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Abstract

This thesis proposes some new iterative local modeling algorithms for the multivariate

approximation problem (mapping from RP to R). Partial Least Squares Regression (PLS)

is used as the local linear modeling technique. The local models are interpolated by means

of normalized Gaussian weight functions, providing a smooth total nonlinear model. The

algorithms are tested on both arti�cial and real world set of data, yielding good predictions

compared to other linear and nonlinear techniques.
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1

Introduction

Empirical modelling can be de�ned as the problem of establishing a mathematical model or

description of a system merely from a limited number of observations of di�erent variables

in the system. The model is usually an input/output model where some variables, named

input variables, are used to predict the response of the remaining one(s), named output

variable(s). The system is either static, i.e. is in a �xed condition, or dynamic, i.e. undergoes

an evolution in time.

One example of its use is in the �eld of chemical processing industry, where complicated

chemical processes with unknown relationships between process variables are investigated.

Empirical modelling can then be used to gain insight in these relationships. Other �elds

where empirical modelling is applied today include:

� Chemometrics

� NIR spectroscopy

� Image processing

� Classi�cation

� Control systems

� Geology

� Economy

The main reason for applying empirical modelling in these �elds is because analytical

models, which generally are the most desirable, are either highly inaccurate or very di�cult

to derive. Both is the case when one has very little a priori knowledge about the system.

In these �elds, an analytical model would also be very complex since the number of input

variables is often very high. One is therefore left with the second-best alternative, empirical

modelling, in order to interpret and understand the connections between the variables

involved in the system. This is important since a model based on better understanding

will often lead to a decrease in the error of prediction, and can in the end even reduce

the total expenses of a company, if for instance, the system one is modeling is part of an

industrial process.

1



1 Introduction 2

1.1 Motivation

When doing empirical modeling there are many di�erent techniques and algorithms avail-

able. One common way of classifying them is to separate them into global and local tech-

niques. In a globalmodeling technique the idea is to �nd one function which describes the re-

lationship between the variables. This function will be valid in the whole input domain. Ex-

amples of such techniques are Multiple Linear Regression (MLR) [Johnsen and Wichern 88],

Principal Component Regression (PCR) [Martens and Næs 91], and Partial Least Squares

Regression (PLS) [Wold et al. 84, Geladi and Kowalski 86, Lorber et al. 87, Höskuldsson 88].

The idea in a local modeling scheme is to �nd local functions which only describe the

relationship between the variables in a local domain in the input space. These local mod-

els can then be interpolated, yielding a global description of the system. Local modeling

schemes employ the principle of divide-and-conquer. This principle states that the solution

to a complex problem can be solved by dividing it into smaller independent problems.

These problems are then solved, and their solutions are combined yielding the solution to

the original complex problem. Examples of local techniques are Locally Weighted Regres-

sion (LWR) [Næs et al. 90, Næs and Isaksson 92], Arti�cial Neural Networks (ANN) with

Radial Basis Functions (RBF) [Moody and Darken 88, Stokbro et al. 90], the ASMOD al-

gorithm [Kavli 92] and the LSA algorithm [Johansen and Foss 93]. All the techniques are

treated in greater detail in chapter 2.

To illustrate the idea behind empirical modeling and also the di�erence between global

and local modeling, a simple example is given. Consider the intuitively easiest problem to

solve, namely the static univariate case, i.e. a single input variable, x, and a single output

variable, y. All one is given is N corresponding observations of the two variables. Hence

the problem can be formulated as �nding the best relationship between x and y based on

the N observations. It might be instructive to think of the observations as data points in

a two dimensional space, see �gure 1.1a.

If linearity is assumed in x, the most common solution is to �t a straight line through

the set of data e.g. by the method of least squares. The result is a linear relationship

between x and y, described by the line of regression ,i.e. the slope b and the y-intercept b0.

Thus, the global empirical model is y = b0 + bx, see �gure 1.1b.

However, if the set of data clearly shows a nonlinear behavior, as is the case in this

example, a better approach might be to �t a nonlinear function to the set of data, giving

a nonlinear global empirical model. An example of such is the quadratic model y =

b0+ b1x+ b2x
2, where the parameters b0, b1, and b2 are again found by the method of least

squares. The resulting curve on our set of data is given in �gure 1.1c.

Another interesting alternative when solving this nonlinear problem, is to divide the

N observations into a number of di�erent groups based on their value along the x-axis.

By assuming linearity and performing linear regression within each group, local linear

regression models are formed. This approach is an example of local empirical modeling.

The result for our set of data can be seen in �gure 1.1d. Here the number of groups is

3, and the local models are interpolated using a weight function to avoid piecewise linear

functions.
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Figure 1.1: Simple empirical modeling with 26 observations. (a) The set of data. (b)

Linear regression. (c) Quadratic regression. (d) Smooth local linear regression.

This example can easily be expanded to the multivariate case with P input variables, but

still only a single output variable, i.e. a mapping from RP to R. Apparently this system

is more complex than in the univariate case, but the same kind of thinking concerning

nonlinearity/linearity and global/local models can still be applied. A further expansion to

multiple number of output variables can be done, simply by modeling one y-variable at

a time. The term multivariate system will from now on refer to a system with P input

variables and one output variable.



1 Introduction 4

1.2 Overview and scope of thesis

This thesis presents some new nonlinear empirical modeling algorithms, all based on local

modeling. As seen from the example in section 1.1, the way of thinking that nonlinearity

can be approximated by local linearity is appealing both because it is simple and because

it is not very computationally demanding. The proposed algorithms are all iterative when

it comes to �nding the local models. They are constructed for a general framework, and

are not directed towards any particular application or problem, although emphasis is on

prediction. A nonlinear connection between input and output variables is always assumed.

High dimensional (P > 3), noisy problems are of special interest, especially when the input

variables are correlated.

The rest of the thesis is organized as follows:

� The next chapter takes a closer look at general problems when doing empirical mod-

eling. In addition, some of the most important existing modeling techniques are

presented.

� Chapter 3 covers problems that are speci�c to local modeling.

� In chapter 4, the proposed algorithms and the philosophy behind them are described

and tested on arti�cial examples.

� The results obtained by applying the best of the proposed methods on four well-

known data sets, are given in chapter 5.

� A further discussion on some of the algorithms and an evaluation of their performance

takes place in chapter 6.

� The last chapter contains the main conclusions of the work in this thesis.



2

Background

This chapter provides a general background to empirical modeling, as seen from the multi-

variate approximation point of view [Poggio and Girosi 90]. First, the problem formulation

is speci�ed, and some important aspects which often cause problems in the modeling are

presented. Empirical modeling as a two-step process is then described. The most important

linear techniques, as well as a review of di�erent nonlinear techniques are presented. Local

modeling, which can be seen as a special class within nonlinear modeling, is introduced in

greater detail in chapter 3.

2.1 Multivariate approximation

The general problem treated in this thesis can be formulated as a multivariate approxima-

tion problem. In our context this means �nding the best possible nonlinear relationship

between the vector of input variables, x = (x1; :::; xP ) 2 R
P , and the scalar output variable,

y 2 R. The relationship will be of the form

y � �y = f(x) (2.1)

where f is a nonlinear approximation function, and �y is the predicted value of y. This

de�nition is motivated by the assumption that there exists an underlying function, �f , from

which both x and y are generated. Unfortunately, �f is unknown to us.

To help us �nd f , the only information that is available is N di�erent observations, or

samples, of x and y. In other words xn; n = 1; 2; :::; N and yn; n = 1; 2; :::; N . Usually N is

greater than P , but there are situations e.g. in spectrometry where this is not always true.

The data can be arranged in two matrices, denoted X and y. X is a N � P matrix

having x1 to xN as row vectors, whereas y is a N � 1 matrix (column vector) consisting of

y
1 to yN . The column vectors of X, i.e. sample values from one input variable, are denoted

xp; p = 1; 2; :::; P .

5



2 Background 6

Another way to formulate the general problem is by trying to visualize the situation

geometrically. All the corresponding samples of x and y can then be thought of as N

geometrical points spread out in a P + 1 dimensional hyperspace, having orthogonal axes

formed by the P + 1 variables. The solution to the problem of identifying f is then the

best P -dimensional hyperplane �tted to all the points, if f is to be globally linear, or more

generally, the best manifold, if one is looking for a nonlinear model.

An important reason why only an approximate, and not an exact relationship can

be found, is because of disturbances or noise in the samples. The presence of noise is

responsible for a number of undesirable phenomena, such as over�tting, outliers, and the

bias/variance problem. The purpose of any approximation function, f , is to �lter away

as much noise as possible, but at the same time to keep the underlying structure in the

system.

2.1.1 Variables and samples

The variables x1,...,xP and y are modelled as stochastic variables corrupted by noise, be-

cause there is always an element of chance in the real world, where no system is completely

deterministic. Hence the description of the variables includes statistical terms such as mean

and variance. However, no assumptions are made about the underlying probability density

functions from which the observations are generated.

Three important aspects of stochastic variables are expected to cause di�culties in the

problem context of this thesis:

Internal correlation. The di�erent input variables are often strongly internally corre-

lated. This might cause problems when using algorithms like MLR, which assumes

that X has full rank i.e. no or insigni�cant collinearity in X. The result is un-

stable parameter values and basis for serious misinterpretations of the model, f

[Dempster et al. 77]. One common way to overcome this problem is to project

the samples in the P -dimensional hyperspace onto a lower dimensional hyperspace

spanned by orthogonal, uncorrelated variables. PCR and PLS are two algorithms

which use this concept of projection.

High dimensionality. When the number of input variables, P , is higher than at least 3,

one talks about a high dimensional set of data, and a corresponding high dimensional

hyperspace of samples. In such a hyperspace things do not behave as nicely as in

a simple two or three dimensional space. One particular problem is that the higher

the dimension, i.e. the larger P is, the more sparsely populated with observation

samples, the hyperspace tends to be. In fact, if the dimension is increased by one,

one needs an exponential growth in the number of samples, N , in order to ensure

the same density, d. (N = d
P ) Similarly, the number of parameters required to

specify the model, f , will also increase exponentially with P . This is known as the

curse of dimensionality. To avoid this curse, one could always assure oneself that one

has a su�ciently large number of samples. However, this is an unrealistic approach

since N is a number which is most likely to be �xed. Instead, the solution is either
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to reduce the dimensionality by projections (e.g. PCR and PLS), to decompose the

input variables by expressing f as a sum of lower dimensional combinations of the

input variables (e.g. MARS [Friedman 88] and ASMOD), or to put strong constraints

on the model complexity.

Outliers. Since the variables are corrupted by noise, some of the samples could show

some types of departure from the rest of the data. Such samples are called outliers or

abnormal observations. The question is what to do with samples like these. Should

they simply be removed from the sample collection, or, on the contrary, be regarded as

the most important carriers of information? And on what basis should such a decision

be made? There is no simple solution here, especially not when doing nonlinear

modeling where the di�erence between what is noise and what is a nonlinear trend is

much smaller. Therefore, removal of outliers in nonlinear modeling is more dangerous

than in linear modeling, and should only be done with extreme care.

2.1.2 Properties of f

A solution f , to equation 2.1, should have the following generally desirable properties:

� First of all, f should give an as good as possible prediction, �y, of y when presented

with a new input vector, x. This is the main objective when developing prediction

models.

� Secondly, f should be parsimonious with as few parameters and local models as

possible. This is in accordance with the parsimony principle of data modeling

[Seasholtz and Kowalski 93], which states:

If two models in some way adequately model a given set of data, the one de-

scribed by a fewer number of parameters will have better predictive ability

given new data.

This principle is also known as Occam's razor.

� Lastly, f should be a smooth function. By smooth is meant throughout this thesis

C1. A smooth f will have better generalization properties than discontinuous or

piecewise smooth models [Poggio and Girosi 90], i.e. it will make better predictions

of y. Another reason for requiring smoothness is that the underlying relationship, �f ,

which one is trying to model, is in fact often assumed to be smooth. Hence it appears

only natural that f should be smooth as well.
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2.1.3 Training (�nding f)

The process of �nding f is referred to as the learning or training step of multivariate

approximation. This step consists of �nding both f itself, and the set of parameters in f

which provides the best possible approximation of �
f on the set of training samples. These

training samples either equals the N samples previously de�ned or are a subset of these.

The latter is the case if the N samples are divided into disjunct training and test sets.

From now on, the number of training samples is in any case denoted Ntrain. Likewise, the

set of training samples, known as the training set, is denoted Dtrain. The test set, if present,

is denoted Dtest, with the number of test samples denoted by Ntest.

The main problems which immediately occur in the training step are essentially those

of approximation theory and are listed below:

Model structure The determination of the model structure is the �rst and foremost task.

With model structure is meant which function, f , to use in the approximation. Is a

linear f su�cient, or must a nonlinear be used? What one usually does is to start

with a simple linear model, and then try more complex models if the linear approach

was not a good choice. This is known as the representation problem. Determining

the number of layers and nodes in an ANN is an example of this problem.

Model algorithm and parameters Once the model structure is determined, the next

problem is to decide which mathematical algorithm to use to �nd the optimal values

of the parameters for a given f , and then �nding these values. Usually, the choice

of algorithm is guided by the choice of model structure, but sometimes there is no

dependency between algorithm and structure. For instance, MLR, PCR and PLS are

all algorithms that produce linear models in x, just in di�erent ways. Often, these

linear models are not even similar, but they are still all linear. The parameter values

are estimated by the algorithm. In this process the model structure must satisfy

speci�c criteria which put constraints on the parameter values. Such criteria can be

least squares �t, continuity, smoothness etc.

The choice of algorithm and model structure will very much depend on what kind of

problem one is investigating, since no algorithm is universally the best.

Another aspect is the e�ciency of the algorithm. There is only seldom use for an

algorithm which might give very good models, but at a high computational cost, compared

to another which computes f in a fraction of that time and with only slightly worse results

in terms of prediction ability. Examples of the former are di�erent ANN, which are still

slow in comparison with e.g PLS.
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Figure 2.1: Over�tting. (a) A good �t to noisy data. (b) An over�tted model.

2.1.4 Testing (validating f)

Once the training step is over and a new model, f , is derived, the second important step

in empirical modeling can start. This step is referred to as the validation or testing step,

and consists of validating f against certain requirements. Whether or not f meets these

requirements will decide whether f is a good model for our purpose or not. Usually one is

interested in the predictive ability of f on new input samples, x. Such a requirement can

be speci�ed in terms of a validation criterion.

One reason for validating f is to avoid over�tting, i.e. modeling of noise as well as

underlying structure. The problem of over�tting happens when too much e�ort is put into

�tting f to the training set. An illustration of an over�tted model and another which is not,

on the same training set, is given in �gure 2.1. The over�tted model in fact interpolates

between the training samples because too many free parameters are allowed in f . The

result of over�tting is a much worse prediction ability on new input samples. Since an

over�tted model attempts to model both the noise and the system, over�tting is more

likely to happen the more noise is present in the samples. For a system without noise,

over�tting will generally not be a problem.

Since one wants to measure the generalization properties, the ideal validation criterion

would be to minimize the expected mean square error (MSE) between the `true' output,

y, and the predicted output, �y given by

J
�

MSE = E

h
(y � �y)

2
i

(2.2)

However, minimizing J
�

MSE can not be done analytically since the probability density

functions for the variables are unknown. An estimate of J�MSE must therefore be minimized.
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Several such estimators exist, the most used is the empirical mean square error de�ned by

JMSE =
1

N

NX
n=1

(yn � �yn)
2

(2.3)

A very tempting approach is to use the Ntrain samples in the training set in the com-

putation of JMSE. The estimator is then known as the mean square error of estimation

(MSEE). Unfortunately, this estimator will give biased estimates of J�MSE because the

training set, Dtrain, is used both in the training and in the testing step. The estimates will

simply be too `good'.

The alternative is to compute JMSE from an independent set of test samples. Usually

Dtest is another subset of the original N samples, with N = Ntrain + Ntest and Dtrain and

Dtest being disjunct sets.

This estimator, known as the mean square error of prediction (MSEP), will be unbiased,

and is therefore one of the most used validation criteria. It is important, though, that the

samples in Dtest are representative of the system one attempts to model. This means they

should be distributed in the hyperspace in the same way as the samples in Dtrain, otherwise

MSEP will not be a good measure of the prediction ability.

The main drawback using an independent test set is that these samples will no longer

be available to us in the training step. This is not a problem if one has a large amount

of data, but is not desirable in situations when data are sparse or costly to collect, which

unfortunately is the case for many modeling problems. In such situations one would like

to use all N samples in the training step. One solution is then to use all the training

samples in the validation step once, but not all at the same time. This method is known

as V -fold cross-validation [Stone 74]. In this approach the training set, Dtrain, is randomly

divided into V subsets of nearly equal size, denoted Dv; v = 1; 2; :::V . Then, in addition

to the original model f based on the whole training set, V other models denoted by

fv; v = 1; 2; :::; V , are found simultaneously. Each fv is found using the V � 1 subsets

D1+ :::+Dv�1+Dv+1+ :::+DV = Dtrain�Dv as the training set. The prediction ability of

fv is then tested on the remaining subset, Dv, which will act as the independent test set.

