
Bounded RDF Data Transformations

Martin G. Skjæveland
martige@ifi.uio.no

Audun Stolpe
audus@ifi.uio.no

Department of Informatics
University of Oslo, Norway

ABSTRACT
RDF data transformations are transformations of RDF
graphs to RDF graphs which preserve in different degree
the data content in the source to the target. These transfor-
mation therefore give special attention to the data elements
in such graphs—under the assumption that data elements
reside in the subjects and objects of RDF triples, and the
peculiar fact that the set of vertices and set of edges in an
RDF graph are not necessarily disjoint. Bounded homomor-
phisms are used to define these transformations, which not
only ensure that data from the source is structurally pre-
served in the target, but also require, in various ways, the
target data to be related back to the source. The result of
this paper is a theoretical toolkit of transformation charac-
teristics with which detailed control over the transformation
target may be exercised. We explore these characteristics in
two different RDF graph representations, and give an algo-
rithm for checking existence of transformations.

1. INTRODUCTION
One of the great benefits of RDF for the purposes of shar-

ing information is its simple and uniform structure: If one
has two separate RDF graphs with a consistent system of
identifiers, then one can merge the two graphs simply by tak-
ing their union. This is because an RDF graph has no privi-
leged element—it’s all triples!—whence each RDF triple is a
meaningful piece of information in its own right. Moreover,
if an entity occurs as, say, a subject in two distinct triples,
the two triples will merge around their common element,
and the result is still a (connected) RDF graph.

Notwithstanding this, the method of taking unions will
often be too primitive if one also wants a uniform repre-
sentation of the data thus collected. Say for instance that
one wishes to integrate information about researchers and
their affiliates from various disparate sources. The domain
of persondata is rich in examples of overlapping vocabu-
laries, e.g., “Friend of a Friend” (FOAF) [4] and “Semantic
Web for Research Communities” (SWRC) [20]. Suppose one
wants all the information one collects to be represented in
terms of the FOAF vocabulary, although some sources are
marked up with SWRC. Then a simple union is not helpful.
Rather one would need a way of transforming data by swap-
ping SWRC elements for FOAF elements whilst, as far as it
goes, preserving the information content of all the involved
sources. A different setup of the similar problem in need of
the same mechanics is the case of transforming data from
other formats than RDF, say tabular data as from spread-
sheets or relational databases, and possibly multiple sources,

to RDF. There exists many tools which can do this trans-
lation.1 However, such a translation is either every naive,
typically translating each row in a spreadsheet into an iso-
morphic star-shaped RDF graph, or require manual design.
In the first approach, the result is obviously a faithful repre-
sentation of the original data, but the structure of the data
will be very crude and is not likely to satisfy the require-
ments posed by a RDF vocabulary suitable for the data in
question. By using a hand-crafted mapping specification
and an apt tool one can shape the data into the vocabulary
one wants, but now the answer to the important question of
whether the translated data remains a faithful representa-
tion of the original sources is necessarily no longer apparent.
Both these scenarios appear frequently in the process of con-
suming and publishing Linked Data, and a proper theoret-
ical foundation for deciding such questions will help moti-
vate transformation choices and increase the overall quality
of Linked Data.

There is more than one way to characterise this problem.
Although each amounts to the same formally, they tend to
give rather different gestalts to the central issue. Looked at
from one angle, our problem description is a data exchange
problem: Given one source of data marked up in one way,
one wants to migrate the data to some target repository in
a way that conforms to the target’s schema. Yet, it differs
from the problem studied in [5] in that our setup takes the
target to be fixed and possibly non-empty. Looked at from
another angle, the problem concerns how to extend an RDF
graph conservatively. More specifically, it concerns the prob-
lem of how to ensure that a transformation of source data
into a target repository does not interfere with the assertive
content of the source. Yet, it is unlike logic-based conserva-
tive extensions [7, 11, 15] in that the logical vocabulary is
being replaced as the source is ‘extended’ into the target.

In this paper, we will tend to prefer the latter point of view
and to speak of conservative transformations of a source
into a target. The same problem is studied in [17, 19], but
with an emphasis on SPARQL [16] construct queries as one
standardised means of repurposing RDF data, and with the
requirement that data elements are copied unchanged from
source to target. The scope of the present paper is more
general: We study the class of RDF data transformations
defined from homomorphisms that substitute one predicate
for another throughout a set of RDF triples and map sub-
jects and objects injectively from source to target—under
the condition that the predicate in question is not also a
subject or object. We shall call these homomorphisms p-

1See, e.g., http://www.w3.org/wiki/ConverterToRdf.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30839297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.w3.org/wiki/ConverterToRdf

maps and we measure the effects on the RDF graphs them-
selves. In particular, we shall show how different bounds on
the p-maps reflect different ways that two RDF graphs may
interlock in a reciprocal simulation that may deemed conser-
vative in the same core sense. The aim of this exercise is to
give a fuller exposition of p-maps as such, and a more com-
prehensive inventory of the kind of bounds that one might
wish to consider. These bounds may be used to exercise de-
tailed and differentiated control over how the vocabulary of
RDF graphs is transformed into that of another: Different
predicates may be restricted in different ways depending on
the intended interpretation of those predicates. Our homo-
morphisms differ from those found in [2, 1] which essentially
rename blank nodes in order to mimic the semantics of RDF
as defined in [9]. Instead our definition of homomorphism
resemble and is built upon standard graph homomorphisms
[10]. To the best of our knowledge, our particular notion of
an RDF homomorphism and the use of it is novel.

The paper is organised as follows: The next section is the
prominent section of the paper and is where we set our no-
tion of RDF graphs and homomorphisms and bounded maps
of such graphs, and give the results for transformations de-
fined from these maps. Section 3 gives a different formula-
tion of a restricted version of p-maps and an algorithm for
deciding existence of such p-maps of RDF graphs. Section 4
ends the paper with a summary and ideas for future work.

2. RDF TRIPLESETS, HOMOMORPHISMS
AND BOUNDS

We first introduce a minimum of RDF [12, 9] in order to
setup our formal apparatus. Let U , B and L respectively
denote pairwise disjoint, fixed and infinite sets of RDF URI
references, blank nodes and literals [12], and let U := U ∪
B ∪ L denote the union of these sets. Define the set of
RDF triples as the set T := (U ∪ B) × U × U . An RDF
triple is commonly written as a sequence of its elements,
e.g., ~t := 〈a, p, b〉. An RDF tripleset S is a finite set of
RDF triples, S ⊂ T . The set of vertices of an RDF triple
~t := 〈a, p, b〉, denoted V (t), is the set {a, b}. The set of
edges of ~t, denoted E(~t), is the set {p}. We naturally extend
these notions to triplesets; the set of vertices and edges of
an RDF tripleset S is defined as follows: V (S) := ∪~t∈SV (~t)

and E(S) := ∪~t∈SE(~t). We let U(S) := V (S)∪E(S) denote
the set of all elements occurring in S.

