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1 Department of Informatics, University of Oslo, Norway
2 Ericsson, Norway

3 SINTEF ICT, Norway

Abstract. Soft real-time requirements are often related to communi-
cation in distributed systems. Therefore it is interesting to understand
how UML sequence diagrams can be used to specify such requirements.
We propose a way of integrating soft real-time requirements in sequence
diagram specifications by adding probabilities to timed sequence dia-
grams. Our approach builds on timed STAIRS, which is an approach
to the compositional and incremental development of sequence diagrams
supporting specification of mandatory as well as potential behavior.

1 Introduction

A soft real-time requirement is a time requirement that needs to be met only by
a certain percentage of the relevant behavior. A hard real-time requirement can
be seen as a special case of a soft real-time requirement; it is a soft real-time
requirement that needs to be met in 100% of the cases. When a delay depends
on factors that are hard to measure, highly complex or outside our control, a
soft real-time requirement is often more appropriate than a hard constraint.
Time constraints are often related to some kind of communication scenario.
Therefore it is important to be able to express soft real-time constraints in
sequence diagrams. Sequence diagrams show how a task is performed by sending
messages between lifelines.
In this paper we enable specification of soft real-time constraints with sequence
diagrams by extending STAIRS presented in [HS03], [HHRS06] and [HHRS05]
with the possibility of assigning probabilities. The probabilities are added in-
dependently from the time constraints, so our approach supports probabilistic
specifications in general.
The rest of this paper is organized as follows: Section 2 introduces a specification
to illustrate aspects of probabilistic STAIRS throughout the paper. Section 3
defines events, traces and some basic operators. Timed STAIRS is introduced
in section 4, while section 5 discusses the relation between mandatory choice
and probabilities. Probabilistic STAIRS is introduced in section 6, and section
7 shows how this enables the addition of a soft real-time requirement to the
example specification. In section 8 the refinement relation is defined. Section 9
demonstrates refinement of the example specification. We discuss some related
work in section 10 before concluding in section 11.
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2 The Automatic Teller Machine Example

We use as example a scenario where a customer withdraws money from an auto-
matic teller machine (atm). This section gives a brief and informal explanation
of the example. Figure 1 shows the first version of the specification. It serves
two purposes. Firstly, it introduces the basic UML sequence diagram notation.
Secondly, it allows us to characterize the need for more expressiveness. We come
back to this example in later sections to illustrate our approach. Since our main
concern is demonstration of real-time specifications we have omitted some de-
tails that would belong in a real-life scenario, such as the entering of a PIN code.
The scenario describes the case where the transaction succeeds.

sd cash_withdrawal_1

customer atm bank

card

card back

prompt ”Transaction accepted”

money(amount)

prompt ”Enter amount”

withdraw(amount)

request(amount)

accept

t1

t2

t3

t3-t2<5 s

t2-t1<10 s

Fig. 1. A cash withdrawal scenario.

It is an interaction between three lifelines: the customer, the atm and the bank.
Lifelines represent the entities taking part in the interaction. The intuition be-
hind the specification is the following: First the customer inserts her/his card,
and the atm displays the text “Enter amount”. The customer then enters the
desired amount, and the atm sends a request to the bank asking whether the
transaction is acceptable. A hard real-time requirement has been placed on the
reply from the bank, stating that it should take no more than 10 seconds from
the atm sends its request to the reply is received.4 After the atm receives a posi-
tive reply from the bank, it displays the text “Transaction accepted”, returns the
card, and finally delivers the desired amount of money. A second hard real-time
requirement has been put on the delivery of money stating that the time it takes
from the atm receives a positive reply from the bank to the money is delivered
should be less than five seconds.
UML sequence diagrams describe traces representing execution histories, and
categorize traces as positive (valid) or negative (invalid). Positive traces represent

4 We have chosen to use a different notation for real-time requirements than in UML
2.0, since we find our notation more suitable when the requirement crosses an oper-
ator boundary, as will happen in later specifications. Graphical (concrete) syntax is
not a main issue in this paper.
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acceptable executions, while negative traces represent unacceptable executions.
All other traces are inconclusive, meaning that the specification does not say
whether they are acceptable [OMG04, p. 526]. According to the specification
in Figure 1, the positive traces are those where 1) messages are sent in the
order shown in the diagram and 2) both real-time requirements are fulfilled.
The negative traces are those that fulfill 1) but not 2).
The delay from the request is sent from the atm to a reply is received may de-
pend on several complex factors, so we might want to replace the hard real-time
requirement with a soft real-time requirement. Timed STAIRS gives a formal
semantics to (a subset of) UML sequence diagrams with hard real-time require-
ments. Specifying soft real-time constraints, however, is not possible. Enabling
the specification of soft real-time requirements within the framework of timed
STAIRS is the aim of this paper.

3 Events, Traces and Basic Operators

In this section we define the notions of events and traces. We also introduce
a number of useful operators. Most of the definitions and explanations in this
section are taken from [HHRS06].
For any set A, Aω denotes the set of finite as well as infinite sequences of elements
of A. N denotes the set of natural numbers, while N0 denotes the set of natural
numbers including 0. We define the functions

# ∈ Aω → N0 ∪ {∞}, [ ] ∈ Aω × N → A, _ ∈ Aω × Aω → Aω,

| ∈ Aω × N0 → Aω, S© ∈ P(A) × Aω → Aω

to yield the length of a sequence, the nth element of a sequence, the concatena-
tion of two sequences, truncation of a sequence and the filtering of a sequence.
Hence, #a yields the number of elements in a, and a[n] yields a’s nth element if
n ≤ #a. To concatenate two sequences means to glue them together. Therefore,
a1 _ a2 denotes a sequence of length #a1 + #a2 that equals a1 if a1 is infinite,
and is prefixed by a1 and suffixed by a2 otherwise. For any 0 ≤ i ≤ #a, a | i
denotes the prefix of a of length i . By B S© a we denote the sequence obtained
from the sequence a by removing all elements in a that are not in the set B .
We also need filtering of pairs of sequences. The filtering function

T© ∈ P(A × B) × (Aω × Bω) → Aω × Bω

can be understood as a generalization of S© . For any set of pairs of elements P

and pairs of sequences t , P T© t denotes the pair of sequences obtained from t by

– truncating the longest sequence in t at the length of the shortest sequence
in t if the two sequences are not of equal length;

– for each j ∈ [1...k ], where k is the length of the shortest sequence in t , select-
ing or deleting the two elements at index j in the two sequences, depending
on whether the pair of these elements is in the set P .
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For example, we have that

{(1, f ), (1, g)} T© (〈1, 1, 2, 1, 2〉, 〈f , f , f , g, g〉) = (〈1, 1, 1〉, 〈f , f , g〉)

For a formal definition of T© , see [BS01].

3.1 Events

A message is a triple (s , re, tr) of a signal s , a receiver re and a transmitter tr .
M denotes the set of all messages. The receiver and transmitter are lifelines. L
denotes the set of all lifelines.
An event may be of two kinds; a transmission event tagged by “!” or a reception
event tagged by “?”.5 Every event occurring in a sequence diagram has a times-
tamp tag. T denotes the set of timestamp tags. We use logical formulas with
timestamp tags as free variables to impose constraints on the timing of events.
By F(v) we denote the set of logical formulas whose free variables are contained
in the set of timestamp tags v .
An event is a triple (k ,m, t) ∈ {!, ?} × M × T of a kind, a message and a
timestamp tag. E denotes the set of all events. We define the functions

k . ∈ E → {?, !}, m. ∈ E → M, t . ∈ E → T , tr . ∈ E → L, re. ∈ E → L

to yield the kind, message, timestamp tag, transmitter and receiver of an event,
respectively. Since we are primarily interested in communication scenarios, we
do not give a semantic interpretation to events, except that the timestamp tag is
assigned a timestamp in form of a real number. R denotes the set of timestamps.
The set [[ E ]] of event interpretations is therefore defined by

[[ E ]]
def
= {(k ,m, t 7→ r) | (k ,m, t) ∈ E ∧ r ∈ R} (1)

t 7→ r means that timestamp r is assigned to timestamp tag t . We also define
the function

r . ∈ [[ E ]] → R

to yield the timestamp of an event interpretation. In the following, we use “event”
and “event interpretation” interchangeably.

3.2 Traces

A trace h ∈ [[ E ]]ω is a finite or infinite sequence of events. Traces represent
executions of the system under specification, and must satisfy a number of well-
formedness conditions. Firstly, we require the events of h to be ordered by time:

∀ i , j ∈ [1..#h] : i < j ⇒ r .h[i ] ≤ r .h[j ] (2)

5 Note that in timed STAIRS [HHRS06] “?” represents consumption. We have chosen
to use “?” for reception since we do not concider consumption events in this paper.
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Note that two events may occur at the same time.
Secondly, we allow the same event to occur only once in the same trace:

∀ i , j ∈ [1..#h] : i 6= j ⇒ h[i ] 6= h[j ] (3)

Thirdly, time will eventually progress beyond any finite point in time. The fol-
lowing constraint states that for each lifeline l represented by infinitely many
events in the trace h, and for any possible timestamp t there must exist an
l -event in h whose timestamp is greater than t :

∀ l ∈ L : (#(e.l S© h) = ∞ ⇒ ∀ t ∈ R : ∃ i ∈ N : r .(e.l S© h)[i ] > t) (4)

where e.l denotes the set of events that may take place on the lifeline l . Formally:

e.l
def
= {e ∈ [[ E ]] | (k .e =! ∧ tr .e = l) ∨ (k .e =? ∧ re.e = l)} (5)

We also require that for any single message, transmission happens before re-
ception. But we need to take into account that the transmitter or receiver of a
certain message might not be included in the sequence diagram. Thus we get
the following well-formedness requirement on traces, stating that if at any point
in the trace we have a transmission event, up to that point we must have had
at least as many transmissions as receptions of that particular message:

∀ i ∈ [1..#h] : k .h[i ] =! ⇒ (6)

#({!} × {m.h[i ]} × U ) S© h|i > #({?} × {m.h[i ]} × U ) S© h|i

where U
def
= {t 7→ r | t ∈ T ∧ r ∈ R}.

H denotes the set of well-formed traces. Traces are written as a sequence of
events enclosed by the brackets 〈. . .〉, for example 〈e1, e2, e3〉.

4 Syntax and Semantics for Timed STAIRS

In the following we explain how a timed sequence diagram can be represented
semantically by a interaction obligation (p,n) where p is a set of positive traces
and n is a set of negative traces. (This is a simplification of timed STAIRS,
where a sequence diagram is represented by a set of interaction obligations.)
O denotes the set of interaction obligations. An interaction obligation (p,n) is
contradictory if p ∩ n 6= ∅. [[ d ]] denotes the interaction obligation representing
sequence diagram d .

4.1 Textual Syntax for Timed Sequence Diagrams

The set of syntactically correct sequence diagrams, D, is defined inductively as
the least set such that: 6

6 In Timed STAIRS [HHRS06] seq is defined as an n-ary operator instead of binary, and
the operators loop, assert and xalt are also included. loop and assert for probabilistic
STAIRS are introduced in section A, while the xalt is replaced by palt, which is
introduced in Section 6.
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– E ⊂ D
– d ∈ D ⇒ neg d ∈ D
– d1, d2 ∈ D ⇒ d1 par d2 ∈ D ∧ d1 seq d2 ∈ D ∧ d1 alt d2 ∈ D
– d ∈ D ∧ C ∈ F(tt .d) ⇒ d tc C ∈ D

where tt .d yields the set of timestamp tags occurring in d . The base case implies
that any event is a sequence diagram. Any other sequence diagram is constructed
from the basic ones through the application of operations for negation, potential
choice (alternative), weak sequencing, parallel execution and time constraint.
Only sequence diagrams that are syntactically correct in UML 2.0 are considered.
Also, extra global combined fragments are not handled. This means that for all
operators except for seq and par it is assumed that every operand includes only
complete message communications, i.e. messages where both the transmission
and the reception event is within the same operand. Formally, for every operand
di of an operator different from seq and par we require:

∀m ∈ msg.di : (7)

#{{e ∈ ev .di | k .e =! ∧ m.e = m}} = #{{e ∈ ev .di | k .e =? ∧ m.e = m}}

where {{ }} denotes a multiset and # is overloaded to yield the number of
elements in a multiset. The functions

msg. ∈ D → P(M), ev . ∈ D → P(E), ll . ∈ D → P(L)

yield the messages, events and lifelines of a sequence diagram, respectively.
All single-event diagrams are considered syntactically correct. For all diagrams
consisting of more than one event, it is required that a message is complete if
both the transmitter and the receiver lifelines are present in the diagram:

∀m ∈ msg.di : (#ev .d > 1 ∧ tr .m ∈ ll .d ∧ re.m ∈ ll .d) ⇒ (8)

#{{e ∈ ev .d | k .e =! ∧ m.e = m}} = #{{e ∈ ev .d | k .e =? ∧ m.e = m}}

4.2 Denotational Semantics for Timed STAIRS

Event The semantics of an event is the interaction obligation whose positive
set consists of infinitely many unary positive traces – one for each possible as-
signment of a timestamp to its timestamp tag. The negative set is empty.

[[ (k ,m, t) ]]
def
= ({〈(k ,m, t 7→ r)〉 | r ∈ R}, ∅) if (k ,m, t) ∈ E (9)

Negation Undesired behavior is defined by the use of the neg construct. To
negate a specification means to move every positive trace to the negative set.
Negative traces remain negative. The empty trace is defined as positive to enable
positive traces in a composition. Negation of a specification is defined by

[[ neg d ]]
def
= ¬ [[ d ]] (10)

where
¬ (p,n)

def
= ({〈〉},n ∪ p) (11)
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Parallel Execution The operator for parallel execution is represented seman-
tically by ‖. Ignoring for the time being the sets of negative traces, a parallel
execution defines the set of traces we get by merging one trace from one (posi-
tive) set with one trace from the other (positive) set. Informally, for sets of traces
s1 and s2, s1 ‖ s2 is the set of all traces such that:

– all events from one trace in s1 and one trace in s2 are included (and no other
events), and

– the ordering of events from each of the traces is preserved.