The V -fold cross-validation estimator [Breiman et al. 84] is given by

JMSECV =
1

V

VX
v=1

MSE(fv;Dv) (2.4)

where MSE(fv;Dv) is the mean square error, de�ned by equation 2.3, of subset Dv using

fv as the model.

The main advantage using cross-validation is that it is parsimonious with data, since

every sample in Dtrain is used as a test sample exactly once. There is no need for a separate

test set anymore. However, it is important that V is large for JMSECV to yield a good

estimate. Thus, cross-validation is a computer intensive method, which is a disadvantage.

Note that with V = N , the `leave-one-out' cross-validation is obtained. This is also known

as full cross-validation.
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Two other often used estimators of J�MSE, which are also computed from the samples

in Dtrain only, are the Final Prediction Error (FPE) criterion [Akaike 69] given by

JFPE =
1

N

NX
n=1

(yn � �yn)
2

, 
1� F=N

1 + F=N

!
(2.5)

and the Generalized Cross Validation (GCV) criterion [Craven and Wabha 79] given by

JGCV =
1

N

NX
n=1

(yn � �yn)
2
= (1� F=N)

2
(2.6)

where F is the e�ective number of independent parameters (degrees of freedom) in the

model, f . Both these criteria are particularly useful in iterative algorithms since they

penalize models with complex model structure and many parameters. The drawback is

that a good estimate of the degrees of freedom, F , is di�cult to compute since many of

the parameters will often be more or less dependent. One way of doing it is suggested in

[Friedman 88] and applied in his MARS algorithm.

Because the squared prediction error may be di�cult to interpret, one often prefers

to talk about the square root of the estimated MSE, which is named RMSE (root mean

square error). The advantage is that this estimate is measured in the same unit as y itself.

2.2 Modeling techniques

In this section some of the most important existing approaches to empirical modeling are

presented. Focus is on describing the training algorithm, and specifying the form of the

model, f , it produces. In addition, since no technique always is the best, it is mentioned

when the techniques work well and under what circumstances they fail.

All the algorithms presented below work best when the variables x1 to xP and y

are all normalized with respect to mean, variance etc. This can be done in many ways

[Martens and Næs 91], but in this thesis it is assumed that the variables are autoscaled i.e.

mean centered and scaled to variance one. The main reason for normalizing is to let each

variable have an equal chance of contributing in the modeling.

This pretreatment obviously changes the matrices X and y de�ned earlier. An element,

Xnp, in X is now equal to (Xold
np � 	x(xp))=S(xp). However, to avoid too much notation the

new autoscaled matrices will also be referred to by X and y, and whether it is meant the

unscaled or autoscaled versions will rather explicitly be stated. For the rest of this chapter

X and y are autoscaled matrices.
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2.2.1 Multiple Linear Regression

The classical linear approach to the problem formulated in section 2.1 is Multiple Linear

Regression (MLR) [Johnsen and Wichern 88]. As the name indicates, this technique is

ordinary linear regression of the output variable, y, on the set of P input variables, x. The

model, f , is then linear in x and of the form

f(x) =
PX
p=1

bpxp = xb (2.7)

where b = (b1; :::; bp)
T are the regression coe�cients given by the least squares solution

b = (XTX)�1XTy.

The problem using MLR is that the input variables need to be linearly independent

to give a unique solution. If they are not, the inverse matrix, (XTX)�1, will be singular.

This has already been discussed in section 2.1.1. As a rule of thumb, MLR should never

be used if strongly correlated input variables are suspected, since the inverse matrix then

might be close to singularity.

2.2.2 Linear projection techniques

To better cope with both internally correlated variables and high dimensional set of data,

a class of projection techniques has been developed during the last decades. What they

all have in common, is that they aim to model y by projections of the original set of input

data onto a subspace spanned by a set of A orthogonal latent variables, where A is usually

much less than P . These new variables are always computed as linear combinations of the

original P input variables. The output variable, on the other hand, is either a linear or

nonlinear combination of the latent variables in the subspace. This relationship between

the output and latent variables is called the inner relation.

Thus, the whole idea behind projection techniques can be seen as reducing the dimen-

sionality of the problem as much as possible, losing as little as possible of the essential

information in the observations. Another useful feature is that the possibilities of graph-

ical inspection of the set of data now have improved. In all the projection techniques,

di�erent two and three dimensional plots of e.g. the latent variables are important tools for

interpreting the observations.

Two of the most popular multivariate projections techniques are Principal Component

Regression (PCR) and Partial Least Squares Regression (PLSR or just PLS). They both

use a linear inner relation. The model, f , is then of the form

f(x) =
AX
a=1

ba

0
@ PX
p=1

vapxp

1
A =

AX
a=1

bata = tb (2.8)

where the vap's are the weights of factor a and the ba's are the regression coe�cients of y

on the vector of latent variables, t = (t1; :::; tA) 2 R
A.
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PLS and PCR di�er in how the parameters vap are found, as will be explained in more

detail below. Note �rst that in neither PLS nor PCR the parameters are estimated by

�tting equation 2.8 as well as possible, as this would only lead to ordinary MLR. Instead,

quite di�erent algorithms are applied.

Principal Component Regression

In PCR, principal component analysis (PCA) [Wold et al. 87] is used to select the latent

variables. The �rst principal component, t1, is de�ned as the projection of X onto the

normalized eigenvector, w1, corresponding to the largest eigenvalue of XTX. In other

words, t1 = Xw1, where w1, the loading weight vector, can be seen as the direction

spanning most of the variability in X.

The other principal components, tp; p = 2; :::; P , are de�ned in the same way, as suc-

cessive projections of X onto the other normalized eigenvectors, wp; p = 2; :::; P , under the

constraint that the principal components are all orthogonal. These eigenvectors correspond

to the respective eigenvalues of XTX in descending order, and they will be orthogonal as

well.

Instead of computing all the eigenvalues simultaneously by e.g. singular value decompo-

sition of X, they are often computed successively in descending order, because one is only

interested in a few of them. This can be done using e.g. the NIPALS algorithm [Wold 66]:

1. Initialization: X0 = X (assumed to be scaled and centered)

2. for factor a = 1; 2; :::A compute loading vector wa and score vector ta as:

(a) Initial estimate: ta =<column in Xa�1 with highest sum of squares>

(b) repeat until <eigenvalue estimate convergence>

i. Improve estimate: wa =
�
tTa ta

�
�1
XT

a�1ta

ii. Scaling: wa = wa

�
wT
awa

�1=2
iii. Improve estimate: ta = Xa�1wa

iv. Eigenvalue estimate: tTa ta

(c) Subtract the e�ect of this factor: Xa = Xa�1 � taw
T
a

Since there are P eigenvalues of XTX there will be P principal components. However,

only the �rst A components are interesting since they will contain all the signi�cant vari-

ability in X. They are ordered in the matrix T = (t1; :::; tA), which can be thought of as

the input matrix X in compressed form. In PCR, the latent variables are nothing more

than these A principal components, where A is usually selected by cross-validation or test

set validation.

In the �nal step in PCR, the output variable, y, is regressed on the latent variables

using ordinary MLR, giving the regression coe�cients ba; a = 1; 2; :::; A in the general

equation 2.8. For each a, the weights, vap; p = 1; 2; :::; P , in the same equation are equal to

the elements in the loading weight vector, wa.
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PCR can be characterized as an unsupervised method, since the latent variables are

not found using information about the output variable, y. Instead, PCR is a variance

maximizing method, because only those latent variables which contribute the most to the

variability in X are considered.

Partial Least Squares Regression

Contrary to PCR, PLS [Wold et al. 84, Geladi and Kowalski 86, Lorber et al. 87, Höskuldsson 88]

is a supervised method, where the in�uence of y is incorporated when the latent variables

are found. PLS can also be seen as a covariance maximizing method, since it maximizes

the covariance between Xa�1wa and y under the same constraint as in PCR, wT
awa = 1.

In other words, the latent component, ta, is found by projecting Xa�1 onto the direction

wa, which now is a cross between the direction with highest correlation between the input

variables and output variable (MLR approach) and the direction with largest variation in

the input variables (PCR approach) [Stone and Brooks 90].

As with the NIPALS algorithm in PCA, the latent variables are computed successively

in the PLS algorithm. Since PLS will be part of the new algorithms proposed in this thesis,

the orthogonalized form of the algorithm is given below.

1. Initialization: X0 = X and y0 = y (both assumed to be scaled and centered)

2. for factor a = 1; 2; :::Amax compute loadings wa, pa and qa and score ta as:

(a) Loading weights: wa = XT
a�1ya�1

(b) Scaling: wa = wa

�
wT
awa

�1=2
(c) Scores: ta = Xa�1wa

(d) Loadings: pa =
�
tTa ta

�
�1
XT

a�1ta

(e) Output loading: qa =
�
tTa ta

�
�1
yTa�1ta

(f) Subtract the e�ect of this factor: Xa = Xa�1 � tap
T
a and ya = ya�1 � taqa

3. Determine A, 1 � A � Amax, the number of factors to retain.

In this algorithm the score vectors, ta, and loading weight vectors, wa, are orthogonal,

whereas the extra loading vectors, pa, are generally not. A nonorthogonal form of the PLS

algorithm exists as well, where no extra loadings are needed, but resulting in nonorthogonal

latent variables or scores. Note that for neither of the two forms there is a straight-forward

relationship, for each a, between the weights vap; p = 1; 2; :::; P in the general equation 2.8

and the elements in the loading weight vector, wa. Instead the relationship is complex,

and also includes the elements in the other loading vector, pa. For the orthogonalized

algorithm it is given iteratively by v1 = w1 and va = (I �
Pa�1

i=1 vip
T
i )wa; a = 2; :::; A,

where va = (va1; :::; vaP )
T . The regression coe�cients, ba, are equal to the output loadings,

qa; 8a.
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The PLS algorithm shares two more common features with the PCR approach. The

number of latent variables are selected by cross-validation or test set validation, and in

the limit A = P , the PLS (and PCR) solution equals the MLR solution, i.e. equation 2.8

reduces to 2.7.

A modi�ed version of the orthogonalized algorithm, known as the PLS2 algorithm, has

been developed for the case when there is more than one output variable, but this is beyond

the scope of this thesis. For a more comprehensive description of multivariate projection

techniques see the textbook by [Martens and Næs 91].

2.2.3 Nonlinear techniques

MLR, PCR and PLS were presented in detail above, partly because they must be considered

the three most frequently used linear multivariate modeling techniques today and partly

because they will all be part of the new local modeling algorithms proposed in this thesis.

When doing nonlinear multivariate modeling, though, the number of di�erent techniques

is much higher, and no technique can be said to be well established. A selection of some of

the most common techniques are now described. A few of these are of special importance,

as they are used as reference techniques, when evaluating the performance of the best of

the proposed algorithms in chapter 5.

Nonlinear projection techniques

In [Næs et al. 93] di�erent types of nonlinear projection techniques are discussed. This

presentation is motivated from that article.

One simple way of introducing nonlinearity in the model is by either transforming the

input variables, or augmenting the input matrix, X, with higher order and cross terms

of the original input variables, and then using this new X in the PCR or PLS algorithm.

However, such augmentation is only useful if P originally was very small because of the

exponential growth in P when all cross terms are included.

Another way is by keeping the PLS algorithm for dimensionality reduction purposes,

but replacing the linear inner relation in equation 2.8 with a nonlinear one, yielding the

following general form of f ,

f(x) =
AX
a=1

ga

0
@ PX
p=1

vapxp

1
A =

AX
a=1

ga(ta) (2.9)

where the ga's are smooth nonlinear functions. This is �rst suggested in [Wold et al. 89],

using quadratic polynomials without cross terms. The idea is further developed in [Wold 92]

where the smooth functions are approximated by splines. The result is that fewer latent

variables are su�cient to describe the variability in X, but at the expense of a much slower

algorithm.

Quadratic PLS regression is also suggested in [Höskuldsson 92b]. However, this ap-

proach di�ers from the one in [Wold et al. 89], both because cross-terms are allowed in the

polynomials, and more importantly because the selection of the quadratic PLS factors is

based on the so-called H-principle of modeling data [Höskuldsson 92a].
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Another technique, which is essentially based on the same model as in equation 2.9, is

Projection Pursuit Regression (PPR) [Friedman and Stuetzle 81]. In this technique, the

ga's are totally general functions except that they are smooth. As in the PLS algorithm,

one factor or latent variable, with weights vap; p = 1; 2; :::; P and function ga, is computed at

a time. The e�ect of this factor is subtracted from ya�1, and the same procedure is applied

to the residuals, ya. However, contrary to the PLS algorithm, there are no orthogonal

restrictions in the estimation of the vap's in the iterative procedure. A drawback with PPR

is that the predictor f can not be written in closed form because the ga's are only smooth

�ts to the samples in Dtrain, usually determined using moving averages. Prediction of y for

new samples must therefore be made by interpolations between the training samples. For

further discussion of projection pursuit in general, and PPR in particular see [Huber 85].

A technique called nonlinear PLS is proposed in [Frank 90]. This approach is also

essentially based on the same model as in equation 2.9, with the ga's being determined

by a smoothing procedure, as in PPR. However, the va's are estimated under exactly the

same strong restriction of covariance maximization as in PLS, which makes this technique

a kind of hybrid of PPR and PLS. The same drawback as in PPR, regarding prediction of

y for new samples, is present in this approach.

Locally Weighted Regression

In [Næs et al. 90] a technique is suggested which is a generalization of the PCR algorithm,

replacing the last MLR step with a locally weighted multiple linear regression (LWR),

thereby the name. To be more speci�c, �rst the original input hyperspace is projected

onto a lower dimensional hyperspace spanned by the latent variables ta; a = 1; 2; :::A, using

a standard PCA of X. A new input sample, xi 2 RP , will then correspond to a sample,

ti 2 RA, in the latent hyperspace. The K nearest neighboring projected samples among the

Ntrain samples in the training set are then selected, based on their Mahalanobis distance

(see appendix B.3) to ti. These samples are given a weight between 0 and 1, using a

cubic weight function, again depending on their relative distance to ti. At last, a MLR

is performed based on the K weighted samples and the corresponding K output samples.

The result is a local prediction model, f i, of essentially the same form as equation 2.8,

which is now used to predict yi. A new such local model must be computed for each single

prediction, since another input sample, xj, will lead to di�erent weighted neighboring

samples and thus a di�erent local regression model. The optimal number of neighboring

samples, K, and principal components, A, can both be determined using cross-validation

or test set validation.

LWR is a locally linear, but globally nonlinear projection technique. The drawback is

again that the predictor, f , can not be written in closed form because the prediction of y

for new samples must include the presence of the training samples in Dtrain.

In [Næs and Isaksson 92] some modi�cations to LWR are suggested, including a new

distance measure and a uniform weight function.
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Figure 2.2: Arti�cial neural network with one hidden layer and one output node.

Arti�cial Neural Networks

The �eld of Arti�cial Neural Networks (ANN) covers many di�erent network algorithms,

and its use has exploded in the last decade. For a good survey and other references

see the textbook by [Hertz et al. 91]. ANN has shown a lot of potential in modeling

arbitrary nonlinear relationships. The terminology of ANN is somewhat di�erent from

other techniques. These new terms will be introduced by pointing to the illustration in

�gure 2.2.

Two of the most common types of networks are Multilayered Perceptron Networks

(MLP) [McClelland et al. 86] and Radial Basis Function Networks (RBFN) [Moody and Darken 88,

Stokbro et al. 90]. Both are feed-forward networks, where the information (i.e. samples)

from the input layer is passed through intermediate variables (hidden layers) to the output

layer. These intermediate variables can be thought of as projections or transformations

of the original input variables. In the �gure there is only one hidden layer. Each layer

consists of a number of nodes. This number equals P in the input layer and is one in the

output layer. In the hidden layer(s) there are no restrictions on the number of nodes, A.

Each node, except those in the input layer, is usually connected with all the nodes in the
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previous layer. These connection lines will all have di�erent weights, denoted vap and ba in

the �gure. In each node, the weighted information from the previous layer is transformed

by transfer functions, denoted ha and g, before being passed to the next layer. The trans-

formation is very di�erent in MLP and RBFN. The output from the network will have the

general form

f(x) = g

0
@ AX
a=1

baha

0
@ PX
p=1

vapxp

1
A
1
A (2.10)

A bias term can also be added to each node in the hidden and output layer before the

transformation, but this is not illustrated in the �gure nor in equation 2.10.

In MLP the transfer functions are typically sigmoid shaped e.g. ha(z) = tanh(z) or

ha(z) = 1=(1 + exp(�z)). The most common learning algorithm is error back propaga-

tion (BP) [Rumelhart et al. 86], which is a gradient descent algorithm �nding the optimal

weights by usually minimizing the sum of squared estimation sample errors, or a variation

thereon.

In RBFN there is always only one hidden layer, all the vap's are equal to 1 and g is

the identity transformation. Thus, the input to the transfer functions ha is no longer a

weighted sum. The model f is then reduced to the form

f(x) =
AX
a=1

baha(r) (2.11)

where the ha's are scalar radial basis functions centered around the extra parameter vec-

tors �a and r = kx � �akM. Examples of basis functions are the logarithmic function

ha(r) = log(r2 + c
2), where c is a constant, and the Gaussian function ha(r) = exp(�1

2
r
2).

