
University of Oslo

Department of Informatics

Refining UML
interactions with
underspecification
and
nondeterminism

Ragnhild Kobro
Runde, Øystein
Haugen, Ketil Stølen

Research Report 325
ISBN 82-7368-278-1
ISSN 0806-3036

Revised January 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30839246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

REFINING UML INTERACTIONS WITH

UNDERSPECIFICATION AND NONDETERMINISM

RAGNHILD KOBRO RUNDE1 ØYSTEIN HAUGEN1

KETIL STØLEN1,2

1Department of Informatics, University of Oslo
PO Box 1080, Blindern, NO-0316 Oslo, Norway

{ragnhilk|oysteinh}@ifi.uio.no

2SINTEF ICT, NO-0373 Oslo, Norway
ketil.stolen@sintef.no

Abstract. STAIRS is an approach to the compositional development of UML
interactions, such as sequence diagrams and interaction overview diagrams. An im-
portant aspect of STAIRS is the ability to distinguish between underspecification
and inherent nondeterminism through the use of potential and mandatory altern-
atives. This paper investigates this distinction in more detail. Refinement notions
explain when (and how) both kinds of nondeterminism may be reduced during the
development process. In particular, in this paper we extend STAIRS with guards,
which may be used to specify the choice between alternatives. Finally, we introduce
the notion of an implementation and define what it means for an implementation
to be correct with respect to a specification.

ACM CCS Categories and Subject Descriptors: D.2.1 [Software Engineer-
ing]: Requirements/Specifications; D.3.1 [Programming Languages]: Formal Defin-
itions and Theory; F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs

Key words: UML interactions, formal semantics, nondeterminism, underspecific-
ation, refinement

1. Introduction

STAIRS [9, 8] is an approach to the compositional development of UML
interactions, such as sequence diagrams and interaction overview diagrams.
Interactions in UML 2.0 [13] are behavioural definitions that describe some,
but not necessarily all, of the behaviour that a given system performs. Most
often the interactions will describe positive behaviours, i.e. behaviours that
the system is allowed to perform. There may also be behaviours that the
interactions define as negative, meaning that they are unacceptable, and
there may even be behaviours of the system that are not at all covered by
any of the interactions defined.

2 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

This partiality of interactions is motivated by several factors. First of all,
the description of a real system requires far too many interaction diagrams
to define all the behaviours. To manage such a volume of diagrams would
be impractical. Also, the goal of interactions is to visualize important inter-
action patterns. Thus the emphasis is on importance, rather than complete-
ness. This is in contrast to most other kinds of behavioural specifications,
including UML state machines. The definition of a state machine is com-
plete in the sense that it may be seen to define all the possible behaviours
of that entity.

A methodology may initially use interactions to capture user requirements,
and use these as stepping stones for the next development stages where em-
phasis is placed more on completeness and realizability. STAIRS supports
this through the notion of refinement. In particular, the refinement defini-
tions take into account that initial specifications in the form of interactions
typically describe only a few example scenarios. A scenario not described
by an initial specification is not necessarily unwanted, but it has not been
thought of yet. Thus, a refinement step may be to include new scenarios in
the specification, as well as to reduce the amount of underspecification and
nondeterminism in the specification. Refinement may also be to describe
some of the aspects of a scenario in more detail.

In this paper we focus on defining and refining specifications with non-
determinism. In the introductory chapter of the UNITY-book [3] Chandy
and Misra observe:

Nondeterminism is useful in two ways. First, it is employed
to derive simple programs, where simplicity is achieved by avoid-
ing unnecessary determinism; such programs can be optimized
by limiting the nondeterminism, i.e., by disallowing executions
unsuitable for a given architecture. Second, some systems (e.g.,
operating systems and delay-insensitive circuits) are inherently
nondeterministic; programs that represent such systems have to
employ some nondeterministic constructs.

STAIRS is based on this overall observation. However, contrary to Chandy
and Misra we take the position that the two useful ways of using non-
determinism should be described differently.

Avoiding unnecessary determinism may for instance be achieved through
underspecification. By underspecification we mean that the specification
gives several alternative behaviours that are equivalent in the sense that
they all serve the same purpose. For an implementation to be correct, it is
sufficient to fulfil only one of the alternative behaviours. Underspecification
may also be used as an abstraction mechanism, for instance by giving several
alternative behaviours but not stating how to select between them. This will
typically later be refined into an if-then-else construct in the implementation.

On the other hand, inherent nondeterminism is used to capture alternative
behaviours that must all be possible for the implementation. A typical
example is the tossing of a coin, where both heads and tails should be

REFINING UML INTERACTIONS 3

possible outcomes, and no legal refinement should remove one of these two
alternatives. A system may also need to exhibit nondeterministic behaviour
due to differences in its environment.

Inherent nondeterminism is very different from underspecification, and
should be described differently. One important reason for this is that un-
less we do not distinguish these two, there will be no way to ensure that
inherently nondeterministic behaviour is implemented as such. This may
not seem like a major problem at first. If the development team knows
that a given specification should be implemented as delay-insensitive cir-
cuits you will probably get the inherently nondeterministic implementation
that you expect. However, in the domain of information security, the in-
herently nondeterministic behaviour is fundamental for the validity of the
specification. As pointed out in e.g. [10] and [12], security properties are in
general not preserved by standard refinement. If nondeterminism is used as
a means to hide the internal workings of a system, it is essential that it is
not treated as underspecification, which allows elimination of all uncertainty
(nondeterminism) in a refinement.

In [14] Roscoe points out that using inherent nondeterminism ensures se-
curity as it prevents the making of any inference about the possible out-
comes, while for nondeterminism based on underspecification there are three
possible conclusions about the security of a system: secure, insecure, or
don’t know. Hence, it makes things a lot easier if the specification language
provides a way to distinguish between these two ways of using nondetermin-
ism.

In the setting of UML interactions, the operator alt is used to specify al-
ternative behaviours. As the UML standard [13] is rather vague on whether
these alternatives represent underspecification or inherent nondeterminism,
people interpret the same interaction differently, leading to confusion. This
could be avoided by having two different operators for specifying alternative
behaviours, as we have in STAIRS. This is particularly important as the
partiality of interactions makes it important to know which of the described
scenarios represent significantly different behaviours and which scenarios
only serve as examples of how to achieve the same purpose.

The remainder of this paper is structured into six sections. Section 2
introduces the basic STAIRS formalism, while Section 3 uses this in an
example specification illustrating nondeterminism. In Section 4 we extend
the formalism with guards, and in Section 5 we discuss refinement in STAIRS
with emphasis on nondeterminism. Section 6 defines what it means for a
system to be a correct implementation of a STAIRS specification. Section 7
provides a brief summary and relates STAIRS to approaches known from
the literature.

4 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

2. Background: UML interactions with denotational trace

semantics

In this section, we present the basic STAIRS formalism. Section 2.1 gives
the fundamental trace mechanisms. In Section 2.2 we present our textual
syntax for interactions, while Section 2.3 formally defines denotational trace
semantics for UML interactions.

2.1 Representing executions by traces

In STAIRS, we define the semantics of interactions by using sequences of
events. By A ω we denote the set of all finite and infinite sequences over
the set A. We use 〈〉 to the denote the empty sequence. Moreover, by
〈e1, e2, . . . , em〉 we denote the sequence of m elements, whose first element
is e1, whose second element is e2, and so on. We define the functions

∈ A ω → N0 ∪ {∞}, [] ∈ A ω × N → A

to yield the length and the nth element of a sequence. Hence, #a yields the
number of elements in a and a[n] yields a’s nth element if n ≤ #a.

We also need functions for concatenation, truncation and filtering:

⌢ ∈ A ω ×A ω → A ω, | ∈ A ω × N0 → A ω, S© ∈ P(A)× A ω → A ω

Concatenating two sequences implies gluing them together. Hence, a1 ⌢ a2

denotes a sequence of length #a1 + #a2 that equals a1 if a1 is infinite, and
is prefixed by a1 and suffixed by a2, otherwise. For any 0 ≤ i ≤ #a, we
define a|i to denote the prefix of a of length i.

The filtering function S© is used to filter away elements. By B S© a we
denote the sequence obtained from the sequence a by removing all elements
in a that are not in the set of elements B. For example, we have that

{1, 3} S© 〈1, 1, 2, 1, 3, 2〉 = 〈1, 1, 1, 3〉

A trace h is a sequence of events, used to represent a system run. For any
single message, transmission must happen before reception if both events are
present. Thus we get the following well-formedness requirement on traces,
stating that if at any point in the trace we have a transmission event, up to
that point we must have had at least as many transmissions as receptions
of that particular message:

∀i ∈ [1,#h] : k.h[i] = ! ⇒
#(({ !} × {m.h[i]}) S©h|i) > #(({?} × {m.h[i]}) S©h|i)

H denotes the set of all well-formed traces.

REFINING UML INTERACTIONS 5

〈Interaction〉 → 〈Empty〉 | 〈Event〉 |
〈Weak sequencing〉 | 〈Refuse〉 |
〈Assert〉 | 〈Potential alternatives〉 |
〈Mandatory alternatives〉 | 〈Loop〉

〈Empty〉 → skip

〈Event〉 → 〈Kind〉 〈Message〉
〈Kind〉 → 〈Transmission〉 | 〈Reception〉
〈Transmission〉 → !

〈Reception〉 → ?

〈Message〉 → (Signal , 〈Transmitter〉 , 〈Receiver〉)

〈Transmitter〉 → Lifeline

〈Receiver〉 → Lifeline

〈Refuse〉 → refuse [〈Interaction〉]

〈Assert〉 → assert [〈Interaction〉]

〈Potential alternatives〉 → alt [〈Interaction list〉]

〈Mandatory alternatives〉 → xalt [〈Interaction list〉]

〈Loop〉 → loop Set [〈Interaction〉]

〈Weak sequencing〉 → seq [〈Interaction list〉]

〈Interaction list〉 → 〈Interaction〉 |
〈Interaction list〉 , 〈Interaction〉

Figure 1: Syntax of interactions

2.2 Syntax of interactions

The set of syntactically correct interactions, denoted by D, is defined by
the BNF-grammar in Fig. 1. Signal represents the actual content of a
message, Lifeline is the name of a lifeline (representing a component) in
the diagram and Set should be an expression that evaluates to a subset of
N0 (the natural numbers including 0).

As can be seen from the definition, a message is a triple (s, tr, re) of a
signal s, a transmitter tr, and a receiver re. As a shorthand, we will often
use the name of the signal to stand for the whole message in cases where
the transmitter and receiver are clear from the context. We let L denote
the set of all lifelines, and M denote the set of all messages. We distinguish
between two kinds of events; a transmission event tagged by an exclamation
mark “!” represents the transmission of a message, while a reception event
tagged by a question mark “?” represents the reception of a message. E
denotes the set of all events, while K denotes {!, ?}.

We define the functions

k. ∈ E → K, m. ∈ E → M, tr. , re. ∈ E → L

to yield the kind, message, transmitter and receiver of an event, respectively.

6 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

We also define the functions

ll. ∈ D → P(L), ev. ∈ D → P(E), msg. ∈ D → P(M)

to yield the set of lifelines, events and messages of an interaction, respect-
ively.

Interactions are built from events through the application of various oper-
ators as defined by the grammar in Fig. 1. We do not cover the complete set
of operators in UML 2.0 [13], but rather focus on a few essential operators.
These fundamental operators may be used to define other useful, high-level
operators as demonstrated in Section 5.2. See [7] for STAIRS definitions of
additional operators like parallel execution and gates.

The operators assert, alt, seq and loop are UML 2.0 operators. The oper-
ator xalt is new, proposed in [9] to model mandatory alternatives, i.e. altern-
atives that must all be present in the final implementation. For negation,
UML 2.0 uses the operator neg. However, this operator is used in several
contexts, with slightly different meanings as we explain in [15]. Therefore,
we have in this paper chosen to introduce a new operator refuse that covers
one of these traditional uses of neg.

