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CHAPTER 1
Introduction

Ikke tusend ord
sig prenter, som én gernings spor.

HENRIK IBSEN

In the last fifty years, more and more sophisticated methods of symbolic modeling of
human language have been proposed and implemented on computers. While methods and
ideals have varied, the common goal has always been to give an adequate model of human
language, such that a computer can “understand”, in a strong or a weak sense, and make use
of ordinary natural language, and also “generate” natural language responses.

Context-free grammars, as proposed by Chomsky in the 1950s (1956), are a compara-
tively simple such model, but large-scale implementation of high quality context-free gram-
mars proved to be unfeasible. In the decades to follow, new and more advanced computational
models were proposed, dealing with the shortcomings of their predecessors. However, as the
expressiveness and so-called linguistic adequacy of the models increased, so did the computa-
tional complexity and the effort needed to implement efficient algorithms for both the analysis
and the development of the models, and of course the computational aspects of the model
itself.

Head-driven phrase-structure grammar, HPSG, is one of the more advanced frameworks of
such symbolic modeling. While very attractive from a modeling point of view, the computa-
tional effort needed to work with the model is significant. One of the fastest implementations
of HPSG parsing will typically (on today’s hardware) use several seconds on the analysis of a
sentence. As is common with most of models of language, longer sentences take considerably
longer time to process.

In the case of HPSG parsing; very long sentences with a high level of ambiguity might
take a prohibitive amount of time to process, and in most practical approaches both time and
memory limits have to be stipulated. At present, as much as 10% of sentences in typical
corpora of text cannot be analyzed due to these limits, even with the comparatively generous
limit on parsing time of 60 seconds. On these sentences, the parser is in fact slower than a
human reader, which can be a critical point in many scenarios. For example, in interactive
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2 CHAPTER 1. INTRODUCTION

dialouge situations the computer must analyze the user’s input and generate a proper response
in a very short time, preferably at least as fast as another human would do.

In the last decade, context-free approximations have been studied as a way to speed up
processing. In this scheme one could get the best of two worlds, the linguistic adequacy and
expressiveness of the formalism from HPSG, and the ease of implementation and efficiency
of context-free grammars. However, there are both theoretical and practical hurdles that have
proved to make the approximation process difficult, and no scheme of approximation has seen
widespread use so far.

On the theoretical side, context-free grammars prove to be a formalism that cannot express
all the properties of HPSG. These two formalisms generate “formal languages” of different
complexity. Therefore, it is impossible, in both the general and most practical cases, to create
a context-free grammar that is equivalent to a HPSG. However, by “cherry-picking” the most
interesting properties of the original HPSG grammar, a context-free approximation modeling
the most important properties of an HPSG can be extracted.

On the practical side, the right properties have to be identified. This requires considerable
experimental effort. Even though good information sources are available, obtaining good
approximations still require that the correct properties are selected. Then one need to find
a delicate balance between coverage, processing speed and accuracy, where each of these
parameters could weigh differently depending on use scenarios.

Early efforts have focused chiefly on so-called “sound” approximations, meaning that the
approximation is a true superlanguage of the original grammar. However, these grammars can
often become so large that it is hard to put them into practical use. Furthermore true sound
approximations can in practice be difficult to extract, especially with modern HPSG grammars
which can license infinitely sized lexica.

1.1 Overview
In this work, we focus on “unsound” approximations, which need not be a true superlanguage
of the original grammar. These grammars are typically much smaller than sound versions,
and when extracted from treebanked material one could also augment these with a notion of
probability, yielding a probabilistic context-free grammar. These PCFGs can also serve as
a stochastic model of the underlying approximation, facilitating, among other things, parse
selection. A special class of approximations are the so-called “reconstructable” approxima-
tions, which have the elegant property that an entire derivation in such a grammar specifies
exactly one derivation in the original grammar if that derivation is well-formed with respect
to the constraints in the original grammar. This means that all the information that was lost to
facilitate a context-free approximation could be reconstructed at a later point if so desired.

We implement a flexible system for extracting approximations and reporting on various
properties of the obtained grammars. In addition we also put these grammars to work as a
stand-alone parsing system, giving a speed up of two orders of magnitude with only a modest
loss in accuracy.

In chapter 2 we give a short review of the key points of the various theoretical models
and frameworks we build upon in this work, starting with syntactic analysis in general, before
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moving on to a quick review of graphs and formal languages. Context-free grammars are dis-
cussed both as a formal mathematical object, but also how they can model linguistic structure,
especially syntax.

We then give an account of unification-based grammars, and how they provide a more
suitable formalism for fine-grained linguistic description of language, followed by a short
review of typed feature-structures which is the underpinning formalism of HPSG, which is
presented in some detail in the last section.

Chapter 3 discusses in detail the motivation behind context-free approximations, and re-
views several scenarios where such approximations might be useful. Then an account of
purely theoretical properties on formal-language approximation is given, followed by a dis-
cussion of the main task at hand, context-free approximation of unification-based grammars,
detailing both the feasibility of the process and discussing important techniques to facilitate
high quality results. The chapter rounds off with a review of related work.

In chapter 4 we move onwards from the theoretical side of the question and detail practical
considerations of the approximation, with special focus on sound and unsound approaches.
Next, the resources this thesis builds upon are presented, before the implementation and ex-
traction procedure are detailed. Considerations pertaining to feature selection is laid out, in-
cluding a discussion of one of the more important sources of features.

Next, we discuss both static and dynamic measures on the resulting approximations, which
might serve as indicators of how an approximation can perform. Then we report results from
extracting approximations with different configurations; the resulting grammars range from
some few thousand production rules for the smallest, to nearly half a million for the largest
grammars. We also resolve a practical “impedance mismatch” in the tokenization assumptions
by the various formalisms with a process we call lexical generalization.

Chapter 5 is a case study where the grammars obtained in the previous chapter are put to
the task of stand-alone parsing. We begin with detailing various evaluation criteria commonly
used in parsing, before comparing both run-time performance and accuracy of the approxi-
mations, versus a high-performance UBG parser. These results show that one approximation
strategy lexical collapsing can be applied to give a substantial increase in both performance
and accuracy, which we also motivate theoretically. Our “best” configuration has an average
parse time of 142 ms per sentence, while the original high-performance UBG parser uses 3.6
seconds in average. However, some accuracy is lost, at 37% versus 46% measures with an
exact match metric. While this may sound grim, the error reduction ratio in moving from an
accuracy of 46% over 37% is only 1.2.

A high-performance renowned, off-the-shelf, CFG parser is employed, but we also im-
plement our own parser, showing that some of the assumptions made in the aforementioned
parser might not be beneficial in all cases. The detailed algorithm is laid out. Our parser per-
forms roughly four times better in one configuration, and can in addition give n-best outputs.
We then present a “meta-comparison” of the performance of several recent and differing ap-
proaches to the same task. We continue with an outlook of future work, and discuss alternate
evaluation schemes that may be more reflecting of the true usefulness of an approximation in
this use scenario.





CHAPTER 2
Background

It’s difficult to be rigorous about whether a
machine really ’knows’, ’thinks’, etc., because
we’re hard put to define these things. We
understand human mental processes only slightly
better than a fish understands swimming.

The Little Thoughts of Thinking Machines
JOHN MCCARTHY (1927-2011)

This chapter aims to introduce a selection of relevant theoretical and practical aspects that
we will build upon in this thesis. To set the scene of what this work is all about, we will
give a mountain-top overview on syntactic analysis in general, and proceed to briefly discuss
the most important points of formal language theory, graphs and trees, context free grammars
and unification grammars. In this chapter, we aim to establish terminology, notation and
conventions, and not to give a thorough introduction or formal definition.

2.1 Syntactic Analysis
Syntactic Analysis, often called parsing, is one of the major tasks in natural language pro-
cessing. The overall aim is to recover the syntactical relationships between words and phrases
in sentences, such as identifying the main verb phrase or figuring out what the subject of the
sentence is. Recovering these relations is important for many tasks, such as information ex-
traction, machine translation and text simplification, and brings us arguably one step closer to
understanding the sentence’s meaning.

At center stage in syntactic analysis lies a notion of a formal grammar1, which is a collec-
tion of rules that describe how words and phrases can or cannot relate to each other, and what
those relations actually are. The term “parsing” are both used for the analysis of natural lan-
guages, like French and English, and artificial languages,like programming languages, which
are usually formally specified and unambiguous.

1Some parsers, especially dependence parsers, solely employ a statistic “oracle” to do the parsing. Here a
formal grammar is not explicit in the traditional sense as discrete rules, but is indirect in the form of a statistical
model of the data that was used to estimate the parameters of that model.

5



6 CHAPTER 2. BACKGROUND

Natural language seems to resist any formalization, and it is hard, if not impossible, to
not have an “impedance mismatch” between human language and computational models for
it. It is common to use the term coverage to describe how much of a language a formalism
can adequately describe. Typically there will always be some holes in coverage, arising from
sources such as unknown words in the input, unmodeled syntactical constructions, or even
because the parser is unable to process a sentence in a timely fashion. Holes in coverage are
usually called undergeneration.

On the other hand, overgeneration can present itself as a problem just as tricky as un-
dergeneration. A parser can assign incorrect analyses or accept ill-formed input, allowing
syntactical constructions between phrases that a human would deem incorrect, such as the
wrong agreement between verbs and subjects or allowing sentences with wrong word order.
Spurious ambiguity, on the other hand, is when a sentence is given several different syntactic
analyses which all have an equal semantic interpretation.

Syntactic analysis is difficult. First we need to find a formal grammar that can represent
the syntactical relations we are interested in. One way of getting a grammar is to write a set
of rules in an accompanying formalism directly. This approach to parsing is often called rule-
based or grammar-based. The needed effort can be quite high, especially if broad coverage
and low overgeneration are both wanted. Grammar rules can become quite dense and they can
have a complex interplay between them; adding one rule to address undergeneration for one
phenomenon can result in overgeneration in another part of the grammar.

Another way is to look at a collection of inputs and desired outputs, or in other words
a treebank. This approach is usually called treebank-based or data-driven. This requires a
sizable treebank, which should be annotated with the syntactical relations we want. We can
then observe the grammar indirectly by looking at all the trees, and use that data to infer what
the grammar should look like. We can easily construct a minimal grammar so that all the
trees will be covered, but more advanced methods are often necessary to get better performing
grammars.

In the field of parsing, one often distinguishes between “deep” and “shallow” approach to
syntactic analysis. Shallow parsers aim to recover a coarse set of syntactical relations, such as
subjects, objects and modification, while deep grammars aim to give a more detailed account
on syntactic relations and processes like noun subcategorization, locative inversion, passive
constructions and so on. Furthermore, and arguably the most interesting for “downstream”
users, several deep grammar formalisms can present a semantic representation of the input
and rules governing semantic composition, and especially what happens to it in the more
complex constructions, can be made part of the formalism itself.

When a formalism has been agreed upon and correct parsers have been implemented, a
difficult part of the problem can be attacked; selecting the correct analysis for a given sentence.
Natural language is inherently highly ambiguous and a sentence can have possible analyses
numbering in the thousands. A parser ideally aims to select the correct analysis among those,
or at the very least give a smaller number of likely correct candidates. This process is called
disambiguation or parse selection. Using a probabilistic model is a popular way to achieve
this, where the statistically most probable analysis is selected. Sometimes this procedure can
involve multiple stages and external models, where the parser first constructs a representation
of all possible analyses and ranks them with its internal model, and then the most promising
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analyses are then inspected by another external system. This setup is called reranking. This
can be useful as more advanced, but more expensive, stochastical models can be used.

Phrasal attachment, especially free modifiers such as prepositional phrases, are one of the
biggest sources of ambiguity. For instance, in the sentence “He saw a man with a mirror”,
could have a short PP attachment; the man is carrying a mirror, or a long PP attachment; the
mirror is being used to look with. This is normally called structural ambiguity. Word-level or
lexical ambiguity, where a word in the input could have several word-classes is also a major
factor. For example, “Man” can in principle be both a noun and a verb. Often these ambiguities
will only be local, and the rest of the sentence imposes syntactical constraints that eliminate
all the other readings, but it is not uncommon that complete analyses can be derived with both
readings of an individual lexical item. We allow ourselves to use the classical example; “Time
flies like an arrow, but fruit flies like a banana”.

2.2 Graphs
Graphs are a very common and useful tool to represent structured relationships. A graph
consists of vertices or nodes, and edges. An edge connects two vertices together. Loops are
allowed, in other words, an edge could go from a node and into the very same node. Edges
may be directed, that is, the connection is asymmetric. It is common to label both edges
and vertices. The degree of a vertex is the number of edges connected to it. When edges
are directed the degree is split into indegree and outdegree, representing incoming edges and
outgoing edges respectively. A path in a graph describes a list of edges, or vertices2, one could
traverse to get from one vertex to another.

Trees are a subset of graphs and have directed edges and some restrictions on how the
edges can connect nodes: (a) One node, the root, has an indegree of 0, in other words, no
edges point to it. (b) Every node must be connected or reachable from the root through any
number of other nodes. (c) All nodes, except the root, must have an indegree of 1. The node
on the other end of the incoming edge is usually named the parent node, and all the nodes of
the parent’s outgoing edges are named children or daughters. Nodes without any daughters
are leaves. See figure 2.1 for an example of graphs.

A

B

C

D

E

F G

A B

CD

Figure 2.1: Two graphs. Only the left one is a tree. The tree nodes D, F and G are leaves, and A is the
root.

2A path of vertices would only be unambiguous in a simple graph, a graph with no more than one outgoing
edge from each node.
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2.3 Formal language theory

A formal language is a mathematical object commonly used in the study of computation.
We shall use L to refer to formal languages. A formal language is a set of “words”3 which
are strings made up from an alphabet of symbols. One of the ways to describe a formal
language is with a formal grammar, which will typically be referred to with G in this work.
A formal grammar is a set of rules and restrictions which describe the possible derivations or
rule applications of a grammar, and make up a procedure of deciding whether some string s is
in the language it describes, or in other words, if s ∈ L (G). We say that G generates S if that
is the case. We shall largely follow the usual style of Hopcroft and Ullman (1979) and write
grammars as G = 〈N, T, P, S〉. T is a set of terminal symbols. N is a set of non-terminal
symbols, and S is a special start-symbol which all derivations must start from. It is required
that N ∩ T = ∅. P is a set of rules, which describe the derivations proper. Rules in P rewrite
non-terminals to strings of terminals and other non-terminals. The traditional idea is that the
notion of size of formal grammars should be finite, but interesting formal grammars should
generate infinite languages4. Therefore P and the symbolsN and T must all be finite sets. The
language L (G) is the set of strings of terminals in T we can obtain by repeatedly deriving
from S, which denotes the starting point for all derivations. Note that S ∈ N . We shall use
uppercase letters for non-terminals, lower-case letters for terminals and Greek letters for any
string of terminals and non-terminals, including the empty string ε.

Formal grammars can be partitioned into classes by placing restrictions on the form of
rules. For example, a left-linear grammar can only have rules of the form A → a, A → aB
and A → ε. It cannot generate the same class of languages as context-sensitive grammars,
which have rules of the form αAγ → αβγ. In other words, we cannot “remold” context-
sensitive grammars as left-linear grammars and have them generate exactly the same language.
Grammars can be weakly or strongly equivalent. Two grammars G and F are weakly equiv-
alent if L (G) = L (F ). G and F are strongly equivalent if they also generate the same
derivation trees for all words in the language. Left-linear grammars and right-linear grammars
(A→ Ba) are strongly equivalent, in the sense that they both generate the same class of lan-
guages and derivation trees. The restrictions on the form of rules define the expressivity of the
grammar, or in informal terms, how complex the languages those grammars describe are. The
classic example of these classes is the Chomsky Hierarchy (Chomsky, 1956). Usually more
restricted grammars can be implemented more easily and efficiently.

2.4 Context free grammars

Context free grammars are ubiquitous in syntactic analysis, and present several attractive fea-
tures; (a) they let us specify recursive structures which fits nicely with intuitive views on how
syntax works, (b) they yield a straightforward representation of syntactic relationships and
(c) they can be processed efficiently. From a formal perspective the terminal symbols would

3Here the term “word” is not meant in a linguistic sense, but follows from the metaphor.
4Otherwise we could just enumerate all words in the language one by one.
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usually model words, while words of the formal language would model proper sentences. The
non-terminals model syntactic categories, like NP and V P .