Again, a gradient descent algorithm is usually applied to iteratively estimate the network

parameters. A good overview of RBFN is given in [Carlin 91].

Observe that the di�erent learning algorithms in ANN are just ways of �nding the

optimal parameters from the training samples, which are presented to the network in

random order. Generally, this is a slow procedure compared to other nonlinear techniques.

A comparison between MLP and RBFN has shown that MLP is slower, requires more

layers, but less samples and hidden nodes than RBFN to obtain the same level of accuracy

[Moody and Darken 89]. In addition, RBFN does not work too well when data are high

dimensional because of the necessity of a distance measure in the radial basis functions,

ha.
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Figure 2.3: The MARS and ASMOD model structure.

Adaptive spline techniques

Multivariate Adaptive Regression Splines (MARS) [Friedman 88] and Adaptive Spline

Modeling of Observation Data (ASMOD) [Kavli 92] are two techniques that represent f

by the decomposition exempli�ed in �gure 2.3. The general form of the model is given by

f(x) =
X

gi(xi) +
X

gij(xi; xj) +
X

gijk(xi; xj; xk) + ::: (2.12)

In both algorithms, a subset of the possible submodels, g, are selected during the

training process. Both apply splines in the function representation of the submodels,

although MARS employs natural splines as opposed to B-splines which are used in ASMOD.

Generally, splines have great abilities of approximating multivariate functions by joining

polynomial segments (basis functions) to form continuous and smooth functions. For more

comprehensive presentations of splines see [Farin 88, Wahba 90].

MARS is a two-step algorithm. The �rst step is a forward partition step decomposing

the input space into a number of overlapping submodels. The second is a backward pruning

step deleting those submodels which contribute the least in the �t based on the GCV

criterion (see equation 2.6).

In ASMOD both of these steps are combined in one iterative model re�nement proce-

dure. In each step in the iteration either a new one-dimensional submodel is added, two

submodels are replaced by one higher dimensional submodel, or a new knot is inserted in

the B-spline of any of the submodels, depending on which of the three ways reduced the

estimation error the most. The re�nement is terminated when the prediction error is at a

minimum.
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This way of decomposing will include only the submodels for input variables that are

necessary in the prediction of y. With strongly correlated variables only limited improve-

ment of the predictions can be expected when more than a few of the variables are added to

the model. Thus, the adaptive spline techniques aim at keeping the number of submodels

to a minimum. At the same time, they can be seen as modeling high dimensional data by

a sum of lower dimensional submodels, as the dimensionality of the submodels are kept as

low as possible.



3

Local modeling

An interesting approach to nonlinear empirical modeling is local modeling. In this chapter

the modeling philosophy behind this approach is presented and discussed. The presentation

serves as an introduction to the proposed local modeling algorithms in chapter 4. The

model, f , is then of the general form

f(x) =
MX
m=1

wm(x)fm(x) (3.1)

where fm is the local model, wm the corresponding weight function, and M the total

number of local models.

Local modeling is characterized by the decomposition of the input hyperspace into

smaller local hyperspaces with equal dimension. A simple local model is found in each of

these hyperspaces. Such a model will only describe local variations, since it will only be

based on training samples within the local hyperspace. All these local models are then

interpolated by the use of local weight functions, yielding the total model f . This model

should have better predictive ability than a simple global model, otherwise there is no need

for a local approach.

The major problems that are speci�c to local modeling are:

� How to divide the input hyperspace?

� How to decide the optimal number of local models, M?

� How to interpolate between the local models?

� How to represent the local models, using which algorithm?

These problems will be addressed in this chapter. A more statistical discussion of mul-

tivariate calibration when data are split into subsets is found in [Næs 91]. Two approaches

to local modeling, which are related to the work of this thesis and have proved to be in-

spiring, are an algorithm using fuzzy clustering by [Næs and Isaksson 91] and the local

search algorithm (LSA) in [Johansen and Foss 93]. Details about them will be presented

in the subsequent sections in this chapter as examples of di�erent ways of dealing with the

problems mentioned above.

21
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3.1 Division of input space

The most fundamental problem in local modeling is how to divide the input hyperspace

in a parsimonious way such that the number of local models is kept at a minimum, but

is still su�cient to adequately model the system, in the sense described in section 2.1.2.

This problem is closely linked to that of how many local models the hyperspace should be

divided into. As one has very little a priori knowledge about the system, the exact number

and precise position of these models are not known in advance.

One possibility is to construct a grid in the hyperspace and then include local models

around those grid points, where there are enough samples. However, this static approach

is both time consuming and impractical in high dimensional spaces. With a uniform (equal

spacing) and homogeneous distribution of grid points in every dimension, the result is an

exponential growth in the number of grid points and local models (see section 2.1.1). Thus,

even with relatively few grid points in each dimension, the number of local models will be

very large. Another drawback is that all the local models will be valid in equal sized local

hyperspaces. Often some of them can easily be replaced by a larger one, without reducing

the overall e�ect.

A more dynamic approach is to apply a clustering algorithm. Such an algorithm seeks

to cluster the samples together in M disjunct groups, by minimizing the total spatial

(Euclidian or Mahalanobis) distance between all the samples within a group. The number

of groups, M , does not always have to be known in advance, although it is often required.

Many di�erent algorithms are available, both hierarchical, nonhierarchical and a hybrid of

those. For a good survey see [Gnanadesikan et al. 89].

One drawback using traditional clustering algorithms is that they only consider close-

ness in space when samples are assigned to di�erent groups. This might be desirable in

classi�cation problems, but since the purpose of this thesis is prediction, and not classi�-

cation, that aspect should also be re�ected in the decomposition algorithm.

One way of doing this is suggested in [Næs and Isaksson 91]. There, a division of the

input space is proposed based on a fuzzy clustering algorithm [Bezdec et al. 81], with M

�xed. However, the distance measure is now a weighted combination of the Mahalanobis

distance (from traditional clustering) and the squared residuals from local �tting of the

samples. After the convergence of the clustering algorithm, each sample is allocated to

the group for which it has the largest so-called membership value. This fuzzy clustering

algorithm is part of an approach to local modeling which is based on many of the same

principles as in LWR. First, the input hyperspace is projected using a standard PCA.

Then, after the clustering algorithm is applied to all the projected training samples, a

separate linear regression is performed within each group, resulting in M locally linear

PCR models. However, these models are not interpolated, so f in equation 3.1 will not

be smooth. Instead, new samples are simply allocated to the closest class by an ordinary

Mahalanobis distance method in traditional discriminant analysis. The optimal number of

local models is found by cross-validation or test set validation.
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Figure 3.1: Splitting of the input space into rectangular boxes in the LSA algorithm.

Another approach is an iterative decomposition into smaller and smaller hyperspaces. A

prime example is applied in the LSA algorithm [Johansen and Foss 93], which divides the

input space into hyperrectangles (see �gure 3.1 for an illustration). In each iteration one of

the hyperrectangles is split into two smaller ones. Which hyperrectangle should be split and

how is decided by testing several alternatives and choosing the one that gives the largest

decrease in a validation criterion. The LSA algorithm also involves local linear models and

smooth interpolation between the local models by the use of Gaussian functions.

The approach was originally developed for NARMAX models [Johansen and Foss 92a,

Johansen and Foss 92b], but has been extended to general nonlinear dynamic and static

models. The algorithm involves no projection of the input variables as a result of being

developed in a system identi�cation context. It is therefore best suited for lower dimensional

problems, and all the present experience is on that kind of problems. However, as suggested

in [Johansen and Foss 93], it can easily be expanded to high dimensional problems by �rst

carrying out a principal component projection as is done in [Næs and Isaksson 91].

Other examples of iterative decompositions can be found in the MARS [Friedman 88]

and CART [Breiman et al. 84] algorithms.

The clustering algorithms and the two approaches outlined above are all using so-called

`hard' splits of data. This means that each sample only belongs to one local hyperspace

and thus only contributes to one local model. Such a split is known to increase the variance

[Jordan and Jacobs 94]. The alternative is `soft' splits of data, which allow samples to lie

simultaneously in multiple hyperspaces.
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3.2 Validation and termination of modeling algorithm

No matter how one divides the input space, there will always be need for validating an

actual splitting because one wants to determine the optimal one. Optimal, in the sense

that this splitting gives the largest improvement in prediction ability, compared to other

splittings of the same input space and with di�erent numbers of local models, M .

If M is �xed in the decomposition algorithm, the common approach is either cross-

validation or test set validation.

However, in an iterative decomposition algorithm the validation must be done after

each iteration since each step will produce a new splitting of the data and increase the

number of local models by one. Another important aspect in an iterative algorithm is to

determine when to end the re�nement of the model, f .

These two tasks can be combined using either test set validation, cross-validation, or

other types of validation (see section 2.1.4) and stopping the iteration when one of the

estimators has reached a minimum value. An example is the application of the FPE and

GCV criterion in the LSA algorithm [Johansen and Foss 93].

An alternative is to have a separate validation criterion and a stop criterion, which is

based on the evolution of the estimation error (MSEE). One such stop criterion is to end

the re�nement when the MSEE is levelling out, i.e. the di�erence between the MSEE in

the last and second-to-last step is lower than a prede�ned value. However, this is only

recommended when the danger of over�tting is reduced due to relatively little noise in the

data and when Ntrain is large.

Another approach is to stop iterating when the MSEE becomes smaller than a prespec-

i�ed limit. This limit should be set slightly higher than the anticipated noise level, in order

to avoid modeling random noise. This approach is only advisable when a good estimate of

the noise level is available.

Both these somewhat ad hoc approaches are motivated by �gure 3.2 which shows a

typical behavior of the prediction error (MSEP) and MSEE, as the complexity of f , i.e.

number of local models, increases. The �gure also illustrates the e�ect of over�tting when

random noise is modelled.

The very best approach when validating and terminating an iterative algorithm is to

have three, all representative and independent, data sets:

� A training set, used to compute the parameters in f .

� A stop set, used to determine when to stop re�ning f in the training step.

� A test set, used to validate the �nal prediction ability of f .

If the data sets are representative this will be a completely unbiased estimate. Unfor-

tunately, this approach is usually not feasible since it requires too much data.
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Figure 3.2: General evolution of the estimation error (MSEE), and the prediction error

(MSEP), as a function of increasing model complexity.

3.3 Weighting and interpolation

All the local models will have a limited range of validity. One therefore needs to determine

how to interpolate them to yield a complete global model, f . Having no interpolation at

all will lead to a rough or even discontinuous f , which is undesirable.

One way is to assign a normalized and smooth weight or interpolation function to each

local model. Such a function is often of the form

wm(x) =
�m(x)PM
j=1 �j(x)

(3.2)

where �m is a scalar local validity function [Johansen and Foss 92a], which should indicate

the validity or relevance of the local model as a function of the position of x in input space.

Furthermore, �m should be nonnegative, smooth, and have the property of being close to

0 if x is far from the center of a local model. The use of smooth validity functions, along

with smooth local models, fm, ensures that f will be smooth as well.

Ideally, the sum of the validity functions at any position, x, in the input space should

be equal to unity. This can be achieved in practice by normalizing the �m's. One is then

ensured that the total weight given to x from all the local models is always unity, becausePM
m=1 wm =

PM
m=1 �m=

PM
j=1 �j = 1; 8x. However, there is also a danger using this way of

weighting, as extrapolation to regions in input space outside the operating regime of the

system is now very easy. This is not always advantageous.
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Figure 3.3: A two dimensional unnormalized Gaussian function.

Since the validity function is centered around a local model, one needs to de�ne the

center, �m. Usually, �m, is de�ned to be either the mean vector of all the training samples

in class m (center of `mass'), or the center of the local hyperspace itself if the space

has properly de�ned boundaries (geographical center). One example of the latter is the

hyperrectangular region in the LSA algorithm, where �m is the center of the box.

Probably the most used validity function is the unnormalized Gaussian function. The

general form of this multivariate function is

� = exp(�
1

2
(x� �)��1(x� �)T ) (3.3)

where � is the center of the local validity function and � is a smoothing matrix which will

de�ne the overlap between the di�erent local validity functions. In one dimension, � can

be thought of as the squared standard deviation or the width of the Gaussian function. A

two dimensional example is given in �gure 3.3.
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There are many ways of choosing the smoothing matrix �:

1. Let � = �
2I, where I is the identity matrix and � is a smoothing parameter. This

parameter will be the same for every validity function �m; m = 1; 2; :::M . The re-

sult is one single validity function, having equal spherical contour lines in the two

dimensional case.

2. Let � = �
2P, where P is the covariance matrix of X, the matrix of input training

samples. Again, � will be the same for every validity function �m; m = 1; 2; :::;M ,

and the result is still one single validity function, but it will no longer have spherical

contour lines. Instead it will have equal elliptical lines, and along the main axes if P

is a diagonal matrix.

3. Let � = �
2
mI, where I is the identity matrix. �m is an individual smoothing param-

eter, di�erent for each validity function �m; m = 1; 2; :::;M . The result is separate

validity functions and di�erent spherical contour lines. The problem is how to choose

the �m's and the relationship between them.

4. Let � = �
2
mP, where P is the covariance matrix of X. Again, �m is individual

for each validity function �m; m = 1; 2; :::;M , resulting in di�erent elliptical contour

lines, and along the main axes if P is a diagonal matrix. The problem is again to

�nd a good way of choosing the di�erent �m's.

5. Let � = �
2Pm, where Pm is the covariance matrix of the input training samples

belonging to local model m. The result is not only elliptical contour lines but also

individually orientated validity functions �m; m = 1; 2; :::;M . In the other four ap-

proaches, the orientation is the same for all the validity functions, but here it is

guided by the distribution of the local samples.

Examples of di�erent types of contour lines are given in �gure 3.4. Note that approach

1 is equal to 2, and 3 to 4, if P = I, i.e. X is an autoscaled matrix of uncorrelated variables.

Approach 4 is also known from RBFN, where it is called input speci�c standard deviation.

An important question is how far into the domain of model m, should the surrounding

models exert in�uence. This question is very much related to the choice of �m. Intuitively,

when there are `many' local models, there should be little overlap between them. On the

other hand, with `few' local models, a larger relative overlap is more appropriate. A tiny

overlap is linked with small values of �m, whereas larger values will give more overlap

between the local models and a more smooth f . A large value of �m also reduces the

variance of f , but at the expense of a more biased model [Johansen and Foss 93]. The

point is to �nd values that balances these phenomena.
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Another aspect is that since distance metrics are involved, all weighting and interpolat-

ing should take place in a projected low dimensional space and not in the original, possibly

high dimensional hyperspace. If PCA is utilized as the projection technique, reducing X to

the latent matrix T, the covariance matrix of T will have the favorable property of being

diagonal in approaches 2 and 4. The validity functions (and weight functions) will then be

functions of the latent variables, i.e. �m = �m(t) (and wm = wm(t)), and not of the original

input variables.

Typical other choices of validity function are linear, quadratic or cubic splines and

other well-known kernel-functions [Hastie and Tibshirani 90]. A more odd choice is to

use indicator functions. This is equivalent to giving no weight to all but one of the lo-

cal models, which will have unit weight. An example is the local modeling approach of

[Næs and Isaksson 91]. As already mentioned, the result is no longer a smooth f .

3.4 Local type of model and optimization

One of the advantages with local modeling is that the structure of the local models, fm,

does not need to be very complex. Usually simple linear models are su�cient. The model,

f , is still a good nonlinear predictor. However, the complexity is not in the local models

themselves, but in the interpolation between them.

In this thesis only local models with linear model structure in the input variables x are

used. The next problem is, as it was in global modeling, which mathematical algorithm to

use for estimating the local parameter values. Since high dimensional input samples are

assumed, focus will be on projection techniques such as PCA. Two techniques are then

evident. Either MLR of y on the latent input variables, t, or PLS modeling of y on the

original input variables, x.

The �rst approach is used in the algorithm proposed in [Næs and Isaksson 91], and will

produce local PCR models. Each local MLR takes place in the same latent input space

as the weighting does. In the second approach one applies the original input variables in

each local PLS. The number of latent variables will then possibly be di�erent for each local

model. However, all weighting is still done in the same latent space, as found by the PCA

algorithm.

An important question is whether the parameters in the local models should be opti-

mized locally or globally. In a local optimization, each local model is optimized separately

and then weighted, yielding the global model, f . A global optimization will optimize all

the local parameters simultaneously, and should provide a better approximation of y on

the training samples. On the other hand, when f is presented with new samples the per-

formance can be worse as local optimized models are often more representative of the local

behavior of the system than globally optimized ones [Murray-Smith 94].
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Using MLR as the local modeling technique, both local and global optimization can

be done with a standard weighted least squares algorithm. However, if PLS is applied, a

global optimization would be very time consuming since the global optimal combination

of di�erent numbers of local latent variables, from di�erent local PLS algorithms, must be

obtained by e.g. cross-validation. This is a formidable task even for a small number of local

models. In that case only local optimization is feasible. What is still a problem, though,

is that a PLS algorithm with individual weighting of the input samples, which would have

been desirable, does not exist to the best of my knowledge.