We only consider interactions that are well-formed in the sense that if
both the transmitter and the receiver lifelines of a message are present in
the diagram, then both the transmission and the reception event of that
message must be present as well. Formally:

∀m ∈ msg.d : (#ev.d > 1 ∧ tr.m ∈ ll.d ∧ re.m ∈ ll.d) ⇒

#{{ e ∈ ev.d | k.e =! ∧ m.e = m }} = #{{ e ∈ ev.d | k.e =? ∧ m.e = m }}

where {{ }} denotes a multi-set and # is overloaded to yield the number
of elements in such a set. A multi-set is needed here as the same message
(consisting of a signal, a transmitter and a receiver) may occur more than
once in the same diagram.

Also, we assume that for all operators except from seq, the operand(s)
consist only of complete messages, i.e. messages with both the transmission
and the reception event within the operand.

2.3 Semantics of interactions

The semantics of interactions is defined by a function [[]] that for any
interaction d yields a set [[d]] of interaction obligations. The term obligation
is used to explicitly convey that any implementation of a specification is
obliged to fulfil each specified alternative. (What it formally means to fulfil
an obligation is discussed in Section 6.) An interaction obligation is a pair
(p, n) of sets of traces. The first set p represents positive traces that may
be the result of running the final system, while the second set n represents
negative traces that must not appear in the implementation of the obligation.
Traces not defined as positive or negative are called inconclusive. As will
be formally defined in Section 5, a refinement may later redefine (some of)

REFINING UML INTERACTIONS 7

Symbol Stands for

d interaction
D list of interactions, separated by comma
h trace
s, p, n trace set
o interaction obligation
O set of interaction obligations

Table I: Notational conventions

these inconclusive traces as positive or negative. An obligation pair (p, n) is
contradictory if p ∩ n 6= ∅.

The empty diagram, denoted by skip, is a specification without any events
that corresponds to a program doing nothing. The empty diagram defines
the empty trace as positive:

[[skip]]
def
= {({〈〉}, ∅)} (1)

For an interaction consisting of a single event e, its semantics is given by:

[[e]]
def
= {({〈e〉}, ∅)} (2)

The actual content of the messages is not significant for the purpose of
this paper. Hence, we do not give any semantic interpretation of messages
as such.

The rest of this section will define the semantics of the different compos-
ition operators described briefly in Section 2.2. Table I lists the notational
conventions that will be used in the following definitions.

2.3.1 Weak sequencing

Weak sequencing is the implicit composition mechanism combining con-
structs of an interaction. The operator seq is defined by the following in-
variants:

◦ The ordering of events within each of the operands is maintained in
the result.

◦ Events on different lifelines from different operands may come in any
order.

◦ Events on the same lifeline from different operands are ordered such
that an event of the first operand comes before that of the second
operand, and so on.

First, we define weak sequencing of trace sets:

s1 % s2
def
= {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 : ∀l ∈ L : (3)

e.l S©h = e.l S©h1 ⌢ e.l S©h2}

8 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

sd W
L1 L2

x

y

Figure 2: Weak sequencing

where e.l denotes the set of events that may take place on the lifeline l.
Formally:

e.l
def
= {e ∈ E | (k.e =! ∧ tr.e = l) ∨ (k.e =? ∧ re.e = l} (4)

Weak sequencing of interaction obligations is defined as:

(p1, n1) % (p2, n2)
def
= (p1 % p2, (n1 % p2) ∪ (n1 % n2) ∪ (p1 % n2)) (5)

Notice that all traces obtained by combining a negative and a positive trace-
set, will also be negative. Weak sequencing of sets of interaction obligations
is defined as:

O1 % O2
def
= {o1 % o2 | o1 ∈ O1 ∧ o2 ∈ O2} (6)

Finally, the seq construct is defined by:

[[seq [d]]]
def
= [[d]]

[[seq [D, d]]]
def
= [[seq [D]]] % [[d]]

(7)

As an example, the interaction in Fig. 2 shows two messages both origin-
ating from L1 and targeting L2. Its semantics is calculated as:

[[W]] = [[seq [!x, ?x, !y, ?y]]]
= (([[!x]] % [[?x]]) % [[!y]]) % [[?y]] (Def. (7))
= (({({〈!x〉}, ∅)} % {({〈?x〉}, ∅)}) % {({〈!y〉}, ∅)})
% {({〈?y〉}, ∅)} (Def. (2))

= ({({〈!x, ?x〉}, ∅)} % {({〈!y〉}, ∅)}) % {({〈?y〉}, ∅)} (Defs. (3) − (6))
= {({〈!x, ?x, !y〉, 〈!x, !y, ?x〉}, ∅)} % {({〈?y〉}, ∅)} (Defs. (3) − (6))
= {({〈!x, ?x, !y, ?y〉, 〈!x, !y, ?x, ?y〉}, ∅)} (Defs. (3) − (6))

Hence, this interaction specifies one interaction obligation with two positive
traces and no negative ones. The positive traces state that the transmission
of x must be the first event to happen, but after that either y may be
transmitted (by L1) or x may be received (by L2).

REFINING UML INTERACTIONS 9

sd A
L1 L2

x

y

alt

(a) Potential alternatives

sd A’
L1 L2

x

y

xalt

(b) Mandatory alternatives

Figure 3: Specifying alternatives

2.3.2 Negative behaviour

The refuse construct defines negative traces:

[[refuse [d]]]
def
= {(∅, p ∪ n) | (p, n) ∈ [[d]]} (8)

Notice that a negative trace cannot be made positive by reapplying refuse.
Negative traces remain negative, since negation should be seen as an oper-
ation that characterizes traces absolutely and not relatively.

2.3.3 Assertion

The assert construct makes all inconclusive traces negative. Except for that
the sets of positive and negative traces are left unchanged:

[[assert [d]]]
def
= {(p, n ∪ (H \ p)) | (p, n) ∈ [[d]]} (9)

Notice that contradictory obligation pairs remain contradictory.

2.3.4 Potential alternatives

The alt construct is used when specifying underspecification, i.e. to define
potential traces that are equivalent in the sense that it is sufficient for an
implementation to include only one of them. The semantics of alt is the
inner union of each point-wise selection of interaction obligations from its
operands:

[[alt [d1, . . . , dm]]]
def
= {

⊎

{o1, . . . , om} | ∀i ∈ [1,m] : oi ∈ [[di]] } (10)

The inner union of interaction obligations is defined as:

⊎

i∈[1,m]

(pi, ni)
def
= (

⋃

i∈[1,m]

pi ,
⋃

i∈[1,m]

ni) (11)

10 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

Fig. 3(a) gives a simple example using the alt construct. The dashed
horizontal line separates the operands. We get:

[[A]] = [[alt [seq [!x, ?x], seq [!y, ?y]]]]
= {

⊎

{ ({〈!x, ?x〉}, ∅), ({〈!y, ?y〉}, ∅) } } (Defs. (3) − (7), (10))
= { ({〈!x, ?x〉, 〈!y, ?y〉}, ∅) } (Def. (11))

2.3.5 Mandatory alternatives

The xalt construct is used to specify inherent nondeterminism, i.e. mandat-
ory alternatives that must all be present in an implementation:

[[xalt [d1, . . . dm]]]
def
=

⋃

i∈[1,m]

[[di]] (12)

Fig. 3(b) has the same messages as Fig. 3(a), but separated by xalt instead
of alt. In this case, we get two interaction obligations:

[[A′]] = [[xalt [seq [!x, ?x], seq [!y, ?y]]]]
=

⋃

{ [[seq [!x, ?x]]], [[seq [!y, ?y]]] } (Def. (12))
=

⋃

{ {({〈!x, ?x〉}, ∅)}, {({〈!y, ?y〉}, ∅)} } (Defs. (3) − (7))
= { ({〈!x, ?x〉}, ∅) , ({〈!y, ?y〉}, ∅) } (Def. of

⋃

)

2.3.6 Loop

For a set of interaction obligations we define a finite loop construct µn, where
n ∈ N0 denotes the number of times the body of the loop is iterated. µn O

is defined inductively as follows:

µn O
def
=

{({〈〉}, ∅)} if n = 0
O if n = 1
µn−1 O % O otherwise

(13)

For a definition of infinite loop, see [7].
In the UML 2.0 standard [13], loop is used together with limits stating the

minimum and maximum number of times the content of the loop should be
executed. In our definition, the set I is a generalization of this, such that the
numbers in I specify the possible alternatives for how many times the loop
content should be executed. Not all of these need to be actual alternatives in
an implementation, meaning that the definition of loop uses the point-wise
inner union between these alternatives, similar to the definition of alt:

[[loop I [d]]]
def
= {

⊎

i∈I

oi | ∀i ∈ I : oi ∈ µi[[d]] } (14)

REFINING UML INTERACTIONS 11

sd L
L1 L2

x

loop

{0,1,2}

Figure 4: Looping

As an example, the interaction in Fig. 4 has the following semantics:

[[L]] = [[loop {0, 1, 2} [seq [!x, ?x]]]]
= {

⊎

i∈{0,1,2} oi | ∀i ∈ {0, 1, 2} :

oi ∈ µi [[seq [!x, ?x]]] } (Def. (14))
= {

⊎

i∈{0,1,2} oi | ∀i ∈ {0, 1, 2} :

oi ∈ µi {({〈!x, ?x〉}, ∅)} } (Defs. (3) − (7))
= {

⊎

i∈{0,1,2} oi | o0 ∈ µ0 {({〈!x, ?x〉}, ∅)} ∧

o1 ∈ µ1 {({〈!x, ?x〉}, ∅)} ∧
o2 ∈ µ2 {({〈!x, ?x〉}, ∅)} }

= {
⊎

i∈{0,1,2} oi | o0 ∈ {({〈〉}, ∅)} ∧

o1 ∈ {({〈!x, ?x〉}, ∅)} ∧
o2 ∈ {({〈!x, ?x〉}, ∅)}

% {({〈!x, ?x〉}, ∅)} } (Def. (13))
= {

⊎

i∈{0,1,2} oi | o0 ∈ {({〈〉}, ∅)} ∧

o1 ∈ {({〈!x, ?x〉}, ∅)} ∧
o2 ∈ {({〈!x, ?x, !x, ?x〉,

〈!x, !x, ?x, ?x〉}, ∅)} } (Defs. (3) − (6))
= {

⊎

{ ({〈〉}, ∅),
({〈!x, ?x〉}, ∅),
({〈!x, ?x, !x, ?x〉, 〈!x, !x, ?x, ?x〉}, ∅) } }

= { ({〈〉, 〈!x, ?x〉, 〈!x, ?x, !x, ?x〉, 〈!x, !x, ?x, ?x〉}, ∅) } (Def. (11))

3. STAIRS and nondeterminism

As seen in the previous section, weak sequencing may result in several dif-
ferent traces with the same events in a somewhat different order. These
traces are alternative means to achieve the same goal, and they are there-
fore grouped into the same interaction obligation as it is sufficient to keep
only one of them in an implementation.

In UML 2.0, the other means to specify alternative behaviours is by using
the operator alt. This is used both for specifying potential alternatives where
keeping only one is sufficient, and for mandatory alternatives that must all
be present in a correct implementation. In STAIRS, we have distinguished

12 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

cs C

A:sender S:network B:receiver

Figure 5: Composite structure of context C

sd Comm

A:sender S:network B:receiver

m m

Figure 6: Very simple communication

these two uses by separating between our two operators alt and xalt. Each
use of UML 2.0 alt corresponds in STAIRS to either alt or xalt. In this
section we present an example illustrating the use of these two operators.

