g(z)?), where f(z) € (xo, x1,z2) C k[zo, .. ., 24]
is a quadratic polynomial and g(x) € (z3,24) C k[zo, ..., x4] is a linear polynomial such
that the corresponding curve C' is smooth, then the curve C intersects the directrix
line of the scroll V(zg, 1, 22) in one point, V (zo, z1, T2, g(x)), of multiplicity 2 and
|H| = |2D|. The point (1,0,0,0) is thus among the 16 singular points of the Kummer
surface, and the multiplicity of the point in X3 corresponding to (1,0,0,0) is equal to

D.

6.1.2 Smooth curves C' with a singular g4(C)-scroll

In this section we will study smooth curves C' where the gi(C)-scroll S is singular.
After possibly a coordinate change the ideal I is generated by the (2 x 2)-minors of

the matrix
o T1 X2
Ty Xy T3 )

Set q1 = ox2 — 22, o = T3 — X172, q3 = T173 — 23 and a general quadric in Is to be
q = a1q1 + asqe + azqz with parameters aq, as and ag in k.

Notice that q; and g3 are two independent quadrics of rank 3 in H%(Z5(2)). The variety
that parametrizes the quadrics of rank 3 or less in Ig is equal to a conic in P?zl,az,ag’
given by E := V(ajaz — a3).

The singular locus of K, sing(K), is again of dimension 0 and degree 16, X3 = sing(K)U
E, and sing(K) N E consists of 6 points which are equal to the ramification points of
the map ®x| : C' — P!
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6.2 Examples of singular curves of degree 6

In this section we will study examples of singular curves C' which are complete in-
tersections of a two-dimensional scroll S of degree 3 and a quadric. In the case of
a singular curve C' there is no obvious way to construct a g3(C) or a g3(C) and we
cannot construct a Kummer surface as in Section 6.1, but still we can consider the loci
of quadrics of rank 4 or less which lie in H%(Z¢(2)) or H%(Zs(2)). We can construct an
analogue of the Kummer surface in the following way:

Choose three quadrics ¢, ¢ and ¢z in such a way that H%(Zs(2)) = {q1, q2, g3), and
let Q be a quadric such that H°(Zo(2)) = (q1,¢,q3,Q). Form a general quadric
q = a1 + @z + a3qs + a4Q, ai,...,a4 € k, in H°(Zo(2)). The projective space
P(k[a1, az, az, as]) we denote by P3. The determinant of the symmetric coefficient
matrix of the general quadric ¢ is a polynomial of degree 5 which contains a4 as factor.
We divide now by a4 and obtain a polynomial of degree 4 which defines a hypersurface
in P?, unless the determinant is equal to 0.

In the following two sections we will use the following notation:

e X3 denotes the variety of quadrics of rank < 3 in H%(Z¢(2)).

e Y denotes the locus of quadrics of rank < 4 in I obtained by taking the determi-
nant of the coefficient matrix of a general quadric ¢ = a1q; + a2q2 + azqs + a4Q in
I¢ and then dividing by a4. Unless Y is all of Pg, Y is of degree 4 and dimension
2.

e Since the locus of quadrics of rank < 3 is contained in the singular locus of the
quadrics of rank 4, X3 C sing(Y').

6.2.1 Examples of singular curves C' as the complete intersec-
tion of a smooth scroll and a quadric

In this section we list singular curves on a smooth scroll S which ideal is given by the
(2 x 2)-minors of the matrix

To X1 T3

T Ty Ty )

If C is the complete intersection of S with a quadric, then the arithmetic genus of C'
is equal to 2 by the adjunction formula.

We will list curves with 0-dimensional singular locus and curves with 1-dimensional
singular locus, the latter being necessarily non-reduced, in our cases also reducible.
We have the following:

e There is only one quadric of rank 3 in PH%(Zs(2)), namely z¢zo — 22, correspond-
ing to V(aq, as).

(1) Q = 3xozs — 27073 + 27074 — X123 + 31174 + 43
The curve C is irreducible, it has one singular point V(zg, z1,x3,z4) which lies
on the fiber V (zg, z1, z3) of S.
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The locus Y is irreducible, the singular locus of Y is equal to the line given by
V(a1 +3ay, a3) and 16 points (found with the computer algebra system Macaulay
2 (|GS]) in characteristic 32749):

(1,0,0,0),

(—6141,-1,0,1),

(16130, —4390, 627, 1),

(10864, 4386, —1567, 1),
(—10059, — 11257, 3284, 1),
(~3,-2,359,1),

(12239, 11253, 14031, 1),

(=3, -2, -365,1),

(=3, —7823,0, 1)(multiplicity 2),
(=3, —3435,0, 1)(multiplicity 2),
(—3,3432,0, 1) (multiplicity 2),
(—3,7820,0, 1)(multiplicity 2).

Notice that the last 4 points already lie on the line V(a1 + 3ay, as).

The locus of X3 is a 0-dimensional scheme of degree 20, (X3)rea is equal to the
above 16 points, the point (1,0,0,0) counts with multiplicity 5.

(2) Q = 323 + wowy + 222 + 23123 + 321704 — 37374

The curve C'is the union of the fibers V (zo, z1, z3) and V (z1, z2, z4) of S and a ra-
tional curve of degree 4, it has four singular points V (zg, z1, x3, 24), V (20, 21, T2 —
Z4,%3), V(2o — 3,21, T2, x4) and V (xg + 3x3, 21, T2, £4) which are the intersection
points between the fibers and the rational curve.

Y is irreducible, its singular locus is equal to the two lines given by V(a; +as, az+
3a4) and V(aq,a3) and 16 points.

The locus X3 is a 0-dimensional scheme of degree 20.

(3) Q = w112 + x374:

The curve C' is the union of two fibers of S, V(xg, 1, x3) and V (z1, 29, 24) and
two conics K and K, it has the following singular points:

V (21, 22, 23, 4) with multiplicity 4, lying on the fiber V' (z1, z2, z4) of S, and the
intersection points V (zo, 21, 23) N K7 and V(zg, 21, 23) N Ko.

The locus Y decomposes into two planes V' (a;+15645a5) and V (a; —15645a5) and
a quadric V (asas +ajaq). The singular locus of Y consists of V(a3 —15645a4, a1 +
15645a5), V(a3 + 15645a4, a1 — 15645a9) and V (aq, az).

The locus X3 consists of 20 points, counted with multiplicity.

(4) Q=22+ 2? + 2%

The curve C is the union of six lines: The directrix line of S, V (g, x1, x3), with
multiplicity 2 and four other lines.
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The locus Y decomposes into four planes: V' (ay—4354a3), V (as+4354a3), V(ag—
4355a3) and V(as + 4355a3).

The singular locus of Y is equal to the locus X3, and both are equal to the line
V (a9, a3), which is the intersection of all four planes.

(5) Q = mw2 — 22 + T374:
The curve C' is the union of two fibers of the scroll S, V (z, 21, 23) and V (x1, 2, 4),
and the conic K := V (zgzy — 23, 23, 74) with multiplicity 2, the singular locus of
C' is thus equal to this conic and the points of intersection K NV (zo, 1, x3) =
V(zo, z1, 23, 24) and K NV (x1, T2, 24) = V (21, 9, T3, T4).
The locus Y decomposes into the plane V(a1 +a4) (of multiplicity 2) and a quadric
V(agas + ayaq + a2), the singular locus of Y is given by the plane V (a; + a4).
The locus X3 is 0-dimensional and has degree 20, it consists of the points V(a; +
a4, az, a3) (of multiplicity 16) and V' (as, as, as) (of multiplicity 4).

6.2.2 Examples of singular curves as the complete intersection
of a singular scroll and a quadric

Let now S be the singular scroll which ideal is generated by the (2 x 2)-minors of the

matrix
Tog X1 X9
T Ty T3 )
This scroll has one singular point, given by V(zo, z1, 22, T3).
Let C' be a curve which is the complete intersection of the scroll S and a quadric Q.
By the adjunction formula the arithmetic genus of C' is equal to 2.
We have the following:

e The quadrics of rank < 3 in H°(Zs(2)) are parametrized by a conic V(a3 —
a1az, ay).

e Y is of dimension 2, degree 4 or all of Pg.
e X5 Csing(Y).

(1) Q = mozy + 2179 + 2%
The curve is irreducible, it has one singular point V' (xg, 1,23, 24) and does not
pass through the singular point of S.
Y is irreducible, its singular locus is given by the line V'(ag,a3) and 18 points
(with multiplicity).

The locus X3 decomposes into the conic V(ajaz — a?, a4) plus 10 points.

(2) Q= x% + ToT1 + ToTo + T1T4 + Toxy + x%:
The curve is irreducible, it has one singular point V' (xg, 1, z2, x3) which is equal
to the singular point of S.

The locus Y decomposes into the plane V(a4) and a cubic hypersurface, its singu-
lar locus is given by the intersection of these two varieties, V (ag, a4), V(a1 —asg, a4)
and V(as — ag, aq) and 19 points.

The locus X3 decomposes into the conic V(ajaz — a%, a4) and 20 points.
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Q=2+ 2?2 + 2%
The curve is the union of six lines: the fiber V' (zg, 21, 22) with multiplicity 2 and
four more lines.