Although the focus in this thesis is on local linear models, that does not completely rule

out selecting nonlinear local models and a nonlinear algorithm. But, usually very little is

gained in prediction ability with such an approach. At least when compared to the much

increased computational cost, which is unavoidable once the step from linear to nonlinear

local models is taken.



4

Proposed algorithms

In this chapter three new algorithms for local modeling are proposed. The �rst, a local

search algorithm, is the main algorithm of this thesis. Four di�erent versions of this

algorithm are presented in detail, all of which were implemented and tested. The other two,

a global search algorithm and an extended local search algorithm, were not implemented

and are just brie�y described. All the algorithms give rise to models of the general form

given in equation 3.1.

Before starting to develop the algorithms, a few important choices regarding the struc-

ture of the algorithm and solution, f , have to be made. These choices are taken on the

basis of the discussion in chapter 3.

� The algorithms are based on an iterative splitting of the input space into local regions,

implying a gradual re�nement of f .

� The local regions have a �exible shape, and are not restricted to e.g. hyperrectangular

boxes. With more complex region boundaries it is anticipated that a smaller number

of local models is needed, but at the expense of more parameters for describing the

regions.

� `Hard' splits of data are used, with the local regions being disjunct. Each training

sample will then contribute to one and only one local model.

� The interpolation between the local models is done with smooth, normalized weight

functions and Gaussian validity functions. The input set of data is typically projected

onto a lower dimensional subspace based on its �rst few principal components. Local

weighting is then carried out in this subspace.

� Linear functions are used in the local models, with PLS as the local modeling tech-

nique.

31
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The total model, f , then has the speci�c form found by substituting equation 3.2

(normalized weight function) and 2.8 (PLS model) into equation 3.1 yielding

f(x) =
MX
m=1

�m(t)PM
j=1 �j(t)

0
@AmX
a=1

bma

0
@ PX
p=1

vmapxp

1
A+ bm0

1
A (4.1)

where Am is the number of latent variables in local PLS model m and bm0 is a constant

term.

As the latent variables are only linear combinations of the input variables, equation 4.1

can be reduced to

f(x) =
MX
m=1

�m(t)PM
j=1 �j(t)

0
@ PX
p=1

bmpxp + bm0

1
A =

MX
m=1

wm(t)fm(x) (4.2)

without loss of generality. This is the form of f used in the discussion.

It can be shown mathematically that f can approximate any so-called measurable func-

tion arbitrary well. The details are omitted here, but the reasoning is that any measurable

function can be approximated arbitrary well by a piecewise constant function. Thus, in

equation 4.2, setting bmp = 0; 8m; p gives piecewise constant functions, and anything that

can be approximated by piecewise constant functions can also be approximated by f , and

anything that can be approximated by f can also be approximated by piecewise constant

functions. The only condition is that the validity function �m must be allowed to be the

indicator function, �R, as well as e.g. the Gaussian. The complete proof is given in e.g.

[Folland 84].

�R(t) =

(
1 t 2 R

0 t 62 R

(4.3)

So, theoretically the model structure in equation 4.2 should be able to handle any type

of empirical modeling problem, at least when the number of samples, N , and the number

of local models, M , go towards 1. Practically though, N and M are of course bounded,

which limits the prediction ability, as does the presence of noise in the observations.
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1. Preprocessing of the data set, D.

2. Initialization.

� De�ne validity function �1.

� Compute initial global linear model, f (1) = f1.

� The number of local models, M = 1.

3. while <consistent decrease in validation criterion J> do

� Find the local region where f (M) is modeling the worst.

� Allocate training samples to the M + 1 di�erent local regions.

� De�ne new validity functions �m.

� Compute new local linear models, fm, in these regions.

� Interpolate, f (M+1) =
P

m
wmfm.

� Validate f (M+1) using validation criterion J .

� Increment, M =M + 1.

4. Determine the optimal model, f .

Figure 4.1: General Algorithm 1.

4.1 General Algorithm 1

The approach can be described as an iterative structure identi�cation algorithm, based

on error analysis of samples. The general Algorithm 1 consists of the steps given in

�gure 4.1.

A total of four di�erent versions of this algorithm are proposed, but only two proved

to work well. The di�erence between them is in the repeated step (3), which constitutes

the heart of the algorithm. The other steps (1, 2, 4) are essentially the same all the time.

All the four steps are now explained in detail. To make the presentation as easy to

grasp as possible, this is �rst done by describing the complete Algorithm 1a, which is

the most important, in the next section. The other three algorithms, 1b, 1c, and 1d are

then explained in section 4.3.
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4.2 Algorithm 1a

Preprocessing (step 1)

This step �rst includes removal of possible outliers from the data set, D. Since this algo-

rithm is based on error analysis of samples, abnormal observations could strongly in�uence

the results of the algorithm.

Then, D is divided into separate training (Dtrain) and test sets (Dtest), both equally well

distributed and representative of the system that is to be modelled.

The last step in the preprocessing is to select the �rst few (2�4) principal components

of the input training matrix as a subspace used for weighting between the local models.

The components are found by PCA analysis and the number of components are denoted

by Aw.

After these initial operations, there are six di�erent matrices. The training samples in

Dtrain are organized in the input matrix X and the output matrix y, both of which are

assumed to be scaled and centered. The test samples in Dtest are gathered in the input

test matrix Xtest and the output test matrix ytest. The variables in these two matrices are

assumed to be scaled and centered with the same factors as the variables in the training

matrices. In addition, the projected input training samples are assembled in the matrix T.

The last matrix is Ttest, consisting of the input test samples projected onto the weighting

subspace. The original input space formed by the input training samples are denoted by

O, and the projected input subspace by W . There is always a one-to-one correspondence

between a sample xi in O and a sample ti in W .

Initial model (step 2)

An initial local linear model, f1, based on all the samples in the training set, is computed

by the PLS algorithm. Since there is only one local model this is also the total model, f (1).

A local model validity function �1 is de�ned, having the center in origo of W , i.e. �1 = 0.

Origo is the natural choice since T has zero column mean.

Finding local region (step 3)

The whole idea behind the approach is to insert a new local model where the current model,

f
(M), is predicting worst. In other words, identify the local region where the expected

deviation E[jy� �yj] is largest. This region in input space will be represented by one of the

samples in the training set Dtrain, named the splitsample and denoted xsM , where sM is the

splitsample index. The new local model is computed around that sample.
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Finding this splitsample is the purpose of this step. Di�erent ways of doing this are

proposed. But, �rst a few de�nitions that are essential for understanding the principles.

All the de�nitions below are to be associated with one input training sample, xn.

i. Single error, en(1). De�ned as the absolute error jf
(M)(xn)�ynj, where f (M) is the total

model after M iterations.

ii. Mean error, 	en(K). De�ned as the absolute mean error j
PK

k=1(f
(M)(xk)�yk)=Kj of the

K nearest neighboring samples to xn, using the Mahalanobis distance with covariance

matrix of T in projected input subspace. xn is included among the K samples.

iii. Median error, en(K). De�ned as the median error of the single errors in the K nearest

neighboring samples (xn included) using the Mahalanobis distance.

iv. Consistent. A sample xn is said to have a consistent error if the signs of the single

errors of the K nearest neighboring samples all are either plus or minus.

The general term sample error, denoted by e
n, is from now on used when referring to

one of the error measures of type i., ii., or iii..

Of the three types, the single error is the one most sensitive to outliers, since only

information about the sample, xn, is considered. The two other types use information

from surrounding samples as well, when trying to describe the error around xn, and are

therefore less sensitive to noisy samples. In particular, the median error will be unbiased

of any outliers.

The last de�nition will put a further requirement on a possible splitsample, by de-

manding that the closest surrounding samples should all have the same error behavior. If

a sample has a consistent error, it is an indication that f (M) really is not predicting well

around that sample. The term is a heuristic to be used in combination with one of the

three types of error measure, in order to further avoid selecting an outlier.

The strategy for determining the splitsample is now described. In section 4.6 an alter-

native strategy is proposed. That, however, turned out to be worse than this one.

Strategy 1

Select the splitsample as the sample of all the Ntrain samples having the largest sample error

of type i.,ii. or iii..

This strategy performs in each iteration a global search for the splitsample among all

the training samples, computing a sample error for each of the samples.

One restriction is that a training sample can not be picked twice. The splitsample is

therefore always selected as the sample with the largest error, not previously selected. In

other words, the splitsample is picked among Ntrain+1�M training samples and not Ntrain

as stated in strategy 1.
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Figure 4.2: Local regions in input subspace, with boundaries and centers.

Allocation (step 3)

Once a new splitsample is found, a new validity function �M+1 is de�ned having the center

in the projection of this splitsample, i.e. �M+1 = tsM . There will then be a total of M + 1

di�erent validity functions with centers in M + 1 geometrical points (M splitsamples plus

origo) in W . These points de�ne M + 1 classes. The goal is to allocate all the samples in

Dtrain to one, and only one, of these classes. This is done by allocating a sample to the

class for which the validity function has the largest value, or expressed mathematically

Class m = fxn; ynj arg max
j=1;2;:::;M+1

(�j(t
n)) = mg (4.4)

This classi�cation divides up the projected input space into polyhedral regions as shown

in �gure 4.2. The division is known as a Voronoi (or Dirichlet) tessellation, and is often

used in data compression [Hertz et al. 91].
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Local model computation (step 3)

Since global optimization of the parameters is di�cult when PLS is the local modeling

technique (see section 3.4), local optimization is applied. Each local PLS model is found

using the original input samples and not the projected ones.

The local training samples allocated to class m are gathered in a local input matrix Xm

and output matrix ym, with Nm being the number of local samples. Before a local model fm
is computed the matrices Xm and ym must be centered as required by the PLS algorithm.

The local constant term bm0 is then equal to (	ym � 	xmbm) = (	y(ym)�
P

p bmp	x(xmp)).

The number of latent variables in each PLS model, Am, is determined by local cross

validation. All the local models f1; f2; :::; fM+1 must be computed in each iteration since

one never knows whether the allocation of samples to some regions is the same as in the

previous iteration. The weights w1(t
n); w2(t

n); :::; wM+1(t
n) (see equation 3.2) belonging

to sample xn are not used in the optimization process. Note that the validity functions,

�1; �2; :::; �M+1 are applied both in the allocation of samples and in the weighting of the

local models.

Validation (step 3)

To investigate the total model f (M+1) in each iteration, both the root mean square error of

estimation (RMSEE) and the root mean square error of prediction (RMSEP) are computed.

The iteration is stopped when no further improvement is expected i.e. when the RMSEE

might still be decreasing, but the RMSEP is consistently increasing. With consistently

increasing is meant that the RMSEP increases in two preceeding steps. Admittedly this is

a somewhat ad hoc stop criterion. The reason is to avoid an early termination because of

local minima.

Optimal model (step 4)

The optimal model, f , is de�ned to be the one where the corresponding RMSEP is at a

minimum. This RMSEP value is also used as the validation value of f . As noted earlier,

doing this is a bit questionable, since the test set Dtest will no longer be unbiased. The best

would have been to have a third set of data, independent from the other two, and validate

f on that set.

The entire Algorithm 1a is summarized in �gure 4.3. The algorithm was implemented

with all the three types of error measure and the consistent de�nition. A few assumptions

regarding the local PLS modeling had to be made. They can be found, along with some

further details about the implementation, in appendix A.
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1. Preprocessing:

(a) Removal of possible outliers from Dtrain and Dtest.

(b) Training matrices: X and y (both assumed to be scaled and cen-

tered).

(c) Test matrices: Xtest and ytest (both scaled and centered with same

factors as for the training matrices).

(d) PCA analysis: Determine Aw from X.

(e) Projected input matrices: T and Ttest.

2. Initialization:

(a) De�ne validity function: �1 = exp(� 1
2 (t��1)�

�1(t��1)
T ) where

�1 = 0, � = �
2P =, and P is the covariance matrix of T.

(b) Compute global PLS model f (1) = f1 from X and y.

(c) Number of local models, M = 1.

3. while <consistent decrease in validation criterion J> do

(a) Find splitsample: �M+1 = tsM where

sM = argmaxn=1;:::;Ntrain(6=s1;:::;sM�1)(e
n) and

e
n = e

n

(1) or 	e
n

(K) or e
n

(K) (and t
sM is consistent).

(b) De�ne validity function: �M+1 = exp(� 1
2
(t� �M+1)�

�1

(t� �M+1)
T ).

(c) for samples n = 1; 2; :::; Ntrain do

� Allocate sample xn to Xm and y
n to ym using equation 4.4.

(d) Local training matrices: X1;X2; :::;XM+1 and y1;y2; :::;yM+1

(all assumed to be centered).

(e) for region m = 1; 2; :::;M + 1 do

� Compute local PLS model fm from Xm and ym.

(f) Interpolate: f (M+1) =
P

m
wmfm.

(g) Validate f (M+1) using validation criterion

J = RMSEP(f (M+1)(Xtest);ytest).

(h) Increment: M =M + 1.

4. Optimal model: f = argmin
f�=f (1);:::;f (M�1)(RMSEP(f�(Xtest);ytest)).

Figure 4.3: Algorithm 1a (Fixed validity functions).



4 Proposed algorithms 39

r

Figure 4.4: The concept of radius in local modeling (Identity matrix).

4.3 Algorithm 1b, 1c, and 1d

In the approach so far, the local validity functions have been �xed (see point 2 in section 3.3)

and `hard' splits of the training samples have been used. This is rather rigid. A more �exible

approach is perhaps `soft' splits and di�erent sized validity functions, e.g. depending on

the distance between or density of such functions.

In this section three modi�ed versions of Algorithm 1a are presented. The changes

in the algorithm only involve the allocation and local computation steps. How to �nd the

splitsample and how to validate are not altered.

The distances between the centers of local validity functions are essential in all the three

modi�cations. To each local model an extra parameter named the radius, and denoted

rm, is speci�ed. This radius is de�ned to be the smallest Mahalanobis distance, with

covariance matrix of T, between the local splitsample, �m, and all the other splitsamples

(origo included), or expressed mathematically

rm = min
j=1;:::;m�1;m+1;:::M

(k�j � �mkM) (4.5)

As previously noted, the local splitsample and the center of the local validity function are

the same. An illustration of this approach is given in �gure 4.4.
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Both allocation of training samples and de�nition of validity functions can be based on

this new term.

Allocate to one class, m, all the training samples within distance rm from the center of

that class, �m, and use those samples in the computation of the local model. One training

sample can then be allocated to several di�erent classes, or it does not have to be classi�ed

at all, which happens when the sample is in a region not `covered' by the radii of any of

the local classes (e.g. the shaded region in �gure 4.4). `Soft' splits are the result. The

only requirement is that a minimum number of samples have to be allocated to each class,

in order to avoid abortion of the algorithm because of too few samples in a local region.

Expanding rm accordingly will ensure that this is always the case. The same e�ect could

possibly be achieved by somehow de�ning a minimum radius, rmin, instead, but is not

considered in this thesis.

De�ne validity functions, �m, by the use of individual smoothing parameters of the

form �m = �rm, where � is a �xed parameter. This corresponds to point 4 in section 3.3.

The result is the same overlap when splitsamples are close, as when they are far from each

other.

Algorithm 1b (Variable validity functions)

This algorithm is similar to the original Algorithm 1a, as the allocation of training sam-

ples is still based on `hard' splits, by using the same procedure described by equation 4.4.

However, the local validity functions are now individually de�ned.

Once a new splitsample is found, a new local radius, rM+1, is computed. All the other

radii a�ected by the position of the new splitsample are also re-computed. New local

validity functions with new smoothing parameters are de�ned for the regions concerned.

A new classi�cation can then take place, based on the largest values of all the validity

functions, before new local linear models are computed. The entire algorithm is given in

�gure 4.5.
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1. Preprocessing:

(a) Removal of possible outliers from Dtrain and Dtest.

(b) Training matrices: X and y (both assumed to be scaled and cen-

tered).

(c) Test matrices: Xtest and ytest (both assumed to be scaled and

centered with same factors as for the training matrices).

(d) PCA analysis: Determine Aw from X.

(e) Projected input matrices: T and Ttest.

2. Initialization:

(a) De�ne validity function: �1 = exp(� 1
2 (t��1)�

�1(t��1)
T ) where

�1 = 0, � = �
2
1P = (�r1)

2P, r1 = maxn=1;:::;Ntrain
(ktn � �1kM),

and P is the covariance matrix of T.

(b) Compute global PLS model f (1) = f1 from X and y.

(c) Number of local models, M = 1.

3. while <consistent decrease in validation criterion J> do

(a) Find splitsample: �M+1 = tsM where

sM = argmaxn=1;:::;Ntrain(6=s1;:::;sM�1)(e
n) and

e
n = e

n

(1) or 	e
n

(K) or e
n

(K) (and t
sM is consistent).

(b) De�ne radius: rM+1 = minm=1;:::;M(k�m � �M+1kM)

(c) for radius m = 1; 2; :::;M do

� Diminish rm if k�m � �M+1kM < rm.

(d) for region m = 1; 2; :::;M + 1 do

� De�ne validity function: �m = exp(� 1
2
(t��m)�

�1(t��m)
T )

where � = (�rm)
2P.

(e) for sample n = 1; 2; :::; Ntrain do

� Allocate sample xn to Xm and y
n to ym using equation 4.4.

