
UNIVERSITY OF OSLO
Department of Informatics

Analyzing Sensor Data
for Active Music

Masters thesis
(60 pt)

Roger Stein Grading

May 2, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30839761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This thesis is about analysis of motions for active music applications, where

motions control music in real�time.

Motion data is derived from accelerations measured in (Euclidean) 3D by

one accelerometer. In order to capture motions on di�erent time�scales, a

necessary preprocessing step for analysis is calibration and segmentation on

the sensor data streams.

For sensor data analysis, a real�time, con�gurable motion classi�er has been

implemented. Datasets for the experiments with this classi�er are based

on two categories of equally sized pre�captured accelerations. Classi�cation

performance has been evaluated on a range of segment lengths (i.e. time�

scales of motions)�each length corresponding to a unique dataset.

Regarding postprocessing of the classi�cations for sound control, two quite

di�erent mapping systems have been developed�to di�erent extents. Both

control di�erent musical aspects, although at di�erent intervals. The �rst

system is trigger�based and inspired by the concept of hypermusic Machover

[2004]. However, for reasons that will become apparent, further development

of this system has been put on hold. The second (and latest) system is for

multi�channel continuous normalized parameter control.

i

Preface

For silly reasons, many �gures documenting in detail prototypes proposed

here are omitted, but will be available on http://folk.uio.no/rogerst/

mscthesis very soon!

iii

http://folk.uio.no/rogerst/mscthesis
http://folk.uio.no/rogerst/mscthesis

Contents

1 Introduction 1

1.1 Terms . 1

1.1.1 Active Music . 1

1.1.2 Action�sound couplings 2

1.2 Thesis overview . 3

1.2.1 Prototype implementations 4

1.3 Challenges for sensor data analysis 5

1.3.1 Data segmentation for motion analysis 5

1.4 Practical work . 7

2 Background 9

2.1 Active music . 9

2.1.1 Receiver input given solely by DSP techniques 10

2.1.2 Receiver input given both by DSP and DSG techniques 10

2.1.3 Relevant technologies and tools 10

2.2 Machine Learning . 12

2.2.1 Classi�cation with Support Vector Machines 14

3 Implementations 19

3.1 Motion Data Analysis . 19

3.1.1 Motion Capture Platform (Server) 19

3.1.2 Perceiving Musical Motions 20

3.2 Mapping Systems . 22

3.2.1 LiveBot . 22

3.2.2 MaxBot . 23

3.2.3 Mapping acceleration data to multi�channel AM syn-

thesis . 24

3.3 Third�party externals overview 32

v

vi CONTENTS

4 Experiments 33

4.1 Classi�cation experiments . 33

4.1.1 A few experiments of the e�ect of window segmenta-

tions on a large two�category dataset 33

4.2 Experiments with all possible segment lengths on a medium�

sized dataset . 35

5 Conclusion 37

5.1 Discussion . 37

6 Future works 39

A SVM Classi�er implemented as a Java External for Max 41

B JavaScript External for auto�triggering Live Clips 59

References i

List of Figures

1.1 A �owchart for typical human�computer interaction in an ac-

tive music system. 2

2.1 The ADXL330 accelerometer MEMS chip from Analog De-

vices. 12

2.2 General outline of a classication system. 13

2.3 Concepts of an arti�cial neural network with a basic set of

layers (i.e. one hidden layer, plus the I/O layers). Image

found in wik [2011a]. 14

2.4 Example of a maximum�margin hyperplane (in feature space)

obtained by training an SVM. 15

2.5 An illustration of the goal of SVM, which is to �nd an ad-

equate mapping ϕ (vector function) that transforms linearly

dependent vectors into linearly separable vectors in a space of

higher dimension (hence the hyperplane). The nonlinear de-

cision boundary in input space is found after SVM training.

. 16

3.1 Data �ow in the sub�system for realtime extraction of features

from sensor data. 20

3.2 Max patcher implementation of the server subsystem for cal-

ibration on the acceleration data and transformation to 7�

channel control amplitudes (on client�side modulated by a

running interpolation of preset weight vectors). 21

vii

viii LIST OF FIGURES

3.3 A �owchart for the (OSC) client�side �MaxBot� implementa-

tion of a 7�channel amplitude control system. The machine

learning system is a sub�process which is expanded for illus-

tration in Figure 3.4. NB: Here the dotted lines represent ex-

clusive output directions (similar to subclass arrows in UML).

. 24

3.4 NB: Here the blue lines represent the input and output for the

sub�process (the surrounding �ow is illustrated in Figure 3.3). 25

3.5 Max patcher for the (client�side) weight�vector interpolator

(presentation mode). Here, the interpolation is linear (de-

fault). 26

3.6 Max patcher for the (client�side) weight�vector interpolator

(presentation mode). Here, the interpolation is nonlinear (�sig-

moidal�). 26

3.7 Max patcher for the client�side weight�vector interpolator (pre-

sentation mode). 27

3.8 Max patcher (client�side) for controlling the interval of the

weight�vector interpolation (presentation mode). 27

3.9 Max patcher for the client�side system menu (presentation

mode). 27

3.10 Max patcher for de�ning (and storing as presets) the available

weight�vectors. 28

3.11 Max patcher for the multitrack audio player and mixer (pre-

sentation mode). Column�wise, the sliders determine the re-

spective channel volumes. 28

3.12 Here, the red curve illustrates �envelope-following� for an input

signal (in black). Image found on wik [2010b]. 31

4.1 This �gure shows classi�cation accuracy on the complete range

of segment sizes experimented with. 36

4.2 This �gure shows the more accuracy�varying range of Figure

4.1 . 36

B.1 The (Ableton) Live Object Model (API overview). Image

taken from web [2010c]. 60

List of Tables

4.1 Results from 167 ms motion segments 34

4.2 Results from 3 second's motion segments 35

4.3 Results from 4167 ms motion segments 35

ix

Chapter 1

Introduction

Currently, at the University of Oslo, research within active music takes place

in the collaborative research project Sensing Music�related Actions (SMA)

between the Department of musicology and the Department of informatics

web [2010d]. The principle goal for the SMA project is to explore action�

sound couplings in human�computer interaction. Sub�goals include the de-

velopment of technology for active music in portal media players.

Basic research questions of concern are e.g. what is the relationship be-

tween action and sound? What aspects of motion data are interesting for

use in active music systems? For analysis on continuous streams of sensor

data, especially relevant is the development of machine�learning and seg-

mentation methods for extracting meaningful actions. Intuitively, machine

learning means having machines learn by experience (i.e. increase its perfor-

mance at some task), and overlaps with �elds such as pattern classi�cation

and arti�cial intelligence Mitchell [1997].

1.1 Terms

The following are terms in need for de�nitions in the context of music tech-

nology.

1.1.1 Active Music

The term active music is generic and refers to music technology in which the

listener can in�uence the music listened to. Conversely, �passive music� is

more static and far less �exible for in�uencing it (typically, the only �musical

1

2 CHAPTER 1. INTRODUCTION

control� is given via buttons for pause, skip, (master) volume etc).

A top�down illustration of an active music system is given by a �owchart in

Figure 1.1.

ListeningMovement

MoCap System

(Preprocessing)

Mapping

(Analysis + postprocessing)

Sound Control

(Synthesis)

Music

Figure 1.1: A flowchart for typical human–computer interaction in an active music system. The dashed

lines refer to more advanced cases. Such a case can be analysis on combined patterns of sound features

and motion features, e.g. to analyze action–sound couplings directly. Another case can be a mapping

system with explicit information of states of the sound synthesis system, e.g. current tempo or current

candidate pitch values that it can take regarding a given virtual instrument, etc.

1.1.2 Action�sound couplings

It is expected that there is great potential in exploiting action�sound cou-

plings for music technology. Action�sound couplings represent relationships

between actions (e.g. movements) and sound. It is believed that our life�long

experiences with such couplings make us apt to imagine action or sound re-

lated to a sound�producing action that we respectively either only hear or see

Jensenius [2007]. Therefore a more general understanding of action�sound

couplings is considered an important basis, especially in the aid for better

exploiting motion capture data for electronic active music systems. Poten-

tially, some of these motion features can be the rhythm of the movements or

the mood of the listener. Such features can then be exploited to adapt (in-

1.2. THESIS OVERVIEW 3

�uence) the listened music to several situations, e.g. extending the duration

of a song or adapting the music tempo to one's corresponding jogging pace,

or prioritize among styles and genres of the next music track according to

one's present (estimated) mood Høvin et al. [2007]

1.2 Thesis overview

The main theme of this thesis is analysis of sensor data given by motion

capture platforms for active music applications. Sub�systems of concern can

roughly be labeled as follows;

� (a) motion capture system

� (b) mapping

� (c) synthesis

Regarding (a), especially considered sensor technologies for motion capture

are wearable sensor devices that can be mounted on the body of the music

listener. For instance, some of these sensor devices can constist of sensors

for measuring acceleration and/or rotation in Euclidean three�dimensional

space More speci�cally, for this thesis, a triaxial accelerometer has been cho-

sen.

The (b) mapping system represents system� and user�controlled logic for

mapping actions (e.g. sensed motions) to sound control. It includes sensor

data analysis, where motions are classi�ed (i.e. categorized) and later post-

processed for sound synthesis/control Considered methods for sensor data

analysis belong to the �eld of machine learning1. Machine learning means

having machines learn by experience, often based on training examples. A

more frequently cited, formal de�nition is cited in Section 2.2.

When it comes to (c) sound control, prototypes are implemented using the

interactive development environment called Max 2web [d]. Max o�ers good

possibilities in rapid prototyping of real�time sound synthesis/processing.

Also, being highly modular and relatively easy to learn, it is has more or

less become the lingua franca within sound programming. Algorithms for

1 Machine learning overlaps with �elds such as pattern classi�cation and arti�cial in-

telligence Mitchell [1997].
2Often referred to as Max/MSP

4 CHAPTER 1. INTRODUCTION

bottom�up sound synthesis regarding the construction of raw musical mate-

rial as such are out of the scope of this thesis.

1.2.1 Prototype implementations

Two di�erent prototypes are proposed. Both are implemented in Max/MSP

and its sensor data originates from the Analog Devices' ADXL330 accelerom-

eter adx [2007] (c.f. Figure 2.1). whose USB�to�Max/MSP interface (driver

software and API for Max) is developed by Phidgets web [e].

Moreover, these prototypes have quite di�erent application domains (the

former one is more specialized than the latter). Also, they di�er in their

practical applicability as the �rst prototype yet has been signi�cantly less

successfull than the second.

LiveBot � MIDI/audio clip triggering controller for alternative mu-

sic sequencing in Ableton Live

The �rst prototype is inspired by the concept of hypermusic. With hyper-

music It is API�speci�c, and aimed at creating meta�compositions (�on the

�y�) in Ableton Live, a popular music sequencing program. For reasons that

will become apparent, further development of this system has been put on

hold (alas, at least for practical reasons, it does not yet make up for an active

music application).

MaxBot � Multi�track amplitude modulator for a 7�track audio

loop in Max/MSP

The second, latest prototype is an implementation of a system for continuous

multi�channel amplitude control. This can be seen as a digital multi�channel

mixing application. Moreover, the amplitudes are normalized so as to avoid

ampli�cation above unity (i.e. stabile control). In the implementation re-

ferred to troughout the thesis, volumes of a 7�channel audio �le are modu-

lated. The �nal modulation signals are generated as a function of motions

and user�supplied mappings. Considering levels chained after the motion�

generated modulations, the user of the GUI has the opportunity to select

and con�gure sevaral DSP functions for di�erent mappings/purposes. Some

of these mappings, in particular based on real�time classi�cation of motions,

are programmatically interpolated.

1.3. CHALLENGES FOR SENSOR DATA ANALYSIS 5

For terminology, motions respectively transform into what I refer to as the

amplitude control vector, and the (amplitude) weight vector. The weight

vector is de�ned and interpolated by a motion classi�er and a more �musi-

cally minded� postprocessor. I call these for vectors so as to include all the

channels on a sample�by�sample basis.

1.3 Challenges for sensor data analysis

Frequently, a challenge in human�computer interfaces such as machine learn-

ing based active music applications, is sensor data calibration. However, a

perhaps more fundamental challenge regards segmentation on the streams of

sensor data.

� As humans are in constant motion, which segment lengths O are more

�obvious� choices?

� Does the O of choice vary with the musical genre listened to? If so,

� � how does O vary with respect to musical tempo?

� is there any universal, or culturally de�ned O?

1.3.1 Data segmentation for motion analysis

Naturally, motions can be seen on multiple time�levels. However, depending

on whether one wants to consider only a few of the possible durations of

motion, or the whole range, this can lead to a practical challenge. Many

classi�cation methods require that its input (i.e. data segments) are of same

size. Therefore, to be able to analyze motions on multiple time�scales can

be computationally expensive3.

Fortunately, there exist classi�cation methods that can work on variable seg-

ment sizes. Examples include Dynamic Time Warping (DTW) wik [2011b]

and Hidden Markov Models (HMMs) wik [2011c], Pylvänäinen [2005] for

classi�cation.

The classi�er prototype especially considered in this thesis is based on the

Support Vector Machine (SVM). Speaking for myself, SVMs do not that in-

tuitively work on variable�width data segments, but apparently, it is able

3 For instance, training multiple classi�ers would�normally�require more processing

time.

6 CHAPTER 1. INTRODUCTION

to do so Chaovalitwongse and Pardalos [2008]. It is out of the scope of this

chapter (see), but ultimately, it depends on the setup of SVM4.