Since the quadric 22 + 22 + 23 itself is a quadric of rank 3 that passes through
the singular locus of S, the locus Y is all of Pg.

X3 is an irreducible hypersurface of degree 4, its singular locus consists of the
line V' (as,a3) and 20 points not on this line.

Q=2+ 22+ 2%
The curve is irreducible, it has one singular point, V (1, za, T3, 24).

Y is irreducible, singular along the line V'(aq,a2) and singular in 17 points not
on this line.

As set X3 is equal to the conic V(ajaz — a3,a4) and the points V(ay, as, as),
V((Ll, ag, a3 — (1,4).

Q = zowy — 22 + w324

The curve is the union of one fiber of S, V(x1, 22, z3) (multiplicity 3), and the
rational curve of degree 3 which is the intersection of S with the hyperplane
V(I4)

The locus Y decomposes into the plane V(a3 + a4) (with multiplicity 3) and the
plane V'(a4), the singular locus of Y is thus equal to V(a; + a4).



Chapter 7

The first syzygies of I~ where (' is a
curve of degree 7

In Chapter 5 we showed that the ideal of C'is generated by the ideal of the g} (C)-scroll
S and the ideal of a g}(C')-scroll Vjp| that does not contain S. Defining the ideal to be
the Oth syzygy-module we have shown that the Oth syzyzgies of I» are generated by
the Oth syzygies of rational normal scrolls.

Aiming at a pursuit of generalization a natural question to pose is the following:

Are the ith syzygies of I generated by the ith syzygies of ideals of rational normal
scrolls?

We will here restrict ourselves to the first syzygies and study the following question:

Are the first syzygies of I generated by the first syzygies of Is and the first syzygies of
Iy, where V runs through the family of all gi(C)-scrolls?

7.1 Preliminary definitions and motivation

Definition 7.1. For any variety X C PV let the minimal free resolution of its ideal
Ix be given as follows:

0 — @55, 0py (—5)% o 2 @ Opn (=) 2% I — 0.

The ith syzygy-module of Ix, Syz;,(Ix), is defined to be the image of ¢;.
An alternative definition is the following:

Definition 7.2. Let X C PV be a variety and Ix = (f1,..., fi) be its ideal. If 1 > 2,
then there exists at least one relation between the gemerators f;, i =1,...,1, i.e. there
exists polynomials g1, ..., g1 € k[zo, ..., xN] such that

!
Z gifi = 0.
i—1

The coefficients (g1, ..., q1) form a first syzygy of Ix. There might be relations between
these g; which form a second syzyqy of Ix and so on.

In the case when all coefficients g; have degree 1, we say that the corresponding syzygy
s a linear syzygy.

87
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Our motivating question is now the following:

Are the first syzygies of I generated by the first syzygies of Is and the first syzygies of
Iy, where V runs through the family of all gi(C)-scrolls?

Let us first consider the cases of low degree:

If d = 5, then I is generated by a quadric, which gives the gi(C)-scroll S, and two
cubics. There are two first syzygies of Io and since S is a hypersurface there are no
first syzygies of Ig.

If d = 6, then I¢ is generated by Is and one additional quadric. A g(C)-scroll is a
hypersurface, so there are no first syzygies of Iy .

The first interesting case is thus given when the degree of C' is equal to 7. In this
chapter we will focus on this case.

If C is a curve of genus 2 and degree 7 in P, then we can see from the resolution of I
in Chapter 4 that the first syzygies of I are generated by linear syzygies. Moreover,
since the resolution of Iy, where X is a rational normal scroll, is given by the Eagon-
Northcott complex described as Cy in Chapter 4, the first syzygies of Iy are linear.
Since the family G3(C) = {g3(C)'s} is isomorphic to Jac(C), this family is two-
dimensional, as we also already have seen in Chapter 2.

Our motivating question becomes thus the following:

Is the vector space of first syzygies of I spanned by the first syzygies of Is and the first
syzygies of Iy, where V. runs through the two-dimensional family of all gi(C)-scrolls?

In Chapter 4 we saw that the vector space of linear first syzygies of I is 12-dimensional.
Also, again since the resolution of Iy, where X is a rational normal scroll, is given by
the Eagon-Northcott complex, we can verify that the space of linear first syzygies of I,
where S is the gi(C)-scroll, is 8-dimensional and that the space of linear first syzygies
of Iy, where V is a g3(C)-scroll, is of dimension 2. Thus we immediately see that,
contrary to the case of the ideal, we cannot find just one gi(C)-scroll such that the
first syzygies of I are generated by the first syzygies of Is and the first syzygies of the
ideal of this g3(C)-scroll. However, in most of our cases, two gi(C)-scrolls are sufficient
to give all first syzygies of I¢.

We introduce the rank of a linear syzygy:

Definition 7.3. Let s € Syz;(Ix) be a linear syzygy. The rank of s is defined to be the
dimension of the vector space that the linear forms in s span.

A basis for the vector space of first syzygies of I can be chosen to be syzygies of rank
3. The same applies to the vector space of first syzygies of I, where V is a gi(C)-scroll,
since its ideal is generated by the (2 x 2)-minors of a (2 x 3)-matrix.

The main aim in this section is to prove the following theorem:

Theorem 7.4. Consider the following condition for a given curve C € My and a
linear system |H| on C of degree 7 which embeds C' into P5:

There exist two g3(C')-scrolls V; and V3 such that the space of
($) first syzygies of I is generated by the first syzygies of Ig, the
first syzygies of Iy, and the first syzygies of Iy,.

The condition () is satisfied for a general curve C in Mo, the moduli space of non-
singular curves of genus 2, and a general Oc(H) € Pic’(C) such that the complete
linear system |H| embeds C into P° as a smooth curve.
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More precisely: The condition () is satisfied for a general curve C ‘il P? such that
the gi(C)-scroll is of scroll type (2,2), and the condition ($) is satisfied for a general

curve C 25 P5 such that the ga(C)-scroll is of scroll type (3,1).

We will prove Theorem 7.4 by giving one example of a smooth curve that satisfies
the claim for each scroll type of S and using the fact that condition (<{}) is an open
condition.

In this way Theorem 7.4 leads us to the following conjecture:

Conjecture 7.5. For every curve C € My and every Oc(H) € Pic’(C) there eist
two g3(C)-scrolls Vi and Vy such that the first syzygies of Iy, and the first syzygies of
Iy, together with the first syzygies of Is, where S is the gi(C)-scroll, generate the space
of first syzygies of I, where C C P® is embedded as a smooth curve with the complete
linear system |H|.

In addition we will give families of reducible curves C, a two-dimensional rational nor-
mal scroll S and three-dimensional scrolls, which all contain C, such that the syzygies
of the ideals of these scrolls span the space of first syzygies of I¢.

In three of our four examples we are able to find two three-dimensional-scrolls V; and
V4 such that the first syzygies of Iy, and the first syzygies of Iy, together with the first
syzygies of Ig generate the vector space of first syzygies of Io. In the last example
three three-dimensional scrolls are enough.

In some natural sense our examples give rise to the following conjecture:

Conjecture 7.6. Let C' “i‘ P’ be a variety of pure dimension 1, arithmetic genus 2
and degree 7.
Then C lies on a non-degenerate surface S of degree 4 and a family V of non-degenerate
3-dimensional varieties of degree 3 such that the first syzygies of Ic are generated by
the first syzygies of Is together with the first syzygies of all Iy where Y runs through
the family V.

7.2 Curves C on a two-dimensional scroll of type (2, 2)

In this section we will consider a curve C' of genus 2 and degree 7 lying on a two-
dimensional scroll S = P! x PL. After a coordinate change we might assume that the
ideal of S is generated by the (2 x 2)-minors of the following matrix:

M_<(E0 1 T3 CE‘4>.
Ty T2 Ty Ts
In Section 3.5 we have seen that the following ideal is the ideal of a curve C of genus
2 and degree 7 in P?:
Ic = Is + (Lizo + Loy + 373 + Lz, vy + lowy + l3wg + lyws),

where the I; € klxg, x1, 22, 23, 4, x5] are linear forms. For general [; the curve C' is
smooth.
We put the generators of I in the following order:
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Q1 = Lo+ Loy + I3z + laxy,
Q2 = hxy + lawg + lszy + 45,

Q1 = ToT2 — 17%7
G2 = TpTy — T1T3,
qs = ToTs — T1Ly,
Qs = T1T4 — T2X3,
qs = T1T5 — Ty,
@6 = 35— 13

The vector space of the linear first syzygies of I is 12-dimensional. We write down
a basis for this vector space as a matrix where each column represents a syzygy. The
first 8 syzygies form a basis for the space of first syzygies of Ig.

