
UNIVERSITY OF OSLODepartment of Informatis
File SystemSupporting ArbitrarilySized Alloation
Master Thesis
Bjørn Erik Lømo
August 15, 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30839449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The majority of today’s filesystems use a fixed block size, defined when the filesys-

tem is created. If an allocation request is not a multiple of the block size, space is

wasted when parts of blocks are left unused. This thesis looks into the viability of a

filesystem with arbitrarily sized blocks, called grains. The file system uses an existing

allocator, implemented by Stanislav Sokolov, based on the Quick Fit main memory

allocation algorithm. To limit the scope of the thesis, the file system is implemented

using FUSE, and lacks support for growing and fragmented files, directory hierar-

chies and crash recovery. However, even without these featurees, the file sytem is

still useful for a few scenarios, where file sizes are known in advance and the size

distribution is favorable for the allocator. Examples of this are web- and mail servers.

The thesis also runs some simulations based on a recorded mailserver workload, and

compares results to the same workload on Ext2.

4

Aknowledgements
I would like to thank my primary supervisor Željko Vrba for his guidance and pa-

tience during the writing, and for the implementation of the ext2frag program. I

would also like to thank my secondary supervisors, Carsten Griwodz and Pål Halvorsen,

for taking me in and offering helpful advice.

5

6

Contents
1 Introdution 9

1.1 Block Devices . 9

1.2 File Systems . 10

1.3 Fragmentation . 10

1.4 Extents . 12

1.5 Blockless Filesystem . 13

1.6 Overview . 132 Design 15
2.1 Related Work . 15

2.2 File System Overview . 16

2.3 Data Structures . 19

2.3.1 Skip list . 19

2.3.2 Superblock . 24

2.3.3 Extents . 26

2.3.4 Metadata Extent Headers . 27

2.3.5 Inodes . 29

2.4 Design Alternatives & Possible Extensions 31

2.4.1 Fragmented Files . 31

2.4.2 Directory Hierarchy, Ordering 36

2.4.3 Reducing Memory Footprint . 38

2.4.4 Predictive Preallocation . 40

7

2.4.5 Crash Recovery & Fault tolerance 433 Implementation 45
3.1 Usage Restrictions . 45

3.2 FUSE - file system in Userspace . 46

3.3 Architecture . 49

3.3.1 Media I/O Layer . 49

3.3.2 Allocation Layer . 50

3.3.3 File Link Layer . 51

3.3.4 Metadata Manager . 58

3.3.5 Sokolov’s Implementation . 59

3.4 Mounting & Unmounting . 60

3.5 Formatting the File System . 614 Evaluation 63
4.1 Simulated Workload . 63

4.2 Test Cases . 64

4.3 Test Results . 655 Conlusion 75
5.1 Summary . 75

5.2 Future Work . 75Bibliography 77

8

1 Introdution
1.1 Blok Devies
The vast majority of todays storage media are block based. The storage space on

these block devices is subdivided into blocks, or sectors, of uniform size. These sectors

usually have a payload of 512 bytes, and some devices, like compact discs, have 2048

bytes. In addition to the data payload, each sector also contains a checksum field used

by the controlling hardware to detect, and in some cases correct, data errors that crop

up due to imperfections in the storage medium. All block devices have the property

that all reading and writing requires entire blocks to be read or written to, even to

only read or write a small part of a block. As a natural extension of this, most file

systems are block based as well.

Traditionally, hard disk blocks used an addressing scheme that exposed the de-

vice’s physical details. Blocks were commonly addressed by their cylinder, head and

sector, referring to platter number, platter side and angle on the platter, respectively.

Today, the most common scheme for specifying the locations of blocks on block de-

vices is Logical Block Addressing, or LBA. Sectors are located by an index, where the

first sector has address 0, the second has address 1, and so on.

Recently, the International Disk Drive Equipment and Materials Association (IDEMA)

have defined and approved the Long Block Data (LBD) standard. This standard in-

creases the default block size to 4096 bytes. As modern hard drives get higher data

densities, The LBD standard ensures better error detection, and correction [1], as well

as increased throughput for large data streams, since more data can be read per block

9

operation.1.2 File Systems
A file system is responsible for storing and retrieving files, used by applications for

persistent, high capacity storage as well as communication between running pro-

cesses.

The definition of files and how they are represented depends on the file system.

Some file systems offer record- or object oriented I/O, where the filesystem is aware,

to some extent, of a file’s internal structure, like the MVS file system. Most file systems

perceive a file as an unstructured stream of bytes, without interpreting the contents

in any way. Applications understand the meaning and internal layout of the files and

can access and modify them according to defined file formats.

A file system’s allocator services requests for space to store files. It needs to keep

track of free space and find appropriate free blocks in which files are then stored. A

file link component is responsible for tracking the storage areas associated with files

and their metadata and handles reading from and writing to these areas.

The performance demands placed on a file system are efficient use of storage space,

and high throughput on storage and retrieval. In most cases, a file system also needs

substantial fault tolerance; It must be possible to locate file data, even after a system

failure, or in the face of corruption in the underlying storage medium.1.3 Fragmentation
There are three types of fragmentation, internal, external and data fragmentation.

Internal fragmentation occurs when a file does not fill up the space allocated to it.

Classical file systems allocate an exact multiple of the block size to each file. Every

file has a trailing block that is allocated but only partially used. On average, only

half of this block is used, and the other half is wasted. For 512 byte blocks, this

10

Figure 1.1: Internal fragmentation. Large blocks potentially waste more space.

means a waste of 256 bytes per file. With 4096 byte blocks however, on average 2048

bytes are wasted per file. This is an eightfold increase in the wasted space per file.

The total wasted space on a file system depends on the file size distribution, but if

a file system contains mostly small files, this can be significant. A study done by

Tanenbaum et al. [2] shows that most files are relatively small. This is especially true

for webservers, where as much as 70% of the files are smaller than 4096 bytes, and the

median file size is 1180 bytes. This would cause significant internal fragmentation on

file systems with 4096 byte blocks.

External fragmentation is when free space becomes divided into many small pieces

over time. It happens when applications allocate and deallocate storage regions of

varying sizes, and the free space gets split into many small pieces over time. [3]

Data fragmentation occurs when a file system has free space available, but no re-

gions of contiguous blocks are large enough to satisfy a request. To use this frag-

mented free space, an allocation request has to be split into multiple pieces small

enough to fit into the gaps of free space. Fragmenting a file degrades performance

when reading and writing the file sequentially. Extra space is also needed, because

of the extra bookkeeping required to keep track of the different fragments. Addition-

ally, data fragmentation has been shown to be self reinforcing. [3] The reason for this

is that when a fragmented file is deleted, the blocks surrounding the file fragments

are not likely to be freed up as well, preventing a subsequent contiguous allocation.

11

Figure 1.2: External Fragmentation and how it leads to data fragmentation1.4 Extents
Most traditional filesystems use individual blocks as their unit of allocation. Free

space is tracked by individual block numbers and allocated space is tracked by block

lists associated with each file. Blocks are also allocated one at a time, potentially

leading to data fragmentation.

Another way of keeping track of blocks is to use extents. An extent is a contiguous

sequence of blocks, defined by a starting block and a range of consecutive blocks.

This cuts down on the space needed for metadata and the number of writes needed

for bookkeeping. [4] Using extents, it is possible to allocate blocks in groups, forcing

sequential allocation. A large extent can be allocated in one operation. Subsequent

writes can cover a large number of blocks without the need for further allocation and

metadata updates.

Some file systems offer optional support for extents, and a few, like VxFS [5] are us-

12

ing extents exclusively. The block based filesystems usually have blocks whose size

are a multiple of the hard drive’s sector size. Extents provide the ability to further

group these together in a more flexible fashion, but traditionally the smallest subdi-

vision is still one block.1.5 Blokless Filesystem
Block devices are transitioning to 4096 byte blocks and it has been observed that files

are still relatively small, especially on e.g. web servers [2], leading to significantly

increased internal fragmentation. Also, if files are significantly smaller than the block

size, read performance suffers, because large amounts of unused space are read along

with the files themselves.

This thesis explores the design and implementation of a file system supporting

arbitrarily sized allocations, called AAFS. AAFS divides the storage space into units,

called grains to distinguish then from traditional blocks. The grain size is set when

the file system is created, and can be set to any size, including 1 byte. The grains

are addressed in the same fashion as LBA, with the first grain having address 0, the

second grain having address 1, and so on. Extents are used to group grains together

into manageable units.

Using a small subdivision, internal fragmentation is reduced, and it is possible to

pack multiple files into one hard disk block, as illustrated by figure 1.3, potentially

improving read speeds for small files. The grain size can be chosen by the user to

improve performance for a certain file size distribution.1.6 Overview
This study looks into the viability of a blockless filesystem, using an existing allocator.

To limit the scope of the thesis, the file system is implemented using FUSE, and lacks

support for growing files, directory hierachies and crash recovery. However, even

13

Figure 1.3: Multiple extents can be packed into one block, or an extent can span mul-

tiple blocks

without these features, the file system is still useful for a few scenarios, where file

sizes are known in advance and the size distribution is favorable for the allocator.

Examples of this are proxy- and mail servers. The rest of the thesis describes design

and implementation, as well as testing methodology and results.