However, for certain contexts of motion�capture�based musical applications,

I argue that it is fair to consider only a few time�scales. As the duration

of a sound�producing action often in�uences the resulting sound, I think

it is rather plausible that arbitrary change in speed of a sound (possibly

time�warped) also in�uences the related imaginable actions. Especially in

scenarios where the active music listener wants to ��ne�control� a speci�c

sound5, it would be natural that the motion correspond one�to�one (or few�

to�one) with the resulting sound control. That is why I think it is relevant

also to consider some �pseudo�synchronicity� of motion and sound for anal-

ysis. By pseudo�synchroncity of motion and sound, I do refer to multiple

time�scales (i.e. SVM classi�ers). However, �in a restricted sense, �I refer

to a kind of �synchronicity� in which motion and sound relate as follows:

MotionSpeed · 2k = SoundSpeed, k ∈ RestrictedSet ⊂ Z (1.1)

In order to capture motions on several time�scales, an obvious�perhaps

somewhat naïve�solution would be using several SVMs in parallell. Com-

bined, these could work as a multi�level or multi�category classi�er. This is

not experimented with in the prototypes described in this thesis. However,

classi�cations with di�erent segment sizes (i.e. di�erent datasets derived

from the same acceleration stream) are explored. A less �general� solution

where only one classi�er is used, could be the inclusion of a few downsampled

versions of maximum�sized data segments. Unless the samples are location

points, they would also require some transformation in order to compensate

for the sample frequency (i.e. �speed�) change. Additionally, with respect

to the original segment size, the reduced data segment would need to be ex-

tended (i.e. looped) so as to complete the segment. However, if the original

sensor data include the constant contribution of vector amplitude such as

from gravity, this is obviously not a solution. In the motion capture sys-

tem applied in MaxBot, the sensor device only consist of an accelerometer.

Therefore gravity's contribution is allways present in the signal. Ideally,

in such a case, the noise from gravity should somehow be estimated and

compensated for. For instance, without extending the sensor device with a

4 This relates to the so�called kernel function used for training the SVM.
5 In a broad sense; not necessarily meaning controlling a virtual instrument.

1.4. PRACTICAL WORK 7

additional sensors (e.g. gyroscope), this can be done by the linear algebra

gravity�correction method outlined in Pylvänäinen [2005].

1.4 Practical work

Notable practical works are as listed.

� JavaScript external development for a so�called Max for Live device

(i.e. �Ableton Live external�).

� GUI and data visualization scripting in Max

� Development of Java Max externals:

� wml.SvmLM: An implementation of a Support Vector Machine

classi�er based on a wrapper web [b] for LibSVM web [h] in the

mature Weka web [g] machine learning (and pattern recognition6)

API for Java.

� Utilities (wml.utils):

* ListWindow: A FIFO bu�er for �oats.

* RunningVoM: Running measure of motion volume.

6 According to wik [2011e], machine learning is a sub�eld of pattern recognition, which

also include regression methods, i.e. predictions of a real�valued scalars or vectors �not

only integers/labels.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background

Sensor data analysis for active music applications is a challenging an inter-

esting pursuit. Active music is not a completely new area of research. It has

for instance been explored with in computer games. More recent examples

of commercial active music applications are e.g. RJDJ, Apple Garageband

0.9 and Microsoft Songsmith web [2010f].

Related to active music applications, and the prototypes described in the the-

sis, I will start this chapter with a brief description of ways for synthesizing

digital music in ways that relates to digital signal processing and generation

(i.e. transformation and synthesis).

2.1 Active music

Concerning the nature of a given piece of active music, one can di�erentiate

on active music (this practically also applies to digital music in general) whose

audio samples sent to the receiver (often an audio mixer) at some extremes

are what can be called purely hardcoded and purely softcoded. Respectively,

these labels are meant to emphasize their static (or �o�ine synthesized�) and

dynamic (or �online synthesized�) nature. What is common to such active

music systems, however, is the possibility to control low-level parameters, i.e.

the application of DSP techniques at the sample�level (or signal�level). For

example, this can result in transforming the key or tempo/duration, acoustic

echo e�ects etc (much of which are based e.g. on (discrete variants of) the

Fast Fourier Transform (FFT) for transforming a digital signal from the

time-domain into the frequency-domain, and the inverse FFT transform).

9

10 CHAPTER 2. BACKGROUND

2.1.1 Receiver input given solely by DSP techniques

This kind of active music is music in which the musical information source

exclusively is given by a hardcoded waveform (e.g. mp3 �les or an audio CD).

When audio samples only from such a static waveform is given as the musical

raw (input) for the receiver, transformation (or re�synthesis) of the music it

represents relies solely on the application of digital signal processing (DSP)

techniques (e.g. such as amplitude or frequency modulation, granular/grain

(re)synthesis etc.).

2.1.2 Receiver input given both by DSP and DSG tech-

niques

The second kind is music can be seen as an extension of the former. For

the receiver, the waveform input (at least if thought about on a larger time�

scale), � besides most often also given by DSP techniques, � is given by digital

sound generating (DSG) techniques. This is music that is programmable

along many more dimensions. For example it is possible to control individual

sounds separately, and manipulate contents of the musical piece at higher

levels of abstraction. Hence both high-level musical parameters (e.g. tempo,

key . . .), mid-level parameters (relating to e.g. virtual music instruments,

sound e�ects or musical scores), and low�level parameters at the sample�

level, are programmable. Obviously, this makes it possible to in�uence the

(interactive) music at a much larger extent than working solely on sample-

level with a (pre-synthesized) waveform �le. Examples include the possibility

to create remixes or alternate compositional versions �on the �y�. An example

of music technology for such interactive music capable of the latter is called

hypermusic [Høvin et al., 2007, cited Machover [2004]]. This is a technology

under research and development in the SMA project, and especially, it also

is the basis behind the development of the projected portable active music

player.

2.1.3 Relevant technologies and tools

Motion capture technology is often a natural (intuitive) basis for active music

systems.

There are quite a lot of sensor devices relevant for di�erent contexts. Some

sensors measure biosignals (such as e.g. muscle contractions (EMG) or elec-

2.1. ACTIVE MUSIC 11

troencephalogram (EEG) for measuring brain activity by means of electrodes

placed on the scalp), others are e.g. force-sensitive resistors, light sensors,

microphones, capacitive sensors for measuring distance, etc. web [f] However,

for measuring movements, possibly optical and on�body kinematic/inertial

sensors are more relevant.

Optical Sensors

Today, frequently for practical purposes, a relatively common choice of sensor

devices for motion capture is ordinary video cameras. These are usually quite

easy to work with, though relatively processor intensive �typically with mil-

lions of pixels to monitor for relatively few interesting tracking points. Not

too long ago, Microsoft announced their Kinect 3D motion capture (multi�

sensor�based) device for Xbox wik [2011d]. Such technology seems promising,

at least for budget class 3D motion capture technology. For instance, a some-

what older technology such as stereoscopic vision wik [2011f] adds up to the

computational intensity in that tracking requires a setup of multiple video

cameras. Even then, (although at a smaller degree,) possible occlusion by

objects in front of a camera can make it impossible to obtain continuous 3D

tracking. An other type of video-based 3D tracking involves using multiple

infrared-sensitive cameras Nymoen [2007]. Such equipment is e.g. used for

animation purposes, but are also quite expensive today.

A common practical downside for video�based tracking is that only the quite

expensive ones ful�ll high requirements for latency, spatial and temporal

resolution (e.g. frame rates) for modern real-time motion capture based mu-

sical interfaces. Typically, when a�ordable cameras ful�ll a desired temporal

resolution, they lack the desired spatial resolution, or vice versa.

Motion Sensors

The more recent possibility of using small sensor devices that are imple-

mented with MEMS1�based integrated circuits o�er advantages. Such sensor

devices are relatively energy�e�cient, typically a�ordable, and small enough

to �t into light�weight containers that can be placed on body parts. Ex-

amples of popular types of motion sensors are inertial measurement units

(IMUs). IMUs combine accelerometers (e.g. Analog Devices' ADXL330 adx

1Micro-ElectroMechanical Systems

12 CHAPTER 2. BACKGROUND

[2007], Figure 2.1) and gyroscopes measuring rotational velocity for 3D rel-

ative positonal tracking (e.g. used in navigation systems). This has also

already been used in commercial products, such as the Nintendo Wii remote

controller, Apple's iPhone, and products from Xsense. However, a downside

especially for gyroscopes is drift (i.e. linear noise) in their voltage output.

Figure 2.1: The ADXL330 accelerometer MEMS chip from Analog Devices.

2.2 Machine Learning

For sensor data analysis, machine learning techniques have shown to be a

promising toolbox. This is an inter�disciplinary �eld concerned with algo-

rithms that automatically make a computer program's performance improve

with experience. A commonly cited de�nition of machine learning is given

by Tom M. Mitchell and goes as follows

A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P , if

its performance at tasks in T , as measured by P , improves with

experience E.

There are a Machine learning typically2 involves �adjusting� the machine's

internal model based on training data in order to �predict� information about

future input patterns so as to optimize accuracy or �tness3 function.

2 Sometimes, it can be more appropriate to speak of e.g. searching, evolving or opti-

mizing.
3 For instance, within the theory of evolutionary algorithms, �tness function is a com-

mon name for a function measuring performance of a genome (i.e. a candidate model

evolved by some selection and/or mutation mechanism) Eiben and Smith [2008].

2.2. MACHINE LEARNING 13

Classi�ers are common machine learning systems. Preprocessing and fea-

ture extraction are often embedded in classi�cation systems as they can be

performance�increasing. Typical preprocessing can be data segmentation

and noise removal (e.g. eliminate information from irrelevant transforma-

tions). A general outline of a classi�er is illustrated in Figure 2.2.

Preprocessing

Feature Extraction

Classification

Pattern

Class

Figure 2.2: General outline of a classication system.

Some common machine learning methods are kernel methods (KMs) �

with the Support Vector Machine as its most known family member, �

arti�cial neural networks (ANNs) and evolutionary computation (EC). Both

of the latter are inspired by and draw on concepts from biology.

Evolutionary computation (EC) is concerned with search algorithms inspired

by biological evolution. such as selection, recombination and mutation. In an

implementation of an evolutionary algorithm (EA), given proper parameter

values for the EA, it will often �nd quite good or (near) optimal solutions

faster than other approaches.

In particular ANNs are inspired by neurobiology, with emphasis on relations

between neurons or �occasionally�algorithmic aspects of brain areas, e.g in

so�called Hierarchical Temporal Memory Hawkins and Dileep [2007]. ANNs

must be trained on example data and learn by gradually changing the weights

between pairs of ANN nodes. A classic training method is Backpropagation

which is a method based on gradient descent.

The network topology of ANNs can be arbitrary, but in common they all

14 CHAPTER 2. BACKGROUND

have three types of layers of nodes that represent multiple neurons. The

corresponding layers are the sensing layer for the network inputs, one or

more hidden layers, and a top level for the network output(s). Figure 2.3

illustrates a (minimized) ANN topology. A pioneering ANN learning method

is called Backpropagation, it was

Figure 2.3: Concepts of an artificial neural network with a basic set of layers (i.e. one hidden layer, plus

the I/O layers). Image found in wik [2011a].

Apart from training an ANN on adequate example data so as to better

generalize on unseen examples, another challenge is to �nd good network

topologies for the hidden layer. Using machine learning techniques based on

methods mentioned above, it is possible to automatically (re�)model (learn

from experience) and/or evolve network topology for performance-improving

relations between input and output. Moreover, a phenomenon often occuring

when training an ANN is over�tting. This happens when the ANN is been

tuned to capture information about its example data that is badly repre-

sentable for yet unseen examples.

2.2.1 Classi�cation with Support Vector Machines

Support Vector Machine (SVM) is a popular supervised learning method

designed for classifying patterns represented by real vectors. This learning

method is also designed to avoid over�tting problems, i.e. it often generalizes

(learn) quite well. Per se, it is designed for binary classi�cation. However,

2.2. MACHINE LEARNING 15

methods for transforming multi�class classi�cation problems into multiple

(binary) SVM classi�cation problems do exist.

The goal of SVM is to �nd an optimal hyperplane that separates the two

classes of patterns by having the largest possible margin. The margin is sim-

ply the geometric (Euclidean) distance from the hyperplane to the nearest

patterns, respectively from the �rst and second class (both half�spaces de-

�ned by the hyperplane). These (nearest) patterns (from each of the two

classes) represent patterns that are the most di�cult to classify (correctly),

and are called support vectors. Support vectors have the same distance/mar-

gin to the hyperplane, and form the basis for the hyperplane which then can

be called a maximum�margin hyperplane. It is expected that the larger this

margin is, the better the classi�er will generalize (beoynd seen patterns from

the training set). This maximum�margin hyperplane (classi�er) is illustrated

in Figure 2.44.

SVMs are designed to work with linearly independent training sets, there-

Figure 2.4: Example of a maximum–margin hyperplane (in feature space) obtained by training an SVM.

This separating hyperplane is situated wherew ·x−b = 0. The support vectors are those intersecting

the “support hyperplanes” at w ·x− b = ±1.

fore quite often the training set requires preprocessing. Fortunately, when

the training set in question is not linearly independent (in its original vector

space), it can (virtually) become linearly independent [Duda et al., 2000, p.

4Image found in wik [2010a]

16 CHAPTER 2. BACKGROUND

259] by applying an adequate nonlinear mapping ϕ(·) on the orignal vec-

tors from the training set onto a space of a su�ciently higher (sometimes

even in�nite) dimension. To actually �nd such a mapping in practice can be

tricky, however there exists methods for minimizing the classi�cation error.

A geometric illustration of the concept of such a mapping is given in Figure

2.55.

Figure 2.5: An illustration of the goal of SVM, which is to find an adequate mappingϕ (vector function)

that transforms linearly dependent vectors into linearly separable vectors in a space of higher dimension

(hence the hyperplane). The nonlinear decision boundary in input space is found after SVM training.