Consider a situation where a sender communicates with a receiver through
a network of type S as shown in the UML composite structure diagram in
Fig. 5 (notice that this is not an interaction). A very simple communication
is shown by the interaction in Fig. 6, its semantics being:

{ ({〈!(m,A,S), ?(m,A,S), !(m,S,B), ?(m,S,B)〉}, ∅) }

Next, we would like to specify that there is a need for redundant commu-
nication through the network S. That is, the network S needs to support
more than one way of bringing the message m from one end of the network
to the other. There may be several reasons for requiring this redundancy:

◦ Several paths through the network will make it easier to exploit the
full capacity of the network.

◦ Multiple paths will ensure increased internal robustness of the network
and as such improve the availability of the full communication.

◦ Multiple paths will make it more difficult to attack the network to
jeopardize the communication, and as such the communication security
is improved.

We indicate in Fig. 7 a simple network architecture for S where there are
alternative branches. A real communication network may of course have far
more paths, but giving a few is sufficient for the purpose of this paper. We
want to make an interaction where we require two (different) communication

REFINING UML INTERACTIONS 13

cs S

N1:N

N2:N

N4:N

N3:N

G:N

Figure 7: Internal structure of the network S showing three communication paths

possibilities, and we may do this by introducing an xalt construct as shown
in Fig. 8, where S is expanded according to the structure in Fig. 7.

We have used xalt here in order to express that the network must support
at least two communication paths. Of course, for each concrete communica-
tion only one of them will be applied. After node N2, the network S has yet
another branch giving two alternative paths. For the sake of the discussion
we assume that it is not important to have both of these available, and so
we specify the alternatives using alt and not xalt in Fig. 8.

sd S_Comm

N1:N N2:N N3:N

m

m

m

N4:N

m m

alt

G:N

m

xalt

m

A:sender B:receiver

m

Figure 8: Communication behaviour requiring two communication paths

14 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

A->G->N1->B

A->G->N2->N3->B

A->G->N2->N4->B

Negative

Positive

Figure 9: Venn-diagram of the specification in Fig. 8

The semantics of S Comm is:

{ ({〈!(m,A,G), ?(m,A,G), !(m, G, N1), ?(m,G,N1),
!(m,N1, B), ?(m,N1, B)〉}, ∅),

({〈!(m,A,G), ?(m,A,G), !(m,G, N2), ?(m,G,N2),
!(m,N2, N3), ?(m,N2, N3), !(m,N3, B), ?(m,N3, B)〉,
〈!(m,A,G), ?(m,A,G), !(m,G, N2), ?(m, G,N2),
!(m,N2, N4), ?(m,N2, N4), !(m,N4, B), ?(m,N4, B)〉}, ∅) }

Fig. 9 illustrates this semantics using a specialized Venn-diagram with one
ellipse for each interaction obligation. Traces not shown as positive or neg-
ative in an obligation are inconclusive for this obligation.

Formally, S Comm is a refinement of Comm. Refinement will be formally
defined in Section 5. In Section 5 we will also develop this example further,
by giving some possible refinements to illustrate the similarities and differ-
ences between the two operators alt and xalt. But first, in the next section,
we formally extend STAIRS with guards, which may be used to specify the
choice between alternatives.

4. Extending STAIRS with data and guards

Although the focus of interactions is on the messages, the diagrams may also
be decorated with data. The most common use of data in interactions is in
guards, which is a mechanism for choosing between alternatives. Data is also
used in assignments and general constraints. In this section we extend our
basic formalism with definitions of these concepts. The extension ensures
that (sub-)interactions not including data have the same semantics as before.

4.1 Data

Since interactions mainly specify events and not data, the exact data values
will most of the time be underspecified (or unspecified). Changes in the
data may in general happen at any time, also when there is nothing in
the diagram indicating such a change. As a consequence, in the semantic
model we do not include data as such. Instead, data is represented indirectly
through events representing its use in assignments, constraints, and guards.

REFINING UML INTERACTIONS 15

〈Interaction〉 → 〈Empty〉 | 〈Event〉 |
〈Weak sequencing〉 | 〈Refuse〉 |
〈Assert〉 | 〈Guarded alt〉 |
〈Guarded xalt〉 | 〈Loop〉 |
〈Assignment〉 | 〈Constraint〉

〈Assignment〉 → assign (Variable , Expression)

〈Constraint〉 → constr (Constraint)

〈Guarded alt〉 → alt [〈Guarded list〉]

〈Guarded xalt〉 → xalt [〈Guarded list〉]

〈Guarded list〉 → 〈Guarded interaction〉 |
〈Guarded list〉 , 〈Guarded interaction〉

〈Guarded interaction〉 → 〈Guard〉 → 〈Interaction〉
〈Guard〉 → Constraint

Figure 10: Syntax of interactions with data

Formally, we extend the syntax of interactions as defined by the BNF-
grammar in Fig. 10. Nonterminals that are unchanged from the original
syntax in Fig. 1 are not repeated. Variable should be either a global vari-
able or a variable local to the lifeline on which the assignment is placed (not
shown in our textual syntax), while Expression is a mathematical expres-
sion and Constraint an expression that evaluates to true or false. If an
operand of guarded alt or guarded xalt does not contain an explicit guard,
we interpret this as being the guard true.

In the semantics, we extend the set of trace events with the two special
events write (for assignments) and check (for constraints). We also need the
notion of a state. Let Var be the set of all variables and Val be the set of
all variable values. A state σ is then a total function assigning a value to
each variable. Formally:

σ ∈ Var → Val

For any expression expr , we use expr(σ) to denote its value in σ.

4.2 Assignment

Explicit specification of variable values may be done by using assignments.
In UML 2.0, assignments are written inside a rounded box on the appropriate
lifeline, as illustrated in Fig. 11.

Semantically, we represent an assignment var = expr by the special event
write(σ, σ′) where σ is the state immediately before the assignment and σ′

the state immediately after:

[[assign(var , expr)]]
def
= (15)

{ ({〈write(σ, σ′)〉 | σ′(var) = expr(σ) ∧

∀v ∈ Var : (v = var ∨ σ′(v) = σ(v))}, ∅) }

16 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

sd assign
A

avar = avar + 1

Figure 11: Assignment

sd constraint
A B

m
{ avar = 0 }

{ avar > 0 }

Figure 12: Constraint

4.3 Constraints (state invariants)

In UML 2.0, constraints are written within curly brackets, as illustrated in
Fig. 12. A constraint is a restriction that must be fulfilled by the system,
meaning that we have a negative trace if the constraint is broken.

Semantically, a constraint is represented by the special event check(σ),
where σ is the state in which the constraint is evaluated:

[[constr(c)]]
def
= (16)

{ ({〈check (σ)〉 | c(σ)} , {〈check (σ)〉 | ¬c(σ)}) }

This definition ensures that if the constraint is a tautology, then the se-
mantics of constr(c) has no negative traces, and that a contradiction gives
no positive traces:

[[constr(true)]]
= {({〈check (σ)〉 | true(σ)}, {〈check (σ)〉 | false(σ)})}
= {({〈check (σ)〉 | σ ∈ Var → Val}, ∅)}

[[constr(false)]]
= {({〈check (σ)〉 | false(σ)}, {〈check (σ)〉 | true(σ)})}
= {(∅, {〈check (σ)〉 | σ ∈ Var → Val})}

Notice that one constraint in itself gives potentially an infinite number of
system traces, varying with respect to the state component only.

REFINING UML INTERACTIONS 17

As an example of the use of constraints in an interaction, the complete
semantics of the interaction in Fig. 12 may be calculated as:

[[constraint]] =
[[seq [constr(avar = 0), !m, ?m, constr(avar > 0)]]]
= (([[constr(avar = 0)]] % [[!m]]) % [[?m]]) % [[constr(avar > 0)]]

(Def. (7))
= (([[constr(avar = 0)]] % {({〈!m〉}, ∅)}) % {({〈?m〉}, ∅)})
% [[constr(avar > 0)]]
(Def. (2))

= (({({〈check (σ)〉 | σ(avar) = 0}, {〈check (σ)〉 | σ(avar) 6= 0})}
% {({〈!m〉}, ∅)}) % {({〈?m〉}, ∅)})

% {({〈check (σ′)〉 | σ′(avar) > 0}, {〈check (σ′)〉 | σ′(avar) ≤ 0})}
(Def. (16))

= ({ ({〈check (σ)〉 | σ(avar) = 0} % {〈!m〉},
{〈check(σ)〉 | σ(avar) 6= 0} % {〈!m〉}
∪{〈check(σ)〉 | σ(avar) 6= 0} % ∅
∪{〈check(σ)〉 | σ(avar) = 0} % ∅) }

% {({〈?m〉}, ∅)})
% {({〈check (σ′)〉 | σ′(avar) > 0}, {〈check (σ′)〉 | σ′(avar) ≤ 0})}
(Defs. (5) − (6))

= ({ ({〈check (σ), !m〉 | σ(avar) = 0}
∪{〈!m, check (σ)〉 | σ(avar) = 0},
{〈check(σ), !m〉 | σ(avar) 6= 0}
∪{〈!m, check (σ)〉 | σ(avar) 6= 0}) }

% {({〈?m〉}, ∅)})
% {({〈check (σ′)〉 | σ′(avar) > 0}, {〈check (σ′)〉 | σ′(avar) ≤ 0})}
(Def. (3))

= { ({〈check (σ), !m, ?m〉 | σ(avar) = 0}
∪{〈!m, check (σ), ?m〉 | σ(avar) = 0},
{〈check (σ), !m, ?m〉 | σ(avar) 6= 0}
∪{〈!m, check (σ), ?m〉 | σ(avar) 6= 0}) }

% {({〈check (σ′)〉 | σ′(avar) > 0}, {〈check (σ′)〉 | σ′(avar) ≤ 0})}
(Defs. (3) − (6))

= { ({〈check (σ), !m, ?m, check (σ′)〉 | σ(avar) = 0 ∧ σ′(avar) > 0)}
∪{〈!m, check (σ), ?m, check (σ′)〉 | σ(avar) = 0 ∧ σ′(avar) > 0},
{〈check (σ), !m, ?m, check (σ′)〉 | σ(avar) 6= 0 ∨ σ′(avar) ≤ 0}
∪{〈!m, check (σ), ?m, check (σ′)〉 | σ(avar) 6= 0 ∨ σ′(avar) ≤ 0}) }

(Defs. (3) − (6), and formula manipulation)

4.4 Guards (interaction constraints)

According to UML 2.0, alternatives (and other combined fragments) in an in-
teraction may be guarded by an interaction constraint (also called a guard).
A guard is a special kind of constraint that may only occur at the beginning
of the interaction operand in question. As opposed to general constraints,

18 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

sd guards
A B

x

y

alt [avar = 0]

[avar >= 0]

Figure 13: Guards

guards are written inside square brackets, as illustrated in Fig. 13. As the
example illustrates, the guards used in an alt (or xalt) may be overlapping
and need not be exhaustive.

If the guard is true, the interaction operand describes positive traces of the
system. The semantics in the case of a false guard is not stated explicitly
in the UML 2.0 standard [13]. However, with guards being a specialization
of general constraints, it is natural to interpret traces with a false guard
as negative. As will be demonstrated in Section 5, this is advantageous
as it means that adding guards to an alt/xalt-construct constitutes a valid
refinement step. A side effect of this is that we will be able to model guards
by using the more general notion of constraints as defined in the previous
section.