Q1 0 0 0 0 0 0 0 0 —x1 —X2 —T4 —T5
Q2 0 0 0 0 0 0 0 0 0 T1 T3 T4
q1 x3 x4 xa x5 0 0 0 0 —l2 15 0 0
(@) q2 —T1 —XI2 0 0 T4 s 0 0 713 0 ll 0
q3 0 0 —x1 —T2 —I3 —X4 0 0 —lyg 0 0 15
q4 z0o T 0 0 0 0 T4 5 0 —l3 12 0
q5 0 0 x0 x1 0 0 —x3 —T4 0 —l4 0 la
g6 0 0 0 0 o T 1 T2 0 0 —ly I3

Our aim is now to find, for particular choices of the linear forms /;, three-dimensional
rational normal scrolls such that the first syzygies of their ideals together with the
first syzygies of Is generate the vector space of first syzygies of I, i.e. we want to
find 4 first syzygies of rank 3 that together with the first syzygies of I generate the
above 12-dimensional vector space and that actually are syzygies of three-dimensional
rational normal scrolls.

7.2.1 A smooth example

Let
Iy = =z,
ly = s,
l3 = —I3,
ly = x4,
ie.
2 2 2
Q1 = x5+ x5 — X5 + TG,

@2

ToT1 + Toks — T3Xy + T4Ts.

The resulting curve is smooth, and the first syzygies of I» are generated by the first
syzygies of Ig and the first syzygies of Iy, and Iy, where V; and V; are gi(C)-scrolls
and the ideals are given as follows:
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[ Ideal of the gi(C)-scroll | Generating matrix |
— _ _ o _ xo + X3 —X4 —Iy
Iy = (@1~ ¢5,Q2 — 92,3 — o) My, = ( gt T4 To— s T — T4 )
_ P _( xo+x3 —s5 —T1 — X4
I, = (Q1+a6—0—q@+aq,Q2+q) | My, = ( Ty + T3 To— T3 —Tny— T4 )

7.2.2 A family of curves where [; =1, and [3=14

Let

ll = lg = agxo + (CLQ + 1)331 + asrs + ((Ig + a4)z4,
l3 = l4 = bUZL'() + (b() -+ b1)$1 + b3£5 -+ (b3 + 1)1‘4,

where ag, as, aq, by, b1, bs are elements in k.

Set I := agxy + (ag + 1)xe + azzy + (ag + as)xs

and lg = boxl —+ (b() —+ bl)l'g —+ b31‘4 —+ (bg —+ 1)1,‘5

For a general choice of ag, as, a4, by, b1, b3 the resulting curve C' is reducible, it is the
union of two lines L; and Lo which are fibers of the scroll, and a rational normal curve
Cs. The ideals are given as follows:

]Ll = ({E0,$1,$37{L‘4),
I, = (zo+ 1,21 + T2, T3 + 24, 74 + T5),
]Cs = IS+ (llxo +13I3,Z1I1 +13I47ll$2 +13$5,13I2 +l;$5)

The curve has 4 singular points, two of those are the intersection points between the
fibre L; and the curve Cj, the other two are the intersection points between L, and
Cs.

The aim is now to find 4 linearly independent syzygies of I among those which are not
syzygies of Ig that are syzygies of scrolls of three-dimensional rational normal scrolls
that contain C.

The first two syzygies, which are syzygies of the scroll V] listed below, come naturally
from the reduction of the syzygy matrix (©).

We give the conclusion: The space of first syzygies of I is spanned by the first syzygies
of Is and the first syzygies of Iy, and Iy, where V; and V5 are three-dimensional scrolls
which ideals are given as follows:

| Ideal of the gi(C)-scroll | Generating matrix ‘
— _ I3 xo+z1 21422
Iy, = (Q17Q27Q2+Q3+Q4+Q5) My, = ( —l w3+T4 T4+ TS
Iy, = (Q1+ (a0 + 1)q1 + a3q2 + (a3 + as)gs /
’ bW+l 23+x4 2442
Q2 — agq1 + a3qs + (a3 + a4)gs, My, = ( 11 b s )
-3 Zo xy
—q2 — (J3)

Note that for general choices of the a; and b;, more precisely for l; # +l3, l; + 1] # +l3
and [y, l3 # £(x3 + x4), both scrolls V; and V5 are smooth and irreducible.
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In Chapter 5 we had already seen that h°(Zsuy(2)) = 1 for any gi(C)-scroll V that
does not contain S. We also found a quadric of rank 4 which vertex line intersects the
curve in two points and that contains both S and a given V. We will now give the
quadrics which each generate H°(Zs(2)) N H(Zy;(2)), i = 1,2, explicitly, both are of
rank 4:

o H(Zsuwi(2) = (g2 + a3 + qu + g5),
. HO(ISU\@(Q)) = (g2 + q3).

7.2.3 A family of curves in the case [; =3 and [, = I,

For comparison we give a family of reducible curves analogous to the family of curves
in Section 7.2.2, where [y = I3 and I, = l4.
Let

ll = l3 = agro + a1y + (CLO + ].)l’g + ((11 + (14)I47
ly = ly=byxyg+bix1+ (bo + bg).ibg + (bl + 1).%'4,

where ag, a1, aq, bg, b1, b3 € k.

Set I} := apr1 + a1ma + (ap + 1)z4 + (a1 + as4)xs

and Iy := box1 + bixg + (b + b3)xs + (b1 + 1)s.

For general ag, ay, a4, by, b1, b3 the resulting curve C' is reducible, it is the union of a line
L, which is a fiber of the scroll S, a conic Y and a rational curve Cy of degree 4 which
is a hyperplane section of S. The ideals are as follows:

I, = (w0, 21,%3,74),
Iy = (wo+ 3,71 + T4, Ty + T35, T35 — T2,
104 = 15—|—(11—|—l/2)

The curve C' has 4 singular points:

The intersection point of the line L with the conic Y, the intersection point of the line
L with the curve Cy and the two intersection points of the conic with the curve Cy.
Analogous to the examples in the previous section we want to find two three-dimensional
scrolls V4 and V4, containing C' such that the first syzygies of the ideals Iy, and Iy, to-
gether with the first syzygies of Is generate the vector space of the first syzygies of
Ic. The first two syzygies, which are syzygies of the scroll V;, come naturally from the
reduction of the syzygy matrix (©).

The result is the following:

| Ideal of the g3(C)-scroll ‘ Generating matrix

l To+2x3 T1+
Iy = (Q1,Q2,q1+93 — qa+go) lez(jll ol 4)

T +T4 T2+ 25
Iy, = (Q1+bigi +bigs
—(b1 4+ 1)qa + (b1 + 1)ge,
Q2 — boq1 — bogs Mo — ( i+ 1y —bgzy—x5 —x3 —24 )
+(bp + b3 — 1)qs + g5 V2 L+l+bsz+ae x9 a1
—(bo + b3)ge,
Q2)




7.3. CURVES C' ON A TWO-DIMENSIONAL SCROLL OF TYPE (3, 1) 93

For general ag,ay,aq,bg, by, b3, more precisely for Iy # +lo, I # +(x; + z4) and
lo # +(zo + x3), the scroll Vi has one singular point V(zo, 21, 23, 24, 22 + x5), but
is irreducible, and the scroll V5 is smooth.

7.3 Curves C on a two-dimensional scroll of type (3, 1)

Let now C be a curve of genus 2 and degree 7 in P® on a two-dimensional scroll of type
(3,1).

After possibly a coordinate change the ideal I is generated by the (2 x 2)-minors of
the following matrix:

Tog X1 X9 X4
X1 T9 I3 Iy ’
By the results in Section 3.5 we can write the ideal of C' in the following way:

Io = I+ (lhixo + Laxy + lsza + Lz, hay + lbxs + l3xs + laas),

where [y, ..., are linear forms in k[xg, 1, x2, 3, T4, x5]. For general [; the curve C is
smooth.
We put the generators of I in the following order:

Q1 = hxo+lhxy + 320 + 142y,
Q2 = hxy +lhxs + l3xs + lys,
Q1 = ToT2 — Ii

G2 = ToT3 — T1T2,

qs = ToTs5 — T1ly,

s = X173 — xi,

s = X1x5 — Toly4,

qs = ToT5 — X3Xy4.

As we have seen before, the vector space of first syzygies of I is 12-dimensional. We
will write a basis for this vector space as a matrix, where each column represents a first
syzygy. The first 8 syzygies form a basis for the space of first syzygies of Ig:

Q1 0 0 0 0 0 0 0 0 —x1 —T2 —T3 —5
Q2 0 0 0 0 0 0 0 0 xo x1 x2 T4
q1 T2 3 T4 s 0 0 0 0 7l2 ll 0 0
* q2 | —x1  —x2 0 0 T4 x5 0 0 —l3 0 51 0
() q3 0 0 —r1 —x2 —T3 —I3 0 0 —lq 0 0 I
q4 xo x1 0 0 0 0 x4 5 0 —l3 la 0
g5 0 0 0 1 0 0 —z3 —x3 0 —lg 0 l2

a6 0 0 0 0 x0 1 1 T2 0 0 —ly I3
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7.3.1 A smooth example

Let
ll Zo,
ly = m,
Iy = —ux3,
l4 = 5.