Training an SVM

Assume that initially we have a training set X consisting of k linearly non�

separable vectors (patterns) {xi}ki=1 ⊂ Rm. We denote the associated classes

by
{
ti ∈ {−1, 1}

}k
i=1

. Then we let a transformed training set Y consist

of the linearly separable (independent) vectors {yi}ki=1 ⊂ Rn, where n >

m, be de�ned by an adequate mapping yi = ϕ(xi). Here Rm and Rn are

respectively referred to as input space and feature space. More formally, we

de�ne this by

Y =
{
(yi, ti) | yi = ϕ(xi) ∈ Rn, xi ∈ Rm, n > m, ti ∈ {−1, 1}

}k
i=1
,

in which each element belongs to either one of the classes ω1 and ω2. We

let the class�belongings to these vectors be mapped by

ti =

{
1 if yi belongs to ω1

−1 if yi belongs to ω2

, ∀ i ∈ {1, . . . , k}.

5Image found in Gisler [2008]

2.2. MACHINE LEARNING 17

Now we can start �nding the hyperplane. From linear algebra we have

that any hyperplane H can be expressed as

H = {x | w ·x+ w0 = 0} =

{
x | w0 +

m∑
i=1

wixi = 0 : x,w ∈ Rm

}
.

In order to re�express this condition (w ·x+w0 = 0) to a more compact,

homogenous equation on the form

a ·y = 0,

we can let the weight�vector a and the feature�vector y be augmented

versions of w = [w1 . . . wn]
T and x = [x1 . . . xn]

T respectively. by

a =

[
w0

w

]
, y =

[
1

x

]
.

Now, we can say that

g(y) = a ·y

is a linear discriminant, and test vectors are classi�ed according to the sign

of g(y).

The corresponding hyperplane (given by g(y) = 0) we are looking for then

ensures that

tig(yi) ≥ 1, ∀ i ∈ {1, . . . , k}. (2.1)

(The subset of transformed feature vectors {yi}ki=1 that gives equality in

(2.1) are namely those called support vectors.)

Further, since the distance from a hyperplane H to a transformed feature

vector y can be shown to be |g(y)|‖a‖ , which implies that

tig(yi)

‖a‖
≥ b, ∀ i ∈ {1, . . . , k}, (2.2)

where b is the margin. Now, (2.1) and (2.2) imply

b‖a‖ = 1, (2.3)

and the goal then becomes to �nd the weight vector a that maximizes

the margin b.

18 CHAPTER 2. BACKGROUND

This optimization problem can be formulated by the method of Lagrange

undetermined multipliers, in which we want to minimize ‖a‖, i.e. the norm
(or length) of a. Because this method involves derivation, one can simplify

the algebra by solving the equivalent problem of minimizing 1
2
‖a‖2. With

respect to a, one wants to minimize L := Lmin, de�ned by

Lmin(a,α) =
1

2
‖a‖2 −

k∑
i=1

αi [tig(yi)− 1] , ∀ αi ≥ 0, (2.4)

and maximize it with respect to the undetermined multipliers {αi ≥ 0}ki=1.

However, it can be shown that by using a so�called Kuhn�Tucker construction

[Duda et al., 2000, p. 263], this can be reduced and re�expressed purely as a

maximization problem. We refer to this problem with Lmax. Lmin also takes

a into account, however, the Kuhn�Tucker construction depends only on α,

which is de�ned by

Lmax(α) =
k∑

i=1

αi −
1

2

k∑
i,j

αiαjtitj (yi ·yj) , (2.5)

subject to the constraint

k∑
i=1

tiαi = 0, αi ≥ 0, ∀ i, j ∈ {1, . . . , k}. (2.6)

When α is found by using (2.5) and (2.6), one can combine the answer

with (2.4) and �nd a. The margin b is given by (2.2), i.e. b = ‖a‖−1. There
are multiple methods for solving (2.5) with the condition (2.6), one is called

quadratic programming.

Chapter 3

Implementations

3.1 Motion Data Analysis

In this thesis, the sensor data mapping is based on machine learning theory,

in which its fundamental sensor data analysis is based on pattern classi�ca-

tion theory (i.e. these aspects very much overlap with respect to analysis).

Intuitively, we want to have gestures classi�ed (analysis�related), and some-

how use the class�predictions for sound control (mapping�related). Gestural

information represented by time�series of sensor data are obviously more or

less hidden in the sub�intervals of the sensor data stream. Also, the gestures

(whose sensor data aspect is represented on sub�intervals) may overlap with

other gestures.

3.1.1 Motion Capture Platform (Server)

On the server�side, sensor data are transmitted over USB from a three�

dimensional ADXL330 accelerometer � and received (sample by sample) in

Max. The system is thus directly connected with the accelerometer via Phid-

gets driver and interface for Max, and provides both for the bypassing of raw

(albeit calibrated) acceleration samples, and for the computation of various

features/transformations from the raw acceleration signals.

It was earlier planned to use these features for classi�cation, although it does

not yet seem necessary for successfull motion classi�cation.

In this prototype, these �features� are not used for analysis (at least not

yet). However, they are applied for 7�channel amplitude synthesis, or ampli-

tude envelope synthesis. Actually, the user can choose to have them bypassed

19

20 CHAPTER 3. IMPLEMENTATIONS

to the client, or via an amplitude envelope follower/synthesis �lter. The in-

put for the classi�er is the sampled (time) series of a three�dimensional real

vector (window length is constant). The overall data �ow in this subsystem

is illustrated in Figure 3.1 Its implementation in Max is illustrated in Figure

3.2.

Feature extraction

Motions

Sensor Data

(3-DoF accelerometer)

Features

OSC data

packets

OSC data packaging

Listening

Figure 3.1: Data flow in the sub–system for realtime extraction of features from sensor data.

3.1.2 Perceiving Musical Motions

In this thesis, gestural information is represented in overlapping time�windows

of �xed length. The classi�cation of a gesture is therefore sensitive to its

speed. This is de�nitely not always desirable, but in the context of musical

performance, I think it is not that far�fetched to somehow take tempo into

account. Especially in order to arti�cially perceive the same gesture on dif-

ferent musically compatible time�scales, it is of course possible to transform

the acceleration data segment into alternative undersampled versions of the

original gesture. This, however, has implications for aliasing the signal in the

frequency domain. Moreover, as the speed of the same motion varies linearly,

the acceleration amplitudes varies nonlinearly. It is not intuitive how these

amplitudes vary with respect to speed, especially when a constant gravity is

part of the signal. Also, as regards to the classi�cation method especially

3.1. MOTION DATA ANALYSIS 21

Figure 3.2: Max patcher implementation of the server subsystem for calibration on the acceleration data

and transformation to 7–channel control amplitudes (on client–side modulated by a running interpolation

of preset weight vectors).

considered in this thesis (Support Vector Machine), the time�series to be

classi�ed must have the same dimension.

It is therefore an open question whether the series of gesture data as per-

ceived through a �xed�length time�window should be conceived of as being

contiguously de�ned or de�ned in sub�sequences. In this thesis, however,

�gestures� are narrowly conceived in terms of any �xed�length (time�)series

of acceleration samples (represented in a �xed order with respect to the time

of sampling).

What is questionable with regards to how one de�nes a gesture, is to what

extent is a gesture a series of acceleration samples can represent gesture is

an open question, however However, before speaking of classifying motions,

somehow, it should be expressed how we want to represent motions.

What we have is a series of sampled data points of 3D accelerations (i.e. time�

series). Then, what are the adequate ways of representing motions based on

this input? An intuitive choice is to add the subsequent sampled acceleration

points into a bu�er which then represent the accelerations sampled within

a given time�scale (given by the bu�er's size). Adding the accelerations

into this bu�er should also be in a �xed order, and for instance let the

22 CHAPTER 3. IMPLEMENTATIONS

order correspond to the time of sampling. Such a time�series (signal) then

implicitly represent motions sampled within some window of time. As shown

in the chapter on experiments, such a choice is indeed adequate.

3.2 Mapping Systems

Two di�erent mapping systems for di�erent application domains are devel-

oped � to di�erent extents. Both systems are developed in Max (with dif-

ferent sets of mentioned externals), however, one of these is more specialized

towards applications with the Ableton Live music sequencer. In common,

they are based on the same motion capture platform. This motion capture

platform is based on Phidgets' USB interface for a wearable accelerometer,

but they di�er in the application domain, i.e. having di�erent sound control

clients.

These systems use the Open Sound Control data communication protocol

(OSC, a UDP abstraction) for server�client communication. This makes

the system more modular since it can also communicate with any OSC�

compatible client (i.e. not only Max), e.g. Ableton Live. Both mapping

systems are thus twofold and implemented in Max with the use of �rst� and

third�party externals (extensions for Max).

3.2.1 LiveBot

Regarding sound control, the �rst prototype is aimed at discrete

auto�triggering/playing of MIDI/audio clips in a multi�track digital music

sequencing software 1 from Ableton named Live2 web [a]. At the time of de-

veloping this prototype, I assumed that information from the Live API web

[c] (for Max) about these clips' start� and endpoint from the linear musical

arrangement view (which represents the precomposed static clip sequencing

composition meant to be virtually altered (in real�time)) was available, but

such information lacked totally. Therefore, in order to actually implement

any automatic alternative clip triggering, this kind of information somehow

had to be hardcoded. First, I added this information manually into each

clip's name�a time�consuming and error�prone process.

This prototype has not fully been implemented. This API�related issue,

1Often referred to as a digital audio workstation (DAW) software wik.
2Often referred to as Ableton Live

3.2. MAPPING SYSTEMS 23

made testing and development an error-proned and time�consuming process.

Therefore further development has been aborted. This system is inspired by

the concept of hypermusic but implemented only partially. It is a bit com-

plex to explain in how, but as an �existence proof�, using a simple, albeit

manual and error�prone �clip labelling� approach (exactly what approach

will become clear), it has been demonstrated that it is possible to recre-

ate the original (MIDI/audio) clip playing sequence which again,�although

abstractly� hints that exchanging playback of original clips with new com-

patible ones is indeed possible. However, for technical and practical reasons,

further implementation has been put on hold.

3.2.2 MaxBot

The second � and latest � prototype is more general�purpose in nature. It is

made for continuous multi�track amplitude modulation, and is here applied

for volume mixing on a 7�channel audio �le. Mathematically, its output

is a vector whose elements vary in the [0, 1] range. Therefore, by simply

extending the prototype for instance with a UDP (or OSC) server for data

communication, it can virtually be applied to any situation requiring non�

amplifying amplitude modulation.

For an overview of the machine learning (sub�)system, see Figure 3.4.

This client�side application of the motion capture platform receives both

the raw acceleration vectors and (derived) features (extracted in the server

subsystem). The client should perhaps compute these features in order to

o��load network tra�c, and be more scalable, but this not a major issue

(this is merely a prototype, but worth the note). In essence put, (the �nal)

channel amplitudes/volumes are controlled by multiplying the feature vectors

with the resulting weight vector from a running linear interpolation (�cross�

fading�) between pairs of user�de�ned (or preset) vectors. The loading of new

(preset) vectors to perform interpolation on can be controlled by the user,

or alternatively controlled by a learning machine (e.g. as a function of the

learning machine's series of recently predicted gesture labels). All channel

amplitudes (represented by vector elements) take real (�oat) values in the

[0, 1] range, i.e. it does not increase the original channel amplitudes. The

mapping of features to the multi�channel amplitude vector is illustrated in

Figure 3.3.

24 CHAPTER 3. IMPLEMENTATIONS

Data packet extraction

Machine Learning

System

(7D)

Amplitude Control

Vector

(normalized)

(7D)

Music Player

chained to Mixer

(7 channels)

OSC data

packets

Features

(by default

envelope-followed)

(7D)

Acceleration

(3D)

Loop Duration

(tempo factor)

Interpolation Time
Weight Vector

(normalized)

Amplitude

Modulation

Vector

(7D)

Music
Sigmoid

Vector Transformation

(optional)

Low-pass Filter

(optional)

Elementwise Multiplication

(of vectors)

Loop Duration

Multiplication

Multiplication

Factor

(user input)

Figure 3.3: A flowchart for the (OSC) client–side “MaxBot” implementation of a 7–channel amplitude

control system. The machine learning system is a sub–process which is expanded for illustration in Figure

3.4. NB: Here the dotted lines represent exclusive output directions (similar to subclass arrows in UML).

3.2.3 Mapping acceleration data to multi�channel AM

synthesis

Beyond the actual feature extraction (separate patcher for this), the main

patcher (menu) for the system is illustrated in Figure 3.9. Visualization of

sensor data features (or, the feature�vector) can be viewed in Max patchers

as illustrated in Figure 3.5 where linear interpolation is enabled, and in

Figure 3.6 where nonlinear (�sigmoidal�) interpolation occurs.

From the accelerometer user's perspective it is, � besides turning o� au-

tomatic control and manually adjusting the master volume vector, � possible

to control the volume vector on two levels. What controls the weight�vector

depends on if weight�vector interpolation is enabled or not. If the inter-

polation is disabled, the weight vector is directly controlled by the the red

sliders illustrated in Figure 3.10. If weight�vector interpolation is enabled,

3.2. MAPPING SYSTEMS 25

Acceleration

(3D) Preprocessing

(buffering/windowing)

(3kD)

Representation of Motion

Interpolation of Weights

(from most recently

selected vectors)

(7D)

Interpolation Time

Weight Vector

(normalized)

(7D) Selection of next Weight Vector

(based on most frequent PCoM

during interpolation time)

Classification of Motion

(Support Vector Machine)

Predicted Class of Motion (PCoM)

Figure 3.4: NB: Here the blue lines represent the input and output for the sub–process (the surrounding

flow is illustrated in Figure 3.3).

the resulting interpolated weight�vector is illustrated by the green sliders in

Figure 3.7. The interpolation interval (speed) can be set in the Max patcher

illustrated in Figure 3.8.

Thus, (main) user�controllable aspects are as follows:

1. Set/reset (or disable/pause interpolation of) the weight vector, and

control the volume vector (only) as a function of the amplitude control

vector (i.e. the possibly ADSR��ltered amplitude control signal).