(f) Local training matrices: X1;X2; :::;XM+1 and y1;y2; :::;yM+1

(all assumed to be centered).

(g) for region m = 1; 2; :::;M + 1 do

� Compute local PLS model fm from Xm and ym.

(h) Interpolate: f (M+1) =
P

m
wmfm.

(i) Validate f (M+1) using validation criterion

J = RMSEP(f (M+1)(Xtest);ytest).

(j) Increment: M =M + 1.

4. Optimal model: f = argmin
f�=f (1);:::;f (M�1)(RMSEP(f�(Xtest);ytest)).

Figure 4.5: Algorithm 1b (Variable validity functions).
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Algorithm 1c (Overlapping local regions)

This algorithm uses both the new way of allocating samples and individual validity func-

tions.

Once a new splitsample is found, a new local radius, rM+1, is computed, as are all the

other radii a�ected by the position of the new splitsample. Training samples are allocated

to the M + 1 classes using the new allocation procedure described above. During this

allocation, local radii could again change in order to comply with the minimum-number-

of-samples constraint. The next step is to de�ne new model validity functions and compute

new local linear models both for the new region and for those regions, whose corresponding

radii have been adjusted since the last iteration. A new total model, f (M+1), can then be

validated. The entire algorithm is given in �gure 4.6.

Algorithm 1d (Hierarchical local regions)

One drawback with the previous algorithm is that one is not guaranteed that each training

sample is used in at least one model. This is a waste of samples. Algorithm 1d attempts

to avoid that by never changing neither the local model nor the validity function nor the

radius once they are computed and de�ned.

All that is done once a new splitsample is found is to compute the new radius, rM+1,

de�ne the new validity function, �M+1, with parameter �M+1 based on this radius and

�nally compute the new local model from the training samples within distance rM+1 from

the center, �M+1. None of the previous models and model parameters are altered. The

new model, fM+1, simply overlaps the old ones. The �rst global linear model f1 will then

always be at the bottom, with smoothing parameter �1 = �rmax, where rmax is the distance

from origo to the most distant training sample. The entire algorithm is given in �gure 4.7.

All these three new algorithms were also implemented. The same assumptions as in

Algorithm 1a, regarding the local PLS modeling, were made (see appendix A).
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1. Preprocessing:

(a) Removal of possible outliers from Dtrain and Dtest.

(b) Training matrices: X and y (both assumed to be scaled and cen-

tered).

(c) Test matrices: Xtest and ytest (both assumed to be scaled and

centered with same factors as for the training matrices).

(d) PCA analysis: Determine Aw from X.

(e) Projected input matrices: T and Ttest.

2. Initialization:

(a) De�ne validity function: �1 = exp(� 1
2
(t��1)�

�1(t��1)
T ) where

�1 = 0, � = �
2
1P = (�r1)

2P, r1 = maxn=1;:::;Ntrain
(ktn � �1kM),

and P is the covariance matrix of T.

(b) Compute global PLS model f (1) = f1 from X and y.

(c) Number of local models, M = 1.

3. while <consistent decrease in validation criterion J> do

(a) Find splitsample: �M+1 = tsM where

sM = argmaxn=1;:::;Ntrain(6=s1;:::;sM�1)(e
n) and

e
n = e

n

(1) or 	e
n

(K) or e
n

(K) (and t
sM is consistent).

(b) De�ne radius: rM+1 = minm=1;:::;M(k�m � �M+1kM)

(c) for radius m = 1; 2; :::;M do

� Diminish rm if k�m � �M+1kM < rm.

(d) for region m = 1; 2; :::;M + 1 do

i. for sample n = 1; 2; :::; Ntrain do

� Allocate sample xn to Xm and y
n to ym

if ktn � �mkM � rm.

ii. Expand rm if too few samples allocated.

iii. De�ne validity function: �m = exp(� 1
2
(t��m)�

�1(t��m)
T )

where � = (�rm)
2P.

iv. Compute local PLS model fm from Xm and ym.

(e) Interpolate: f (M+1) =
P

m
wmfm.

(f) Validate f (M+1) using validation criterion

J = RMSEP(f (M+1)(Xtest);ytest).

(g) Increment: M =M + 1.

4. Optimal model: f = argmin
f�=f (1);:::;f (M�1)(RMSEP(f�(Xtest);ytest)).

Figure 4.6: Algorithm 1c (Overlapping local regions).
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1. Preprocessing:

(a) Removal of possible outliers from Dtrain and Dtest.

(b) Training matrices: X and y (both assumed to be scaled and cen-

tered).

(c) Test matrices: Xtest and ytest (both assumed to be scaled and

centered with same factors as for the training matrices).

(d) PCA analysis: Determine Aw from X.

(e) Projected input matrices: T and Ttest.

2. Initialization:

(a) De�ne validity function: �1 = exp(� 1
2
(t��1)�

�1(t��1)
T ) where

�1 = 0, � = �
2
1P = (�r1)

2P, r1 = maxn=1;:::;Ntrain
(ktn � �1kM),

and P is the covariance matrix of T.

(b) Compute global PLS model f (1) = f1 from X and y.

(c) Number of local models, M = 1.

3. while <consistent decrease in validation criterion J> do

(a) Find splitsample: �M+1 = tsM where

sM = argmaxn=1;:::;Ntrain(6=s1;:::;sM�1)(e
n) and

e
n = e

n

(1) or 	e
n

(K) or e
n

(K) (and t
sM is consistent).

(b) De�ne radius: rM+1 = minm=1;:::;M(k�m � �M+1kM)

(c) for sample n = 1; 2; :::; Ntrain do

� Allocate sample xn to XM+1 and y
n to yM+1

if ktn � �M+1kM � rM+1.

(d) Expand rM+1 if too few samples allocated.

(e) De�ne validity function: �M+1 = exp(� 1
2
(t� �M+1)�

�1

(t� �M+1)
T ) where � = (�rM+1)

2P.

(f) Compute local PLS model fM+1 from XM+1 and yM+1.

(g) Interpolate: f (M+1) =
P

m
wmfm.

(h) Validate f (M+1) using validation criterion

J = RMSEP(f (M+1)(Xtest);ytest).

(i) Increment: M =M + 1.

4. Optimal model: f = argmin
f�=f (1);:::;f (M�1)(RMSEP(f�(Xtest);ytest)).

Figure 4.7: Algorithm 1d (Hierarchical local regions).
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Figure 4.8: The di�erent combinations of error measure and heuristic.

4.4 Evaluation on simple test examples

One of the di�culties with all the four versions of Algorithm 1 is the large number of

di�erent combinations of error measure and heuristic that are possible. The total number

is 6, as illustrated in �gure 4.8. In addition, the value of the external parameters K, the

number of neighboring samples, �, the degree of overlap, and Aw, the number of principal

components, must be determined for each combination. The procedure for �nding the

optimal combination is therefore very computationally demanding.

To examine the behavior of the four algorithms, they were all tested on a few simple

examples. These examples are described in the next section, together with the results of

Algorithm 1a. The most important results of the three other algorithms are given in

section 4.4.2.
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Figure 4.9: Surface of f1.

4.4.1 Algorithm 1a

To investigate the properties of Algorithm 1a, the algorithm was �rst tested on the

smooth and simple low dimensional (P = 2) function

y = f1(x1; x2) = (x1)
2 +

1

2
(x2)

2 (4.6)

whose surface is illustrated in �gure 4.9.

The goal of this simple nonlinear example was just to illustrate that the principle of local

modeling is sensible, and that the algorithm worked. The number of input variables was

chosen to be 2, which provides simple three-dimensional plots of the relationship between

the variables.

All the samples of x1 and x2 were randomly drawn from a uniform [0,2] distribution.

Two training sets of 100 samples each and one test set of 500 samples were constructed.

One of the training sets was without noise on the output samples. To the yn's in the other

set, white noise, e � N(0; �2e) with �e = 0:5, corresponding to � 37 % (�e=S(y)) noise

level, was added. Noise was not added to the test set.

The same procedure was then repeated, but the number of samples in the two training

sets was now 300. In the test set it was still 500, though. The purpose was to investigate

what happens when the number of training samples increases. In all the tables the two

noiseless training sets are named 100 and 300, whereas the two noisy sets are named 100n

and 300n.
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Model 100 100n 300 300n

Linear 0.324 0.328 0.347 0.339

Quadratic 0.000 0.084 0.000 0.055

e1c 0.089 (7) 0.203 (5) * 0.061 (9) 0.177 (3)

e1nc 0.089 (7) 0.195 (3) 0.061 (9) 0.128 (8)

e2c 0.092 (7) 0.201 (5) * 0.058 (9) 0.145 (6)

e2nc 0.065 (9) 0.176 (7) 0.058 (9) 0.145 (6)

e3c 0.101 (6) 0.209 (6) * 0.053 (10) 0.145 (6)

e3nc 0.101 (6) 0.194 (4) 0.053 (10) 0.155 (8)

Table 4.1: RMSEP for di�erent models for approximating f1
a.

Algorithm 1a was then run with �xed K = 5 and � = 1
2
for the four di�erent data

sets and involving all 6 combinations. The results in RMSEP are given in table 4.1. First

of all, this table clearly shows, as was intended, that local linear modeling indeed decreases

the prediction error, compared to what a global linear model does. This hardly comes

as a surprise. Secondly, one observes that the generalization properties are better, both

for noiseless and noisy data sets, with 300 training samples than with only 100. Again,

a rather obvious result, since an increase in the number of samples will allow more local

models and also 'even out' the in�uence of noise in the samples. The third observation is

that the prediction error is larger for the noisy data sets than for the noiseless, when the

same test set is used. Something, which of course is as expected.

What is more interesting though, is to look at the estimation error. For noiseless data,

the RMSEE had approximately the same evolution, with regard to the order of magnitude,

as the RMSEP when M increased. For noisy data, the RMSEE was larger than RMSEP,

but the relative evolution was still the same. With 100 training samples, the RMSEE was

reduced from 0.604 (linear model) to 0.46�0.48 (best local linear models), and with 300

samples from 0.605 to 0.50�0.52. This corresponds to the noise level (0.5), and indicates

that no further improvement can be expected since only noise is left to be modelled. Thus,

the algorithm is able to withdraw as much information as possible from the noisy data,

which is an encouraging property. Another way of showing this is to compute the RMSE

between the noisy output training samples and the corresponding 'true' output samples.

This value was also approximately 0.5 for the best local linear models.

The best noiseless local linear model was e3nc, and the best based on noisy samples

was e1nc. The model surfaces are illustrated in �gure 4.10 and �gure 4.11 respectively.

These �gures can be compared with �gure 4.9.

aNumber of local models is given in parenthesis. An asterisk (*) means that the algorithm aborted

when no consistent sample was found, whereas a hash mark (#) means that it aborted due to fewer than

4 samples in a local region.
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Figure 4.10: Predicted surface of f1 based on 300 training samples without noise and 10

local models.
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Figure 4.11: Predicted surface of f1 based on 300 noisy training samples and 8 local models.
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Figure 4.12: The model with lowest minimum RMSEP based on 300 training samples

without noise. (a) Evolution of RMSEP. (b) Distribution of local centers (x) in weighting

space.

The evolution of the RMSEP as M increases for the same two models is given in

�gure 4.12a and �gure 4.13a. These curves are typical of the general behavior of the

RMSEP. Often, at some stage, it slightly rises before decreasing again in the next step.

The illustrations on the right in these �gures show the distribution of the local centers �m,

i.e. splitsamples, in W . For a simple homogeneous function like f1, it is the best if they

are as evenly spread out in the input space as possible. As seen from the illustrations this

was indeed the case, which is another sensible property of Algorithm 1a.
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Figure 4.13: The model with lowest minimum RMSEP based on 300 noisy training samples.

(a) Evolution of RMSEP. (b) Distribution of local centers (x) in weighting space.

Characteristic 100 100n 300 300n

Error i. 0.089 0.200 0.061 0.155

Error ii. 0.080 0.189 0.058 0.145

Error iii. 0.101 0.202 0.053 0.150

Consistent 0.094 0.205 0.057 0.156

Not consistent 0.087 0.188 0.057 0.143

Table 4.2: RMSEP for di�erent characteristics.

None of the 6 combinations of error measure and heuristic was superior to the others.

However, to still be able to possibly disregard some of the combinations, the RMSEP for

the results in table 4.1 averaged over the di�erent characteristics, were computed. The

following general interpretations were made based on table 4.2:

� The di�erences between the sample errors were only marginal. No conclusions can

be made based on this example only.

� Requiring that the splitsample should be consistent worked really bad if there were

few training samples and the noise level was high. The condition was simply too

strong, at least for K = 5.
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Figure 4.14: Surface of f2.

The values of K and � were both �xed in the previous testing. However, to investigate

the consequences of varying values, K was �rst increased from 5 via 10 to 20. The result was

a more stable RMSEP evolution, although the minimum was at the same level. Then, the

consistency heuristic, with K = 3, was tested. Again, no improvements of the best results

in table 4.1 were observed. A large K will almost replace the consistency heuristic, since

the mean and median sample error will be computed over a larger region. The drawback

is that computation of the nearest neighboring samples will be slower. The value of �

was also changed from 1
2
to both larger and smaller values. However, the e�ect was only

reduced prediction ability.

Algorithm 1a was then tested on a much more nonlinear function

y = f2(x1; x2) = (x1)
3 � (x1)

2 �
1

4
x1 � x1x2 + 2(x2)

2 (4.7)

whose surface is illustrated in �gure 4.14.

The goal of this example was to illustrate that the algorithm is sensible also on highly

nonlinear problems.

All the samples of x1 and x2 were now drawn from a uniform [-1,1] distribution. Again a

noiseless test set of 500 samples and two training sets of 200 samples each, were constructed.

White noise, e � N(0; �2e) with �e = 0:5, was added to the output samples in one of the

training sets. This corresponds to a noise level (�e=S(y)) of 63 %, which is much, perhaps

too much. The noiseless training set is named 200, and the noisy set 200n in all the tables.
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Model 200 200n

Linear 0.764 0.762

Quadratic (x) 0.159 0.184

Cubic (x) 0.000 0.116

e1c 0.134 (8) # 0.438 (3) *

e1nc 0.120 (8) 0.221 (6)

e2c 0.170 (10) # 0.435 (3) *

e2nc 0.170 (10) # 0.201 (6)

e3c 0.169 (12) # 0.385 (3) *

e3nc 0.161 (12) 0.203 (6)

Table 4.3: RMSEP for di�erent models for approximating f2
b.

The lowest RMSEP for di�erent models are given in table 4.3, for �xed K = 10 and

� = 1
2
. Generally, local modeling vastly improved the prediction results compared to a

linear model, and also fared well against higher order polynomial models with cross-terms.

For the noiseless data set, the best local linear models were those using the sample

error of type i.. Probably because without noise on the training samples, there will be no

outliers, thus the single error approach will give a correct and undisturbed re�ection of

where the prediction is worst. Even though, the contrast to the other error measures was

still not signi�cant.

The number of local models was relatively large, and would have been even greater

had the training set been larger. As it was now, the algorithm aborted for almost every

combination. This because too few training samples were allocated to one class, but without

having reached the minimum RMSEP, indicating that additional improvement would have

been possible.

Figure 4.15 illustrates the model surface of the best local linear model, e1nc. If this

surface is compared to the original surface (�gure 4.14), one observes that although there

are di�erences, the general features of f2 are captured, so the approximation was not that

bad.

bSee table 4.1 for explanation of symbols.
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Figure 4.15: Predicted surface of f2 based on training samples without noise and 8 local

models.

The evolution of the RMSEP and the distribution of the local centers �m in W , for

the same model, are given in �gure 4.16. Again, the local centers were well spread out

in the input space. This can be seen even better from �gure 4.17, where the weight,

wm(x), of each of the local models is illustrated as a function of input space position. A

comparison between the peaks in this illustration and the position of the local centers,

although rotated and stretched by the PCA, indicates that even though two splitsamples

have an almost identical position, the corresponding weight functions will peak apart from

each other because they are normalized.

The drawback with the noisy data set was that it was so noisy that the algorithm

aborted quickly if consistent splitsamples were required. Using the heuristic was therefore

impossible, at least for K = 10. The number of neighboring samples was then reduced to

5, which resulted in no abortions, and prediction results almost on the same level as those

obtained without the heuristic in table 4.3.
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Figure 4.16: The model with lowest minimum RMSEP based on training samples without

noise. (a) Evolution of RMSEP. (b) Distribution of local centers (x) in weighting space.
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Figure 4.17: Weighting of di�erent local models in the model with lowest minimum RMSEP.
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Figure 4.18: Predicted surface of f2 based on noisy training samples and 6 local models.

When the algorithm did not pre-terminate, inspection of the RMSEE showed once more

that the noise level of 0.5 was reached at minimum RMSEP. The RMSEE was reduced

from 0.891 (linear model) to 0.50-0.52 (best local linear models). Although the data set

was very noisy, the model surface of the best local linear model, e2nc, is given in �gure 4.18

for completeness.