The resulting curve C'is smooth, and the first syzygies of I~ are generated by the first
syzygies of Is and the first syzygies of I, and Iy, where V; and V; are gi(C)-scrolls
which ideals are given as follows:

‘ Ideal of the g3(C)-scroll ‘ Generating matrix ‘
Iy = (Qi+aq1— g6 Q2+ qi, My, = (T~ +x2 w2 — 14 TZ3— 5
—q2+ 93— qa+qs) ! r3+a5 X+ w1 X1+
ro+x3 To+x4 T3+T
Iy, = (Qi+q2+qQ2+qs,—q2—q3) | My, = ( 0TS SRR s TS ) ‘
xr3 — Tp ) X1

Analogous to the families of curves in Sections 7.2.2 and 7.2.3 we will give families of
reducible curves in the following, one family for the case [y = Iy and I3 = [; and one
family for the case I} = I3 and I, = I4.

7.3.2 A family of curves in the case [; = [, and I3 =1,
Let

l] = l2 = Qoo + (ao + 1)371 + a9 + ((12 + 04)5[)47
13 = l4 = bol‘() + (bo + bl).’El + bgiBQ + (b2 + 1)%4

The resulting curve is reducible and singular, it is the union of the line V (zg, x1, z2, z4)
and an elliptic normal curve Cg, the singular points being the intersection points of Cy
and the line.

Set I} := apx1 + (ap + 1)z2 + aox3 + (a2 + a4)xs and

Iy :=box1 + (bo + b1)xa + boxg + (ba + 1)zs.

The first two syzygies, which are syzygies of Iy, as described below, come naturally
from the reduction of the syzygy matrix (d).

The first syzygies of I are generated by the first syzygies of I and the first syzygies
of Iy, and Iy, where V; and V; are three-dimensional scrolls containing C' which ideals
are given as follows:

| Ideal of the g3(C)-scroll | Generating matrix |
_ _( I3 zmota1 mta
Iy, = (Q1,Q2,2+ a3+ aa + ¢5) ]\/[VI_( I motas w3+

Q2 — agqy + a2qs + (a2 + a4)gs,

Iy, = (Q1+ (ap + 1)q1 + a2qe + (a2 + a4)gs,
o
—q2 — q3)

L+l z24+x4 w3+ 75
—lg ) T

Notice that for general ag, ai, aq, by, by, b3, more precisely for l; # +l3, I + 1] # i3,
I ¢ {£(z1 + 22), £(x2 + x4)} and I5 ¢ {£(zo + x1), £(21 + 22)}, both scrolls Vi and
V5 are smooth and irreducible.
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7.3.3 A family of curves where [ =3 and [, =4

Let

i = l3=agxg+ arxy + (CL() + 1).’L’2 + (CL1 + a4)x4,
l2 = l4 = b0$0 + blxl + (bo + bg)(L'Q + (bl + 1)14

The resulting curve is reducible and singular, it is the union of the line V (z, 21, 22, z4)
and an elliptic normal curve Cy, the singular points being the intersection points of Cy
and the line.

Set I} := agxy + a1x9 + (ag + 1)z + (a1 + a4)xs and

Ih :=bowy + bywa + (bo + b2)ws + (b + 1)xs.

In this example we could not find two three-dimensional scrolls such that the first
syzygies of their ideals together with the first syzygies of Is generate the space of first
syzygies of I¢. By performing reduction operations on the above syzygy matrix (db)
we found three three-dimensional scrolls Vi, V5 and V3 such that the first syzygies of
Io are generated by the first syzygies of Ig and the first syzygies of Iy,, Iy, and Iy,.
The ideals and the generating matrices are given as follows:

| Ideal of the g3(C)-scroll | Generating matrix ‘
= @uQuatm-ata) (M= (8 0T T
Iy, = (Q1,
Q2+ a1q1 + g2 + (a1 + a4)gs /
—a1¢s + (a1 + a4)gs My, = ( i h h )
’ 2 To+T2 1+ x4 T2+ TH

—apq1 — aog3 + (a0 + 1)@
+asqs — (a0 + 1)ge)

Iy, = (Q,
@2 = boqr — bogs + (bo + b2)qs I 1 1
5 — b b 5 My, =
+a (0+ 2)‘]6 Vs (I1+.T4 o + T9 .T1+I3>

biqi + baga + (b1 + 1)g3
—b1gs + (b1 + 1)ge)

Notice again that for general ag, a1, aq, bo, b1, be, more precisely for Iy # +lo, I] # —ls
and [ # —[j, all three scrolls V4, V5 and V3 are smooth and irreducible.

Conclusion: Proof of Theorem 7.4:

For each pair (e1,e3) € {(2,2),(3,1)} we have the following:

The condition (¢) in Theorem 7.4 is an open condition in the sense that the negated
condition is closed by the Semicontinuity Theorem (cf. [Har77], Chapter III, Theorem
12.8). This together with the facts that the moduli space My of non-singular curves of
genus 2 is irreducible and that we found an example of a curve C' and a system |H | that
embeds C into P? as a smooth curve and such that the scrolltype of the gi(C)-scroll S
is equal to (e, e2) and that satisfies () implies that the condition ({) is satisfied for
a general curve and a general complete linear system |H | of degree 7 on C' that embeds
the curve as a smooth curve into P5.
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Chapter 8

The degree of Sec3(C)

The aim of this chapter is to find the degree of the third secant variety Secs3(C') of a
smooth curve C of genus 2 and degree d > 8 embedded in P?~2. We will present three
methods to obtain this degree: The first one, which is presented in Section 8.2.1, uses
the presentation of Secz(C) as the union of all gi(C)-scrolls.

After that we present in Section 8.2.2 a method that counts the number of all divisors
on C of degree 3 that impose at most two conditions on a given linear system of degree
d and dimension 4.

Finally, in Section 8.2.3, we introduce Berzolari’s formula which computes the number
of trisecant lines to a curve of genus g and degree d in P* and show for ¢ = 2 and
d > 8 the equality of the number this formula yields and the number we obtain from
our first two methods.

8.1 Preliminaries

Let C be a non-singular and irreducible curve of genus 2.

For any integer k& > 0 we denote by Pic®(C) the set of all line bundles on C' of degree
k modulo isomorphism. Here we will consider £k = 0 and k = 3.

We define C5 to be the set of all effective divisors on C' of degree 3. Notice that there is
a natural isomorphism C3 & C3/S; = (C x C' x (') /S, where S; denotes the symmetric
group on three letters. Thus the dimension of Cj is equal to 3.

Let u : C3 — Pic®(C') be the map given by u(D) := Og(D) for each D € C3. All fibers
of u are isomorphic to P!, in this way Cj is a projective bundle over Pic*(C), a fact
we will return to later.

Definition 8.1. The Jacobian variety of C, Jac(C), is defined as Pic’(C).

Note that by fixing a divisor Dy of degree 3 we obtain an isomorphism

p: Pic’(C) — Pic*(C),
Oc(D) — Oc(D+D0).

Hence Pic?(C) = Jac(0).

Fixing a point P on C gives an embedding

97
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v:C — Jac(Q),
R — [Oc(R - R)l

The dimension of Jac(C) is equal to the genus of C, which is equal to 2. Hence Jac(C')
is an abelian surface with theta divisor © which is the image of C' under the above
map v. This theta divisor on Jac(C) is thus isomorphic to C.

For fixed points P and @ on C' we define

@P,Q = {[Oc(P+ Q + R)HR S C}

Op is a divisor on Pic*(C) and using the above isomorphism y with Dy = P+Q+ P,
we see that the divisor Op is isomorphic to ©.
It is this ©p g we will use later when we consider © on Pic*(C).

Proposition 8.2. The divisor © has self-intersection ©% = 2.

Proof. Choose points P, P’, @ and @2, Q1 # Q2, on C such that P + P’ is a divisor
in |K¢| and such that @1 + Qs is not a divisor in |K¢|. There exists points @} and Q%
on C such that Q; + Q) € |K¢| and Q2 + Q) € | K|, and we obtain the following:

e? = GP,Ql-@P',Qz
= H[0c(Qi + Q2 + R)||R € {Q}. Q4}}
= 2.
U

Let now C' be embedded in P9~2 with a complete linear system |H| of degree d > 8.
The main aim of this section is to compute the degree of the third secant variety of C,
which is defined as

Sec3(C) = U span(D),

DeCs

where by span(D) we denote the plane spanned by the three points in the effective
divisor D on C.

We will need Chern classes and Todd classes of vector bundles. Recall the definitions
from [Ful98|, Chapter 3:

Definition 8.3. For a nonsingular variety X and each r € N let A"(X) denote the
group of cycles of codimension r on X modulo rational equivalence and set

AY(X) = @dimX AT (X).
For each v and s in N the intersection product gives a map:
AT(X) x A%(X) — AH8(X).

In this way A*(X) turns into a group which is called the Chow group of X .
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Definition 8.4. Let E be a vector bundle of rank r on a variety X. The Chern
polynomial of E is defined as a formal power series

a(E) =) (Bt

i=0
Notice that ¢;(E) =0 for i > min{r,dim(X)}.
The Chern roots ay, . ..,a, of E are defined via the formal factorization

a(B) = - (1 + ait).