Formally:

s1 ‖ s2
def
= {h ∈ H | ∃ or ∈ {1, 2}∞ : (12)

π2.(({1} × [[ E ]]) T© (or , h)) ∈ s1 ∧

π2.(({2} × [[ E ]]) T© (or , h)) ∈ s2}

where πi is a projection operator returning element number i of a tuple. In this
definition we make use of an oracle, the infinite sequence or , to resolve the non-
determinism in the interleaving. It determines the order in which events from
traces in s1 and s2 are sequenced.
The semantics of parallel execution may then be defined as

[[ d1 par d2 ]]
def
= [[ d1 ]] ‖ [[ d2 ]] (13)

where
(p1,n1) ‖ (p2,n2)

def
= (p1 ‖ p2, (n1 ‖ (p2 ∪ n2)) ∪ (p1 ‖ n2)) (14)

Note that the merging of a negative trace with another (positive or negative)
trace always results in a negative trace.

Weak Sequencing Weak sequencing is the implicit composition mechanism
combining constructs of a sequence diagram. The operator for weak sequencing
is represented semantically by %. We again temporarily ignore the sets of nega-
tive traces, and let s1 and s2 be trace sets. Since lifelines are independent, the
constraint for the ordering of events applies to each lifeline; events that occur
on different lifelines are interleaved. For s1 % s2 we therefore have the constraint
that events on one lifeline from one trace in s1 should come before events from
one trace in s2 on the same lifeline:

s1 % s2
def
= {h ∈ H | ∃ h1 ∈ s1, h2 ∈ s2 : (15)

∀ l ∈ L : e.l S© h = e.l S© h1 _e.l S© h2}

The semantics of weak sequencing may then be defined as

[[ d1 seq d2 ]]
def
= [[ d1 ]] % [[ d2 ]] (16)

where

(p1,n1) % (p2,n2)
def
= (p1 % p2, (n1 % (p2 ∪ n2)) ∪ (p1 % n2)) (17)

Weak sequencing involving at least one negative trace results in a negative trace.
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Time Constraint Time requirements are imposed by the use of a time con-
straint, denoted by oC , where C is a predicate over timestamp tags. When a
time constraint is applied to a trace set all traces not fulfilling the constraint are
removed. Formally, time constraint for a trace set s is defined as

s o C
def
= {h ∈ s | h |= C} (18)

where h |= C holds if for all possible assignments of timestamps to timestamp
tags done by h, there is an assignment of timestamps to the remaining timestamp
tags in C (possibly none) such that C evaluates to true. For example, if

h = 〈(k1,m1, t1 7→r1), (k2,m2, t2 7→r2), (k3,m3, t3 7→r3)〉 and C = t3 < t1 + 5

then h |= C if r3 < r1 + 5.
To apply a time requirement to a specification means to define failure to meet
the requirement as negative behavior. Traces of the operand that are positive
and do not fulfill the requirement become negative. The semantics of a time
constraint is defined as

[[ d tc C ]]
def
= [[ d ]] o C (19)

where
(p,n) o C

def
= (p o C ,n ∪ (p o ¬ C )) (20)

Potential Choice The alt construct is used to express underspecification by
grouping together traces that from the specifier’s point of view serve the same
purpose. This means that they are seen as equally desirable (for positive traces)
or undesirable (for negative traces). For two trace sets where both are positive
or both are negative, this can be represented semantically simply by taking the
union of the sets. Hence, potential choice corresponds to the pairwise union of the
positive sets and the negative sets. Formally, the semantics of the alt is defined
by

[[ d1 alt d2 ]]
def
= [[ d1 ]] ] [[ d2 ]] (21)

where
(p1,n1) ] (p2,n2)

def
= (p1 ∪ p2,n1 ∪ n2) (22)

5 Mandatory Choice and Probabilities

In STAIRS the alt operator as formally defined above enables underspecification,
what we also refer to as potential choice. Underspecification means to leave
some freedom of choice to the developers that will eventually implement (or
further refine) the specification. This is for example useful when different design
alternatives fulfill a function equally well from the specifier’s point of view.
STAIRS supports also the specification of mandatory choice. For this purpose
the STAIRS specific xalt operator is used. Mandatory choice means that all al-
ternatives must be possible. It is often needed within security, for example in
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relation to information flow [Ros95]. When specifying a password generator, for
instance, it is vital that all alternatives remain possible in the final implementa-
tion – otherwise in the extreme case we might end up with an implementation
that always generates the same password.
Mandatory choice is also useful for other purposes. Sometimes non-determinism
is employed to model the behavior of the environment of the system under spec-
ification. The mandatory choice operator is then used to represent alternative
inputs from the environment that the designer has considered. If some of these
alternatives are removed from the final specification, the implementation will
not be able to handle the relevant input as intended.
Sometimes an application is non-deterministic by nature, for example in games.
If we want to specify a dice, we obviously need to ensure that all alternatives,
one through six, are possible outcomes in the implementation.
In probabilistic STAIRS we generalize the xalt operator into an operator for
the specification of probabilities called palt. We may then also specify with what
probability the different alternatives should occur. In the dice example, the prob-
ability of every outcome should be exactly 1

6 . Of course, if an alternative has
an exact probability greater than zero, then this alternative must be a possible
outcome of a valid implementation. For this reason, probabilistic choice can be
viewed as a special case of mandatory choice. This view is consistent with the
one presented in [MM99].
If an alternative is assigned a set of acceptable probabilities, then this set repre-
sents underspecification. Such underspecification is usually present in soft real-
time requirements. A specification might say that the probability of a certain
delay being less than 10 seconds should be 0.8 or more. This amounts to saying
that the set of acceptable probabilities is [0.8, .., 1.0]. According to this specifi-
cation, an implementation that gives a probability of 0.9 is certainly valid; the
developer only needs to achieve one of the acceptable probabilities.

6 Syntax and Semantics for Probabilistic STAIRS

In the following we explain how a probabilistic sequence diagram can be repre-
sented semantically by a set of probability obligations (also called p-obligations).
A p-obligation ((p,n),Q) consists of an interaction obligation (p,n) and a set
of probabilities Q , with the following interpretation: The traces implementing
(p,n) should occur with a probability greater than or equal to a probability in
Q . Only traces in H \ n are allowed to implement (p,n). The probability for
these traces may be greater than the values in Q only if some or all of the traces
are also positive or inconclusive according to some other p-obligation. P denotes
the set of p-obligations. In probabilistic STAIRS we may have underspecification
with respect to traces and with respect to probabilities. Underspecification with
respect to traces is captured by the fact that we may choose among the non-
negative traces within an interaction obligation. Underspecification with respect
to probabilities is modeled by the possibility of selecting among the probabilities
within a p-obligation.
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6.1 Textual Syntax for Probabilistic Sequence Diagrams

The set of syntactically correct sequence diagrams D is defined simply by adding
the following case to the inductive definition in 4.1:

– d1, d2 ∈ D ∧Q1,Q2 ⊆ [0...1] ⇒ d1;Q1 palt d2;Q2 ∈ D

6.2 Denotational Semantics for Probabilistic STAIRS

Event Probabilities can be assigned only by the use of the palt. The traces
specified by a sequence diagram without occurrences of palt must occur with
probability 1 in their relevant context. Therefore the set of probabilities associ-
ated with an event is {1}.

[[ (k ,m, t) ]]
def
= {(({〈(k ,m, t 7→ r)〉 | r ∈ R}, ∅), {1})} if (k ,m, t) ∈ E (23)

Negation and Time Constraint Negation and time constraint are not af-
fected by probabilities. They are defined by

[[ neg d ]]
def
= {(¬ o,Q) | (o,Q) ∈ [[ d ]]} (24)

[[ d tc C ]]
def
= {(o o C ,Q) | (o,Q) ∈ [[ d ]]} (25)

Parallel Execution and Weak Sequencing When executing two specifica-
tions in parallel or sequentially, we get the set of p-obligations obtained from
choosing one p-obligation from the first and one p-obligation from the second and
composing them in parallel or sequentially. Choosing the two p-obligations to be
composed is seen as two independent probabilistic choices; therefore the sets of
probabilities are multiplied. Formally, parallel execution and weak sequencing is
defined by

[[ d1 par d2 ]]
def
= {(o1 ‖ o2,Q1 ∗ Q2) | (o1,Q1) ∈ [[ d1 ]] ∧ (o2,Q2) ∈ [[ d2 ]]} (26)

[[ d1 seq d2 ]]
def
= {(o1 % o2,Q1 ∗ Q2) | (o1,Q1) ∈ [[ d1 ]] ∧ (o2,Q2) ∈ [[ d2 ]]} (27)

where multiplication of probability sets is defined by

Q1 ∗ Q2
def
= {q1 ∗ q2 | q1 ∈ Q1 ∧ q2 ∈ Q2} (28)

Potential Choice The alt construct captures underspecification with respect
to traces. Two sets of p-obligations are combined by taking the pairwise com-
bination of p-obligations from each set. As in timed STAIRS, the ] operator is
used for combining the interaction obligations. The probabilities are multiplied
since the two p-obligations are chosen independently from each other.

[[ d1 alt d2 ]]
def
= {(o1 ] o2,Q1 ∗ Q2) | (o1,Q1) ∈ [[ d1 ]] ∧ (o2,Q2) ∈ [[ d2 ]]} (29)
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Probabilistic Choice The palt construct expresses probabilistic choice (and
therefore mandatory choice). Before defining the semantics of the palt we in-
troduce the notion of probability decoration. Probability decoration is used to
assign the probabilities associated with the operands of a palt. It is defined by

[[ d ;Q ′ ]]
def
= {(o,Q ∗ Q ′) | (o,Q) ∈ [[ d ]]} (30)

We also define addition of probability sets:

Q1 + Q2
def
= {min(q1 + q2, 1) | q1 ∈ Q1 ∧ q2 ∈ Q2} (31)

The palt operator is meant to describe the probabilistic choice between two
alternative operands whose joint probability should add up to one. Formally,
the palt is defined by

[[ d1;Q1 palt d2;Q2 ]]
def
= (32)

[[ d1;Q1 ]] ∪ [[ d2;Q2 ]] ∪

{(⊕{po1, po2}, π2.po1 + π2.po2) | po1 ∈ [[ d1;Q1 ]] ∧ po2 ∈ [[ d2;Q2 ]]} ∪

{(⊕([[ d1;Q1 ]] ∪ [[ d2;Q2 ]]), {1} ∩ (Q1 + Q2))}

The single p-obligation in the set in the last line in 32 requires the probabilities
of the two operands to add up to one. If it is impossible to choose one probability
from Q1 and one from Q2 so that the sum is 1, then the probability set will be
empty and the specification is not implementable.
⊕ characterizes the traces allowed by the two operands together: A trace t is pos-
itive if it is positive according to at least one p-obligation and not inconclusive
according to any; t is negative only if it is negative according to all p-obligations;
traces that are inconclusive according to at least one p-obligation remain incon-
clusive. Formally, the operator ⊕ for combining the interaction obligations of a
set S of p-obligations into a single interaction obligation is therefore defined by

⊕S
def
= ((

⋃

((p,n),Q)∈S

p) ∩ (
⋂

((p,n),Q)∈S

p ∪ n),
⋂

((p,n),Q)∈S

n) (33)

Since ⊕{((p,n),Q), ((p,n),Q)} = (p,n), the second line on the right-hand side
of definition 32 ensures that if a p-obligation ((p,n),Q) occurs in both operands
of the palt, then the resulting semantics will contain a p-obligation ((p,n),Q +
Q). The inclusion of the second line on the right-hand side of definition 32 enables
us to define the semantics of a specification as a set of p-obligations instead of
as a multiset. Other reasons to include this line is related to refinement and will
be explained in section 8.

7 Adding a Soft Real-time Requirement to the Atm

We now replace the first hard real-time requirement in the atm example with a
soft real-time requirement. Consider the sequence diagram in Figure 2.
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Fig. 2. Cash withdrawal with soft real-time constraint.

This specification is modeled semantically by four p-obligations, we call these
po1, po2, po3 and po4. The result of choosing the first palt operand is modeled
semantically by po1. The positive traces of po1 are only those in which it takes
less than 10 seconds before the reply arrives from the bank and it takes less
than five seconds from the reply arrives to the money is delivered. Traces where
one or both of these constraints are not met are negative in po1. The acceptable
range of probability for this p-obligation is [0.8, ..., 1].

The result of choosing the second palt operand is modeled semantically by po2.
The positive traces of po2 are all traces where it takes 10 seconds or more before
the reply arrives from the bank and it takes less than five seconds from the reply
arrives to the money is delivered. Traces where one or both of these constraints
are not met are negative in po2. The acceptable range of probability for this
p-obligation is [0, ..., 0.2].

The third p-obligation, po3, results from the second line on the right-hand side
of definition 32 and models the combination of po1 and po2, which means that
po3 = (⊕{po1, po2}, [0.8, ..., 1]). This means that the positive traces of po3 are
all traces where it takes less than five seconds to get money after the reply is
received from the bank, regardless of how long it takes to get the reply. The
negative traces are only those where it takes five seconds or more to get the
money.

The last p-obligation, po4, results from the third line on the right-hand side of
definition 32 and models the combination of the two operands. Since in this ex-
ample each operand gives only one p-obligation, this means that the interaction
obligation of po4 is identical to that of po3, i.e. po4 = (⊕{po1, po2}, {1}).

Traces where messages are not exchanged between the customer, the atm and
the bank as described by Figure 2 (but ignoring the time requirements) are
inconclusive according to po1, po2, po3 and po4.
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8 Refinement

Refinement of a specification means to reduce underspecification by adding in-
formation so that the specification becomes closer to an implementation. Seman-
tically, in our setting this can be done at the level of p-obligations or at the level
of sets of p-obligations. We first define refinement semantically for p-obligations.
Then we lift this definition to specifications that are represented semantically
by sets of p-obligations.