2. Let the weight vector be automatically controlled/interpolated (by the

learning machine), and let the �nal volume vector be controlled/up-

dated as a function of this weight vector and the feature vector.

3. De�ne normalized linear (scaling and bias) transformation of channel

volumes with simple sliders (colored in green in ??).

26 CHAPTER 3. IMPLEMENTATIONS

Figure 3.5: Max patcher for the (client–side) weight–vector interpolator (presentation mode). Here, the

interpolation is linear (default).

Figure 3.6: Max patcher for the (client–side) weight–vector interpolator (presentation mode). Here, the

interpolation is nonlinear (“sigmoidal”).

3.2. MAPPING SYSTEMS 27

Figure 3.7: Max patcher for the client–side weight–vector interpolator (presentation mode).

Figure 3.8: Max patcher (client–side) for controlling the interval of the weight–vector interpolation (pre-

sentation mode).

Figure 3.9: Max patcher for the client–side system menu (presentation mode).

28 CHAPTER 3. IMPLEMENTATIONS

Figure 3.10: Max patcher for defining (and storing as presets) the available weight–vectors.

Figure 3.11: Max patcher for the multitrack audio player and mixer (presentation mode). Column–wise,

the sliders determine the respective channel volumes.

3.2. MAPPING SYSTEMS 29

Client�side mapping

Analysis of gestural data In brief terms, captured gestural data are

transformed into AM synthesis, controlled by a classi�er�based, supervised

learning machine.

Representation and preprocessing of motion data A discrete loss-

less representation of acceleration�sensed motion is here represented by the

contiguous historical series of the accelerometer samples, i.e so�called time�

series data. More speci�cally, before analyzing these time�series, in order

to obtain data over a given time period, each sample�vector is added into

a �rst�in��rst�out (FIFO) bu�er (i.e. �stream bu�er� of a constant size).

Then, at some n�th time�step, the bu�er's data (i.e. a 3k�dimensional con-

tiguous (historical) part of the acceleration signal) is sent to the classi�er. If

the classi�er already has been trained on some (labeled) data), it's output is

the predicted label associated with the (windowed) acceleration signal.

Classi�cation of gestural data In the literature, at least for time�

series regression (prediction of a real number/vector) one wants to learn/ap-

proximate some function

f(xn,xn−1, . . .xn−k) = xn+1

, i.e. �predict� the future/next input�vector (given a (historical) time�series),

the radial basis function (RBF) is often considered a good kernel function

candidate. Therefore, intuitively, since in fact the classi�er in this prototype

operates on input�vectors (implicitly) representing time�series (i.e. series of

data captured over time), � for me � it is natural to consider classi�er perfor-

mance using the RBF kernel. It seems that software such as e.g. Wekinator

(based on the Weka machine learning library), feature common kernel func-

tions (e.g. RBF, linear, polynomial. . .), but as I have a time�limit on my

master's project, I have considered it �risky practice� to learn how to use (and

possibly �hack� � which anyway I had to do in the beginning, to make it work

on my Windows computer) this software within the given amount of time,

and less risky to develop a Max Java external of an SVM learning machine

based on Weka. To my frustration, however, I ended up using a great deal of

time on this �Weka SVM for Max� project of mine anyway, but �nally, now

it works. It is a simple classi�er, but has what I was looking for, namely the

ability to con�gure the kernel function (among a few other parameters) and

30 CHAPTER 3. IMPLEMENTATIONS

save/load the classi�cation model (�learning machine knowledge�).

The classi�er in this system is a Java external implementation based on the

Weka web [g] (a mature machine learning API for Java) Java wrapper for

LibSVM web [h], which is an implementation of the famous machine learn-

ing method named Support Vector Machine wik [2010a]. The input for this

external is a Max list of �oats (representing a real 3�dimensional vector) of

dimension 3 (although one can change this by sending it messages/arguments

about the input list size (�dimSize�) and its internal window length (�window-

Size�)). Depending on the training status of the classi�er, the input may

also be shipped with a class label. Therefore, � disregarding the possibly

present class label, � the actual input for the classi�er used in this system is

a 3k�dimensional window of the (calibrated) raw 3�dimensional acceleration

samples (acceleration patterns over multiple time�steps) captured from the

accelerometer. During (batch) training, the (supervised) learning machine

in this system, �learns� as a result of forming an adequate internal label�

prediction (classi�cation) model, i.e. from the set of constant�dimensional

data perceived through its given (often quite limited, but hopefully represen-

tative) set of (vector, label) examples. After the learning machine (hopefully)

has formed some adequate knowledge of its world, i.e. in its �post�trained�

operating mode, the input for the learning machine's classi�er is simply the

(calibrated) raw 3�dimensional acceleration samples, (post�)processed into

windowed (3k�dimensional) time�series data (i.e. a digital signal).

Behaviour of the learning machine (synthesis) Like most learn-

ing machines, its prediction controls some action/behavior. In this system,

brie�y put, the behaviour of the learning machine is the control of a 7�

dimensional weight vector that is element�wisely multiplied on the 7�channel

amplitudes, which in its turn is updated as a separate function of the ac-

celerometer data. The learning machine's behaviour, is, at the top level,

implemented by a linear interpolation over two weight�vectors. When the

interpolation factor is 1 and 0 (at the boundaries), the weight�vector that is

multiplied with 0 is replaced by a new one. And, at the end of the chain, the

user can also choose between no further mapping (i.e. keeping it linear) and

a nonlinear sigmoid mapping.

Regardless, the weight�vectors are element�wisely multiplied 3 with the feature�

3 It seems there does not exists any common mathematical operator for element�wise

vector multiplication web [2010e], however, for n×1 vectors a,b, the operation is equivalent

3.2. MAPPING SYSTEMS 31

vectors. Selections of these pairs of vectors are determined as a function of

the classi�cations that have occurred over the past two interpolation peri-

ods. This learning machine determines the next weight�vector to interpolate

onto (i.e. multiply/amplify from 0 to 1) as a function of the most frequent

label classi�ed (m�). When the learning machine is not yet trained or simply

disabled (i.e. not performing classi�cations), this weight vector, � say b, �

is constant and set to 17 = [1111111]T. In this case, in other words, it does

not transform the ADSR feature vector s to a di�erent one as it normally

would (either by the desktop user or the learning machine). As for now,

two�category classi�cation is performed. To add some variation, by design,

the selected weight�vector is randomly drawn from two exclusive subsets of

the pool of all preset weight�vectors (e.g. presets indexing from 1 to 10, and

11 to 20). The interpolation periods are by default set to the duration of the

looping audio �le, although the user can (and probably should) adjust/vary

the the number of doublings or halvings of the interpolation period (set to

0 by default). In other words, for an audio loop lasting 2n beats, the in-

terpolation duration is drawn from a small subset of �compatible� tempos

relative to the duration of the (looping) audio �le. Thus, mathematically,

the interpolation interval (loop) can be expressed as lasting for 2k · 2n = 2k+n

beats. Many other interpolation intervals could be available for the user

(e.g. 1/3, 1/6), but I think � at least for starters � this is a minimal set of

musically fool�proof interpolation intervals. Weight vectors as such is thus

de�ned by the user, regardless of movements, while the resulting interpolated

weight�vector is determined as a function of the gestures (classi�cations).

Figure 3.12: Here, the red curve illustrates “envelope-following” for an input signal (in black). Image found

on wik [2010b].

to diag(a)b.

32 CHAPTER 3. IMPLEMENTATIONS

3.3 Third�party externals overview

The following third�party externals used in these systems (LiveBot and

MaxBot) are note�worthy:

� Externals from Phidgets for accelerometer�USB interface (sensor data

sampling)

� smoother 4 which is based on envelope�following wik [2010b] (DSP

�lter) whose principle is illustrated in Figure 3.12. In MaxBot, it serves

as a low�pass �lter for preprocessing the amplitude control vector signal

generated by the sensor data. Moreover, I �nd its e�ect to be very

similar to the Attack�Decay�Sustain�Release (ADSR) �lter commonly

used in digital musical instruments (e.g. such as sound synthesizers)

�lter for amplitude modulation in the time domain. This is a common

component of many virtual instruments.

Simply put; for any input sample of larger amplitude than the previous

sample, the envelope�follower �lter smoother produces a series that

begins at this local peak and smoothly decreases in value�e.g. quite

similar to what happens when you hit a piano key

� OSC externals from CNMAT's Max/MSP/Jitter depot 5.

� ej.linterp Java external for list interpolation, made by Emmanuel

Jourdan 6. Applied for interpolation between presets of so�called weight�

vectors (active (interpolated) presets are determined as a function of

the classi�er's last label�outputs).

4 External developed by Ph.D. Tristan Jehan at the Massachusetts Institute of

Technology: http://web.media.mit.edu/~tristan/maxmsp.html
5 The �Everything for Windows� pack, dated 2011/04/04, at http://cnmat.

berkeley.edu/downloads
6 http://www.e--j.com/?page_id=165

http://web.media.mit.edu/~tristan/maxmsp.html
http://cnmat.berkeley.edu/downloads
http://cnmat.berkeley.edu/downloads
http://www.e--j.com/?page_id=165

Chapter 4

Experiments

4.1 Classi�cation experiments

The following are two sets of classi�cation experiments that illuminate the

(expected) lacking e�ect for varying the window (i.e. segment) sizes used in

a sliding window method for motion capture. The step size for the sliding

window is 1. In common, the results from these sets of experiments measure

accuracy, which is the number of correctly classi�ed instances relative to

all instances. The �rst set of experiments also measure class precision and

class recall. Respectively, these measure the true positive rate and the false

negative rate for the class in question.

4.1.1 A few experiments of the e�ect of window seg-

mentations on a large two�category dataset

The following subsubsections show results from classi�cation experiments

evaluated with a 5�fold1 crossvalidation. The dataset is equally balanced

and based on the same two streams (�superclasses�) of triaxial acceleration

samples (each sample a 3�tuple). These streams correspond to two di�erent

classes, namely the recording of �looped circular� movements respectively

1 Perhaps, a 10�fold crossvalidation would have been more adequate, however, a larger

multi�fold than a 5�fold was not possible as it gave out�of�memory errors. This is strange,

as the amount of required (allocated) memory in principle should be constant with respect

to the number of folds (what is needed of additional allocated memory is just a few �oating�

point numbers for adding up the results per fold � to be averaged in the end), and I suspect

this is due to a bug in Weka.

33

34 CHAPTER 4. EXPERIMENTS

around and along the earth's gravity vector (i.e. horizontal and vertical

movements). The two streams were captured/recorded for 59 seconds with

a 60 Hz sample�rate, which in total gives 7080 samples (i.e. 7080/2 = 3540

samples in each stream/class).

In each experiment, instances were generated using a sliding window (seg-

ment) of constant length (i.e. constant time�scale). Each new window is

shifted/slided only by one sample (time�slot, 3�tuple) from the previous.

Window length as measured in number of samples is the only parameter

varied in these experiments (constant for each experiment). Moreover, the

relation of the window length w to the number of instances ‖D∗w‖ in each class
* is simply given by the equation ‖D∗w‖ = 7080/2−w+1⇔ w = 3541−‖D∗w‖.
Regarding notation, here, an instance means a segment�a windowed �snap-

shot� of a historical part (with constant time�scale) of the stream.

Classi�cation of 167 ms motion segments

Here, a windowsize of ten samples was used (i.e. each instance consisted of

3 × 10 = 30 numeric attributes). The dataset consisted of 7060 instances,

and all instances were correctly classi�ed. The results are listed in Table 4.1.

Table 4.1: Results from 167 ms motion segments
Class Precision Recall

1 100% 100%

2 100% 100%

Classi�cation of 983.3 ms motion segments

Here, a windowsize of 59 samples was used to generate the dataset which

here consists of 6962 instances. The results from 5�fold crossvalidation were

identical to those of the former experiment, as illustrated in Table 4.1.

Classi�cation of 3 second's motion segments

The dataset for this experiment was generated from the two streams (sep-

arately) with a window�size of 180 samples, and therefore consists of 6720

instances. Here, there were only three incorrectly classi�ed instances, hence

the accuracy was approximately at 99.96 %. The results are listed in Table

4.2.

4.2. EXPERIMENTSWITH ALL POSSIBLE SEGMENT LENGTHS ON AMEDIUM�SIZED DATASET35

Table 4.2: Results from 3 second's motion segments
Class Precision Recall

1 99.9% 100%

2 100% 99.9%

Classi�cation of 4167 ms motion segments

This experiment's dataset was generated with a window�size of 250 sam-

ples yielding 6580 instances. Here, there were only 61 incorrectly classi�ed

instances, yielding an accuracy of 99.07 %. The results are listed in Table

4.3.

Table 4.3: Results from 4167 ms motion segments
Class Precision Recall

1 100% 98.1%

2 98.2% 100%

4.2 Experiments with all possible segment lengths

on a medium�sized dataset

The following plots in Figures 4.1 and 4.2 are from the same set of exper-

iments with a stream of 300 samples, which correspond to the �rst range

of samples in the same streams as experimented on above. Since evaluation

was performed by 10�fold cross validation, all possible segment lengths range

from 1 to 289 (can not have more folds than instances).

36 CHAPTER 4. EXPERIMENTS

Figure 4.1: This figure shows classification accuracy on the complete range of segment sizes experi-

mented with.

Figure 4.2: This figure shows the more accuracy–varying range of Figure 4.1

Chapter 5

Conclusion

From all the experiments run, accuracy is mostly very near or equal to unity.

This hints me that the classi�cation From the four �rst binary classi�cation

experiments evaluated with a 5�fold cross validation, and also the last binary

classifying experiments on a signi�cantly larger range of segment lengthsthat

gave the most statistically signi�cant results, we have seen that for most

segment lengths, the accuracy was 100%.