Context free grammars are formally on the form 〈N, T, P, S〉 and fits the definition of a
formal grammar above. The productions in P are restricted to have the form A→ α, in other
words the context around a non-terminal is not available to rules. A non-terminal could in
principle be rewritten at any time when deriving from S. Usually, language membership is
not the main point of interest when using CFGs; instead the derivation history normally takes
center stage. This is done by creating a tree of rule applications, letting the right-hand side of
a rule be the children, with the left hand side as the root. Upon a successful parse we have a
tree, rooted in S, with leaf-nodes being terminals corresponding to the words in the sentence.
In such parse trees nodes with a terminal as a child are often called preterminals. See figure
2.2 for an example of a derivation tree.

S

NP

N

John

VP

V

reads

PP

P

about

NP

VP

V

parsing

S → NP V P

NP → N

NP → V P

V P → V

V P → V PP

PP → P NP

N → john

V → reads

V → parsing

P → about

Figure 2.2: A small derivation tree and accompanying rules.

Context free grammars can be processed quickly, or more precisely in sub-exponential
time. The main insight is that local ambiguities do not need to be factored in other contexts.
The well-known CKY algorithm can parse any context free grammar5 in O(N3|G|2) time,
where N is the length of the input and |G| is the size of the grammar (Kasami, 1965; Younger,
1967).

The key insight here is to use the fact that context free grammars are what the name sug-
gest; we do not have to take anything but the immediate context into consideration. All the
possible ways of deriving a category for a sub-sequence of the input do not need to be taken
into consideration when this category is used as one of the children in another rule application.
In other words, we can represent multiple derivations of a sub-sequence with the same root
category as a single entity. This is commonly referred to as ambiguity packing. This makes it
possible to find and represent an exponential, in the length of the input, number of parse trees
in only polynomial time and space.

Most parsers with packing work in two phases: First the parse forest is created. Here one
would usually apply ambiguity packing. Next the forest is unpacked, that is, all the possible
parse trees are recovered, either exhaustively, or guided by a stochastic model in such a way
that only the most interesting, and hopefully the correct, trees are unpacked.

5Grammar rewriting into so-called Chomsky Normal Form (CNF) might be necessary, but without loss of
generality.
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N → flies 0.3
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V → flies 0.7

V → like 0.3

Figure 2.3: An example of two trees built from the same terminal symbols with different total probabilities,
given the grammar fragment. The “missing” rules from the grammar fragment all have a probability of 1. The
rightmost derivation has the highest probability.

In contrast to specifying the rules explicitly, a CFG can be implicitly observed by look-
ing at a treebank. For each subtree of depth one [A [B · · · C]] in a treebank we add the rule
A → B · · · C to the set of rules. This will result in a minimum grammar that covers all the
observed data. Having a treebank also allows us to view a grammar in a probabilistic view.
PCFGs, probabilistic context free grammars associate each rule A → α with a probability. It
is necessary to conditionalize on A giving p(α|A), which can be easily observed using fre-
quencies from the treebank. Furthermore we assume that derivations are independent, in other
words, PCFGs can be thought of as a Markov process. The total probability of a derivation
tree is then the product of all the derivation probabilities for its constituents. This is perhaps
not very linguistically motivated, but this makes it possible to keep the O(N3|G|2) run-time
of parsing algorithms. Packing becomes slightly more complex when dealing with PCFGs, as
the trees now has a probability measure as well. Still the most probable parse can be found
without too much trouble by employing a Viterbi scheme. This probabilistic extension to
CFGs facilitate parse selection, by ordering candidates by total probability, typically where
the most probable derivation is taken as the “correct”. See figure 2.3 for an example of PCFG
derivations.

In summary, CFGs employ a rule system which can specify recursive structure. It is worth-
while to take note that CFGs can only create derivation trees. Graphs in general is outside the
scope of context free grammars. CFGs are arguably suitable for dealing with coarse linguis-
tic notions, and can be processed quickly. A probabilistic extension makes parse selection
possible.

2.5 Unification based grammars

While context free grammars are easy to process, they leave a lot to be desired from a gram-
mar engineering position. It is straightforward to obtain a grammar from a treebank, but the
expressivity of CFGs is very limiting if we wish to write the rules ourselves, especially if we
want to make a precise account of several syntactic processes.
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Figure 2.4: A small feature structure drawn as an attribute-value matrix and as a acyclic directed
graph. In the AVM, features are written in SMALL CAPS and value types in italics. Numbered boxes
denote reentrancies. Note how the reentrant features point to the very same node in the graph.

A large part of the problem is that the symbols of a CFG are atomic, and present no inner
structure at all. In order to deal with agreement for example, we would need to split the
usual V P and NP categories into several new categories, each with any possible value of
agreement. Then we could create rules that would only match two phrases together if they
have a compatible agreement value. However all other rules would also be affected. A rule
that originally was looking for any V P will now need to be modified, as the original V P
category has been split into several new categories. We need to reduplicate all rules looking
for just V P into new rules for all possible agreement values we split V P in.

This approach to encoding variation of category sub-distinctions quickly leads to a com-
binatorial explosion; we need to cross multiply all distinctions over most if not all of the
grammar. If we want to make several syntactical distinctions instead of just having coarse cat-
egories, the resulting CFG could consist of millions of rules and be very hard if not practically
impossible to write and maintain.

Unification grammar (UBG) is a formalism that allows succinct specification of fine grained
linguistic distinctions. While the symbols of a CFG are just atomic, the UBG “symbols” are
feature structures. We use the common representation of feature structures as directed graphs
with labeled edges and nodes. The edge labels denote features while node labels denotes val-
ues. Furthermore several features can describe the same node. We say that those features are
re-entrant. See figure 2.4 for an example of a feature structure. A context-free grammar re-
quire that its symbols form a finite set, but UBGs can deal with a (countable) infinite number
of possible feature structures.

Feature structures are just half the story. The critical point that makes UBG able to work
with an infinite set of symbols is unification. Informally, unification can be thought of as
two-way pattern matching. When some feature structures A and B are unified, the result, C
should contain all the information in A and that in B, but only if A and B are compatible.
Geometrically we are superimposing the two graphs onto each other. C will have all the
features A and B has, valued appropriately, and all reentrancies from both as well. If A and
B are not compatible their unification is undefined, which is also dubbed unification failure.

Feature structures allows the representation of structured categories and unification pro-
vides the means to specify the result of applying derivation rules and the flow of information
is to a great extent liberated from a strict context-free perspective. This means that the gram-
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mar writer can specify general rule schemas which would then be instantiated by unifying the
daughters of the rule into the rule schema. This makes it possible to write general rules for
general syntactic processes, and let, for example, selectional constraints from the syntactic
head be carried over into the rule by unification and reentrancies. For example both verbs and
prepositions can have complements, but they place different constraints on what their comple-
ments should look like. However the syntactic process of licensing complements works the
same in both cases, and one would want to use the same rule schema for all head-complement
constructions. Unification based grammars give the grammar writer a much more expressive
formalism to write with. Typical unification-based precision grammars usually have just a
dozen or at the most a few hundred rules.

Typed feature structures
Although several unification based formalisms exits, we shall not venture further than typed
feature structures, as defined in Copestake (2002), in this thesis. Here the feature structures are
typed, that is, all the possible values a feature can have are types in a type hierarchy. We shall
give a cursory informal definition below. Carpenter (1992) gives a very thorough treatment
about several theories of typed feature structures in general.

The type hierarchy describes the subtyping relation between all the possible types. It is a
tree-like structure6 where the children of a node is said to inherit, or be a more specific type
than their parent. We say that types “higher” in the tree are general and types lower in the
tree are specific. Types specify constraints on both what features are appropriate and what
type of values those features can have. A feature structure that conforms to all the constraints
satisfies the type. There are some important structural restrictions on the hierarchy: There is
only one greatest type or root type, called top, which is the supertype of all possible well-
formed feature structures, and it has no features. In many ways, top can be thought of as
the empty feature structure. Every node must be directly or indirectly connected to top. No
cyclic sub-typing is allowed in the hierarchy. See figure 2.5 for an example type hierarchy.

Types themselves have corresponding unique most general feature structures satisfying
them, an indirect representation that presents a much more intuitive work surface for the gram-
mar (or thesis) writer, and we will allow ourselves to refer directly to this feature structure
metonymically. The type-hierarchy itself is a bounded complete partial order on the subtype
relation. That means that there is a unique bottom type, which is used to denote unification
failure. Furthermore every two types in the hierarchy must have exactly one infimum or meet,
in other words the greatest lower bound is unique. This is called the greatest lower bound
constraint. The infimum of two types denotes the result of their type unification. The greatest
lower bound constraint, together with top and bottom, makes the type hierarchy a complete
lattice 〈>,⊥, <〉.

However, a type can have several direct supertypes or parents. In other words, a form
of multiple inheritance is allowed. Inheritance is strictly monotonic, so a type must be able
to satisfy all the constraints of all its parents. Subtypes can also not be more general than

6It is not a tree, because a node can have an in-degree higher than one. It is however our opinion that the
parent-children metaphor is very useful to get an intuition on what’s going on, so we will allow ourselves to use
it.
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Figure 2.6: Examples of unifications assuming the type-hierarchy in figure 2.5. The third
unification fails, as ⊥ is the subtype of x and c.

their parents, that is, for all the inherited type constraints, the subtype must have either the
same or a more specific constraint. Subtypes can of course add new type constraints. We can
interpret this as follows; if there is a type B inheriting from A then every feature structure B
that satisfies the constraints of B must also satisfy the constraints of A. Loosely speaking,
everything that is a B is also an A.

We explain unification by introducing subsumption. A feature structure A subsumes an-
other one, B, if all the features in A exists in B and are valued such that they are equal or no
more general than in A. Any reentrant feature in A must also be reentrant in B. In other words,
A is less specific than B, but the information in A and B is not incompatible.

The unification of two typed feature structures, A and B, is the smallest, or least specific,
feature structure that is subsumed by both A and B. If the constrains of the type hierarchy
cannot permit such a feature structure, the unification fails. In the theoretical sense, we have
reached the end of the lattice bottom and since this is the least possible type it can be regarded
as a “singularity”. It subsumes everything, so unification and subsumption involving bottom
will always result in bottom. In the practical sense bottom is regarded as failure, and the
feature structures are regarded as incompatible. For instance, if a unification fails when doing
chart parsing, that hypothesis is discarded and nothing is added to the chart. See figure 2.5 for
some examples of unification.
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2.6 HPSG

Head-Driven Phrase Structure Grammar (HPSG), canonically defined in Pollard and Sag
(1994) building on Pollard and Sag (1987), and also discussed in Sag, Wasow, and Bender
(2003), is a theory of syntax. In this section we shall present its most relevant features for
our work. HPSG is a generative grammar based on a typed feature structure formalism. The
overall philosophical idea of generative grammars is that they can be formally specified as a
set of rules, and thus be implemented on a computer. This fits nicely with the ideas of formal
grammar and formal languages. Generative grammars should generate “correct” sentences,
and disallow malformed ones.

HPSG relies heavily on the notion of heads. A linguistic head is the “main” word in a
phrase, and it is usually the head word which controls the syntactic function and possible other
constituents in phrases. Nouns head noun phrases, and verbs head verb phrases and sentences.
Heads can license sub-categorized phrases, a classical example is intransitive, transitive and
ditransitive verbs, which take a varying number of syntactically dependent arguments, so-
called complements. Verbs and nouns usually take a so-called specifier argument as well,
typically subject phrases and determiner phrases, respectively.

Many generative grammars are transformational, meaning that the nodes in phrase struc-
ture trees can “move” around, and transformational theories of grammar usually posit sev-
eral levels of phrase structure with intricate movement rules. HPSG however, is non-trans-
formational, in the sense that there is only one phrase structure and no nodes move.

On an abstract level, HPSG is a set of constraints which are specified from several sources:
The type hierarchy imposes constraints on the form of the admissible, i.e. the so-called well-
typed and sort-resolved feature structures. Lexical heads constrain the phrases they can com-
bine with, and general grammar principles constrain the grammaticality of sentences and how
phrases can compose. A sentence is well formed in HPSG if there is a representation satisfying
all the constraints.

Most syntactic constructions in HPSG have a head daughter, and possible non-head daugh-
ters7. It is customary to write HPSG derivations as trees, very much alike the context-free
derivation trees discussed above. The head daughter is found at the HD-DTR feature, further
non-head daughters are listed at the NH-DTR feature. These map directly onto the daughters
of a tree node. If it is not clear from context, the branch corresponding to the head-daughter
should be labeled. Note however, that the tree still specifies one feature-structure. In figure 2.9
we give an example of a small HPSG derivation. The daughter nodes in a construction do not
need to be linearly ordered, nothing in the formalism requires that a HPSG derivation takes
the form of a projective tree. In other words, the derivation tree can have crossing branches.
However, most computational implementations of HPSG systems do require projective trees,
as this facilitates implementation by building upon, and extending, classic context free parsers.

HPSG is strongly lexicalized, and most of the constraints stem from the lexicon, which
usually has highly structured entries. The grammar principles are made as general as possible,
helped to a great extent by type constraints and unification. The idea is that the constraints
from the lexical head serve to restrict what kind of phrases the lexical head licenses. These

7Almost all constructions are headed, but coordination constructions murky the picture somewhat.
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Figure 2.7: The head-feature principle in AVM
form. Note how the HEAD features are re-
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constraints are typically “carried over”, from daughters to parents by use of re-entrant features.
Theoretical HPSG deals with general grammar principles, which most implementations cod-
ify as abstract rule schemata. In a bottom up parsing scheme, the applicability of a grammar
rule only requires that the constituents on the right hand side are “present”, that is, they are
derivable from the input words. A rule schemata however, also requires that its possible con-
stituents are unified “into” it, one at a time, and the rule is only applicable if these unifications
succeed, i.e. if the resulting feature structure is admissible. In other words, the constituents
need to be compatible with each other and the rule schema in addition to being derivable from
the input. See figure 2.8 for an example of some schemata.

One of the most central principles that stipulate this is the Head-feature principle which
requires that the HEAD feature of the head-daughter in a phrase is projected onto the HEAD

feature of the mother node in headed-phrases. For instance, a transitive verb licenses a com-
plement phrase. A verb-phrase can then be constructed with the verb and a noun-phrase. The
head of this new phrase will still be of type verb, and furthermore, all the constraints the verb
may have will still be present in the verb phrase. For instance, if the lexical form of the verb
specified a first person plural agreement, a specifier to the verb-phrase must follow that con-
straint. We can write the head-feature principle more succinctly in AVM form as in figure 2.7.
In addition, we can observe the effects of the principle in figure 2.9.
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Figure 2.8: Two general HPSG rule schemata, namely the head-complement and specifier-head schemas. Note
how the HEAD-feature of the head-daughter is reentrant with the HEAD-feature of the resulting feature structure.
The constraints the head puts on is specifier or complement is expressed with reentrancies, which at first may
seem discontinuous, but note that these schemas just are one feature structure, and the tree-branches correspond
to the HD-DTR and NH-DTR features. The head-complement schema “picks off” one complement at a time,
hence the reentrancy with the rest of the complement list. In the case of a singleton list the resulting COMPS list
would be empty. In the other case the list would start with the next element of the original list.
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Figure 2.9: A simplified example of an HPSG derivation for the sentence “She plays Eliante.”,
built using the schemas above. Note that 〈 〉 denote lists. Lists themselves can be encoded
directly in feature structures, where the non-empty list has two features, FIRST of type > and
REST of type list. The non-empty list and the empty list, nil, are the subtypes of list.



CHAPTER 3
Context-free approximation

The harmonicas play
the skeleton keys and the rain

BOB DYLAN

This chapter is about this thesis’ main theme: Context-free approximation of unification-
based grammars. The motivation and uses for such approximations will be discussed. We shall
give a brief discussion about theoretical aspects of formal approximations and we continue
with a review of related work on context-free approximation. We shall then introduce the
techniques we use in this work, both for the approximation itself, and for the evaluation of the
resulting grammars.

3.1 Motivation
Processing unification- based grammars is expensive in both time and space. While the for-
malism is very attractive from the grammarians viewpoint, processing time can constrain the
usability of UBGs, not only in on-line settings where very high responsiveness is required, but
also for off-line processing. Long sentences with a lot of lexical ambiguity can take a long
time, and use a lot of memory, and for practical purposes both processing time and memory
use have to be set to reasonable limits. This can account for sizable coverage loss in several
applications.