8.1 Refinement of P-obligations

As in [HHRS05], a interaction obligation is refined by moving positive traces
to the set of negative traces or by moving traces from the set of inconclusive
traces to either the positive or the negative set. STAIRS [HHRS05] refers to the
first option as narrowing and the second option as supplementing. As argued in
[HHRS05], narrowing reduces the set of positive traces to capture new design
decisions or to match the problem more accurately. Supplementing categorizes
(to this point) inconclusive behavior as either positive or negative recognizing
that early descriptions normally lack completeness.
A p-obligation is refined by either refining its interaction obligation or reducing
its set of probabilities. Formally, a p-obligation ((p′,n ′),Q ′) is a refinement of a
p-obligation ((p,n),Q), written ((p,n),Q) ((p′,n ′),Q ′), iff

n ⊆ n ′ ∧ p ⊆ p′ ∪ n ′ ∧ Q ′ ⊆ Q (34)

8.2 Refinement of Specifications

All p-obligations at the given (more abstract) level represent a mandatory al-
ternative. Therefore each p-obligation needs to be represented by a p-obligation
also at the refined (more concrete) level. However, if a p-obligation has 0 as
an acceptable probability, this means that it does not need to be implemented.
Formally, a specification d ′ is a refinement of a specification d , written d  d ′,
iff

∀ po ∈ [[ d ]] : 0 6∈ π2.po ⇒ ∃ po′ ∈ [[ d ′ ]] : po  po′ (35)

We now explain further why the second line on the right-hand side of definition
32 is included. Firstly, we want to avoid a situation where two p-obligations
((p1,n1),Q1) and ((p2,n2),Q2) coming from different operands of a palt are rep-
resented only by a single p-obligation at the concrete level. This is ensured since
also the p-obligation (⊕{(p1,n1), (p2,n2)},Q1 +Q2) is included in the semantics
and hence needs to be represented at the concrete level.
Secondly, it should be possible to let a single p-obligation at the abstract level
be represented by a combination of p-obligations at the concrete level, as long as
each of these p-obligations are valid refinements of the original p-obligation with
respect to interaction obligations and their probability sets add up to a subset of
the original probability set. Since the only way to introduce more p-obligations
is to use the palt-operator, the inclusion of the combined p-obligations in the
palt semantics makes this possible.
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9 Refining the Atm Specification

Figure 3 shows a refinement of the specification in Figure 2.

sd cash_withdrawal_3

customer atm bank

card

accept

card back

prompt ”Transaction accepted”

money(amount)

prompt ”Enter amount”

withdraw(amount)

request(amount)

palt

accept

t1

t2

t2-t1<10 s
p>=0.9

p<=0.1

t3

t3-t2<5 s

t2

t2-t1>=10 s &

t2-t1<20 s

Fig. 3. A refinement of Figure 2.

The change that has been made to “cash withdrawal 2” is to impose an upper
limit to the acceptable response time from the bank also in the second operand,
stating that the reply should be received within 20 seconds. In addition we
have narrowed the acceptable range of probability for both operands. It is now
required that the reply from the bank should be received within 10 seconds in
at least 90% of the cases, instead of just 80%.
The specification “cash withdrawal 3” is modeled semantically by four
p-obligations, we call these po′

1, po′
2, po′

3 and po′
4. The p-obligation po′

1 represents
the result of choosing the first operand of the palt. The positive and negative
traces of po′

1 are the same as for po1, while the set of acceptable probabilities for
po′

1 is [0.9, ..., 1], which is a subset of the probability set of po1. This means that
po1  po′

1.
The result of choosing the second palt operand is modeled semantically by po′

2.
The positive and negative traces of po′

2 are the same as for po2, except that
traces where it takes more than 20 seconds to get a reply from the bank are
positive in po2 and negative in po′

2. Since the probability set of po′
2, [0, ..., 0.1],

is a subset of the probability set of po2, we get po2  po′
2.

The third p-obligation, po′
3, models the combination of po′

1 and po′
2, which means

that po′
3 = (⊕{po′

1, po
′
2}, [0.9, ..., 1]). According to po′

3 the positive traces are all
traces where it takes less than 20 seconds to get an answer from the bank and
less than five seconds to get money after the reply is received from the bank.
The negative traces are those where it takes 20 seconds or more to get a reply
or five seconds or more to get the money. Since [0.9, ..., 1] ⊆ [0.8, ..., 1] and the
only difference with respect to traces is that the traces where it takes 20 seconds
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or more to get a reply from the bank are positive in po3 and negative in po′
3, we

get po3  po′
3.

The last p-obligation, po′
4, models the combination of the two operands. Since in

this example each operand gives only one p-obligation, this means that the inter-
action obligation of po′

4 is identical to that of po′
3, i.e. po′

4 = (⊕{po1, po2}, {1}).
Since the probability sets of po4 and po′

4 are both {1} and the only difference
with respect to traces is that the traces where it takes 20 seconds or more to get
a reply from the bank are positive in po4 and negative in po′

4, we get po4  po′
4.

The above shows that condition 35 is fulfilled, so the specification
“cash withdrawal 3” is a refinement of “cash withdrawal 2”.
We also have that the original specification “cash withdrawal 1” with its hard
real-time constraint is a refinement of “cash withdrawal 2”. To see this, note that
the specification “cash withdrawal 1” is represented semantically by
{(π1.po1, {1})}, and that (π1.po1, {1}) is a valid refinement of both po1, po3

and po4. The p-obligation po2 is not represented in “cash withdrawal 1”, but
this is not required, since 0 ∈ π2.po2. Therefore condition 35 is fulfilled, so that
“cash withdrawal 1” is a refinement of “cash withdrawal 2”. A similar argument
shows that “cash withdrawal 1” is also a refinement of “cash withdrawal 3”.

10 Related Work

[Seg95] uses probabilistic automata to address the problem of verification of ran-
domized distributed algorithms. The analysis includes timed systems, so that
real-time properties can be investigated in a probabilistic setting. [Jan03] intro-
duces a stochastic extension to statecharts called StoCharts to allow the quan-
tification of the time between events according to a stochastic distribution, and
defines a formal semantics that can be analyzed by tools. [JL91] presents a for-
malism for specifying probabilistic transition systems where transitions have sets
of allowed probabilities, and defines two refinement relations on such systems.
These formalisms address many of the same issues as we do, but rely on complete
specifications of the communicating entities since the models are automata and
statecharts.
Various dialects of sequence diagrams have been used informally for several
decades. The latest versions of the most known variants are UML 2.0 [OMG04]
and MSC-2000 [ITU99].
Live Sequence Charts [DH01], [HM03] is an extension of MSC where (a part of)
a chart may be designated as universal (mandatory) or existential (optional).
Explicit criteria in the form of pre-charts are given for when a chart applies:
Whenever the system exhibits the communication behavior of its pre-chart its
own behavior must conform to that prescribed by the chart. Timing constraints
are included and alternatives may be assigned exact probabilities.
The UML Profile for Schedulability, Performance and Time [OMG05] extends
UML by adding stereotypes and annotations for defining values for performance
measures such as response time and CPU demand time. The profile is envisaged
to be used with a suitable modeling tool based on for example schedulability
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analysis, Petri Nets or stochastic process algebra. The profile enables specifi-
cation of a wide range of time-related requirements, including soft real-time
requirements. However, no formal semantics is defined for the language.
Most closely related to the work presented in this paper is of course timed
STAIRS as presented in [HHRS06]. Here the notions of positive and negative
behavior, mandatory choice and refinement are formalized in relation to se-
quence diagrams. Timed STAIRS has a more fine-grained analysis of refinement
than presented here. This is partly due to a richer semantical model for events
and traces. Events in timed STAIRS can be of three different types: transmit,
receive and consume. This enables the distinction between two forms of refine-
ment: glass-box refinement, which take the full semantics into account, and black
box refinement, which only considers externally visible changes. The approach
presented in this paper can easily be generalized to take this into account. Timed
STAIRS does not address probabilities.

11 Conclusion

We have extended the work presented in [HHRS06]. Our contribution is to gen-
eralize the approach to handle probabilities. This enables specification of soft
real-time constraints as well as probabilistic specifications in general. The re-
sulting approach, which we call probabilistic STAIRS, offers a powerful language
for specifying a wide range of communicating systems, underpinned by a formal
semantics that allows analysis of functional and non-functional properties, as
well as formal definition of incremental development. In the future we intend to
explore the relationship between probabilistic STAIRS and state machines with
time and probabilities.
This technical report is an extended and revised version of the article [RHS05],
and the contents of the report follows this article closely up to and including
section 12. For a discussion of changes that have been made, see section C.
In section B we show that the refinement relation is transitive and that the
composition operators are monotonic with respect to the refinement relation.
This ensures that the approach is incremental and compositional.
In [RHS05] we promised that this report would include a discussion on what
probability spaces corresponds to a probabilistic STAIRS specification. However,
in order to treat this question properly we have decided that this question is
better left to a separate paper.
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A Additional operators

A.1 loop

We now introduce a looping construct to the formalism. Syntactically this is
done by adding the following case to those given in 4.1 and 6.1:

– d ∈ D ∧ I ⊆ N0 ∪ {∞} ⇒ loop I d ∈ D

where N0 denotes the set of natural numbers including 0.
Before defining the semantics of this construct we need to give some definitions
in order to handle the case where the loop may be infinite. These definitions
build on the ones given in [HHRS06]. Intuitively, an infinite loop corresponds
to infinitely many weak sequencing steps. A chain of p-obligations is an infinite
sequence of p-obligations such that each element is a sequential composition of
the previous p-obligation in the chain and some other appropriate p-obligation.
For a set of p-obligations O , its chains is defined as:

chains(O)
def
= {p̄o ∈ P∞ | p̄o[1] ∈ O ∧ (36)

∀ j ∈ N : ∃ po ∈ O : p̄o[j + 1] = p̄o[j ] % po}

From a chain p̄o of p-obligations, we obtain a chain of positive traces by selecting
one positive trace from each p-obligation in the chain p̄o such that each trace in
the chain is an extension (by means of weak sequencing) of the previous trace in
the chain. For a chain p̄o of interaction obligations, we define its positive chains
of traces as:

posCh(p̄o)
def
= {t̄ ∈ H∞ | ∀ j ∈ N : t̄ [j ] ∈ π1.π1.p̄o[j ] ∧ (37)

∃ t ∈ H : t̄ [j + 1] ∈ {t̄ [j ]} % {t} }

For a chain p̄o of p-obligations we get a negative chain of traces by selecting
the traces such that the first one is negative in some obligation p̄o[i ] and all
the following traces belong to the negative trace sets of the corresponding p-
obligations. By starting from some obligation p̄o[i ] and not just from p̄o[1], we
take into account that a negative trace may have been positive during a finite
number of initial iterations. In the same way as for posCh(p̄o), each trace in
the chain is a weak sequencing extension of the previous trace in the chain.
According to definition 17, once we have selected a negative trace, all extensions
of this trace with other traces that are positive or negative will also be negative.
Hence, we get the following definition for the negative chains of traces:

negCh(p̄o)
def
= {t̄ ∈ H∞ | ∃ i ∈ N : ∀ j ∈ N : (38)

t̄ [j ] ∈ π2.(π1.p̄o[j + i − 1]) ∧

∃ t ∈ H : t̄ [j + 1] ∈ {t̄[j ]} % {t} }
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From a chain p̄o of p-obligations, we obtain a chain of probabilities by selecting
one probability from each p-obligation in the chain p̄o, and such that each proba-
bility in the chain is equal to the previous probability multiplied by an arbitrary
probability. For a chain p̄o of p-obligations, we define its chains of probabilities
as

prob(p̄o)
def
= {q̄ ∈ [0, 1]∞ | ∀ j ∈ N : q̄[j ] ∈ π2.p̄o[j ] ∧ (39)

∃ q ∈ [0, 1] : q̄[j + 1] ∈ q̄ [j ] ∗ q}

For a chain of traces t̄ we have that for each l ∈ L, the sequence

e.l S© t̄ [1], e.l S© t̄ [2], e.l S© t̄ [3], ...

constitutes a chain whose elements are ordered by v. We use tl t̄ to denote the
least upper bound of this chain of sequences (with respect to v). Since sequences
may be infinite such least upper bounds always exist.
For a chain of traces t̄ , we define its set of approximations tt̄ as:

tt̄
def
= {h ∈ H | ∀ l ∈ L : e.l S© h = tl t̄} (40)

For a chain of p-obligations p̄o, we then define the p-obligation tp̄o as:

tp̄o
def
= ((

⋃

t̄∈posCh(p̄o)

tt̄ ,
⋃

t̄∈negCh(p̄o)

tt̄), { lim
j→∞

q̄ | q̄ ∈ prob(p̄o)}) (41)

For a set of p-obligations, we define a loop construct µn where n denotes the
number of times the loop is iterated. µn O is defined inductively as follows:

µ0O
def
= {(({〈〉}, ∅), {1})} (42)

µ1O
def
= O (43)

µnO
def
= O % µn−1O for 1 < n < ∞ (44)

µ∞O
def
= {tp̄o | p̄o ∈ chains(O)} (45)

The semantics of loop is now defined as:

[[ loop I d ]]
def
=

⊎

i∈I

µi[[ d ]] (46)

where ⊎

i∈I

Pi
def
= {

⊎

i∈I

((pi ,ni),Qi) | ∀ i ∈ I : ((pi ,ni),Qi) ∈ Pi} (47)

and ⊎

i∈I

((pi ,ni),Qi)
def
= ((

⋃

i∈I

pi ,

⋃

i∈I

ni), Πi∈I Qi) (48)
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A.2 assert

The assert operator is used to define all inconclusive traces as negative. In the
definition of syntax the following case is added to those given in 4.1 and 6.1:

– d ∈ D ⇒ assert d ∈ D

The semantics for this construct is given by

[[ assert d ]]
def
= {((p,n ∪ (H \ p)),Q) | ((p,n),Q) ∈ [[ d ]]} (49)

A.3 N-ary palt

For expressing probabilistic choices with more than two alternatives we extend
the palt operator so that it can take any finite number of operands. In the
definition of syntax the following case is added to those given in 4.1 and 6.1:

– n ∈ N\{1}∧d1, ..., dn ∈ D∧Q1, ...,Qn ⊆ [0...1] ⇒ palt(d1;Q1, ..., dn ;Qn) ∈ D

We do not allow n = 1 since this would allow probability decoration in cases
with only one operand. In such cases 1 should be the only acceptable probability.
The semantics for palt is then given by

[[ palt(d1;Q1, ..., dn ;Qn) ]]
def
= (50)

{(⊕
⋃

i∈S

{poi},
∑

i∈S

π2.poi) |

S ⊆ {1, ...,n} ∧ S 6= ∅ ∧ ∀ i ∈ S : poi ∈ [[ di ;Qi ]]}

∪ {(⊕
n⋃

i=1

[[ di ;Qi ]], {1} ∩
n∑

i=1

Qi)}

Note that if n = 2 then this defintion gives the same semantics as definition 32.
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B Proofs