Remark 1. Even though we use standard graph termi-
nology with the terms ‘vertex’ and ‘edge’ for the elements
occurring in RDF triples, RDF graphs, as defined in [12],
are not graphs in the common sense, but sets of triples.
Even so, these sets are often represented and considered as
graphs. The problem arises when a predicate also occurs in
subject or object position, e.g., as in the (axiomatic) triple
〈rdf:type, rdf:type, rdf:Property〉 [9]. Figure 2 illustrates
both why the graph representation is natural, and when it
falls short. To highlight this subtlety and avoid any confu-
sion, we choose to call RDF graphs RDF triplesets, as is
done in [8].

2.1 RDF Homomorphisms
We now introduce one of the most central constructions

of this paper:

Definition 1 (RDF Homomorphism). Let S and T
be RDF triplesets, then an RDF homomorphism h of S to
T is a function h : U(S) → U(T) which induces a function
h : S → T such that h(〈a, p, b〉) = 〈h(a), h(p), h(b)〉 ∈ T .

Let h be an RDF homomorphism of S to T . We let h(S)
denote the RDF tripleset h(S) := {h(~s) | ~s ∈ S}. It is clear
that h(S) ⊆ T . RDF homomorphisms, as homomorphisms,
reflect the structure of the source in the target. However,
they are extremely undemanding with respect to the precise
form of this simulation, as the following example shows:

Example 1. Let S be some (non-trivial) RDF tripleset,
e.g., the set of triples in some FOAF file and T the singleton
RDF tripleset T := {〈u, u, u〉}. Then the mapping h :=
{a 7→ u | a ∈ U(S)} is an RDF homomorphism of S to T .

Needless to say, therefore, an RDF homomorphism cannot
in general be said to preserve the information content of its
domain—in any sense we can make of the term ‘informa-
tion content’. Hence, we need to look for a more restrictive
subset. As a minimal requirement, we should not allow our
homomorphisms to identify distinct nodes, i.e., they should
be injective on vertices. This is because we adopt the oper-
ative assumption that data reside primarily in the vertices
of RDF triples, and transformations must not collapse data
as is done in Example 1. It is also important to note that
our transformations only consider the graph-like structure
of the source (and also the target, as we shall see later)
and not the semantics of possible vocabularies used by the
RDF triplesets. Hence, our notion of faithful or conserva-
tive transformation is purely structural and does not rely
on the existence of well-defined RDF vocabularies or rea-
soning capabilities. It is the task of p-maps to preserve the
consistency and systematicity of the relations between data
elements:

Definition 2 (p-map). A p-map h of RDF tripleset S
to RDF tripleset T is an RDF homomorphism h : S → T
where h(u) = h(v) implies u = v, for all u, v ∈ V (S).

For the remainder of this subsection we record some simple
descriptive facts about p-maps which are immediate from
Definition 1 and Definition 2. Requiring that h is injective
on the vertices in the source ensures that the source data in
is embedded into the target, or, stated differently, the target
data (possibly) extends the source data:

Proposition 1. If h is a p-map h : S → T , then
V (h(S)) ⊆ V (T).

The set of vertices and set of edges of an RDF tripleset
need not be disjoint. This is an idiosyncratic and important
feature of RDF which, as we shall see, will have ramifica-
tions throughout this paper. For now we record that edges
which also appear as vertices in the source must abide by
the condition placed on vertices. This again affects triples
containing such edges forcing them to be mapped injectively
from source to target:

Proposition 2. Let S be an RDF tripleset and h any p-
map of S, then h(~t1) = h(~t2) implies ~t1 = ~t2 for RDF triples
~t1,~t2 such that E(~t1) ⊆ V (S) and E(~t2) ⊆ V (S).

A natural strengthening of the injective mapping of the
source vertices is to require that they are mapped by the
identity function. Mapping data with the identity function
may not seem to be much of a transformation, however,
in many cases this is the correct choice, at least for source
vertices occupied by instance data and not vocabulary ele-
ments:

Example 2. Consider the following source RDF tripleset
and assume it is to be transformed into using the FOAF
vocabulary.2

1 dbp:Bernstein rdf:type swrc:Person ;
2 swrc:supervisor dbp:Ullman .

The p-map

h = {dbp:Bernstein 7→ dbp:Bernstein,
dbp:Ullman 7→ dbp:Ullman,
rdf:type 7→ rdf:type,
swrc:Person 7→ foaf:Person,
swrc:supervisor 7→ foaf:knows}

represents a probable transformation of this dataset, result-
ing in the following target RDF tripleset:

1 dbp:Bernstein rdf:type foaf:Person ;
2 foaf:knows dbp:Ullman .

Note that what can be considered the data elements in this
dataset, dbp:Bernstein and dbp:Ullman, commonly also called
individuals or instances, are mapped with the identity func-
tion. In the examples that follow we will map elements in
the source not listed in the specification of the transforma-
tion with the identity function. These elements will always
be what we coin ‘data elements’.

Under the assumption that p-maps require the identity map-
ping of source vertices they exhibit some especially strong
features, which follow easily from the preceding propositions:

Proposition 3. If h is a p-map h : S → T where h(u) =
u for all u ∈ V (S), then V (S) ⊆ V (T).

Proposition 4. Let S be an RDF tripleset and h any p-
map of S where h(u) = u for all u ∈ V (S), then h(~t) = ~t
for every RDF triple ~t such that E(~t) ⊆ V (S).

As per Definition 2, p-maps are still too lenient a notion
of simulation, as they do not prevent interference with infor-
mation in the source (recall that we are viewing our problem
as a problem of conservatively extending the source into the
target). Such interference arises in the case where the tar-
get already contains data elements equal to those coming
from the source, and where the source is rewritten into the
vocabulary that relates those elements. In such cases the
transformation may have unexpected side effects:

2In all code examples we assume prefixes are correctly set:
swrc: http://swrc.ontoware.org/ontology#,
dbp: http://dbpedia.org/resource/,
foaf: http://xmlns.com/foaf/0.1/,
vcard: http://www.w3.org/2006/vcard/ns#, and
ex: http://example.net/.

For brevity, first names have been removed from identifiers,
e.g., the identifier dbp:Ullman should be dbp:Jeffery_Ullman.

Example 3. Put S := {〈a, p, b〉}, T1 := {〈b, q, a〉} and
T2 := {〈a, q, b〉}. Let h be the identity on a and b and put
h(p) = q. Then using h to rewrite S into T2 produces T2

itself, which is unproblematic if one already deems q a suit-
able replacement for p. However, rewriting S into T1 yields
the tripleset {〈a, q, b〉 , 〈b, q, a〉} which is not necessarily con-
sistent (in an intuitive sense) with S. For instance, put
p = ex:doctoralAdvisor and q = swrc:supervisor. Then S
says about a that his or her doctoral advisor is b, whilst the
extension of S into T1 modulo h says that a and b are each
others’ doctoral advisors.