5.1 Discussion

From the experiments presented, it is fairly obvious to conclude that on

most ranges of segment lengths, the classi�er was not challenged much by

training data derived from the two acceleration streams. Moreover, the av-

erage for all the segment lengths was 85.3%. The implicit de�nition that the

same category of �xed�length motion segments exist on all possible �xed�

sized substreams on a stream of �xed class, did indeed make classi�cation a

trivial task for the classi�er. This was unrealistic, especially since only one

accelerometer was used for stream capturing. If more accelerometers were

used, I assume this would be slightly less unrealistic. This data segmentation

method represents an extreme variant in which the machine perception of a

motion is tested at an extreme of possible de�nitions.

In SVM, kernel functions K(yi,yj) are used for mapping vectors in input

space to vectors in feature space and represent similarity measures. For the

performed experiments, the applied kernel function was the RBF function

K(yi,yj) = exp(−γ‖yi − yj‖2). This can be interpreted as the Euclidean

distance Chaovalitwongse and Pardalos [2008], which illuminates how it gen-

37

38 CHAPTER 5. CONCLUSION

erally was possible to acchieve such accuracies. Compared to larger segments

in each class, one has much more time for moving the accelerometer so that

its class�to�class covariance gets much larger than for comparable smaller

segments.

Each training set was generated with a sliding window of minimal step�

size 1. This generates a maximum number of (overlapping) instances com-

pared to the window size and what is possible of dataset generation. For

the �rst set og experiments, multiplying the number of segments with their

segment size and dividing them on the sample rate of 60 Hz gives over a day

of data.

It was trained on quite a large, but easily discriminating set of training ex-

amples (i.e. the variance on the y�axis is much larger than for the other set

of examples), In a later prototype, to better handle more complex datasets

and/or to reduce memory use, these features (transformed raw data (series))

can be carried out by a learning machine (this is often necessary to achieve

better classi�cation performance), however, research reported in Pylvänäi-

nen [2005] and and my own preliminary results from early experiments with

classi�cation of windowed acceleration signals � in these cases � (although

the data set in my case consists only of a two�category data set of possibly

quite easily discriminative examples � i.e. descriminating the variation along

the y�axis probably gives a su�ciently generalizing classi�er) suggests that

this is not necessary (i.e. that three�dimensional dynamic acceleration itself

is adequate). However, my own experiments are limited to the classi�cation

of basic horizontal and vertical circular movements. Larger experiments (e.g.

using a larger amount of gesture classes/categories (and in particular perhaps

of a higher complexity)) could of course suggest the opposite (for classifying

data from three�dimensional acceleration samples).

Chapter 6

Future works

There is much more that can be done for analyzing sensor data and for active

music in general. Adding more classes to the dataset, and generate them

from acceleration streams with non�overlapping windows would probably

yield more insight.

Moreover, it could be interesting to look at relations between motion and

sound with emphasis on the tempo of the music listened to while capturing

accelerations seen on multiple time�scales. Also, estimating the direction

of gravity has not yet been carried out. Therefore, it may be important to

have the accelerometer oriented (and probably to some degree also located)

identical (or very similar) as it was during training of the classi�er. As a

consequence, the accelerometer user may use some time to �gure out which

orientation the accelerometer should have. A naïve, but non�practical solu-

tion for this may be to automatically create rotated versions of each vector

used for classi�er training, but this would de�nitely increase the memory use

and training time by magnitudes.

Especially, if Ableton supplies Live with a more open API as regards

to clip information in the arrangement view (linear composition), further

�LiveBot research� would be considerably simpli�ed.

39

40 CHAPTER 6. FUTURE WORKS

A

Appendix A

SVM Classi�er implemented as a

Java External for Max

This implementation, whose Java class is named wml.SvmLM, is based on

the Weka machine learning library and its wrapper for LibSVM, a popu-

lar implementation of SVM classi�cation and regression. Upon training the

classi�er, this Java external performs segmentation on the acceleration sam-

ple stream stored in a (user�chosen) .coll �le for each class. After training,

when classifying novel patterns, segmentation is performed outside this ex-

ternal, which in the MaxBot prototype is performed with the interconnected

FIFO bu�er Java external object named wml.utils.ListWindow (i.e. the

system user/developer has the opportunity of using other, perhaps faster,

segmentation implementations).

1 package wml;
2

3

4 import java.io.BufferedReader;
5 import java.io.File;
6 import java.io.FileInputStream;
7 import java.io.FileNotFoundException;
8 import java.io.FileOutputStream;
9 import java.io.IOException;

10 import java.io.InputStreamReader;
11 import java.io.ObjectOutputStream;
12 import java.io.PrintWriter;
13 import java.io.StringWriter;
14 import java.util.ArrayDeque;
15 import java.util.Iterator;
16 import java.util.Random;
17 import java.util.StringTokenizer;
18

19 import com.cycling74.max.*;
20

21 import weka.classifiers.Evaluation;
22 import weka.classifiers.functions.LibSVM; // Optimized, bug-fixed

version of wlsvm.WLSVM

41

42APPENDIX A. SVMCLASSIFIER IMPLEMENTEDAS A JAVA EXTERNAL FORMAX

23 import weka.core.Attribute;
24 import weka.core.FastVector;
25 import weka.core.Instance;
26 import weka.core.Instances;
27

28 import org.apache.log4j.Logger;
29

30 /*
31 * Sources for API and inspiration:
32 * http://weka.sourceforge.net/doc/
33 * http://weka.sourceforge.net/doc/weka/core/Instance.html
34 *
35 * http://weka.wikispaces.com/Use+Weka+in+your+Java+code
36 *
37 *

http://ianma.wordpress.com/2010/01/16/weka-with-java-eclipse-getting-started/
38 *
39 * http://www.cs.iastate.edu/~yasser/wlsvm/
40 *
41 * http://shawndra.pbworks.com/f/Weka+filters.pdf
42 */
43

44 public class SvmLM
45 extends MaxObject
46 {
47 // Pragmatics:
48 private final boolean maxTest = true; // false ~ JavaTest
49 private final boolean DEBUG = true;
50

51 /**
52 * Log4j logger
53 */
54 public static Logger log4j = Logger.getLogger("wml.SvmLM");
55

56 // Globals:
57 private static final int DEFAULT_DIM_SIZE = 3; // TODO: Remove

restriction "must be 3n"
58 private static final int DEFAULT_WINDOW_SIZE = 10;
59 private static final int DEFAULT_CLASS_COUNT = 2;
60 private static final int DEFAULT_LABEL = 1;
61 private static final int DEFUALT_CAPACITY = 10;
62

63 /* LibSVM options:
64

65 Valid options are:
66

67 -S <int>
68 Set type of SVM (default: 0)
69 0 = C-SVC
70 1 = nu-SVC
71 2 = one-class SVM
72 3 = epsilon-SVR
73 4 = nu-SVR
74

75 -K <int>
76 Set type of kernel function (default: 2)
77 0 = linear: u'*v
78 1 = polynomial: (gamma*u'*v + coef0)^degree
79 2 = radial basis function: exp(-gamma*|u-v|^2)
80 3 = sigmoid: tanh(gamma*u'*v + coef0)
81

82 -D <int>
83 Set degree in kernel function (default: 3)
84

43

85 -G <double>
86 Set gamma in kernel function (default: 1/k)
87

88 -R <double>
89 Set coef0 in kernel function (default: 0)
90

91 -C <double>
92 Set the parameter C of C-SVC, epsilon-SVR, and nu-SVR

(default: 1)
93

94 -N <double>
95 Set the parameter nu of nu-SVC, one-class SVM, and

nu-SVR (default: 0.5)
96

97 -Z
98 Turns on normalization of input data (default: off)
99

100 -P <double>
101 Set the epsilon in loss function of epsilon-SVR

(default: 0.1)
102

103 -M <double>
104 Set cache memory size in MB (default: 40)
105

106 -E <double>
107 Set tolerance of termination criterion (default: 0.001)
108

109 -H
110 Turns the shrinking heuristics off (default: on)
111

112 -W <double>
113 Set the parameters C of class i to weight[i]*C, for

C-SVC (default: 1)
114

115 -B
116 Trains a SVC model instead of a SVR one (default: SVR)
117

118 -D
119 If set, classifier is run in debug mode and
120 may output additional info to the console
121 *
122 */
123 private static final String[] LIBSVM_CLASSIFIER_OPTIONS =
124 {
125 "-i", // ?
126

127 //---------------
128 "-S", // LibSVM options:
129

130 "0", // Classification problem (multi-class SVM
a.k.a. C-SVC)

131 "-K", "2", // RBF kernel
132 "-G", "1", // gamma
133

134 "-C", "1", // C (Complexity Cost), 1 is default (not
necessary to set)

135 "-B",
136

137 "-Z", "1", // normalize input data (off by default,
here: on)

138

139 "-M", "2000" // cache size in MB
140 };
141 private static final String[] VALID_MODES = { "learning",

44APPENDIX A. SVMCLASSIFIER IMPLEMENTEDAS A JAVA EXTERNAL FORMAX

"classifying" };
142

143 private int dimSize; // Length of feature vector
144 private int windowSize; // Length of window (slots = n *

dimSize)
145 private int classCount;
146 private int classIndex;
147 private int capacity;
148 private int label;
149 private int readClassesCount;
150 private String[] options;
151

152 private boolean pretrainedClassifier;
153

154 LibSVM svmClassifier;
155 Instances trainingSet, testSet;
156

157

158 // NB: Is called before any attributes are set
159 public SvmLM()
160 throws Exception
161 {
162 dimSize = DEFAULT_DIM_SIZE;
163 windowSize = DEFAULT_WINDOW_SIZE;
164 classCount = DEFAULT_CLASS_COUNT;
165 readClassesCount = 0;
166 capacity = DEFUALT_CAPACITY;
167 label = DEFAULT_LABEL;
168 pretrainedClassifier = false;
169

170 declareAttributes("dimSize", "windowSize", "classCount",
"capacity", "options", "pretrainedClassifier");

171 }
172

173 public void loadCategoryDataFile(Atom[] fileNamePathMessage)
174 {
175 String thisCollFilePath = "";
176

177 if (fileNamePathMessage.length >= 1)
178 for (int i = 0; i < fileNamePathMessage.length; i++)
179 if (i == 0)
180 thisCollFilePath += fileNamePathMessage[i

].getString();
181 else
182 thisCollFilePath += " " + fileNamePathMessage[i

].getString();
183

184 File collFile = new File(thisCollFilePath);
185 FileInputStream fis = null;
186

187 ++readClassesCount;
188 try
189 {
190 fis = new FileInputStream(collFile);
191 BufferedReader br = new BufferedReader(new

InputStreamReader(fis));
192 // Queue
193 boolean windowIsComplete = false;
194 int windowSlotsFilled = 0;
195 ArrayDeque<Atom> deque = new ArrayDeque<Atom>(dimSize

* windowSize);
196

197 String lineRead = "";
198 int linesRead;

45

199 for (linesRead = 0; (lineRead = br.readLine()) !=
null; linesRead++)

200 {
201 StringTokenizer tokenizer = new StringTokenizer(

lineRead, " ,;");
202 while (tokenizer.hasMoreTokens())
203 {
204 tokenizer.nextToken(); // "Time tag" (sample

index) ignored here
205 for (int i = 0; i < dimSize; i++)
206 {
207 String tokenized = tokenizer.nextToken();
208

209 float val = Float.parseFloat(tokenized);
210 deque.push(Atom.newAtom(val));
211 }
212

213 if (!windowIsComplete)
214 {
215 if ((windowSlotsFilled += dimSize) ==

dimSize * windowSize)
216 windowIsComplete = true;
217 }
218 else
219 {
220 Iterator<Atom> it =

deque.descendingIterator();
221 int completeWindowSize = dimSize * windowSize;
222

223 Atom[] window = new Atom[completeWindowSize
];

224 for (int i = 0; i < completeWindowSize; i++)
225 window[i] = it.next();
226

227 addTrainingInstance(window, ("" +
readClassesCount));

228

229 for (int d = 0; d < dimSize; d++)
230 deque.pollLast();
231 }
232 }
233 }
234

235 properPost
236 (
237 "Successfully parsed examples from " +

thisCollFilePath +
238 " and associated them with class index (label) " + (

readClassesCount - 1)
239);
240

241 fis.close();
242 br.close();
243 }
244 catch (FileNotFoundException e)
245 {
246 --readClassesCount;
247 properExceptionPost(e, "Did not find the file " +

thisCollFilePath);
248 }
249 catch (IOException e)
250 {

46APPENDIX A. SVMCLASSIFIER IMPLEMENTEDAS A JAVA EXTERNAL FORMAX

251 --readClassesCount;
252 properExceptionPost(e, "I/O error, i.e. no success

parsing contents of the file " + thisCollFilePath);
253 }
254 }
255

256 private void declareAttributes(String ... attNames)
257 {
258 for (String attName : attNames)
259 declareAttribute(attName);
260 }
261

262 public void initClassifier()
263 throws Exception
264 {
265 if (svmClassifier == null)
266 svmClassifier = createLibSvmClassifier();
267

268 doDeclareDataSets
269 (
270 dimSize,
271 windowSize,
272 classCount = 1,
273 capacity = 2*3540
274);
275 }
276

277 private LibSVM createLibSvmClassifier()
278 {
279 LibSVM classifier = new LibSVM(); // A classifier

implementing versions of Support Vector Machine
280

281 if (DEBUG)
282 classifier.setDebug(true);
283

284 try
285 {
286 /* setOptions Javadoc at
287 *

http://www.java2s.com/Open-Source/Java-Document/Science/weka/weka/classifiers
288 * /functions/LibSVM.java.java-doc.htm#setOptionsString
289 */
290 classifier.setOptions(LIBSVM_CLASSIFIER_OPTIONS);
291 }
292 catch (Exception e)
293 {
294 properExceptionPost(e, "Error setting options for