14

2 Design
2.1 Related Work
Some file systems treat file tails differently from regular file data to address the prob-

lem of internal fragmentation. A tail is a file that is smaller than the file system block

size, or the trailing portion of a file that causes internal fragmentation. Some file sys-

tems address the problem of internal fragmentation by treating file tails differently

from other file data. This is called block suballocation or tail packing. UFS [6] subdivides

some blocks called “fragment blocks” and stores tails from multiple files packed to-

gether in such blocks.ReiserFS stores file tails packed together with file metadata.

AAFS uses an existing allocator based on the Quick Fit allocation algorithm, orig-

inally found in [7]. The algorithm uses segregated lists to store references to free ex-

tents. The extents are assigned to different lists according to their size. Quickfit uses

two types of lists - quick lists(also called exact lists) and misc lists. The quick lists each

store extents of the same size, whereas the misc lists store a range of sizes. This design

is meant to cope with a skewed file size distribution, where the most frequently used

sizes get stored in quick lists. Less frequent sizes get stored in misc lists to save space

(size overhead per list).

Quick Fit was designed for main memory allocation. Iyengar et. al. designed

a similar allocation algorithm called Persistent Multiple Free List Fit Allocation, or

PMFLF, for use in file systems. PMFLF was intended for web servers requiring fast

response times, and improved file system performance by requiring only a single disk

seek for most allocations and deallocations.

15

The allocator around which this filesystem is built comes from the master thesis

done by Stanislav Sokolov [8]. In it, he creates an allocator simulator, implementing

a version of the PMFLF and Quick Fit allocators. Sokolov replaced the singly linked

quick lists and misc list of Quick Fit with skip lists, and removed Quick Fit’s spe-

cial treatment of the free storage at the end of the address space, without adversely

impacting performance, thus simplifying the implementation (for closer details, see

[8]. The allocator is optimized for space efficiency and small allocations, using ex-

tents for space allocation. His approach attempts to minimize internal fragmentation

as well as reduce bookkeeping overhead. Sokolov’s allocator simulation consists of

a core allocation algorithm, instrumented by functions for gathering statistics about

the allocator’s performance. Extensive testing was performed to evaluate the allo-

cator’s performance, with encouraging results. The allocator had a small memory

footprint and computational overhead. It had very low external fragmentation and

data fragmentation, performing better than PMFLF in the tests that were carried out.

The grain size in Sokolov’s allocator is set to 512 bytes, to reflect the input/output

operations of the underlying hardware. The allocator uses the skip list datastructure

to store extent data, since skip lists offer simplicity and good performance. Details

about the datastructure are covered in 2.3.1.

2.2 File System Overview
Figure 2.1 is meant to give a rough idea of the file system layout, and is simplified to

show how the data structures are connected. As with all file systems, a superblock

is placed at the very beginning of the filesystem. This data structure is the first to

be read when a file system is mounted, as it contains vital information about the file

system, which tells the file system driver how to read the file system. The superblock

also contains general info like the size of the file system.

Some file systems store a free space map or the inodes in a designated space, the

size and/or location of which can be calculated as a function of the file system’s size.

16

Figure 2.1: Layout of data structures on disk
17

Other file systems may dynamically allocate and deallocate space for this metadata,

and must have a reference to the metadata location in the superblock. AAFS falls into

the latter category.

A file system needs a set of datastructures to keep track of which regions are oc-

cupied, which regions are free, and which file an occupied region belongs to. AAFS

organizes this information in skip lists, described in section 2.3.1. One skip list con-

tains all the headers of the free extents, sorted by sizes, another contains all inodes,

sorted by file names.

The extent headers for the free extents contain the size and location of the extent

body. An inode contains all the information the file system holds about a specific

file. This includes the id of the file’s owner and timestamps saying when the file was

created and modified, and an extent header which references the extent containing

the file’s data. Unlike most file systems, which store file names as entries in special

directory structures with a reference to an associated inode, AAFS stores file names

in the inodes themselves.

Both these lists are kept in RAM when the file system is mounted, and all modifi-

cations to the file system are committed to these skip lists. When the file system is

unmounted, both skip lists need be to serialized and stored in the file system until it

is mounted again. The inodes and free extent headers are wrapped in structures con-

taining the necessary information to reconstruct the skip list, and stored in locations

referenced by the superblock. Each list is stored in a linked list of extents, and the

elements within each extent are stored contiguously, like an array.

The free extents reference points to a skip list, marshalled to disk, containing all the

headers 1 for the free extents. The Quick Fit Allocator uses these headers distributed

into different lists sorted by their size, but it is up to the mounting code to read the

extents and sort them into these lists.

The inodes reference points to another marshalled skip list, containing all the in-

odes. This list is sorted alphabetically by the filenames.

1The term is used loosely, as they are not physically located with the extent body.

18

As mentioned in section 3.1, the file system does not support growing and frag-

mented files, but it needs to support growing metadata. The allocation and deallo-

cation of metadata space are handled by ordinary file requests to the allocator. To

simplify the code needed to read the metadata at mount time, it is allocated in ex-

tents of a fixed size as the used extents fill up. Each of these metadata extents have a

header containing the extent’s size and a reference to a next extent, forming a linked

list.

The following section looks more closely at the different data structures and how

they are stored on the disk.2.3 Data Strutures
All addresses and sizes are counted in grains, unless stated otherwise.

All the listed structs include the __attribute__ ((__paked__)) compiler direc-

tive to prevent padding when the structs are written to disk.2.3.1 Skip list
The skip list datastructure is central to the file system implementation, and is used

to store and organise most internal data structures, both on disk and in memory at

run-time. The skip list is stored in a marshalled state on disk when the file system is

in an unmounted state.

As seen in figure 2.2, the skip list works like a linked list with added layers of

pointers for skipping forward among the nodes when searching the data structure.

As stated in [9],

“Skip list algorithms are very easy to implement, extend and modify. Skip

lists are about as fast as highly optimized balanced tree algorithms and are

substantially faster than casually implemented balanced tree algorithms.”

19

1 2 3 4 5 6 7 8 9 10

How a skip list looks in RAM

1 2 3 4 5 6 7 8 9 10

4 1 41 1 12 23 3

The same skip list,

marshalled to disk

list_node

+*data: void

+*forward[]: struct list_node

Marshalled node

+nodedata: void

+height: int

Figure 2.2: Skip list, in normal and marshalled form. Node data not included.strut list_node {void *data;height_t height;strut list_node *forward[1℄;};data
Pointer to data item contained by skip list node.height
Height of the node in the skip list.forward
Array of skip pointers, one for each level the node is in.

The *forward[1℄ member is an ISO C90 version of a variable-length array, and is

used to only allocate the array length needed.strut list_node *node= mallo(sizeof(strut list_node) +nodeheight * sizeof(strut list_node *));
20

The code allocates room for the struct plus an array of length nodeheight.

For the purposes of this file system, the skip list is only searched and modified

after it is loaded into RAM and unmarshalled at mount time. To ensure persistence

between two mounts, the skip list needs to be marshalled and saved to disk. The

marshalling entails creating nodes of a uniform size by discarding all the layers except

the bottom one and only storing the node’s height. These new nodes are then written

sequentially to disk. Writing the elements sequentially means their ordering is not

disturbed, and the unmarshalling code can initialize a new skip list in RAM and

simply append the elements to the list.

Algorithm 2.3 details how the skip list is reconstructed when read into RAM. First,

an array of pointers, previtem[℄, is initialized to point at the list’s header, which is

a sentinel node. During unmarshalling, previtem[i℄ points to the previous node

having a height of at least i.

The main loop of the algorithm then reads in the items sequentially, and appends

them to the end of the list (see Figure 2.4). The previtem array is used to locate the

previous node at each level the new item exists in. The previous node’s next pointer

is then pointed at the new node. Lastly, the previtem array is updated to point at

the new node. When the main loop is finished, the previtem array is traversed. For

each level, the last seen node having a height of at least that level is set to point at

the list tail. This way of appending the items to the skip list ensures a linear O(n)

unmarshalling time, compared to normal skip list item insertion, which would have

a much higher running time of O(n log n).

21

for(i= 1; i<= list_height; i++)previtem[i℄= list_headerwhile(more_nodes) {node= read_node();for(i= 1; i<= node_height; i++) {previtem[i℄.next[i℄= node;previtem[i℄= node;}}for(i= 1; i<= list_height; i++)previtem[i℄.next[i℄ = list_tail;
Figure 2.3: Unmarshalling a skip list

22

Figure 2.4: Skip list, in the process of being unmarshalled. Node data and pointers to

the list tail not included.

23

2.3.2 Superblok
The superblock is placed at the very beginning of the partition and contains general

information about the file system and the data necessary to mount it.strut __attribute__ ((__paked__)) superblok {uint64_t inodes_lo;uint64_t inodes_num;uint64_t inodes_spae;uint64_t freext_lo;uint64_t freext_num;uint64_t freext_spae;uint32_t AWP;uint8_t dirty;uint64_t size_in_grains;uint64_t grains_free;};inodes_lo
Address of the first extent containing inodes.inodes_num
Number of inodes (files), present in the file system. Since we do not support

hard links, there is a 1 to 1 correspondence between files and inodes.inodes_spae
Amount of allocated space for storing inodes.freext_lo
Address of the first extent containing free space metadata.freext_num
The number of free extents.

24

freext_spae
Allocated space for storing free extents.AWP
The AWP, or Acceptable Wastage Parameter, indicates how many grains may be

wasted to satisfy an allocation without splitting an oversized extent.dirty
Checked on mount. Indicates wether or not the file system had a clean un-

mount. If not, cleanup measures are necessary. Functionality for crash recovery

is not implemented, so this flag is currently not in use.size_in_grains
The size of the file system.grains_free
Amount of free space on the file system.