2.2 Bounds
Example 3 shows that a transformation of a source into

a target needs to be sensitive to the information already
contained in the target in order to exclude those targets
that are intuitively incompatible with the source. What is
needed is a way to reflect the structure of the target back
into the source in such a way that two RDF triplesets so
related may be said to interlock in a reciprocal simulation
that is conservative in some desired sense. This is where our
announced bounds enter the picture:

Definition 3 (Bounded p-map). A p-map h : S → T
is bounded, and called a p1-, p2- or p3-map, respectively, if
it satisfies one of the following conditions. For all a, p, b ∈
U :

〈a, h(p), b〉 := ~t ∈ T ⇒ ∃~s ∈ S . h(~s) = ~t (p1)

〈a, h(p), h(b)〉 := ~t ∈ T or

〈h(a), h(p), b〉 := ~t ∈ T ⇒ ∃~s ∈ S . h(~s) = ~t (p2)

〈h(a), h(p), h(b)〉 := ~t ∈ T ⇒ ∃~s ∈ S . h(~s) = ~t (p3)

The next theorem records the effect the different bounds
on p-maps have on the target of the transformation:

Theorem 1. Let S and T be RDF triplesets, h : S → T
a p-map, and a, p, b ∈ U . Then the following hold:

1. h is a p1-map iff there is no 〈a, h(p), b〉 ∈ T \ h(S).

2. h is a p2-map iff for all ~t := 〈a, h(p), b〉 ∈ T \ h(S) we
have V (~t) ∩ V (h(S)) = ∅.

3. h is a p3-map iff for all ~t := 〈a, h(p), b〉 ∈ T \ h(S) we
have V (~t) * V (h(S)).

4. h is a bounded p-map iff 〈h(a), h(p), h(b)〉 ∈ T implies
〈a, p, b〉 ∈ S.

Proof. We prove only the claim for p1-maps, the proofs
for the other bounds are similar.
⇒) Assume h is a p1-map and let ~t := 〈a, h(p), b〉 ∈ T for

some a, p, b ∈ U . We need to show that ~t ∈ h(S). By (p1)
there is a triple ~s ∈ S such that h(~s) = ~t. Set c := h(a)
and d := h(b) for c, d ∈ V (S) giving ~s = 〈c, p, d〉, since h is
a p-map which must preserve the structure of triples and is
injective on vertices. It follows that h(~s) = ~t ∈ h(S).
⇐) Assume there is no triple 〈a, h(p), b〉 ∈ T \ h(S) and

let ~t := 〈a, h(p), b〉 ∈ T for some a, p, b ∈ U . Then, by
assumption, ~t ∈ h(S), so, since h is a p-map, there must be
a triple ~s ∈ S such that h(~s) = ~t.

Corollary 1. Condition (p1) is strictly stronger than
(p2), and (p2) is strictly stronger than (p3).

S

T

V (h(S)) V (T \ h(S))

h(S)

h
p1
/

× p2
//

p2
//

p3
///

p3//
/

The figure illustrates the transformation of a singleton tripleset S

into the target T with the map h. Triples are illustrated by letting

arrows represent the edge between two vertices, which appear as

dots in the diagram. The image of S under h is indicated by the

dotted ellipse. The set of vertices in the target is partitioned in

two: V (h(S)) and V (T \h(S)). All arrows in the target represent

edges in the image of h. The labelled arrows show triples which

are typically permissible under the bound indicated by its label:

A p1-map (/) restricts the set of triples with edges in the image

under h to only those triples (which are already) in the image of

S under h. A p2-map (//) also allows triples with edges in the

image under h if none of the vertices are in V (h(S)), i.e., a p2-

map may not relate a vertex in V (h(S)) with a vertex V (T \h(S))

(or vice versa). A p3-map (///) additionally allows triples with

edges in the image under h if one of the vertices is in V (h(S)).

No bounded p-map allows triples with edges in the image under

h to relate vertices in V (h(S)) if they are not related by the

mapped edge in the source (×). Bounded maps only control

target triples with edges in the image under h, therefore are only

such triples illustrated.

Figure 1: Bound characteristics exemplified.

Proof. Follows easily from Theorem 1.

Theorem 1 shows that bounded p-maps restrict, with dif-
ferent degree of strength, the occurrences of triples in the
target using predicates to which elements from the source
are mapped; see Figure 1 for an exemplification of the the-
orem. This does not mean that the target may not contain
triples not coming from source; the target may contain more
information in the form of triples, as long as these triples do
not have source edges that map to them. Indeed, a p1-map
need not even be injective:

Example 4. Assume the RDF triplesets S := {〈a, p, b〉 ,
〈a, q, b〉} and T := {〈a, r, b〉 , 〈c, s, d〉}. Then {p 7→ r, q 7→ r}
is a p1-map of S to T , but it is neither onto nor injective.

As the example illustrates, edges from the source tripleset
may be identified in the target if they relate the exact same
set of pairs in the source. The identification of such edges
may be thought of as a kind of limited generalisation.

The next example illustrates the use of bounded p-maps
and implications of Theorem 1 on “real” data.

Example 5. Let S be the following RDF tripleset

1 dbp:Bernstein rdf:type swrc:Person ;
2 swrc:supervisor dbp:Ullman .
3 dbp:Ullman swrc:supervisor dbp:Karplus .

and let h be the p-map h = {swrc:supervisor 7→ foaf:knows,
rdf:type 7→ rdf:type, swrc:Person 7→ foaf:Person}. We now
give permissible target RDF tripleset for transformations un-
der different—or no—bounds on h. To easily create different
RDF triplesets, let Tx denote the RDF tripleset obtained by

dbp:Bernstein dbp:Ullman

"Jeffery D. Ullman"

dbp:Karplus

dbp:Siegel

dbp:Fagin dbp:Moses

foaf:Person

rdf:Property

rdf:type

foaf:knows
/

foaf:knows///

rdf
:ty

pe

/
foaf:knows

/

foaf:knows
×

foaf:knows
//

fo
af
:n
am
e

The solid arrows span the graph which is the common

way of representing the RDF tripleset given in Exam-

ple 5. The dotted arrow represents the RDF axiomatic triple

〈rdf:type, rdf:type, rdf:Property〉 [9]. Given the transforma-

tion setting from this example, blue arrows (/) indicate triples

which are required under a p-map of the source to the target, and

are the only ones permissible using the predicates rdf:type and

foaf:knows under a p1-map. The green arrow (//) is permissible

for a p2-map, while the purple (///) is allowed under a p3-map.

The red arrow (×) is not permissible under any bounds on the

map. The grey arrow () is not affected by the specified map.

Figure 2: Visualisation of an RDF tripleset, and
bounded p-maps.

collecting the lines from the code listing below as indicated
by x, where x is an interval of line numbers, e.g., T1–3 is the
RDF tripleset consisting of the triple in lines 1, 2, 3. The
tripleset below is illustrated in Figure 2.

1 dbp:Bernstein rdf:type foaf:Person ;
2 foaf:knows dbp:Ullman .
3 dbp:Ullman foaf:knows dbp:Karplus .
4

5 dbp:Fagin foaf:knows dbp:Moses . # not p1
6 dbp:Bernstein foaf:knows dbp:Siegel . # not p2
7 dbp:Karplus foaf:knows dbp:Bernstein . # not p3
8 dbp:Ullman foaf:name "Jeffery D. Ullman" .