To simplify notation in the proofs we overload the definitions of the operators
¬ , o, ‖, % and ] to p-obligations:

¬ (o,Q)
def
= (¬ o,Q) (51)

(o,Q) o C
def
= (o o C ,Q) (52)

(o1,Q1) ‖ (o2,Q2)
def
= (o1 ‖ o2,Q1 ∗ Q2) (53)

(o1,Q1) % (o2,Q2)
def
= (o1 % o2,Q1 ∗ Q2) (54)

(o1,Q1) ] (o2,Q2)
def
= (o1 ] o2,Q1 ∗ Q2) (55)

and further to sets of p-obligations:

¬ O
def
= {¬ po | po ∈ O} (56)

O o C
def
= {po o C | po ∈ O} (57)

O1 ‖ O2
def
= {po1 ‖ po2 | po1 ∈ O1 ∧ po2 ∈ O2} (58)

O1 % O2
def
= {po1 % po2 | po1 ∈ O1 ∧ po2 ∈ O2} (59)

O1 ] O2
def
= {po1 ] po2 | po1 ∈ O1 ∧ po2 ∈ O2} (60)

Multiplication of a p-obligation or a set of p-obligations with a probability set
Q ′ is defined as follows:

(o,Q) ∗ Q ′ def
= (o,Q ∗ Q ′) (61)

O ∗ Q ′ def
= {po ∗ Q ′ | po ∈ O} (62)

For p-obligations we introduce the functions pos and neg that return the set of
positive and negative traces, resepctively:

pos .((p,n),Q)
def
= p (63)

neg.((p,n),Q)
def
= n (64)

The definition 35 of refinement is extended so that it applies to all sets of p-
obligations (and not just to sequence diagrams as in definition 35). If O and O ′

are sets of p-obligations then O  O ′ iff

∀ po ∈ O : 0 6∈ π2.po ⇒ ∃ po′ ∈ O ′ : po  po′ (65)
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We also define  for interaction obligations: (p,n) (p′,n ′) iff

n ⊆ n ′ ∧ p ⊆ p′ ∪ n ′ (66)

Note that these definitions ensure that

d  d ′ ⇔ [[ d ]] [[ d ′ ]] (67)

o  o′ ∧ Q ′ ⊆ Q ⇒ (o,Q) (o′
,Q ′) (68)

In the proofs we use po and poi as shorthand notation for ((p,n),Q) and
((pi ,ni),Qi), respectively.

B.1 Transitivity of refinement

The refinement relation needs to be transitive in order to allow a stepwise devel-
opment from an initial specification with a high level of abstraction to a detailed
specification suitable for implementation.

Lemma 1. Transitivity of  for p-obligations

Assume: 1. ((p,n),Q) ((p′,n ′),Q ′)
2. ((p′,n ′),Q ′) ((p′′,n ′′),Q ′′)

Prove: ((p,n),Q) ((p′′,n ′′),Q ′′)

〈1〉1. n ⊆ n ′′

〈2〉1. n ⊆ n ′

Proof: By assumtion 1.
〈2〉2. n ′ ⊆ n ′′

Proof: By assumtion 2.
〈2〉3. Q.E.D.

Proof: By 〈2〉1, 〈2〉2 and transitivity of ⊆.
〈1〉2. p ⊆ p′′ ∪ n ′′

〈2〉1. p ⊆ p′ ∪ n ′

Proof: By assumtion 1
〈2〉2. p′ ⊆ p′′ ∪ n ′′

Proof: By assumtion 2
〈2〉3. p ⊆ (p′′ ∪ n ′′) ∪ n ′

Proof: By 〈2〉1 and 〈2〉2
〈2〉4. n ′ ⊆ n ′′

Proof: By assumtion 2
〈2〉5. (p′′ ∪ n ′′) ∪ n ′ = p′′ ∪ n ′′

Proof: By 〈2〉4
〈2〉6. Q.E.D.

Proof: By 〈2〉3 and 〈2〉5
〈1〉3. Q ′′ ⊆ Q

〈2〉1. Q ′ ⊆ Q

Proof: By assumption 1
〈2〉2. Q ′′ ⊆ Q ′
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Proof: By assumption 2
〈2〉3. Q.E.D.

Proof: By 〈2〉1, 〈2〉2 and transitivity of ⊆
〈1〉4. Q.E.D.

Proof: By 〈1〉1, 〈1〉2, 〈1〉3 and definition 34

�

Theorem 1. Transitivity of  for specifications

Assume: 1. d  d ′

2. d ′  d ′′

Prove: d  d ′′

Let: [[ d ]] = O ∧ [[ d ′ ]] = O ′ ∧ [[ d ′′ ]] = O ′′

〈1〉1. ∀ po ∈ O : 0 6∈ π2.po ⇒ ∃ po′′ ∈ O ′′ : po  po′′

〈2〉1. Assume: po ∈ O

Prove: 0 6∈ π2.po ⇒ ∃ po′′ ∈ O ′′ : po  po′′

〈3〉1. Assume: 0 6∈ π2.po

Prove: ∃ po′′ ∈ O ′′ : po  po′′

〈4〉1. Let: po′ ∈ O ′ s.t. po  po′

Proof: By assumption 1 and assumption 〈3〉1
〈4〉2. ∃ po′′ ∈ O ′′ : po′  po′′

〈5〉1. 0 6∈ π2.po
′

Proof: By assumption 〈3〉1 and 〈4〉1
〈5〉2. Q.E.D.

Proof: By assumption 2 and 〈5〉1
〈4〉3. Let: po′′ ∈ O ′′ s.t. po′  po′′

Proof: By 〈4〉2
〈4〉4. po  po′′

Proof: By 〈4〉1, 〈4〉3 and Lemma 1
〈4〉5. Q.E.D.

Proof: By 〈4〉3 (po′′ ∈ O ′′) and 〈4〉4
〈3〉2. Q.E.D.

Proof: ⇒-rule
〈2〉2. Q.E.D.

Proof: ∀-rule
〈1〉2. Q.E.D.

Proof: By definition 35

�

B.2 Monotonicity

When dealing with complex specifications it is very important to be able to work
with one part at a time. Monotonicity the composition operators w.r.t. refine-
ment ensures that different parts of a specification can be refined independently
from each other. In this sense the approach is compositional.
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Monotonicity of neg w.r.t.  

Lemma 2. Monotonicity of ¬ for single p-obligations w.r.t.  

Assume: ((p,n),Q) ((p′,n ′),Q ′)
Prove: ¬ ((p,n),Q) ¬ ((p′,n ′),Q ′), i.e.

(({〈〉}, p ∪ n),Q) (({〈〉}, p′ ∪ n ′),Q ′)

〈1〉1. n ⊆ n ′ ∧ p ⊆ p′ ∪ n ′

Proof: By definition 34 and the assumption.
〈1〉2. Q ′ ⊆ Q

Proof: By definition 34 and the assumption.
〈1〉3. {〈〉} ⊆ {〈〉} ∪ p′ ∪ n ′

Proof: By basic set theory.
〈1〉4. p ∪ n ⊆ p′ ∪ n ′

Proof: By 〈1〉1 and basic set theory.
〈1〉5. p ∪ n ⊆ p′ ∪ n ′ ∧ {〈〉} ⊆ {〈〉} ∪ p′ ∪ n ′ ∧ Q ′ ⊆ Q

Proof: ∧-introduction from 〈1〉4, 〈1〉3 and 〈1〉2.
〈1〉6. Q.E.D.

Proof: By 〈1〉5 and definition 34.

�

Theorem 2. Monotonicity of ¬ w.r.t.  

Assume: O  O ′

Prove: ¬ O  ¬ O ′

〈1〉1. ∀ po ∈ ¬ O : 0 6∈ π2.po ⇒ ∃ po′ ∈ ¬ O ′ : po  po′

〈2〉1. Assume: po ∈ ¬ O

Prove: 0 6∈ π2.po ⇒ ∃ po′ ∈ ¬ O ′ : po  po′

〈3〉1. Assume: 0 6∈ π2.po

Prove: ∃ po′ ∈ ¬ O ′ : po  po′

〈4〉1. Let: po ∈ O s.t. ¬ po = po

Proof: By definition 56 and assumption 〈2〉1
〈4〉2. 0 6∈ π2.po

Proof: By 〈4〉1 and assumption 〈3〉1
〈4〉3. Let: po′ ∈ O ′ s.t. po  po′

Proof: By 〈4〉1, 〈4〉2, the main assumption and definition 35
〈4〉4. ¬ po  ¬ po′

Proof: By 〈4〉3 and Lemma 2
〈4〉5. ¬ po′ ∈ ¬ O ′

Proof: By 〈4〉3 and definition 56
〈4〉6. Q.E.D.

Proof: ∃ -rule with 〈4〉4 and 〈4〉5; ¬ po′ is the po′ we are looking for.
〈3〉2. Q.E.D.

Proof: ⇒ -rule
〈2〉2. Q.E.D.

Proof: ∀ -rule
〈1〉2. Q.E.D.
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Proof: By 〈1〉1 and definition 65

�

Monotonicity of neg w.r.t.  follows immediately from Theorem 2.

Monotonicity of seq w.r.t.  

Lemma 3. Monotonicity of % w.r.t.  for p-obligations

Assume: 1. ((p,n),Q) = ((p1,n1),Q1) % ((p2,n2),Q2)
2. ((p′,n ′),Q ′) = ((p′

1,n
′
1),Q

′
1) % ((p′

2,n
′
2),Q

′
2)

3. ((p1,n1),Q1) ((p′
1,n

′
1),Q

′
1)

4. ((p2,n2),Q2) ((p′
2,n

′
2),Q

′
2)

Prove: ((p,n),Q) ((p′,n ′),Q ′)

〈1〉1. n ⊆ n ′ ∧ p ⊆ p′ ∪ n ′

Proof: See proof of Lemma 30 in [HHRS06].
〈1〉2. Q ′ ⊆ Q

〈2〉1. Q ′
1 ⊆ Q1

Proof: By assumption 3
〈2〉2. Q ′

2 ⊆ Q2

Proof: By assumption 4
〈2〉3. Q = Q1 ∗ Q2

Proof: By assumption 1 and definition 54
〈2〉4. Q ′ = Q ′

1 ∗ Q ′
2

Proof: By assumption 2 and definition 54
〈2〉5. Q.E.D.

Proof: By 〈2〉1, 〈2〉2, 〈2〉3, 〈2〉4 and definition 28
〈1〉3. Q.E.D.

Proof: By 〈1〉1, 〈1〉2 and definition 34

�

Theorem 3. Monotonicity of % w.r.t.  

Assume: 1. O1  O ′
1

2. O2  O ′
2

Prove: O1 % O2  O ′
1 % O ′

2

〈1〉1. ∀ po ∈ O1 % O2 : 0 6∈ π2.po ⇒ ∃ po′ ∈ O ′
1 % O ′

2 : po  po′

〈2〉1. Assume: po ∈ O1 % O2

Prove: 0 6∈ π2.po ⇒ ∃ po′ ∈ O ′
1 % O ′

2 : po  po′

〈3〉1. Assume: 0 6∈ π2.po

Prove: ∃ po′ ∈ O ′
1 % O ′

2 : po  po′

〈4〉1. Let: po1 ∈ O1, po2 ∈ O2 s.t. po = po1 % po2

Proof: By assumption 〈2〉1
〈4〉2. 0 6∈ π2.po1 ∧ 0 6∈ π2.po2

Proof: By assumption 〈3〉1
〈4〉3. Let: po′

1 ∈ O ′
1 s.t po1  po′

1

Proof: By 〈4〉2, 〈4〉1 and assumption 1
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〈4〉4. Let: po′
2 ∈ O ′

2 s.t. po2  po′
2

Proof: By 〈4〉2, 〈4〉1 and assumption 2
〈4〉5. po1 % po2  po′

1 % po′
2

Proof: By 〈4〉3, 〈4〉4 and Lemma 3
〈4〉6. po′

1 % po′
2 ∈ O ′

1 % O ′
2

Proof: By 〈4〉3 and 〈4〉4
〈4〉7. Q.E.D.

Proof: By 〈4〉5 and 〈4〉6; po′
1 % po′

2 is the po′ we are looking for
〈3〉2. Q.E.D.

Proof: ⇒-rule
〈2〉2. Q.E.D.

Proof: ∀-rule
〈1〉2. Q.E.D.

Proof: By definition 65

�

Monotonicity of seq w.r.t.  follows immediately from Theorem 3

Monotonicity of par w.r.t.  

Lemma 4. Monotonicity of ‖ w.r.t.  for p-obligations

Assume: 1. ((p,n),Q) = ((p1,n1),Q1) ‖ ((p2,n2),Q2)
2. ((p′,n ′),Q ′) = ((p′

1,n
′
1),Q

′
1) ‖ ((p′

2,n
′
2),Q

′
2)

3. ((p1,n1),Q1) ((p′
1,n

′
1),Q

′
1)

4. ((p2,n2),Q2) ((p′
2,n

′
2),Q

′
2)

Prove: ((p,n),Q) ((p′,n ′),Q ′)

Proof: The proof is similar to the proof for Lemma 3; just replace % with ‖,
and refer to Lemma 31 in [HHRS06] instead of Lemma 30 in [HHRS06].

�

Theorem 4. Monotonicity of ‖ w.r.t.  
Assume: 1. O1  O ′

1

2. O2  O ′
2

Prove: O1 ‖ O2  O ′
1 ‖ O ′

2

Proof: The proof is similar to the proof for %; just replace % with ‖ and refer
to Lemma 4 instead of Lemma 3.

�

Monotonicity of par w.r.t.  follows immediately from Theorem 4.

Monotonicity of alt w.r.t.  