The classical UBG parser functions roughly like a regular chart based context free parser,
but with modifications to accomodate feature structures and unification. Most parsers employ
a pure bottom-up strategy, as top-down filtering can be difficult to apply, especially in highly
lexicalized formalisms such as HPSG. Operations dealing directly with feature structures,
unification and subsumption, tend to make up most of the processing time. The chart-based
paradigm necessitates non-destructive unification, in other words, every time a unification is
performed, potentially a whole new feature structure is created. Feature structures tend to
grow quite large, and the chart can contain hundreds or thousands of edges, each containing
a feature structure with hundreds of nodes. A large and diverse collection of strategies have

17
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been developed in the past decades to drive parsing time down, working on many stages of the
parsing, and with several different philosophies behind them.

For example, in order to reduce unnecessary copying of feature structures, unifiers more
suitable to chart-based processing, such as the Tomabechi-algorithm (Tomabechi, 1992) have
been applied. The adaptation of local ambiguity packing techniques for UBGs, using sub-
sumption, almost brings back the dynamic programming techniques that make CFGs solvable
in polynomial time (Oepen & Carroll, 2000). The storage of feature structures themselves
benefit greatly from structure sharing techniques, explored in Malouf, Carroll, and Copestake
(2000).

The parser will unify many feature structures as it explores hypotheses, typically most of
these unifications will fail. It is therefore worthwhile to detect unification failures as early as
possible. Determinig whether a rule-application can be made requires several unifications to
take place. Each possible daughter are unified with the rule schema in turn, a rule application is
only regarded as succesful when all the daughters are unified with the schema and if the result
is valid. However, the daughters will present different levels of constraints, and the order in
which these unifications are made can be an important point of optimization. Kay (1989)
and Bouma and van Noord (1993) argue for head-driven parsing, where the head daughter
is unified first. However, further exploration show that this is not always the case. Oepen
and Callmeier (2000) explore so-called key-driven parsing, where the key daughter, often the
head, but not always, is the first candidate for unification.

Some unification failures can be determined statically, or in other words, by just analysing
the structure of the grammar itself. Type unification itself can be precompiled (Kiefer, Krieger,
Carroll, & Malouf, 1999). Unification tends to fail at some critical paths in the feature struc-
tures, whereas other paths almost always succeed. The QuickCheck filter first checks if these
critical paths are compatible before the actual unification begins (Kiefer et al., 1999). We shall
discuss the QuickCheck filter in more detail later on.

The chart parser paradigm can be combined with other external tools, typically in settings
where the search space the parser explores is reduced or constrained. In highly lexicalized
theories, such as the lexical entries contain most of the grammatical constraints, With fine-
grained distinctions, such as different types of subcategorization, lexical ambiguity rates can
be very high. Disambiguation at the lexical level, typically called supertagging (Bangalore
& Joshi, 1999), can bring dramatic performance improvements (Dridan, 2009; Matsuzaki,
Miyao, & Tsujii, 2007). However, supertagging itself is a hard problem, and errors in tag
assignment can reduce both parsing accuracy and coverage.

Other work does away with the chart based backing entirely and explores UBG parsing in
a deterministic view. Ninomiya et al. (2011) and Ytrestøl (2011b) explore general shift-reduce
parsing with deep grammars. The overall aim is to recover a “script” for unifications which
can then be instantiated in a deterministic fashion. This setup greatly reduces the number of
unifications the parser must perform to analyze a sentence, but can result in lower accuracy or
coverage.

A context-free grammar approximating the UBG in question can be useful for all three of
the above approaches. Uses generally fall into three cases; a) for predicting grammaticality, b)
as an enabler for probabilistic models, either as a PCFG, or as an information source in other



3.2. APPROXIMATION OF FORMAL GRAMMARS 19

models1, c) as a parser in its own right.
Context free approximations can be used to expand upon filtering before a unification is

attempted, by first checking if the corresponding rule in the approximated grammar exists, a
scheme that can be viewed as spiritually extending the QuickCheck filter. If the corresponding
rule does not exist, the unification is assumed to fail, and the hypothesis discarded2. This can
reduce the number of expensive failing unifications.

This idea can be taken one step further; we can first completely parse the input sentence
with the approximated grammar, and then use the resulting parse forest3 as an indirect top-
down filter on the unification tasks of the main parser. The unification of two edges is only
performed if it exists in the parse forest of the approximated grammar. This can further reduce
the number of failing unifications, but also, and perhaps more importantly the number of
passive edges in the chart that are not part of any complete derivation can be reduced, resulting
in not only speedups but also less memory usage.

A context-free approximation can also be useful to refine the results of a supertagger.
Most taggers use a linear sequence model, which can give poor performance on long-distance
dependencies. A sequence of tag assignments can be tested for grammaticality with the ap-
proximated grammar, and ungrammatical tag sequences are then taken to be incorrect. This
setup can increase the tag accuracy with a modest increase in tagging time (Matsuzaki et al.,
2007; Zhang, Matsuzaki, & Tsujii, 2009). Supertagging is usually approached in a sequence
labeling context and can therefore suffer from long-range-dependency errors, which make the
use of CFG approximation a possible way to reduce that kind of errors. Another approach is
to let a PCFG rank tag sequences itself, by taking the pre-terminal yield the n-best parses as
the supertag sequences.

In corpus or treebank driven methods we can also collect rule frequencies and obtain a
probabilistic context free grammar. This can be seen as an indirect model of the unification
based grammar and used in ranking the items on an UBG-parser agenda (Cramer & Zhang,
2010), for UBG parse selection (Kiefer, Krieger, & Prescher, 2002), either on its own, by
taking the most probable parse tree, or as an information source in other parse selection mod-
els. Secondly, the PCFG enables another form of parse replay where we only reconstruct the
PCFG trees with highest probability. In this approach the responsibility for exploring parse
trees is shifted entirely over to the context free approximation.

3.2 Approximation of formal grammars

In this section we shall establish some terminology on how formal grammars are approximat-
ing each other. First we will look directly at the string languages the grammars generate. In
the section below, G is the formal grammar we want to approximate and F1 · · ·F are forms of
grammars approximating G and ∼ is the approximation relation.

1The infinite nature of feature structures is problematic for many probabilistic modeling used today.
2We shall elaborate more on the correctness of such an assumption later in this chapter.
3Or in other words, the parse chart where all the edges that do not contribute to a valid reading have been

removed.
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L (G) ⊃ L (F1)

L (G) ⊂ L (F2)

L (G) * L (F3)

L (G) ∩ L (F4) = ∅ G

F1

F2

F3

F4

Figure 3.1: Venn diagram of how the string languages of grammars can relate in the universe
Σ∗

It is useful to look at “forms” of approximating grammars by looking at the relationships
between the string languages, L (·), of the approximation and the original grammar. These
sets can relate to each other in the ways described in figure 3.2. It is reasonable to define the
approximation relation such that F ∼ G if ∃g ∈ L (G) : g ∈ L (F ), In other words F4 is not
deemed as an approximation of G, as under this definition an approximation has to share at
least one word with the grammar it approximates. An F1 grammar generates a sublanguage of
G. In UBG approximation, F2 and F3 grammars are the most interesting cases. F2 is a sound
approximation, meaning that we can safely conclude that a word not in F2 is not in G either.
However F2 generates a superlanguage of G, so the reverse property does not hold. F3 is an
unsound approximation, where words not in F3 still can be in G, but words in F3 might not
be in G. The superfluous elements, or the overgenerating part of an approximating grammar;
L (F ) \L (G) will be written as S(F ).

In practice we want approximations where S(F ) is as small as possible. Intuitively F2

may seem the better approximation scheme, as we can safely discard words not in F2 from
further processing. However the soundness requirement can make S(F ) too big to be useful;
the resulting sound grammar is so permissive that almost all possible strings are in F2. On
the other hand, if we still want a small S(F ) the grammar can get so big that the time spent
processing F2 does not make up for the gains we get with the knowledge that a word is not in
F2 and thereby not in G either.

F3 grammars are the least restricted type of approximations, where no formal guarantees
actually hold. In practice however, we can create pretty tight approximations in this scheme,
and get benefits in processing. As an added bonus, F3 grammars can be created with arguably
more intuitive and possibly faster algorithms than what F2 grammars would require4.

F3 grammars are typically constructed from treebanks, which lends itself to PCFG-est-
imation, where a straight-forward approach is to use treebank frequencies directly. Given a
treebank F2 grammars can be estimated, but would require somewhat more involved tech-
niques to deal with the productions that are not present in the data used to estimate it.

4In essence, fixpoint iteration on grammar rules is not needed.
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3.3 Context free approximation of unification based
grammars

So far, we have only studied the string languages of approximating grammars. However, the
derivation history and structure is the part we typically are most interested in when doing syn-
tactic analysis. The previous section discussed to what degree approximations can be weakly
equivalent to each other, but to approximate the derivation history we need to look at some
sense of strong equivalence, i.e. how rule applications in the original grammar correspond to
rule applications in an approximation of it. In this section, and those to come, the core of this
thesis will be explored.

CFG UBG
Symbols atomic: A B C v,w structured: T FS

Productions A→ B C ∈ P A ∈ P ∧ A uB u C ∈ T FS
Cardinality of symbols finite infinite

Parsing time polynomial exponential

Table 3.1: A table summarizing some high level aspects of CFG and UBG.

Unification-based grammars differ from context-free grammars in some key points tabu-
lated in figure 3.1. Most notably, unification based grammars can have an infinite set of sym-
bols, namely the feature structures. This means that unification-based grammars and context-
free grammars, which require a finite set of symbols, do not generate the same class of lan-
guages, and thus context-free grammars can, in the general case, only create an approximately
equivalent grammar. It follows that UBGs with only a finite number of feature structures can
be written as CFGs.

However, UBGs still typically employ phrase structure rules, and are in many ways a
grammar of trees. This class of tree-structured UBG-grammars can intuitively be viewed as
context free grammars, but with a countable infinite numbers of non-terminals. At a mini-
mum, a context free grammar can be created from a UBG just by reducing the set of symbols
a UBG operate with down to a finite number. The intuitive way to do this is to restrict feature
structures, that is, delete nodes and edges so that the grammar only describes a finite num-
ber of them. This can be done by creating a “white-list” of features we wish to keep, as in
(Krieger, 2004), or “black-list” of features known to have unbounded subgraphs, as in Kiefer
and Krieger (2000).

There are two main ways of creating the approximation, grammar-driven and data-driven.
In a grammar-driven approach, algorithms work directly on the grammar. The grammar rules
are instantiated, first with lexical entries, and then the resulting feature structures are appro-
priately restricted. Then these restricted feature structures are again used as daughters for new
rule instantiations. This proceeds until a fixpoint has been reached, i.e. no “new” feature-
structure can be found (after restriction!) by instantiating an old one with a grammar rule.
This approach will create a sound, F2, approximation of the original grammar.

Data-driven approximations do not work on the grammar directly, but work with actual
rule applications, either passive items from a parse chart, or on treebanked material. Each
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rule-application, A→ B · · ·C, will then have its symbols appropriately restricted. The result-
ing rule is then a permissible context-free rule, and the approximated grammar is then induced
from the restricted items in the treebank in the regular fashion: The derivation trees are split
into its local productions on the form A→ B · · ·C, and then these productions and accompa-
nying symbols are added to the grammar. When all local productions have been considered,
the minimal context free grammar that covers the passive items is yielded5.

Some practical matters make an approximation more feasible. Context-free grammars are
inherently local, with all productions being on the form αAγ → αβγ. This eliminates any
lookaround when applying rules. In other words, the applicability of a rule is only deter-
mined by its immediate daughters, which requires an approximation scheme to carry over all
relevant information in each context-free symbol. In the case of HPSG this need not very
problematic because of the so-called Locality Principle, which requires that only the infor-
mation immediately available in a feature structure can decide if it can be the daughter of a
rule. In other words, no rule can “look” at the daughters of its immediate daughter, and so on.
This fits neatly with the limited lookaround we find in CFGs, and makes an approximation
more feasible by having the necessary information already locally present in the feature struc-
tures one-by-one. Approximation schemes do not have to search any sub-trees to find required
information, which means that the feature structures can be approximated in isolation. The
algorithm need only work on one rule application at a time.

With the strong equivalent sense in mind, the most interesting approximations are the
reconstructable ones. That is, the resulting derivation from the approximation specifies exactly
one unique T FS if it is well typed. If not, the derivation is ungrammatical, and thus a part
of S(F ). This means that we can not only decide if a derivation from the approximating
grammar is grammatical, we can also recreate the feature structure corresponding to it, and
all the information that was discarded to facilitate the approximation can be deterministically
recreated at will. The only requirement on the approximation grammar is that each symbol
in the grammar can only have one corresponding UBG rule. That is, only the identity of the
rule is needed, the actual feature structure itself is not necessary. Given these rule identities
the corresponding T FS can be found merely by applying the rules in the order the derivation
history specifies. This is usually called deterministic parse replay.

As it turns out, the smallest reconstructable approximation for T FS is just the type of
the root node in the feature structure, which denotes either a lexical entry or a rule. This
“naïve” approximation serves as a baseline for our experiments, which is not only suitable
theoretically, but also practically, as this approximation scheme is used in several applications,
including the systems of Ytrestøl (2011b) and Cramer and Zhang (2010).

5 It is possible, when working directly on passive items from a chart, that “useless” symbols are created.
Useless symbols are those symbols that cannot take part in any complete reading, i.e. starting from S and ending
in terminals. Useless rules are rules with one or more useless symbols in them. These symbols needlessly inflate
grammar size. However, the chart can first be pruned so only edges that are part in a complete reading are left,
which would remove any useless symbols. It is also possible, should the pruning be impractical, to remove all
useless symbols and rules from any CFG by static analysis (Hopcroft & Ullman, 1979).
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sb-hd_mc_c → hdn_bnp-qnt_c hd-cmp_u_c
hd-cmp_u_c → v_3s-fin_olr hdn_bnp-pn_c
v_3s-fin_olr → play_v1
n_sg_ilr → generic_proper_ne
w_period_plr → n_sg_ilr
hdn_bnp-pn_c → w_period_plr
hdn_bnp-qnt_c → she
she → she
play_v1 → plays
proper_ne → Eliante.

Figure 3.2: A small example of an HPSG derivation, and the CFG rules that the naïve approximation would
generate.

3.4 Refining reconstructable approximations

The main task of the approximation method we explore here can now be made clear; we ex-
pand the least reconstructable approximation in an attempt to create a better, for some values
of the word, context free grammar. The baseline method is problematic in the case of HPSG,
as HPSG employs very general rule schemas. The resulting least approximation is so permis-
sive that just about anything can be assigned a valid analysis in it. Not even basic syntactic
categories like V P , PP and NP will be present in such an approximation. See figure 3.4
for an example of how such a scheme would approximate a simple derivation. In this section,
different refinements to this baseline will be discussed.

The starting point is a very uninformed grammar. A better approximation would require
adding more information to the grammar, either refining the symbols themselves (and indi-
rectly also the rules), or estimating a probabilistic context-free grammar, and thus augmenting
the system with a notion of probability of derivations and rules. Note that these approaches
are not incompatible. Symbol refinement can be done in many ways, including internal anno-
tation with values from the corresponding T FS, external annotation from the context around
a symbol, neighboring nodes in the derivation tree, or by rewriting the trees themselves.

External annotation is a classic technique in treebank-oriented parsing. Here, limited con-
text is added to the symbols of a context-free grammar. An annotation that resembles the
HEAD-feature principle is lexicalization, where properties of the word, e.g. either its sur-
face form6, a normalized version of that, such as a lemma or stemmed form, or its part of
speech, is annotated into the usual syntactic category symbols. To let this information “flow”
upwards through rule applications, the resulting category will also need to be annotated with
the same information, which requires that the original rules in the grammar have a notion on
which daughter is the syntactic head. Intuitively the surface word form is an important source
of information, especially considering selectional preferences, licensing of other phrases and
inflection and other morphological variation. Too aggressive lexicalization, however, can in-
duce sparsity in the resulting grammar, which can give rise to parameter estimation difficulties.

6 The actual string of characters.
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Figure 3.3: An example of a feature structure and an annotation-vector, A, and the resulting annotated context
free symbol. Here 〈 〉 means the root type of the feature structure.