Recall Corollary 1 and the logical implications between the
bounded and unbound p-maps: all p1-maps are p2-maps, all
p2-maps are p3-maps, and all p3-maps are p-maps. Any
RDF tripleset which is a superset of T1–3 is a permissi-
ble tripleset target under h with no bounds, specifically, the
tripleset T1–8 is a valid p-map target. An RDF tripleset not
containing the triples in T1–3 will not satisfy the homomor-
phism condition of p-maps. The tripleset T1–5 is not a valid
target if h is set to be a p1-map. Such maps do not allow
new data elements to be introduced by edges in the image of
h—new data elements meaning elements not mapped to from
the source, e.g., both dbp:Fagin and dbp:Moses are “new” as
they occur in the target not as a result of the transformation
of the source. The same RDF tripleset is however permissi-
ble under bound (p2). This condition allows introduction of
such new elements, as long as triples which contain new el-
ements do so in both vertices, i.e., mixing new and old data
elements is not allowed. Since dbp:Fagin and dbp:Moses do
not occur in the source, the tripleset T1–5 is a valid target,
while T1–6 is not, given that dbp:Bernstein does occur in
the source and dbp:Siegel does not. However, this triple-
set does not break condition (p3). Maps of type p3 allow
mixing new and old elements as long as the old element oc-
curs in the same position in the target as in the source, e.g.,

since 〈dbp:Bernstein, foaf:knows, dbp:Ullman〉 ∈ h(S), then
〈dbp:Bernstein, foaf:knows, dbp:Siegel〉 is an acceptable tar-
get triple under bound (p3). The triple in line 7 is not per-
missible in a target under any bounds on h. No bounded
p-map allows old data elements to be related in new ways
by edges originating from the source. On the other hand,
the triple in line 8 is accepted by all bounds on the transfor-
mation described by h. The reason being that foaf:name is
not in the range of h and p-maps may only control triples
containing edges in its range.

The important feature of bounded p-map is that they for-
bid new relationships between data from the source using
target representatives of source edges, and that data which
does not originate from the source may use these representa-
tives only according to the bound on the map: p1-maps are
suited for those parts of a dataset to which one would wish to
remain absolutely faithful, typically the domain-specific in-
formation that is collected and managed by the issuer of the
dataset, i.e., data which does not originate from the source
may not use p1-mapped edges at all. A p2-map could be
used when domain-specific knowledge is to be merged from
two different sources whilst keeping the information from
each of the sources unchanged. It is more forgiving than a
p1-map since it allows a relation to grow as long as every
added pair relates new elements only. Maps of type p3 are
typically applied to vocabulary elements considered a part
of the general-purpose vocabulary or to relations one wants
to extend in the transformation. For instance, applied to
rdf:type, it allows types to be added to source elements—
given that those types are not already represented in the
source, since, as illustrated by Example 3, this can disturb
the representation of the source in the target.

While it is fairly immediate that bounded p-maps can be
an instrument for data integration and data exchange of
RDF data, observe that bounded p-maps may also play a
role in data fusion, which is defined as “the process of fusing
multiple records representing the same real-world object into
a single, consistent, and clean representation” [3]. Although
bounded p-maps offer no mechanics for how to decide what
data element to choose for a specific property when different
values are available from the different sources and exactly
one is needed, it does allow one to specify for which prop-
erties, i.e., edges, such a choice is required (by requesting
a p1- or p2-map) or not (by using a p3-map—or even an
unbounded p-map).

The next example shows how we can exercise differen-
tiated control over the transformation target by applying
different bounds to different edges in source:

Example 6. Assume the RDF tripleset S contains the
following three triples:

1 dbp:Fagin swrc:firstName "Ronald" .
2 dbp:Fagin swrc:lastName "Fagin" .
3 dbp:Fagin swrc:cooperateWith dbp:Moses .

Let h be a p-map of S:

h = {swrc:firstName 7→ foaf:firstName,
swrc:lastName 7→ foaf:surname,
swrc:cooperateWith 7→ foaf:knows}

It makes good sense to translate the mapping of
swrc:cooperateWith 7→ foaf:knows under (p3), allowing Fa-
gin to add more friends than just his companion, while bind-

ing the translation of his names under (p1) or (p2), depend-
ing on whether the data is to be merged with other data or
not, to ensure that Mr. Fagin does not gain more names
under the transfer.

So far we have established that p-maps may be used as a
formal instrument for structured and non-distortive trans-
formations of RDF data from source to target under appli-
cation of a single mapping. Next, we show that composing
bounded p-maps yields bounded p-maps, meaning p-maps
can be used to ensure a safe transformation the RDF data
also through multiple mappings:

Theorem 2. Let S, T and R be RDF triplesets and h1 :
S → T and h2 : T → R be bounded p-maps. Then h = h2◦h1

is a bounded p-map of S to R, satisfying the weakest bound
of those on h1 and h2.

Proof. We need to check that h is a homomorphism,
that it satisfies the p-map condition, and lastly, that it sat-
isfies the weakest bound of h1 and h2. It is well-known that
the composition of homomorphisms is a homomorphism, see,
e.g., [10]. It is also clear that h must be a p-map, since com-
posing injective functions yields an injective function. By
Corollary 1 the question of whether h satisfies the weakest
bound can be simplified to the case where h1 and h2 are
restricted by the same bound. So assume that h1 and h2

are p1-maps and ~r =: 〈aR, h2(h1(p)), bR〉 ∈ R; we need to
show that there is a ~s ∈ S such that h(~s) = ~r. Since h2 is
a p1-map, there must be a triple ~t ∈ T where h2(~t) = ~r,
and given that h2 is a homomorphism ~t be of the form
〈aT , h1(p), bT 〉, where aT , bT ∈ U(T). Continue using the
same argument with h1 : S → T to arrive at that there is
a ~s = 〈aS , p, bS〉 ∈ S such that h1(~s) = ~t, and h(~s) = ~r as
desired. The cases when the bounds are (p2) or (p3) are
similar.

Example 7. Assume the following tripleset S:

1 dbp:Ullman swrc:supervisor dbp:Karplus .

is transformed into the tripleset T below with the p2-map
h1 := {swrc:supervisor 7→ swrc:cooperateWith}.
1 dbp:Ullman swrc:cooperateWith dbp:Karplus .
2

3 dbp:Fagin swrc:cooperateWith dbp:Moses .
4 dbp:Moses swrc:cooperateWith dbp:Fagin .

This tripleset is in turn transformed using the p3-map h2 :=
{swrc:cooperateWith 7→ foaf:knows} to the target R:

1 dbp:Ullman foaf:knows dbp:Karplus .
2 dbp:Fagin foaf:knows dbp:Moses .
3 dbp:Moses foaf:knows dbp:Fagin .
4

5 dbp:Ullman foaf:knows dbp:Vardi .
6 dbp:Fagin foaf:knows dbp:Vardi .
7 dbp:Vardi foaf:knows dbp:Moses .