4.4.1 Guarded alt

UML 2.0 [13] states that if none of the operands of an alt construct has a
guard that evaluates to true, none of the operands are executed and the
remainder of the enclosing interaction is executed. This gives the following
semantics for guarded alt:

[[alt [c1 → d1, . . . , cm → dm]]]
def
= (17)

{
⊎

{o1, . . . , om, ({〈check (σ)〉 | (
∧

j∈[1,m] ¬cj)(σ)}, ∅)} |

∀i ∈ [1,m] : oi ∈ [[seq [constr(ci), di]]] }

The semantics of Fig. 13 is informally illustrated in Fig. 14. Formally, its

REFINING UML INTERACTIONS 19

[avar ≠ 0] <!x,?x>

[avar < 0] <!y,?y>

[avar < 0] <>

[avar = 0] <!x,?x>

[avar >= 0] <!y,?y>

Negative

Positive

Figure 14: Semantics of guarded alt in Fig. 13

complete semantics may be calculated as:

[[guards]]
= [[alt [avar = 0 → seq [!x, ?x] ,

avar ≥ 0 → seq [!y, ?y]]]]
= {

⊎

{ ({〈check (σ), !x, ?x〉 | σ(avar) = 0} ,

{〈check(σ), !x, ?x〉 | σ(avar) 6= 0}),
({〈check (σ), !y, ?y〉 | σ(avar) ≥ 0} ,

{〈check(σ), !y, ?y〉 | σ(avar) < 0}), (Defs. (3) − (7),
({〈check (σ)〉 | σ(avar) < 0} , ∅)} } (16), (17))

= { ({〈check (σ), !x, ?x〉 | σ(avar) = 0}
∪{〈check(σ), !y, ?y〉 | σ(avar) ≥ 0}
∪{〈check(σ)〉 | σ(avar) < 0} ,

{〈check(σ), !x, ?x〉 | σ(avar) 6= 0}
∪{〈check(σ), !y, ?y〉 | σ(avar) < 0} } (Def. (11))

Definition (17) giving the semantics of guarded alt is consistent with defin-
ition (10) of unguarded alt in Section 2.3. In our new setting, a specification
alt [D] without guards is interpreted as the specification alt [D′] where D′ is
the same list of interactions as D, each one guarded by true. Calculating this
semantics using definition (17), gives us the same semantics as definition (10)
when abstracting away all check -events. This is proved in Appendix C.

4.4.2 Guarded xalt

We define the semantics of guarded xalt as:

[[xalt [c1 → d1, . . . , cm → dm]]]
def
=

⋃

i∈[1,m]

[[seq [constr(ci), di]]] (18)

Unlike guarded alt, the semantics of guarded xalt does not implicitly include
the case where all guards are false, since xalt is used to specify explicit
choices that must be present in the implementation.

As an example, the semantics of Fig. 13 with alt replaced by xalt, is in-
formally illustrated in Fig. 15. Formally, its complete semantics may be

20 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

[avar ≠ 0] <!x,?x>

[avar = 0] <!x,?x>

[avar < 0] <!y,?y>

[avar >= 0] <!y,?y>

Negative

Positive

Figure 15: Semantics of guarded xalt in Fig. 13

calculated as:

[[guards]]
= [[xalt [avar = 0 → seq [!x, ?x] ,

avar ≥ 0 → seq [!y, ?y]]]]
=

⋃

{ {({〈check (σ), !x, ?x〉 | σ(avar) = 0} ,

{〈check (σ), !x, ?x〉 | σ(avar) 6= 0})},
{({〈check (σ), !y, ?y〉 | σ(avar) ≥ 0} , (Defs. (3) − (7),
{〈check (σ), !y, ?y〉 | σ(avar) < 0})} } (16), (18))

= { ({〈check (σ), !x, ?x〉 | σ(avar) = 0} ,

{〈check (σ), !x, ?x〉 | σ(avar) 6= 0}) ,

({〈check (σ), !y, ?y〉 | σ(avar) ≥ 0} ,

{〈check (σ), !y, ?y〉 | σ(avar) < 0}) } (Def.
⋃

)

As for alt, removing the guards in definition (18) gives the original xalt-
semantics in definition (12) as proved in Appendix C.

5. Refinement

In this section we discuss some important aspects of refinement in the setting
of STAIRS. Section 5.1 gives the necessary background for this discussion,
presenting the main refinement definitions. In the rest of Section 5 we focus
on underspecification and inherent nondeterminism, and how guards may
be introduced as a refinement step in both cases.

5.1 Background: Formal definitions

Refinement means to add information to a specification such that the spe-
cification becomes more complete. This may be achieved by categorizing
inconclusive traces as either positive or negative, or by reducing the set of
positive traces. Negative traces always remain negative. A specification may
also become more complete by introducing more details.

REFINING UML INTERACTIONS 21

5.1.1 Glass-box refinement

Formally, an interaction obligation (p′, n′) is a refinement of an interaction
obligation (p, n), written (p, n) r (p′, n′), iff

n ⊆ n′ ∧ p ⊆ p′ ∪ n′ (19)

An interaction d′ is a glass-box refinement of an interaction d, written
d g d′, iff

∀o ∈ [[d]] : ∃o′ ∈ [[d′]] : o r o′ (20)

Theorem. The refinement operator g is

◦ reflexive: d g d

◦ transitive: d g d′ ∧ d′ g d′′ ⇒ d g d′′

◦ monotonic with respect to refuse, loop, seq, (guarded) alt and (guarded)
xalt:

d g d′ ⇒ refuse [d] g refuse [d′]
d g d′ ⇒ loop I [d] g loop I [d′]
d1 g d′1, . . . , dm g d′m ⇒ seq [d1, . . . , dm] g seq [d′1, . . . , d

′
m]

d1 g d′1, . . . , dm g d′m ⇒ alt [d1, . . . , dm] g alt [d′1, . . . , d
′
m]

d1 g d′1, . . . , dm g d′m ⇒ xalt [d1, . . . , dm] g xalt [d′1, . . . , d
′
m]

Proof. Reflexivity, transitivity and monotonicity with respect to seq,
loop and unguarded alt and xalt is proved in [7]. Monotonicity with respect
to refuse and guarded alt and xalt is proved in Appendix E. 2

By definition (20), new interaction obligations may be freely added to
the specification, thus increasing the mandatory nondeterminism required
of an implementation. Adding new obligations is an important aspect of the
STAIRS methodology. Sometimes, however, it is desirable to restrict this
possibility.

A more restrictive notion of refinement is limited glass-box refinement,
where each obligation in the new refined interaction must correspond to an
obligation in the original interaction.

Formally, an interaction d′ is a limited glass-box refinement of an interac-
tion d, written d l d′, iff

d g d′ ∧ ∀o′ ∈ [[d′]] : ∃o ∈ [[d]] : o r o′ (21)

The refinement theorem above is valid also when replacing g with l, as
proved in Appendix D (reflexivity and transitivity) and Appendix E (mono-
tonicity).

Notice that a step of refinement may still increase the total number of
obligations, but only if two different obligations in [[d′]] refine the same
obligation in [[d]].

Methodologically, a STAIRS specification would typically be developed by
using g initially and switching to the more restrictive l after the desired
level of nondeterminism in the specification has been reached.

22 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

5.1.2 Black-box refinement

Black-box refinement may be understood as refinement restricted to the
externally visible behaviour. We define the function

ext ∈ H × P(L) → H

to yield the trace obtained from the trace given as first argument by filtering
away those events that are internal with respect to the set of lifelines given
as second argument:

ext(h, l)
def
= {e ∈ E | tr.e 6∈ l ∨ re.e 6∈ l} S©h (22)

The ext operator is overloaded to sets of traces, to pairs of sets of traces,
and sets of pairs of sets of traces in the standard pointwise manner:

ext(s, l)
def
= {ext(h, l) | h ∈ s} (23)

ext((p, n), l)
def
= (ext(p, l), ext(n, l)) (24)

ext(O, l)
def
= {ext((p, n), l) | (p, n) ∈ O} (25)

An interaction d′ is a black-box refinement of an interaction d, written
d b d′, iff

∀o ∈ ext([[d]], ll.d) : ∃o′ ∈ ext([[d′]], ll.d′) : o r o′ (26)

The refinement theorem above is valid also when replacing g with b, as
the properties are independent of the content of the actual traces.

Black-box refinements will often include lifeline decompositions that are
not externally visible. Some lifeline decompositions may also be externally
visible due to a change in the sender or receiver of a message. We have
already used this in Fig. 8, where the network S was decomposed into several
nodes. Formally, an interaction d′ is a lifeline decomposition of an interaction
d with respect to a lifeline substitution ls, written d ls

l d′, iff

d b subst(d′, ls) (27)

where ls ∈ L → L is a function defining the lifeline substitution and the
function subst(d, ls) yields the interaction d with every lifeline l in d substi-
tuted with the lifeline ls(l).

5.2 Adding positive behaviour

We now return to our running example from Section 3. Even with two
different communication paths, we have no guarantee that any of them will
be available at a certain time. This is made explicit in Fig. 16, where the
empty diagram (i.e. skip) is added as a third operand to the xalt-construct.
When this operand is selected, we get a positive trace consisting of only

REFINING UML INTERACTIONS 23

sd N_Comm

N1:N N2:N N3:N

m

m

m

N4:N

m m

alt

G:N

m

xalt

m

A:sender B:receiver

m

Figure 16: Refinement by adding behaviour

A->G->N1->B

A->G->N2->N3->B

A->G->N2->N4->B

Negative

Positive
A->G

Figure 17: Semantics of N Comm (Fig. 16)

two events, the transmission of m from A to G, and the reception at G. No
further communication will take place, and B will never receive the message.

The semantics of N Comm is illustrated in Fig. 17. Comparing this with
Fig. 9, which illustrates the semantics of S Comm (Fig. 8), we see that every
interaction obligation given by S Comm is also an interaction obligation by
N Comm. By definitions (19)–(20), this means that the modified specifica-
tion is a valid refinement of the original one, S Comm g N Comm. The
last obligation in Fig. 17 illustrates that new obligations may be added freely
when using standard glass-box refinement, g.

Assume now that our communication network describes the emergency
network used by the police, that a police officer needs to communicate, but
that the communication for some reason fails. In practice, a police officer
may grab his personal mobile phone and call his colleague. This is not a
mandatory choice (the police are not set up with personal mobile phones),

24 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

sd M_Comm

N1:N N2:N N3:N

m

m

m

N4:N

m m

alt

G:N

m

xalt

m

A:sender Mobile:N B:receiver

mopt

m

m

Figure 18: Refinement by adding behaviour

A->G->N1->B

A->G->N2->N3->B

A->G->N2->N4->B

Negative

Positive A->G

A->G->Mobile->B

Figure 19: Semantics of M Comm (Fig. 18)

but may be used as an alternative. The resulting specification is shown in
Fig. 18. The opt-construct is a high-level operator, which may be defined as

opt d
def
= d alt skip (28)

The modified specification affects only the last of the interaction obliga-
tions in Fig. 17, where a positive behaviour is added as illustrated in Fig. 19.
By definition (19), this is a valid refinement as the negative trace-sets in both
interaction obligations are empty and the positive trace-set in the N Comm
one is a subset of the new positive trace set in the M Comm one:

{ 〈!(m,A,G), ?(m,A,G)〉 } ⊆
{ 〈!(m,A,G), ?(m,A,G)〉,
〈!(m,A,G), ?(m,A,G), !(m,G, Mobile), ?(m,G,Mobile),

!(m,Mobile, B), ?(m,Mobile , B)〉 }

Notice that adding an extra lifeline (the mobile phone) to the interaction

REFINING UML INTERACTIONS 25

sd A_Comm

N1:N N2:N N3:N

m

m

m

N4:N

m m

alt

G:N

m

xalt

m

A:sender Mobile:N B:receiver

mopt

assert

m

m

Figure 20: Adding negative behaviour

everything else

A->G->N1->B

everything else

A->G->N2->N3->B

A->G->N2->N4->B

Negative

Positive

everything else

A->G

A->G->Mobile->B

Figure 21: Semantics of A Comm (Fig. 20)

is unproblematic, as all traces involving this new lifeline were considered
inconclusive in the original interaction.