The inodes_lo and freext_lo members refer to the first extent in the linked list

of extents containing inodes and free extent headers, respectively. The inodes_spae
and freext_spae are the sums of the sizes of extents in each linked list. They are

used to determine if the file system needs to allocate more space for metadata. The

numbers are stored here so the file system will not have to read all the extent headers

each time it checks to see if more space is needed.

The inodes_num and freext_num members refer to the number of structs in their

respective list.

The AWP allows the allocator to widen the search parameters to satisfy a request.

For example, if the AWP is set to 4, an allocation request of 32 grains can be satis-

fied by any extent of size 32 to 36. If no extents in this size range is found, a larger

extent will be split to obtain an extent of size 32. Sokolov’s allocator stored extent

headers with the extent bodies, and splitting extents was an expensive operation, re-

quiring the on-disk headers to be updated. The AWP would help the allocator avoid

25

splitting operations, improving allocation speed at the cost of space efficiency. Since

AAFS stores extent headers separately from extent bodies, this parameter is not as

important. The AWP is set when the file system is created.2.3.3 Extents
The extent is the basic allocation unit in AAFS. It’s size is a multiple of the grain size,

which can be set to any size (as opposed to a block size, which is a multiple of the

storage medium’s sector size, usually 4 kilobytes).

The allocator keeps a series of skip lists, sorted by size, holding all the extent
structs referring to free extents. Each inode also contains this struct, referring to the

extent associated with a file.

The free_extent_disk struct is used to wrap the extent struct when the free extent

lists are written to disk. The lists are merged to a single list. The list is serialized,

and each extent struct is wrapped in a free_extent_disk struct. These structs are

written sequentially to disk inside a metadata extent. When written to disk, the extent

headers are sorted by size. The skip lists used by the allocator have a mixed ordering;

the misc list is sorted by size, while the quick lists are sorted by address.strut __attribute__ ((__paked__)) extent {uint64_t address;uint64_t size;};strut __attribute__ ((__paked__)) free_extent_disk {strut extent extent;height_t height;};address
26

Refers to the location of the extent body.size
The size of the extent.height
The height of the skip list node, used for marshalling and unmarshalling.2.3.4 Metadata Extent Headers

As mentioned in section 2.2, AAFS keeps metadata in skip lists that are marshalled to

disk, stored in linked lists of extents. The following struct is placed in the beginning

of each such extent.strut __attribute__ ((__paked__)) meta_header {uint64_t next_ptr;uint64_t size;};next_ptr
Address of the next extent in the linked list. Zero if this is the last extent in the

list.size
The size of the extent. The meta_header struct is included in this size.

The necessity of the size member is not obvious, since all the metadata extents are

supposed to be the same size. However, because of the Acceptable Wastage Param-

eter, the extent sizes may vary slightly. For simplicity, the extra few grains added by

the AWP are ignored.

AAFS keeps track of needed space for metadata by comparing how much space

the inodes or free extent headers need and comparing that to how much space has

been allocated for them. When more space is needed, a single extent the same size

27

as the other metadata extents, is allocated and appended to the end of the linked list.

To prevent allocation and deallocation of such an extent from happening too often

in cases where the skip list is growing and shrinking rapidly, two and a half empty

extents are necessary before the last one is deallocated.

When a skip list is marshalled to disk, the elements are written in the order they

are kept in the skip list, filling each metadata extent sequentially. When one extent is

full, the next extent is written to and so on. Because of the way deallocation of these

extents is handled, the last extent in the linked list may or may not be empty.

There is no explicit information about how many entries are in each extent. Instead,

this has to be calculated using code similar to figure 2.5, which is used when a skip

list is unmarshalled. The entry_size argument is used to calculate how many en-

tries can fit in the extent. When the first extent in the list is read, the entries_left
argument will be equal to the number of elements in the entire list. If the extent in

question contains all the entries, the unmarshalling is done after that extent. If insteadentries_left is bigger than ext_ontains, the extent contains ext_ontains entries.

This number is then subtracted from the number of entries left to read before the next

extent is processed.

28

entriesInExtent(int extent_size, int entries_left, int entry_size){ int ext_ontains = (extent_size * grain_size -sizeof(strut meta_header))/ entry_size;if(entries_left > ext_ontains) {return ext_room;} else {return entries_left;}}
Figure 2.5: Calculating the number of metada entries in an extent.2.3.5 Inodes

All the filesystem’s inodes are kept in a single skip list, held in RAM while the file

system is mounted. This list is sorted alphabetically by filename, both in the in-RAM

skip list and when in a marshalled state on disk.strut __attribute__ ((__paked__)) inode {strut extent extent;uint8_t name[MAX_FILENAME℄;uint64_t file_fragments;uint64_t bytes_size;uint64_t time;uint64_t atime;uint64_t mtime;uint16_t uid;uint16_t gid;
29

uint16_t mode;uint32_t nlink;};strut __attribute__ ((__paked__)) inode_disk {strut inode inode;height_t height;};extent
The first2 extent associated with the file.name
The file’s name.�le_fragments
Pointer to the first extent a file has grown into, if any. This member is zero if

the file consists of only one extent. This member is currently not in use and is

discussed further in section 2.4.1bytes_size
The file’s size, in bytes. Note that the file’s size on disk is the sum of the sizes of

the extents it is composed of.time
Time of last status change.atime
Time of last access.mtime
Time of last file modification.

2And currently the only, since file growth is not implemented.

30

uid
User ID of file owner.gid
Group ID of file owner.mode
The file’s permission mask.nlink
The number of hard links to this file. This member is not in use in this imple-

mentation, as links are not supported.height
The inode’s height in the skip list. The struct which this member is a part of is

used in the skip list containing inodes, when it is marshalled to disk.

Since AAFS has no directory support, it is natural to store the file names inside each

inode. The name string has a static size to ensure uniform size, making the code for

marshalling and unmarshalling the inode list simpler. Each inode has a filename of a

static length, for simplicity. MAX_FILENAME is defined as 16. The filename is a simple

C-style nullterminated string.2.4 Design Alternatives & Possible Extensions
This section details parts of the design that are either unnecessary to test the file sys-

tem’s performance, outside the scope of a master thesis, or ideas for future extensions.2.4.1 Fragmented Files
The support for growing and fragmented files is left for future extension of the file

system. However, this thesis would not be complete without a suggestion for how it

could be done.

31

The most direct approach to growing a file is to grow the extent containing the

file, which is possible only if the following extent is free. This approach is simple

in appearance, but requires the filesystem to locate the neighbouring extent by its

address. Currently, the free extents are sorted by size, so the free extent lists would

have to be searched exhaustively. Introducing an allocation status flag inside the ex-

tents themselves allows them to be easily checked for availability, but the exhaustive

search would still be necessary to locate the extent header in the in-RAM list to per-

form the allocation operation. One way of avoiding the exhaustive search is to simply

introduce another data structure that keeps references to free extents ordered by their

address, or to make the free extent list multidimensional, but it would be relatively

big modification of the file system.

A more flexible (but not mutually exclusive) way of supporting file growth is to

simply allocate another extent and associate it with the file. At the moment, the inode

can only hold a reference to a single extent, and a way of associating multiple extents

with an inode would be necessary. In the suggested solution, we use a single frag-

ment table to store the extra extent headers associated with a file. The table is stored

in a linked list of extents in the same fashion as the inode and free extent lists.

Inside the linked list extents, the file table entries are stored contiguously, like an

array of fragment_node structs, each containing a pointer to the relevant file extent

and the index of the file’s next entry in the table. Each is then organized as a linked

list of pointers to extents, as illustrated by figure 2.6. At the end of each file’s chain, anext_ptr set to zero denotes no more extents for that particular file.strut __attribute__ ((__paked__)) fragment_node {strut extent extent;uint64_t next_ptr;};extent
Extent header, referencing an associated extent.

32

Figure 2.6: File Fragment Table.next_ptr
Index of another fragment_node struct in the array.

To cope with deleted files creating holes of unused entries in the array, the array

would be supported by a simple list of available indexes. When a new table entry is

requested, the supporting list is checked for available indexes. Only when this list is

empty would entries be added to the tail of the file fragment array. The supporting

list should be relatively small, except in cases of mass file deletion.

This data structure is simple to implement and is easy to keep partially in memory,

and swapped to disk on demand. Each extent contains a set number of entries, which

are easily stored in an array in RAM, and the list will only shrink or grow from the

tail. Available slots in the list are represented by an extent pointer pointing to zero.

Since AAFS allocates extents to exactly fit requests, it is a relatively simple exten-

sion to support deletion and injection of data in the middle of a file, at the cost of

fragmenting the file. Figure 2.7 shows how a file occupying a single extent could

have an area deleted. The file extent is split into three parts, and the extent contain-

ing the deleted area is returned to the free list. The extent after the deleted area gets

an entry in the file fragment table and the inode bytes_size field is updated to reflect

the new file size. After this operation, the inode’s file size is shrunk in proportion to

the deleted area.

These operations are useful for tasks such as video editing, where large parts of

files are frequently deleted or inserted.

33

Figure 2.7: Deleting an area in the middle of a file

34

Figure 2.8: Injecting an extent into the middle of a file

Figure 2.8 illustrates injection. The original file extent is split into two parts. The

injected extent and the second part of the original extent get entered into the fragment

table, with the injected part appearing first.