These triplesets and maps are illustrated in Figure 3.
By Theorem 2 the composition of the two maps h2 ◦ h1 =
{swrc:supervisor 7→ foaf:knows} is a p3-map of S to R.
Note that if R did not contain the triple in line 5:
〈dbp:Ullman, foaf:knows, dbp:Vardi〉, then the composed map
would be a p2-map even though h2 still would be a p3-map.
The fact that the composition would then be a p2-map is eas-
ily seen in Figure 3, where the triples in R \ h2(h1(S)) (and
excluding the given triple, which is marked by ∗ in the figure)
would not be connected to the triples coming from S.

S : swrc:supervisor T : swrc:cooperateWith R : foaf:knows

dbp:Ullman dbp:Karplus dbp:Ullman dbp:Karplus

dbp:Fagin dbp:Moses

dbp:Ullman dbp:Karplus

dbp:Fagin dbp:Moses

dbp:Vardi

h1 h2

/ /

//

//

/

/

∗///
//
/ ///

Illustration of the three triplesets S, T and R, and p-maps h1 : S → T = {swrc:supervisor 7→ swrc:cooperateWith} and h2 : T → R =

{swrc:cooperateWith 7→ foaf:knows} used in Example 7. The triplesets are divided by a dashed line, and the URI below each graph

indicate the label which is used for all the edges in the graph. A blue (/), green (//) and purple (///) edge specify that the triple

satisfies respectively the bounds (p1), (p2) and (p3) when setting the tripleset immediate to the left as source for the map. The edge

marked by ∗ in the tripleset R is addressed by a comment in Example 7.

Figure 3: Composing p-maps.

2.3 Adding Strength to p-maps
As recorded by Example 5, bounded p-maps control only

edges in its range. An obvious strengthening of p-maps is
therefore to require that the range of the map includes all the
edges of the target. This is easily done by slightly extending
the bounds of Definition 3 and proving the results equivalent
to those of Theorem 1 for the new bounds:

Definition 4 (p+-map). A p+-map h : S → T is such
that E(T) ⊆ range(h), and p1+-, p2+- and p3+-maps are
p+-maps satisfying respectively bounds (p1), (p2) and (p3).
We call these bounds (p1+), (p2+) and (p3+), respectively.

Theorem 3. Let S and T be RDF triplesets, h : S → T
a p+-map, and a, p, b ∈ U . Then the following hold:

1. h is a p1+-map iff there is no RDF triple 〈a, p, b〉 ∈
T \ h(S) (i.e., h(S) = T).

2. h is a p2+-map iff there is no RDF triple 〈a, p, b〉 ∈
T \ h(S) where {a, b} ∩ V (h(S)) 6= ∅.

3. h is a p3+-map iff there is no RDF triple
〈h(a), p, h(b)〉 ∈ T \ h(S).

Proof. We show only the claim for (p3+), the proofs for
(p1+) and (p2+) is similar. Assume h is a p3+-map, then, by
(p3) and Definition 4, for all triples ~t := 〈h(a), p, h(b)〉 ∈ T
where a, b ∈ V (h(S)) we have h(~s) = ~t for some ~s ∈ S. Thus
there can be no triple in T \h(S) where both vertices do not
occur in h(S). For the other direction suppose there is no
triple 〈h(a), p, h(b)〉 ∈ T \ h(S) where a, b ∈ V (h(S)). Then
for every ~t := 〈h(a), q, h(b)〉 ∈ T there is a p ∈ E(S) such
that h(〈a, p, b〉) = ~t ∈ h(S) for every a, b ∈ V (S), which
means that h must be a p3+-map.

Example 8. Let S, Tx and h be as specified in Example 5.
Since we have |E(S)| < |E(T1–8)|, there is no p+-map of S
to T1–8. However, the transformations S → T1–5, S →
T1–6, S → T1–7 are bounded by (p1+), (p2+) and (p3+),
respectively.

Bounds on p+-maps relate to bounds on p-maps in the
following way:

Lemma 1. The bound (pn+) is strictly stronger than the
bound(pn), for n = 1, 2, 3.

RDF homomorphism

p-map

p3-map

p2-map

p1-map

p+-map

p3+-map

p2+-map

p1+-map

Figure 4: Partial order over inclusion of the set of
classes of maps introduced in this section.

Proof. Follows by straight-forward comparison of The-
orem 1 and Theorem 3.

Now, by transitivity of Corollary 1 and Lemma 1, these re-
sults may be compiled to the lattice in Figure 4 showing the
inclusion relationships between the different class of maps
introduced in this section. Note, however, that p-maps and
p+-maps may not be applied in conjunction to produce a
stratified map of a source to target transformation in the
same sense as is for p-maps shown in Example 6. The rea-
son being that p+-maps require a “global” restriction on the
map, that is, that the map range over all the edges in the
target. That is, if some edges in the source are p-mapped
and others p+-mapped, it would mean that all p-mapped
edges are mapped with a p+-map (which of course may be
perfectly fine).

We end this section by describing the strength of p1+-
maps, the strongest bounded map introduced, in terms of
equivalence of maps:

Definition 5 (Map Equivalence). Two RDF triple-
sets S and T are χ-map equivalent if there is there is a
χ-map S → T and a χ-map T → S, for χ ∈ {p, p1, p2, p3,
p+, p1+, p2+, p3+}.

Theorem 4. If h : S → T is a p1+-map, then S and T
are p1-map equivalent.

Proof. By Lemma 1 h is a p1-map, so we need only to
show that there is a p1-map g : T → S. We construct g
as follows: Set g(u) = h−(u) for all u ∈ V (T); this is well-
defined as h is injective on the vertices in S by Definition 2.
For each p ∈ E(T) \ V (T) choose one q ∈ E(S) such that
h(q) = p and set g(p) = q; this is well-defined as h is sur-
jective on the edges in T . By Theorem 3 it is clear that
g is defined for all u ∈ U(T). By construction of g and
Theorem 1 it is clear that g is a p1-map.

For a p2+-map we may have the situation where V (h(S)) ⊂
V (T), which means, by Proposition 1, that there can be no
p-map T → S as not all vertices are carried over from T to
S. In the case that the transformation is a p1-map, we may
have that |E(S)| < E(T)|, by which there may be no p-map
of the source to the target. Here is an example:

Example 9. Let S := {〈a, p, b〉}, T1 := {〈a, q, b〉 , 〈c, q, d〉}
and T2 := {〈a, q, b〉 , 〈c, r, d〉} be RDF triplesets and h :=
{p 7→ q} a map. Then, h is a p2+-map of S to T1, but there
is no p-map of T1 to S. Similarly, h is a p1-map of S to T2,
but there is no p-map of T2 to S.

Theorem 4, Figure 4 and the previous example imply that
p1+-maps is the only class of maps which enforce p-map
equivalent source and target triplesets. A subtle point to
make of this observation is that p1+-maps are the only class
of maps introduced in this paper which force homomorphi-
cally equivalence between source and target, yet this does
not mean that the more liberal bounds are not useful for
the purpose of conservative transformations. On the con-
trary, the weaker bounds than p1+ seem a to be a better
fit especially in the setting of RDF and Linked Data, where
data is frequently merged from disparate and heterogeneous
sources and will often require extra vertices and edges in
the target tripleset in order to “glue” the sources into one
coherent target.