5.3 Adding negative behaviour

The refinement examples in the previous section categorized earlier incon-
clusive traces as positive. Similarly, earlier inconclusive traces may be
categorized as negative, either by specifying the negative traces explicitly
through the use of refuse, or by using assert. In our network example, we
decide that M Comm is a complete description of the possible behaviours,
and that everything not in the interaction should be considered negative.
This gives us the interaction in Fig. 20.

The semantics of A Comm is illustrated in Fig. 21. Comparing this with
Fig. 19, which illustrates the semantics of M Comm, we see that A Comm is
obviously a refinement of M Comm, as we have the same positive trace-sets
for both specifications and the original empty negative trace-sets are subsets

26 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

N2:N N3:N

m

N4:N

m m

alt
m

B:receiver

refuse

Figure 22: Redefining positive behaviour as negative

everything else

A->G->N1->B

A->G->N2->N4->B

everything else

A->G->N2->N3->B

Negative

Positive

everything else

A->G

A->G->Mobile->B

Figure 23: Semantics of A Comm with the refinement in Fig. 22

of any set.

5.4 Redefining positive behaviour as negative

Refinement may also be used to reduce the set of positive traces by redefining
them as negative. Looking at the specification in Fig. 20, we may decide
that there really is no need to have both communication choices specified
by the alt-construct. A refinement of this sub-specification could then be as
given by Fig. 22. The complete semantics for this refinement is illustrated
in Fig. 23. We see that the refined specification only affects the obligation in
the middle. By definition (19), this is a valid refinement step as the negative
trace-set is extended and the traces that were previously positive are now
either positive or negative.

Another possible refinement of A Comm could be to specify how the choice
between the different communication paths should be made. In the case of
our emergency network, using a mobile phone should only be an option if
the main network fails. In the interaction in Fig. 24, the node G makes
the choice between the different alternatives specified by the xalt-construct.
Similarly, N2 makes the choice between the alt-operands.

We have assumed that G and N2 have information about the capacity of

REFINING UML INTERACTIONS 27

sd G_Comm

N1:N N2:N N3:N

m

m

m

N4:N

m m

[N3 capacity ok]

[N4 capacity ok]

alt

G:N

m

[N1 capacity ok]

[N2 capacity ok]

[else]

xalt

m

A:sender Mobile:N B:receiver

mopt

assert

m

m

Figure 24: Introducing guards

the different nodes. This may in practice be achieved either by continuous
information back from the nodes (not shown in the described behaviour) or
through evaluating the communication historically relative to known para-
meters of the nodes. For our purpose, it is not significant how G and N2 get
their data. It is interesting, however, that for xalt the two first guards may
both be true, both false, or one true and one false. All of these situations
represent cases in real life. If both guards are true, the choice between the
two paths may be done arbitrarily. If both guards are false, the else operand
comes into effect.

We have not specified what should happen if both guards are false in the
alt-fragment. However, according to definition (17) giving the semantics of
guarded alt, this is equal to the empty trace, i.e. no further communication
takes place.

Fig. 25 illustrates the semantics of G Comm. All traces with a false guard
are negative as specified by definitions (16)–(18). This makes G Comm a
valid refinement of A Comm. In general, introducing guards in an alt- or
xalt-construct will always be a legal refinement step as proved in Appendix
E.

5.5 Adding more details

As another example, assume that our sender and receiver suspect that some-
where inside the network there is someone listening to and possibly manipu-
lating their messages. They would like to encrypt their messages and agree
(openly) to exchange information to set up a secret key that they shall use

28 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

A->G->[N1 not ok]->N1->B

everything else

A->G->[N1 ok]->N1->B

Negative

Positive

A->G->[N1 ok or N2 ok]

A->G->[N1 ok or N2 ok]->Mobile->B

everything else

A->G->[N1 not ok and N2 not ok]

A->G->[N1 not ok and N2 not ok]->Mobile->B

A->G->[N2 not ok]->N2->[N3 ok or not ok]->N3->B

A->G->[N2 not ok]->N2->[N4 ok or not ok]->N4->B

A->G->[N2 ok]->N2->[N3 not ok]->N3->B

A->G->[N2 ok]->N2->[N4 not ok]->N4->B

everything else

A->G->[N2 ok]->N2->[N3 ok]->N3->B

A->G->[N2 ok]->N2->[N4 ok]->N4->B

A->G->[N2 ok]->N2->[N3 not ok and N4 not ok]

Negative

Positive

Negative

Positive

Figure 25: Semantics of Fig. 24

for subsequent encryption. Following the procedure outlined by Simon Singh
in [16] on how to achieve exchanging of secret keys through insecure com-
munication, we need to be able to describe a number of similar sequences
differing basically in the value of some critical numbers.

In Fig. 26 we have shown the protocol with a generalized notation for
xalt. We have supplied the xalt with an extra clause which gives one or
more parameters with finite domains associated. This generalized notation
is identical to replicating the operand for all values of the variable inside the
domain.

The behaviour of Fig. 26 means that the sender chooses a natural number
(between 0 and 255 in this example) and from that calculates another natural
(here in the range 0. . . 10), and this calculated number is transmitted over
the insecure network to the receiver. The receiver does exactly the same the
other way with a number that he/she chooses. From the numbers that they
initially chose and the numbers that they received from each other, they are
able to calculate a common key, p. This key is secret since the network does
not have sufficient information to calculate it directly. (Of course, in a real
situation the one-way function will be more complicated and the numbers
far larger.)

REFINING UML INTERACTIONS 29

sd Secure

A:sender S:network B:receiver

garbled(a) garbled(a)

xalt {na:0...255}

[a = (7**na) mod 11]

xalt {nb:0...255}

garbled(b)garbled(b)

[b = (7**nb) mod 11]

p = (b**na) mod 11 p = (a**nb) mod 11

Figure 26: Generalized xalt for the description of establishing a common secret key

To give a couple of concrete examples, we assume in Fig. 27 that the sender
has only the naturals 2 and 3 to choose from, while the receiver chooses only
from 4 and 5. The specification in Fig. 27 gives rise to four interaction ob-
ligations (with p = 1, 5, 9 or 10), one for each possible combination of values
for the two lifelines. The choice between these should be nondeterministic,
giving the intruder four possible values for the key. With more alternatives
for na and nb, as in the original specification, we get a lot of obligations and
potential keys making it difficult for the intruder to find the correct key by
plain guessing or by trial-and-error.

In Fig. 28 we indicate a possible decomposition of the sender A in the first
xalt-construct in Fig. 26. A is decomposed into a random generator and
a sender lifeline C. The generator loops a sufficient number of times, each
time sending either 0 or 1 to the sender. Taken together, these messages
will constitute the binary representation of the number na in Fig. 26. Using
xalt here, means that both 0 and 1 must be possible in each round in the
loop, giving a totally nondeterministic choice for na.

Simple calculations show that we will get the same possible values for na

in both diagrams, leading to the same obligations and the same values of
the parameter a in both cases, meaning that the decomposition is indeed a
valid refinement.

30 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

sd Secure

A:sender S:network B:receiver

garbled(5) garbled(5)

garbled(2) garbled(2)

[a = (7**2) mod 11 == 5]

[a = (7**3) mod 11 == 2]

xalt

garbled(3) garbled(3)

garbled(10) garbled(10)

 b = (7**4) mod 11 == 3]

 b = (7**5) mod 11 == 10]

xalt

p = (b**na) mod 11 p = (a**nb) mod 11

Figure 27: A few example-values for the generalized xalt

6. Implementation

In this section we explain what we mean by an implementation and what
it means for an implementation to be correct with respect to a STAIRS
specification.

Intuitively, if the specification has only one interaction obligation, a cor-
rect implementation may only produce traces belonging to the positive and
inconclusive trace sets of the obligation, i.e. no negative trace must be pro-
duced by the implementation. With more than one interaction obligation,
we may in general find the same trace being positive in one obligation while
negative in another.

Semantically, we represent implementations in the same way as we repres-
ent interactions, namely by sets of interaction obligations. From a semantic
point of view, an implementation is a special kind of specification charac-
terized by the following three criteria:

REFINING UML INTERACTIONS 31

sd Secure’

S:network B:receiver

garbled(a) garbled(a)

xalt

C:senderG:generator

0

1

loop {8}

na = 0

na = na*2

na = na*2 + 1

{ a = (7**na) mod 11 }

Figure 28: Refining generalized xalt by loop (and xalt)

◦ Its interaction obligations contain no inconclusive traces. Hence, each
interaction obligation is of the form (p,H \ p), where p 6= ∅.

◦ Whatever typecorrect input it receives from its environment it has at
least one output (doing nothing is for example also a response). This
means that for any possible environment behaviour, the implementa-
tion has at least one trace that is consistent with this behaviour. This
corresponds to the notion of winning strategy in Focus [1].

◦ It behaves causally. Its behaviour at any point in time depends only on
what has happened in its past. This is obviously a characteristic of any
real-life system (but not necessarily a characteristic of a specification
expressed by an interaction). This corresponds to the notion of strong
causality in Focus [1].

We say that an implementation I implements a STAIRS specification S if
and only if I is a limited refinement of S, i.e. [[S]] l [[I]]. This means
that an implementation may not add interaction obligations beyond those
given by the specification.

32 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

7. Conclusions

In this paper we have explored different kinds of nondeterminism and un-
derspecification, and motivated the need for having two different operators
(alt and xalt) for specifying alternative behaviours. Basically, alt defines
implicit nondeterminism in the sense of underspecification or abstraction,
while xalt defines inherent nondeterminism in the form of explicit choices
that must all be present in a valid implementation. We claim that together,
these two operators are sufficient to capture the necessary distinctions.

In this paper we have also proposed an extension to STAIRS making it
possible to use guards to choose between both implicit (specified by alt)
and explicit (specified by xalt) nondeterminism. In particular, the proposed
semantics ensures that adding guards to a specification is a valid refinement
step. It is straightforward to combine this extension with Timed STAIRS
[6], which extends STAIRS with time and three-event semantics.

7.1 Related work

Most formalisms do not distinguish between nondeterminism and underspe-
cification as we have done here. In [17], Walicki and Meldal makes a similar
distinction in the setting of algebraic specifications. Their main motivation
is that underspecification may some times in fact lead to overspecification,
and that in these cases it would be better to use explicit nondeterminism.

In LSC (Live Sequence Charts) [4, 5], charts, locations, messages and con-
ditions may all be characterized as either mandatory or provisional. Pro-
visional charts are called existential and they may happen if their initial
condition holds. This is comparable to potential alternatives in STAIRS.
Mandatory charts in LSC are called universal. Their interpretation is that
provided their initial condition holds, these charts must happen. A universal
chart specifies all allowed traces, and is therefore not the same as mandatory
alternatives in STAIRS, which only specifies some of the traces that must
be present in an implementation.

In [2], Cengarle and Knapp define the semantics of UML 2.0 interactions
by notions of positive and negative satisfaction. This approach has many
similarities with ours, but they do not distinguish between underspecification
and explicit nondeterminism as we do in STAIRS. With respect to negative
traces, their semantics is somewhat different from ours. For alternatives,
they define that a trace is negative only if it is negative in both operands.
Also, they define that for all possible traces, the trace is negative if a prefix
of it is specified as negative, even though the complete trace itself is not
described by the diagram. This allows for earlier identification of negative
traces. In contrast, we regard such a trace as inconclusive, arguing that if
a trace is not described in the diagram, then the specifier has either not
thought about the situation or not wanted to classify it as either positive or
negative.