Lemma 5. Monotonicity of ] w.r.t.  for p-obligations

Assume: 1. ((p1,n1),Q1) ((p′
1,n

′
1),Q

′
1)

2. ((p2,n2),Q2) ((p′
2,n

′
2),Q

′
2)

Prove: ((p1,n1),Q1) ] ((p2,n2),Q2) ((p′
1,n

′
1),Q

′
1) ] ((p′

2,n
′
2),Q

′
2)
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〈1〉1. ((p1 ∪ p2,n1 ∪ n2),Q1 ∗ Q2) ((p′
1 ∪ p′

2,n
′
1 ∪ n ′

2),Q
′
1 ∗ Q ′

2)
〈2〉1. n1 ∪ n2 ⊆ n ′

1 ∪ n ′
2 ∧ p1 ∪ p2 ⊆ p′

1 ∪ p′
2 ∪ n ′

1 ∪ n ′
2

〈3〉1. n1 ∪ n2 ⊆ n ′
1 ∪ n ′

2

〈4〉1. n1 ⊆ n ′
1

Proof: By assumption 1
〈4〉2. n2 ⊆ n ′

2

Proof: By assumption 2
〈4〉3. Q.E.D.

Proof: By 〈4〉1, 〈4〉2 and basic set theory
〈3〉2. p1 ∪ p2 ⊆ p′

1 ∪ p′
2 ∪ n ′

1 ∪ n ′
2

〈4〉1. p1 ⊆ p′
1 ∪ n ′

1

Proof: By assumption 1
〈4〉2. p2 ⊆ p′

2 ∪ n ′
2

Proof: By assumption 2
〈4〉3. Q.E.D.

Proof: By 〈4〉1, 〈4〉2 and basic set theory
〈3〉3. Q.E.D.

Proof: ∧-introduction: 〈3〉1 and 〈3〉2
〈2〉2. Q ′

1 ∗ Q ′
2 ⊆ Q1 ∗ Q2

〈3〉1. Q ′
1 ⊆ Q1 ∧ Q ′

2 ⊆ Q2

Proof: By assumption 1 and assumption 2
〈3〉2. Q.E.D.

Proof: By 〈3〉1 and definition 28
〈2〉3. Q.E.D.

Proof: By 〈2〉1, 〈2〉2 and definition 34
〈1〉2. Q.E.D.

Proof: By 〈1〉1 and definition 55

�

Theorem 5. Monotonicity of ] w.r.t.  

Assume: 1. O1  O ′
1

2. O2  O ′
2

Prove: O1 ] O2  O ′
1 ] O ′

2

〈1〉1. ∀ po ∈ O1 ] O2 : 0 6∈ π2.po ⇒ ∃ po′ ∈ O ′
1 ] O ′

2 : po  po′

〈2〉1. Assume: po ∈ O1 ] O2

Prove: 0 6∈ π2.po ⇒ ∃ po′ ∈ O ′
1 ] O ′

2 : po  po′

〈3〉1. Assume: 0 6∈ π2.po

Prove: ∃ po′ ∈ O ′
1 ]O ′

2 : po  po′

〈4〉1. Let: po1 ∈ O1, po2 ∈ O2 s.t. po = po1 ] po2

Proof: By assumption 〈2〉1
〈4〉2. 0 6∈ π2.po1 ∧ 0 6∈ π2.po2

Proof: By assumption 〈3〉1 and 〈4〉1
〈4〉3. Let: po′

1 ∈ O ′
1 s.t. po1  po′

1

Proof: By assumption 1, 〈4〉1 and 〈4〉2
〈4〉4. Let: po′

2 ∈ O ′
2 s.t. : po2  po′

2
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Proof: By assumption 2, 〈4〉1 and 〈4〉2
〈4〉5. po1 ] po2  po′

1 ] po′
2

Proof: By 〈4〉3, 〈4〉4 and Lemma 5
〈4〉6. po′

1 ] po′
2 ∈ O ′

1 ] O ′
2

Proof: By 〈4〉3 and 〈4〉4
〈4〉7. Q.E.D.

Proof: By 〈4〉5 and 〈4〉6; po′
1 ] po′

2 is the po′ we are looking for
〈3〉2. Q.E.D.

Proof: ⇒-rule
〈2〉2. Q.E.D.

Proof: ∀-rule
〈1〉2. Q.E.D.

Proof: By definition 65

�

Monotonicity of alt w.r.t.  follows immediately from Theorem 5.

Monotonicity of palt w.r.t.  

Lemma 6. Refinement of combinations of sets of p-obligations

Assume: 1. ⊕O1  ⊕O ′
1

2. ⊕O2  ⊕O ′
2

Prove: ⊕(O1 ∪O2) ⊕(O ′
1 ∪ O ′

2)

〈1〉1.
⋂

po∈O1∪O2

n ⊆
⋂

po′∈O′

1
∪O′

2

n ′

〈2〉1.
⋂

po1∈O1

n1 ∩
⋂

po2∈O2

n2 ⊆
⋂

po′

1
∈O′

1

n ′
1 ∩

⋂
po′

2
∈O′

2

n ′
2

〈3〉1.
⋂

po1∈O1

n1 ⊆
⋂

po′

1
∈O′

1

n ′
1

Proof: By assumption 1
〈3〉2.

⋂
po2∈O2

n2 ⊆
⋂

po′

2
∈O′

2

n ′
2

Proof: By assumption 2
〈3〉3. Q.E.D.

Proof: By 〈3〉1, 〈3〉2 and basic set theory
〈2〉2.

⋂
po1∈O1

n1 ∩
⋂

po2∈O1

n2 =
⋂

po∈O1∪O2

n ∧
⋂

po′

1
∈O′

1

n ′
1 ∩

⋂
po′

2
∈O′

2

n ′
2 =

⋂
po′∈O′

1
∪O′

2

n ′

Proof: By basic set theory
〈2〉3. Q.E.D.

Proof: By 〈2〉1 and 〈2〉2
〈1〉2.

⋃
po∈O1∪O2

p ∩
⋂

po∈O1∪O2

p ∪ n ⊆

(
⋃

po′∈O′

1
∪O′

2

p′ ∩
⋂

po′∈O′

1
∪O′

2

p′ ∪ n ′) ∪
⋂

po′∈O′

1
∪O′

2

n ′

〈2〉1. Assume: t ∈
⋃

po∈O1∪O2

p ∩
⋂

po∈O1∪O2

p ∪ n
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Prove: t ∈ (
⋃

po′∈O′

1
∪O′

2

p′ ∩
⋂

po′∈O′

1
∪O′

2

p′ ∪ n ′) ∪
⋂

po′∈O′

1
∪O′

2

n ′

〈3〉1. t ∈
⋃

po1∈O1

p1 ∨ t ∈
⋃

po2∈O2

p2

Proof: By assumption 〈2〉1
〈3〉2. Case: t ∈

⋃
po1∈O1

p1

〈4〉1. t ∈ (
⋃

po′

1
∈O′

1

p′
1 ∩

⋂
po′

1
∈O′

1

p′
1 ∪ n ′

1) ∪
⋂

po′

1
∈O′

1

n ′
1

〈5〉1. t ∈
⋃

po1∈O1

p1 ∩
⋂

po1∈O1

p1 ∪ n1

〈6〉1. t ∈
⋂

po1∈O1

p1 ∪ n1

Proof: By assumption 〈2〉1
〈6〉2. Q.E.D.

Proof: By 〈6〉1 and assumption 〈3〉2
〈5〉2. Q.E.D.

Proof: By 〈5〉1 and assumption 1
〈4〉2. Assume: t 6∈ (

⋃
po′∈O′

1
∪O′

2

p′ ∩
⋂

po′∈O′

1
∪O′

2

p′ ∪ n ′) ∪
⋂

po′∈O′

1
∪O′

2

n ′

Prove: ⊥
〈5〉1. t 6∈ (

⋃
po′

2
∈O′

2

p′
2 ∩

⋂
po′

2
∈O′

2

p′
2 ∪ n ′

2) ∪
⋂

po′

2
∈O′

2

n ′
2

〈6〉1. t 6∈
⋂

po′

2
∈O′

2

p′
2 ∪ n ′

2

〈7〉1. Assume: t ∈
⋂

po′

2
∈O′

2

p′
2 ∪ n ′

2

Prove: ⊥
〈8〉1. t ∈

⋂
po′

1
∈O′

1

p′
1 ∪ n ′

1

Proof: By 〈4〉1
〈8〉2. t ∈

⋂
po′∈O′

1
∪O′

2

p′ ∪ n ′

Proof: By 〈8〉1 and assumption 〈7〉1
〈8〉3. Q.E.D.

Proof: By 〈8〉2 and assumption 〈4〉2
〈7〉2. Q.E.D.

Proof: ⊥-rule
〈6〉2. Q.E.D.

Proof: By 〈6〉1
〈5〉2. t ∈

⋂
po′

2
∈O′

2

n ′
2

〈6〉1. t 6∈
⋃

po2∈O2

p2 ∩
⋂

po2∈O2

p2 ∪ n2

〈7〉1.
⋃

po2∈O2

p2 ∩
⋂

po2∈O2

p2 ∪ n2 ⊆

(
⋃

po′

2
∈O′

2

p′
2 ∩

⋂
po′

2
∈O′

2

p′
2 ∪ n ′

2) ∪
⋂

po′

2
∈O′

2

n2

Proof: By assumption 2
〈7〉2. Q.E.D.
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Proof: By 〈5〉1 and 〈7〉1
〈6〉2. t ∈

⋂
po2∈O2

p2 ∪ n2

Proof: By assumption 〈2〉1
〈6〉3. t 6∈

⋃
po2∈O2

p2

Proof: By 〈6〉1 and 〈6〉2
〈6〉4. t ∈

⋂
po2∈O2

n2

Proof: By 〈6〉2 and 〈6〉3
〈6〉5.

⋂
po2∈O2

n2 ⊆
⋂

po′

2
∈O′

2

n ′
2

Proof: By assumption 2
〈6〉6. Q.E.D.

Proof: By 〈6〉4 and 〈6〉5
〈5〉3. Q.E.D.

Proof: By 〈5〉1 and 〈5〉2
〈4〉3. Q.E.D.

Proof: ⊥-rule
〈3〉3. Case: t ∈

⋃
po2∈O2

p2

Proof: Similar proof as case 〈3〉2
〈3〉4. Q.E.D.

Proof: By 〈3〉1 the cases 〈3〉2 and 〈3〉3 are exhaustive
〈2〉2. Q.E.D.

Proof: ⊆-rule
〈1〉3. Q.E.D.

Proof: By 〈1〉1, 〈1〉2 and definition 66

�

Lemma 7. Refinement of the combination of a set of p-obligations

Assume: S ⊆ N ∧ S 6= ∅ ∧ ∀ i ∈ S : poi  po′
i

Prove: (⊕
⋃
i∈S

{poi},
∑
i∈S

π2.poi ) (⊕
⋃
i∈S

{po′
i},

∑
i∈S

π2.po
′
i)

〈1〉1. Case: |S | = 1 (Induction basis)
〈2〉1. ∃ j ∈ N : S = {j}

Proof: By assumption 〈1〉1 and the main assumption
〈2〉2. (⊕

⋃
i∈{j}

{poi},
∑

i∈{j}

π2.poi) (⊕
⋃

i∈{j}

{po′
i},

∑
i∈{j}

π2.po
′
i)

Proof: By the main assumption, since for any j , (⊕
⋃

i∈{j}

{poi},
∑

i∈{j}

π2.poi ) =

poj

〈2〉3. Q.E.D.
Proof: By 〈2〉2

〈1〉2. Case: |S | > 1 (Induction step)
〈2〉1. Assume: |S | ≤ k ⇒

(⊕
⋃
i∈S

{poi},
∑
i∈S

π2.poi ) (⊕
⋃
i∈S

{po′
i},

∑
i∈S

π2.po
′
i) (ind. hyp.)
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Prove: |S | = k + 1 ⇒
(⊕

⋃
i∈S

{poi},
∑
i∈S

π2.poi ) (⊕
⋃
i∈S

{po′
i},

∑
i∈S

π2.po
′
i)

〈3〉1. Assume: |S | = k + 1
Prove: (⊕

⋃
i∈S

{poi},
∑
i∈S

π2.poi ) (⊕
⋃
i∈S

{po′
i},

∑
i∈S

π2.po
′
i )

〈4〉1. ∃ j ∈ S ,S ′ ⊂ S : S = S ′ ∪ {j}
Proof: By assumption 〈3〉1

〈4〉2. (⊕
⋃

i∈S ′

{poi},
∑
i∈S ′

π2.poi) (⊕
⋃

i∈S ′

{po′
i},

∑
i∈S ′

π2.po
′
i)

Proof: By assumption 〈2〉1 and 〈4〉1, since |S ′| = k

〈4〉3. ⊕
⋃
i∈S

{poi} ⊕
⋃
i∈S

{po′
i}

〈5〉1. ⊕
⋃

i∈S ′

{poi} ⊕
⋃

i∈S ′

{po′
i}

Proof: By 〈4〉2
〈5〉2. ⊕{poj } ⊕{po′

j }
Proof: By the overall assumption, since ⊕{po} = π1.po for any po

〈5〉3. ⊕
⋃

i∈S ′∪{j}

{poi} ⊕
⋃

i∈S ′∪{j}

{po′
i}

Proof: By 〈5〉1, 〈5〉2 and Lemma 6
〈5〉4. Q.E.D.

Proof: By 〈5〉3
〈4〉4.

∑
i∈S

π2.po
′
i ⊆

∑
i∈S

π2.poi

〈5〉1.
∑

i∈S ′

π2.po
′ ⊆

∑
i∈S ′

π2.po

Proof: By 〈4〉2
〈5〉2.

∑
i∈{j}

π2.po
′ ⊆

∑
i∈{j}

π2.po

Proof: By the overall assumption
〈5〉3.

∑
i∈S∪{j}

π2.po
′ ⊆

∑
i∈S∪{j}

π2.po

Proof: By 〈5〉1, 〈5〉2, definition 31 and basic set theory
〈5〉4. Q.E.D.

Proof: By 〈5〉3
〈4〉5. Q.E.D.

Proof: By 〈4〉3 and 〈4〉4
〈3〉2. Q.E.D.

Proof: ⇒-rule
〈2〉2. Q.E.D.

Proof: Induction step
〈1〉3. Q.E.D.

By induction: 〈1〉1 and 〈1〉2

�

Theorem 6. Restricted monotonicity of palt w.r.t.  