Definition 8.5. Let E be a vector bundle of rank r on a variety X .
The Chern character of E is defined as

ch(F) =1III_,e*
where ay, . .., a,. are the Chern roots of E. Expanding this product yields the first terms

ch(E) =r+c(F) + %(Cf(E) —2¢(E)) + %(

Definition 8.6. The Todd class of a vector bundle E of rank r on a variety X is
defined as

td(E) = I, —

::1 o
1 —e
where ay, . .., a, are the Chern roots of E. Ezxpanding this product yields the first terms:

td(E) =1+ %cl(E) + %(cf(E) + oo(E)) + 2—1401(E)02(E) T

IfY is a variety, then by td(Y) we denote td(Ty), the Todd class of the tangent bundle.

We will need Todd classes only in the cases when the dimension of X is equal to 1 or
2, i.e. in these cases we have
1 1
td(E) =1+ ECI(E) + ﬁ(cf(E) + ca(E)).

Definition 8.7. ([Ful98], §1.4)

Let f : X — Y be a proper morphism of varieties. For any subvariety V. C X, the
image W := f(V) is a closed subvariety of Y. If W has the same dimension as V,
then the induced embedding K(W) — K (V) is a finite field extension. Now set

_ _JIEWV):K(W)] if dim(W) = dim(V)

deg(V/W) := { 0 if dim(W) < dim(V)
Then the pushforward of the class of V' is defined to be
fi([V]) = deg(V/W)[W].

Proposition 8.8. (The projection formula, cf. [Ful98], Prop. 2.5(c)) Let f : X — Y
be a proper morphism of non-singular varieties, o € A¥(X) and 8 € A(Y). Then

filofB) = (fua).
in A*(Y).
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In this chapter we need some Todd classes which we will find in Lemma 8.9.
Consider now the projections

C x Pic*(C)
/ \
C Pic(0)
and
C x 03
/ \
C 03 )

let P be a point on C such that 2P € |K¢| and set F = p*(P), f = p*(P) =
(Ig X u)«(F).
In the rest of this chapter we will use the notation P, f and F both as varieties and
as classes.
Lemma 8.9. We have the following Todd classes:

(1) td(Pic*(C)) = 1.

(2) td(C)=1-P.

(3) td(C x Pic*(C)) =1 — f.

Proof. (1) Since Pic*(C) = Jac(C) is an abelian variety, we have Kpis() = 0 and
thus also ¢1(Tpie3(cy) = 0.

(2) td(C) =1+ 3c1(Te) =1—-3Ke=1—P.

(3) td(C x Pic*(C)) = td(p*(C)). td(g* Pic*(C)) = 1 — f.
|

Let A € C x Cy be the universal divisor, i.e. Algypy = D for all D € Cs, or writing
this in term of incidences,

A={(R,D)e C x Cs]R € D}.
For each point @ € C there is a divisor Xg on C3, namely given by
Xo={Q+ D'|D' € C3}.
Now we are able to define a line bundle £ on C' x Pic*(C') which turns out to be a
Poincaré line bundle. Our first method for computing the degree of Secs(C') uses the

identification of Sec3(C') as a degeneracy locus of a map of vector bundles involving a
Poincaré line bundle of degree 3.
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8.1.1 The Poincaré line bundle £

We will first give the definition of a Poincaré line bundle:

Definition 8.10. A Poincaré line bundle of degree k is a line bundle £ on C x Pic*(C)
such that L]cx(oq(py = Oc(D) for all points [Oc(D)] in Pic(C).

As mentioned above, in this section we will only consider Poincaré line bundles of
degree 3.
Now fix a point (Q on C' and set

L= (1 xu)(Ocxes (A —71(X0g)))-

Notice that £ is a line bundle, since [A — 7*(X()] is trivial on each fiber (1 x u)*(P x
[Oc(Dy)]) = P x [|Dol] of (1 x u) such that neither Py nor @ is a basepoint of |Dy|.
Since all fibers of (1 x u) are algebraically equivalent, [A — 7*(Xg)] is trivial on all
fibers of (1 x u).

Claim 8.11. The line bundle L is a Poincaré line bundle which is trivial on @Q X
Pic*(C), i.e. the following holds:

(1) Llcxoen) = Oc(D) for every point [Oc(D)] in Pic*(C).

(2) ‘C|Q><Pic3(C) = chm-“(C)‘QxPic-“(C) = OQxPic"S(C) = OPiCB(C)'

Proof. In order to verify (1) our strategy is as follows:

We will first show that Oy, (A—7*(X0))|exip| = Ocx p|(Cx|D]) for all | D| € G§(C).
It is enough to check this isomorphism for basepoint-free |D| € G3(C), since the set of
all basepoint-free systems | D| € G1(C) is an open and dense set in the set of all systems
|D| € G(C) and the condition that Ocyxcy (A — 7 (Xg))|oxip) = Ocxp)(C % |D]) is a
closed condition. Let now |D| € G(C) be basepoint-free.

Set X := Aloxp| and Y := 7*(Xg)|cx|p|. Then X and Y are divisors on the ruled
surface C' x |D| = C x P*. Let

C x |D|
/ \
c D

be the two projections. The group Num(C x |D|) is generated by a a fiber Fyy = £*(FPp)
with Py € C and a section Cy := X\*(Dy) with Dy € | D], satisfying FZ = 0, CZ = 0 and
C().F() =1.

Now we want to find the linear equivalence classes of X and Y: We set [X] = aCy+bF}
and [V] = cCy + dFy.

As sets we can write:

X = {(R,E)eCx|D|R€ E},
Y = {(R,E)ecC x|D||Q € E}.

We conclude:
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a = [X].Fy = number of elements in |D — Fy| = 1,
= [V].Fo = number of elements in |D — Q| = 1.

Moreover, X|¢, = k*(Dp) and Y|, = 0.

Since on a fiber Fy = P! linear equivalence is the same as numerical equivalence, we
obtain the linear equivalence classes [X] = Cy + x*(D) and [V] = Co, which implies
that OCXCg(A — 7T"(XQ))|C><‘D‘ = OCx\D|(H*(D))~

Consider now the following commutative diagram

C x |D| - C

C x O3 2% 0 x Pic*(C),

where ¢ is the inclusion and v is the map 1 x [O¢(D)].
Finally, we show that L|cx[o(p) = Oc(D) for all [Oc(D)] € Pic3(0).
By the projection formula for line bundles we obtain

Ooxey(A = (Xg)) = (1 xu)"(£)
and consequently

Fat" (Ocoxo (A = m(Xq))) = mu® (1 x u)*(£)
k" V(L) = v*(L).

This implies that

Llexjoc) = V'L

= Kkul*Ocxey (A — 7 (Xg))

= £Ocxcy (A — 71 (Xq))lox|p)
k:Ocx p|(£™(D))
ki Oc(D) = O(D),

1

12

In order to prove (2) it suffices to show that Ocxeoy (A — (X @) |oxcs = Ocxcsloxcs-
This follows from the fact that Algxc, = Xo. O

Remark 8.12. We have shown that L as defined above is a Poincaré line bundle of
degree 3 that is trivial on @Q X Pic3(C). Moreover, L is also unique with the property
that Lgypicscy = Opics (). The uniqueness here comes from the fact that if £ and L'
are two Poincaré line bundles, i.e. Llcxoopy = Oc(D) and L'cxjoqpy = Oc(D),
then L & (L)™' = ¢*(R) for some bundle R on Pic*(C) and R = ¢*(R)|gupicic) =
L@ (L) oxpie) = Opic()-

We define the following vector bundles on Pic*(C) 2 Jac(C):
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H = ¢ (‘C)v

G = ¢ Oc(H)® L)
Since the fibre of H over a point [O¢(D)] € Pic*(C) is equal to H(O¢(D)), the rank of
H is equal to h°(Oc(D)) = 2, and since the fibre of G over a point [O¢(D)] € Pic*(C)
is equal to H°(Oc(H — D)), the rank of G is equal to h°(Oc(H — D)) = d — 4.
We will use these vector bundles H and G in Section 8.2 to define a map of vector
bundles which degeneracy locus is equal to the third secant variety of C, Secs(C). We

will need the Chern classes of H and G, and for this purpose we need the Chern classes
of £, which is our next aim to find.

8.1.2 The Chern classes of the Poincaré line bundle £

Following [ACGHS85], Chapter VIII, §2 (pp. 333-336) we will now find the Chern classes
of the Poincaré line bundle £ as defined in Section 8.10.
We set

Cl(ﬁ) _ 02,0 + Cl’l + 60’2,

where ¢/ is the component of ¢;(£) in the (4, j)th term of the Kiinneth decomposition

HX(C x Pic®(C)) = (H*(C)® H°(Pic*(C)))

Since Lgypicscy = Opies(cy we find that ¢ = 0, and the fact that L|oxjoq(p) =
Oc(D) for all [O¢(D)] E Pic*(C) implies that ¢*° = 3f. From [ACGHS5], p.335, we
find that ¢! =: v, with

= =2f.4"(©),7" = fy=0.
‘We obtain

a(l)=3f+y

and consequently

ch(L) = e =14 3f +7 - f.4°(O).

Soon we are able to compute the Chern classes of the bundles H and G, before we will
do so we need a lemma:

Lemma 8.13. We have the following pushforwards:

(1) q.(1) =
(2) a.(f) =

(3) Q*’Y =
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Proof.