In this paper we have modelled data in interactions indirectly through

REFINING UML INTERACTIONS 33

special events representing its use in assignments, constraints, and guards.
An example of an alternative approach may be found in [11], where Jonsson
and Padilla define a global semantics for an MSC (Message Sequence Chart)
by using an Abstract Execution Machine. Here, data are included in the
model by associating with each instance an environment consisting of its
local variables together with those received as message parameters.

Acknowledgements

The research on which this paper reports has partly been carried out within
the context of the IKT-2010 project SARDAS (15295/431) funded by Re-
search Council of Norway. We thank Rolv Bræk, Birger Møller Pedersen,
Knut Eilif Husa, Mass Soldal Lund, Atle Refsdal, Judith Rossebø, Manfred
Broy, Ina Schieferdecker, Thomas Weigert and the anonymous reviewers for
helpful feedback.

References

[1] Broy, M. and Stølen, K. 2001. Specification and Development of Interactive
Systems: Focus on Streams, Interfaces, and Refinement. Springer.

[2] Cengarle, M. V. and Knapp, A. 2004. UML 2.0 interactions: semantics and
refinement. In Proc. 3rd Int. Wsh. Critical Systems Development with UML,
Technical report TUM-I0415. Institut für Informatik, Technische Universität
München, 85–99.

[3] Chandy, K. M. and Misra, J. 1988. Parallel Program Design, A Foundation.
Addison-Wesley.

[4] Damm, W. and Harel, D. 1999. LSCs: Breathing life into message sequence
charts. In Proc. Formal Methods for Open Object-Based Distributed Systems.
Kluwer, 293–311.

[5] Harel, D. and Marelly, R. 2003. Come, Let’s Play: Scenario-Based Pro-

gramming Using LSCs and the Play-Engine. Springer.
[6] Haugen, Ø., Husa, K. E., Runde, R. K., and Stølen, K. 2005. Why timed

sequence diagrams require three-event semantics. In Scenarios: Models, Trans-

formations and Tools, Volume 3466 of LNCS. Springer, 1–25.
[7] Haugen, Ø., Husa, K. E., Runde, R. K., and Stølen, K. 2006. Why timed

sequence diagrams require three-event semantics. Tech. Report 309, Department
of Informatics, University of Oslo.

[8] Haugen, Ø., Husa, K.E., Runde, R.K., and Stølen, K. 2005. STAIRS
towards formal design with sequence diagrams. Journal of Software and Systems

Modeling, 4, 4, 349–458.
[9] Haugen, Ø. and Stølen, K. 2003. STAIRS — Steps to analyze interactions

with refinement semantics. In Proc. International Conference on UML, Volume
2863 of LNCS. Springer, 388–402.

[10] Jacob, J. 1989. On the derivation of secure components. In Proc. IEEE Sym-
posium on Security and Privacy . IEEE Press, 242–247.

[11] Jonsson, B. and Padilla, G. 2001. An execution semantics for MSC-2000. In
Proc. SDL Forum, Volume 2078 of LNCS. Springer, 365–378.

[12] Joshi, R. and Leino, K.R.M. 2000. A semantic approach to secure information
flow. Science of Computer Programming 37, 113–138.

[13] Object Management Group. 2004. UML 2.0 Superstructure Specification,
document: ptc/04-10-02 edition.

34 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

[14] Roscoe, A. W. 1995. CSP and determinism in security modelling. In
Proc. IEEE Symposium on Security and Privacy . IEEE Press, 114–127.

[15] Runde, R.K., Haugen, Ø., and Stølen, K. 2005. How to transform UML neg
into a useful construct. In Proc. Norsk Informatikkonferanse NIK’2005. Tapir,
55–66.

[16] Singh, S. 1999. The Code Book: the Science of Secrecy from Ancient Egypt to

Quantum Cryptography . Fourth Estate, London.
[17] Walicki, M. and Meldal, S. 2001. Nondeterminism vs. underspecification. In

Proc. World Multi-Conference on Systemics, Cybernetics and Informatics.

REFINING UML INTERACTIONS 35

Appendix A. Refinement by adding assignments and constraints

Intuitively, adding assignments to an interaction means adding more in-
formation to the specification and should therefore be considered a valid
refinement step. Similarly, adding contraints means redefining positive be-
haviours as negative and should also be a valid refinement step.

As assignments and constraints are not part of the externally visible be-
haviour, adding new assignments and constraints will always constitute a
black-box refinement according to definition (26). However, black-box re-
finement is often not sufficient as it in general also allows removal of assign-
ments and constraints.

By definition (20) of glass-box refinement, removing assignments and con-
straints are not allowed. Constraints may be strengthened, but adding as-
signments and constraints is not allowed as this means inserting new events
into the traces.

In order to allow addition, but not removal, of assignments and constraints,
we need a refinement relation which requires that the traces of the original
interaction are traces also of the refinement when abstracting away a subset
of the concrete check - and write-events.

Formally, we first define C and W to be the set of all possible check - and
write-events, respectively:

C
def
= {check(σ) | σ ∈ Var → Val} (29)

W
def
= {write(σ, σ′) | σ, σ′ ∈ Var → Val} (30)

We then define the function filt(t) to be the set of all traces that are equal
to the trace t when removing a subset of the check - and write-events in t:

filt(t)
def
= {h ∈ H | h 2 t ∧ (C ∪W) S©h = (C ∪W) S© t} (31)

where (C ∪W) means set complement (i.e. all events not in C or W) and
h 2 t means that h is a subtrace of t (but not necessarily a consecutive
subsequence), formally defined by:

h1 2 h2
def
= ∃p ∈ {1, 2}∞ : π2(({1} × E) T© (p, h2)) = h1 (32)

where A∞ is the set of all infinite sequences over the set A, π2 is a projection
operator returning the second element of a pair, and the filtering operator
T© is a generalization of S© , filtering pairs of sequences with respect to pairs
of elements (for a formal definition of T© , see [1]). The infinite sequence p

may be understood as an oracle, determining which of the events in h2 that
are present in the subtrace h1.

The filt function is overloaded to sets of traces in standard pointwise man-
ner, i.e.:

filt(s)
def
=

⋃

t∈s

filt(t) (33)

36 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

Finally, we redefine refinement of interaction obligations by:

(p, n) r (p′, n′)
def
= n ⊆ filt(n′) ∧ p ⊆ filt(p′) ∪ filt(n′) (34)

REFINING UML INTERACTIONS 37

Appendix B. Identity of skip

Lemma 1. For all syntactically well-formed interactions d:
∀(p, n) ∈ [[d]] : {〈〉} % p = p ∧ {〈〉} % n = n

Proof sketch: By induction on the structure of d.

Base cases:

(1) Case: d = skip

〈1〉1. [[skip]] = {({〈〉}, ∅)}
Proof: Definition (1) of skip.

〈1〉2. {〈〉} % p = p, i.e. {〈〉} % {〈〉} = {〈〉}
Proof: 〈1〉1 and definition (3) of %.

〈1〉3. {〈〉} % n = n, i.e. {〈〉} % ∅ = ∅
Proof: 〈1〉1 and definition (3) of %.

〈1〉4. Q.E.D.

(2) Case: d = e, where e is an event,
d = assign(var , expr), or
d = constr(c)

Proof sketch: All cases follow the same pattern, defined below.

Let: ev = e

cond1 = true
cond2 = false
in the case d = e

Let: ev = write(σ, σ′)
cond1 =

(σ′(var) = expr (σ) ∧ ∀v ∈ Var : (v = var ∨ σ′(v) = σ(v)))
cond2 = false
in the case d = assign(var , expr)

Let: ev = check(σ)
cond1 = c(σ)
cond2 = ¬c(σ)
in the case d = constr(c)

〈1〉1. [[d]] = {({〈ev〉 | cond1}, {〈ev〉 | cond2})}
Proof: Definition (2) of an event, definition (15) of assign, or defin-
ition (16) of constr.

〈1〉2. {〈〉} % {〈evt〉 | c} = {〈evt〉 | c} for arbitrary event evt and
arbitrary condition c.

〈2〉1. Case: c is a contradiction, i.e. {〈evt〉 | c} = ∅.
Proof:{〈〉} % ∅ = ∅ by definition (3) of %.

〈2〉2. Case: c is not a contradiction

38 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

Proof: For all traces t, 〈〉⌢ t = t, giving
{〈〉} % {〈evt〉 | c} = {〈evt〉 | c} by definition (3) of %.

〈2〉3. Q.E.D.
Proof: The cases are exhaustive.

〈1〉3. {〈〉} % p = p, i.e. {〈〉} % {〈ev〉 | cond1} = {〈ev〉 | cond1}
Proof: 〈1〉1 and 〈1〉2.

〈1〉4. {〈〉} % n = n, i.e. {〈〉} % {〈ev〉 | cond2} = {〈ev〉 | cond2}
Proof: 〈1〉1 and 〈1〉2.

〈1〉5. Q.E.D.

Induction cases:

Let: d be an interaction constructed from the (sub-)interactions d1, . . . , dm

using the composition operators defined in this paper.
Assume: ∀i ∈ [1,m] : ∀(pi, ni) ∈ [[di]] : {〈〉} % pi = pi ∧ {〈〉} % ni = ni

(induction hypothesis)
Prove: ∀(p, n) ∈ [[d]] : {〈〉} % p = p ∧ {〈〉} % n = n, i.e.

{〈〉} % p = p ∧ {〈〉} % n = n for arbitrary (p, n) ∈ [[d]] by ∀-rule.

(3) Case: d = seq [D], D a list of interactions

Proof sketch: By induction on the length of D.
〈1〉1. Base case: D = d1, i.e. d = seq [d1]

〈2〉1. [[seq [d1]]] = [[d1]]
Proof: Definition (7) of seq.

〈2〉2. Q.E.D.
Proof: 〈2〉1 and the induction hypothesis.

〈1〉2. Induction step: D = D′, di for i ∈ [1,m], i.e. d = seq [D′, di]
Assume: ∀(p′, n′) ∈ [[seq [D′]]] : {〈〉} % p′ = p′ ∧ {〈〉} % n′ = n′

(induction hypothesis 2)
Prove: {〈〉} % p = p ∧ {〈〉} % n = n for arbitrary

(p, n) ∈ [[seq [D′, di]]]
〈2〉1. Choose (p′, n′) ∈ [[seq [D′]]] and (pi, ni) ∈ [[di]] such that

p = p′ % pi and n = n′ % pi ∪ n′ % ni ∪ p′ % ni

Proof: Definitions (5)–(7) of seq.
〈2〉2. {〈〉} % p = p, i.e. {〈〉} % (p′ % pi) = p′ % pi

Proof: 〈2〉1 and associativity of % (lemma 11 in [7]), which gives
that {〈〉} % (p′ % pi) is equal to ({〈〉} % p′) % pi, which is equal
to p′ % pi by induction hypothesis 2.

〈2〉3. {〈〉} % n = n,
i.e. {〈〉} % (n′ % pi ∪ n′ % ni ∪ p′ % ni)
= n′ % pi ∪ n′ % ni ∪ p′ % ni

〈3〉1. {〈〉} % (n′ % pi) = n′ % pi

Proof: Associativity of % (lemma 11 in [7]) and induction hy-
pothesis 2.

〈3〉2. {〈〉} % (n′ % ni) = n′ % ni

REFINING UML INTERACTIONS 39

Proof: Associativity of % (lemma 11 in [7]) and induction hy-
pothesis 2.

〈3〉3. {〈〉} % (p′ % ni) = p′ % ni

Proof: Associativity of % (lemma 11 in [7]) and induction hy-
pothesis 2.

〈3〉4. Q.E.D.
Proof:〈2〉1, distributivity of % over ∪ (lemma 14 in [7]) and
associativity of ∪.

〈2〉4. Q.E.D.
〈1〉3. Q.E.D.

(4) Case: d = refuse [d1]

〈1〉1. [[refuse [d1]]] = {(∅, p1 ∪ n1) | (p1, n1) ∈ [[d1]]}
Proof: Definition (8) of refuse.