Because of how the Acceptable Wastage Parameter can cause the allocator to re-

turn slightly oversized extents, support for this kind of data injection and removal

requires an additional payload field in the extent headers, so the garbage at the last

few bytes of an extent is not included as part of the file. Another option is to intro-

duce a semantic into the allocator, allowing the AWP to be ignored, in order to force

the allocation of an exact size.

A sparse file is a file that is mostly empty, and the file system can store them more

35

efficiently by only storing representations of the empty spaces instead of reserving

the actual empty space in the file. When reading a sparse file, the file system returns

zero bytes when the empty spaces are accessed. Sparse files can be supported by

introducing a file_offset parameter into the extent header. This would allow each

extent in a file to be placed at virtual offsets from the file’s beginning. The injection

and removal operations can be useful with sparse files, allowing the empty areas to

be filled or the parts of a file containing data to be deleted.2.4.2 Diretory Hierarhy, Ordering
This section looks at a way to adapt the global inode skip list to support a directory

hierarchy. In the suggested solution, the inode would need three additional fields:type
A field to identify the inode as a regular file, directory or a symbolic link.parent
A reference to the inode representing the parent folder.hild
Only used by directory inodes. this pointer points at the first file in the directory.

Figure 2.9 shows what the directory hierarchy would look like. All directories are

here present as another inode, containing a single reference to the first inode in that

directory. All inodes also have a pointer to its parent, with the single exception of the

root inode.

To list the contents of a directory, one must first find the directory inode. From

there, the parent pointer is followed to find the first inode in the directory. A skip list

is also a linked list at the bottom layer, and this layer is now followed sequentially,

checking and listing the inodes until an inode with a parent pointer referring to a

different directory inode; That inode is the first in another directory.

The nodes are sorted in a special order. When two inodes are compared, the inodes’

entire paths are assembled before comparing the strings.

36

Figure 2.9: Ordering of file inodes in a directory hierarcy

37

The inodes are sorted after two criteria:

1. parent pointers are used to recursively determine the directory nesting, and the

inode with the shallowest nesting comes before the other.

2. If the level of nesting is equal, the parent inodes along the nesting path are

sorted lexicographically, one level at a time.

The pseudocode in figure 2.10 shows how this is done recursively. If only node2
has a parent, the function returns 1. If only node1 has a parent, the function returns

-1. These tests can return because they know one node has a deeper nesting than the

other. If both nodes have a parent, both parents are checked recursively. If the parent

paths turn out to be identical, the current level is compared lexicographically and the

result is returned. If none of the nodes have parents, they are both of equal depth,

and the levels have to be distinguished by their names.

With this ordering, the skip list can still be used as a global search tree. Finding a

file inside a directory is a matter of finding the first inode in the directory, either from

the parent directory or through a global search, and then using the skip list structure

for further searching.

The data structure performs a bit slower than a regular skip list, due to the extra

work required for assembling and comparing strings. File names are also more com-

plex, requiring a search through all parent directories to find a file’s absolute path.2.4.3 Reduing Memory Footprint
AAFS keeps all metadata in RAM when the file system is mounted. For relatively

small file systems, this is not a problem, but on partitions with several terabytes of

data, the memory requirements could become unmanageable. In such situations, it is

necessary to keep only parts of the metadata skip lists in RAM, and retrieve parts of

the skip list on demand.

To achieve this, the unmarshalling function reads all skip list nodes as usual dur-

ing mounting, but only unmarshals the ones above a certain height. The nodes below

38

int nodeompare(strut inode1, strut inode2) {//determine depth, reursivelyint res;if(inode1.parent != NULL&& inode2.parent == NULL) //inode1 is deeperreturn 1;if(inode1.parent == NULL&& inode2.parent != NULL) //inode2 is deeperreturn -1;if(inode1.parent != NULL&& inode2.parent != NULL) { //both have parentsres = nodeompare(inode1.parent, inode2.parent);if(res == 0)return strmp(inode1.name, inode2.name);elsereturn res;}//none have parentsreturn strmp(node1.name, node2.name);}
Figure 2.10: Compare function for directory hierarchy

39

this height are represented by a placeholder node containing the address of the ex-

tent where a group of nodes are located, and boundary tags specifying which nodes

are contained in this extent. If a search encounters one of these placeholder nodes,

the represented extent is unmarshalled and inserted into the list at the placeholder’s

position. Each area of the skip list belongs to a specific metadata extent, and when a

part of the skip list needs to be evicted from RAM, nodes belonging to one extent are

evicted as a whole, and written to disk. If the area belonging to an extent grows so

the extent can not contain it, a new extent is allocated and the area is split in half, one

half belonging to the old extent, the other to the new. If all the inodes belonging to an

extent are removed from the list, the extent is returned to the free space pool.2.4.4 Preditive Prealloation
If a file’s size is not known on creation, it is necessary to grow the file as it is written

to. A naive allocator might allocate a new extent or block each time the file grows,

possibly causing data fragmentation. Some file systems handle this problem by hold-

ing file data in memory buffers and delaying the actual allocation operation until the

application is done writing and the final size is known, or when the buffers must

be flushed to disk to make room for other things. Some files may be too large to fit

in such allocation buffers, causing file fragmentation as the file is written to disk in

many operations.

Another possible method of preventing this kind of file fragmentation is to try to

predict the file’s final size using heuristics based on file size statistics. A similar idea

was explored in [10], where Markov Models were used for predictive allocation of

RAM, giving “performance gains in some classes of application”. With e.g. a cu-

mulative distribution function, it is possible to predict a minimum file size with a

desired certainty. However, a certainty of e.g. 90% would also mean one is very

likely to overshoot. Also, a global cumulative distribution function for all files would

not be particularly accurate, since e.g. plain text files are typically a lot smaller than

video files. Text files are also more likely to grow after their initial write, so wasting

40

some space by allocating a larger extent may be useful to give files some leeway for

growth. Finding the most efficient certainty is a subject that bears closer study.

To make predictions more accurate, some way of differentiating files, or at least

classes of files is be necessary. A simple criterion for differentiating file types is the

filename extension, and a file system could store the size distribution of all file types it

comes across. However, a file system storing many different file types, having mostly

few files of each type can end up storing a lot of information, with some file types

having too small datasets to give useful predictions. One way to combat this is to

give a file system user the option to intervene, using e.g. structured files stored in a

special location, to tell the file system which files to keep statistical data on. This also

makes it possible for a user, who might have detailed knowledge about the files being

stored, to give data for more accurate predictions.

Figure 2.11 is an example of what a structured file used for size predictions could

look like. The first FILE entry lists an mp3 file and some reasonable characteristics.

It is an audio file, which means that unless the user does a lot of audio editing or

creates music, the file is likely to be a finished product, and growth is unlikely. This

is a characteristic an mp3 file is likely to share with other audio files, and it has been

put in a separate CATEGORY entry.

The size of a typical mp3 file may drift over time as general storage capacity grows

and higher bitrate files become commonplace. To prevent stale data from influencing

new predictions, some form of decay function is necessary. An easy way to achieve

this is to store the statistical data as a ringbuffer. The last N seen sizes entry refers

to such a buffer, and the listed buffer ursor points to the next entry to be overwrit-

ten in a particular ringbuffer.

The ringbuffer offers another trade-off in that a larger buffer uses more space, but

can store more statistical data, possibly giving more precise predictions. In the case of

mp3 files, however, a lot of music is engineered to fit a certain timespan, and file sizes

can reasonably be expected to be relatively uniform. Consequently, the buffer size
can be set quite low, since a smaller dataset is necessary for reasonable predictions.

41

--FILEtype: mp3ategory: media/audiobuffer size: 10 entrieslast N seen sizes: <list of sizes>buffer ursor: 53--FILEtype: texategory: text/plainbuffer size: 100last N seen sizes: <list of sizes>buffer ursor: 34--CATEGORYategory: media/audiolikelyhood of growth: 0.1growth fator: 1.2--CATEGORYategory: text/plainlikelyhood of growth: 0.8growth fator: 2
Figure 2.11: Data format for file size prediction

42

Also, some file types may have sizes that drift over time, potentially making a shorter

buffer more suited to predict their sizes.

The second FILE entry lists a plain text tex file. The likelyhood of growth andgrowth fator are set high, since text documents are likely to start small and grow

several times it’s own size as it’s author develops it. Also, the final size is harder to

predict than an mp3 file, leading to a larger buffer of file sizes.

A system like this could also dynamically tune the Acceptable Wastage Parameter

for better allocator performance in terms of fragmentation. This approach will not

necessarily perform better (or worse) than delayed allocation, but it is an alternative

that can reduce RAM usage since less buffering is necessary, and may perform better

in some cases, especially if a user has detailed knowledge about the size distributions

of his files.2.4.5 Crash Reovery & Fault tolerane
AAFS currently has no capabilities for detecting or correcting errors. Error protection

is not necessarily desirable in all usage scenarios, since it has some additional over-

head. For example, a proxy server might be better served with the increased speed

from having no protection, as data loss from e.g. a crash or power outage may not be

a problem. Depending on the downtime, some of the data might be stale, and the rest

of it can be downloaded again.

In most cases, however, data protection is of vital importance. This section presents

some ways of adding protection to AAFS.

A popular way of ensuring data consistency is through journalling. Any changes

to metadata, and in some cases file data, are written to an on-disk journal before they

are properly commited. If the system should fail, the journal can guarantee that a

write operation is either performed properly, or not at all.