Another important annotation scheme is factoring in vertical and horizontal context from the
derivation history, such as grandparenting, where the category of the grandparent node is an-
notated into the category of grandchildren node. Zhang and Krieger (2011) present, among
other results, several related experiments with a varying degree of external annotations.

However, another possibly complementary source of information is in the feature struc-
tures themselves. Following Krieger (2004) symbols can be annotated with some, but not
all, feature paths and their corresponding type. The features used in annotation form an
annotation-vector. Should the feature not be present in a feature structure, the annotation
defaults to ⊥. Only types are annotated, that is, if there was a non-atomic feature structure as
the value this feature path, only the type would be considered, the rest of the feature structure
is ignored, unless “deeper” feature paths were present in the annotation vector. If the UBG
formalism requires a finite number of types, which is reasonable, it follows directly that this
annotation scheme also will generate a finite number of symbols. Thus we have a context free
grammar even if a sound approximation was created.

The case of external and internal annotation is particularly interesting. One could imagine
that external annotation, especially word surface lexicalization, captures many of the distinc-
tions that are already present in the feature structures, with but the cost having to observe them
indirectly from the string surface itself. In addition, the number of lexical forms can be very
high, and create problems with data sparsity, not only in coverage, but also parameter estima-
tion should a PCFG be made. However, the information added with external annotation do not
need to overlap with the information available in the feature structures themselves. There is
much more information directly in the words themselves, but it is hidden and not structured.
For instance external annotation can model extralinguistic phenomena, like domain or genre
effects observed in a particular corpus, ontological or world-knowledge effects and so on. This
could be regarded as “overtraining” from a purely linguistic perspective, but could arguably,
depending on the use case of the approximation, be regarded as beneficial.

A third way of annotation is to collapse the derivation history. Here several UBG deriva-
tions are folded into one context free symbol. To keep the reconstructability of the annotation,
the identity and order of each contributing UBG derivation must be extractable. The annota-
tion of internal structure, features and corresponding types, and external context, derivation
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Figure 3.4: Original and lexically collapsed parse trees for “She plays Eliante.”

history and lexical heads, can work well for syntactic constructions, but can discard morpho-
logical information in an indirect fashion. In the domain of CFGs, the input token can only be
seen from its immediate preterminal, and any information not carried over into the preterminal
symbol is not available for further rules.

Typical unification based grammars do not contain a full form lexicon, but employ a mor-
phological engine and a lexicon of lemmas. The morphological rules deal with both inflection
and derivation, and these rules will add important information, such as verb tense or agree-
ment constraints, to the feature structures of the lemmas. Because of the strong lexicality of
HPSG, discarding this information can result in a very general and permissive approximation.
The applicability of these morphological rules cannot be expressed adequately in the a feature-
annotation scheme. The system does not only rely on feature structures, but also on the word
form itself. Typically these rules will start from a lemma and add morphemes concatenatively
until a surface form that corresponds to the input token has been found. To approximate this
with CFG rules is possible, but infeasible, as the grammar would become extremely large.

Another way to capture this process, but still remain in the domain of CFGs, is apply
folding and collapse the derivation trees corresponding to the lexical rules into one derivation,
which is then taken to be the preterminal of a word. However, this can create a very high
number of preterminal symbols, and can induce a lot of sparsity in the resulting approximation.
In addition, lexical ambiguity rates would rise.

The above techniques dealt with symbol refinement. Another important approach is to es-
timate rule frequencies and create a probabilistic context-free grammar. Approximations with
a high level of symbol refinement could potentially disallow a wrong derivation, if its sym-
bols contain the necessary information. Probabilistic approximations however, could assign
low probabilities to bad derivations and disfavouring it in the ordering of them (by probabil-
ity), and instead favor a more probable, and hopefully correct, derivation. However, as stated
above, these methods are not incompatible, but stand in an orthogonal relationship. The qual-
ity of PCFG-approximations will typically rise with some levels of symbol refinement. If
the probabilities are not interesting to the task at hand, one could still stand to benefit from
PCFGs, or at least the rule frequency data. Rule frequencies usually have a very long tail,
and, for example, the rules occurring with a very low frequency, typically with only one or
two occurrences, could be removed. This would create a much smaller grammar, potentially
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making it significantly faster to process, but at the expense of coverage.
One could, for instance, extend the top-down filtering approach, mentioned in section

3.1 above; where the unification of two edges with a probability under a certain threshold
is disallowed. Tuning the threshold can control the amount of filtering. Too much filtering,
however, can remove the reading of the original grammar that would score highest according
to the parse-selection model of the UBG parser. Should the parser reach a state where no
further actions are possible and no complete reading has been derived, the threshold can be set
more defensively and parsing allowed to continue. In this setup, the coverage of the original
grammar would stay unchanged.

3.5 Related work
Context-free approximation of unification grammars has been studied by several authors in the
last decades, based on HPSG and several linguistic theories, such as GPSG7(Gazdar, Klein,
Pullum, & Sag, 1985), LFG (Kaplan & Bresnan, 1995) and PATR-II (Shieber, Uszkoreit,
Pereira, Robinson, & Tyson, 1983).

Varying simplifying assumptions have been made. Under the assumption that the number
of feature structures is finite, Goldstein (1988) creates a context-free grammar from a HPSG-
like formalism. Moore (1999) describes the compilation of finitely valued feature structures,
equal in expressive power to CFGs, into context-free grammars without left recursion, which
is expanded upon by Rayner et al. (2001).

Carroll (1993) extracts a context-free grammar from ANLT, a GPSG-like formalism. Neu-
mann and Flickinger (1999) create lexicalized tree substitution grammars from a HPSG-parsed
corpus. In the context of LFG, where grammar rules may contain regular expressions, Can-
cedda and Samuelsson (2000) generate approximate rules without the use of regular expres-
sions.

Kiefer and Krieger (2000, 2002) create a sound context-free approximation of both HPSG
and PATR-II grammars, using fixpoint iteration on repeatedly instantiated grammar rules as
discussed in section 3.3. However, the starting point of the fixpoint iteration is a collection of
(abstracted) lexical items. This presents some problems in practical use. First, the resulting
grammar is sound, but only on the part of the grammar that is “activated” by these items, that
is grammar rules that are transitively derivable from input words used as “seeds” during the
fixpoint iteration procedure. Kiefer and Krieger present empirical results on approximations
obtained from relatively small corpora of lexical items. It thus unclear if a sound approxima-
tion is viable on large corpora. Furthermore, they do not perform experiments on how these
“pseudo sound” grammars would perform on unseen data. Secondly, although it was not the
case at the time of the work in Kiefer and Krieger (2000), modern precision grammars can
contain an infinite variation of surface lexical forms. A true sound approximation of the entire
grammar and lexicon might require modification of the original algorithm to be able to deal
with the infinitely sized lexicon, if this is feasible in practice at all.

Krieger (2007, 2004) uses data-driven approaches and creates an unsound approximation
on instantiated data. Their approximation is similar to this work, but Krieger works on the

7Often regarded as a precursor to HPSG.
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passive edges of a parse chart, that is, completely instantiated grammar rules. This approach
was taken to increase the robustness of the resulting grammar. As no filtering on the passive
edges of the parse chart is performed, the resulting grammar may contain useless symbols
and productions. These can, however, as Krieger notes, be easily removed post facto algo-
rithmically. In addition, Krieger (2007) present another way of aggregating the resulting CFG
productions obtained by the approximation, namely by rule-subsumption (see 4.4). Here,
more general grammar rules are preferred over more specific ones. This gives a smaller gram-
mar, but however, and surprisingly, the resulting grammars obtained under rule-subsumption
are only slightly smaller than grammars obtained under rule-equivalence.

In Zhang and Krieger (2011), perhaps the work most closely related and contemporaneous
to this thesis, treebank-driven approximations are explored. Here, both internal and external
annotation is performed to create a probabilistic context-free grammar approximating both
the original UBG, and its parse selection component. Zhang and Krieger present empirical
data where the resulting PCFG approximated from the LinGO ERG is used as a standalone
parser, both with varying levels of internal and external annotation, and with varying amounts
of treebanked training material. In their work the main grammar refinement techniques cen-
ter around external annotation, namely grand-parenting. Internal annotation is explored, but
with a smaller scale of annotation vectors than this work. In Zhang and Krieger, efficiency
and processing time gains are not the main focus, and the processing time of the different
approximations are not reported. However, potential gains in robustness are explored.

Grandparenting gives a good increase in accuracy, but also introduces new challenges.
First, grandparenting increases the size of the grammar in a relatively drastic way. This can
create sparsity problems. Second, the ambiguity rate increases, and the resulting grammars
can become very costly to process. Full parse forest construction might not be feasible in all
cases, which can be problematic in scenarios where the top n most probable parse trees were
wanted. Last, grand-parented grammars are not immediately suitable for purely bottom up use
scenarios, for example in the work of Cramer and Zhang (2010) where probabilistic context-
free approximations are used to control parser actions. Here, the approximation is used such
that grandparent nodes are not known ahead of time.

In addition, they compare the performance of their approximation with state-of-the-art
split-merge grammar refinement (Petrov et al., 2006). Their results suggest that such EM-
driven techniques might not be immediately suitable for refining such grammars, due to the
high level of granularity already present at the starting point. While still giving a good in-
crease in performance, the availability of internal structure lends itself as a more suitable way
of refining such grammars. Secondly, split-merge grammar refinement is a comparatively
costly process, and potential gains won by employing this technique could be offset by using
more training data, at a level where split-merge might be unfeasible in practice, and faster
approximation techniques.





CHAPTER 4
A framework for data-driven
context-free approximation

Were a language ever completely "grammatical"
it would be a perfect engine of conceptual
expression. Unfortunately, or luckily, no
language is tyrannically consistent.
All grammars leak.

Language, 1921
EDWARD SAPIR (1884-1939)

The previous chapter dealt mostly with theoretical aspects of approximation, and the dis-
cussion should hopefully generalize to other related formalisms of unification-based grammars
and linguistic theories. In this chapter we will discuss some practical matters on the approxi-
mation, such as feature selection, and present an implementation for approximation based on
a collection of several existing open source tools and grammars. We conclude the chapter by
presenting various measurements of the obtained context-free grammars and experiment with
different levels of annotation and refinement techniques.

4.1 Practical considerations
Context-free approximations can be obtained in a large number of different ways, and it is not
possible to give one single best solution that will fit for all use cases. When the approximation
is used directly to aid processing of the UBG, as in contrast to using approximations as a
“bridge” between the UBG and other tools or formalisms, the time spent on processing the
approximation grammar comes of course in addition to the time spent processing the original
grammar. It is therefore important that the time gained from the knowledge obtained by the
approximation outweighs the time spent on the extra processing needed to accommodate it.

More annotation creates larger grammars that can become costlier to process and more
difficult to extract using data-driven methods. However, the more annotated grammars will
typically be closer to the original grammar and be able to reject more ungrammatical deriva-
tions or make better statistical inferences. A degree of flexibility in parameterization and
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empirical knowledge about the trade off CFG approximations may make is a practical pre-
requisite to successful utilization of the technique. Although several research results show
that the technique has great promise in a large number of different scenarios, no off-the-shelf
“drop-in” solutions do exist.

For a particular use case, a balance between the tightness of the approximation, the time
spent on the approximation, the potential knowledge gained from the approximation and the
potential for search and coverage errors must be found.

Tree-rewriting, in particular lexical collapsing, is one of the more dramatic techniques for
getting tighter approximations. While it can give a big boost to the performance of the approx-
imation, it can also introduce a lot of coverage problems. The cardinality of the “tag-set” or
the preterminals of a typical UBG can be in the hundreds, the cardinality of the preterminals
of a lexically collapsed grammar can be several thousand symbols.

4.2 Revisiting sound versus unsound approximation
The choice of sound versus unsound approximation is perhaps the most important one to
consider when creating an approximation. Sound approximations are theoretically “cleaner”,
and some of their uses, in particular as a symbolic recognition filter, see 3.1, cannot give rise
to errors, either search errors, since the approximation is not used to rank or reorder the UBG
parser actions, or coverage errors, since the approximation is a true superset of the original
grammar. A sound approximation used in this way is a safe optimization.

Recall however that sound approximations tend to have a much larger size than unsound
approximations which can make them impractical, as too much time is spent on processing
the approximation To our knowledge, sound approximations are not commonly used in HPSG
processing with (very) large grammars, with the notable exception of Matsuzaki et al. (2007),
where a sound, but somewhat light weight, recognition filter is employed to check whether a
supertag sequence is parseable.

Several practical matters make unsound approximations more interesting: The approxima-
tion can be much tighter, using more feature annotations and possibly tree-rewriting, without
losing practicality by creating too big a grammar. Furthermore the likelihood of coverage loss
decreases with more training data, and high quality approximations can readily be obtained,
especially from syntactically diverse corpora.

All grammars will show some level of overgeneration. One potential benefit of unsound
approximation, when treebanked material is used as the data source, is that the overgenerat-
ing part of the grammar will not necessarily be carried over into the approximation grammar.
Sound approximations could potentially include a lot of symbols and rules which stem from
“overgenerating” ways of combining grammar rules. This overgeneration may not be eas-
ily observed when using the grammar on actual textual input, and thus not readily apparent
to grammar engineers, and would only be made apparent when using fix-point methods to
find the resulting sound approximation. Some grammars are bi-directional and hence can be
tested for overgeneration by generating licensed sentences from a semantic representation.
This technique can greatly reduce overgeneration, but it is unlikely that a large grammar does
not have any overgeneration at all present. While the approximation typically will be more
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Figure 4.1: A derivation for the somewhat silly sentence “Ununselect that!”. Note the two “v_v-un_dlr” nodes,
which correspond to the “un-” prefixes in the verb. The “un-” prefix could, in principle, be repeated ad infinitum.

overgenerating than the original grammar, the crucial part of using treebank data is that the
size of the approximating grammar is not needlessly inflated by including symbols sponsored
by overgenerating derivations.

More “aggressive” uses of approximations, such as using probabilities from a PCFG to
constrain parsing, can create search errors both with sound and unsound approximations.
Since the potential for errors already have been introduced, in such settings one might as
well take a step further and employ unsound approximations.

Approximating the lexicon
We have somewhat tacitly assumed that UBGs are tree-structured languages, and merely a
simple symbol refinement on ordinary CFGs. However, in practice, most parsing systems use a
morphological component in addition as mentioned in section 3.4. An important consequence
of this is that such UBG grammars may license an infinite number of lexical surfaces1, for
instance by repeatedly using the deriving “re-” prefix to create new words. See figure 4.1 for
an example of a morphological derivation.

This means that we cannot simply map each possible lexical surface to a context free termi-
nal symbol if we want to create a sound grammar. The grammar licenses an infinite number of
words, and a context-free grammar requires a finite number of terminal symbols. Of course,
in practice the approximation procedure would never even terminate. Since the number of
lexical surfaces is finite in corpus driven methods however, as the corpus itself is finite, the
possible infinte lexicon do not strictly present itself as a theoretical obstacle for unsound ap-
proximations in general, as there are no formal coverage constraints. Highly complex lexicons
and morphological components could of course still present problems in practice, especially
if the approximation is naïvely mapping surfaces onto terminal symbols.

One could use a special feature structure that is subsumed by all possible lexical entries
to handle unknown words. This could, however, be impractical in the sense that the approx-
imation is made to be very loose. A possible improvement is to refine the unknown word

1Lemmas and derivational or inflectional morphemes.
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handling by having several such feature structures, each with constraints tailored to model the
syntactical properties of the unknown word; very much in the spirit of how unknown word
handling is performed in modern UBGs today, which already contains such so-called generic
word entries. One could imagine that unknown words in the input were mapped directly to
these entries in a prepossessing stage before the input was parsed with the approximation.

While this will more or less elegantly create a true superset of the UBG language, it is
incompatible with an important refinement technique, namely lexical collapsing as discussed
in section 3.4. Just as there might be an unbounded number of lexical surfaces, by repeated
derivational morphology; there is also an infinite accompanying number number of lexical
rule applications. By collapsing all of these into one symbol, it follows that there could be an
infinite number of these collapsed symbols, and thus collapsing is unsuitable when creating a
sound approximation, at least without employing more complex backoff strategies.