〈1〉2. {〈〉} % p = p, i.e. {〈〉} % ∅ = ∅
Proof: 〈1〉1 and definition (3) of %.

〈1〉3. {〈〉} % n = n, i.e. {〈〉} % (p1 ∪ n1) = p1 ∪ n1

〈2〉1. {〈〉} % (p1 ∪ n1) = ({〈〉} % p1) ∪ ({〈〉} % n1)
Proof: By distributivity of % over ∪ (lemma 14 in [7]).

〈2〉2. {〈〉} % p1 = p1

Proof: The induction hypothesis.
〈2〉3. {〈〉} % n1 = n1

Proof: The induction hypothesis.
〈2〉4. Q.E.D.

Proof: 〈1〉1 and 〈2〉1–〈2〉3.
〈1〉4. Q.E.D.

(5) Case: d = assert [d1]

〈1〉1. Choose (p1, n1) ∈ [[d1]] such that p = p1 and n = n1 ∪ (H \ p1)
Proof: Definition (9) of assert.

〈1〉2. {〈〉} % p = p, i.e. {〈〉} % p1 = p1

Proof: 〈1〉1 and the induction hypothesis.
〈1〉3. {〈〉} % n = n, i.e. {〈〉} % (n1 ∪ (H \ p1)) = n1 ∪ (H \ p1)

〈2〉1. {〈〉} % (n1 ∪ (H \ p1)) = ({〈〉} % n1) ∪ ({〈〉} % (H \ p1))
Proof: By distributivity of % over ∪ (lemma 14 in [7]).

〈2〉2. {〈〉} % n1 = n1

Proof: The induction hypothesis.
〈2〉3. {〈〉} % (H \ p1) = H \ p1

〈3〉1. H \ p1 ⊆ {〈〉} % (H \ p1)
Proof: Definition (3) of % and 〈〉⌢ t = t for all traces t.

〈3〉2. {〈〉} % (H \ p1) ⊆ H \ p1

Proof sketch: Proof by contradiction.
Assume: 1. h ∈ {〈〉} % (H \ p1)

2. h 6∈ H \ p1, i.e. h ∈ p1

Prove: false
〈4〉1. h ∈ {〈〉} % p1

40 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

Proof: Assumption 2 and the induction hypothesis.
〈4〉2. Choose h2 ∈ H \ p1 such that

∀l ∈ L : e.l S©h = e.l S© 〈〉⌢ e.l S©h2

Proof: Assumption 1 and definition (3) of %.
〈4〉3. Choose h′

2 ∈ p1 such that
∀l ∈ L : e.l S©h = e.l S© 〈〉⌢ e.l S©h′

2
Proof: 〈4〉1 and definition (3) of %.

〈4〉4. ∀l ∈ L : e.l S©h2 = e.l S©h′
2

Proof: 〈4〉2, 〈4〉3 and 〈〉⌢ t = t for all traces t.
〈4〉5. {〈〉} % p1 =

{h′ ∈ H | ∃h′
2 ∈ p1 : ∀l ∈ L : e.l S©h′ = e.l S©h′

2} = p1

Proof: The induction hypothesis, definition (3) of % and
〈〉⌢ t = t for all traces t.

〈4〉6. {h′ ∈ H | ∀l ∈ L : e.l S©h′ = e.l S©h′
2} ⊆ p1

Proof: 〈4〉3 and 〈4〉5.
〈4〉7. {h′ ∈ H | ∀l ∈ L : e.l S©h′ = e.l S©h2} ⊆ p1

Proof: 〈4〉4 and 〈4〉6.
〈4〉8. h2 ∈ p1

Proof: 〈4〉7, h2 ∈ {h′ ∈ H | ∀l ∈ L : e.l S©h′ = e.l S©h2} and
elementary set theory (x ∈ A ∧ A ⊆ B ⇒ x ∈ B).

〈4〉9. Q.E.D.
Proof: Contradiction by 〈4〉2 and 〈4〉8.

〈3〉3. Q.E.D.
Proof: By elementary set theory (A ⊆ B ∧ B ⊆ A ⇒ A = B).

〈2〉4. Q.E.D.
Proof: 〈1〉1 and 〈2〉1–〈2〉3.

〈1〉4. Q.E.D.

(6) Case: d = alt [d1, . . . , dm]

〈1〉1. For all i ∈ [1,m], choose (pi, ni) ∈ [[di]] such that p =
⋃

i∈[1,m] pi and

n =
⋃

i∈[1,m] ni

Proof: Definition (10) of alt and definition (11) of
⊎

.
〈1〉2. {〈〉} % p = p, i.e. {〈〉} %

⋃

i∈[1,m] pi =
⋃

i∈[1,m] pi

〈2〉1. {〈〉} %
⋃

i∈[1,m] pi =
⋃

i∈[1,m]({〈〉} % pi)

Proof: Distributivity of % over ∪ (lemma 14 in [7]).
〈2〉2.

⋃

i∈[1,m]({〈〉} % pi) =
⋃

i∈[1,m] pi

Proof: The induction hypothesis.
〈2〉3. Q.E.D.

Proof: 〈1〉1 and 〈2〉1–〈2〉2.
〈1〉3. {〈〉} % n = n, i.e. {〈〉} %

⋃

i∈[1,m] ni =
⋃

i∈[1,m] ni

〈2〉1. {〈〉} %
⋃

i∈[1,m] ni =
⋃

i∈[1,m]({〈〉} % ni)

Proof: Distributivity of % over ∪ (lemma 14 in [7]).
〈2〉2.

⋃

i∈[1,m]({〈〉} % ni) =
⋃

i∈[1,m] ni

Proof: The induction hypothesis.
〈2〉3. Q.E.D.

REFINING UML INTERACTIONS 41

Proof: 〈1〉1 and 〈2〉1–〈2〉2.
〈1〉4. Q.E.D.

(7) Case: d = xalt [d1 . . . dm]

〈1〉1. Choose i ∈ [1,m] such that (p, n) ∈ [[di]]
Proof: Definition (12) of xalt.

〈1〉2. {〈〉} % p = p

Proof: 〈1〉1 and the induction hypothesis.
〈1〉3. {〈〉} % n = n

Proof: 〈1〉1 and the induction hypothesis.
〈1〉4. Q.E.D.

(8) Case: d = alt [c1 → d1, . . . , cm → dm]

〈1〉1. For all i ∈ [1,m], choose (p′i, n
′
i) ∈ [[seq [constr(ci), di]]] such that

p =
⋃

i∈[1,m] p
′
i ∪ {〈check (σ)〉 | (

∧

j∈[1,m] ¬cj)(σ)} and

n =
⋃

i∈[1,m] n
′
i

Proof: Definition (17) of guarded alt and definition (11) of
⊎

.
〈1〉2. ∀i ∈ [1,m] : ∀(p′i, n

′
i) ∈ [[seq [constr(ci), di]]] :

{〈〉} % p′i = p′i ∧ {〈〉} % n′
i = n′

i

Proof: The induction hypothesis and the induction cases (3) and
(2) of seq and constr.

〈1〉3. {〈〉} % p = p,
i.e. {〈〉} % (

⋃

i∈[1,m] p
′
i ∪ {〈check (σ)〉 | (

∧

j∈[1,m] ¬cj)(σ)})

=
⋃

i∈[1,m] p
′
i ∪ {〈check (σ)〉 | (

∧

j∈[1,m] ¬cj)(σ)}

〈2〉1. {〈〉} %
⋃

i∈[1,m] p
′
i =

⋃

i∈[1,m]({〈〉} % p′i)

Proof: Distributivity of % over ∪ (lemma 14 in [7]).
〈2〉2.

⋃

i∈[1,m]({〈〉} % p′i) =
⋃

i∈[1,m] p
′
i

Proof: 〈1〉2.
〈2〉3. {〈〉} % {〈check(σ)〉 | (

∧

j∈[1,m] ¬cj)(σ)} = {〈check (σ)〉 | (
∧

j∈[1,m] ¬cj)(σ)}

Proof: Definition (3) of %.
〈2〉4. Q.E.D.

Proof: 〈1〉1, 〈2〉1–〈2〉3 and distributivity of % over ∪ (lemma 14
in [7]).

〈1〉4. {〈〉} % n = n, i.e. {〈〉} %
⋃

i∈[1,m] n
′
i =

⋃

i∈[1,m] n
′
i

〈2〉1. {〈〉} %
⋃

i∈[1,m] n
′
i =

⋃

i∈[1,m]({〈〉} % n′
i)

Proof: Distributivity of % over ∪ (lemma 14 in [7]).
〈2〉2.

⋃

i∈[1,m]({〈〉} % n′
i) =

⋃

i∈[1,m] n
′
i

Proof: 〈1〉2.
〈2〉3. Q.E.D.

Proof: 〈1〉1, 〈2〉1 and 〈2〉2.
〈1〉5. Q.E.D.

(9) Case: d = xalt [c1 → d1, . . . , cm → dm]

〈1〉1. Choose i ∈ [1,m] such that (p, n) ∈ [[seq[constr(ci), di]]]

42 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

Proof: Definition (18) of guarded xalt.
〈1〉2. ∀i ∈ [1,m] : ∀(p′i, n

′
i) ∈ [[seq [constr(ci), di]]] :

{〈〉} % p′i = p′i ∧ {〈〉} % n′
i = n′

i

Proof: The induction hypothesis and the induction cases (3) and
(2) of seq and constr.

〈1〉3. {〈〉} % p = p

Proof: 〈1〉1 and 〈1〉2.
〈1〉4. {〈〉} % n = n

Proof: 〈1〉1 and 〈1〉2.
〈1〉5. Q.E.D.

(10) Case: d = loop I [d1]

〈1〉1. For all j ∈ I, choose (pj , nj) ∈ µj[[d1]] such that p =
⋃

j∈I pj

and n =
⋃

j∈I nj

Proof: Definition (14) of loop and definition (11) of
⊎

.
〈1〉2. ∀j ∈ I : ∀(pj, nj) ∈ µj[[d1]] : {〈〉} % pj = pj ∧ {〈〉} % nj = nj

Proof sketch: By induction on j.
〈2〉1. Base case: j = 0

〈3〉1. (pj , nj) = ({〈〉}, ∅)
Proof: Definition (13) of µ0.

〈3〉2. {〈〉} % pj = pj, i.e. {〈〉} % {〈〉} = {〈〉}
Proof: 〈3〉1 and definition (3) of %.

〈3〉3. {〈〉} % nj = nj, i.e. {〈〉} % ∅ = ∅
Proof: 〈3〉1 and definition (3) of %.

〈3〉4. Q.E.D.
〈2〉2. Base case: j = 1

〈3〉1. (pj , nj) ∈ [[d1]]
Proof: Definition (13) of µ0.

〈3〉2. {〈〉} % pj = pj

Proof: 〈3〉1 and the induction hypothesis.
〈3〉3. {〈〉} % nj = nj

Proof: 〈3〉1 and the induction hypothesis.
〈3〉4. Q.E.D.

〈2〉3. Induction step: j > 1
Assume: ∀(pj, nj) ∈ µj−1[[d1]] : {〈〉} % pj ∧ {〈〉} % nj = nj

Prove: ∀(pj, nj) ∈ µj[[d1]] : {〈〉} % pj ∧ {〈〉} % nj = nj,
i.e. {〈〉} % pj ∧ {〈〉} % nj = nj for arbitrary
(pj , nj) ∈ µj [[d1]] by ∀-rule.

〈3〉1. (pj , nj) ∈ µj−1[[d1]] % [[d1]]
Proof: Definition (13) of µn.