The most important conclusion that could be drawn from testing Algorithm 1a on

these two small examples was:

� The algorithm was a sensible approach in low dimensional problems.
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Model Data set RMSEP

e2nc 100 0.0600 (9)

e2nc 100n 0.263 (4) #

e3nc 100n 0.184 (3) #

e3nc 300 0.046 (10)

e1nc 300n 0.162 (6) #

e3nc 300n 0.221 (3) #

e1nc 200 0.092 (12)

e1nc 200n 0.259 (6) #

e2nc 200n 0.318 (7) #

e3nc 200n 0.411 (3) #

Table 4.4: RMSEP for di�erent models using Algorithm 1bc.

4.4.2 Algorithm 1b, 1c, and 1d

The three other algorithms were then tested on the same two-dimensional functions de�ned

in the previous section, but not quite as thoroughly. Concentration was on the noisy data

sets, and only the best combinations of error measure and heuristic in table 4.1 and table 4.3

were considered. The goal was to investigate whether any of the algorithms 1b,1c or 1d

worked better than Algorithm 1a. Of the external parameters, K was the same as before,

whereas � was slightly smaller to harmonize with the new de�nition.

Algorithm 1b

The performance of this algorithm was very similar to that of Algorithm 1a, as can be

seen from comparing the small collection of results given in table 4.4 with those previously

given in tables 4.1 and 4.3. Note that for this algorithm � was now 1
3
. The only problem

was a larger tendency of the algorithm aborting because of regions with too few samples.

Otherwise, the change to individual local validity functions did not seem to have that much

impact on the prediction ability.

cSee table 4.1 for explanation of symbols.
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Figure 4.19: Large jumps in the evolution of the RMSEP for Algorithm 1c. (a) 300n.

(b) 200n.

Algorithm 1c

The prediction ability was generally on the same level as for the �rst algorithm. A little

better for f1, but worse for the second function. However, the major drawback was the large

increase in RMSEP which occurs when the position of a new splitsample forces large regions

to diminish, because of the reduction of the radius in these regions. The corresponding local

models are then computed from far less samples than in the previous iteration. Typical

examples are given in �gure 4.19. This behavior makes the algorithm very unstable and

accidental, and not very robust, although the minimum RMSEP compared well to that of

Algorithm 1a.
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Figure 4.20: Typical example of prediction error evolution for Algorithm 1d (300n).

Algorithm 1d

This algorithm did not work very well. The prediction ability was generally much worse

than that ofAlgorithm 1a, with the minimum RMSEP being consistently 50�75% higher.

A typical example of the evolution of the RMSEP is given in �gure 4.20. From this

illustration, one sees that despite the very high number of local models, the performance is

not very good even though the curve is still slowly decreasing. For all the other algorithms,

the minimum RMSEP for this particular example was at least less than 0.15. The main

reason being that in this algorithm the in�uence from the �rst global linear model will

always be too strong. Many of the other models will also be very local (based on the

minimum number of samples only) and with very limited validity.

The general conclusions that could be drawn from testing these three algorithms on the

small low dimensional examples were:

� None of the algorithms clearly outperformed the original Algorithm 1a.

� Algorithm 1c is dropped, because of the instability when not all the training samples

were used in an iteration.

� Algorithm 1d is disregarded, because it performed signi�cantly worse than all the

other.
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Figure 4.21: Nonlinear response functions for the three instruments.

4.5 Evaluation on a more complex test example

So far the algorithms have been tested only on two-dimensional data sets. Neither the

concept of weighting in a projected subspace nor the local PLS approach were then actually

tested, since a full PLS solution with two latent variables, i.e. equivalent to the MLR

solution, was used in each local model. In addition, there was no correlation between the

input variables since they were independently generated.

To further investigate the properties, a high dimensional data set with 30 input vari-

ables was generated. The arti�cial set is based on a nonlinear mixture model from NIR

spectroscopy [Martens and Næs 91], where the following situation is simulated:

Three compounds (latent variables) are mixed together in one chemical solution. The

measurements (input variables) are divided into three categories corresponding to three

di�erent instruments, each measuring the absorbance spectra of the mixture at 10 di�erent

frequencies. Each instrument has a di�erent nonlinear response, as illustrated in �gure 4.21,

with g1(z) = 0:15(exp(z) � 1), g2(z) =
1
3
z
2 and g3(z) = z � 0:5 sin(2

3
�z). One element in

the input matrix, X, is then of the form

Xn;j+10(i�1) = gi((QA)n;j+10(i�1)); i = 1; 2; 3; j = 1; 2; :::; 10 (4.8)

where Q is a N � 3 matrix whose general element Qn;k is the concentration of substance

k in sample n, and A is a 3� 30 matrix where Ak;j+10(i�1) is the coe�cient of absorbance

corresponding to compound k at frequency number j for instrument i.
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Model Algorithm 1a Algorithm 1b

Linear PLS (5 lv) 0.055

MLR (=PLS (30 lv)) 0.057

Quadratic PLS (10 lv) 0.036

Quadratic (60 lv) 0.039

Cubic PLS (17 lv) 0.030

Cubic (90 lv) 0.045

e1nc 0.030 (6) 0.037 (7)

e1c 0.038 (4) 0.032 (5)

e2nc 0.023 (6) 0.031 (7)

e2c 0.030 (6) 0.031 (7)

e3nc 0.034 (5) 0.038 (3)

e3c 0.038 (4) 0.034 (4)

Table 4.5: RMSEP for di�erent models for the spectrometry data setd.

The output variable is simply one of the compounds. Which one, is arbitrary since

all three are generated in the same way. The one, where the RMSEP and RMSEE for

an initial linear PLS model were largest, indicating most potential for improvement, was

chosen. This was number three, i.e. yn = Qn;3.

A training set of 150 and a test set of 50 samples were generated. All the elements in

both Q and A were randomly drawn from a uniform [0,1] distribution. In addition, 10 %

white noise was added to the 30 input variables in both the training and test set.

Both Algorithm 1a and 1b were �rst tested with � = 1
2
and K = 5. The number

of principal components, Aw, in the weighting subspace W was 3, equaling the number

of compounds. The results in RMSEP are given in table 4.5. In the local modeling, the

number of latent variables in each local PLS model varied from 3 to 6.

The results clearly indicate that both local modeling algorithms improve the prediction,

with the lowest RMSEP being under half that of the linear PLS model. The main reason is

the nonlinearity in the data, which the linear PLS model was not able to model particularly

well, as seen from the slight curvature in �gure 4.22. With local modeling this curvature

is no longer present (�gure 4.23). Local modeling was also superior to 2nd and 3rd order

PLS (without cross terms).

dSee table 4.1 for explanation of symbols.
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Figure 4.22: Estimation plot for linear PLS model.
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Figure 4.23: Estimation plot for local model with lowest minimum RMSEP.
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For Algorithm 1a, � was changed to 1
4
, 3

4
, and 1 without improving the results at

all. For � = 1
2
, K = 3 and K = 10 was also tested. Again the results were generally

worse compared to those in table 4.5. For Algorithm 1b, a change in the value of � to
3
4
resulted in much higher RMSEP, whereas the results for � = 1

3
and 1

4
were generally on

the same level as those in the table. This is to be expected since the radii rm, due to the

way of scaling the axes in W , are very often larger than 1 which corresponds to the �xed

validity function used in Algorithm 1a. The optimal value of � will then be smaller for

Algorithm 1b than for the �rst algorithm.

One di�erence between the two algorithms was that over�tting was more of a problem

using Algorithm 1b than Algorithm 1a. Generally, the RMSEE was lower, but the

RMSEP was higher for the former algorithm compared to the latter one. Thus, Algorithm

1b is able to better approximate the training samples, probably because of the use of

individual validity functions. It must be said though, that the di�erence was not much.

The RMSEE was reduced from 0.049 (linear PLS) to 0.020-0.024 in both cases.

The average correlation (see appendix B.1) between the di�erent input variables was

0.81, which indicates strongly correlated variables. In comparison the average correlation

for the arti�cial data sets generated from f1 and f2 was between 0.01 and 0.12.

The main conclusions that could be drawn from this high dimensional problem with

correlated input variables were:

� Both local modeling algorithms worked much better than linear PLS.

� The concept of low dimensional weighting space and local PLS modeling seemed

fruitful even when P was large.
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4.6 Other algorithms and modi�cations

The generalAlgorithm 1 is a local search algorithm which will lead to a locally suboptimal

solution. It is best implemented as an iterative depth-�rst search. Since only one new model

decomposition is investigated in each iteration step, Algorithm 1 is completely based on

the assumption that improving the worst case behavior of f (M) also improves the prediction

ability the most. However, there is no guarantee of that.

In order to be less dependent on this assumption, two natural generalizations of Algo-

rithm 1 are given below. Both give more optimal solutions.

Algorithm 2

The globally optimal solution is obtained if all the possible decompositions are examined,

and not only the ones indirectly speci�ed by the splitsamples as in Algorithm 1. In

Algorithm 2, the �rst two steps are not any di�erent from those in the �rst algorithm.

Steps 3 and 4 are, however, replaced by the following steps:

First de�ne Mmax, the maximum number of local models. Then, use stepwise decompo-

sition where at each step M = 2; 3:::;Mmax, all, but the previously used, samples in Dtrain

are selected as splitsamples for new local models. For each decomposition compute new local

linear models, interpolate them, and validate the total model. The optimal model is the one

that minimizes the validation criterion J.

This algorithm performs a global search, which is best implemented in a combinatorial

way. Each decomposition is based on the same principles as in Algorithm 1. The total

number of possible, not necessarily di�erent, decompositions at step M is

(Ntrain)(Ntrain � 1) � � � (Ntrain + 2�M) =
(Ntrain)!

(Ntrain + 1�M)!
(4.9)

This situation is illustrated in �gure 4.24, where each node in the tree corresponds

to a decomposition, and the numbers in a node refer to the splitsample indices, sm; m =

1; :::;M � 1. In Algorithm 2 all the nodes are investigated, as opposed to the �rst

algorithm which only investigates the nodes along one path. Algorithm 2 is therefore

completely independent of the assumption about a connection between the largest sample

error and the largest improvement in prediction ability.

Unfortunately, this algorithm will be very computationally demanding even for small

values of Ntrain andMmax. It is, therefore, practically impossible to apply without including

heuristics, which drastically reduce the computation time. One such heuristic is to stop

the decomposition in a branch if the next splitsample is not consistent. Another is to stop

if a new decomposition increased the RMSEE. Using such heuristics will give suboptimal,

but often good enough solutions.
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Figure 4.24: Possible decompositions based on the training samples.

Algorithm 3

This algorithm lies somewhere between the other two, since an extended local search is

performed. Steps 1, 2, and 4 are all unaltered, but the repeated step (3) in Algorithm 1

is now changed as follows:

First choose the L samples, 1 � L � Ntrain + 1 �M , of all the Ntrain + 1 �M non-

selected samples having the largest sample error of type i., ii., or iii. as candidates for

the splitsample. For all these candidates, decompose the input space, compute new local

linear models and interpolate them. Select, as splitsample, the one of the candidates whose

decomposition and corresponding total model, f
(M+1)
l , gives the smallest RMSEE. Continue

with that total model, f (M+1) = f

(M+1)
l , in the validation.

Algorithm 3 is less sensitive to the assumption about prediction improvement. This

because the decompositions from the L largest sample errors, and not only the largest, are

investigated in each iteration step. Therefore, the algorithm will be more computationally

demanding than Algorithm 1, but obviously faster than Algorithm 2. Again, heuristics

such as requiring consistent candidate samples will speed up the algorithm. As the �rst

algorithm, Algorithm 3 is best implemented as an iterative depth-�rst search.

In the limit L = Ntrain + 1 �M , the solution is one-step-ahead optimal in the sense

that it is optimal in that iteration step, since all possible decompositions are considered.

In �gure 4.24 that corresponds to looking at all the nodes in the next level of a subtree,

before deciding which node to enter. In the other special case L = 1, Algorithm 3 is

simply reduced to Algorithm 1.
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Although both of these two generalizations, of the �rst algorithm, most likely will give

slightly better solutions in terms of prediction ability, they were not implemented because

of their much higher computational demands. In the rest of this thesis all additional

testing and discussion is therefore related to Algorithm 1. The other two algorithms are

not considered any further.

A modi�cation of the strategy for determining the splitsample is then proposed.

Strategy 2

First compute the di�erent local RMSEE of the M local regions, using only local samples in

the computation. De�ne the region with the largest local RMSEE as the region of splitting.

Select the splitsample as the sample having the largest sample error of type i.,ii. or iii.,

under the condition that this sample is located within the region of splitting.

This strategy can be seen as a local version of strategy 1, with the search for a split-

sample restricted to a local region. However, the main purpose is to preserve an as equal

as possible degree of local linearity in the di�erent regions, measured in terms of local RM-

SEE. This principle gives a total model, f , with an approximately equally good prediction

ability everywhere in the input hyperspace, which is often desirable.

To investigate this strategy, Algorithm 1a was again tested on the two low dimensional

functions, but now with strategy 2 as the way of determining the splitsample. The results

are given in table 4.6 and 4.7.

Model 100 100n 300 300n

e1c 0.122 (6) * 0.303 (3) * 0.062 (9) 0.174 (6) *

e1nc 0.122 (6) # 0.195 (3) 0.062 (9) 0.133 (5)

e2c 0.085 (7) 0.215 (4) * 0.061 (9) 0.240 (5) *

e2nc 0.061 (9) 0.187 (7) # 0.061 (9) 0.159 (8)

e3c 0.101 (6) 0.239 (3) * 0.063 (8) 0.174 (3)

e3nc 0.101 (6) 0.187 (5) # 0.063 (8) 0.143 (7)

Table 4.6: RMSEP for di�erent models for approximating f1 (strategy 2)e.

eSee table 4.1 for explanation of symbols.
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Model 200 200n

e1c 0.180 (6) # 0.438 (3) *

e1nc 0.141 (8) # 0.259 (5)

e2c 0.142 (12) # 0.435 (3) *

e2nc 0.142 (12) # 0.276 (4)

e3c 0.177 (9) # 0.385 (3) *

e3nc 0.170 (12) 0.291 (5) #

Table 4.7: RMSEP for di�erent models for approximating f2 (strategy 2)f .

Characteristic 100 100n 300 300n 200 200n

Strategy 1 0.091 0.197 0.057 0.150 0.155 0.332

Strategy 2 0.101 0.225 0.062 0.174 0.160 0.355

Table 4.8: RMSEP for di�erent strategies.

These tables correspond to table 4.1 and 4.3 for strategy 1. To be better able to compare

the two strategies, the RMSEP for the results in the four tables averaged over the strategies

were computed.

As seen from table 4.8 there was only one conclusion:

� Strategy 2 was worse than strategy 1, and is therefore disregarded.

fSee table 4.1 for explanation of symbols.
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Case studies

This chapter describes a set of case studies that have been carried out in order to test the

new local modeling algorithms on well-known data sets, and to compare them with other

modeling techniques.

5.1 Introduction

So far the algorithms and their properties have only been investigated using specially

designed and arti�cially generated data sets. But do they behave any di�erently when

tested on real world examples? Another important question is, how well do the local

modeling algorithms perform compared to other nonlinear modeling techniques? These

two questions will be addressed in this chapter.

Comparisons between di�erent modeling techniques and algorithms are always di�cult,

as no technique will constantly outperform all the others on whatever data set imaginable.

Usually, algorithms are designed for a special modeling purpose and will work satisfactory

on these kind of problems. A good example is PLS, which works very well in NIR (near

infrared) spectroscopy where the number of input variables (i.e. wavelengths) is very high

(often P > 100), the size of the training set is small, and the variables are highly correlated.

On more lower dimensional and larger data sets though, other modeling techniques may

perform better than PLS.

Other factors that in�uence the performance of the di�erent techniques are:

Validation criterion. The choice of validation criterion (see section 2.1.4), which is the

measure of performance, can heavily in�uence the results and thereby the interpreta-

tions of what constitutes a successful algorithm. Running the same set of case studies

with another criterion may alter the rank between the algorithms.
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External parameter values. Di�erent algorithms often require a number of external pa-

rameters which have to be adjusted and tuned. Often, a small change in the param-

eter values can lead to very di�erent results. The higher this number of parameters

is, the more time is spent searching for an optimal combination. A parameter set is

also domain speci�c, as di�erent problems require di�erent sets of parameters. When

comparing algorithms, �nding a suitable set of parameter values should be given the

highest priority.

Computation time. Two aspects are involved here, the actual running time of the al-

gorithm and the time spent searching for optimal parameter values. To ensure a

comparable level between the algorithms tested, they should all be run and pro-

grammed on the same computer. In addition, equal time should be used on all the

algorithms when trying to �nd an optimal set of parameter values. Unfortunately,

none of this is grati�ed in the case studies, since it is mostly referred to the work of

others, except when giving the results of the proposed algorithms.

The conclusion is that care should always be taken when doing comparative studies of

di�erent algorithms. The results will not necessarily give you the absolute truth about the

performance of the techniques, only some ideas of the behavior. Be also aware that the

results are only valid for the particular data sets. Further extrapolation and generalization

beyond these should be done with extreme care.