4.3 Resources

DELPH-IN2, the DEep Linguistic Processing with HPSG INitiative, is an international multi-
site research collaboration focused on deep linguistic processing with grammars in the frame-
work of HPSG, together with an accompanying semantic representation; Minimal Recursion
Semantics, Copestake et al. (1999). Several tools exist in the DELPH-IN “ecosystem”, and
the system built in this thesis is expanding upon the LKB system, Copestake (1992), which
is a framework for creating and parsing with typed feature-structure grammars. LKB em-
ploys (in part) T DL , (Krieger & Schäfer, 1994), as a specification language. In addition
we make heavy use of [incr tsdb()], (Oepen & Flickinger, 1998), a treebanking and grammar
performance evaluation toolkit.

The LinGO ERG, Flickinger (2000), is a broad-coverage precision grammar based on
HPSG for English, and will be the unification-based grammar we will be approximating in the
experiments presented in this work. The ERG consists of around 200 syntactic rule schemata
and 100 lexical rules, about one thousand lexical types, or so called “le-types”, and has a
hand-crafted lexicon with about 40000 stems. The result of several decades of effort, the ERG
provides a fine-grained typed feature-structure representation of many linguistic phenomena
and constructions. Each word has an le-type, which describes (almost) all the syntactic prop-
erties of the word, not only the coarse category such as part of speech, but also properties such
as different forms of subcategorization.

The LinGO Redwoods Treebank, (Oepen, Toutanova, et al., 2002) is a treebank of about
45000, covering several different domains and genres. Redwoods differs from other classical
treebanks, such as the Penn Treebank, in the way that all sentences are licensed with a valid
analysis in the ERG. In other words, the treebank is made of manually disambiguated parse
results, instead of being directly annotated. This means that the treebank is more transparent
with respect to the theory of syntax it is based on. As a corollary, the treebank also contains
sentences with no analysis, either because of a coverage hole, or because no good analysis
could be found.

2See the preface in Oepen, Flickinger, Tsujii, and Uszkoreit (2002)
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Corpora

In our experiments, the WeScience (Ytrestøl et al., 2009) part of Redwoods will be used as
the starting point for a data source of our approximation experiments. The WeScience corpus
consists of one hundred articles from the English part of Wikipedia. In addition, WikiWoods,
(Flickinger, Oepen, & Ytrestøl, 2010), can serve as an additional, but somewhat noisy, data
source. WikiWoods is a treebank consisting of the entire English Wikipedia as of July 2008,
totaling 55 million sentences, parsed with the ERG. A parse selection model, trained on the
disambiguated part WeScience, has been employed to rank candidates automatically. The
accuracy has been sampled and Flickinger et al. report scores of around 80% correct or “near-
correct”.

To measure performance figures of the obtained approximations we need to partition the
data into at least two sections, usually dubbed training data and held-out or testing data. The
approximation proper will be extracted from the training data and aspects of the resulting
grammar can be measured on the held out data. Following tradition, the thirteenth section of
WeScience (WS13), which consists of 1001 sentences will be used as the held-out dataset. Of
those 1001 sentences, the ERG, as of version 1010, parses 887 sentences. The other hundred
or so sentences are either ungrammatical, with respect to the grammar, or the parser could not
find an analysis in a timely fashion. Of the 887 sentences that do have an analysis, 785 have
been manually disambiguated and verified as correct readings. The rest have either not been
disambiguated yet or marked as incorrect, that is, the grammar provides one or more analyses
for the sentence, but not a correct one. In this case, a classical treebanking scheme could
just annotate the sentence with the correct analysis, but in the grammar-supported Redwoods
corpora; this would require that the grammar is changed as well.

The disambiguated part of the thirteenth section of WeScience, from now on referred to
just as WS13, has an average sentence length of 14.5 words. This number however must be
interpreted with care, as the distribution is somewhat bimodal with a σ = 10.3. This is mostly
due to the genre of Wikipedia articles, where comparatively short sentences make up article
titles and headings. See section 5.2 for a breakdown of sentence lengths.

4.4 Implementation and extraction procedure

This work implements a flexible system for creating context free approximations and automat-
ically reporting on several varied measures of the obtained grammars. The system is imple-
mented using both LKB and [incr tsdb()]. Profiles in the [incr tsdb()] system are used as the
data source for the extraction, and we use [incr tsdb()] code directly to select the trees that will
be used. This allows for easy portability to other DELPH-IN grammars, and furthermore one
can select items from a profile using complex predicates if so desired. In addition, our system
can merge CFGs, or in other words, compute the union of several context free grammars.

The approximation itself proceed in roughly the same way as the rule equivalence method
used in (Krieger, 2004). Each derivation tree is visited top down, and for each derivation in the
tree we check if any tree rewriting rule should be applied, and if so transform the tree accord-
ingly. Then the feature structures in each local subtree are labeled with the current annotation
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vector, giving one context free symbol for each feature structure in the local subtree. Now, the
labeled nodes in the derivation tree show only a finite amount of variation and can be mapped
directly onto context-free rules, which then are collected and aggregated in order to collect the
complete grammar and estimate the rewriting probabilities.

The top feature structure of each derivation tree, i.e. the final HPSG sign, is annotated in
the regular fashion, but stored in a special vector. Finally the start-symbol S can be computed.
S can rewrite to each of the symbols obtained from approximating the final signs. Since
the system works on complete derivation trees, a proper CFG will be created; the resulting
grammar will not have any useless rules or symbols, see section 3.3. The following figures
explain core parts of the extraction procedure in detail:

Algorithm: Annotating feature structures
Data: T FS T, annotation vector A
First, annotate the type of the complete feature structure.
string Symbol← RootType(T);
Then, annotate additional feature paths and their values:
foreach FeaturePath FP in A do

Symbol← Symbol + FP + Type-of(Value-at(FP,T))
end
return Symbol;

Figure 4.2: The procedure to annotate feature structures with feature paths from an annotation vector.
Note that + here is meant as string-concatenation. Type-of and Value-at are functions to access the feature
structures. Type-of returns the type of a feature structure. Value-at returns the value, i.e. another feature-
structure at the end of a feature path.
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Algorithm: Lexical collapsing
Data: Derivation D
root← DerivationRoot(D);
daughters← DerivationDaughters(D);
Only perform lexical collapsing if at a lexical rule.
As a sanity check the derivation can only have one daughter.
if LexicalRule(root) AND daughters.size() == 1 then

collect all the daughters transitively into a list:
trans-daughters← CollectDaughters(First(daughters));
find the terminal at the end of the chain:
terminal← FindTerminal(First(daughters));
Annotate this derivation chain with all root-types:
string Symbol← RootType(root);
foreach daughter t in trans-daughters do

Symbol← Symbol + RootType(t);
end
return 〈symbol,terminal〉;

else
Otherwise return the derivation unmodified
return D;

end

Figure 4.3: The procedure for performing lexical collapsing. If Derivation D is a product of applying a
lexical rule, then a new collapsed tree is returned. Otherwise the derivation is unchanged
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Algorithm: Extracting CFG-rules from an [incr tsdb()] profile
Data: TSDB profile prof, Predicate pred
Select items from the tsdb profile according to the predicate
Trees T← TSDB-Select(prof,pred);
Create a list of context-free rules, initially empty
CFG-Rules R;
foreach Tree in T do

Reconstruct the derivation so we have access
to the feature structures
DerivationTree DT← Reconstruct(T);
Now, traverse the derivation tree top-down left to right:
foreach Derivation D in Traverse(DT) do

First, check if lexical collapsing should be applied:
if Collapse(D) then

If collapsing, add the obtained rule to the grammar:
〈Symbol, terminal〉 ← LexicalCollapse(D);
R← R ∪≡ 〈Symbol→ terminal〉;

else
Otherwise, we create the local tree and annotate that:
mother← DerivationRoot(D);
daughters← DerivationDaughters(D);
Annotate the mother node:
LHS← Annotate(mother);
Annotate each daughter in turn:
RHS← 〈 〉 ;
foreach Daughter d in daughters do

RHS← RHS ⊕ Annotate(d);
end
Finally create the context free rule and add it
R← R ∪≡ 〈LHS → RHS〉;

end
end

end
return R;

Figure 4.4: Extracting CFG-rules. Note that ⊕ means list concatenation. Internal annotation is not
performed on the lexical collapsed projections. As we elaborate on below, lexical types describing most
syntactical information are used in the LinGO ERG. When a derivation tree is collapsed any further an-
notation do not contribute new information, as this information is already present in the lexical types
themselves.
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We use the ∪≡ here to denote the union of equivalent context free rules, i.e just the regular
union, to distinguish from other possible ways of aggregating rules. Recall from section 3.5
that Kiefer and Krieger explore in several of their works other ways of aggregating rules, for
instance under subsumption, ∪v.

To estimate a PCFG we need to keep track of frequency information as well. Then the
probability of each rule can be estimated using maximum likelihood estimation. I.e. P (A →
α) = f(A→α)

f(A→·) . The estimation is done after the CFG has been extracted in full. Furthermore
the system can output grammars in several formats which might be usable for other parsers
and tools, including the format used by the DELPH-IN parser PET (Callmeier, 2000) for
PCFG parse-selection models, on BitPar (Schmid, 2004) format (see secton 5.3) as a rule and
lexicon file and on an internal format where grammars and necessary component files, such as
symbol-tables, can be serialized and deserialized.

The system can merge multiple grammars, both symbolically on rules and symbols, but
also aggregate the new rule frequencies. This facilitates parallelization of the extraction pro-
cedure. When working with larger corpora, such as the WikiWoods, several component gram-
mars, working on different subsets of the corpora can first be extracted, and then merged
together to form the final result. Most processing time is spent on instantiating the feature-
structures in the training data. The actual annotation and aggregation itself is very fast. The
extraction itself is trivially parallel, while the merging could be parallelized in a O(logn)
scheme. However, as merging is a comparatively fast procedure, a sequential scheme is good
enough in practice. The system implements a “coordinatior” which can automatically parti-
tion the training data and run the different extraction jobs and then finally merging the results
back together giving the final result.
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4.5 Feature selection

When creating approximations with internal annotation, it is important to use “good” feature
paths. All features describe some kind of information, recall however, from section 2.5, that all
values stand in a type hierarchy. By taking the subtype and supertype relations in the hierarchy
into active use when writing grammars, the type constraints on features are often made to be
so-called “underspecified”, which means that a type of a feature is specified with relatively
general constraints. However, the abstract rule schemata often specify several reentrancies,
which means that the instantiated rule also will inherit these. Since reentrancies enforce a
token identity of the reentrant features in the resulting feature structures, these underspecified
value will usually be unified with a more specific value from another part in the instantiated
feature structure.

This means that a large part of the features in typical HPSG grammars can be viewed as
specifying constraints. These features are important when creating an approximation. By us-
ing internal annotation with some of these features, an indirect model of the constraints can
be reflected in the approximation. Another part of the features in typical grammars are used
to concatenate information, typically semantic composition. These features very rarely pro-
vide any constraints, and unifications involving these almost always succeed. These types of
features rarely contribute much to approximations, and since they rarely contribute any con-
straints, they are classical examples of features that are not chosen for internal annotation.
Furthermore, whereas it is an open question whether the purely syntactical features in typical
grammars actually do describe an unbounded number of feature structures, the features used
to concatenate information clearly do. Therefore, one would typically want to make use of the
constraining features and disregard the concatenative features when creating an approxima-
tion, as the latter features can rapidly create a very large amount of variation in the resulting
approximation, and thus lead to coverage problems.

sb-hd_mc_c

sp-hd_n_c

the_1

the

n_sg_ilr

actress_n1

actress

hd-cmp_u_c

v_3s-fin_olr

play_v1

plays

hdn_bnp-pn_c

w_period_plr

n_sg_ilr

generic_proper_ne

Eliante.

Figure 4.5: The English Resource Grammar derivation for the sentence “The actress plays
Eliante”

For example, recall the ERG derivation for “She plays Eliante.” in figure 3.4. Here we
use a somewhat different example; “The actress plays Eliante”. One of the rule schemata that
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appears here is the subject-head schema, here in the form of

sb-hd_mc_c→ sp-hd_n_c hd-cmp_u_c

which is also the context-free rule the naïve approximation would generate. The subject-
head schema should in general only be applied to verbs, which will typically look for a subject
phrase which is headed by a noun. But in the approximated context-free rule, none of this in-
formation is available: The types of the two constituents, sp-hd_n_c and hd-cmp_u_c, taken in
isolation, only denote which rule schemas that were used to generate them. However several
linguistic phrase types are modeled with the head-complement schema. In our case, the tran-
sitive verb “plays” allows a noun complement. But prepositions, for instance, can also have
noun-phrase complements as well. Thus there is no way to tell if the hd-cmp_u_c here is a
verb phrase or a preposition phrase, it can be a phrase resulting from any head-complement in-
stantiation, in fact, this approximation could license subject-head constructions between noun
phrases and prepositional phrases.

sb-hd_mc_c VERB

sp-hd_n_c NOUN

the_1 DET

the

n_sg_ilr NOUN

actress_n1 NOUN

actress

hd-cmp_u_c VERB

v_3s-fin_olr VERB

play_v1 VERB

plays

hdn_bnp-pn_c NOUN

w_period_plr NOUN

n_sg_ilr NOUN

generic_proper_ne NOUN

Eliante.

Figure 4.6: “The actress plays Eliante” with annotated heads

Internal annotation of some of the “constraint specifying” features, as discussed above, can
capture some of the constraints that both the rule schemas and the feature structures specify.
For example, if we specify the type of the HEAD feature in all feature structures, as shown in
figure 4.6, the context-free rule in our approximation would become:

sb-hd_mc_c:VERB→ sp-hd_n_c:NOUN hd-cmp_u_c:VERB

Now the context-free rule is more informative, as part of the original constraints are an-
notated into the symbols of the rule. The approximation cannot create subject-head construc-
tions between noun phrases and prepositional phrases, unless of course such a construction
was part of the training data. However, type hierarchies are not available in context-free gram-
mars. This means that heavy use of underspecification in the original grammar can create
sparsity problems in the approximation. For example, the original grammar can specify a type
hierarchy where verb is a supertype of unaccusative-verb. Recall from section 2.5, that when
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unaccusative-verb is a sub-type of verb it is a compatible type. When the grammar specifies a
feature structure of type verb, a unaccusative-verb typed feature structure is compatible. This
information is not carried over in the approximation; where context-free rules annotated with
the type verb are incompatible with rules annotated with unaccusative-verb.

Therefore, the number of internal annotations used in the approximation must be balanced
with the size of the available training data and the nature of the grammar itself. Some fea-
ture paths, typically HEAD, only show a small or moderate variation in types and can be good
candidates for internal annotation. Other paths show a great deal of variation, for example fea-
tures regarding semantic selectional preferences, which makes those features bad candidates
for annotation in most cases.

The unification of two feature structures tends to fail more often at some critical paths
in the structures. The so-called QuickCheck filter, (Malouf et al., 2000), takes advantage of
this notion, and checks if the feature structures are compatible before the unification proper
takes place. These critical paths can be found by using a special unifier which counts when
the type-unification of a feature fails, but also continues the unification3 so that additional
“deeper” paths can be obtained.

When tuning the internal annotations used in the approximation, the QuickCheck filter
serves as a major source of knowledge. The top-ranked feature paths are the “most informa-
tive” when it comes to specifying constraints. However, just taking the top n feature paths
from QuickCheck does not necessarily create the best approximation. Several high-ranking
features show too much variation of observed value types to be useful, and including these
will create coverage problems.

Other highly ranked features are strictly subsuming less ranked features, and including
both would have no effect. For instance SS.LOCAL.CAT.VAL.SPR, which denotes if the specifier
list is empty or not is subsuming its own subfeature · · · .SPR.FIRST.LOCAL.CAT.HEAD which
denotes the HEAD feature of the first specifier. This trend appears in most of the valence and
modifying constructions in typical grammars. The first one shows much less variation, but is
also much less informative than the last. The upside to this is that one can include the latter if
there is enough data, but can fall back to the first if the coverage turned out to be too low to be
useful. The list of the feature paths used in this work is given in appendix A.

4.6 Measures on Grammars

Context-free grammars are finite objects, and it makes sense to quantify their size. See figure
4.7 for a description on the measurements we shall employ here. Recall from section 2.4,
context-free grammars have terminals and non-terminals symbols and production rules.

The cardinalities of the set of symbols and rules vary with annotation. Holding the amount
of data used in the approximation constant, longer annotation vectors will create bigger gram-
mars. Typically, more annotated grammars will be able to make more fine-grained distinctions,
but at the cost of coverage.