Minor corruptions can destroy a file system’s metadata, leaving the file system in-

operable. A simple and reasonable safeguard against this is to keep backups of meta-

data at different places on the disk. Especially the superblock should be backed up

43

in this way. Also, metadata extents should contain checksums in order to detect cor-

ruption. Having backups of a metadata item (superblock, inode list, free space list)

containing checksums can enable the file system to detect an error and retrieve a good

copy from one of the backups, provided the backup passes the integrity check.

44

3 Implementation
3.1 Usage Restritions
The goal of this thesis is to implement a blockless file system and to measure it’s

external fragmentation. Since creating a full-featured file system is outside the scope

of a master thesis, AAFS has a few limitations to limit its complexity. As such, features

have been removed on the basis of not significantly impacting performance and not

being strictly necessary for the operation of a basic file system.

To simplify the handling of inodes, all the inodes have the same size. Filenames

have a maximum length of 16 characters, stored in a static array within each inode.

As a consequence, the file system does not support directory hierarchies. Hard and

soft links are also not supported.

A file’s owner, group id and permissions mask are all recorded and stored in the

inodes, but this particular implementation does not enforce permissions checks.

AAFS has no data structures in place to handle multiple extents associated with

each file. Instead, each inode can hold a reference to a single extent. Other file systems

have data structures for each inode to keep track of multiple blocks or extents, and file

growth is handled seamlessly. With AAFS, the user is required to explicitly allocate

space for a file using trunate() or ftrunate(). Also, once a file’s size has been set,

it is not possible to change.

The file system lacks features for detecting and correcting errors in the storage

medium, and cannot recover from crashes. Hence, if the file system is not unmounted

cleanly, the data it contains is lost.

45

3.2 FUSE - �le system in Userspae
FUSE consists of a kernel module and a user space library that allow a non-privileged

user to create a file system without modifying the operating system kernel. The mod-

ule provides a relatively simple API, and acts as a translator to the actual kernel inter-

face. The API uses function callbacks for most common file system functions (open(),reat(), unlink() etc.). A file system developer implements his or her own versions

of these functions and registers them with the FUSE module. A major benefit of using

FUSE is the API simplicity, which makes file system development quick and relatively

easy, and the fact that the file system runs in userspace, which makes it possible to

use the usual debugging tools.

A file system running on FUSE populates a struct with pointers to functions ad-

hering to the FUSE API. This struct is passed to the fuse_main function and used to

generate calls to the file system. Figure 3.1 shows the path of a call to a FUSE file

system. The FUSE kernel module receives a request to a file system, and passes the

request on to libfuse which generates a call to the file system. This file system is then

free to do whatever any normal userspace program can do, e.g. use SSH to interface

with a file system at a remote location.

The file system in this thesis, AAFS, resides in an image file, stored inside another

file system, so all file system calls to our file system are routed back through VFS.

An important data structure in FUSE is the fuse_file_info struct.strut fuse_file_info {int flags;unsigned long fh_old;int writepage;unsigned int diret_io : 1;unsigned int keep_ahe : 1;unsigned int flush : 1;unsigned int padding : 29;
46

uint64_t fh;uint64_t lok_owner;};
It is provided to every callback involving already open files, and provides information

about the file in question. Only a few entries are used by AAFS:�ags This member contains the mode bits for the open file. It is provided by FUSE

and is used by the file system to perform permissions checking.fh This member is not touched by FUSE and is available for the file system to store

private data between operations on a file. Any information in this field is put

there by the file system, not FUSE. In AAFS, the entry is used as a reference to

the file system’s internal representation of an open file.

If a callback needs to know the user id, group id or process id of the calling process,

FUSE makes that information available through the fuse_get_ontext() function.

This function returns the fuse_ontext struct.strut fuse_ontext {/** Pointer to the fuse objet */strut fuse *fuse;uid_t uid;gid_t gid;pid_t pid;/** Private file system data */void *private_data;};
AAFS uses this struct when assigning e.g. owner id to a file.

47

Figure 3.1: The path of a file system call, and the FUSE modules. (The figure is taken

from [11], with some additions.)

Also of interest is the way FUSE handles error codes. The regular POSIX file sys-

tem calls, like open(), lose(), reat(), unlink() etc. assign error codes to a global

variable called errno. These error codes are defined in /usr/inlude/errno.h. FUSE

wants negated error values returned directly from the file system callbacks. For ex-

ample, an open() system call assigns ENOENT to errno if a requested file does not

exist, but a FUSE callback would return -ENOENT directly from the callback instead.

48

Figure 3.2: The layered hierarchy of Sokolov’s allocator (The figure is taken from

Sokolov’s text, with some additions [8])3.3 Arhiteture
Sokolov’s allocator uses a layered model, shown in figure 3.2. This section gives an

overview of what each layer is supposed to do, as well as what is implemented in

each layer of his simulator. For more details on the allocator, consult [8].3.3.1 Media I/O Layer
The Media I/O Layer handles all reading and writing, on requests from the upper

layers, to the storage medium.

In AAFS, extents can be smaller than a hard disk sector. However, hard disks can

not read and write units smaller than a disk sector at a time, so when a read is re-

49

quested, the I/O Layer has to read the entire sector the extent resides in. Only the

requested part of the sector is then returned to the layer from which the request orig-

inated.

When writing, the file system needs to preserve the data surrounding an extent

inside a sector. To do this, the entire sector needs to be read, and the modifications to

the extent is committed before the sector is written back to disk.

The following functions perform writing and reading, respectively. The arguments

are the address of an extent counted in grains, the offset into it, the length of the data

to be read or written, and a pointer to the data buffer.ssize_t put_range(uint64_t address, uint64_t offset,uint64_t length, void *data);ssize_t get_range(uint64_t address, uint64_t offset,uint64_t length, void *data);
In a full-fledged file system, this layer would communicate with a file system cache,

but due to time constraints, the layer only uses pread() and pwrite() calls to acces

the file system image. Since this is the case, the kernel handles caching of the under-

lying image file. However, since we use pread() and pwrite(), the kernel handles

caching and the above mentioned issues for us.3.3.2 Alloation Layer
The Allocation Layer is responsible for keeping track of free extents and performing

all the operations on them. Requests from the File Link Layer and Metadata Manager

are satisfied, and free extents are allocated and returned to those layers. Additionally,

this layer contains functions for mounting and unmounting the file system.strut skip_list *qf_allo(asize_t byte_size,bool_t ont_hint,
50

asize_t lo_hint);void qf_free(strut skip_list *ext);qf_allo() satisfies allocation requests for free space. A request is made for a number

of bytes. The function calculates how many grains are needed to satisfy the request

and uses a variation of the Quick Fit algorithm to search the free space for a suit-

able extent. After making sure there is enough free space on the device, the function

searches for an extent of the requested size or larger. If the smallest extent of the re-

quested size or larger is larger than the size plus the Acceptable Wastage Parameter

(see section 2.3.2), the extent is split to meet the requested size.

If the file system has enough free space, but no extents are large enough to meet

the request, the function tries to coalesce extents. The coalesce operation merges all

adjacent free extents, in an attempt to produce an extent large enough to accomodate

the request. qf_allo() may subsequently split the resulting extents, if all of them

are too big for the size requested.

If coalescing fails to produce extents of sufficient size, Stanislav’s qf_allo() re-

turns a list of smaller extents which meet the request. However, since AAFS lacks

support for growing and fragmented files, our version of qf_allo() returns a null

pointer instead.

The continuity hint (ont_hint) triggers the coalescing subroutine before searcing

for extents. The locality hint (lo_hint) makes the function search for an extent of

a suitable size, with a starting address larger, but as close as possible to the locality

hint.qf_free() simply receives a list of extents of extents that are to be freed and returns

them to the free list.3.3.3 File Link Layer
The File Link Layer is responsible for maintaining the datastructures containing file

metadata, including the locations of files’ extents. This layer acts as the interface

51

towards FUSE, implementing function callbacks for the usual file system operations.read() and write() functions communicate directly with the Media I/O Layer. reate()
and unlink() functions call the Allocation Layer as well as the Metadata Manager.trunate() and ftrunate() functions are responsible for resizing and setting initial

file size, and call qf_allo(), which returns an extent of the requested size if suc-

cessful. The functions present in the File Link Layer are a subset of the functions

supported by FUSE, and their actions and calling orders are described here.int getattr(onst har *path, strut stat *stbuf);int fgetattr(onst har *path, strut stat *stbuf,strut fuse_file_info *fi);
The getattr() and fgetattr() callbacks retrieve metadata about a file. These func-

tions fill the same purpose, with the difference being that fgetattr() is used on open

files. getattr() will search the file system for the requested file or directory. If the

file is not found, getattr() returns a search failure.

The getattr() callback is also how FUSE always checks if a file exists, and the func-

tion is called once for every filename in any file system callback, except getattr(),read() and write(). The read() and write() calls don’t require a prior callback,

since they require the file in question to be opened first. If the getattr() callback re-

turns -ENOENT, FUSE does not perform the requested operation, but returns to the call-

ing process. Because of this, any function involving files that have not been opened

can safely assume that a file exists.

In the case of getattr(), if the file exists, the corresponding inode is retrieved, and

a stat struct is populated with file metadata and returned. These metadata include

timestamps, file size, allocated space and the file type and permissions. The same is

true for directories, but directories are not supported, and so is not applicable. If the

file does not exist, -ENOENT is returned.