5.2 Organization

To simplify comparisons between di�erent data sets, the results are given as normalized

root mean square error (NRMSE), which, unlike RMSE, is a relative and not absolute

measure of performance de�ned by

NRMSE =

qPN
n=1 (y

n � �yn)
2qPN

n=1 (y
n � 	y)

2
=

RMSEq
1
N

PN
n=1 (y

n � 	y)
2
�

RMSE

S(y)
(5.1)

If NRMSE is zero the prediction is perfect, whereas a value equal to 100% is equivalent to

using the average, 	y, as the predictor.

The local modeling algorithms were tested on four di�erent data sets, all of which have

previously been used by others when investigating di�erent modeling techniques. The

�rst one is generated from a simulation of a chemical catalytic reactor. The second is

obtained from the dynamics of a hydraulic industrial robot. Whereas the last two are

taken from the �eld of NIR spectroscopy, where water content in meat and sti�ness in

polymers are to be estimated, respectively. In all the data sets there is an anticipated

nonlinear relationship between the input and output variables which linear methods might

have problems identifying. The data sets are quite di�erent regarding the number of

training samples and input variables, the noise level, and the correlation of input variables

as shown in table 5.1.
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Data set # of training samples # of input variables Noise level Correlation

Reactor high (700) medium (5) zero low

Robot high (800) low (3) medium low

Meat low (70) very high (100) ? high

Polymer low (47) very high (138) ? high

Table 5.1: A rough characterization of the experimental data sets.

Based on the experiences with the arti�cially generated data sets in chapter 4, the case

studies were organized as follows regarding the value of the external parameters K, �, and

A, the type of sample error, and inclusion of the heuristic:

� Of the local PLS modeling algorithms, only Algorithm 1a and 1b were tested.

� All the types of sample error; single, mean, and median were analyzed for both

algorithms.

� The number of neighboring samples, K, was not much investigated. Instead, K was

given a reasonable value proportional to the size of the training set. This value was

then kept �xed after the initial choice, mostly because the computation of the nearest

neighboring samples was computational demanding and the time was limited.

� The degree of smoothing between the local models, �, was given an initial value of
1
2
, and then, more �nely tuned both upwards and downwards for the models with

initially the lowest minimum NRMSEP.

� The number of latent variables, Aw, in the projected input subspaceW was �xed, and

the e�ect of changing it was not investigated. The value was either 3 or 4 depending

on the di�erence in eigenvalue for the principal components.

� The consistency heuristic was included, but only together with a smaller value of K

than the initial choice.

� The NRMSEP values shown in the tables are the minimum values. Only the three

models with the lowest NRMSEP are displayed.

This process was repeated for all of the four data sets.



5 Case studies 70

Model Comments NRMSEP

ASMOD Quadratic 6%

RBFN Gaussian 9%

Local PLS Alg.1a, e1c, K = 5, � = 1
2
, 13 local models 10%

Local PLS Alg.1b, e1c, K = 5, � = 1
2
, 8 local models 10%

Local PLS Alg.1a, e2nc, K = 20, � = 1
2
, 13 local models 11%

PLS Cubic (x), 19 lv 11%

ASMOD Linear 11%

MLP 5-7-1 13%

PLS Linear, 5 lv 28%

Table 5.2: Comparison of di�erent models for the simulated chemical reactor.

5.3 Simulated chemical reactor

A catalytic chemical process, transforming unbranched hydrocarbons (nC5) into branched

hydrocarbons (iC5), is simulated. In the process, hydrogen (H2) is acting as the catalyst.

Two other important variables are the reactor temperature, T , and the �ow velocity, V ,

through the reactor. The chemical reactions between all these variables are described by

nonlinear di�erential equations, based on a real reactor at SINTEF.

The modeling problem is to predict the concentration of iC5 in the out�ow as a function

of T , V and iC5, nC5 and H2 in the in�ow. Data are generated by integrating the

equations over di�erent time periods, and with randomly picked initial conditions. The

input variables are correlated, since their initial states are not independent of each other.

A total of 1000 samples are generated, of which 700 are used in the training set, and the

rest are used for testing.

More speci�c details about the di�erential equations and the generation of data are

given in [Kavli 92].

As seen from the results in table 5.2, the local modeling algorithms performed just as

well as the linear ASMOD and the Gaussian RBFN, which perhaps are the two techniques

most similar to local PLS, and in fact better than MLP. Generally, all the nonlinear tech-

niques were able to model this large and noiseless data set well, even though there were

small individual di�erences. Except for the local PLS and the linear PLS, all the other

results with the di�erent techniques are obtained from [Carlin et al. 94], which is referred

to for a further discussion.

The values of the external parameters K and Aw were �xed at 20 and 3, respectively,

whereas � was varied and the optimal value was found to be 1
2
. Of the error measures, the

single error consistently gave the lowest RMSEP, probably because the data set is noiseless.

Generally, the results obtained with the two local modeling algorithms were very similar.
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Model Comments NRMSEP

ASMOD Quadratic 15%

LSA Linear 17%

ASMOD Linear 17%

RBFN Gaussian 19%

MLP 3-20-1 23%

PLS Cubic (x), 10 lv 26%

Local PLS (=MLR) Alg.1a, e2c, K = 5, � = 1
2
, 7 local models 27%

Local PLS (=MLR) Alg.1a, e2nc, K = 20, � = 1
4
, 7 local models 27%

Local PLS (=MLR) Alg.1b, e3c, K = 5, � = 1
3
, 7 local models 27%

PLS (=MLR) Linear, 3 lv 63%

Table 5.3: Comparison of di�erent models for the hydraulic robot manipulator.

5.4 Hydraulic robot manipulator

The movements of an industrial hydraulic robot manipulator are investigated. Such ma-

nipulators have often su�ered from the lack of good dynamic models, due to nonlinear

hydrodynamic e�ects involved in the hydraulic components. The goal is to �nd an empiri-

cal model, describing the servo valve control signal, (u), as a function of the joint position

(q), velocity ( 
q), and acceleration (�q). A more complete description of this experiment can

be found in [Kavli 92].

Approximately 40000 samples are generated by sampling corresponding values of u and

q, as the manipulator is moving along a randomly generated trajectory. Values of 
q and �q

are then computed by low pass �ltering and numerical di�erentiations. A linear model is

subtracted from the data, leaving mainly nonlinear dependencies. Of the 40000 samples,

a training set of 800 and a test set of 200 samples were randomly picked. Note that this

training set corresponds to samples 1 to 800, and this test set to samples 801 to 1000 of what

is described as the independent test set in other articles [Kavli 92, Johansen and Foss 93].

This reduction was done because of limited time and computer resources. The results

obtained with these subsets should still be comparable to those using the large test set and

a training set of 8000 samples, because the number of samples was still fairly high and the

samples were well distributed in the input space.

The various results with di�erent techniques are given in table 5.3, where the result

for the LSA algorithm is taken from [Johansen and Foss 93] and the rest, except those for

the local and linear PLS, are obtained from [Carlin et al. 94]. For this data set, the local

PLS (or rather local MLR since P = 3 ) algorithms were outperformed by the other local

methods (LSA, ASMOD, RBFN). One reason is possibly that only 5-7 local models were

included in the best local PLS, which is few compared to the 10-13 for the reactor data

set. Why the minimum NRMSEP was reached after so few models is uncertain. There

should still have been room for improvement since applying the consistency heuristic with

K = 20 did not change the results very much. Practically all the suggested splitsamples
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were indeed consistent, indicating large error surfaces having the same sign.

The best local PLS model is plotted in �gure 5.1. The graph shows the control signal

(u) as a function of joint speed and acceleration, with the joint in the center position i.e.

q=0. The best model, with half as large value of �, is in comparison plotted in �gure 5.2.

Note how piecewise this model is since the smoothing parameter was very small. The

variation of � did not signi�cantly improve the prediction, as a NRMSEP of at least 30%

was always obtained regardless of the degree of smoothing.
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5.5 NIR spectroscopy

Both of these data sets are taken from the �eld of spectrometry, where analysis of near

infrared di�use re�ectance spectra at di�erent wavelengths, known as the method of NIR

spectroscopy, are used to determine di�erent constituents in a substance. Examples are

protein, water, or fat content in food products or chemical properties as composition or

phase separation in polymers. Di�erent PLS techniques are then used to correlate these

spectra to the constituents, since the number of wavelengths is very high and often exceed-

ing the number of samples.

5.5.1 Water estimation in meat

The water concentration in meat is to be predicted based on measurements of NIR trans-

mittance and corresponding percentage of water in 103 beef and pork samples at 100

di�erent wavelengths. Of the 103 samples, 70 are used for training and 33 for testing. The

training samples are chosen to span the area of interest as uniformly as possible. Carrying

out a linear PCR analysis reveals strong indications of nonlinearity in the data set. All the

details are given in [Næs and Isaksson 92].

To reduce multiplicative and additive e�ects the data are scatter-corrected by the

method of Multiplicative Signal Correction (MSC) [Martens et al. 83], and only the cor-

rected data are used in the testing.
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Model Comments NRMSEP

MLP 8 lv, 8-3-1 9.7%

LWR 3 lv, K = 30 9.9%

MLP 50-10-1 10.6%

Local PLS Alg.1a, e2c, K = 3, � = 1
2
, 3 local models 11.2%

PCR Linear, 8 lv 11.7%

Local PLS Alg.1a, e2nc, K = 5, � = 1
2
, 4 local models 12.2%

Local PLS Alg.1b, e2c, K = 3, � = 1
2
, 2 local models 12.4%

PLS Linear, 6 lv 13.1%

Table 5.4: Comparison of di�erent models for water estimation in meat.

Di�erent results for this data set are given in table 5.4. The results for LWR, PCR,

and MLP are obtained from [Næs and Isaksson 92] and [Næs et al. 93].

At �rst sight, the local algorithms seemed to improve the prediction. However, the

three results reported in the table were almost the only combinations of parameter values

that lead to a decrease in the NRMSP. For most of the other combinations, over�tting was

the outcome. Even increasing the smoothing between the local models by using a large

value of �, because of high dimensional data, did not help. The conclusion was that the

improvements were unreliable, maybe just the result of a lucky division of the training

samples and not part of a general tendency.

The reason is probably a combination of many things. At the minimum NRMSEP for

linear PLS, the corresponding NRMSEE was over 19%, i.e. much higher than the NRMSEP,

indicating that any closer �t to the training samples is very likely to increase the NRMSEP.

The small number of training samples made any nonlinear �t di�cult, as the number of local

models could only be 3�5, before the local PLS algorithms aborted as the result of too few

samples in a region. The question is also what really is a signi�cant nonlinear relationship

in a 100 dimensional space? Perhaps using this kind of local modeling approach on such

an extremely high dimensional problem was an overkill. Applying a nonlinear technique

on an almost linear problem can lead to less accurate predictions.

When running the local PLS algorithms, 10 latent variables were the upper limit in

each local model. The optimal number was manually selected, by investigating the plot

of residual sums of squares from cross-validation. However, virtually no restrictions were

put on the number of samples per latent variable. Often a local PLS model was computed

using e.g. 10 samples and 4�6 latent variables. The number of principal components in the

weighting subspace W was 3.

Note that the linear PCR prediction result was better than that of the linear PLS. A

relevant question, which has not been investigated, is whether using PCR as local modeling

technique instead of PLS would improve the predictions.
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Model Comments NRMSEP

MLP 138-25-1 9.3%

Local PLS Alg.1a, e2c, K = 3, � = 1
2
, 2 local models 10.6%

Local PLS Alg.1b, e2c, K = 3, � = 1
2
, 2 local models 10.8%

Local PLS Alg.1a, e1nc, K = 5, � = 1
2
, 3 local models 12.3%

PLS Linear, 14 lv 13.3%

PCR Linear, 21 lv 13.5%

Table 5.5: Comparison of di�erent models for sti�ness estimation in polymer.

5.5.2 Sti�ness estimation in polymer

The goal is to predict the �ex modulus (sti�ness) of polyurethane elastomers on the basis

of the NIR spectra at 138 di�erent wavelengths. The data set contains a total of 90 spectra,

of which 47 form the training set and the remaining 43 serve as the test set. The samples

in the test set are chosen such that the values of the �ex modulus are within the range

of the values in the training set. Further details regarding this data set can be found in

[Miller and Eichinger 91].

Again, the data are MSC-corrected to reduce multiplicative and additive e�ects. As was

the case with the meat samples, linear PLS analysis shows a possible nonlinear relationship

between the input variables and the sti�ness [Miller and Eichinger 91].

Various results for this data set are presented in table 5.5. The result with MLP is

obtained from [Næs et al. 93]. Unfortunately, the same di�culties were present in this NIR

data set as in the previous one. Over�tting occurred at once for almost all combinations

of parameters in the local PLS algorithms, only 2-3 local models could be computed as the

algorithms aborted very quickly, improving the result of the linear PLS was hard etc. The

reasons for this behavior are the same as they were for the meat samples. The number of

training samples is very small, the number of input variables correspondingly high, possible

lack of signi�cant nonlinearity etc.

So, again the apparently better predictions with the local PLS were deceptive, and not

a general feature of the algorithms.

One notable di�erence was the large deviation between the NRMSEE and NRMSEP.

For the linear PLS model the NRMSEE was only 6%, i.e. less than half of that of the

NRMSEP. This could indicate that even the linear PLS model was initially an over�tted

one caused by the few samples and high number of input variables.

Technically, the local algorithms were run with maximum 20 latent variables in each

local model. The number of principal components in W was now 4. For this data set

applying the consistency heuristic was meaningless unless K was a very small number (3).
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5.6 Interpretation of results

When comparing all the experimental results obtained with all the di�erent techniques for

the four data sets, the following common features were possible to extract:

� The two local PLS algorithms proposed in this thesis, generally improved the predic-

tion of y compared to linear PLS. This was to be expected since in all the data sets

there was an anticipated nonlinear relationship between the input and the output

variables. The improvement was very signi�cant for the �rst two data sets, but less

signi�cant for the NIR data sets.

� However, the local PLS algorithms were always outperformed by some other nonlin-

ear technique(s), even though the di�erences were not much. Thus, the local PLS

algorithms were adequate, but not necessarily optimal, ways of modeling nonlinear

problems.

Concerning the more speci�c details when using the two local PLS algorithms:

� None of the two algorithms performed signi�cantly better than the other, even though

Algorithm 1a tended to work slightly better overall. The reason is that they only

di�er in how the local validity functions are de�ned, i.e. how the local models are

interpolated. In all other respects are they identical.

� Over�tting was not a problem for the �rst two data sets. The evolution of the RMSEE

and the RMSEP, as the model complexity increased, were very similar. Usually, the

RMSEE was a few percent lower than the RMSEP. For the NIR data sets however,

over�tting was a major problem. The reason for this discrepancy lies in the di�erent

size and dimensionality of the data sets. The �rst two are large low dimensional data

sets, with several hundred training samples. On the other hand, for the NIR data

sets the number of input variables is much higher, whereas the number of samples is

only a two-digit number. The danger of �tting f too well to the training samples is

obviously greater when the samples are few and high dimensional, and all the more

so when the already few samples are divided into even smaller disjunct subsets, as is

the case in the local PLS algorithms.

� The degree of internally dependent input variables varied from data set to data set.

For the reactor the average correlation was 0.19, and for the robot manipulator it was

0.22, as some of the variables were much more correlated than others. On the other

hand, the average correlation for the polymer samples was 0.58, and for the meat

samples 0.65, i.e. highly correlated variables. Since the local PLS algorithms worked

better on the former two data sets, one is tempted to conclude that the algorithms

are best suited for problems with moderate degree of internal dependency between

the input variables, and not suited for e.g. NIR spectroscopy problems. However,

this conclusion is most certainly wrong because the algorithms really did improve

the prediction of y when tested on the arti�cial NIR spectroscopy data set, whose

average correlation was 0.81, in the previous chapter. The reason the algorithms did
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not perform that well on the real world NIR spectroscopy problems, is more because

of few training samples and lack of nonlinearity in the problems than too correlated

input variables.

� There were only small di�erences in the three types of error measure. For one com-

bination of parameters, the single error approach was the best, whereas for another

combination on the same data set, the mean or median error gave the lowest RMSEP.

The choice of type of sample error is therefore not crucial, even though it should be

noted that the combination resulting in the very best prediction usually involved the

mean error. The only exception being for the noiseless reactor data set. Not surpris-

ing since this type of error measure is less sensitive to outliers than the single error

approach is. Why the mean error also worked better than the median error is more

di�cult to explain.

� The value of the smoothing parameter � was not crucial either, as the di�erence in

performance for various values was only marginal. One should expect the optimal

value to be smaller for Algorithm 1b than for Algorithm 1a. This was not nec-

essarily the case though. Additionally, the value should probably be larger when the

problem was high dimensional, in order to ensure heavier smoothing between the

local models. None of this was con�rmed by the experiments.

� The inclusion of the consistency heuristic with a small value of K excelled as perhaps

the best way of obtaining good predictions with the local PLS algorithms. However,

the value of K had to be really small to avoid pre-termination of the algorithms

because of no consistent samples.

� Due to time limitations, none of the local PLS algorithms were optimized with regard

to K and Aw. Simultaneously doing this for each data set will probably further

improve the performance of the algorithms, because it is highly unlikely that the

optimal combination ofK and Aw was found in the rather ad hoc way these parameter

values were selected in the case studies.