3Normally the unification will stop immediately when two incompatible paths are found, as the result will
then always be ⊥.
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Below we define some measures on context-free grammars. Recall that CFGs take the
form 〈N, T, P, S〉, where N, T are, respectively, sets of non-terminal and terminal symbols.
P is a set of productions, rewriting rules from one non-terminal symbol into any string of
terminal and non-terminal symbols. In addition to just terminal symbols, it is interesting to
quantify how many words, (W), the grammar describes, that is a terminal symbol with an
accompanying preterminal. For instance, while “flies” is just one terminal symbol, it could
make up two distinct words, both as a noun and as a verb. Here a word is meant to be a pair
of a terminal symbol and the preterminal symbol that produces it.

While these measures quantify size, they tell us nothing about coverage. Of course, to
quantify coverage, we need more than one grammar. Therefore, instead of using all available
data to approximate a grammar, a fraction of it is held out. This can then again be used to
estimate another smaller grammar, and we can measure how well approximation, obtained
from the now reduced data-set, covers the approximation obtained from the held-out part.
For this to make sense, both approximations must be obtained with the same annotations and
configuration.

Production Coverage (PC) and Lexicon Coverage (LC), as defined in figure 4.7 tell exactly
how much these grammars overlap. Lexical Coverage and Tree Coverage, however, measure
how well the approximation covers the held-out corpus in general. Lexical coverage (LT)
puts a number to how many of the sentences in the held-out corpus that the approximation
has matching terminal symbols to cover all the words, while Tree Coverage (TC) tells us how
well the entire derivation trees are covered. Tree Coverage is particularly interesting when
the approximation is used as a stand alone PCFG parser, as it gives an upper bound to the
performance of parse selection.

N,P The cardinality of the sets N,P

W The number of distinct words and preterminal pairs.

C The ratio of sentences in some corpus that can be given any analysis by the grammar.

PC Production coverage |PT∩PH |
|PH |

LC Lexicon coverage |WT∩WH |
|WH |

LT Lexical coverage; the fraction of sentences in a corpus without lexical holes.

TC Tree coverage; the fraction of the lexically covered, sentences in some corpus covered by the production
rules in T .

Figure 4.7: Measures on some aspects of grammars. Assuming two grammars T and H we quantify how well
T covers H . Note that T N P PC LC are “static” measurements that are obtained just from the definitions of
T and H , while C, LT and TC are measures obtained with a corpus as well, typically the held-out part of the
experiment.

Evaluating the performance of an approximation, in vivo, for instance, by quantifying
how much it can improve the performance of a task where it is employed, is a practical ap-
proach. However, there are still several “internal” measures that are readily available, and
examining these can give more insight in how much an approximation can bring to the table.
Smaller grammars might be processed faster, but not necessarily. Depending on implemen-
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tation choices in the parser, either the number of symbols or the ambiguity rate can be the
dominant factor in run-time. Caution should be used when predicting run-time solely on these
measures, for instance more symbols can reduce ambiguity rate and increase parsing speed,
see table 5.2.

4.7 Extraction experiments
In the experiments in this section, we use a fixed list of feature paths, and we use the top
N features, from the list in appendix A, to annotate feature structures. Table 4.1 shows how
grammars obtained from the data-driven method grow with various levels of annotation. In
this first experiment, no tree rewriting is performed. More annotations will necessarily create
bigger, or at least equal sized, grammars. We argue that the number of distinct word and
preterminal-pairs is not particularly interesting. When parsing with a grammar, the terminal
symbols are already laid out as the string of input words. Lexicon coverage, however, is an
important measure. Data driven CFG-approximation will most likely obtain grammars with
lexicons that do not cover the entire lexicon of the original grammar. Low lexical coverage
can severly limit the usability of the approximation grammar. However, more sophisticated
methods, instead of just mapping each input word to a terminal symbol can be used, as we
will detail below.

The grammar with zero annotations, A = 0, is the smallest reconstructable approximation,
which serves as a baseline for how context-free approximations could be refined. There are
two main things to note here. First, with more annotations the grammar size increases, both
in the number of non-terminal symbols and in the number of production rules. Since we are
holding the amount of data constant the coverage on the held out part decreases.

Secondly, and maybe contra-intuitive, the number of words are constant throughout all
sizes of annotation vectors. However, the ERG uses so-called lexical types to describe the
syntactic properties of words. These le-types contain almost all the information of a lexical
entry, apart from the surface form and associated properties of that, such as phonological onset.
In addition some selectional preferences, especially phrasal verbs which select only certain
particles, i.e. “walk [about]”. Therefore, additional feature annotations on the lexical type
which do not pertain to lexeme-specific information do not split words into more subtypes, as
the lexical type is already annotated, since that is the requirement for reconstructability.

A W N P Wh Nh Ph C PC LC LT TC

0 20245 886 8650 3782 557 2791 36% 90% 69% 36% 86%
1 20245 1280 9921 3782 725 3021 36% 89% 69% 36% 85%
5 20245 2546 17626 3782 1242 4614 35% 83% 69% 36% 77%

10 20245 3600 20815 3782 1593 5085 35% 81% 69% 36% 74%
15 20245 4503 22443 3782 1858 5279 34% 79% 69% 36% 73%

Table 4.1: Number of Annotations (A), words (W) and non-terminal symbols (N), Productions (P), Coverage
(C), Production coverage (PC), lexicon coverage (LC), lexical coverage (LT) and tree-coverage (TC), trained
with WeScience 1-12 and tested on WeScience 13.
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At a first glance, the lexical coverage of our approximation seems very low, at a poor 36%.
This is due (in part) to the somewhat naïve assumptions on tokens that the approximation algo-
rithm uses. No token normalization, such as down-casing or separation of punctuation marks
into separate tokens, is performed. The ERG uses a somewhat idiosyncratic way of dealing
with tokenization, and treats punctuation as morphological pseudo-affixes. That means that
what would otherwise be known words can appear as unknown if for instance they are in the
sentence final position with an affixed period. This necessitates a more careful design of how
to map the surface forms into the approximation grammar. A coverage of about one third
means that the approximation is impractical in almost all scenarios.

However, it is also possible that the approximation abstracts away from surface tokens,
and uses a lattice based input format, where the lexical parsing has already been performed
by another system, typically the morphological engine of the underlying UBG. While this
has not been fully implemented, we simulate this approach by extracting the lexical produc-
tion yield. These are all the possible analyses of a lexical item, including derivational and
inflectional morphology and word level ambiguity. This is extracted from all the words in the
held out corpus, and added into the grammar obtained from the training data. This simula-
tion means that the ambiguity form the lexical parsing component is preserved, which means
that this yields an accurate, though somewhat impractical, estimate of the grammar size and
performance measures.

A W N P Wh Nh Ph C PC LC LT TC

0 20245 886 8650 3782 557 2791 100% 90% 100% 100% 89%
1 20245 1280 9921 3782 725 3021 100% 89% 100% 100% 73%
5 20245 2546 17626 3782 1242 4614 99% 83% 100% 100% 57%

10 20245 3600 20815 3782 1593 5085 97% 81% 100% 100% 52%
15 20245 4503 22443 3782 1858 5279 95% 79% 100% 100% 50%

Table 4.2: Static measures for a lattice based simulated grammar with varying degrees of annotation.

Table 4.2 show a simulation on how such grammars coupled with a lexical parser would
perform. Note how the tree-coverage drops dramatically with more annotations. Even with
one annotation, which is still a very coarse approximation, the total possible correct coverage
is only 73%. This reveals that using only WeScience 1-12 as training data might be too small
to obtain reliable approximation grammars. However, even as these numbers might look grim,
for most practical purposes for example in the case study in the next chapter, we can rewrite the
parse trees obtained by the more annotated grammars into the smallest reconstructable form,
in essence, unannotating the symbolss. This increases coverage to the level of the baseline
unannotated grammar. Furthermore the regular coverage (C) is still quite high. Even though
the correct parse tree might not be found by using the grammar , the approximation is still
quite robust. This can be useful if only near-correct results are needed, and the approximation
is employed mostly to increase the robustness of the original grammar.

With an original lexical coverage of about 36%, and therefore mostly only covering very
short sentences, the rest of the presented experiments are performed on the simulation of
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lattice based input. We therefore drop the columns LC and LT from the tables, as these will
now always be 100%.

Applying lexical collapsing is perhaps the most dramatic technique to refine approxima-
tions with. Table 4.3 shows how such grammars compare to only the annotated ones before.
The number of words only increases slightly, which is expected, now we have several more
collapsed preterminals, and hence the number of distinct word and preterminal pairs should
increase. We see that grammars obtained with lexical collapsing describe a much bigger num-
ber of non-terminal symbols. The number of productions rises only somewhat however. It is
therefore reasonable to assume that these grammars are sparse, that is the ratio of possible pro-
ductions reachable, or “activated” by input terminals is pretty low. This is further supported
by the drastic falloff in coverage. While the grammar annotated with 15 feature paths without
lexical collapsing had a coverage of 95% the corresponding lexical collapsed one had only
68%, a coverage that is pushing the limits of practicality in most applications.

A W N P Wh Nh Ph C PC TC

0 22260 3245 11787 4007 1093 3005 90% 82% 62%
1 22260 3411 12621 4007 1174 3173 88% 82% 61%
5 22260 4424 20142 4007 1622 4686 80% 78% 51%

10 22260 5096 22268 4007 1859 4973 75% 77% 45%
15 22260 5937 23837 4007 2114 5158 68% 75% 44%

Table 4.3: Grammar sizes and coverage with lexical collapsing.

Another technique is to normalize lexical surfaces, for instance removing punctuation. As
we already simulate the availability of a lattice based input, and thus the word-forms with
punctuation marks are already present, we perform a process we call lexical generalization
instead. Here the morphological derivation rules pertaining to punctuation are ignored, and
removed from the derivation tree altogether before the approximation begins. One might say
that lexical production yield is taken “modulo” punctuation. Theoretically this could break
reconstructability, as a complete derivation tree from the approximation could now specify
several derivations in the original grammar, with and without punctuation rules. However, in
practice the input words are still present and unmodified, and in order to decide the correct
derivation, the morphological engine of the original grammar can be applied. In this case
the approximation is “fed” generalized entries, and if the result were to be reconstructed,
the corresponding punctuation rules are inserted again. In most cases punctuation rules are
deterministic, in other words, there is no ambiguity attached to them. If punctuation is present
in the input word form, the corresponding punctuation rules must be applied. Furthermore
these rules must also be applied at specific points in the derivation tree, namely after regular
morphological processing, but before syntactical processing.

Lexical generalization gives a significant increase in coverage. In addition the grammars
are much smaller, both in the number of non-terminals and in the number of rules, which
may boost processing speed. However, coverage still drops quickly with the more annotated
grammars. The grammar annotated with 10 feature paths give a coverage of 86% which might
be practical in some situations, but it is still a somewhat underwhelming number. Annotating
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A W N P Wh Nh Ph C PC TC

0 21962 1583 9213 3989 767 2640 98% 87% 68%
1 21962 1752 10032 3989 848 2806 98% 86% 66%
5 21962 2765 17564 3989 1269 4327 91% 80% 52%

10 21962 3437 19698 3989 1533 4620 86% 79% 48%
15 21962 4278 21285 3989 1788 4809 80% 67% 47%

Table 4.4: Grammar sizes and coverage with lexical collapsing and lexical generalization.

d A W N P Wh Nh Ph C PC TC

WS 10 21962 3437 19698 3989 1533 4620 86% 79% 48%
WS 33 21962 8283 34472 3989 2825 6383 46% 69% 34%

WW 10 459244 9105 163652 3989 1533 4620 97% 94% 80%
WW 33 459244 39962 406760 3989 2810 6333 97% 92% 59%

Table 4.5: Grammar sizes and coverage for an approximation with 10 and 33 internal annotations estimated
from WeScience and a small part of WikiWoods. Column (d) denotes what data was used in the approximation,
here “WS” is WeScience 1-12 and WW is the discussed WS + WikiWoods subset. Both lexical collapsing
and lexical generalization is employed, in addition to simulated lattice-based input. WS-10, the approximation
obtained from just WeScience is included for reference.

with 15 paths gives even less coverage. Note especially how tree coverage drops dramati-
cally. However, in situations where the context-free symbols can be “unannotated”, a total
tree coverage of 68% can be achieved.

Adding more training data

WeScience contains about 8000 fully disambiguated sentences, and as such is a modestly
sized treebank. The WikiWoods corpus contains millions of sentences. We can increase the
coverage of the approximation by fueling it with more data. Table 4.5 describe measures of an
approximation obtained from 433870 sentences, constituted of WeScience sections 1-12 and
a subset of WikiWoods. The exact subset is described in appendix B.

More data gives much better coverage, but the approximation is now several times larger,
having an order of magnitude more rules, and almost three times more non-terminal symbols.
This can make the grammar unwieldy, and one could lose one the original attractive benefits
of an approximation, namely processing speed. In several use cases however, these bigger
grammars can perform much better than a medium-sized approximation extracted from just
gold-standard data, not only by allowing much better coverage; more training data supports
much more aggressive use of internal annotation, making much tighter approximations pos-
sible. Tighter approximations model the original grammar better, and may as such perform
better. Note, in table 4.5, how WW-33 an approximation with more than three times more
annotation only gives a very slight dip in production coverage over WW-10, when using much
more training data. For reference we include a grammar extracted with the same 33 annota-
tions on just WeScience.
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The numbers presented in this section reflect general measures on the resulting approxi-
mations, and how these measures change when varying the level of internal annotation, using
tree-rewriting techniques and varying the amount of data the approximation is drawn from.
These measures should be independent of a use case, where more “in vivo” experiments need
to be performed. However, these measures can still serve as a starting point on what kind of
approximation and what level of refinement that should be selected for the task at hand.



CHAPTER 5

Standalone parsing with
approximations

A case study

Finding alternative ways to process unification based grammars is a trending topic. As dis-
cussed in section 3.1, unification grammars allow a high degree of linguistic expressivity. The
added capabilities of the formalism come at a cost of higher processing time. Context-free
approximations can be useful in several scenarios where it is working in unison with a full-
blown UBG parser. Another, perhaps more ambitious scenario is to let the approximation be
used as a grammar in a separate regular context-free parser. While not relying exhaustively on
context-free techniques, Ytrestøl (2011b) and Ninomiya et al. (2011) both explore processing
of unification based grammars with shift-reduce parsers. The shift-reduce parser is augmented
with an oracle that controls the actions the parser performs, and relatively coarse context-free
approximations are in some configurations used to aid the oracle.

In this chapter we work on standalone parsing with the grammars obtained from the ap-
proximation techniques described in the previous chapters. In this scenario, the task of ex-
ploring the search space and applying or instantiating grammar rules is shifted entirely onto
the PCFG parser. There are two main advantages to this: First, processing speed should be
expected to greatly increase. Secondly, the robustness of the grammar and parsing system as a
whole may increase. Precision grammars typically have two failure modes, the first one being
technical issues arising from limited time and memory resources. However, precision gram-
mars are often engineered with a high focus on not licensing ungrammatical structures, such as
minor errors in agreement, or more serious errors like mismatching subcategorization frames.
This can entail that using precision grammars on noisy or unedited text can lead to coverage
losses. Context-free approximations may not only be used to increase processing speed, but
by not annotating all constraining features, a more robust grammar can be obtained. While
perhaps not linguistically adequate, by using this approach some meaningful interpretation of
these sentences might be salvaged.

47
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5.1 Parsing and evaluation tools

In the following experiments, we use BitPar (Schmid, 2004) to parse the sentences in the same
test corpus as the previous chapter, WeScience Section 13. BitPar is a highly optimized PCFG
parser. BitPar uses a classical CKY-style parsing scheme that is augmented to handle unary
rule applications, resulting in a parser that handles both unary and binary rules. Grammar
binarization is not neccesary, as the LinGO ERG is already maximally binary. BitPar uses
bit-vector representations of possible grammar symbols internally in order to parallelize the
inference of new possible edges. Here machine instructions, for instance binary-and on two
machine words, are used to compute the intersection of two cells in the parsing chart. On
64-bit machines, this means that the parser could compute the intersection of two sets in one
step, but only if the number of possible members in the set is 64 or less. If the universe of
categories is bigger, more machine words must be allocated. The crucial point however; is that
these bitfields are ordered. For example, even though only three members were present in a
set, two 64-bit words would be necessary to encode this fact if the universe was bigger than 64
(and smaller than 128). Generally speaking, BitPar is a suitable parser for highly ambiguous
probabilistic context-free grammars.