(1) ¢.(1) = q.([C xPic*(C)]) = 0 since dim(g(C x Pic*(C))) = dim(Pic*(C)) < dim(C x
Pic*(C)).

(2) Since q(f) = Pic*(C) has the same dimension as f, we have q.(f) = a[Pic*(C)] for
some positive integer a. By the projection formula we obtain for every point [Oc(Dy)] €
Pic*(C): a = 4.(f).[0c(Do)] = ¢.(f.4"[Oc(Do)]) = f.4"[Oc(Do)] = [P x Pic*(C)].[C x
Oc(Dy)] = 1, where we could use the equality ¢.(f.¢*[Oc(Do)]) = f.¢*[Oc(Dy)] since
1-q*[Oc(Dy)] is 0-dimensional.

(3) Since v is a divisor on C' x Pic*(C), we must have g.(y) = a[Pic*(C)] for some
non-negative integer a. By the projection formula we have a = ¢.(7).[Oc(Dy)] =
(70" [Oc(Do)]) = 7v-47[Oc(Do)] = e1(£).q"[Oc(Do)] — ¢.(3f) = 3 =3 = 0, where
again we could use the equality ¢.(7.¢*[Oc(Do)]) = 7.4*[Oc(Dy)] since v.¢*[Oc(Dy)]
is O-dimensional. O

8.1.3 The Chern classes of H

The Chern classes of H we obtain by the Grothendieck-Riemann-Roch Theorem:

ch(qu(L£)). td(Pic*(C)) = gu(ch(L). td(C' x Pic*(C))),

i.e. by Lemma 8.9 we obtain

ch(H) = ch(g.L)
¢ (ch(L).(1 = f) = ¢.(A+3f +v = f.¢"(©)).(1 - [))
= ¢(1+2f+v— fq'(©)).

By Lemma 8.13 and the projection formula we can conclude:

ch(H) = 2—q.(f)©®=2-06.
Consequently we obtain for the Chern polynomial

c(H) = e "

8.1.4 The Chern classes of G

In order to find the Chern classes of G we again use the Grothendieck-Riemann-Roch
formula:

ch(g.(p"(Oc(H) @ £71))). td(Pic*(C))
= q.(ch(p"(Oc(H) ® £71)).td(C x Pic(C))).

We obtain by Lemma 8.9, Lemma 8.13 and the projection formula



8.1. PRELIMINARIES 105

ch(G) = chlq.(pOc(H

(p £7Y)
(ch(p*Oc(H) @ L

) ®

( )@ L).(1- 1))

= ¢.(p"(ch(Oc(H))). ch(L7H).(1 = f))

= ¢.((1+p"(H).(1=3f —v— fq"(©)).(1 - ))
= ¢((1+df).(1—-4f —v— f.q°(©)))

= ¢(1+@d-4)f—-v-fq(0))

= d—4-0.

|
<

This yields for the Chern polynomial:

c(G) = e ©

8.1.5 (35 as a Pl-bundle over Jac(C)

A fiber of u over a point [O¢(D)] € Pic*(C) is equal to the linear system |D| = P
In this way Cj is a projective line bundle over Pic*(C'). That is, Cy = P(E), where E
is a bundle of rank 2 over Pic*(C). If we tensorize a vector bundle £ which satisfies
P(FE) =2 C; with a line bundle L, then we still have P(E ® L) = C3, but, on the other
hand, F is also unique up to isomorphism and tensorizing with a line bundle.

By Proposition (2.1)(i) in Chapter VII, §2 in [ACGHS5] we may take F = ¢.(£). With
E = ¢.L we have in addition by Proposition (2.1)(ii), Loc. cit., the identification
Opx)(1) = Oc,(Xq).

Consequently we can also take E = u,(O¢,(Xg))-

Set x := ¢1(Oc,(Xq)) = c1(Og(1)), let © be the Theta divisor on Pic*(C), as described
as ©pg in Chapter 8.1, and set § := u*(0) C C5.

By [Fulton], Ex. 4.3.3, or using the fact that E can be chosen as ¢.(£) and the
computations of ch(g,L) in Section 8.1.3, we have:

a(u'(E) = 19»
oW (E)) = 592.

Remark 8.14. From Remark 3.2.4 in [Ful98] (cf. also [Har77], Appendiz A) we obtain
the relation

2+ (W E) + cy(u*E) = 0.

Using our above remark this turns into

1
2% —u*(0) + Eu*(@Q) =0

Now we come to our main aim of this chapter, namely the computation of the degree
of the third secant variety of C, Secs(C).
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8.2 Computations of the degree of Secs(C')

Our aim in the following sections is to compute the degree of the third secant variety
of a curve C of genus 2 and degree d > 8, embedded in P92,

Secs(C) = U span(D),
DeCs

using three different methods.

The expected dimension of Secz(C) where C' is a curve in P42 is equal to min{5, d—2},
ie. for d =5, d = 6 and d = 7 the third secant variety is equal to the ambient space
P?2 consequently the degree of Secs3(C) is equal to 1 in these cases. Hence we will
now restrict ourselves to the cases when the degree of C' is bigger or equal to 8.

The three different methods will be:

(I) Set E := GR Opa-—2(—1) and F' := H*K Opa—2. These are two vector bundles on
Pic*(C) x P%2 of rank d — 4 and 2 respectively.
There is a map ® : £ — F which is induced by the multiplication of fibers:

H°(Oc(H — D)) ® H(Oc(D)) — H(Oc(H)).

Set
X, = X, (®) := {2 € Pic*(C) x P ?|1k(®,) < 1}

Consider the two projections

Plc ) X Pd-2
c

and their restrictions to Xi:

PV %2
Pic

Pd2

Pic?

We have the following:

(i) Over every point [O¢(D)] € Pic*(C) the fibre of p;|X; is the 3-dimensional
rational normal scroll Vip| C [Oc(D)] x P2 = P2 associated to |D|.

(ii) The image of such a fibre under the projection p, is thus the rational normal
scroll V|p| in P2,

(iii) Thus po(X;) is the union of all gj(C)-scrolls Vip| in P42 which again is
equal to Secs(C).

Set x7 to be the class of X;. From the above we have (p;).(x1) = [Secs(C)]. Let
h' € P?2 be a hyperplane class, and set h := (py)*(h') C Pic*(C) x P%2.
Since Secs3(C) C P92 has dimension 5, we obtain the degree of Secz(C) by
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intersecting with (h')°.
Now we have

deg(Secs(C)) = [Sec*(C)].()* = (p2)«(x1).(H')
= (p2)u(arp3(W)°) = (p2)s(w1.h?) = w11,

That is, with this approach we have to find the class x;.

(IT) A second method is given by counting the number of all divisors of degree 3 on
C' that impose at most two conditions on a linear system on C' of degree d and
dimension 4. A very ample linear system of degree d and dimension 4 on C' gives
an embedding of C into P* as a curve of degree d. The divisors of degree 3 that
impose dependent conditions on such a system give a trisecant line to the curve
in P*. Thus we see that for very ample linear systems of degree d and dimension
4 this method is equivalent to the third method.

(III) The number of trisecant lines to a smooth curve of genus g and degree d in P* is
well-known and given by Berzolari’s formula. We show that for ¢ =2 and d > 8
this number is equal to the degree of Sec3(C') we found with the first method and
thus justify that all the three methods yield the same number.

8.2.1 First method

Here the aim is to find the class z; of X;(®).
Since X;(®) has expected dimension 5 = dim(Pic*(C) x P472) — (d —4—1)(2—1), by
Porteous’ formula (cf. [ACGH], Chapter II, (4.2)) we obtain the following:

xry = Al,d_;,(ct(F—E))

Ci C C3 -+ Cg—6 Cd—5
1 ¢ e -+ ci—7 cis
0 1 ¢ - cas Car
= det ) . . ,
0 0 0 C1 Co
0 0 O 1 a1
=Ag—5

where ¢; := ¢;(F — E) and ¢;(F — E) is defined via ¢;(F — E) := Z:Eg
In Sections 8.1.3 and 8.1.4 we found

(M) = ci(G) = e ©.

We thus obtain
a(F) = c(piH*) = ci(piH) = "1

We compute ¢, (F):
Let «; be the Chern roots of G and set §; := pj(c;). Then

c(G) = (1 + ait),
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and we obtain:

a(B) = IS+ (8 = h)t)

II
- (1—ht)(1+ﬂzl_tht)
= (L= )5+ By
et (p1G)

— (1— e

hf)
= (1-ht)"

In the following we will identify © with p?(©), it will be clear from the context if we
mean O on Pic*(C) or © on Pic*(C) x P42,

We conclude now:

a(FF—E) = eet(l — ht)47de%

20t—0.ht?
4—d 1—ht

= (1-ht)

~ (- ht)”rdz (201 - 012 (1 - ht)~
-l

= Z — bty = (20t—@ht2)
p= J!