LibSVM: ");
295 }
296

297 return classifier;
298 }
299

300 private void doDeclareDataSets(int dimSize, int windowSize,
int classCount, int capacity)

301 {
302 // For each label, declare positive/negative category

membership
303 FastVector classValues = new FastVector(2 * classCount);
304 for (int label = 1; label <= classCount; label++)
305 {
306 classValues.addElement("" + label); // Positive
307 classValues.addElement("!" + label); // Negative

47

308 }
309

310 int length = (dimSize * windowSize);
311

312 FastVector wekaAttributes = new FastVector(length + 1);
313 for
314 (
315 int i = 0, j = 0;
316 i < length;
317 i += dimSize, j++
318)
319 {
320 wekaAttributes.addElement
321 (
322 new Attribute("X" + j)
323);
324 wekaAttributes.addElement
325 (
326 new Attribute("Y" + j)
327);
328 wekaAttributes.addElement
329 (
330 new Attribute("Z" + j)
331);
332 }
333

334 wekaAttributes.addElement
335 (
336 new Attribute("theClass", classValues)
337);
338

339 // Create empty training set
340 trainingSet = new Instances("3D acceleration training

set", wekaAttributes, capacity);
341 testSet = new Instances("3D acceleration test set",

wekaAttributes, capacity);
342 trainingSet.setClassIndex(length);
343 testSet.setClassIndex(length);
344 }
345

346 public void declareDataSets()
347 {
348 doDeclareDataSets
349 (
350 dimSize, windowSize, classCount, capacity
351);
352 }
353

354 public void trainClassifier()
355 throws Exception
356 {
357 if (!pretrainedClassifier)
358 {
359 post("Training classifier...");
360 doTrainClassifier(svmClassifier, trainingSet);
361 post("Classifier trained.");
362 pretrainedClassifier = true;
363 savePretrainedClassifier(svmClassifier);
364 }
365 else
366 svmClassifier = loadPretrainedClassifier();
367 }
368

48APPENDIX A. SVMCLASSIFIER IMPLEMENTEDAS A JAVA EXTERNAL FORMAX

369 public void getSetupForExperiment()
370 {
371 properPostExperimentalSetup();
372 }
373

374 public void evaluateClassifier()
375 {
376 if (pretrainedClassifier)
377 {
378 int numFolds = 5; // Number of folds in

cross-validation (more folds may cause out-of-memory
error...)

379

380 Evaluation eval = evaluateCVTrainedClassifier(
svmClassifier, trainingSet, numFolds);

381

382 properMultiLinePost(eval.toSummaryString(), "Using " +
numFolds + "-fold cross-validation, we got:");

383 try
384 {
385 properMultiLinePost(eval.toClassDetailsString(), "Class

details:");
386 }
387 catch (Exception e)
388 {
389 if (DEBUG)
390 {
391 properExceptionPost(e, "Error calling

<Evaluation>.toClassDetailsString(); class is
not nominal: ");

392 }
393 }
394 }
395 }
396

397 private void doTrainClassifier(LibSVM classifier, Instances
trainingSet)

398 {
399 try
400 {
401 svmClassifier.buildClassifier(trainingSet);
402 }
403 catch (Exception e)
404 {
405 post("Could not build classifier...");
406 if (DEBUG)
407 e.printStackTrace();
408 }
409 }
410

411 private Evaluation evaluateCVTrainedClassifier(LibSVM
classifier, Instances traingSet, int numFolds)

412 {
413 Random random = new Random(13);
414 Evaluation eval = null;
415 try
416 {
417 eval = new Evaluation(trainingSet);
418 eval.crossValidateModel(svmClassifier, trainingSet,

numFolds, random);
419 }
420 catch (Exception e)

49

421 {
422 if (DEBUG)
423 e.printStackTrace();
424 }
425

426 return eval;
427 }
428

429 private LibSVM loadPretrainedClassifier()
430 {
431 LibSVM pretrainedLibSVM = null;
432 post("Loading pretrained classifier...");
433 try
434 {
435 pretrainedLibSVM = readPretrainedClassifier();
436

437 post("Loading completed.");
438 }
439 catch (Exception e)
440 {
441 pretrainedLibSVM = new LibSVM();
442 post("Could not load pretrained classifier. Reverted to

non-trained classifier (and set pretrainedClassifier
to 'false').");

443

444 pretrainedClassifier = false;
445 if (DEBUG)
446 e.printStackTrace();
447 }
448

449 return pretrainedLibSVM;
450 }
451

452 private void savePretrainedClassifier(LibSVM svmClassifier)
453 {
454 try
455 {
456 ObjectOutputStream oos =
457 new ObjectOutputStream
458 (
459 new FileOutputStream(

"lastSavedClassifierModel.dat")
460);
461

462 oos.writeObject(svmClassifier);
463 oos.flush();
464 oos.close();
465 }
466 catch (FileNotFoundException e)
467 {
468 post("File not found.");
469

470 if (DEBUG)
471 e.printStackTrace();
472 }
473 catch (IOException e)
474 {
475 post("I/O error. Perhaps, there is no more disk space?");
476

477 if (DEBUG)
478 e.printStackTrace();
479 }

50APPENDIX A. SVMCLASSIFIER IMPLEMENTEDAS A JAVA EXTERNAL FORMAX

480 }
481

482 private LibSVM readPretrainedClassifier()
483 throws Exception
484 {
485 return (LibSVM) weka.core.SerializationHelper.read(

"lastSavedClassifierModel.dat");
486 }
487

488 private void properPostExperimentalSetup()
489 {
490 properPost
491 (
492 "Setup for this experiment:"
493);
494 properPost
495 (
496 "\t" + "The training set is based on a " + ((int)

Math.pow(2 , classCount)) + "-category
dataset/stream of " +

497 dimSize + "-dimensional instances."
498);
499 properPost
500 (
501 "\tThe actual training set (in feature space) consists

of the same data \"time-windowed\"/augmented " +
502 "into (\"chunked\") vectors of correspondingly larger

dimensionality "
503);
504 properPost
505 (
506 "\t(here, " + windowSize + " samples (of " + dimSize +

"-dimensional instance-vectors) in each augmented
vector)."

507);
508 }
509

510 private void properPost(String message)
511 {
512 if (maxTest)
513 post(message);
514 else // javaTest (e.g. JUnit testing)
515 log4j.debug(message);
516 }
517

518 /**
519 * Callback method for the parent mxj object for receiving lists
520 */
521 public void list(Atom[] vec)
522 {
523 if (pretrainedClassifier)
524 classifyInstance(vec);
525 else
526 addTrainingInstance(vec, ("" + label));// XXX FixMe
527 }
528

529 /**
530 * Method for adding an instance to the trainingSet
531 *
532 * @param vec Max list assumed to be a real vector
533 */
534 private void addTrainingInstance(Atom[] vec, String label)

51

535 {
536 int completeWindowSize = dimSize * windowSize;
537

538 Instance instance = new Instance(completeWindowSize + 1);
// one for the label as well

539 instance.setDataset(trainingSet);
540

541 for (int attIndex = 0; attIndex < completeWindowSize;
attIndex++)

542 {
543 float value = vec[attIndex].getFloat();
544 instance.setValue(attIndex, value);
545 }
546

547 // XXX FixIt
548 if (label.equals("2"))
549 label = "!1";
550

551 instance.setValue(completeWindowSize, label);
552

553 trainingSet.add(instance);
554 }
555

556 private void classifyInstance(Atom[] vec)
557 {
558 Instance testInstance = new Instance(vec.length);
559 testInstance.setDataset(testSet);
560

561 for (int attIndex = 0; attIndex < vec.length; attIndex++)
562 testInstance.setValue(attIndex, vec[attIndex

].getFloat());
563

564 double predictedClassIndex = -1.0;
565 try
566 {
567 predictedClassIndex = svmClassifier.classifyInstance(

testInstance);
568 }
569 catch (Exception e)
570 {
571 String message = "An error occured upon classification.

Output (erroneous) class index -1";
572

573 if (DEBUG)
574 properExceptionPost(e , message);
575 else
576 post(message);
577 }
578

579 outputPredictedClassIndex(0 , predictedClassIndex);
580 }
581

582

583 private void reStart()
584 {
585 // TODO Implement reStart() ?
586 }
587

588 /**
589 * Max setter method:
590 * Usage: message/@argument classCount <int>
591 * @param newClassCount
592 */

52APPENDIX A. SVMCLASSIFIER IMPLEMENTEDAS A JAVA EXTERNAL FORMAX

593 public void classCount(Atom[] newClassCount)
594 {
595 Atom arg;
596 if (newClassCount.length >= 1)
597 {
598 arg = newClassCount[0];
599

600 if (arg.isInt())
601 doSetClassCount(arg.getInt());
602 else
603 properPost
604 (
605 "Error in setClasscount <classCount> message: " +
606 "<classCount> must be a natural number."
607);
608 }
609 }
610

611 /**
612 * Max setter method:
613 * Usage: message/@argument pretrainedClassifier <boolean>
614 * @param usePretrainedClassifier
615 */
616 public void pretrainedClassifier(Atom[]

usePretrainedClassifier)
617 {
618 post(".........."); // TODO (DEBUG) Remove this line
619 Atom arg;
620 if (usePretrainedClassifier.length >= 1)
621 {
622 arg = usePretrainedClassifier[0];
623 String message = arg.getString();
624

625 if (message.equalsIgnoreCase("true"))
626 {
627 try
628 {
629 pretrainedClassifier = true;
630 trainClassifier(); // Loads pretrained

classifier (does not really train it again)
631 initClassifier();
632

633 post("Using pretrained classifier");
634

635 }
636 catch (Exception e)
637 {
638 pretrainedClassifier = false;
639 post("Could not use pretrained classifier

(pretrainedClassifier set to false)");
640

641 if (DEBUG)
642 e.printStackTrace();
643 }
644 }
645 else if (message.equalsIgnoreCase("false"))
646 pretrainedClassifier = false;
647 else
648 post("Error: The parameter after

'pretrainedClassifier' must be a boolean, true
or false.");

649 }
650 }

53

651

652 /**
653 * Max getter method - call--result output from Max info outlet:
654 */
655 public void pretrainedClassifier()
656 {
657 output(getInfoIdx(), pretrainedClassifier);
658 }
659

660 private void doSetClassCount(int newClassCount)
661 {
662 if (classCount != newClassCount)
663 classCount = newClassCount;
664 }
665

666 public void getClassCount()
667 {
668 output(getInfoIdx(), classCount);
669 }
670

671 @Deprecated
672 /** Not necessary.
673 * [classIndex #] does not call this method.
674 */
675 public void setClassIndex(Atom[] nextClassIndex)
676 {
677 Atom arg;
678 if (nextClassIndex.length >= 1)
679 {
680 arg = nextClassIndex[0];
681

682 if (arg.isInt())
683 doSetClassIndex(arg.getInt());
684 else if (arg.isFloat())
685 doSetClassIndex((int) arg.getFloat());
686 else
687 properPost
688 (
689 "Error in handling setClassIndex <classIndex>

message: " +
690 "<classIndex> must be a positive integer."
691);
692 }
693 }
694

695 @Deprecated
696 private void doSetClassIndex(int nextClassIndex)
697 {
698 if (nextClassIndex != classIndex)
699 {
700 classIndex = nextClassIndex;
701

702 reStart();
703 }
704 }
705

706 public void getClassIndex()
707 {
708 output(getInfoIdx(), classIndex);
709 }
710

711 @Deprecated
712 /** Not necessary.

54APPENDIX A. SVMCLASSIFIER IMPLEMENTEDAS A JAVA EXTERNAL FORMAX

713 * [dimSize #] does not call this method.
714 */
715 public void setDimSize(Atom[] newDimSize)
716 {
717 Atom arg;
718 if (newDimSize.length >= 1)
719 {
720 arg = newDimSize[0];
721

722 if (arg.isInt())
723 doSetDimSize(arg.getInt());
724 else if (arg.isFloat())
725 doSetDimSize((int) arg.getFloat());
726 else
727 properPost
728 (
729 "Error in handling setDimSize <dimSize> message:

" +
730 "<dimSize> must be a natural number."
731);
732 }
733 }
734

735 @Deprecated
736 private void doSetDimSize(int newDimSize)
737 {
738 if (newDimSize > 0 && newDimSize != dimSize)
739 {
740 dimSize = newDimSize;
741

742 reStart();
743 }
744 }
745

746 public void getDimSize()
747 {
748 output(getInfoIdx(), dimSize);
749 }
750

751 @Deprecated
752 /** Not necessary.
753 * [capacity #] does not call this method,
754 * only [setCapacity #] does.
755 */
756 public void setCapacity(Atom[] nextCapacity)
757 {
758 if (nextCapacity.length > 0)
759 {
760 Atom arg = nextCapacity[0];
761

762 if (arg.isInt())
763 doSetCapacity(arg.getInt());
764 else if (arg.isFloat())
765 doSetCapacity((int) arg.getFloat());
766 else
767 properPost
768 (
769 "Error in handling setCapacity <capacity>

message: " +
770 "<capacity> must be a natural number."
771);
772 }
773 }

55

774

775 @Deprecated
776 private void doSetCapacity(int newCapacity)
777 {
778 capacity = newCapacity;
779 }
780

781 public void getCapacity()
782 {
783 output(getInfoIdx(), capacity);
784 }
785

786 @Deprecated
787 /** Not necessary.
788 * [windowSize #] does not call this method,
789 * only [setWindowSize #] does. */
790 public void setWindowSize(Atom[] nextWindowSize)
791 {
792 if (nextWindowSize.length >= 1)
793 {
794 Atom arg = nextWindowSize[0];
795

796 if (arg.isInt())
797 doSetWindowSize(arg.getInt());
798 else if (arg.isFloat())
799 doSetWindowSize((int) arg.getFloat());
800 else
801 properPost
802 (
803 "Error in handling setWindowSize <windowSize>

message: " +
804 "<windowSize> must be a natural number."
805);
806 }
807 }
808

809 @Deprecated
810 private void doSetWindowSize(int newWindowSize)
811 {
812 windowSize = newWindowSize;
813 }
814

815 public void getWindowSize()
816 {
817 output(getInfoIdx(), windowSize);
818 }
819

820 // TODO Test setOptions(Atom[] newOptions). Should be
deprecated (only use [options %s]?)