The parse trees returned by BitPar need to be compared in a meaningful fashion to the
gold standard trees in WS13. Several evaluation metrics have been proposed for measuring
the quality of a parser and a grammar. The two main areas one would usually want to quantify
are the parsing time and the accuracy of the parsing results. Getting a meaningful number on
parsing accuracy is a difficult task. The strictest metric is exact match (EX), as used in (Zhang
et al., 2007) This quantifies how often the tree returned from the parser matches the gold
standard exactly. We follow standard procedure, like Zhang and Krieger (2011), and decouple
this measure from tagging accuracy (elaborated on below); the pre-terminal nodes are left out
of the comparison. However, EX will count a tree with just one minor error as just as wrong
as a completely meaningless tree. ParsEval scores (Black et al., 1991) are another classic
metric. Here the trees are split into a set of labeled brackets, each describing the span and the
category of a node in the tree. By splitting both the resulting parse tree and the gold standard
tree into brackets, one can measure the overlap of these sets. Precision, |Bparse∩Bgold|

|Bparse| measures

how accurate the parser labels tree nodes, while recall |Bparse∩Bgold|
|Bgold|

measures how accurately
the parser finds the correct tree nodes. It is often possible to optimize a system to favor one
of these measures over the other. This can be very useful depending on the task. In parsing
however we are usually more interested in a summarized metric. The F1 score is the harmonic
mean 2PR

P+R
of precision and recall. The harmonic mean is chosen over the arithmetic mean to

penalize eventual degenerate cases where one of the two component metrics is maximized at
the penalty of the other. Creating all possible spans gives a perfect recall, and not creating any
gives a perfect precision.

Before these measures are evaluated, the parse trees are normalized back to their original
form, apart from rule applications deleted by lexical generalization. Lexical collapsing is
undone, and feature annotation is removed. Hence, the resulting parse tree is now annotated
by the smallest reconstructable form, namely the original grammar rule that “sponsored” the
tree node. Recall, from section 3.3 the resulting tree now specifies exactly one feature structure
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iff. the grammar licenses it.
The F1 score might be more informative than EX, in the way that it can give partial credit to

partially correct parse trees. However, when interpreting the parse trees, some nodes are more
critical than others. This is not reflected in the F1 score. Dridan and Oepen (2011) discuss
problems with syntactic evaluation metrics in general and propose an evaluation scheme more
directly connected to interpretation models of a sentence. Some of the deleted constraints in
our grammars are purely syntactic and do not posit constraints on the semantic interpretation
of sentences. F1 scores on syntactic bracketing can penalize this. For example, some rule
schemata are codified into two phrase structure rules, typically rules pertaining to coordina-
tion or adjungation, where several “flavours” of punctuation might be present. These rules in
the ERG are duplicated in both a “formal” and a “non-formal variant”. This distinction might
be interesting syntactically, but the main interpretation of the sentence is not affected. Fur-
thermore, context-free grammars cannot easily separate these rules. Punctuation information
is described in the ERG at the feature SYNSEM.PUNCT and its substructure. However, annotat-
ing with these feature structures would create a very sparse grammar. A semantic evaluation
approach might give a better reflection on the usability of the obtained grammars, however
we only present ParsEval and EX scores in this work due the unsolved problem of extracting
semantics robustly from potentially malformed syntactic analyses.

Another useful metric is the tagging accuracy (TA). This measures how accurate the parser
assigns preterminals, or tags, to the input words. Here the gold-standard tag assignment is
compared to the tag the parser outputs. One could decompose this tagging into precision and
recall, which especially lends itself if one wanted to further decompose the accuracy into a
score per tag class; but we only report accuracy, which is a “flat” measure; the fraction of
correctly assigned tags over the total. As discussed in section 3.1, resolving lexical ambiguity
can greatly speed up the processing of unification-based grammars. By taking the preterminal
yield of the highest ranking parse tree, the input words can be tagged. To avoid potential
errors, one could take the yield of the n best parse trees. In that case, some lexical ambiguity
might still be present, but the likelihood of having the correct tags still present increases.

5.2 Experiment setup

As in the previous chapter, WeScience 13 (WS13) is used as a held-out corpus. To get a
starting point for later comparisons we present how PET, the main high-performance DELPH-
IN parser, itself performs on WS13. We also detail how sentence lengths distributed in the
corpus. Recall that WeScience is a corpus constructed from Wikipedia articles. We can see
this fact being reflected in the high amount of very short sentences below five words, which
correspond to article titles and subheadings. This means that the average sentence length is not
a very informative number taken by itself. Table 5.1 details precision, recall and exact match
scores on the trees yielded by PET. Here, only the best-scoring tree, as judged by a parse-
selection model, trained on WeScience sections 1 to 12, is compared to the gold standard. The
overall aim of this experiment is not to improve parse selection. PET yields an exact match



50 CHAPTER 5. STANDALONE PARSING WITH APPROXIMATIONS

of 46.6%1,2, and it is unlikely that context-free approximations will be able to improve upon
this. However, the average parsing time of 3.6 seconds per sentence is the main target for
improvement in these experiments.

µ = 3.6 seconds ; Σ = 2846 seconds

L> N P% R% EX % TA%

5 216 94 94 90 97
10 78 87 87 64 96
15 122 87 86 45 96
20 130 86 86 43 97
25 104 86 86 26 95
30 78 81 82 17 95
35 41 81 81 9 97

40+ 21 79 80 0 95

Total 785 87 87 46.6 96

Table 5.1: Length (L>), Total items (N),
precision (P), recall (R), exact-match (EX)
and tagging accuracy (TA) for WeScience 13
parsed and disambiguated by PET. Also in-
cluded is the mean parsing time per sentence
(µ) and the total parsing time to process the
entire test set (Σ).

5.3 Parsing with BitPar
In this first round of experiments, we parse WS13 with BitPar. We use the same grammars
as in the experiments in the previous chapter. Table 5.2 shows the results of measuring gold
standard trees against the most probable parse tree. Note the big increase in performance with
the lexically collapsed grammars. This big increase can be explained theoretically as follows:
First note that here only the most probable parse tree is examined, and that lexical collapsing
works only on unary production chains. Given the case that a categoryA is present in the most
probable parse tree. In the case where A can be derived (transitively) from an input word w,
the most probable way of doing so will always be part of the most probable complete parse
tree. If A can be derived through A → B → w but also through A → B → C → w only
the first unary chain will be selected. Intuitively, the PCFG is not “forced” to apply all the
necessary morphological processing rules. In the case where there exist several unary chains
from a word resulting in a given category, only the most probable one would be selected. This
fact is supported by the large increase in recall, where originally several morphological rules
are missing from the best parse trees. When lexical collapsing is applied, the input words now
project their entire morphological derivation.

None of these grammars can rival PET in accuracy, but processing time is more than two
orders of magnitude faster. PET parses WS13 in about 45 minutes, while the fastest grammars
here spend less than half a minute processing the same corpus. At an average parsing time of
about 30 milliseconds, these grammars could be used in situations where real-time responses
are required, such as interactive dialogue environments, or real-time refinement or analysis

1However, this comparison is (sadly) not strictly one-to-one to our experiments as we use gold-standard
tokenization, which was not performed in the experiment this measure was taken from.

2Zhang and Krieger (2011) report an exact match score on 44% by PET, however here the parse selection
model was trained on WS1-11, i.e. section 12 being held out. For reference, the parameters used in the parse-
selection model was three levels of grandparenting and a feature frequency cutoff of 5.
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A C% P% R% F1 EX% TA% µ Σ

PET 100 84 84 84 46 96 3.6k 2846

0 100 65 59 62 11 89 385 303
1 100 71 64 68 12 89 115 90
5 99 74 68 71 15 89 76 50

10 97 77 73 75 20 91 42 33
15 95 76 73 75 20 91 41 30

0-LC 98 73 72 72 23 86 128 100
1-LC 98 77 77 77 23 87 36 28
5-LC 91 79 79 79 29 90 25 20

10-LC 86 81 81 81 32 92 24 19
15-LC 79 81 82 81 36 92 28 22

Table 5.2: One-best PCFG
parse of WS13, for several gram-
mars as discussed in the previous
chapter. The EX is given on cov-
ered sentences. µ is reported in
milliseconds, Σ in seconds.

of search results. Lexical collapsing radically improves accuracy, but at the cost of some
coverage loss. Note also how the lexical collapsed variants, even though these grammars are
bigger (see tables 4.4 and 4.2) ,they can still be processed much faster. This is because the
ambiguity rates in these grammars are lower, and therefore the parser creates much “thinner”
parse forests. The words in the input “activate” lesser parts of the grammar, and in purely
bottom up approaches this results in less work for the parser.

We report exact match on the covered sentences only. Arguabely, this gives a somewhat
more convoluted picture for “upstream” users of a parser system, since now the exact match
ratio has to be multiplied with the coverage to give a measure on how often the system delivers
the correct result. However, in these approxmations the parsing time is relatively cheap. One
could imagine situations where input was parsed with the relatively accuracte grammars with
only moderate coverage. If this succedes we now have a comparatively high probability on
an exact match. If the parser did not find any analysis, one could fall back to a less annotated
grammar. Now one might still get a result, but with a comparatively lower probability of an
exact match.

As noted in the previous chapter, the coverage of the more annotated and lexical collapsed
variants is somewhat disenchanting. By adding more training data the coverage increases, but
the size of the grammar increases as well. In table 5.3 we report the accuracy and performance
of the two bigger grammars presented in the previous chapter. The biggest grammar, WW-33,
has almost full coverage, and a respectable accuracy of 37% exact matches. While these are
perhaps more realistic candidates for stand-alone parsing, the original goal of low processing
time is not met with satisfaction. The current performance of BitPar on WS-33, around half a
second processing time per sentence, leaves something to be desired. While this configuration
is still much faster than PET, the accuracy and coverage loss compared to PET might not justify
the increased parsing speed of the approximation. Furthermore, in areas where processing time
is tightly constrained, 500 milliseconds might still not be fast enough to be useful.
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A C% P% R% F1 EX% TA% µ Σ

PET 100 87 87 87 46 96 3.6k 2846

WS-10 86 81 81 81 32 92 24 19
WS-33 46 87 88 88 61 96 47 37

WW-10 97 83 84 84 32 92 329 259
WW-33 97 83 83 83 37 92 571 449

Table 5.3: One-best PCFG
parse of WS13 with the larger
grammars trained on a small
subset of WikiWoods. Gram-
mars with 10 and 33 annotations
trained only on WeScience is in-
cluded for reference. Both lexical
collapsing and lexical generaliza-
tion is performed. The reason for
the “stellar” accuracy of WS-33 is
the low coverage, mostly the short
sentences, and thus easier to parse
accurately, were covered.

5.4 Investigating binary parallelization
BitPar is suitable for highly ambiguous grammars. However, the parallelization it performs
can require very long bitfields. If these are very sparse, the potential profit in speed one could
gain by parallelization is lost, by having to have enough machine words to be able to codify
the entire universe of possible symbols. WW-33 is not highly ambiguous, but does contain
many constraints inherited by the high level of annotation. It therefore follows that WW-33
produces much thinner parse forests than the less annotated grammars.

We therefore implemented a regular augmented CKY parser without bitfields in Common
Lisp, building on the codebase implemented in the previous chapter. Figures 5.1 and 5.2
present the basic algorithm in pseudo code. This parser, which certainly is not optimized to
the level of BitPar, does still perform better on some of the grammars we investigate here.
Table 5.4 shows a comparison of the two parsing systems where WW-33 is used as the gram-
mar, and the sentences in WeScience 13 are parsed. The comparison here is between, two
complete parsing systems, and not just binary parallelization. First, BitPar precomputes all
possible unary production chains, and memoizes these. This means that doing the unary-rule
expansion (see algorithm 5.2) is much faster for BitPar. Secondly, in the configuration used
here, BitPar only produces the 1-best Viterbi parse. However our parser perform so-called full
forest construction, which means that all possible parse trees might be extracted for a given
input. This requires much more computation to keep track of the complete parse forest. Code
to perform so-called “selective unpacking” (Carroll & Oepen, 2005; Zhang, Oepen, & Car-
roll, 2010) has been successfully adopted from the LKB, yielding efficient n-best output if so
desired.

While the configurations used here are not valid as a direct comparsion between two equal
parsers with and without binary parallelization, it still shows that parallelization is not an op-
timization that is suitable for all kinds of grammars, since our less optimized implementation
outperforms BitPar by a large margin on WW-33.

We also tried to parse WS13 with the WW-10 grammar as discussed above, but this turned
out to be prohibitively slow. WW-10 is a much more ambiguous grammar, and it might not
be feasible in practice to perform full forest construction without any pruning. For example,
one of the longer sentences in WS13, 35 words long, creates a massive 4.5 million edges. In
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both parsers, no pruning was performed. When using pruning, low edges with a relatively
probability compared to other edges in the same span are removed from further processing.
This can potentially lead to drastic improvements in parsing time, but the possibility of so
called “search-errors” is now introduced. A search-error happens in situations where the parser
does not find the most probable parse tree according to its own grammar, caused by one or
more constituent edges having been pruned. With conservative thresholds however, search-
errors occur relatively rarely.

A C% P% R% F1 EX% TA% µ Σ

PET 100 87 87 87 46 96 3.6k 2846

BitPar-33 97 83 83 83 37 92 571 449
CKY+-33 97 83 83 83 37 92 142 112

Table 5.4: PCFG parsing times
with our parser.

5.5 A meta-comparison of parsers
In the recent time, several stand-alone parsing systems have been proposed and tested with
the LinGO ERG using the 13th section of WeScience as test data, all with gold standard
tokenization. It is therefore tempting to compare aspects of the performance and accuracy
of these different approaches, in such as relevant information is available. However, as these
systems differ minutely in assumptions on input, this comparison should only be interpreted
as a rough sketch of how a true head-to-head comparison might be, and the comparisoon is
too coarse to give meaningful absolute numbers on the ranking of the systems compared here.

In table 5.5 we compare the published scores of CuteForce (Ytrestøl, 2011a) an oracle
guided shift-reduce parser. Here we report the scores where CuteForce is using supertagged
input, with a tag accuracy of 95%, and is working in so-called “unrestricted mode”, meaning
that neither CFG nor UB filtering is applied to the parser actions. Ytrestøl (2011a) report
that 51% of the analyses returned by their parser are valid, that is, not conflicting with any of
the original constraints in the grammar. In this configuration, CuteForce is trained on about
150000 derivations from WeScience and WikiWoods, roughly half of the training data used
in our grammar. However, and crucially, the input is first tagged with a supertagger with an
accuracy of 95%. This tagger is trained on 6.8 million sentences from the WikiWoods, and it
is reasonable to assume that using such high quality supertags would also increase the perfor-
mance in our system, where supertagging is not performed. One would expect that resolving
the lexical ambiguity would give rise to much lower processing times. Furthermore our system
perform with a tag accuracy of around 92% in almost all configurations. It would be interesting
to see if the accuracy could rise to better values when high-quality supertagging is performed.
The average parsing time of CuteForce and our parser have both been benchmarked on the
same hardware.