Assume: 1. ∀ i ≤ n : [[ di ]] [[ d ′
i ]]

2. ∀ i ≤ n : Q ′
i ⊆ Qi

3. ∀ i ≤ n : ⊕[[ di ]] ⊕[[ d ′
i ]]
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Let: 1. O = [[ palt(d1;Q1, ..., dn ;Qn) ]]
2. O ′ = [[ palt(d ′

1;Q
′
1, ..., d

′
n ;Q ′

n) ]]

Prove: O  O ′

〈1〉1. ∀ po ∈ O : 0 6∈ π2.po ⇒ ∃ po′ ⊆ O ′ : po  po′

〈2〉1. Assume: po ∈ O

Prove: 0 6∈ π2.po ⇒ ∃ po′ ∈ O ′ : po  po′

〈3〉1. Assume: 0 6∈ π2.po

Prove: ∃ po′ ∈ O ′ : po  po′

〈4〉1. Case: po ∈ {(⊕
⋃
i∈S

{poi},
∑
i∈S

π2.poi) | S ⊆ {1, ...,n} ∧

S 6= ∅ ∧ ∀ i ∈ S : poi ∈ [[ di ;Qi ]]}
〈5〉1. Let: S ⊆ {1, ...n} s. t. S 6= ∅ ∧ ∀ i ∈ S : ∃ poi ∈ [[ di ;Qi ]] :

po = (⊕
⋃
i∈S

{poi},
∑
i∈S

π2.poi )

Proof: By assumption 〈4〉1
〈5〉2. ∀ i ∈ S : ∃ po′

i ∈ [[ d ′
i ;Q

′
i ]] : poi  po′

i

Proof: By assumptions 1 and 2
〈5〉3. Let: po′

i be such that poi  po′
i for each i ∈ S

Proof: By 〈5〉2
〈5〉4. (⊕

⋃
i∈S

{poi},
∑
i∈S

π2.poi ) (⊕
⋃
i∈S

{po′
i},

∑
i∈S

π2.po
′
i)

Proof: By 〈5〉3, 〈5〉1 and Lemma 7
〈5〉5. (⊕

⋃
i∈S

{po′
i},

∑
i∈S

π2.po
′
i ) ∈ [[ palt(d ′

1;Q
′
n , ..., d ′

n ;Q ′
n) ]]

Proof: By definition 50 and 〈5〉2
〈5〉6. Q.E.D.

Proof: By 〈5〉4 and 〈5〉5; (⊕
⋃
i∈S

{po′
i},

∑
i∈S

π2.po
′
i ) is the po′ we are

looking for.

〈4〉2. Case: po = (⊕
n⋃

i=1

[[ di ;Qi ]], {1} ∩
n∑

i=1

Qi)

〈5〉1. {1} ∩
n∑

i=1
Q ′

i ⊆ {1} ∩
n∑

i=1
Qi

Proof: By assumption 2

〈5〉2. ⊕
n⋃

i=1

[[ di ;Qi ]] ⊕
n⋃

i=1

[[ d ′
i ;Q

′
i ]]

〈6〉1. Case: n = 2 (induction basis)
〈7〉1. ⊕[[ d1;Q1 ]] ⊕[[ d ′

1;Q
′
1 ]]

Proof: By assumption 3
〈7〉2. ⊕[[ d2;Q2 ]] ⊕[[ d ′

2;Q
′
2 ]]

Proof: By assumption 3
〈7〉3. Q.E.D.

Proof: By 〈7〉1, 〈7〉2 and Lemma 6
〈6〉2. Case: n > 2 (induction step)

〈7〉1. Assume: n ≤ k ⇒ ⊕
n⋃

i=1
[[ di ;Qi ]] ⊕

n⋃
i=1

[[ d ′
i ;Q

′
i ]]

(induction hypothesis)

32



Prove: ⊕
k+1⋃
i=1

[[ di ;Qi ]] ⊕
k+1⋃
i=1

[[ d ′
i ;Q

′
i ]]

〈8〉1. ⊕
k⋃

i=1
[[ di ;Qi ]] ⊕

k⋃
i=1

[[ d ′
i ;Q

′
i ]]

Proof: By assumption 〈7〉1
〈8〉2. ⊕[[ dk+1;Qk+1 ]] ⊕[[ d ′

k+1;Q
′
k+1 ]]

Proof: By assumption 3

〈8〉3. ⊕(
k⋃

i=1
[[ dk ;Qk ]] ∪ [[ dk+1;Qk+1 ]]) 

⊕ (
k⋃

i=1

[[ d ′
k ;Q ′

k ]] ∪ [[ d ′
k+1;Q

′
k+1 ]])

Proof: By 〈8〉1, 〈8〉2 and Lemma 6
〈8〉4. Q.E.D.

Proof: By 〈8〉3
〈7〉2. Q.E.D.

Proof: Induction step
〈6〉3. Q.E.D.

Proof: Induction: 〈6〉1 and 〈6〉2 (Note that according to definition
50, n ≥ 2.)

〈5〉3. (⊕
n⋃

i=1

[[ di ;Qi ]], {1} ∩
n∑

i=1

Qi) (⊕
n⋃

i=1

[[ d ′
i ;Q

′
i ]], {1} ∩

n∑
i=1

Q ′
i)

Proof: By 〈5〉1 and 〈5〉2

〈5〉4. (⊕
n⋃

i=1
[[ d ′

i ;Q
′
i ]], {1} ∩

n∑
i=1

Q ′
i) ∈ O ′

Proof: By definition 50
〈5〉5. Q.E.D.

Proof: By 〈5〉3 and 〈5〉4; (⊕
n⋃

i=1
[[ d ′

i ;Q
′
i ]], {1}∩

n∑
i=1

Q ′
i) is the po′ we

are looking for
〈4〉3. Q.E.D.

Proof: By definition 50, the cases 〈4〉1 and 〈4〉2 are exhaustive.
〈3〉2. Q.E.D.

Proof: ⇒-rule
〈2〉2. Q.E.D.

Proof: ∀-rule
〈1〉2. Q.E.D.

Proof: By 〈1〉1

�

To see why the last assumption in Theorem 6 is necessary consider the following
example: For n = 1, 2, 3 let

[[ dn ]] = {(on , {1})}

and let

d ′
1 = d1;{1} palt d2;{0}
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dA = d1;[0.4, 0.6] palt d3;[0.4, 0.6]

d ′
A = d ′

1;[0.4, 0.6] palt d3;[0.4, 0.6]

This means that

[[ d ′
1 ]] = {(o1, {1}), (o2, {0}), (⊕{o1, o2}, {1})}

[[ dA ]] = {(o1, [0.4, 0.6]), (o3, [0.4, 0.6]), (⊕{o1, o3}, [0.8, 1]), (⊕{o1, o3}, {1})}

[[ d ′
A ]] = {(o1, [0.4, 0.6]), (o2, {0}), (⊕{o1, o2}, [0.4, 0.6]), (o3, [0.4, 0.6]),

(⊕{o1, o3}, [0.8, 1]), (⊕{o2, o3}, [0.4, 0.6]), (⊕{o1, o2, o3}, [0.8, 1]),

(⊕{o1, o2, o3}, {1})}

We now have d1  d ′
1 and d3  d3. But dA  d ′

A does not hold, since there
is no po′ ∈ [[ d ′

A ]] such that (⊕{o1, o3}, {1})  po′. This is because the only
p-obligation in [[ d ′

A ]] with interaction obligation ⊕{o1, o3} has probability set
[0.8, 1], which is not a subset of {1}.

Monotonicity of tc w.r.t.  

Lemma 8. Monotonicity of oC w.r.t.  for single p-obligations

Assume: ((p,n),Q) ((p′,n ′),Q ′)
Prove: ((p,n),Q) o C  ((p′,n ′),Q ′) o C , i.e.

((p o C ,n ∪ (p o ¬ C )),Q) ((p′ o C ,n ′ ∪ (p′ o ¬ C )),Q ′)

〈1〉1. n ⊆ n ∪ (p o ¬ C )
Proof: By basic set theory

〈1〉2. p ⊆ p o C ∪ (n ∪ (p o ¬ C ))
〈2〉1. p = p o C ∪ p o ¬ C

Proof: By definition 18
〈2〉2. Q.E.D.

Proof: By 〈2〉1 and basic set theory
〈1〉3. Q ′ ⊆ Q

Proof: By the assumption
〈1〉4. Q.E.D.

Proof: By 〈1〉1, 〈1〉2, 〈1〉3 and definition 34

�

Theorem 7. Monotonicity of oC w.r.t.  

Assume: O  O ′

Prove: O o C  O ′ o C

〈1〉1. ∀ po ∈ O o C : 0 6∈ π2.po ⇒ ∃ po′ ∈ O ′ o C : po  po′

〈2〉1. Assume: po ∈ O o C
Prove: 0 6∈ π2.po ⇒ ∃ po′ ∈ O ′ o C : po  po′

〈3〉1. Assume: 0 6∈ π2.po
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Prove: ∃ po′ ∈ O ′ o C : po  po′

〈4〉1. Let: po ∈ O s.t. po o C = po

Proof: By definition 57 and assumption 〈2〉1
〈4〉2. 0 6∈ π2.po

Proof: By assumption 〈3〉1 and 〈4〉1
〈4〉3. Let: po′ ⊆ O ′ s.t. po  po′

Proof: By 〈4〉1, 〈4〉2 and the assumption
〈4〉4. (po) o C  (po′) o C

Proof: By 〈4〉3 and Lemma 8
〈4〉5. po′ o C ∈ O ′ o C

Proof: By 〈4〉3 and definition 57
〈4〉6. Q.E.D.

Proof: ∃ -rule with 〈4〉4 and 〈4〉5; po′ oC is the po′ we are looking for
〈3〉2. Q.E.D.

Proof: ⇒ -rule
〈2〉2. Q.E.D.

Proof: ∀-rule
〈1〉2. Q.E.D.

Proof: By 〈1〉1

�

Monotonicity of tc w.r.t.  follows immediately from Theorem 7.

Non-monotonicity of assert w.r.t.  The assert operator is not monotonic
w.r.t.  . This is shown by the following example: Let

[[ d ]] = {(({t1}, ∅), {1})}

[[ d ′ ]] = {(({t1, t2}, ∅), {1})}

We then have d  d ′. However, (assert d)  (assert d ′) does not hold. To see
this, observe that t2 will be negative in the only p-obligation in assert d but
positive in the only p-obligation in assert d ′.

Monotonicity of loop w.r.t.  

Lemma 9. Monotonicity of µi w.r.t.  

This proof is partly based on the proof of Lemma 38 in [HHRS06].
Assume: O  O ′ ∧ i ∈ N0 ∪ {∞}
Prove: µiO  µiO

′

〈1〉1. Case: i = 0
〈2〉1. µiO = µiO

′ = {(({〈〉}, ∅), {1})}
Proof: By definition 42 and assumption 〈1〉1

〈2〉2. Q.E.D.
Proof: By 〈2〉1, since (({〈〉}, ∅), {1}) (({〈〉}, ∅), {1})

〈1〉2. Case: i = 1
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〈2〉1. µiO = O ∧ µiO
′ = O ′

Proof: By assumption 〈1〉2 and definition 43
〈2〉2. Q.E.D.

Proof: By 〈2〉1 and the overall assumption
〈1〉3. Case: 1 < i < ∞
〈2〉1. µ2O  µ2O

′ (Induction basis)
〈3〉1. µ2O = O % O ∧ µ2O

′ = O ′ % O ′

Proof: By definitions 43 and 44
〈3〉2. Q.E.D.

Proof: By the overall assumption, 〈3〉1 and Theorem 3
〈2〉2. Assume: µkO  µkO

′ for 1 < k < ∞ (Induction hypothesis)
Prove: µk+1O  µk+1O

′

〈3〉1. µk+1O = O % µkO ∧ µk+1O
′ = O ′ % µkO

′

Proof: By definition 44
〈3〉2. Q.E.D.

Proof: By the overall assumption, assumption 〈2〉2 and Theorem 3
〈2〉3. Q.E.D.

Proof: By induction with 〈2〉1 as basis and 〈2〉2 as induction step
〈1〉4. Case: i = ∞
〈2〉1. ∀ po ∈ {tp̄o | p̄o ∈ chains(O)} : 0 6∈ π2.po ⇒

∃ po′ ∈ {tp̄o′ | p̄o′ ∈ chains(O ′)} : po  po′, i.e.
∀ p̄o ∈ chains(O) : 0 6∈ π2. t p̄o ⇒ ∃ p̄o′ ∈ chains(O ′) : tp̄o  tp̄o′

〈3〉1. Assume: p̄o ∈ chains(O)
Prove: 0 6∈ π2. t p̄o ⇒ ∃ p̄o′ ∈ chains(O ′) : tp̄o  tp̄o′

〈4〉1. Assume: 0 6∈ π2. t p̄o

Prove: ∃ p̄o′ ∈ chains(O ′) : tp̄o  tp̄o′

〈5〉1. ∃ p̄o1 ∈ chains(O ′) : ∀ j ∈ N : p̄o[j ] p̄o1[j ]
〈6〉1. Let: po1 ∈ O s.t. p̄o[1] = po1

poj+1 ∈ O s.t. p̄o[j + 1] = p̄o[j ] % poj+1 for all j ∈ N
Proof: By assumption 〈3〉1 and definition 36

〈6〉2. Let: po
j
2 ∈ O ′ s.t. poj  po

j
2 for all j ∈ N

〈7〉1. ∀ j ∈ N : 0 6∈ π2.po
j

〈8〉1. 0 6∈ { lim
j→∞

q̄ | q̄ ∈ prob(p̄o)}

Proof: By assumption 〈4〉1
〈8〉2. Q.E.D.

Proof: By 〈8〉1 and definition 39
〈7〉2. Q.E.D.

Proof: By 〈7〉1, the overall assumption, and the fact that poj ∈
O for all j ∈ N

〈6〉3. Let: p̄o2 ∈ chains(O ′) s.t. p̄o2[1] = po1
2 ∧

∀ j ∈ N : p̄o2[j + 1] = p̄o2[j ] % po
j+1
2

Proof: By 〈6〉2 and definition 36
〈6〉4. ∀ j ∈ N : p̄o[j ] p̄o2[j ]
〈7〉1. p̄o[1] p̄o2[1] (induction basis)

Proof: By 〈6〉3, 〈6〉2 and 〈6〉1
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〈7〉2. Assume: p̄o[k ] p̄o2[k ] (induction hypothesis)
Prove: p̄o[k + 1] p̄o2[k + 1]

〈8〉1. p̄o[k + 1] = p̄o[k ] % pok+1

Proof: By 〈6〉1
〈8〉2. p̄o2[k + 1] = p̄o2[k ] % pok+1

2

Proof: By 〈6〉3
〈8〉3. pok+1  pok+1

2

Proof: By 〈6〉2
〈8〉4. Q.E.D.