3. BINARY FACTORS, INCLUSION MAPS,
BOUNDS AND COMPUTATION

The purpose of the present section is to give a different
representation of a restricted version of bounded p-maps,
those which map vertices identically, that is more amenable
to computation. Thus, in the following we adopt a stronger
notion of p-maps and require that they always map ver-
tices identically from the source to target, and call these
maps simply restricted p-maps. The reason why we focus
on only these restricted p-maps is that, as motivated ear-
lier in the text and through examples, it is in many cases
natural to translate instance data identically. Also, this re-
striction makes the problem of checking the existence of a
p-map of one tripleset to another polynomial in the size of
the source and target triplesets, a problem which in its gen-
eral form, i.e., Graph Homomorphism, is NP-complete [6].
The following lemma resets the bounds to a more elegant
formulation under the new restriction.

Lemma 2. Let h be a p-map h : S → T where h(u) = u
for all u ∈ U(S). Then the following bounds are equivalent

to those of Definition 3. For all a, p, b ∈ U :

〈a, h(p), b〉 ∈ T ⇒ 〈a, p, b〉 ∈ S (p1)

〈a, h(p), h(b)〉 ∈ T or

〈h(a), h(p), b〉 ∈ T ⇒ 〈a, p, b〉 ∈ S (p2)

〈h(a), h(p), h(b)〉 ∈ T ⇒ 〈a, p, b〉 ∈ S (p3)

Proof. Follows from Definition 3 and Definition 2.

We shall reduce the problem of checking the existence of
a restricted p-map to the problem of checking certain set-
inclusions. The central concept in this endeavour is that
of a binary factor which is essentially an equivalence class
of pairs induced by a common property which relates each
pair in the class. Binary factors allow us to reason about
a restricted p-map vicariously, so to speak, in terms of the
data in the RDF triplesets in question: By checking the set-
theoretic relations between the binary factors induced by
restricted p-map associated edges we check the relationship
between the edges themselves. Of course, we shall have to
reformulate the bounds accordingly, and we do so by trans-
lating them into constraints on inclusion maps, i.e., into con-
straints on maps that take one set to another in which it is
included. Although, binary factors prove a natural simpli-
fied representation of RDF triplesets and therefore interest-
ing in it self, the main justification for this overall increase in
our notational apparatus will come in Subsection 3.1, where
we give an algorithm for computing restricted p-maps that
it is straightforward to formulate, and easy to see is poly-
nomial once we have binary factors at our disposal. Binary
factors and inclusion maps are defined immediately below:

Definition 6 (Binary Factor). Let S be an RDF
tripleset. Then [·]S : E(S)→ P(V (S)× V (S)) is a function
where [p]S = {〈a, b〉 | 〈a, p, b〉 ∈ S}. We call [p]S the binary
factor of p in S, and denote with [S] the set of binary factors
in S: [S] = {[p]S | p ∈ E(S)}.

Definition 7 (Inclusion Map). Let X and Y be fam-
ilies of sets. A function f is an inclusion map from X to Y
iff f(x) ∈ Y and x ⊆ f(x) for every x ∈ X .

On the face of it, inclusion maps of binary factor sets capture
the essence of restricted p-maps of RDF triplesets:

Example 10. Consider the restricted p-map in
Example 3. The binary factors of S and T2 from that ex-
ample are [S] = {[p]S} = {{〈a, b〉}}, [T2] = {[q]T2} =
{{〈a, b〉}}. There is an inclusion map f : [S] → [T2] where
f([p]) = [q]T2 . This map corresponds to the p-map h : S →
T2 in Example 3.

However, not all inclusion maps of binary factors sets induce
restricted p-maps. The case to consider is an RDF tripleset
where an edge also plays the role of a vertex:

Example 11. Put S := {〈a, a, b〉} and T := {〈a, q, b〉},
for distinct p and q. There is an inclusion map f : [S]→ [T],
namely the map where f([a]S) = [q]T , but h := {a 7→ q} is
no p-map of S to T , since h must be a function on U(S)
(and cannot send the element a to both a and q).

In order to rule out such anomalies, we need to isolate the
class of inclusion maps that preserve the property expressed
by Proposition 4:

Lemma 3. Let f : [S]→ [T] be an inclusion map for RDF
triplesets S and T . If there exists a function hf induced from
f by setting

• hf (p) = q whenever f([p]S) = [q]T for all [p]S ∈ [S],
and

• hf (u) = u for all u ∈ V (S),

then hf is a restricted p-map of S to T .

Proof. Assume the preconditions of the lemma hold and
that hf does exist. To show the homomorphism condi-
tion holds, suppose 〈a, p, b〉 ∈ S and f([p]S) = [q]T , then
hf (p) = q. Since 〈a, b〉 ∈ [p]S it follows, since f is an in-
clusion map, that 〈a, b〉 ∈ [q]T , whence 〈a, q, b〉 ∈ T , so we
have 〈hf (a), hf (p), hf (b)〉 ∈ T as desired. Since hf (u) = u
for all u ∈ v(S), then hf respects the identity on vertices in
S, and by Definition 6, [p]S ∈ [S] for all edges p in S, so hf

is defined for all u ∈ U(S).

We single out this class of inclusions maps with a separate
definition, for easy reference:

Definition 8 (b-map). Let S and T be RDF triplesets.
A b-map is an inclusion map f : [S] → [T] if the following
holds: for all [p]S ∈ [S], if f([p]S) = [q]T and p ∈ V (S),
then p = q.

The next result confirms the adequacy of this condition:

Lemma 4. If f : [S] → [T] is a b-map, then there is
a restricted p-map hf of S to T induced by f defined in
Lemma 3.

Proof. Suppose f : [S] → [T] is a b-map. Construct a
function hf : U(S) → U(T) as follows: Put 〈u, u〉 ∈ hf for
each u ∈ V (S), and for every p ∈ E(S) choose a q ∈ E(T)
such that f([p]S) = [q]T , and put 〈p, q〉 ∈ hf ; since f is
an inclusion map, such [p]S ’s and [q]T ’s clearly exist. By
Lemma 3 it suffices to show that hf indeed is a function.
Aiming for a contradiction, let 〈p1, q1〉 , 〈p2, q2〉 ∈ hf and
suppose that p1 = p2 whilst q1 6= q2. There are two cases to
consider:

1. p1 ∈ V (S): Then, hf being the identity on vertices in
S, we have p1 = q1, so p1 = p2 = q1. Since q1 6= q2,
by assumption, it follows that p2 6= q2, so p2 must
be an edge in S. By construction of hf , f([p2]S) =
[q2]T . Given that p2 = p1 ∈ V (S), the b-map condition
applies, so p2 = q2; a contradiction.

2. p1 ∈ E(S): Then, since p1 = p2, by assumption, it
follows that f([p1]S) = [q1]T and f([p2]S) = [q2]T .
Moreover, since p1 = p2 we have [p1]S = [p2]S , whence
[q1]T = [q2]T by the construction of hf , which contra-
dicts the assumption that q1 6= q2.