We also include one grammar from Zhang and Krieger (2011), the “GP 2, FP 2” grammar
trained on “WW00”. Here a PCFG is constructed with two levels of grandparenting and two
internal feature annotations; SYNSEM.LOCAL.CAT.HEAD and SYNSEM.LOCAL.CONJ. These
features are also included our grammars, in fact they are also our two “top-ranked” candi-
dates for internal annotation. This grammar was trained on “WW00” which is every section
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Algorithm: Augmented CKY
Data: Input tokens I
Data: Grammar G
Prepare a chart structure to hold resulting (sub)-trees.
Each cell 〈x, y〉 correspond to a tree spanning the input from token number x to y.
chart←MakeArray((Length(I)+1)2);
First, all productions A→ w where w corresponds to a token in the input are inserted into the chart:
foreach Word w in I, index from 0 do

chart[index,index+1]← {A : A→ w ∈ G};
end
Next, all unary rules derivable from the symbols in each 1 element-span must be found:
foreach index i from 0 to Length(I) do

chart[index,index+1]← chart[index,index+1] ∪ UnaryRule-Expansion(chart[index,index+1]);
end
Now, the main parsing loop can be done. Here the algorithm fills in all possible trees in ever increasing
spans:
for l from 1 to Length(I) - 1 do

for i from 0 to Length(I) - L + 1 do
for j from 1 to l do

agenda← ∅;
left-cell← chart[i, i + j];
right-cell← chart[(i + j),(i + l + 1)];
Find all possible ways of combining symbols from the left and right cells:
foreach B,C in {〈B,C〉 : B ∈ left-cell ∧ C ∈ right-cell} do

agenda← agenda ∪ {A : A→ B C ∈ G};
chart[i, i + l + 1]← UnaryRule-Expansion(agenda);

end
end

end
end
The content of the cell spanning all the input is now the roots of all the parse trees that can be found with
the input I. However, only the trees rooted in the start symbol are valid.
return {S : S ∈ chart[0,Length(I)+1] ∧ S ∈ start-symbol(G)};

Figure 5.1: Augmented CKY-parsing. For brevity we have not detailed how locally equivalent analyses
are packed. The key point in Augmented CKY is that the unary-rule expansion must be performed at each
possible span; after all binary trees rooted in the span has been found, but before larger spans are explored.
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Algorithm: Unary rule expansion
Data: Agenda
Data: Grammar G
result← ∅;
while A← pop(Agenda) 6= ∅ do

If this is the first time a span with category A is derived then add all possible unary rules rewriting to
A in the agenda
if A /∈ result then

result← A ∪ result;
foreach B in {B : B → A ∈ G} do

Agenda← B ∪ Agenda;
end

else
Otherwise, the new derivation is packed into another derivation.

end
end
return result;

Figure 5.2: Unary rule expansion. The algorithm proceeds to find the fixpoint of possible derivations
given a grammar and an initial content, here provided by an “agenda” of tasks to perform.

of WikiWoods with “00” as a suffix. This amounts to about 480000 sentences, which is com-
parable to our selection of WikiWoods of 433870 sentences. Sadly Zhang and Krieger do not
report processing times. Zhang and Krieger also report on bigger experiments that perform
better in both F1 and EX, but “GP 2, FP 2” is the most comparable, in the amount of rules
and training data, to our WW-33. While this comparison is not strictly head-to-head, as the
corpora are different, and Zhang and Krieger treat tokenization different from our system, it
shows that very high levels of internal annotation may perform at the same level as classical
grandparenting techniques.

A C% P% R% F1 EX% TA% µ Σ

PET 100 87 87 87 46 96 3.6k 2846

CKY+-33 97 83 83 83 37 92 142 112
CuteForce 99 - - 82 36 95 15 -

Zhang and Krieger (2011) - 80 79 80 32 93 - -

Table 5.5: The performance of different parsing systems and grammars on WS13.

5.6 Outlook and Reflections
This case study shows that high-quality context free approximations can be used as stand-alone
parsers for unification based precision grammars with a good degree of practicality. Parsing
time can be sped up by over two orders of magnitude, but at the cost of a moderate dip in accu-
racy. However, the metrics used here were overly syntacto-centric. The LinGO ERG operates
with a very fine level of detail in syntactic constructions. To permit practical approximations,
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many of these details need to be left out, and therefore the approximation based parsers can
be somewhat penalized for giving a wrong syntactic analysis, while still presenting a correct
semantic analysis. It is therefore our opinion that a semantic evaluation metric can be more
telling on the performance of these stand-alone systems. Arguably, a detailed syntactic ac-
count of many processes is not of particular high interest when approximation-based parsers
are used, and if the syntax should take center stage the original grammars and parsing systems
are much more proficient performers.

It is reasonable to assume that the accuracy of the grammars presented in this section could
be improved in several ways. First, the parse selection component of PET typically does not
make use of the internal structure of nodes, and works directly at the top level, which is also
what is available in the smallest reconstructable form. It is therefore possible to apply the
original parse selection model to the parse forests that our parser constructs. It is reasonable
to assume that this gives an increase in accuracy. However, it is hard to predict how this
setup would compete with PET. The parse forest of the approximation would be likely to
contain both grammatical and ungrammatical derivations, making the number of potential
candidates the parse selection component must rank against each other higher. One could
also use classical reranking techniques where the top n, typically in the low hundred, most
probable parse trees are inspected by a separate model.

Another approach which might lead to accuracy gains is reconstruction. In this setup the
complete derivations are reconstructed, the derivation is “replayed” in the original parser, in
descending order of probability, and the first valid derivation, that is, a derivation not in conflict
with the original grammar, is selected as correct. This is attractive from several angles. First,
it is reasonable to assume that accuracy may improve. Secondly, semantics can easily be
extracted, as the resulting derivation is well formed. Third, all the information that was lost to
facilitate approximation is regained.

However, derivations that fail reconstruction might not be worthless. Especially the more
annotated approximations, like WW-33, encode many of the most important HPSG principles.
For example, the head value of complement, subject and specifier arguments are annotated,
in addition to several features pertaining to adjungative constructions. This means that many
of the constraints in the original UBG are reflected to a high degree in fine-grained approx-
imations, and it is not unreasonable to assume that these “pseudo-derivations” might still be
usable in many situations, especially where parse results are primarily used to mark phrasal
boundaries or word dependencies, which could be an interesting information source in tasks
like named-entity recognition, or negation scope resolution.

The meta-comparison in section 5.5 suggests that high levels of internal annotation might
perform at the same level in accuracy as comparatively high levels of grandparenting. While
Zhang and Krieger (2011) do not report processing times, it is reasonable to assume that the
average ambiguity rate in “unparented” grammars is lower, and processing could be performed
faster. Ytrestøl (2011a) reports very impressive processing times and equally impressive accu-
racy. In their parsing system, lexical ambiguity in the input is first resolved by a high-quality
supertagger with an accuracy of about 95%, while our system starts from lexical surfaces di-
rectly, which creates denser parse-forests. It is not unreasonable to assume that processing
time could be sped up significantly by incorporating supertagging. More crucially, our tagger
only obtains a tag-accuracy at around a level of 92% in most configurations. One could then



5.6. OUTLOOK AND REFLECTIONS 57

expect that the accuracy on syntactic constructions (F1,EX) could rise when the parser is using
supertags with an accuracy of 95% as input.

Lattice-based input is another interesting notion. Here a separate morphological compo-
nent constructs a lattice of all possible analyses of the input. This enables another training
scheme, where the approximation disregards much of the morphological machinery and in-
stead only works on feature structures that could take part in syntactical constructions. These
could be annotated in the regular fashion. In this scheme the annotated “top” nodes of the
lexical projections become the terminal symbols of the grammar. This obviates the difficul-
ties arising from the possible infinite lexicon, and one could assume that this class of purely
syntactic approximations might achieve better coverage.





CHAPTER 6
Conclusion

Where you’ve been is good and gone
All you keep is the getting there

TOWNES VAN ZANDT (1944-1997)

In this work we have concentrated on context-free approximations of unification-based
grammars. Such approximation has been proposed as one of the approaches to increase the
practicality of deep language processing, and with the availability of very large corpora of
automatically disambiguated deep grammar parse results, coupled with a smaller, but high
quality manually disambiguated treebank, probabilistic context-free approximations have re-
ceived renewed interest in the last few years.

In this work, such approximations are shown to be a very promising approach to the pars-
ing of deep grammars, chiefly by increasing parsing speed. One of the approximations pre-
sented in this work achieved a substantial speed up over a high-performance UBG-parser,
with an average parsing time of 147 milliseconds per sentence, where the original parser had
an average of 3.6 seconds parsing time per sentence in the same corpus.

This speedup however, does come at a cost in accuracy; on the exact-match metric the
original parser performs at 46%, while the aforementioned approximation obtains 37% exact
matches. More advanced parse selection models could be applied to increase the accuracy
of the approximation. This approximation yields only a very slight dip in coverage over the
original, at 97% of the test corpus. It is possible to create more accurate approximations, but
at the expense of coverage. Accuracy and coverage can be traded off against each other to suit
the needs of the task at hand.

In chapter 3, several use scenarios where a high-quality context-free approximation might
be useful were reviewed, and a theoretical perspective on grammar approximation was pre-
sented. Next, we discussed main approximation techniques, with a special focus on obtaining
reconstructable approximations. Derivations in these grammars can be “replayed” in the orig-
inal UBG; a complete approximate derivation specify one unique derivation in the original
grammar. This means that the information that was lost in order to facilitate the approxima-
tion could be obtained at a later point if so desired.
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We have implemented a flexible system for obtaining approximations in the framework of
DELPH-IN tools. This system can parallelize grammar extraction to facilitate large-scale ap-
proximation experiments. Chapter 4 detailed this system and several practical considerations
were discussed, with a particular focus on sound versus unsound approximation schemes and
feature selection.

To resolve an “impedance mismatch” in the tokenization assumptions by the two for-
malisms we showed how this could be resolved with a process called lexical generalization,
and how this procedure do not conflict with unique reconstructability if the original grammar
satisfies weak conditions pertaining to tokenization.

In chapters 4 and 5 we showed theoretically and empirically how lexical collapsing is
a necessary step to obtain high quality approximations. We also detailed static and dynamic
measurements on the obtained approximations in chapter 4, with a particular focus on how one
approximation overlap with another made with the same configuration on a held-out data-set,
and how these measurements vary with the number of features used in internal annotation, and
the use of lexical collapsing and generalization. Finally we presented approximations created
with much larger amounts of training data.

Several of the grammars obtained in chapter 4 were examined as candidates for stand-
alone parsing in chapter 5, where we reported parsing time and accuracy scores on various
metrics. In a successful attempt to increase efficiency in some configurations, a CKY-style
parser was implemented, giving a substantial performance boost over a highly optimized off-
the-shelf parser. The most promising approximation was compared to other recent approaches
by Zhang and Krieger (2011) and Ytrestøl (2011a). Possible approaches to improve both
speed and parsing accuracy were discussed.

6.1 Future work
On the experimental side, we would like to reiterate that syntacto-centric evaluations like
exact-match and ParsEval may not be immediately reflecting on the accuracy of the results
obtained from context-free approximations. Precision-grammars typically contain a very fine-
grained detail of linguistic description, where syntactic structures and processes take cen-
ter stage. While syntacto-centric measures may give a good reflection on how various deep
parsers and parse-selection models compare against each other, they might not be so suitable
when cross-comparing deep and “pseudo-deep” parsers, such as PCFG approximations. The
fine level of detail a deep grammar uses in syntactic description must necessarily be reduced
in order to facilitate an approximation.

Using semantic evaluation techniques, as proposed in Dridan and Oepen (2011), could
potentially give a better reflection on the true usability of context-free approximations in stand-
alone parsing. Arguably, the finer points of syntax are not in center stage when context-
free approximations are employed for stand-alone parsing. It is therefore more interesting to
quantify how accurate the parser can recreate the semantic interpretation of a sentence.

Context-free approximations can be used, as Zhang and Krieger (2011) discuss in detail,
to increase the robustness of deep grammar parsing systems. In our work, processing time
has been the chief target, but deep grammars can also fail to analyze input in other cases
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than not being within time or memory limits; either through undergeneration in the grammar,
or because of grammatical errors in the input itself. While having a strong notion of gram-
maticality is very useful in many cases, especially in natural language generation, it can be
detrimental if unedited and noisy text were to be analyzed. In such situations, a context-free
approximation that is more permissive than the original grammar could be used to parse such
input. While the resulting so-called “pseudo-derivations” would not be valid derivations in
the original grammar, they may still contain useful information. Extracting semantics robustly
from such derivations is an ongoing research topic.

Lexical collapsing is one of the more important techniques to apply in order to obtain high
quality approximations. However, even with lexical generalization, this technique can quickly
introduce sparsity in the grammar. Modern UBGs can license an infinitely sized lexicon
through repeated use of derivational morphology. Even though unseen lexical and morpholog-
ical projections become rarer with more training data, they are still one of the “Achilles’-heels”
of the system as a whole. A possible way around this is to not include the morphological com-
ponent of the original grammar into the approximation, but instead use annotated “top” nodes
of the lexical projections as terminal symbols in the approximation.

Many candidate feature paths, especially those describing selectional constraints on com-
plements, are not immediately useful for direct annotation, as they rely too heavily on the
type-hierarchy of the original grammar. One way to include these features and still obtain a
practical grammar is to actively use the type hierarchy in the approximation procedure. By
observing which types the value of the features at these paths usually take. If the variance in
the observed types was too high to sufficiently model the type hierarchy, one could replace
the more specific types with one of their more general types, thus creating a less fine-grained
type hierarchy which might be more suitable for direct annotation. This is somewhat similar
to aggregating the obtained context-free rules under rule subsumption instead of equivalence,
as done in Krieger (2007). However, aggregating all rules under subsumption might create an
approximation that is too permissive. Investigating various forms of rule aggregation, either
directly under equivalence or with several degrees of subsumption is an interesting direction
of future work.

The LinGO ERG, as of version 1010, operates with about 200 rule schemata. In this work,
we have used the same annotation vector for all feature structures, but it might be interesting
to differentiate the annotations based on what kind of rule schema that was used to construct
each feature structure. For example, if one ordered the feature paths by unification failure
rate, one could imagine that complement constructions and relative constructions would have
different orderings of these paths. One problematic aspect of this notion however, is that all
the necessary information need to be present in the symbols of the approximation. If one
context-free rule is annotated with a feature path on the LHS that is not present in its RHS, the
rule “adds” information in an underhand way.

Unification-based grammars are typically monotonic, and when only valid derivations are
used as training data in the approximations used in this work, the resulting grammars are also
modeling this monotonicity. This is facilitated by holding the annotation vector constant in all
cases. In these grammars, malformed derivations can be constructed only when not enough
of the constraints of the original grammar were modeled. However, if the annotation vector is
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not constant, “new” feature paths in the left-hand side of a rule could now add information that
was not present in its right-hand side, nor in the structure of the original rule itself. This fact,
in addition to dealing with the needed extra effort of specifying several annotation vectors, are
one of the problems future studies on varying annotation vectors could address.

Another potentially interesting use of robust probabilistic context-free approximations is lan-
guage modeling. In many tasks with a component of language generation, such as statistical
machine translation, a language model is used to rank candidate realizations against each
other. N-gram models are typically used in this task. While these have many desirable prop-
erties, such as computational efficiency and ease of implementation, and practically limitless
amounts of training data available to them, they are not always suitable in modeling long-
range dependencies, and have no direct concept of syntax. PCFG language models obtained
from the approximation of deep grammars, especially when very large corpora of parse results
are available could be an interesting alternative in the realization ranking task.



APPENDIX A
Feature paths for internal annotation

The features used for internal annotation in this work is taken in order from the following list.
These path are exact, and not simplified as some of the paths in earlier figures may appear.
These paths are taken from the file qc.tdl as it appears in the LinGO ERG as of version
1010, but are not necessarily listed in the order the paths occur in the file. Note also, that some
paths subsume others and are left out in favor of the more specific one. This applies chiefly to
valency.

synsem local cat head
synsem local conj
synsem local cat head aux
synsem local agr png pn
synsem local cat val spr first local cat head
synsem local cat val subj first local cat head
synsem local cat val comps first local cat head
synsem local cat head mod first local cat head
synsem local cat val comps first opt
synsem lex
synsem nonloc slash list first cat head
synsem local cat head tam mood
synsem local cat mc
inflectd
synsem local cat head inv
synsem nonloc slash list first cat head mod first local cat head
synsem local cat head vform
synsem modifd lperiph
synsem modifd rperiph
synsem modifd
synsem --sind
synsem local cat val subj first --sind
synsem local cat val subj first opt
synsem local cat val spr first opt
synsem local agr div
synsem --sind --tpc
synsem nonloc slash list first agr png pn
synsem local cat head mod first --sind
synsem local cat head tam tense
synsem local cat posthd
synsem local cat head prd
synsem nonloc que
synsem local cat hc-lex

Table A.1: Listing of features used for internal annotation
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APPENDIX B
The WikiWoods subset

Some of the larger experiments discussed in this work draw from a section of the WikiWoods
corpus, which consists of parsed and automatically disambiguated Wikipedia articles. In this
work, these were parsed with ERG 1010. We use section 00110 in addition to every tenth
section up to section 01290. To clear up any potential ambiguity around data selection, a
complete listing follows:

00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360

00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620

00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
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00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020

01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160

01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
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