Since ©2 = 0, we only get some contribution from j = 0,1,2, and thus obtain the

following;:

a(F — E)

—

1 —ht)* 4 (1 — ht)*4(20t — ©.ht?)
(1= ht)* "(40%2 — 467 ht* + O Kt
1 —ht)>" (1 — ht)* + (1 — ht)(26t — ©.ht?) 4+ 20%t* — 202 ht?)
( )2 d@Q h2t4
1 d—2
T ) (1 (20— 20)t+ (20° = 30.h + W)E?)
1

d—2
—ht> ((©.h* —20%.h)* + @2hf4)

N —

—

N | —

/N N
=

Z < — 2+k >hktk(1 + (20 — 2h)t + (20% — 30.h + h*)t?)
k=0
)3 < -2 + k= >hktk((®,h2 —202.1)8 + %92.%“)

x~
Il

0
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_ Z(d—Q—}:k—l)hktk
k=0
> —24k—-1

N Z <d J};k )(2@.,11« e as
k=0
(d—2+k—-1

+ Z <d —;;k )(2®2hk _ 3@,hk+1 + hk+2)tk+2
k=0

+ Z <d -2 —]: k — 1) (@ hk+2 2@2.hk+l)tk+3
k=0

+ i % <d -2 —li;_ k— 1) ©2 plt2phta.

This implies that

e = () )
e e N ey
+1 —6+1 — T4 2 it
) (2< 514:12 ) 2(d 5+Z>+ d( Z@i ))@:
(e () () e
+ <2<di632>+5<di72“))@?}#?.

Now the last step in the computation of z; is to find the determinant of the matrix

Ad,‘r,l

Proposition 8.15. For d > 8 the determinant of the matrix

€t Cp C3 -+ Cg—6 Cd—5
1 ¢ ¢ -+ ca7 Cis
1 e -+ cgs car
Ais = . : :
o 0 0 -+ Co
o 0 o0 --- 1 c1
s equal to
1/d—-2
D s = - —(d 2 hd 7
e = (577 -am0)e
d—3
+ (( 9 )—1>®h"l6 (d 4)hd5
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Proof. For fixeddandn=1,...,d—5,k=2,...,d—06, let

C1 Co C3 s Cp,
1 C1 Cy o Cp—1
dy, = det
0 0 C1 Co
0 0 1 c
and
Cr Cg41 Cr42 - Cn—1 Cp
1 @] C2 o Cn(k41) Cn—k
by = det 0 ! o cni(.kJrQ) )
0 0 0 e Cq Co
o 0 0 - 1 a

By expansion with respect to the first column we have for each n, k:
d, = cidp_1— bn,Q
and
b = crdn—i — bp -

This gives us by induction:

dn = Zn: (—1)2.7161'(1",@

i=1

Let d be fixed. We had computed that

<d—§+z’>hi
i
<<d‘—o+z)+<d‘—6+z>>@.hi_1
1—1 1—1
d—641\ 1/d=T+N\\ . .y
() e

So we can compute d; for low i:

&

_|_

+
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dy = 1,
di = ¢ =(d-4)h+206,
dy = & —c¢y= (d ; 4)}# +(2d — 9)0.h + 202,
ds = ¢ —2cic0+c3

— (d ; 4) B + (d — 5)*0.h* + (2d — 10)©% h.

This leads us to the following proposition:

Proposition 8.16. Forn > 3 we have

= (") (57 (7)o
< (G () a1 e

Proof. By induction over n:

dn = (ilyilczdn —i

1

o (T () (2o
YT o)
(e (6 R o) B
(0220 )

K2

Il

2
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(" “‘)(i:‘i)h“

(I - ()
(- ><afr> S [G)
2 G [ o G
AT (D
(G0
i

+

d—5+1\[(d—5 d—6+1\[(d—4
+21 . .
1—1 n—1 1—2 n—1
d 7T+ o2 2.
n—1
Using the binomial identities

(a) Upper negation: (:nr) = (fl)m(rﬂmn_l) for r,m € N,

(b) Vandermonde’s identity: > 5 _ (%) (,.°,) = (") for m,r,s € N
we obtain the following:

(1) The coefficient in front of h™ is equal to
Zld5+zd4 " 2i- 4—d\[(d—4
e (T () -z ()65
G- (=000
= - + =
n n n

forn > 1.

(2) The coefficient in front of ©.h"! is equal to
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for n > 2.
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N N
N ~—
/N
= =
+ +
0 e 10 e

| |
= .
N
— —
N N
> >
— —
I I
— —
[T =T

(3) The coefficient in front of ©2.A"~2 is equal to
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+
N | =
N

IS
S

D
N——

d;Z) B (d0;4) B
B R R o
d;?) - (d;4) +% d;G)
—1)"n +2(— 1)"_1+%(—1)"_3(n—3)

(2)-(29329

(7))
2 n112> B %(n_fél)
%(—1)”*1(71 1)+ (1)

A/ S
[\V]
—
N———
|
+ 7N

|
DN = /‘\ N = N
|
—_

for n > 3.

To finish the proof of Proposition 8.15 we put n = d — 5 > 3 in the above expressions
for the coefficients:
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Dy 5

o= (372 ((17) - (17) Joue
)9 2 o
(d—Hh + ((d N 3) - 1) 0.h¢"

+
/N
N =
N
QU

w |
)
S~

|

=

I

=
~_—
©)
-NJ
>

i

'\l

(|

Now we are able to deduce the formula for the degree of Secs(C) where C' is a curve
of genus 2 and degree d > 8 in P92

Proposition 8.17. The degree of the third secant variety Sec3(C) of a curve of genus
2 and degree d > 8 in P2 is equal to

<d32> —2(d—4).

Proof. Since Sec3(C) has dimension 5, we have to intersect with (h')> where 7' is a
hyperplane class in P%~2 in order to obtain the degree of Secs(C). From the above
remarks we now have to find deg z1.h%.

We have

degx1.h® = degDys.h®
_ (; (d N 2) (- 4)) deg ©%.h42.

Since deg ©2.h97% = 2 (cf. Proposition 8.2) we finally obtain

degDy_5.h° = 2(% (d ; 2) —(d— 4)) = (d ; 2) —2(d —4).

8.2.2 Second method

Now we take a general linear system |D| of degree d and dimension 4, and we count
the number of all divisors of degree 3 on C' that impose at most 2 conditions on |D].
In the first section we introduced the map

u: Cy — Pic*(C),
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Let © be the theta divisor on Jac(C') 2 Pic*(C) and set § := u*(0).
Moreover, fix a point @ € C, and let x be the class of the divisor X := {D € C5|Q €
D} on Cj, and let

Y := {divisors in C5 that impose at most two conditions on |D|}.

The expected dimension of Y is equal to 0, and by Lemma 4.1 in [ACGHS85|, Chapter
VIII, §4, we know that the class of Y is given by

Y] = Aga((1+at)tters).

Before we compute the above class we observe the following:

(1+ xt)dleelﬁ,, = (1+at)+ Z

- Zl<d 4- )93 it
A

S5t )tm-

Now Az ((1+ )4~ el+wt) is just the coefficient in front of 3, i

d—14
Boa((1+ aty'leri) = Zjl< 3—3])9j

= Z;;4>x3+<d2 >933 + 2 (d 6)6>.x

Our aim now is to find the degree of [Y], i.e. we have to find deg(z?), deg(f.2?) and
deg(6?.x). In order to do so we need a lemma:

Lemma 8.18. We have the following pushforwards:

(1) u.(1) = 0.
(2) u.(z) = 1.
(3) us(a?®) =

(4) us(a®) = 30

Proof. (1) Since u(C3) = Pic*(C) and dim(Pic*(C)) = 2 < 3 = dim(C3), we obtain
ux(1) = u.([C5]) = 0.
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(2) Since the dimension of X, is equal to 2, u,(z) will either be zero or some positive
multiple of [Pic*(C)], i.e. u.(z) = a[Pic*(C)] for some non-negative integer a.
Using the projection formula we obtain for every point [O¢(D)] € Pic*(C') such
that @ is not a basepoint of |D]:

a = u(x).[Oc(D)] = us(zu*[Oc(D)]) = x2.u*[Oc(D)] = z.|D| = 1.

(3) This equality we obtain by Remark 8.14: Taking the pushforward of both sides of

the equation z* = u*(0).z — u*(©?) and using the projection formula we obtain

w(2?) = u*(u*(@),x)f%u*u*(@Z)

_ @.u*(x)—%GQ,u*(l)
~ o

4) Also here we use Remark 8.14: From 22 = v*(0).x — 2u*(02) we obtain
2

z® u*(0).2? — %u*(@Q).:r

= %u*(@Q).x
and thus
3 1 * 2
u(z°) = iu*(u (©%).2)
= %GQ.U*(I)
— 1 2
= 2@ .