Based on these four data sets the conclusion must be that local PLS modeling improves

the prediction of y the most when the data set is large and with a distinct nonlinear con-

nection between output and input. When the data set is small and very high dimensional

the performance of local PLS modeling is more doubtful.

What is not tested much, is the properties of the local algorithms when the modeling

problem is high dimensional, nonlinear, and the number of training samples is fairly large.

As indicated by the arti�cial example in section 4.5, this could be a type of problem where

local PLS modeling has much to o�er. However, such a real world data set has not been

available during the work of this thesis.



6

Discussion

In this chapter the local modeling algorithms proposed in this thesis are evaluated and

their relationship to other nonlinear techniques is discussed. Especially the similarities

between RBFN and the local PLS are investigated. Suggestions for further improvement

of the algorithms are also presented.

6.1 Evaluation

As all the new algorithms use Gaussian functions for interpolation of the local models,

it appears only natural to start by discussing the relationship to some other nonlinear

techniques using such functions.

Gaussian RBFN

General RBFN of the form given by equation 2.11 are transformed to

f(x) =
AX
a=1

ba exp(�
1

2
(x� �a)�

�1(x� �a)
T ) (6.1)

when the radial basis function h is the Gaussian function �, de�ned in equation 3.3. The

parameters that can be estimated by gradient descent are the weights ba, the centers �a,

and also the elements of �, the diagonal matrix of squared standard deviations. Hierar-

chical Self-Organized Learning (HSOL) [Lee and Kil 89] and Resource-Allocation Network

(RAN) [Platt 91] are examples of learning algorithms, which automatically add new ra-

dial basis functions to f in regions where this is necessary during training. The results

for RBFN reported in the previous chapter are with Gaussian functions and a modi�ed

version of the HSOL algorithm [Carlin 92].

Even though both the model structure in equation 6.1 and the models developed in

this thesis (equation 4.2) contain Gaussian functions, there are several di�erences, as the

Gaussian functions are applied very di�erently. In Gaussian RBFN they are unnormalized

and it is the combination of these functions which in fact is the modeling surface, and

therefore needs �ne adjustment, whereas in the proposed algorithms they are only used as

normalized smoothers between the local models.

78
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Local model networks

A more closely related network using Gaussian functions as smoothers is the Connectionist

Normalized Linear Spline (CNLS) network of [Jones et. al 90]. This nonlinear adaptive

network has in fact an identical model structure to that of the local PLS algorithms (equa-

tion 4.2), i.e.

f(x) =
MX
m=1

wm(t)fm(x) =
MX
m=1

�m(t)PM
j=1 �j(t)

0
@ PX
p=1

bmpxp + bm0

1
A (6.2)

However, the parameters bmp and bm0 are estimated by a gradient descent algorithm,

and the optimization is global in contrast to local as in the proposed algorithms. The CNLS

has only been tested on low dimensional problems, where the number of local models and

centers of the �m's are �xed and determined in advance, whereas the standard deviations

are trained to produce slightly overlapping functions. In [Jones et. al 90] it is suggested

that the centers can be trained in a similar manner, by having the Gaussian functions to

tend towards those regions of input space where the error is greatest, but no further details

are given.

The approach in [Stokbro et al. 90] has many of the same features. However, the centers

are now determined by an adaptive clustering algorithm, and the standard deviations are

computed based on the density of local samples, before all the parameters bmp and bm0 are

globally optimized by applying a conjugate gradient descent algorithm. When tested on

a few problems of predicting the evolution of time series, the approach has yielded good

results, even on a medium dimensional example (P = 6). The number of training samples

has been fairly high, though.

Even more similar is the recently published RBFN approach of [Murray-Smith 94].

Again, the model structure is that of equation 6.2, and the centers of the �m's are again

determined by a clustering algorithm. However, the parameters bmp and bm0 are then locally

optimized for each model m, by using weighted least squares with a diagonal weighting

matrix containing the weights wm(x
n) corresponding to local sample xn. Only the Nm

local samples belonging to model m are used in the optimization, just as in the local PLS

algorithms. The approach has only been tested on the low dimensional robot data set

presented in section 5.4, but with good results. The NRMSEP was 19%, which is better

than for any of the local PLS algorithms.
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Further discussion

The two main novelties in the proposed algorithms are the iterative way of decomposing

into local models, and the use of local PLS modeling in the optimization of the parameter

values.

What is new with this iterative approach is the de�nition of the term splitsample.

Other iterative algorithms such as LSA [Johansen and Foss 93], MARS [Friedman 88] and

CART [Breiman et al. 84] all decompose by examining several di�erent decompositions in

each step, and selecting the one which minimizes a global error criterion. In the general

Algorithm 1 of this thesis only one decomposition is carried out. This will probably

mean a faster algorithm. The drawback is that the approach is very dependent on �nding

the correct splitsample, in the sense that the splitsample is the position where a new local

model has the greatest potential for improving the prediction accuracy. In other words,

as the identi�cation of the splitsample is based on estimation errors, it all boils down to

de�ning a measure involving these errors in the best possible way. This is the critical point

of all the proposed algorithms. The error measures de�ned in this thesis are perhaps not

the optimal ones.

It can also be argued against the approach that inserting a local model in the region

having the anticipated largest deviation (a max error), will not necessarily reduce the

prediction error (an expectation error). Perhaps including a new model elsewhere would

have reduced the prediction error more. Selecting an outlier as the splitsample and inserting

a local model around that outlier is an illustration of this problem. Thus, such possibilities

have tried to be eliminated by introducing the concept of consistent errors.

A somewhat similar way of using the estimation errors is applied in the HSOL learning

algorithm [Lee and Kil 89] for Gaussian RBFN. A new radial basis function is added to

the network when the estimation error of a sample is larger than an error margin, and the

sample is not yet covered by a Gaussian function. As in the approach proposed in this

thesis, the center of this new Gaussian function is the sample itself.

Applying PLS as the local modeling technique is another feature which distinguishes the

proposed algorithms from others. To the best of my knowledge, this has not previously been

done. The most comparable is the use of local PCR models in [Næs and Isaksson 91]. The

local models are locally optimized. In e.g. the LSA algorithm [Johansen and Foss 93] the

optimization of the parameter values is global, whereas in the approach of [Murray-Smith 94]

a weighted local optimization is applied. However, both of these approaches use (weighted)

least squares optimization. When using local PLS modeling neither global, nor weighted

local optimization appears possible. As an experiment though, Algorithm 1a was tested

on the low dimensional robot data set (where optimal PLS and MLR are equal), using

both global and locally weighted optimization. Global optimization reduced the NRMSEP

to 22%, whereas the result for the locally weighted optimization was on the same level as

for the local PLS algorithms.
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Using prototype vectors (i.e. the splitsamples) and allocating each sample in the in-

put space to the class with the closest prototype vector is not a novel approach, but is

frequently used in e.g. data compression, where the method is known as vector quan-

tization [Nasrabadi and King 88]. Much the same way of thinking is also applied in

[Næs and Isaksson 91] where each sample is allocated to the class for which it has the

largest membership value. The concept of membership value is analogous to using the

weights from the validity functions, as is done in this thesis.

What is gained is more �exible shaped local regions, as opposed to e.g. the regions in

LSA and MARS where the boundary planes are limited to being perpendicular to one of

the main axes.

The drawback is that adding a new model will change all the surrounding models, as a

number of samples contributing in the computation of these local models are removed and

instead used in the formation of the new local model. All the surrounding models will then

slightly di�er from the old ones in the previous iteration. This is partly avoided in LSA

since a new decomposition is restricted to cutting one hyperrectangular box in two pieces

i.e. replacing one of the old models by two new. However since the models are globally

optimized, more than just that one could be a�ected.

All the centers, �m, of the local validity functions are �xed at the splitsamples, during

the whole modeling process in the local PLS algorithms. In other approaches, such as the

HSOL learning algorithm, the centers are iteratively updated. One possible way of doing

this in the proposed algorithms is adaptive adjustment of the centers, by de�ning �m to

be the mean vector of all the input training samples in class m (center of `mass'), and not

the splitsample. The validity functions will then automatically adapt to where the actual

data are gathered in a local region.

Another possible improvement is adaptive adjustment of the smoothing parameters,

�m, as the training progresses. Start with a relatively large value (i.e. much overlap when

`few' models), which is slowly decreased as the number of local models increases (i.e. less

overlap when `many' models). In other words, �newm = (1� ")�oldm in each iteration. This is

analogous to decrementing the radius parameter in e.g. the HSOL and the RAN learning

algorithms for Gaussian RBFN.

The number of neighboring samples, K, is another external parameter that could be

adjusted. One possible way is to replace the parameter by de�ning two new external param-

eters K1 and K2, where K1 is the number of neighboring samples used in the computation

of the mean and median sample error, and K2 is the number of consistent samples. The

value of K2 is then typically (much) less than that of K1. This is advantageous when

the data are rather noisy, which, on one hand, requires a small value of K (= K2) for

the consistency heuristic to make any sense without aborting the algorithm, but, on the

other hand, a large value of K (= K1) is preferable for the sample error to yield a good

description of the error behavior. The drawback is the inclusion of yet another external

parameter to be optimized.
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In the proposed algorithms there are three (four) external parameters, K, �, and Aw,

whose values must be speci�ed by the user. In addition, the consistency heuristic and the

type of error measure must be selected as well. This is a large number compared to e.g.

the ASMOD algorithm, where only the degree of the spline needs to be determined, but

not compared to e.g. the HSOL learning algorithm for Gaussian RBFN. In this algorithm,

up to nine parameters can be speci�ed by the user. Generally, a large number of external

parameters provides a lot of �exibility in the modeling, but also increases the risk of

choosing suboptimal parameter values.

One general problem for nonlinear modeling techniques is the dependency on large

data sets for training. More samples are needed to obtain reliable models with these

techniques than with linear modeling techniques. Unfortunately, this is a problem that has

no solution, as the number of samples is limited and collecting new ones is usually either

a very time-consuming and expensive process, or simply impossible. Often, the result for

local modeling techniques is fewer local models than what is really su�cient to model the

system, and less accurate predictions. Local modeling is, therefore, only advisable when

the number of training samples is relatively high, compared to the expected number of

local models.

6.2 Future work

Future work, with the algorithms proposed in this thesis, could be carried out along the

following di�erent lines:

Tests

Additional tests with the present implementation of the algorithms could include:

� How dependent are the prediction results on the values of K and Aw? More time

should be spent systematically testing di�erent values for each data set, in order to

�nd the optimal ones, giving an even lower RMSEP.

� K is assumed to be proportional to the number of training samples, Ntrain. Perhaps

it will be possible to �nd a good estimate of the optimal number of K, approximately

as a function of Ntrain i.e. K = h(Ntrain)?

� Experience with other modeling techniques using a weighting function

[Næs and Isaksson 92, Carlin 91] shows that the shape of such a function is not crit-

ical. How true is this for the local PLS algorithms?

� It was initially assumed that the proposed algorithms would be sensible to outliers

and extremely noisy data sets, because the error measures are based on computing

estimation errors. However, no strong indications of such tendencies were observed

in the tests. The e�ect of removing possible outliers were not investigated, though.

This should be analyzed more thoroughly.
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� Both Algorithm 2 and 3 (see section 4.6) are anticipated to have better prediction

ability thanAlgorithm 1, but will be considerably slower. Exhaustive testing should

be carried out in order to validate (or falsify) this hypothesis, and perhaps estimate

if the gain is substantial.

Modi�cations

Additional modi�cations to the present algorithms, which could be implemented and tested

include:

� Replacing the present type of local modeling (linear PLS on the original input vari-

ables), by �rst projecting the input space onto A
� latent variables (with A

� being

possibly di�erent from Aw, the dimension of W ) found by linear PLS or PCA, and

then applying either locally weighted MLR for each local model, as in the approach

of [Murray-Smith 94], or a globally optimized weighted least squares algorithm, as in

[Johansen and Foss 93], of y on these latent variables. This modi�cation is motivated

from the hypothesis that it is possible to improve the predictions, by using nonlinear

techniques on the most signi�cant latent variables identi�ed by PLS or PCA. In that

respect, the modeling will also be similar to the approach in [Næs and Isaksson 91],

but with the additional advantage that weighting of local samples will be possible.

� Adaptive adjustment of �m and �m, and introduction of the two external parameters,

K1 and K2, as suggested in section 6.1.

In both these modi�cations, the iterative decomposition into local models is retained

as a fundamental part of the algorithms.

Theoretical justi�cation

The properties of the algorithms should, if possible, be more theoretically explained.

Among the aspects in such a statistical foundation are the rate of convergence and es-

timated accuracy of the modeling technique.
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Conclusions

In this thesis several new local modeling algorithms, for doing nonlinear empirical modeling,

have been proposed. The algorithms were iterative, and based on error analysis of samples,

when it came to �nding the local models. Linear PLS was applied as the local modeling

technique. Each local model was optimized by using only local subsets of samples in

the parameter estimation. The local models were interpolated by means of normalized

Gaussian weight functions in a principal component subspace, yielding a smooth nonlinear

total model. The best of the local PLS algorithms were tested on both low and high

dimensional modeling problems. The �ndings were:

Prediction ability. Under the assumption that there was distinct nonlinearity in the

modeling problem, the algorithms provided a smooth total solution f , with more

accurate predictions in terms of mean squared error than linear techniques regardless

of the dimensionality, P , of the problem.

Novelties. The two main novelties introduced were the iterative decomposition into local

models by de�ning splitsamples, combined with the use of PLS as the local modeling

technique. This made the algorithms adaptable to both low and high dimensional

problems.

Samples. As with all local modeling algorithms, relatively many training samples were

necessary to provide good local models, and thereby a good total solution. The

samples should be well-distributed and representative of the system one would like

to model.

Parameters. Tuning of the three external parameters, in order to �nd the optimal values,

was computationally demanding. Therefore, the results obtained with the algorithms

could probably be improved, by selecting other combinations of parameter values.

Interaction. Determination of the optimal number of latent variables in PLS based on

cross-validation had a tendency to result in a too large number of variables. Inter-

active control during the training process might be useful, although the algorithms

could be run without any user-interaction as well.
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Implementation

The source code was �rst programmed on a Macintosh IISX, but later transferred to a SGI

work station. The programming tool was the mathematical matrix laboratory, MATLABa.

Many of the procedures were supported by the �PLS_toolbox� written by Barry M. Wise.

Speed was not one of the important subjects investigated in this thesis. The source

code was therefore not programmed very e�ciently. Improvements can be made, especially

when it comes to computing the K nearest neighboring samples for each training sample.

At the moment, this is done using a built-in sort procedure in MATLAB. Perhaps a more

e�cient algorithm [Fukunaga and Narendra 75] should be used in future implementations.

A few assumptions regarding the PLS algorithm had to be made. The maximum number

of PLS factors was set to 10, except in the NIR spectroscopy examples. As suggested in

[Martens and Næs 91], at least 4 samples per PLS factor were required. The minimum

number of samples in a local region was also set to 4. In addition, the optimal number

of PLS factors was found automatically using cross-validation (with V = 10) on the local

samples. The only exception again being in the NIR spectroscopy examples, where the

number was manually selected.

The complete source code is available on request to the author.

aMATLAB is a registered trademark of The Mathworks, Inc.
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De�nitions

B.1 Average correlation

With the average correlation, 	r, of a matrix X is meant the mean value of all the absolute

valued inter-variable correlation coe�cients. Thus, 	r is a number between 0 and 1, which

describes the internal dependencies in the input variables. If R is the correlation coe�cient

matrix of X, having size P � P and with general element Rij, this can be expressed

mathematically as

	r =
2

P (P � 1)

PX
i<j

jRijj (B.1)

with P (P�1)

2
being the total number of unique inter-variable coe�cients in R.

B.2 Sample statistics

For a realisation, (x1; x2; :::; xN ) = x, of size N of a stochastic variable, x, the sample mean,

	x = 	x(x), and sample variance, S2 = S
2(x), are de�ned as

	x =
1

N

NX
i=1

x
i (B.2)

and

S
2 =

1

N � 1

NX
i=1

(xi � 	x)2 (B.3)

The sample standard deviation, S, of the realisation is de�ned as S = S(x) =
q
(S2).

With a realisation, (z1; z2; :::; zN ) = z, of size N of another stochastic variable, z, the

sample covariance of the two realisations, C = C(x; z), is de�ned as

C =
1

N � 1

NX
i=1

(xi � 	x)(zi � 	z) (B.4)

For realisations of A di�erent stochastic variables, t1; :::; tA, the sample covariance matrix,

P, is an A� A matrix with general element Pij = C(ti; tj).
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B.3 Distance metrics

When measuring distances between two samples, ti; tj 2 RA, the distance metric chosen

is important.

The Euclidian norm is de�ned as

kti � tjk =

vuut AX
a=1

(tia � t

j
a)2 =

q
(ti � tj) (ti � tj)

T
(B.5)

and is the natural metric in a Euclidian A-dimensional hyperspace.

The Mahalanobis metric is de�ned as

kti � tjkM =
q
(ti � tj)P�1 (ti � tj)

T
(B.6)

where P is the covariance matrix of T. It is reduced to the Euclidian metric if P equals

the identity matrix I.
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