Proof: By 〈8〉1, 〈8〉2, 〈8〉3, assumption 〈7〉2 and Theorem 3
〈7〉3. Q.E.D.

Proof: By induction with 〈7〉1 as induction basis and 〈7〉2 as
induction step

〈6〉5. Q.E.D.
Proof: By 〈6〉3 and 〈6〉4; p̄o2 is the p̄o1 we are looking for

〈5〉2. Let: p̄o1 ∈ chains(O ′) s.t. ∀ j ∈ N : p̄o[j ] p̄o1[j ]
Proof: By 〈5〉1

〈5〉3. tp̄o  tp̄o1

〈6〉1. neg. t p̄o ⊆ neg. t p̄o1

〈7〉1.
⋃

t̄∈negCh(p̄o)

tt̄ ⊆
⋃

t̄∈negCh( ¯po1)

tt̄

〈8〉1. negCh(p̄o) ⊆ negCh( ¯po1)
〈9〉1. Assume: t̄ ∈ negCh(p̄o)

Prove: t̄ ∈ negCh( ¯po1)
〈10〉1. Let: i ∈ N s.t. ∀ j ∈ N : t̄ [j ] ∈ neg.p̄o[j + i − 1]

Proof: By assumption 〈9〉1 and definition 38
〈10〉2. ∀ j ∈ N : t̄ [j ] ∈ neg. ¯po1[j + i − 1]
〈11〉1. p̄o[j + i − 1] ¯po1[j + i − 1]

Proof: By 〈5〉2
〈11〉2. Q.E.D.

Proof: By 〈11〉1 and definition 34
〈10〉3. ∀ j ∈ N : ∃ t ∈ H : t̄ [j + 1] ∈ {t̄ [j ]} % {t}

Proof: By assumption 〈9〉1 and definition 38
〈10〉4. Q.E.D.

Proof: By 〈10〉2, 〈10〉3 and definition 38
〈9〉2. Q.E.D.

Proof: ⊆-rule
〈8〉2. Q.E.D.

Proof: By 〈8〉1
〈7〉2. Q.E.D.

Proof: By 〈7〉1 and definition 41
〈6〉2. pos . t p̄o ⊆ pos . t p̄o1 ∪ neg. t p̄o1

〈7〉1.
⋃

t̄∈posCh(p̄o)

tt̄ ⊆ (
⋃

t̄∈posCh( ¯po1)

tt̄) ∪ (
⋃

t̄∈negCh( ¯po1)

tt̄)
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〈8〉1. ∀ t̄ ∈ posCh(p̄o) :
t t̄ ⊆ (

⋃
t̄′∈posCh( ¯po1)

tt̄ ′) ∪ (
⋃

t̄′∈negCh( ¯po1)

tt̄ ′)

〈9〉1. Assume: t̄ ∈ posCh(p̄o)
Prove: tt̄ ⊆ (

⋃
t̄′∈posCh( ¯po1)

tt̄ ′) ∪ (
⋃

t̄′∈negCh( ¯po1)

tt̄ ′)

〈10〉1. ∀ j ∈ N : t̄ [j ] ∈ pos . ¯po1[j ] ∪ neg. ¯po1[j ]
〈11〉1. ∀ j ∈ N : t̄ [j ] ∈ pos .p̄o[j ]

Proof: By assumption 〈9〉1
〈11〉2. Q.E.D.

Proof: By 〈11〉1 〈5〉2 and definition 34
〈10〉2. Case: ∀ j ∈ N : t̄ [j ] ∈ pos . ¯po1[j ]
〈11〉1. tt̄ ⊆

⋃
t̄′∈posCh( ¯po1)

tt̄ ′

〈12〉1. ∀ j ∈ N : ∃ t ∈ H : t̄ [j + 1] ∈ {t̄ [j ]} % {t}
Proof: By assumption 〈9〉1 and definition 37

〈12〉2. t̄ ∈ posCh( ¯po1)
Proof: By assumption 〈10〉2, 〈12〉1 and definition
37

〈12〉3. Q.E.D.
Proof: By 〈12〉2

〈11〉2. Q.E.D.
Proof: By 〈11〉1

〈10〉3. Case: ∃ j ∈ N : t̄ [j ] ∈ neg. ¯po1[j ]
〈11〉1. Let: j ∈ N s.t. t̄ [j ] ∈ neg. ¯po1[j ]

Proof: By assumption 〈10〉3
〈11〉2. tt̄ ⊆

⋃
t̄′∈negCh( ¯po1)

tt̄ ′

〈12〉1. t̄ ∈ negCh( ¯po1)
〈13〉1. ∀ g ∈ N : ∃ t ∈ H : t̄ [g + 1] ∈ {t̄ [g]} % {t}

Proof: By assumption 〈9〉1 and definition 37
〈13〉2. ∃ i ∈ N : ∀ g ∈ N : t̄ [g] ∈ neg. ¯po1[g + i − 1]
〈14〉1. ∀ g ∈ N : t̄ [g] ∈ neg. ¯po1[g + j − 1]
〈15〉1. t̄ [1 + j − 1] ∈ neg. ¯po1[j ] (base case)

Proof: By 〈11〉1
〈15〉2. Assume: t̄ [k + j −1] ∈ neg. ¯po1[k + j −1]

(ind. hyp.)
Prove: t̄ [k + j ] ∈ neg. ¯po1[k + j ]

〈16〉1. t̄ [k + j ] ∈ pos .p̄o[k + j ]
Proof: By assumption 〈9〉1 and definition
37

〈16〉2. t̄ [k + j ] ∈ pos . ¯po1[k + j ]∪neg. ¯po1 [k + j ]
Proof: By 〈5〉2, 〈16〉1 and definition 34

〈16〉3. Case: t̄ [k + j ] ∈ neg. ¯po1[k + j ]
〈17〉1. Q.E.D.

Proof: By assumption 〈16〉3
〈16〉4. Case: t̄ [k + j ] ∈ pos . ¯po1[k + j ]

38



〈17〉1. Let: s = {t̄ [k + j − 1]} % H
〈17〉2. t̄ [k + j ] ∈ s

Proof: By assumption 〈9〉1, definition
37 and 〈17〉1

〈17〉3. s ⊆ neg. ¯po1[k + j ] ∪
(H\ (pos . ¯po1[k + j ]∪neg. ¯po1[k + j ]))

Proof: By assumption 〈15〉2, 〈5〉2 ( ¯po1 ∈
chains(O ′)) and definition 36
(Step 〈17〉3 states that all traces in s are
either negative or inconlusive in ¯po1[k +
j ]. Intuitively, the reason for this is that
the trace t̄ [k +j−1] is negative in ¯po1[k +
j−1]. Note that a trace may be both pos-
itive and negative in ¯po1[k + j ], so 〈17〉3
does not contradict assumption 〈16〉4.)

〈17〉4. t̄ [k + j ] ∈ neg. ¯po1[k + j ] ∪
(H\ (pos . ¯po1[k + j ]∪neg. ¯po1[k + j ]))

Proof: By 〈17〉2 and 〈17〉3
〈17〉5. t̄ [k + j ] 6∈

H \ (pos . ¯po1[k + j ] ∪ neg. ¯po1[k + j ])
Proof: By assumption 〈16〉4

〈17〉6. Q.E.D.
Proof: By 〈17〉4 and 〈17〉5

〈16〉5. Q.E.D.
Proof: By 〈16〉2 the cases 〈16〉3 and 〈16〉4
are exhaustive

〈15〉3. Q.E.D.
Proof: Induction with 〈15〉1 as base case and
〈15〉2 as induction step

〈14〉2. Q.E.D.
Proof: By 〈14〉1; j is the i we are looking for

〈13〉3. Q.E.D.
Proof: By 〈13〉1, 〈13〉2 and definition 38

〈12〉2. Q.E.D.
Proof: By 〈12〉1

〈11〉3. Q.E.D.
Proof: By 〈11〉2

〈10〉4. Q.E.D.
Proof: By 〈10〉1, the cases 〈10〉2 and 〈10〉3 are exhaus-
tive

〈9〉2. Q.E.D.
Proof: ∀-rule

〈8〉2. Q.E.D.
Proof: By 〈8〉1

〈7〉2. Q.E.D.

39



Proof: By 〈7〉1 and definition 41
〈6〉3. π2. t p̄o1 ⊆ π2. t p̄o

〈7〉1. { lim
j→∞

q̄1 | q̄1 ∈ prob(p̄o1)} ⊆ { lim
j→∞

q̄ | q̄ ∈ prob(p̄o)}

〈8〉1. Assume: q ∈ { lim
j→∞

q̄1 | q̄1 ∈ prob(p̄o1)}

Prove: q ∈ { lim
j→∞

q̄ | q̄ ∈ prob(p̄o)}

〈9〉1. Let: q̄1 ∈ prob(p̄o1) s.t. q = lim
j→∞

q̄1

Proof: By assumption 〈8〉1
〈9〉2. q̄1 ∈ prob(p̄o)
〈10〉1. ∀ j ∈ N : q̄1[j ] ∈ π2.p̄o1[j ] ∧

∃ q ∈ [0..1] : q̄1[j + 1] ∈ q̄1[j ] ∗ q

Proof: By 〈9〉1 and definition 39
〈10〉2. ∀ j ∈ N : π2.p̄o1[j ] ⊆ π2.p̄o[j ]

Proof: By 〈5〉2
〈10〉3. ∀ j ∈ N : q̄1[j ] ∈ π2.p̄o[j ] ∧

∃ q ∈ [0..1] : q̄1[j + 1] ∈ q̄1[j ] ∗ q

Proof: By 〈10〉1 and 〈10〉2
〈10〉4. Q.E.D.

Proof: By 〈10〉3 and definition 39
〈9〉3. Q.E.D.

Proof: By 〈9〉1 and 〈9〉2
〈8〉2. Q.E.D.

Proof: ⊆-rule
〈7〉2. Q.E.D.

Proof: By 〈7〉1 and definition 41
〈6〉4. Q.E.D.

Proof: By 〈6〉1, 〈6〉2, 〈6〉3 and definition 34
〈5〉4. Q.E.D.

Proof: By 〈5〉2 and 〈5〉3; p̄o1 is the p̄o′ we are looking for.
〈4〉2. Q.E.D.

Proof: ⇒-rule
〈3〉2. Q.E.D.

Proof: ∀-rule
〈2〉2. Q.E.D.

Proof: By 〈2〉1, assumption 〈1〉4, definition 45 and definition 65
〈1〉5. Q.E.D.

Proof: By the overall assumption, the cases 〈1〉1, 〈1〉2, 〈1〉3 and 〈1〉4 are
exhaustive.

�

Theorem 8. Monotonicity of
⊎
i∈I

µi w.r.t.  

Let: [[ d ]] = O , [[ d ′ ]] = O ′

Assume: 1. O  O ′

2. I ⊆ N0 ∪ {∞} ∧ I 6= ∅
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Prove:
⊎
i∈I

µiO  
⊎
i∈I

µiO
′

〈1〉1.
⊎

i∈I\{∞}

µiO  
⊎

i∈I\{∞}

µiO
′

〈2〉1. Let: Ī be an ordering of the elements in I \ {∞}
Proof: I \ {∞} ⊆ N0

〈2〉2.
⊎

i∈{1}

µĪ [i]O  
⊎

i∈{1}

µĪ [i]O
′ (induction basis)

Proof: By Lemma 9, since
⊎

i∈{n}

µĪ [i]O = µĪ [n]O according to definition
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〈2〉3. Assume:

⊎
i∈{1,...,k}

µĪ [i]O  
⊎

i∈{1,...,k}

µĪ [i]O
′ (induction hypothesis)

Prove:
⊎

i∈{1,...,k+1}

µĪ [i]O  
⊎

i∈{1,...,k+1}

µĪ [i]O
′

〈3〉1. µĪ [k+1]O  µĪ [k+1]O
′

Proof: By Lemma 9
〈3〉2. Q.E.D.

Proof: By assumption 〈2〉3, 〈3〉1 and Theorem 5
〈2〉4. Q.E.D.

Proof: Induction with 〈2〉2 as basis and 〈2〉3 as induction step
〈1〉2. Case: ∞ 6∈ I

〈2〉1. Q.E.D.
Proof: By 〈1〉1

〈1〉3. Case: ∞ ∈ I

〈2〉1. µ∞O  µ∞O ′

Proof: By Lemma 9
〈2〉2. Q.E.D.

Proof: By 〈1〉1, 〈2〉1 and Theorem 5
〈1〉4. Q.E.D.

Proof: The cases 〈1〉2 and 〈1〉3 are exhaustive

�

Monotonicity of loop w.r.t.  follows immediately from Theorem 8.

B.3 Convergence of probabilities for loop

In this section we show that if O is a set of p-obligations with non-empty proba-
bility sets and p̄o ∈ chains(O), then the p-obligation tp̄o (see definition 41) has
a non-empty probability set. From definition 45 we see that this ensures that
probability set of specifications with infinite loop will not in general be empty.

Lemma 10. Every set of positive real numbers with an upper bound in R has a

least upper bound in R.

Assume: S is a non-empty set of positive real numbers with an upper bound in
R, i.e.

1. S ⊆ R+

2. S 6= ∅
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3. ∃ r ∈ R : ∀ s ∈ S : r ≥ s

Prove: ∃ q ∈ R : ∀ s ∈ S : q ≥ s ∧ ∀ r ∈ R : r < q ⇒ ∃ s ′ ∈ S : s ′ > r

i.e. S has a least upper bound q in R

Proof: This is a well known result. A proof can be found in most books on real
analysis, for example in [DD02], p. 46-47.

�

Theorem 9. Convergence of probabilities.

Assume: s̄ ∈ prob(p̄o) where p̄o ∈ chains(O) and O is a set of p-obligations
with non-empty probability sets.

Prove: ∃ k ∈ [0...1] : limj→∞ s̄ [j ] = k

〈1〉1. ∃ k ∈ [0...1] : ∀ ε > 0 : ∃ i ∈ N : ∀ j > i : s̄ [j ] − k ≤ ε

〈2〉1. Let: U = {r ∈ [0...1] | ∀ j ∈ N : r ≤ s̄ [j ]}
〈2〉2. ∃ lub ∈ [0...1] : ∀ u ∈ U : lub ≥ u ∧

∀ r ∈ R : (r < lub ⇒ ∃ u ′ ∈ U : u ′ > r)
i.e. U has a least upper bound lub in [0...1].