Since fgetattr() is called for open files, it receives a fuse_file_info struct con-

taining a pointer to the opened inode. This inode is used to populate the aforemen-

tioned stat struct with file metadata.

52

int open(onst har *path, strut fuse_file_info *fi);int release(onst har *path, strut fuse_file_info *fi);
The open() callback implements the file system specific part of the corresponding

POSIX function. FUSE provides a fuse_file_info struct (fi). The fh member of this

struct is used to point to the file’s inode. This same struct instance is then provided

to other callbacks involving that particular open file, where the fh member is used to

locate the correct inode.

The POSIX counterpart to open() can be told to create a file, if it does not exist, if

the O_CREAT flag is set. However, if FUSE receives a POSIX open() call, with O_CREAT
set, FUSE first generates a getattr() callback. If getattr() returns -ENOENT, FUSE

calls reate() rather than open(). If the file exists, the open() callback is used as

normal.

The release() callback simply removes the pointer to the inode in the fuse_file_info
struct. This necessity is not apparent at first glance, since AAFS does no buffering,

and commits every change directly, but it is necessary to prevent FUSE from deleting

the file when the file system is unmounted. The reason for this is unclear, as docu-

mentation for FUSE is lacking.int reate(onst har *path, mode_t mode, strut fuse_file_info *fi);
The reate() callback handles all file creation, unlike the POSIX reat() function

which is only called explicitly. reate() does not have to check for the existence

of the file, as getattr() has already been called at this point and FUSE does not

generate a reate() callback if the file exists. The getMetaSpae() function is called,

to preallocate space for storing the inode on disk, if needed. If this space is needed,

and the allocation fails, reate() fails as well, returning -ENOSPC. This is a failsafe

mechanism to ensure that the file system has enough space to save the new inode.

If the allocation succeeds, or no space is needed, a new inode is created and inserted

into the skip list that holds all the file system’s inodes. The inode is populated with

53

the provided file name and file mode, as well as timestamps and the file owner’s id

and group.

The private data pointer in the provided fuse_file_info struct is assigned to the

new inode, before the reate() function returns.int unlink(onst har *path);unlink() deletes a file. Checking for file existence is not necessary, because getattr()
has already been called at this point. If a user tries to delete a file that does not exist,

FUSE does not generate the corresponding unlink() call.

The path function argument is used to locate the file’s inode. If the inode is associ-

ated with any extents, the extents are deallocated by calling qf_free(). Subsequently,

a call to dropMetaSpae() will deallocate an extent reserved for storing inodes if pos-

sible. The inode is then deleted from the file system’s data structures.int rename(onst har *from, onst har *to);int hmod(onst har *path, mode_t mode);int hown(onst har *path, uid_t uid, gid_t gid);rename() takes two path arguments, both of which are checked by getattr() prior to

the rename() call. All three of these functions locate the requested inode and change

the corresponding metadata. The rename() function assigns the new file name if it

is shorter than the global maximum file length. hmod() assigns new permissions to

the file. The hown() function assigns new user and group ownership. The necessary

information is retrieved by calling fuse_get_ontext() and using the fuse_ontext
struct it returns. The file ownership and mode data is stored in each inode, but access

restrictions based on this information are not enforced, since it is not strictly necessary

for the file system’s operation.int trunate(onst har *path, off_t size);int ftrunate(onst har *path, off_t size, strut fuse_file_info *fi);
54

These functions explicitly change a file’s size. They fill the same purpose, with the

difference being that ftrunate() is used on files that are already open.

In AAFS, they fill a central role. Since growing files are not supported1, all files

have to be truncated to an appropriate size, before any write() calls will succeed.

The file’s inode is located by searching the skip list containing the inodes, in the case

of trunate(), or by following the private data pointer in the provided fuse_file_info
struct, in the case of ftrunate().

A file can be truncated only once, due to the lack of support for growing files.

Consequently it is also not possible to shrink a file.

If the file has not been previously truncated, the function calls qf_allo() to al-

locate an extent of the requested size. This extent is then associated with the file’s

inode.int read(onst har *path, har *buf, size_t size,off_t offset, strut fuse_file_info *fi);
As one of the functions that does not mandate a prior call to getattr(), read() gets

the file’s inode from the provided fuse_file_info struct. If the inode is associated

with an extent, read() checks that the sum of size and offset is inside the bounds

of the file, before calling get_range().

FUSE does not require the file system to implement a seek function, usually re-

sponsible for moving a file pointer to a requested offset, which is used for subsequentread() and write() calls. Instead, any offsets from the beginning of a file are pro-

vided as arguments to the read() and write() functions.

The length read by get_range() has to match the length requested, or FUSE will

pad the read buffer with null bytes up to the requested length.int write(onst har *path, onst har *buf, size_t size,off_t offset, strut fuse_file_info *fi);
1see section 2.4

55

write() gets the required inode reference from the provided fuse_file_info struct.

If the inode is not associated with an extent, write() returns -ENOSPC and refuses to

write any data before the calling process has called ftrunate().

If the inode is associated with an extent, write() checks that the sum of size andoffset is inside the bounds of the file, before calling put_range(). FUSE mandates

that write() should return exactly the number of bytes requested, except on error.

As such, if the allocated space is not large enough to contain the requested write, a

partial write is not carried out, and -ENOSPC is returned.int statfs(onst har *path, strut statvfs *stbuf);statfs() retrieves file system statistics and populates the statvfs struct. The values

returned in this manner are the file system’s block size, in this case the grain size, the

size of the file system counted in grains, the number of free grains, the number of files

in the file system and the maximum file name length. There are a few more values

that can be populated in the statvfs struct, but they are either ignored by FUSE or

not in use in AAFS.int readdir(onst har *path, void *buf,fuse_fill_dir_t filler, off_t offset,strut fuse_file_info *fi);typedef int (*fuse_fill_dir_t) (void *buf, onst har *name,onst strut stat *stbuf, off_t off);readdir() lists the files and directories in a single directory, specified by the path pa-

rameter. The buf buffer is populated with entries using the provided filler function

pointer. readdir() runs a loop, iterating over all the directory entries.

The filler() function takes the buf pointer as a parameter along with the name of

the directory entry and a pointer to a stat struct, which is populated by the loop inreaddir(). This struct is specified in the POSIX standard and contains timestamps,

size-, ownership- and mode information.

56

Since AAFS lacks support for a directory hierarchy, readdir() is used to list the

entire file system. Because of this, the path argument is ignored, and the callback

always lists the file system.int utimens(onst har *path, onst strut timespe tv[2℄);utimens() checks for the existence of the file specified by the path argument. If the

file exists, the timespe struct is used to assign new access and modification times

to the file. The timespe struct supports timestamps with nanosecond resolution as

well as second resolution, but AAFS only uses second resolution.Return Values
All the functions in the File Link Layer return zero on success. Any functions that

deal with files that have not already been opened perform a check on the path name

to make sure the path is shorter than the file system’s maximum filename length. If

this test fails, the function returns -ENAMETOOLONG. The -ENOSPC error code is used

whenever the file system lacks the necessary space to perform a particular operation.

However, since the file system lacks support for growing files, it is also used to force

calling processes to specify the size of a file before write() operations can be per-

formed. Any file without a size reserved with trunate() or ftrunate() will causewrite() to return -ENOSPC. This is important to note, and is not to be confused with a

lack of space on the file system. This use of the -ENOSPC error code can be verified by

a statfs() operation and making sure the file system is not out of space. -ENOENT is

returned whenever a requested file is not found.Unsupported Funtions
FUSE offers functionality for a number of functions in addition to the ones listed

here. Examples include functions for extended attributes, symbolic links, file locks.

However, these functions are not strictly necessary for a working file system, and are

not supported by AAFS due to time constraints.

57

3.3.4 Metadata Manager
The Metadata Manager is responsible for reserving space the Allocation and File Link

layers need to store the necessary data when the file system is unmounted. The two

functions call the qf_allo() and qf_free() functions in the Allocation Layer to re-

serve and release storage space for metadata. The functions also call the Media I/O

Layer to commit the changes immediately.

AAFS does not have designated space for storing metadata. Instead, space for the

different metadata types is allocated and deallocated in the same way as regular files.

Since the file system lacks support for dynamic files, the Metadata Manager module

offers rudimentary support for growing and shrinking space for metadata.

The allocator has a coalesce function used to merge adjacent free extents, to reduce

external fragmentation and bookkeeping overhead. For details on the coalescing al-

gorithm, see [8]. In Sokolov’s design, the coalesce function requires updating on-

disk headers, and was only used when there was no available extent large enough

to fill a request. Since AAFS keeps all metadata in RAM, coalescing is a lot faster.

AAFS needs additional disk accesses when metadata extents are allocated and freed.

As such, coalescing is performed whenever it seems necessary to allocate additional

metadata extents. If the coalescing reduces the size of the free list sufficiently, the

allocation can be avoided. This coalescing scheme is referred to as “lazy” coalescing

in the remainder of this thesis. For testing purposes, AAFS also supports continuous

colaescing, where a coalescing is performed every time an extent is freed.int getMetaSpae(int (*needspae)(), uint64_t *lo, uint64_t *spae);inline int needFreextSpae();inline int needInodeSpae();getMetaSpae() is called at the end of qf_free() and the beginning of reate(). Theneedspae() function pointer refers to a check for space for storing either free extent

information or inodes. If more space is needed, getMetaSpae() requests a free extent

from the allocator. The reserved metadata space is organised like a linked list, and the

58

new extent is added to the list’s tail.void dropMetaSpae(int (*aboundspae)(), uint64_t *lo, uint64_t *spae);inline int aboundFreextSpae();inline int aboundInodeSpae();dropMetaSpae() is called by qf_allo() and unlink(). The aboundspae() function

pointer checks if the file system has more space than it needs for free extents or inodes.