821 public void options(Atom[] newOptions)
822 {
823 if (newOptions.length >= 1)
824 {
825 String[] oldOptions = options.clone();
826

827 options = new String[newOptions.length];
828 for (int i = 0; i < newOptions.length; i++)
829 {
830 options[i] = newOptions[i].getString();
831 }
832

833 try
834 {

56APPENDIX A. SVMCLASSIFIER IMPLEMENTEDAS A JAVA EXTERNAL FORMAX

835 svmClassifier.setOptions(options);
836 }
837 catch (Exception e)
838 {
839 properPost("Error setting classifier options: " +

e.getStackTrace().toString());
840

841 // Exception handling (revert to old options)
842 options = oldOptions.clone();
843 }
844 }
845 }
846

847 public void options()
848 {
849 output
850 (
851 getInfoIdx() ,
852 ((options != null && options[0] != null) ?

options.toString() : "Not set")
853);
854 }
855

856 private void output(int outletIndex, String message)
857 {
858 if (maxTest)
859 outlet(outletIndex, message);
860 else
861 log4j.debug(message);
862 }
863

864 private void output(int outletIndex, int integer)
865 {
866 if (maxTest)
867 outlet(outletIndex, integer);
868 else
869 log4j.debug(integer);
870 }
871

872 private void output(int outletIndex, boolean bool)
873 {
874 if (maxTest)
875 outlet(outletIndex, bool);
876 else
877 log4j.debug(bool);
878 }
879

880 private void outputPredictedClassIndex(int outletIndex, double
predictedClassIndex)

881 {
882 int message = (int) predictedClassIndex;
883

884 if (maxTest)
885 outlet(outletIndex, message);
886 else
887 log4j.debug("" + message);
888 }
889

890 private void properStringArrayPost(String header, String[]
stringArray)

891 {
892 properPost(header);

57

893

894 for (int i = 0; i < stringArray.length; i++)
895 properPost(stringArray[i]);
896 }
897

898 private void properExceptionPost(Exception e, String header)
899 {
900 String[] stackTraceLines = stackTraceToString(e).split(

"\\n");
901 if (header != null)
902 properPost(header);
903 for (int i = 0; i < stackTraceLines.length; i++)
904 properPost(stackTraceLines[i]);
905 }
906

907 private void properMultiLinePost(String content, String header
)

908 {
909 if (header != null)
910 properPost(header);
911

912 String[] stackTraceLines = content.split("\\n");
913 if (stackTraceLines != null)
914 for (int i = 0; i < stackTraceLines.length; i++)
915 properPost(stackTraceLines[i]);
916 }
917

918 private String stackTraceToString(Exception e)
919 {
920 // Source: http://www.rgagnon.com/javadetails/java-0029.html
921 try
922 {
923 StringWriter sw = new StringWriter();
924 PrintWriter pw = new PrintWriter(sw);
925

926 e.printStackTrace(pw);
927

928 return "------\r\n" + sw.toString() + "------\r\n";
929 }
930 catch (Exception bad)
931 {
932 return "Bad printStack";
933 }
934 }
935

936 }

58APPENDIX A. SVMCLASSIFIER IMPLEMENTEDAS A JAVA EXTERNAL FORMAX

Appendix B

JavaScript External for

auto�triggering Live Clips

For an overview of the Live API web [2010b], see the Live Object Model

illustrated in Figure B.

The JavaScript implementation of LiveBot utilizes the LiveAPI JavaScript

object web [2010a] as follows.

1 /**
2 * @projectDescription
3 * This is an active music approach for Ableton Live using the

LiveAPI for JS in Max/MSP (Max for Live).
4 * The script reads each tracks' clip names that control much of

the playback that starts
5 * when receiving current beat position on the inlet of a Max JS

external.
6 *
7 * @author Roger S. Grading
8 * @version 0.5a Build 1
9 */

10

11

12 // I/O
13 inlets = 1;
14 outlets = 2;
15

16

17 // Debug on/off:
18 /** Decides whether to post debug messages to the (Max) console */
19 var DEBUG = true;
20

21

22 /** Decides whether to process only the first track
23 * (JavaSscript code execution in Max is slow!) or all of them
24 */
25 var MINITEST = true;
26 var TEST_TRACK_INDEX = 0;
27

28

29

59

60APPENDIX B. JAVASCRIPT EXTERNAL FORAUTO�TRIGGERING LIVE CLIPS

Figure B.1: The (Ableton) Live Object Model (API overview). Image taken from web [2010c].

30 // Global variables:
31 /** Root "live_set" LiveAPI object
32 *
33 * @type {LiveAPI} song
34 */
35 var song = new LiveAPI(this.patcher, "live_set");
36

37

38 /** The number of tracks in the Live set
39 *
40 * @type {Number} n_tracks
41 */
42 var n_tracks;
43

44

45 /** 2D array of Clips
46 *
47 * @type {Array<Array<Clip>>} tracks_Clips
48 */
49 var tracks_Clips;
50

51

52 /** 2D array of clip indexes
53 *

61

54 * (where tracks_clips_ix[track_index][count-1] = Clip Slot
index)

55 *
56 * @type {Array<Array<Number>>} tracks_clips_ix
57 */
58 var tracks_clips_ix;
59

60

61 /** 2D array of clip names
62 *
63 * (where tracks_clip_names[track_index][count-1] = Clip

name)
64 *
65 * @type {Array<Array<String>>} tracks_clips_names
66 */
67 var tracks_clips_names;
68

69

70 /** 2D array of eah track's playing/active Clip Slot index
71 *
72 * @type {Array<Array<Number>>} playing_tracksClip_ix
73 */
74 var playing_tracksClip_ix;
75

76

77 /** The beats left to play each track's active clip
78 * (i.e. the "beat-times" before each track's next clip is played)
79 *
80 * @type {Number} local_clips_beatCounters
81 */
82 var local_clips_beatCounters;
83

84

85 /** Current Live (song) beat
86 *
87 * @type {Number} beats
88 */
89 var beat = 1; // Assuming the first beat of the song
90

91 var clips;
92 var banged = false;
93

94

95 // Debug settings init:
96 if (DEBUG)
97 initDebugSettings();
98

99

100 /** Function call thread priority
101 * 1 - High
102 * 0 - Low (default)
103 */
104 bang.immediate = 1;
105

106

107 /** Gets called when a bang is received in the inlet of the "js"
Max external */

108 function bang()
109 {
110 processTracks();
111

112 banged = true;
113 }
114

62APPENDIX B. JAVASCRIPT EXTERNAL FORAUTO�TRIGGERING LIVE CLIPS

115

116 /** Gets called when an int is received in the inlet of the "js"
Max external

117 *
118 * @param {Number} beat The beat position of the Live set (song)
119 */
120 function msg_int(beat)
121 {
122 this.beat = beat;
123 post("Beat#: " + this.beat + "\n");
124

125 if (banged)
126 {
127 updateClipManager(beat);
128 }
129 else
130 {
131 post("** LiveController: Has no effect until bang is received

at my inlet **\n");
132 }
133 }
134

135

136 /** Reads clips from each track's clip slots */
137 function processTracks()
138 {
139 /** Get array with all track id's
140 *
141 * Format: (id <track_id_1> ... id <track_id_n>)
142 *
143 * @private
144 * @type {Array<String>} tracks_IDs
145 */
146 var tracks_IDs = song.get("tracks");
147

148 n_tracks = song.getcount("tracks");
149

150 playing_tracksClip_ix = new Array(n_tracks); // Each tracks'
clip progression reflected by active index

151 tracks_clips_ix = new Array(n_tracks);
152 tracks_clips_names = new Array(n_tracks);
153 local_clips_beatCounters = new Array(n_tracks);
154 tracks_Clips = new Array(n_tracks);
155

156 for (var track_ix = (MINITEST ? TEST_TRACK_INDEX : 0);
track_ix < (MINITEST ? (TEST_TRACK_INDEX + 1) : n_tracks
); track_ix++)

157 {
158 if (DEBUG)
159 {
160 //post("ClipNames for track #" + track_ix + " :: ");
161 }
162

163 tracks_clips_ix [track_ix] = new Array(); // Size yet
unknown

164 tracks_clips_names [track_ix] = new Array();
165 tracks_Clips [track_ix] = new Array();
166

167 playing_tracksClip_ix [track_ix] = 0; // Don't know that, but
assume so..

168 local_clips_beatCounters[track_ix] = 0;
169

170 var track = new LiveAPI(this.patcher, "live_set tracks " +

63

track_ix);
171 //var clipSlots = track.get("clip_slots"); // no use for this

yet
172 var n_clipSlots = track.getcount("clip_slots");
173 var n_clips = processClipSlots(track_ix, n_clipSlots);
174

175 if (DEBUG)
176 {
177 post("\n\nCalling dispResult(track_ix = " + track_ix + ",

n_clips = " + n_clips + ")\n\n");
178 dispResults(track_ix, n_clips);
179 }
180 }
181 }
182

183

184 function dispResults(track_ix, n_clips)
185 {
186 for (var i = 0; i < n_clips; i++)
187 {
188 clipSlot_ix = tracks_clips_ix[track_ix][i];
189

190 var myClip = tracks_Clips[track_ix][clipSlot_ix];
191 if (myClip != null)
192 post("Clip[" + track_ix + "][" + i + "].isDummy() == " +

(myClip.isDummy() ? 1 : 0) + "\n");
193 }
194 }
195

196

197 /** Iterates a track's clip slots
198 *
199 * @param {Number} track_ix The index of the track
200 * @param {Number} n_clipSlots The number of clip slots in the

track
201 */
202 function processClipSlots(track_ix, n_clipSlots)
203 {
204 var k_clipNamesTagged = 0;
205

206 for (var clipSlot_ix = 0; clipSlot_ix < n_clipSlots;
clipSlot_ix++)

207 {
208 var clipSlot = new LiveAPI
209 (
210 this.patcher,
211 "live_set tracks " + track_ix + " clip_slots " + clipSlot_ix
212); // LiveAPI
213

214 var clipID = (clipSlot.get("clip"))[1];
215

216 if (clipID != 0) // Clip lives in clipSlot
217 {
218 var clipNameIsTagged =
219 processClip
220 (
221 track_ix,
222 clipSlot_ix,
223 k_clipNamesTagged
224);
225

226 if (clipNameIsTagged)
227 {

64APPENDIX B. JAVASCRIPT EXTERNAL FORAUTO�TRIGGERING LIVE CLIPS

228 tracks_clips_ix[track_ix][k_clipNamesTagged++] =
clipSlot_ix;

229 post("** tracks_clips_ix[track_ix == " + track_ix + "][
k_clipNamesTagged++ == " + (k_clipNamesTagged-1) + "++
] == clipSlot_ix == " + clipSlot_ix + "**\n ");

230

231 if (k_clipNamesTagged == 1)
232 {
233 playing_tracksClip_ix[track_ix] = (k_clipNamesTagged -

1); // ? -1?
234 }
235 }
236 }
237 else
238 {
239 if (DEBUG)
240 {
241 // post("T" + track_ix + ":S" + clipSlot_ix + ":C" + clipID

+ "\n");
242 //post("* ");
243 }
244 }
245 }
246 tracks_clips_ix[track_ix][k_clipNamesTagged] = -1; //

Inserting end-tale (-1 an invalid/dummy index)
247

248 if (DEBUG)
249 {
250 //post("\n");
251 dispRelevantClipSlots(track_ix, k_clipNamesTagged);
252 }
253

254 return k_clipNamesTagged;
255 }
256

257

258 function dispRelevantClipSlots(track_ix, k_clipNamesTagged)
259 {
260 for (var i = 0; i < k_clipNamesTagged; i++)
261 post
262 (
263 "tracks_clips_names[" + track_ix + "][" + i + "] = " +

tracks_clips_names[track_ix][i] +
264 " / " +
265 "tracks_clips_ix[" + track_ix + "][" + i + "] = " +

tracks_clips_ix[track_ix][i] +
266 "\n"
267);
268 }
269

270

271 /** Processes a track's clip slot's Clip
272 *
273 * @param {Number} track_ix The index of the track
274 * @param {Number} clipSlot_ix The index of the clip slot
275 * @param {Number} k_clipNamesTagged The what?
276 * @return {Boolean} clipNameIsTagged Decides whether the

corresponding clip name is tagged
277 */
278 function processClip(track_ix, clipSlot_ix, k_clipNamesTagged)
279 {
280 var clipNameIsTagged = false;

65

281

282 var clipObj = new LiveAPI(this.patcher, "live_set tracks " +
track_ix + " clip_slots " + clipSlot_ix + " clip");

283 var clipName = clipObj.getstring("name");
284

285 if (clipName) // clipName is defined
286 {
287 clipNameIsTagged = isTagged(clipName);
288 if (clipNameIsTagged)
289 {
290 tracks_clips_ix[track_ix][k_clipNamesTagged] =

clipSlot_ix;
291

292 parseClipNameTags(track_ix, clipSlot_ix, k_clipNamesTagged,
clipName);

293 tracks_clips_names[track_ix][k_clipNamesTagged] =
clipName;