This concludes the proof.

Indeed, there is a one-to-one correspondence between b-
maps on binary factors and restricted p-maps:

Lemma 5. If there is a restricted p-map h of S to T , then
there exists a b-map fh of [S] to [T], induced by h by setting
f([p]S) = [h(p)]T for all p ∈ E(S).

Proof. Suppose h : S → T is a restricted p-map. It
follows immediately from the p-map condition that the map
defined as f([p]S) = [h(p)]T for all p ∈ E(S) is an inclusion
map of [S] to [T]. It remains to show that f is a b-map.
Suppose f([p]S) = [q]T and p ∈ V (S). From the former we
have h(p) = q, from the latter we have h(p) = p. Therefore
p = q as desired.

Theorem 5. There is a restricted p-map of S to T iff
there exists a b-map of [S] to [T].

Proof. Follows by Lemma 4 and Lemma 5.

Turning to the bounds on restricted p-maps, they are easily
expressed in terms of binary factors. Indeed, a very slight
notational alteration will do:

Theorem 6. The bounds (p1), (p2), (p3), (p1+), (p2+)
and (p3+) on restricted p-maps from Lemma 2 and Defi-
nition 4 correspond to the respective conditions (b1), (b2),
(b3), (b1+), (b2+) and (b3+) on b-maps f : [S]→ [T] listed
below:

∀[p]S ∈ [S].f([p]S) = [p]S (b1)

∀[p]S ∈ [S]. 〈a, b〉 ∈ f([p]S) \ [p]S

⇒ {a, b} ∩ V (S) 6= ∅ (b2)

∀[p]S ∈ [S]. 〈a, b〉 ∈ f([p]S) \ [p]S

⇒ {a, b} * V (S) (b3)

∀([p]S 7→ [q]T) ∈ f.[q]T = [p]S (b1+)

∀([p]S 7→ [q]T) ∈ f. 〈a, b〉 ∈ [q]T \ [p]S

⇒ {a, b} ∩ V (S) 6= ∅ (b2+)

∀([p]S 7→ [q]T) ∈ f. 〈a, b〉 ∈ [q]T \ [p]S

⇒ {a, b} * V (S) (b3+)

Proof. We show only the correspondence between re-
stricted p1-maps and b1-maps, the others are similar.

p1 ⇒ b1) Suppose h : S → T is a restricted p1-map. By
Lemma 5 there exists a b-map f : [S] → [T]. We need to
show that f satisfies bound (b1). Since h is a restricted p1-
map, there is no triple 〈a, p, b〉 ∈ T \h(S), by which it follows
that there is no [h(p)]T ∈ [T] \ [h(S)]. From Lemma 5 we
have f([p]S) = [h(p)]T for all [p]T ∈ [S], so there can be no
f([p]S) ∈ [T] \ [h(S)], add the fact that fh is an inclusion
map, and get f([p]S) = [p]S for all [p] ∈ [S].

p1⇐ b1) Suppose f : [S]→ [T] is b1-map. By Lemma 4 f
induces an restricted p-map hf : S → T . It suffices to show
that hf satisfies the (p1) bound. By the definition of hf

we have, for all p ∈ E(S), that f([p]S) = [hf (p)]T , whence,
since f satisfies (b1), it follows that [p]S = [hf (p)]T , and
there can be no triple 〈a, h(p), b〉 ∈ T \ h(S).

The notion of limited generalisation introduced prior to
Example 5 can now be formalised in terms of binary factors
as injectivity of bounded b-maps. Edges from the source
may collapse in the target only when they relate the same
data elements:

Proposition 5. Let f : [S] → [T] be an inclusion map.
Then f is bound b-map of S to T only if f is injective.

Proof. Suppose that f is a b3-map, and suppose for re-
duction ad absurdum that f is not injective. Then there are

distinct [p]S , [q]S ∈ [S] such that h([p]S) = h([q]S). Since
[p]S 6= [q]S , there is some β := 〈a, b〉 such that β ∈ [p]S
and β 6∈ [q]S (or vice versa, the other case is analogue).
Given that f is an inclusion map, β ∈ f([p]S) and, by as-
sumption, β ∈ f([q]S). However, the fact that β 6∈ [p]S and
{a, b} ∈ V (S) violates the (b3) bound—a contradiction.

We repeat the claim for restricted p-maps:

Proposition 6. If h : S → T is a bound and restricted
p-map, then for p, q ∈ E(S), h(p) = h(q) only if [p]S = [q]S.

Proof. Let h be a bound and restricted p-map of an
RDF tripleset S. Assume h(p) = h(q), but [p]S 6= [q]S for
some p, q ∈ E(S). Then there is a β := 〈a, b〉 such that
β ∈ [p]S and β 6∈ [q]S (or vise verse, this case is analogue).
Since a, b ∈ V (S) and β 6∈ [q]S this breaks bound (p3), so h
cannot be bound.

3.1 Computing p-maps
In [19] we have given an algorithm which in polynomial

time in the size of the input RDF triplesets computes a re-
stricted pn-map between two triplesets assuming RDF triple-
set representation. Here, listed in Algorithm 1, we repeat
the same algorithm, but use the binary factor representation
in order to show how well it lends itself to computation of
such maps.

Input : RDF triplesets S and T , bound pn.
Output: > if there is a pn-map S → T , or ⊥ if none

exists.
for [p]S ∈ [S]

if p ∈ V (S)
if [p]S ⊆ [p]T

if not SatBound([p]T \ [p]S , pn) return ⊥;
else return ⊥;

else
bool found := false;
for [q]T ∈ [T]

if not found and [p]S ⊆ [q]T
if not SatBound([q]T \ [p]S , pn) break;
found := true;

if not found return ⊥;

return >;

begin func SatBound(β, pn)
if (pn = p1 and β 6= ∅) or

(pn = p2 and ∀a, b(〈a, b〉 ∈ β → a, b 6∈ V (S)) or
(pn = p3 and ∀a, b(〈a, b〉 ∈ β → a, b 6⊆ V (S))
return false;

else
return true;

Algorithm 1: Checks the existence of a pn-map of
RDF tripleset S to RDF tripleset T .

The algorithm is put to use in a prototype implementation
available online at http://sws.ifi.uio.no/MapperDan/. Map-
per Dan takes two RDF files—a source and a target—as
input and computes all restricted p-maps of the source to
the target, and, if the user chose to specify one, the maps
must satisfy a set of bounds given for a portion or all of
the edges in the source. If no such restricted p-map exists,
Mapper Dan will suggest a weakening of bounds for edges

necessary to have a valid map of the given source and target.
The map may then be applied to the source and merged with
the target, be used to produce a SPARQL construct query
which represents the map, or to rewrite a SPARQL select
query over the source vocabulary to a query over the target
vocabulary.