If that is the case, the extent at the tail of the linked list is freed.3.3.5 Sokolov's Implementation
As stated earlier, AAFS uses the same architecture as the one Sokolov developed, and

for comparison, this section lists what was implemented in his simulator.

Sokolov’s Media I/O Layer is minimal, only implementing counters that get incre-

mented whenever one of the functions are called.

The put_range() function in his Media I/O Layer had a destrutive argument,

used when only a portion of an extent is modified. This argument could be flagged

when the rest of the extent could be safely overwritten, so the extent wouldn’t need

to be read first. This argument has been removed in the AAFS implementation. With

extents smaller than a sector, this argument is not needed since the sector containing

the extent has to be read regardless. Bounds checking the extent can remove the need

to read a sector if the entire sector is covered by one extent.

The qf_allo() and qf_free() functions in the Allocation Layer are complete

as of Sokolov’s implementation, with some modifications necessary to accomodate

the additional data structures needed by the file system. The functions that han-

dle mounting and unmounting, qf_start() and qf_stop() are designed and imple-

mented from scratch in this thesis. These functions are covered in section 3.4

The File Link Layer as implemented by Sokolov is minimal. Functions for manip-

ulating file contents are not implemented. Functions for creating and deleting files

are implemented in a simulator driver that generates calls to qf_allo and qf_free
59

according to trace data. These functions don’t implement any of the bookkeeping

associated with the file link layer, but simply implement counters for the purpose of

gathering statistics. The simulator has no data structures for storing file inodes or

otherwise track individual files.

The Metadata Manager module is not featured in Sokolov’s design and is added in

this thesis.3.4 Mounting & Unmounting
Building a FUSE file system creates an executable used to mount the file system in

question. This is different from how the linux mount utility is used to mount file

systems.

The AAFS executable is started with the desired mountpoint path and an image file

path as command line arguments. A fuse_operations struct is first populated with

pointers to all the functions listed in AAFS’ File Link Layer. The main() function then

initializes the file system by calling qf_start() and calls fuse_main(), providing the

mount point path and the fuse_operations struct as a parameter. fuse_main registers

the file system with VFS, and at this point the file system is mounted. FUSE performs

operations on the file system by generating callbacks to the functions listed in thefuse_operations struct.

To unmount a FUSE file system, the fusermount utility is used. The utility is in-

voked with a -u switch and the mount point path as arguments. The fusermount util-

ity causes the fuse_main() function to return, giving control back to AAFS’ main()
function. After that, shuts down the file system by calling qf_stop().void qf_start(har *filename);void qf_stop(void);

AAFS initializes and shuts down the file system through the qf_start() and qf_stop()
functions.

60

Figure 3.3: Disk layout on an empty file systemqf_start() uses the filename string to locate and open the file system image. It

then reads the superblock, located at the beginning of the file. The size of the su-

perblock is hard coded. Subsequently, the inodes are read from the image file and the

inode skip list is constructed using the method described in section 2.3.1. After that,qf_start() reads the free extent data from the image file, and constructs a temporary

skip list containing the free extent data in the same fashion as with the inodes. Finally,

the extent headers in this temporary list are sorted into the quick lists and misc list

used by the allocator implemented by Sokolov.qf_stop() does the opposite, and in reversed order. The quick lists and misc list

are merged into a temporary skip list and marshalled and written to the image file.

Next, the inode skip list is marshalled and written. The superblock is then written to

the image file, and the file is closed.3.5 Formatting the File System
A separate utility called initfs has been implemented to create and initialize an im-

age file so it can be mounted by AAFS. This utility is invoked with an image file path

and a desired size, counted in bytes. initfs opens the image file and truncates it to

the requested length.

Figure 3.3 shows how a new file system looks. A superblok struct is created and

populated with the correct information. The metadata extents have a hardcoded size,

and inodes_lo is aligned to the first grain after the superblock. freext_lo is set to

61

inodes_lo plus the metadata extent size. There are no files present, so inodes_num is

set to zero. One big free extent spans the space after the metadata extents to the end of

the file system, so freext_num is set to 1. inodes_spae and freext_spae are set to

the hardcoded metadata extent size. grains_size is set to the image’s requested size

divided by the hardcoded grain size, and grains_free is set to grains_size minus

the total size of the superblock and the metadata extents.

After populating the superblok struct, initfs writes it to the start of the image.meta_header structs with next_ptr set to zero and size set to the hardcoded metadata

extent are written to the positions entered into inodes_lo and freext_lo in the

superblock. Since no files, and consequently no inodes, are present when the image

is created, the inode extent is finished. The extent containing free extent headers is

populated with an extent struct with it’s address field set to freext_lo plus the

metadata extent size, and a size field set the same as grains_free in the superblock.

62

4 Evaluation
AAFS is a relatively minimal implementation of a file system. A lot of features, such

as error correction and resilience, are missing. Also, since AAFS stores all metadata in

RAM when the file system is mounted, it is hard to make a fair performance compar-

ison with other file systems. AAFS uses FUSE, whose overhead is uncertain, which

further clouds the performance issue. Instead, the performance testing focuses frag-

mentation characteristics, rather than speed of operation.4.1 Simulated Workload
A log was acquired from a mailpipe server run by the University of Oslo IT depart-

ment. The server handles incoming emails which are to be forwarded to programs

such as list archives, mail2news and other services. The emails are retained for a short

while until the correct destination can be determined. The emails are then forwarded

and deleted from the server’s file system. This server does not carry out any direct

deliveries to these programs because of high I/O workloads.

This log was used to run simulations on AAFS and Ext2, while recording statistics

on the two file systems.2008-06-27T00:00:47 1KBzWJ-0000TO-2m 16372008-06-27T00:00:48 1KBzWJ-0000TO-2m
The log consists of lines of plain text listing a timestamp, a hash representing a file

name, and a size in bytes. Any names or other sensitive information was removed

before the log was released. A line containing a size represents an email being stored,

63

and a line with the size missing represents the mail being deleted from the file system.

The log was of a 30 day period, and contains some lines for deleting non-existant files,

as they were created before the log starts. Similarly, some files are retained in the file

system at the end of the log.

The log was processed by a simple program that delayed all delete lines by a ran-

dom, uniformly distributed, number of seconds up to one hour. This was done in an

attempt to simulate a more problematic workload, with more files in the file system

simultaneously and worse fragmentation.

AAFS is implemented with the intention of running as a normal file system on

FUSE. However, to speed up the simulation, a the file system was modified, adding

a function that parses the log file and calls the File Link Layer functions directly.

On create, a file is created and truncated to the specified size. Truncate allocates the

required space, and filling the file with data is not necessary.

The Ext2 simulation, similarly, is a program that parses the log file, and executes

a program developed by Željko Vrba to gather detailed statistics about the Ext2 file

system. Since Ext2 does not support persistent preallocation, the simulation writes

zero bytes to the file to force allocation for a file of the specified size. To speed up the

Ext2 simulation, the file system was running in an image in RAM.

The AAFS and Ext2 simulations run through the same log, recording statistics each

time the log transitions from create operations to delete operations, delete operations

to create operations. The AAFS simulation records statistics on free space, external

fragmentation, number of files present, number of free extents and internal fragmen-

tation. The Ext2 simulation additionally records data fragmentation. Since AAFS

does not support fragmented file, data fragmentation is not applicable.4.2 Test Cases
AAFS has a few adjustable attributes that lead to different performance characteris-

tics. Primarily, different grain sizes are tried and their respective performances com-

64

pared. Also, the effect the two coalescing schemes (lazy and continuous) have on

fragmentation and necessary image size. The Acceptable Wastage Parameter is kept

at 0 for these tests, but some indirect observations are made. The base case for com-

parison with AAFS was chosen to be 16 byte grains and lazy coalescing1.

File systems tend to fragment data more as they fill up, and it becomes necessary to

use fragmented free space for storing files. AAFS does not support data fragmenta-

tion, but external fragmentation can be used for cautious comparisons. The tests were

run at the smallest image size possible. A binary search was conducted on both ext2

and AAFS to find the smallest image that does not run out of space when running the

log. The largest of these two sizes was chosen as a base for comparison between the

two file systems. AAFS requires a larger image, since it does not support fragmented

files.

For comparison with Ext2, AAFS was tested at the required image size of 996.5MB

with both lazy and continuous coalescing on 16 byte grains. Tests were also run at

the same image size with both coalescing schemes on 1 byte grains. Ext2 was tested

on an image size of 996.5MB with a 1024 byte block size and a 4096 byte block size.

AAFS was also tested on a minimal image size of 1501.5MB with 4096 byte grains

with lazy coalescing, and compared to continuous coalescing withh the same image

and grain size. Additionally, since continuous coalescing improves external frag-

mentation and makes it possible to run on a smaller image, the smallest possible

image size was found and tested for 16 byte grains and 4096 byte grains at 900MB

and 886.5MB respectively.4.3 Test Results
Figure 4.1 shows the external fragmentation statistics for the ext2 tests in compari-

son with the AAFS base case. External fragmentation is calculated as the size of the

biggest free extent divided by total free space. On ext2, weekends are easily dis-

1see section 3.3.4

65

tinguishable from weekdays, with less movement in the graph, as the file system is

mostly empty. On AAFS, plateaus are visible followed by sharp drops indicating a

coalescing has taken place.