294 }
295 }
296

297 return clipNameIsTagged;
298 }
299

300

301 /** Parses tags of a clip name (assuming clip name is tagged)
302 *
303 * Valid track types:
304 *
305 * K - kickbass (drum)
306 * B - bass
307 * DK - drum kit
308 * M - melody
309 * SFX - sound effect
310 *
311 * @param {Number} track_ix The index of the track
312 * @param {Number} clipSlot_ix The index of the clip slot
313 * @param {Number} k_clipNamesTagged The index to use as second

index in the clip data arrays
314 * @param {String} clipName The name of the clip
315 */
316 function parseClipNameTags(track_ix, clipSlot_ix,

k_clipNamesTagged, clipName)
317 {
318 // DUMMY_pausebeats
319 // _a_beats (where length = beats)
320 // _a_length_beats
321 // _a_b_length_beats
322 var trackType = "";
323 var beats = 0;
324 var length = -1; // assuming dummy Clip
325

326 var split = clipName.split("_");
327 post("\n\"" + clipName + "\".split(\"_\") = " + split + " : "

);
328

329 var intFreq = 0;
330 for (var i = 0; i < split.length; i++)
331 {
332 var result = parseInt(split[i], 10);
333 if (isNaN(result) == false) // split[i] has a valid

number tag
334 {
335 intFreq++;

66APPENDIX B. JAVASCRIPT EXTERNAL FORAUTO�TRIGGERING LIVE CLIPS

336 post(result + ",");
337 }
338 }
339 post("\n");
340

341 if (intFreq == 2)
342 {
343 length = split[(split.length - 2)];
344 post(clipName + "-CASE2-length: " + length + "\n");
345 }
346

347 beats = split[(split.length - 1)]; // assuming intFreq > 0
(i.e. no syntax errors in clip names)

348

349 if (intFreq == 1 && split[0].toUpperCase() != "DUMMY")
350 length = beats;
351

352 tracks_Clips[track_ix][k_clipNamesTagged] = new Clip(
length, beats);

353

354 post(clipName + "-DEFAULT-beats: " + beats + "\n");
355

356 post("\n");
357 }
358

359

360 /** Checks whether clipName is (correctly) tagged
361 *
362 * @param {String} clipName The name of the clip
363 */
364 function isTagged(clipName)
365 {
366 // ClipName has tags
367 var clipNameIsTagged = false;
368

369 if (clipName.length > 0 && ((clipName.charAt(0) == '_') ||
(clipName.length > 4 &&
(clipName.substring(0,5)).toLowerCase() == "dummy")))

370 clipNameIsTagged = true;
371

372 return clipNameIsTagged;
373 }
374

375

376 /** Updates the state for the clip (playback) manager
377 *
378 * @param {Number} beat The song's beat position
379 */
380 function updateClipManager(beatPosition)
381 {
382 for
383 (
384 var track_ix = (MINITEST ? TEST_TRACK_INDEX : 0);
385 track_ix < (MINITEST ? (TEST_TRACK_INDEX + 1) : n_tracks);
386 track_ix++
387)
388 {
389 var clipSlot_LUT_ix = playing_tracksClip_ix[track_ix];
390 /*
391 var init_ClipSlot = new LiveAPI
392 (
393 this.patcher,
394 "live_set tracks " + track_ix + " clip_slots " +

67

tracks_clips_ix[track_ix][clipSlot_LUT_ix]
395);
396 init_ClipSlot.call("fire"); // Fire clip at initial clip slot
397

398 */
399 var clipObj = tracks_Clips[track_ix][clipSlot_LUT_ix];
400 var ongoingBeatsLeft = clipObj.ongoingBeatsLeft--;
401 post(ongoingBeatsLeft + " == ongoingBeatsLeft @

clipSlot_LUT_ix == " + clipSlot_LUT_ix + "\n");
402

403 if (ongoingBeatsLeft == 0 || (clipObj.length == 1 &&
ongoingBeatsLeft < 1))

404 {
405 // Advance, update next clip (ix) and fire it
406 var next_LUT_ix = ++playing_tracksClip_ix[track_ix];
407

408 var next_ClipSlot = new LiveAPI
409 (
410 this.patcher,
411 "live_set tracks " + track_ix + " clip_slots " +

tracks_clips_ix[track_ix][next_LUT_ix]
412);
413

414 if (!next_ClipSlot)
415 {
416 post("** LiveController : Could not access ClipSlot object

@ [live_set tracks " + track_ix + " clip_slots " +
tracks_clips_ix[track_ix][next_LUT_ix] + "]! **\n"
);

417 }
418 else
419 {
420 next_ClipSlot.call("fire");
421 post("** LiveController : next clip fired **\n");
422 }
423 }
424 else
425 {
426 if (clipSlot_LUT_ix == 0 && beat == 0) // beat == 0 in

itself is probably sufficient..
427 {
428 var next_ClipSlot = new LiveAPI
429 (
430 this.patcher,
431 "live_set tracks " + track_ix + " clip_slots " +

tracks_clips_ix[track_ix][playing_tracksClip_ix[
track_ix]]

432);
433 next_ClipSlot.call("fire");
434 }
435 }
436 }
437 }
438

439

440 /** Initializes debug configuration */
441 function initDebugSettings()
442 {
443 autowatch = 1;
444

445 post("** LiveController: Compiled and loaded **\n");
446 bang();

68APPENDIX B. JAVASCRIPT EXTERNAL FORAUTO�TRIGGERING LIVE CLIPS

447 post("** LiveController: returned from bang() call **\n");
448 }
449

450

451 Clip.immediate = 1;
452 /** @constructor Creates a Clip object
453 *
454 * @param {Number} length The Clip's original length
455 * @param {Number} beats The Clip's duration in beats
456 */
457 function Clip(length, beats)
458 {
459 this.length = length;
460 this.beats = beats;
461 this.ongoingBeatsLeft = beats;
462 this.isDummy = function () { return (length == -1); };
463 }

Bibliography

Ableton Live. http://www.ableton.com/live, a. 22

LIBSVM � A Library for Support Vector Machines. http://www.csie.ntu.

edu.tw/~cjlin/libsvm/, b. 7

Max for Live. http://www.ableton.com/maxforlive, c. 22

Cycling '74. http://cycling74.com/, d. 3

Phidgets Inc. � Unique and Easy to Use USB Interfaces. http://www.

phidgets.com/, e. 4

SensorWiki.org. http://www.sensorwiki.org/, f. 11

Weka 3: Data Mining Software in Java. http://www.cs.waikato.ac.nz/

ml/weka/, g. 7, 30

weka � LibSVM. http://weka.wikispaces.com/LibSVM, h. 7, 30

Digital audio workstation. http://en.wikipedia.org/wiki/Digital_

audio_workstation. 22

Analog Devices ADXL330 accelerometer datasheet. http://www.analog.

com/static/imported-files/data_sheets/ADXL330.pdf, 2007. 4, 11

Live API Object. http://www.cycling74.com/docs/max5/vignettes/js/

jsliveapi.html, 2010a. 59

Live API Overview. http://www.cycling74.com/docs/max5/refpages/

m4l-ref/m4l_live_api_overview.html, 2010b. 59

LOM � The Live Object Model. http://www.cycling74.com/docs/max5/

refpages/m4l-ref/m4l_live_object_model.html, 2010c. viii, 60

i

http://www.ableton.com/live
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.ableton.com/maxforlive
http://cycling74.com/
http://www.phidgets.com/
http://www.phidgets.com/
http://www.sensorwiki.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://weka.wikispaces.com/LibSVM
http://en.wikipedia.org/wiki/Digital_audio_workstation
http://en.wikipedia.org/wiki/Digital_audio_workstation
http://www.analog.com/static/imported-files/data_sheets/ADXL330.pdf
http://www.analog.com/static/imported-files/data_sheets/ADXL330.pdf
http://www.cycling74.com/docs/max5/vignettes/js/jsliveapi.html
http://www.cycling74.com/docs/max5/vignettes/js/jsliveapi.html
http://www.cycling74.com/docs/max5/refpages/m4l-ref/m4l_live_api_overview.html
http://www.cycling74.com/docs/max5/refpages/m4l-ref/m4l_live_api_overview.html
http://www.cycling74.com/docs/max5/refpages/m4l-ref/m4l_live_object_model.html
http://www.cycling74.com/docs/max5/refpages/m4l-ref/m4l_live_object_model.html

Sensing Music-related Actions (2008-2012). http://www.fourms.uio.no/

projects/sma/index.html, 2010d. 1

Mathematical notation for elementwise multiplication discussed on Physicsfo-

rum.com. http://www.physicsforums.com/showthread.php?t=440675,

2010e. 30

Web links for Active Music applications. http://fourms.wiki.ifi.uio.

no/Active_Music, 2010f. 9

Support vector machine. http://en.wikipedia.org/wiki/Support_

vector_machine, 2010a. 15, 30

Envelope following. http://en.wikipedia.org/wiki/Envelope_

detector#Audio, 2010b. viii, 31, 32

Arti�cial neural network. http://en.wikipedia.org/wiki/Artificial_

neural_network, 2011a. vii, 14

Dynamic time warping. http://en.wikipedia.org/wiki/Dynamic_time_

warping, 2011b. 5

Hidden Markov model. http://en.wikipedia.org/wiki/Hidden_Markov_

model, 2011c. 5

Kinect. http://en.wikipedia.org/wiki/Kinect, 2011d. 11

Pattern recognition. http://en.wikipedia.org/wiki/Pattern_

recognition, 2011e. 7

Stereoscopy. http://en.wikipedia.org/wiki/Stereoscopy, 2011f. 11

W. Chaovalitwongse and P. Pardalos. On the time series support vec-

tor machine using dynamic time warping kernel for brain activity clas-

si�cation. Cybernetics and Systems Analysis, 44:125�138, 2008. ISSN

1060-0396. URL http://dx.doi.org/10.1007/s10559-008-0012-y.

10.1007/s10559-008-0012-y. 6, 37

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classi�cation

(2nd Edition). Wiley-Interscience, 2000. ISBN 0471056693. 15, 18

ii

http://www.fourms.uio.no/projects/sma/index.html
http://www.fourms.uio.no/projects/sma/index.html
http://www.physicsforums.com/showthread.php?t=440675
http://fourms.wiki.ifi.uio.no/Active_Music
http://fourms.wiki.ifi.uio.no/Active_Music
http://en.wikipedia.org/wiki/Support_vector_machine
http://en.wikipedia.org/wiki/Support_vector_machine
http://en.wikipedia.org/wiki/Envelope_detector#Audio
http://en.wikipedia.org/wiki/Envelope_detector#Audio
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Dynamic_time_warping
http://en.wikipedia.org/wiki/Dynamic_time_warping
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Kinect
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Stereoscopy
http://dx.doi.org/10.1007/s10559-008-0012-y

A. E. Eiben and J. E. Smith. Introduction to Evolutionary Comput-

ing (Natural Computing Series). Springer, October 2008. ISBN

3540401849. URL http://www.amazon.com/exec/obidos/redirect?

tag=citeulike07-20&path=ASIN/3540401849. 12

Christophe Gisler. Symbios art � a reactive painting based on voice input

and image selection. Master's thesis, University of Fribourg, Switzerland,

March 2008. 16

Je� Hawkins and George Dileep. Hierarchical Temporal Memory: Con-

cepts, Theory, and Terminology. http://www.numenta.com/Numenta_

HTM_Concepts.pdf, 2007. 13

Mats Høvin, Marianne Garder, Rolf Inge Godøy, Jim Tørresen, and Alek-

sander Refsum Jensenius. Sensing Music-related Actions, 2007. 3, 10

Alexander Refsum Jensenius. Action�Sound : Developing Methods and Tools

for Studying Music-Related Bodily Movement. PhD thesis, Department of

Musicology, University of Oslo, 2007. 2

Tod Machover. Shaping Minds Musically. BT Technology Journal, 22(4):

171�179, 2004. ISSN 1358-3948. doi: http://dx.doi.org/10.1023/B:BTTJ.

0000047596.75297.ee. i, 10

Tom M. Mitchell. Machine Learning (Mcgraw-Hill International Edit).

McGraw-Hill Education (ISE Editions), 1st edition, October 1997. ISBN

0071154671. URL http://www.amazon.com/exec/obidos/redirect?

tag=citeulike07-20&path=ASIN/0071154671. 1, 3

Kristian Nymoen. Motion tracking in musical instrument interfaces: A dis-

cussion of methods for measuring and registering gesture data in musical

performances. Semester assignment, MUS4687 - Special Syllabus in Musi-

cological Modules 3, 2007. 11

Timo Pylvänäinen. Accelerometer Based Gesture Recognition Using Contin-

uous HMMs. Pylvänäinen, Timo, 2005. doi: 10.1007/11492429_77. URL

http://dx.doi.org/10.1007/11492429_77. 5, 7, 38

iii

http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/3540401849
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/3540401849
http://www.numenta.com/Numenta_HTM_Concepts.pdf
http://www.numenta.com/Numenta_HTM_Concepts.pdf
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0071154671
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0071154671
http://dx.doi.org/10.1007/11492429_77

	Introduction
	Terms
	Active Music
	Action–sound couplings

	Thesis overview
	Prototype implementations

	Challenges for sensor data analysis
	Data segmentation for motion analysis

	Practical work

	Background
	Active music
	Receiver input given solely by DSP techniques
	Receiver input given both by DSP and DSG techniques
	Relevant technologies and tools

	Machine Learning
	Classification with Support Vector Machines

	Implementations
	Motion Data Analysis
	Motion Capture Platform (Server)
	Perceiving Musical Motions

	Mapping Systems
	LiveBot
	MaxBot
	Mapping acceleration data to multi–channel AM synthesis

	Third–party externals overview

	Experiments
	Classification experiments
	A few experiments of the effect of window segmentations on a large two–category dataset

	Experiments with all possible segment lengths on a medium–sized dataset

	Conclusion
	Discussion

	Future works
	SVM Classifier implemented as a Java External for Max
	JavaScript External for auto–triggering Live Clips
	References