〈3〉1. ∃ lub′ ∈ R : ∀ u ∈ U : lub′ ≥ u ∧
∀ r ∈ R : (r < lub′ ⇒ ∃ u ′ ∈ U : u ′ > r),
i.e. U has a least upper bound lub′ in R.

〈4〉1. ∃ x ∈ R : ∀ u ∈ U : x ≥ u,
i.e. U has an upper bound in R

Proof: By 〈2〉1, every s̄[j ] is an upper bound for U .
〈4〉2. Q.E.D.

Proof: By 〈4〉1 and Lemma 10.
〈3〉2. Let: lub′ ∈ R s.t. ∀ u ∈ U : lub′ ≥ u ∧

∀ r ∈ R : (r < lub′ ⇒ ∃ u ′ ∈ U : u ′ > r)
Proof: By 〈3〉1

〈3〉3. lub′ ∈ U

〈4〉1. Assume: lub′ 6∈ U

Prove: ⊥
〈5〉1. Case: lub′ > 1
〈6〉1. Let: q ∈ R s.t. 1 < q < lub′

Proof: By assumption 〈5〉1
〈6〉2. ∃ u ′ ∈ U : u ′ > q

〈7〉1. ∀ u ∈ U : lub′ > u

Proof: By assumption 〈5〉1 and 〈2〉1
〈7〉2. Q.E.D.

Proof: By 〈7〉1 and 〈3〉2 (insert q for r in second conjunct)
〈6〉3. ∃ u ′ ∈ U : u ′ > 1

Proof: By 〈6〉2 and 〈6〉1
〈6〉4. Q.E.D.

Proof: By 〈6〉3 and 〈2〉1
〈5〉2. Case: lub′ ≤ 1
〈6〉1. ∃ j ∈ N : s̄ [j ] < lub′

〈7〉1. lub′ ∈ [0, 1]
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Proof: By 〈3〉2 (lub′ ∈ R) and assumption 〈5〉2
〈7〉2. ∀ r ∈ [0, 1] : r 6∈ U ⇒ ∃ j ∈ N : s̄ [j ] < r

Proof: By 〈2〉1
〈7〉3. Q.E.D.

Proof: By 〈7〉1, 〈7〉2 and assumption 〈4〉1
〈6〉2. Let: j ∈ N s.t. s̄ [j ] < lub′

Proof: By 〈6〉1
〈6〉3. ∀ u ∈ U : u ≤ s̄ [j ],

i.e. s̄ [j ] is an upper bound for U

Proof: By 〈2〉1
〈6〉4. ∃ u ′ ∈ U : u ′ > s̄ [j ]

Proof: By 〈6〉2, s̄[j ] < lub′. 〈6〉4 then follows by the second con-
junct of 〈3〉2.

〈6〉5. Q.E.D.
Proof: By 〈6〉3 and 〈6〉4

〈5〉3. Q.E.D.
Proof: The cases 〈5〉1 and 〈5〉2 are exhaustive

〈4〉2. Q.E.D.
Proof: ⊥-rule

〈3〉4. lub′ ∈ [0, 1]
Proof: By 〈3〉3 and 〈2〉1

〈3〉5. Q.E.D.
Proof: By 〈3〉2 and 〈3〉4

〈2〉3. Let: lub ∈ [0...1] s.t. ∀ u ∈ U : lub ≥ u ∧
∀ r ∈ R : (r < lub ⇒ ∃ u ′ ∈ U : u ′ > r)

Proof: By 〈2〉2
〈2〉4. ∀ ε > 0 : ∃ i ∈ N : ∀ j > i : s̄ [j ] − lub < ε

〈3〉1. Assume: ε > 0
Prove: ∃ i ∈ N : ∀ j > i : s̄ [j ] − lub < ε

〈4〉1. Assume: ¬(∃ i ∈ N : ∀ j > i : s̄ [j ] − lub < ε)
Prove: ⊥

〈5〉1. ∃m ∈ N : s̄ [m] − lub < ε

〈6〉1. Assume: ∀n ∈ N : s̄ [n] − lub ≥ ε

Prove: ⊥
〈7〉1. ε + lub ∈ U

〈8〉1. ∀n ∈ N : ε + lub ≤ s̄ [n]
Proof: By assumption 〈6〉1 and assumption 〈3〉1

〈8〉2. ε + lub ∈ [0, 1]
〈9〉1. ε + lub > 0

Proof: By assumption 〈3〉1 and 〈2〉3 (lub ∈ [0, 1])
〈9〉2. ε + lub ≤ 1
〈10〉1. ∀n ∈ N : s̄[n] ≤ 1

Proof: By the overall assumption
〈10〉2. Q.E.D.

Proof: By 〈10〉1 and 〈8〉1
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〈9〉3. Q.E.D.
Proof: By 〈9〉1 and 〈9〉2

〈8〉3. Q.E.D.
Proof: By 〈8〉1, 〈8〉2 and 〈2〉1

〈7〉2. ε + lub > lub

Proof: By assumption 〈3〉1
〈7〉3. lub ≥ ε + lub

Proof: By 〈7〉1 and 〈2〉3 (first conjunct)
〈7〉4. Q.E.D.

Proof: By 〈7〉2 and 〈7〉3
〈6〉2. Q.E.D.

Proof: ⊥-rule
〈5〉2. Let: m ∈ N s.t. s̄ [m] − lub < ε

Proof: By 〈5〉1
〈5〉3. ∀ i ∈ N : ∃ j > i : s̄ [j ] − lub ≥ ε

Proof: By assumption 〈4〉1
〈5〉4. Let: j > m s.t. s̄ [j ] − lub ≥ ε

Proof: By 〈5〉3
〈5〉5. s̄ [j ] ≤ s̄ [m]

Proof: By 〈5〉4 (j > m) and the overall assumption; definition 39
ensures that j > m ⇒ s̄ [j ] ≤ s̄ [m]

〈5〉6. s̄ [j ] − lub ≥ ε ∧ s̄ [m] − lub < ε ∧ s̄ [j ] ≤ s̄ [m]
Proof: ∧-intro 〈5〉4, 〈5〉2 and 〈5〉5

〈5〉7. Q.E.D.
Proof: By 〈5〉6

〈4〉2. Q.E.D.
Proof: ⊥-rule

〈3〉2. Q.E.D.
Proof: ∀-rule

〈2〉5. Q.E.D.
Proof: By 〈2〉3 (lub ∈ [0...1]) and 〈2〉4; lub is the k we are looking for

〈1〉2. Q.E.D.
Proof: By definition of limit

�
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C Motivation behind changes

A number of changes have been made to the version presented in [RHS05]. In
that version the semantics of a probabilistic sequence diagram was given as a
multiset instead of as a set, and the definition of the refinement relation was a
bit different. Also, the definition of the alt operator has been changed. We refer
to [RHS05] for the definitions. This section is aimed at readers who are familiar
with [RHS05] and want to know why changes have been made.
The changes were primarily motivated by non-monotonicity of the operators seq,
par and alt w.r.t.  . The subsections C.1 and C.2 give examples that show the
lack of monotonicity when the original definitions as presented in [RHS05] are
used. As has been shown in Section B, the current definitions ensure that the
refinement relation is now monotonic w.r.t. all these operators. The changes have
also generally led to much simpler proofs. In the rest of this section we assume
that the original definitions as given in [RHS05] are applied.

C.1 Non-monotonicity of seq and par w.r.t.  with definitions from
[RHS05].

The seq and par operators are not monotonic w.r.t. the refinement relation when
the original definitions from [RHS05] are used. This is shown (for seq) by the
following example, where we assume all events occur on the same lifeline. Let

O1 = {(({〈a〉}, ∅), {0.5}), (({〈ab〉}, ∅), {0.5}), ((∅, ∅), {1})}

O ′
1 = {(({〈a〉 , 〈ab〉}, ∅), {0.5}), (({〈d〉}, ∅), {0.5}), ((∅, ∅), {1})}

O2 = {(({〈bc〉 , 〈c〉}, ∅), {1})}

O ′
2 = O2

This means that we have

O1  O ′
1

O2  O ′
2

O1 % O2 = {(({〈abc〉 , 〈ac〉}, ∅), {0.5}),

(({〈abbc〉 , 〈abc〉}, ∅), {0.5}),

((∅, ∅), {1})}

O ′
1 % O ′

2 = {(({〈abc〉 , 〈ac〉 , 〈abbc〉}, ∅), {0.5}),

(({〈dbc〉 , 〈dc〉}, ∅), {0.5}),

((∅, ∅), {1})}

Now let

S = {(({〈abc〉 , 〈ac〉}, ∅), {0.5}), (({〈abbc〉 , 〈abc〉}, ∅), {0.5})}
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which means that

S ⊆ O1 % O2

⊕̄S = (({〈abc〉}, ∅), {1})

0 6∈ π2.⊕̄S

But there is no S ′ ⊆ O ′
1 % O ′

2 such that ⊕̄S  ⊕̄S ′.
This counter example exploit the following facts:

– Both the two leftmost p-obligations in O1 % O2 are refined by the same
p-obligation in O ′

1 % O ′
2.

– In O1 % O2 the trace 〈abc〉 is inconclusive in the p-obligation with probability
1 even though it is positive in both the other p-obligations.

– ⊕̄(S1 % S2) = ⊕̄S1 % ⊕̄S2 does not generally hold. Therefore, we cannot
deduce ⊕̄(S1 % S2)  ⊕̄S ′

1 % ⊕̄S ′
2 from ⊕̄S1  ⊕̄S ′

1 ∧ ⊕̄S1  ⊕̄S ′
1. Let-

ting S1 = {(({〈a〉}, ∅), {0.5}), (({〈ab〉}, ∅), {0.5})} and S2 = O2 we see that
〈abc〉 ∈ pos .⊕̄(S1 % S2) but 〈abc〉 6∈ pos .(⊕̄S1 % ⊕̄S2).

A similar example can be given for par by replacing % with ‖.

C.2 Non-monotonisity of alt w.r.t.  with definitions from [RHS05]

The alt operator is not monotonic w.r.t. the refinement relation when the original
definitions from [RHS05] are used. This is shown by the following example: Let

[[ d1 ]] = {(o1, [0, ..., 1]), (o2, [0, ..., 1]), (⊕{o1, o2}, {1})}

[[ d ′
1 ]] = {(⊕{o1, o2}, {1})}

[[ d2 ]] = {(o3, {0.5}), (o4, {0.5}), (⊕{o3, o4}, {1})}

[[ d ′
2 ]] = [[ d2 ]]

We now have d1  d ′
1. (The two first p-obligations in [[ d1 ]] need not be rep-

resented at the concrete level, since 0 is an allowed probability.) We also have
d2  d ′

2.
However, d1 alt d2  d ′

1 alt d ′
2 does not hold. To see this, note that [[ d1 alt d2 ]] =

{(o1 ] o3, {0.5}), (o1 ] o4, {0.5}), (o1 ]⊕{o3, o4}, {1})

(o2 ] o3, {0.5}), (o2 ] o4, {0.5}), (o2 ] ⊕{o3, o4}, {1})

(⊕{o1, o2} ] o3, ∅), (⊕{o1, o2} ] o4, ∅), (⊕{o1, o2} ] ⊕{o3, o4}, {1})}

while [[ d ′
1 alt d ′

2 ]] =

{(⊕{o1, o2} ] o3, ∅), (⊕{o1, o2} ] o4, ∅), (⊕{o1, o2} ] ⊕{o3, o4}, {1})}
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Now let

o1 = ({t1}, ∅)

o2 = ({t2}, ∅)

o3 = ({t3}, ∅)

o4 = ({t4}, ∅)

and let
S = {(o1 ] o3, {0.5})}

Then S ⊆ [[ d1 alt d2 ]] and 0 6∈ π2.⊕̄S , but there is no S ′ ⊆ [[ d ′
1 alt d ′

2 ]] such
that ⊕̄S  ⊕̄S ′. This is clear from the fact that ⊕̄S = (({t1, t3}, ∅), {0.5}) while
⊕{o1, o2}]o3 = ({t3}, ∅), ⊕{o1, o2}]o4 = ({t4}, ∅) and ⊕{o1, o2}]⊕{o3, o4} =
(∅, ∅). Therefore t1 will be inconclusive at the concrete level for any combination
of p-obligations from [[ d ′

1 alt d ′
2 ]].

We may also note that

⊕̄O1 ] ⊕̄O2  ⊕̄O ′
1 ] ⊕̄O ′

2 ; ⊕̄(O1 ] O2) ⊕̄(O ′
1 ] O ′

2)

for arbitrary sets of p-obligations O1, O ′
1, O2 and O ′

2. To see this, let

O1
def
= {(oa , {0.7}), (ob, {0.1})}

O2
def
= {(oc , {0.6}), (od , {0.2})}

O ′
1

def
= {(oe , {0.8})}

O ′
2

def
= {(of , {0.8})}

This means that
∑

(o1,Q1)∈O1

Q1 =
∑

(o2,Q2)∈O2

Q2 =
∑

(o′

1
,Q′

1
)∈O′

1

Q ′
1 =

∑

(o′

2
,Q′

2
)∈O′

2

Q ′
2 = {0.8}

and therefore
∑

(o′

1
,Q′

1
)∈O′

1

Q ′
1 ∩

∑

(o′

2
,Q′

2
)∈O′

2

Q ′
2 ⊆

∑

(o1,Q1)∈O1

Q1 ∩
∑

(o2,Q2)∈O2

Q2

which gives
π2.⊕̄O ′

1 ] ⊕̄O ′
2 ⊆ π2.⊕̄O1 ] ⊕̄O2

At the same time we have
∑

(o′,Q′)∈O′

1
]O′

2

Q ′ = {0.8}

∑

(o,Q)∈O1]O2

Q = ∅
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which means that ∑

(o′,Q′)∈O′

1
]O′

2

Q ′ *
∑

(o,Q)∈O1]O2

Q

and therefore
π2.⊕̄(O ′

1 ]O ′
2) * π2.⊕̄(O1 ] O2)
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