Ext2 is divided into block groups, each group starting with a superblock, free space

bitmap and inode list for the blocks in that group. As a consequence, free extents can

never be bigger than the size of a block group. The size of the block groups is re-

stricted by the fact that the free space bitmap is limited to a single block. This means

that the maximum size of a block group is 8 times the size of a block. So with 1024B

blocks, each block group is 8192 blocks, and with 4096B blocks, each group is 32768

blocks. This leads to external fragmentation measurements that are upside down

from what one might expect; fragmentation decreases as the file system fills up, since

amount of free space is decreasing relative to the size of the biggest free extent. Exter-

nal fragmentation on ext2 with 1024B blocks is quite severe, since each block group

is only 8MB. On ext2 with 4096B blocks, the block groups are significantly larger,

causing overall lower external fragmentation. Also more space is wasted on inter-

nal fragmentation, meaning the amount of free space is further reduced, somewhat

reducing external fragmentation.

The number of files present in the file systems show a clear pattern of weekdays

and weekends, which is reflected in the fragmentation statistics on the ext2 file sys-

tem. The fact that ext2 gets better external fragmentation when more files are present

indicates that a smaller image size should have been tested to get a clear picture of

external fragmentation on this file system. However, due to time constraints and

problems during testing, this was not possible.

Figure 4.2 shows data fragmentation on ext2. Data fragmentation is measured

as the number of extents per file on average. The small block groups of ext2 with

1024B blocks leads to significantly increased data fragmentation over ext2 with 4096B

blocks. Data fragmentation is lower with 4096B blocks, since fewer different extent

sizes are possible, but still quite pronounced, even though a block group on a 4096B

block size can contain 128MB. Ext2 tries to place blocks belonging to a file in the same

66

(a) Ext2 with 1024B blocks (b) Ext2 with 4096B blocks

(c) AAFS with 16B grains and lazy coalescing (d) Number of files

Figure 4.1: Comparison of External Fragmentation

67

block group, but does not seem to care if the blocks are contiguous and in order.

Figure 4.3 shows internal fragmentation on different grain sizes. For identical grain

and block sizes, internal fragmentation is the same between file systems. 4096B grains

shows internal fragmentation peaking at almost 40% and routinely going above 15%.

Interestingly, in this particular log, the internal fragmentation is bigger in the week-

ends, which indicates smaller files. The weekends are also when the fewest files are

present, on average, so the internal fragmentation is not problematic in this case, as

there is a lot of free space available. This is not the case for all workloads, however.

1024B block sizes bring internal fragmentation down to around 5%, peaking at al-

most 10% in the weekends, which is a significant improvement. 16B grains almost

eliminate internal fragmentation entirely, indicating that a smaller grain size will not

bring significant improvements in internal fragmentation. 1B grains were also tested,

but has no internal fragmentation and is not shown in this comparison. Note the

difference in scale between the 16B graph and the other two graphs.

Figure 4.4 shows the significant improvements in external fragmentation continu-

ous coalescing gives over lazy coalescing. External fragmentation is lower overall,

often more than halved, and more stable. With the current design, coalescing is a rel-

atively expensive operation, coalescing the entire free space list each time, so it could

be desirable to introduce a function that coalesces single extents when they are freed,

as coalescing on this file system does not necessitate disk access. Performance will be

more predictable in these cases, as no long-running coalescings can disrupt response

times. External fragmentation would also be lower, which is beneficial in itself.

Figure 4.5 shows external fragmentation on AAFS with a 1501.5MB grain size. Be-

cause of internal fragmentation, the image has to be significantly larger than the 16B

grain size at 996.5MB. The 4096B grain size with lazy coalescing has similar or worse

external fragmentation than the 16B grain size counterpart. Continuous coalescing

offers significant improvement in external fragmentation but this is not a net gain,

since it requires a substantially larger image.

Figure 4.6 shows external fragmentation for the smallest possible image size with

68

(a) Ext2 with 1024B blocks

(b) Ext2 with 4096B blocks

(c) Number of files

Figure 4.2: Comparison of Data Fragmentation

69

(a) Internal fragmentation with 4096B grains

(b) Internal fragmentation with 1024B grains

(c) Internal fragmentation with 16B grains (different scale)

Figure 4.3: Comparison of Internal Fragmentation

70

(a) 16B grains, lazy coalescing (b) 16B grains, continuous coalescing

(c) 1B grains, lazy coalescing (d) 1B grains, continuous coalescing

Figure 4.4: Comparison of External Fragmentation, different AAFS settings for an

image size of 996.5MB

71

(a) lazy coalescing (b) continuous coalescing

(c) Number of files

Figure 4.5: Comparison of External Fragmentation, AAFS with an image size of

1501.5MB, 4096B grains

72

continuous coalescing with 16B and 4096B grain sizes. Both configurations peak at

approximately the same external fragmentation, with the 16B grains having slightly

worse fragmentation overall. Interestingly, the 4096B grain size fits in a slightly

smaller image than 16B. The reason for this is the more numerous free extents, giving

a bigger metadata overhead with 16B grains. During preliminary experiments that

were not recorded, a large number of the free extents were discovered to be only 1

grain long. Adjusting the AWP would eliminate any extents smaller than the AWP.

Adjusting the AWP can bring down the required image size and external fragmen-

tation at the cost of some internal fragmentation. Speeds could also be improved, as

there are fewer extents for the allocator to search through. However, testing the Ac-

ceptable Wastage Parameter in detail is a big experiment by itself and is outside the

scope of this thesis.

73

(a) 4096B grains, continuous coalescing, 886.5MB image

size

(b) 16B grains, continuous coalescing, 900MB image size

(c) Number of free extents, 4096B grains (d) Number of free extents, 16B grains

Figure 4.6: Comparison of External Fragmentation, AAFS with continuous coalescing

on minimal image sizes

74

5 Conlusion
5.1 Summary
In this thesis, the design, implemented and evaluation of a file system supporting

extents and arbitrarily sized grains has been presented. Tests were carried out to

compare AAFS’ fragmentation statistics with Ext2. Ext2 was chosen because it is well

documented and open source, making the benchmarking process easier. The tests

results are encouraging but not conclusive. The file system is quite fast, as it only

needs one disk seek for most disk operations, and some times none, but lacks some

features like data fragmentation support which makes direct comparisons difficult.

Additionally, the Acceptable Wastage Parameter has not been extensively tested, and

bear closer study.

As it stands, being a file system implementation of the allocator implemented by

Sokolov, AAFS is well suited for applications with small file size distributions, like

web- and mail servers.5.2 Future Work
This thesis implements a minimal file system, and as such has many possibilities for

extensions. Many of them are explored in detail in section 2.4, and are considered

standard file system features, like directory hierarchies and proper access control.

Crash recovery and general fault resilience is currently not implemented, and is a de-

sirable feature in any file system. Most important is perhaps support for fragmented

75

files, for further testing. File data injection and removal is a small extension which

could make AAFS useful for tasks like video editing.

Adapting the coalescing algorithm will offer direct improvement without signifi-

cant computational overhead, possibly even reducing it compared to the current lazy

coalescing, and give the file system more predictable response times and improved

external fragmentation.

Since AAFS hopes to improve read speeds by placing multiple files in each block,

some mechanism for file placement should be considered, to ensure related files are

located next to each other.

76

Bibliography
[1] IDEMA P. Chicoine, M. Hassner, M. Noblitt, G. Silvus, B. Weber, and E. Gro-

chowski. Idema(r) hard disk drive long data sector white paper. White Paper,

2007. Available from http://www.idema.org/ - Document Library.

[2] Andrew S. Tanenbaum, Jorrit N. Herder, and Herbert Bos. File size distribution

on unix systems - then and now. ACM SIGOPS Operating Systems Review, 40:100–

4, 2006.

[3] Leland L. Beck. A dynamic storage allocation technique based on memory resi-

dence time. Communications of the ACM, 25:714–724, 1982.

[4] Richard McDougall. Getting to know the solaris filesystem, part

1: Allocation and storage strategy. Article, 1999. Available from

http://www.solarisinternals.com/si/reading/sunworldonline/swol-05-

1999/swol-05-filesystem.html.

[5] Hp-ux system administration tasks: Hp 9000, chapter 4, section 4: An intro-

duction to vxfs. Manual, 1999. Available from http://docs.hp.com/en/B2355-

90672/ch04s04.html.

[6] Marshall K. McKusick and William N. Joy. A fast file system for unix. Technical

report, Department of Electrical Engineering and Computer Science, University

of California, Berkeley, 1984.

[7] Charles B. Weinstock. Dynamic storage allocation techniques. PhD thesis,

Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1976.

77

[8] Stanislav Sokolov. Design and analysis of a dynamic extent-based allocaiont

technique for multimedia file systems used in cdn proxies. Master thesis, Depart-

ment of Informatics, University of Oslo, Norway, 2006.

[9] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Workshop

on Algorithms and Data Structures, pages 437–49, 1989.

[10] Mike Jurka Adin Scannell. Markov models for predictive memory management.

Available from http://adin.scannell.ca/w3/doc/mmmm.pdf.

[11] Fuse: Filesystem in userspace, webpage. Available from

http://fuse.sourceforge.net/.

78