4. SUMMARY AND FUTURE WORK
This paper has introduced a restricted form of standard

graph homomorphisms applied to RDF triplesets which are
especially suited for conservative transformations of the data
content in such representations, and called them p-maps.
These maps appear in their most powerful form in pair with
bounds which restrain the data content of the target such
that the transformed data from the source is not distorted by
a transformation into the target. Bounded maps also have
the prominent feature of being preserved under composition
and can thus be used to make sure that the original data
is faithfully represented in targets through multiple trans-
formations. We have shown how the different bounds on
p-maps can interrelate to form a set of transformation tools
with which one can exercise differentiated control over RDF
data transformations. Lastly, we translated the notion of re-
stricted p-maps to b-maps to reveal different aspects of these
maps and to enable easy computational descriptions of re-
stricted p-maps, and given an algorithm to decide existence
of bounded and restricted p-maps of RDF triplesets.

The main purpose of this exposition has been to explore
the characteristics of the different bounds on RDF data
transformations. These transformations and bounds are sim-
ple and intuitive, yet they are powerful and useful within the
Linked Data realm. Nevertheless, their simplicity also in-
troduce many interesting open issues. The current triple-to-
triple transformations are in many cases too restrictive, dis-
allowing transformations of more complex patterns, for in-
stance maps where triples are mapped to chains of triples—
such a mapping is illustrated in Example 12. In [19, 17, 18]
we establish results for and report successful usage of a re-
strictive variant of chain-to-chain maps geared for SPARQL
construct queries, mapping chains in the WHERE block to
chains in the SELECT block of the query and show how this
establishes a “p-map relationship” from the parts of RDF
tripleset to which the query is applied and the results of the
construct query. However, the exact formulation of maps of
more complex structures for RDF triplesets, their charac-
teristics, and the treatment of blank nodes by such maps,
remains an open issue.

Example 12. Compound data is often represented in
RDF by clustering the different singular data items round a
common node, e.g., as for address data: street address, zip
code and country may be grouped by a blank node which is
typed as an address. The following illustrates the case. As-
sume we have the following two representations of the same
address data:

1 :Slottet ex:street-address "Henrik Ibsens gate 1" ;
2 ex:country "Norway" .

1 :Slottet vcard:adr
2 [vcard:street-address "Henrik Ibsens gate 1" ;
3 vcard:country-name "Norway"] .

There is mapping from the first to the second representa-
tion by sending ex:street-address to the chain vcard:adr,

http://sws.ifi.uio.no/MapperDan/

vcard:street-address, and ex:country to vcard:adr,

vcard:country-name, but the theory developed in this paper
does not support this.

In their current formulation, p-maps do not care about the
semantics of their source or target, they are only concerned
with the graph-like structure of the triplesets. While this is
intentional—giving attention to RDF transformations with-
out resorting to schema definitions and reasoning—allowing
our maps to exploit simple semantics, for example partition-
ing vertices into vocabulary elements and data elements and
possibly treating these sets differently, would indeed increase
the practical value of such maps.

An immediate further development is to produce algo-
rithms for all types of p-maps, and to extend and improve
the functionality of Mapper Dan. It would also be interest-
ing to see how p-maps look expressed in terms of directed,
labelled multigraphs and directed, labelled hypergraphs as is
used in [2], and also possibly bipartite graphs [8], and see
if these representations of RDF graphs reveal new natural
bounds on p-maps or allow a more abstract formulation of
existing bounds. A thorough exposition of how p-maps re-
late to data exchange [5, 13] and data integration [14] would
also be a fascinating read.

5. REFERENCES
[1] M. Arenas, C. Gutierrez, and J. Pérez. Foundations of

RDF Databases. In S. Tessaris, E. Franconi, T. Eiter,
C. Gutierrez, S. Handschuh, M.-C. Rousset, and R. A.
Schmidt, editors, Reasoning Web, volume 5689 of
LNCS, pages 158–204. Springer, 2009.

[2] J.-F. Baget. RDF Entailment as a Graph
Homomorphism. In Proc. of the 4th Int. Semantic
Web Conference, volume 3729 of LNCS, pages 82–96.
Springer, 2005.

[3] J. Bleiholder and F. Naumann. Data fusion. ACM
Computing Surveys, 41(1), 2008.

[4] D. Brickley and L. Miller. FOAF Vocabulary
Specification 0.98, 2010.
http://xmlns.com/foaf/spec/.

[5] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: semantics and query answering.
Theoretical Computer Science, 336:89–124, 2005.

[6] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[7] S. Ghilardi, C. Lutz, and F. Wolter. Did I Damage my
Ontology? A Case for Conservative Extensions in
Description Logics. In Proc. of the 10th Int.
Conference on Principles of Knowledge Representation
and Reasoning (KR’06), 2006.

[8] J. Hayes and C. Gutierrez. Bipartite Graphs as
Intermediate Model for RDF. In Proc. of the 3th Int.
Semantic Web Conference, volume 3298 of LNCS,
pages 47–61. Springer, 2004.

[9] P. Hayes. RDF Semantics. W3C Recommendation,
W3C, 2004.

[10] P. Hell and J. Nešetřil. Graphs and Homomorphisms.
Oxford University Press, 2004.

[11] D. Hutter. Some Remarks on the Annotation %cons,
1999.

[12] G. Klyne and J. J. Carroll. Resource Description
Framework (RDF): Concepts and Abstract Syntax.
W3C Recommendation, W3C, 2004.

[13] P. G. Kolaitis. Schema Mappings, Data Exchange, and
Metadata Management. In C. Li, editor, PODS, pages
61–75. ACM, 2005.

[14] M. Lenzerini. Data Integration: A Theoretical
Perspective. In Proc. of the ACM Symposium on
Principles of Database Systems (PODS), pages
233–246, 2002.

[15] D. C. Makinson. Logical Friendliness and Sympathy in
Logic. In Logica Universalis. Birkhauser Basel, 2005.

[16] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF. W3C Recommendation, W3C,
2008.

[17] A. Stolpe and M. G. Skjæveland. Conservative
Repurposing of RDF Data. 10th Int. Semantic Web
Conference, 2011. Poster paper.

[18] A. Stolpe and M. G. Skjæveland. From Spreadsheets
to 5-star Linked Data in the Cultural Heritage
Domain: A Case Study of the Yellow List. In Norsk
informatikkonferanse (NIK 2011), pages 13–24. Tapir,
2011.

[19] A. Stolpe and M. G. Skjæveland. Preserving
Information Content in RDF Using Bounded
Homomorphisms. In E. Simperl, P. Cimiano,
A. Polleres, Ó. Corcho, and V. Presutti, editors,
ESWC, volume 7295 of LNCS, pages 72–86. Springer,
2012.

[20] Y. Sure, S. Bloehdorn, P. Haase, J. Hartmann, and
D. Oberle. SWRC Ontology, 2005.
http://ontoware.org/swrc/.

http://xmlns.com/foaf/spec/
http://ontoware.org/swrc/

	Introduction
	RDF triplesets, Homomorphisms and Bounds
	RDF Homomorphisms
	Bounds
	Adding Strength to p-maps

	Binary Factors, Inclusion Maps, Bounds and Computation
	Computing p-maps

	Summary and Future Work
	References