Now we can conclude the following by Lemma 8.18 and Proposition 8.2:

deg(0®.x) = deg(u.(0?.7)) = deg(u.(u*(0?).7))
= deg(©%u,(z)) = deg(0?) = 2,

deg(h.2?) = deg(u.(6.2%)) = deg(u.(u*(©).2?))
= deg(0.u,(2?)) = deg(0?) =2

and

deg(s?) — deg(u*(x3)):deg(%®2):1.
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Consequently, we obtain the following:

deg[Y] = deg(z?) (d;4) + deg(&..rQ)(d; 5> + deg(6°.: ) (d—6)

) s
)0 (] () rao
( ) (d 5)—(d—5)+(d—6)
SRR N ]

()

8.2.3 Third method: Berzolari’s formula for the number of

trisecant lines to a smooth curve of genus g and degree d
in P4

w

w

w

+(d-4)| +

(+")
(2)-
(2)-
(27)-

The number of trisecant lines to a smooth curve of genus g and degree d in P* is
well-known and given by Berzolari’s formula (cf. e.g. [BC99], §4).

This number is equal to (“;%) — g(d —4). In our situation g is equal to 2, and for d > 8
the number Berzolari’s formula yields is exactly equal to the degree of Secs(C'), where
C is a curve of degree d and genus 2 in P42, which we found in Sections 8.2.1 and
8.2.2.

Why are these two numbers equal?

Let C be a curve of degree d > 8 and genus 2 embedded in P%2. Since the dimension
of Secs(C) is equal to 5, in order to find the degree of Secs(C') we have to intersect
Sec3(C') with 5 general hyperplanes. Let now V denote the intersection of 5 general
hyperplanes in P%2 i.e. V is a general space of codimension 5 in P42,

Since dim(Secz(C)) = 3 and codim(V) = 5, V and Secy(C') do not intersect. This
implies that V' cannot intersect any plane in Secz(C) in a line, since every plane in
Sec3(C') contains three lines in Secy(C), and so if V' intersects a plane in a line L, then
L intersects at least one of those lines in Secy(C') in a point which obviously lies in
Seco(C).

The last step is now to project from V down to P*. Since V was chosen to be a general
space of codimension 5, V' does not intersect the curve C, and thus the curve in P*
which is the image of C' under the projection from V is also a curve of degree d and
genus 2.

Moreover, the fact that V' does not intersect Secy(C') implies that the image curve is
smooth.

A trisecant plane to C C P2 which intersects V in one point projects down to a
trisecant line to the image curve in P,

Summarizing, the number of trisecant planes to C' C P92 that intersect V' in one point
is exactly equal to the number of trisecant lines to the image curve in P*, and thus
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it follows that the degree of Secs(C') is equal to the number of trisecant lines to the
image curve in P4

Remark 8.19. For d = 6 and d = 7 the formula for the degree of Secs3(C) does not
make sense, since for these values of d the third secant variety Secs(C') is equal to the
ambient space P42, That is the reason we restrict to the cases d > 8 in our three
methods. However, Berzolari’s formula is still valid for the cases d = 6 and d = 7
since this formula counts the number of trisecant lines to curves of degree d and genus
2 in P*. This number is equal to 0 for d = 6, since in this case C is linearly normal
embedded in P*, and thus C C P* has no trisecant lines by Corollary 3.2. In the case
d =7 this number is equal to 4, which reflects the fact that through each general point
on the curve there are 4 trisecant planes.

For a curve C C P? of genus 2 and degree 5 there are infinitely many trisecant lines,
since C is of type (2,3) on a smooth quadric which is isomorphic to Pt x P!
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Appendix A

Appendix to Chapter 4

In this appendix we list the matrices that give the maps in the resolution of Oq as
Opa-2-module as presented in Chapter 4, for d =7 and d = 8.

Al d=7

Let

M= < To T1 I3 X4 )
T1 T2 T4 Ts
and let S be the two-dimensional rational normal scroll defined by the (2 x 2)-minors

of M.

Let
g1 = ToT2 — x%,
g2 = TpTy — 1173,
43 = ToT5 — T1T4,
44 = T1T4 — T3,
g5 = T1T5 — Tady4,
e = X3T5 — 372

denote the (2 x 2)-minors of M, let Iy, la, 13,14 € k[, 21, T2, T3, 24, 5] be general linear
forms and set

o
@2

In Section 3.5 we have seen that the ideal (q1, g2, g3, G4, G5, @6, @1, Q2) =: I defines a
smooth curve C' of genus 2 and degree 7 with associated g4 (C)-scroll S.

The mapping cone C!(—2) — C° is a minimal resolution of O¢ as Ops-module.

That is, we consider the following complex:

lixg + loxy + l3x3 + ly2y,

11331 + lQIQ + Z3I4 + l4$5.

0— 02(—6) —22- 0*(—5) 2= 04(=3) 22+ 0?(~2) —= Tc.s —= 0

loz lcl loo i(—Qz,Qo l

B> B B

00— 03(—4) —= 0%(-3) —= 05(-2) ———= 0O Og 0,

Ao
—

121
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where the maps are given by multiplication with the following matrices:

Ao

As

B,

B,

Ch

q4 qs
—42 —q3

q1 0

0 q1

M = < To T1 T3 T4 >
1 T2 Ty Tj
Ty Is
—x3 —T4 B(] _
X i)
—Xy —T1
0 0 T4 T3
0 T4 0 —x
0 —x3 —I 0
Ty 0 0 Zo
—XT3 0 Zo 0
T X 0 0
Zo 0 T
—I1 0 —X9
T3 0 Ty
—x4 0 —x5
0 T o ’
0 -z —x
0 Ty XT3
0 —x5 —x4
141‘1 —l3.’L‘1
—l4.7)2 13.’1)2
lymy Q2 — l3my
Q2 — ly75 I35
0 0
0 0
0 —h
—@s 0

A2 d=38

Let

and let S denote the rational normal scroll which ideal is generated by the (2x2)-minors

of M. Moreover, let

-

0 0 T5 Ty
0 Ty 0 )
0 —Ty4 —X9 0
Ty 0 0 T
—x4 0 T 0
Ty 1 0 0
—ly L 0
—ly 0 0
=1 0 5 b
0 —l4y O
0 0 =l
lyy Q2 — himy
Q2 — laxo Ly
Iy —liy
—lyxs hs
0 -1
-1 0
0 0
0 0
Lo T1 T2 T4 Ty
Ty T2 T3 Tz Tg > ’

g6 0
0 ds

-3 —q¢ |’
q2 44

(0 @ @ @ & @),

0

0

hL

o |’

Iy

I3
—Q2

, Cay= 0
@1
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g1 = ToT2 — Ii

G2 = ToT3 — T1T2,
g3 = XoTs — T1T4,
s = XoTg — T1Ts,
s = X173 — I§=

6 = T1T5 — XTal4,
g7 = X1Te — T2Xs,
qs = T2T5 — T34,
q9 = T2Te — L3Ts,
qio = T4le — m%

denote the (2 x 2)-minors of M, let Iy, s, 13 € k[zo, 21, T2, T3, T4, X5, 6] be general linear

forms and set

Q1 = hxo+ lbxy + I3z,
Q2 = hzy +lbxy + l375,
Q3 = hLzo+laws + l3z6.

In Section 3.5 we had seen that the ideal Io := I + (Q1,Qa, Q3) is the ideal of a

smooth curve C' of genus 2 and degree 8 in PS.

The mapping cone C2(—2) — C° gives a resolution of Og as Ops-module, i.e. we

consider the following complex:

Ao

A A A E
0 —> O%(=7) _ s 05(—6) _ 2 010(—4) _ry 010(—3) 03(-2) Oc

lm l“ lcz lcl jco

0

B: B: B B;
0 ——> O}(—5) —> O15(—4) ——> O (—3) — > 010(—2) o Os

0

The maps in the above complex are given by multiplication with the matrices we list
below. We will use the same ordering of the columns of the matrices as the computer

algebra system Macaulay 2 ([GS]).

Tog 1 T2 T4 X5 0 0 0 0 0
A(] = 1 To2 T3 Ty Tg Ty X1 X9 T4 Ty
0 0 0 0 0 =z a9 23 x5 x¢
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—x1 0 —x29 O 0 —z4 O 0 0 —uz5
Zo —X2 0 0 —Xy 0 0 0 —I5 0
0 il i) —XTy4 0 0 0 —T5 0 0
0 0 0 T2 X1 Zo —I5 0 0 0
A o 0 0 0 0 0 0 Ty T2 T Zo
v 25 0 —a3 0 0 —az5 0 0 0 -z |’
T —XT3 0 0 —Ts5 0 0 0 —Tg 0
0 i) il —Is5 0 0 0 —Tg 0 0
0 0 0 T3 To r1 —xg O 0 0
0 0 0 0 0 0 Ty T3 To Ty
—qs 0 0 —qi0 —4q9
—@ —qo O 0 —q
de 0 —q10 0 qr 2 5
—q1 —qr  —q 0 0 7 o
A, @ 9o 0 -q@ O A= | —ay -
—q 0 7 qr 0
X3 €T
0 4% —42 —q 0 e
0 g 93 0 —a ° ‘
0 —¢ O B @
0 0 —q8 —d46 —Gqs

By

((h a2 43 44 G5

96 47 48 Q9 (J10)7
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0 —lixy 0 0 —Q1 + 324
7@2 0 *lgxﬁ 0 0
0 7Q2 712$1 0 0
322 0 Q3 — iz lazo 0
—Q2 + 375 0 ~lixs — laxe laxs Qs
—l371 Qs —l3xs —laxy
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