〈3〉2. Choose (p′j , n
′
j) ∈ µj−1[[d1]] and (p′′j , n

′′
j) ∈ [[d1]] such that

pj = p′j % p′′j and nj = n′
j % p′′j ∪ n′

j % n′′
j ∪ p′j % n′′

j

Proof: 〈3〉1 and definitions (5)–(6) of %.
〈3〉3. {〈〉} % pj = pj, i.e. {〈〉} % (p′j % p′′j) = p′j % p′′j

Proof: 〈3〉1 and associativity of % (lemma 11 in [7]), which

REFINING UML INTERACTIONS 43

gives that {〈〉} % (p′j % p′′j) is equal to ({〈〉} % p′j) % p′′j , which

is equal to p′j % p′′j by induction hypothesis 2.
〈3〉4. {〈〉} % nj = nj,

i.e. {〈〉} % (n′
j % p′′j ∪ n′

j % n′′
j ∪ p′j % n′′

j)

= n′
j % p′′j ∪ n′

j % n′′
j ∪ p′j % n′′

j

〈4〉1. {〈〉} % (n′
j % p′′j) = n′

j % p′′j
Proof: Associativity of % (lemma 11 in [7]) and induction
hypothesis 2.

〈4〉2. {〈〉} % (n′
j % n′′

j) = n′
j % n′′

j

Proof: Associativity of % (lemma 11 in [7]) and induction
hypothesis 2.

〈4〉3. {〈〉} % (p′j % n′′
j) = p′j % n′′

j

Proof: Associativity of % (lemma 11 in [7]) and induction
hypothesis 2.

〈4〉4. Q.E.D.
Proof:〈3〉1, distributivity of % over ∪ (lemma 14 in [7]) and
associativity of ∪.

〈3〉5. Q.E.D.
〈2〉4. Q.E.D.

〈1〉3. {〈〉} % p = p, i.e. {〈〉} %
⋃

j∈I pj =
⋃

j∈I pj

〈2〉1. {〈〉} %
⋃

j∈I pj =
⋃

j∈I({〈〉} % pj)

Proof: Distributivity of % over ∪ (lemma 14 in [7]).
〈2〉2.

⋃

j∈I({〈〉} % pj) =
⋃

j∈I pj

Proof: The induction hypothesis.
〈2〉3. Q.E.D.

Proof: 〈1〉1 and 〈2〉1–〈2〉2.
〈1〉4. {〈〉} % n = n, i.e. {〈〉} %

⋃

j∈I nj =
⋃

j∈I nj

〈2〉1. {〈〉} %
⋃

j∈I nj =
⋃

j∈I({〈〉} % nj)

Proof: Distributivity of % over ∪ (lemma 14 in [7]).
〈2〉2.

⋃

j∈I({〈〉} % nj) =
⋃

j∈I nj

Proof: The induction hypothesis.
〈2〉3. Q.E.D.

Proof: 〈1〉1 and 〈2〉1–〈2〉2.
〈1〉5. Q.E.D.

2

Lemma 2. For all syntactically well-formed interactions d:
∀(p, n) ∈ [[d]] : p % {〈〉} = p ∧ n % {〈〉} = n

Proof sketch: By induction on the structure of d.

Proof:
All cases except from seq and the induction step for loop are symmetrical to
the cases in the proof of lemma 1, but using the symmetrical lemma 15 in [7]
instead of lemma 14 in [7]. The cases for seq and loop are treated below.

44 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

Assume: ∀i ∈ [1,m] : ∀(pi, ni) ∈ [[di]] : pi % {〈〉} = pi ∧ ni % {〈〉} = ni

(induction hypothesis)
Prove: ∀(p, n) ∈ [[d]] : p % {〈〉} = p ∧ n % {〈〉} = n, i.e.

p % {〈〉} = p ∧ n % {〈〉} = n for arbitrary (p, n) ∈ [[d]] by ∀-rule.

(3) Case: d = seq [D], D a list of interactions

〈1〉1. Case: D = d1, i.e. d = seq [d1]
〈2〉1. [[seq [d1]]] = [[d1]]

Proof: Definition (7) of seq.
〈2〉2. Q.E.D.

Proof: 〈2〉1 and the induction hypothesis.
〈1〉2. Case: D = D′, di for i ∈ [1,m], i.e. d = seq [D′, di]

〈2〉1. Choose (p′, n′) ∈ [[seq [D′]]] and (pi, ni) ∈ [[di]] such that
p = p′ % pi and n = n′ % pi ∪ n′ % ni ∪ p′ % ni

Proof: Definitions (5)–(7) of seq.
〈2〉2. p % {〈〉} = p, i.e. (p′ % pi) % {〈〉} = p′ % pi

Proof: 〈2〉1 and associativity of % (lemma 11 in [7]), which gives
that (p′ % pi) % {〈〉} is equal to p′ % (pi % {〈〉}), which is equal
to p′ % pi by the induction hypothesis.

〈2〉3. n % {〈〉} = n,
i.e. (n′ % pi ∪ n′ % ni ∪ p′ % ni) % {〈〉}
= n′ % pi ∪ n′ % ni ∪ p′ % ni

〈3〉1. (n′ % pi) % {〈〉} = n′ % pi

Proof: Associativity of % (lemma 11 in [7]) and the induction
hypothesis.

〈3〉2. (n′ % ni) % {〈〉} = n′ % ni

Proof: Associativity of % (lemma 11 in [7]) and the induction
hypothesis.

〈3〉3. (p′ % ni) % {〈〉} = p′ % ni

Proof: Associativity of % (lemma 11 in [7]) and the induction
hypothesis.

〈3〉4. Q.E.D.
Proof:〈2〉1, distributivity of % over ∪ (lemma 15 in [7]) and
associativity of ∪.

〈2〉4. Q.E.D.
〈1〉3. Q.E.D.

Proof: The cases are exhaustive by definition (7) of seq.

(10) Case: d = loop I [d1]

〈2〉3. Case: j > 1

〈3〉1. (pj , nj) ∈ µj−1[[d1]] % [[d1]]
Proof: Definition (13) of µn.

〈3〉2. Choose (p′j , n
′
j) ∈ µj−1[[d1]] and (p′′j , n

′′
j) ∈ [[d1]] such that

pj = p′j % p′′j and nj = n′
j % p′′j ∪ n′

j % n′′
j ∪ p′j % n′′

j

Proof: 〈3〉1 and definitions (5)–(6) of %.

REFINING UML INTERACTIONS 45

〈3〉3. pj % {〈〉} = pj, i.e. (p′j % p′′j) % {〈〉} = p′j % p′′j
Proof: 〈3〉1 and associativity of % (lemma 11 in [7]), which
gives that (p′j % p′′j) % {〈〉} is equal to p′j % (p′′j % {〈〉}), which

is equal to p′j % p′′j by the induction hypothesis.
〈3〉4. nj % {〈〉} = nj,

i.e. (n′
j % p′′j ∪ n′

j % n′′
j ∪ p′j % n′′

j) % {〈〉}

= n′
j % p′′j ∪ n′

j % n′′
j ∪ p′j % n′′

j

〈4〉1. (n′
j % p′′j) % {〈〉} = n′

j % p′′j
Proof: Associativity of% (lemma 11 in [7]) and the induction
hypothesis.

〈4〉2. (n′
j % n′′

j) % {〈〉} = n′
j % n′′

j

Proof: Associativity of% (lemma 11 in [7]) and the induction
hypothesis.

〈4〉3. (p′j % n′′
j) % {〈〉} = p′j % n′′

j

Proof: Associativity of% (lemma 11 in [7]) and the induction
hypothesis.

〈4〉4. Q.E.D.
Proof:〈3〉1, distributivity of % over ∪ (lemma 15 in [7]) and
associativity of ∪.

〈3〉5. Q.E.D.

2

Theorem 1. skip is the left identity element for weak sequencing

Prove: seq [skip, d] = d

〈1〉1. ∀(p, n) ∈ [[d]] : {〈〉} % p = p ∧ {〈〉} % n = n

Proof: Lemma 1
〈1〉2. {({〈〉} % p, {〈〉} % n) | (p, n) ∈ [[d]]} = {(p, n) | (p, n) ∈ [[d]]}

Proof: 〈1〉1.
〈1〉3. {({〈〉}, ∅)} % {(p, n) | (p, n) ∈ [[d]]} = {(p, n) | (p, n) ∈ [[d]]}

Proof: 〈1〉2 and definitions (3)–(6) of %.
〈1〉4. [[skip]] % [[d]] = [[d]]

Proof: 〈1〉3, definition (1) of skip and elementary set theory
({a | a ∈ A} = A for all sets A).

〈1〉5. [[seq [skip, d]]] = [[d]]
Proof: 〈1〉4 and definition (7) of seq.

〈1〉6. Q.E.D.

2

Theorem 2. skip is the right identity element for weak sequencing

Prove: seq [d, skip] = d

Proof:
Symmetrical to the proof of theorem 1, using lemma 2 instead of lemma 1.

2

46 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

Appendix C. Comparing the guarded and unguarded versions of

alt and xalt

Theorem 3. The definitions of guarded and unguarded alt are consistent

Setting the guards to true in definition (17) of guarded alt, results in the
same semantics as definition (10) of unguarded alt when abstracting away
all check -events introduced by the guarded alt.

Proof:

[[alt [true → d1, . . . , true → dm]]] (with abstraction)
= {

⊎

{o1, . . . , om, ({〈〉 | (
∧

j∈[1,m] ¬true)(σ)}, ∅)} |

∀i ∈ [1,m] : oi ∈ [[seq [skip, di]]] } (see (∗) below)
= {

⊎

{o1, . . . , om, (∅, ∅)} | ∀i ∈ [1,m] : oi ∈ [[seq [skip, di]]] } (see (∗∗) below)
= {

⊎

{o1, . . . , om} | ∀i ∈ [1,m] : oi ∈ [[seq [skip, di]]] } (def. (11) of
⊎

)
= {

⊎

{o1, . . . , om} | ∀i ∈ [1,m] : oi ∈ [[di]] } (lemma 1)
= [[alt [d1, . . . , dm]]] (def. (10) of alt)

(*) definition (17), calculation of constr(true) on page 16, abstracting away
all check -events introduced by definition (17) and definition (1) of skip.

(∗∗) {〈check(σ)〉 | (
∧

j∈[1,m] ¬true)(σ)} = {〈check (σ)〉 | (
∧

j∈[1,m] false)(σ)}

= {〈check (σ)〉 | false(σ)} = {〈check(σ)〉 | false} = ∅

2

Theorem 4. The definitions of guarded and unguarded xalt are consistent.

Setting the guards to true in definition (18) of guarded xalt, results in the
same semantics as definition (12) of unguarded xalt when abstracting away
all check -events introduced by the guarded xalt.

Proof:

[[xalt [true → d1, . . . , true → dm]]] (with abstraction)
=

⋃

i∈[1,m] [[seq [skip, di]]] (see (∗) below)

=
⋃

i∈[1,m] [[di]] (theorem 1)

= [[xalt [d1, . . . , dm]]] (def. (12) of xalt)

(*) definition (18), calculation of constr(true) on page 16, abstracting away
all check -events introduced by definition (18) and definition (1) of skip.

2

REFINING UML INTERACTIONS 47

Appendix D. Reflexivity and transitivity of limited refinement

Lemma 3.

For all syntactically well-formed interactions d: [[d]] 6= ∅

Proof: Straightforward by induction on the structure of d.

2

Theorem 5. The limited refinement operator l is reflexive.

Prove: d l d

〈1〉1. d g d

Proof: By reflexivity of g (theorem 8 in [7]).
〈1〉2. Choose arbitrary o′ ∈ [[d]]

Proof: [[d]] is non-empty by lemma 3.
〈1〉3. Choose o = o′.

Proof: 〈1〉2.
〈1〉4. o′ r o′

Proof: By reflexivity of r (lemma 25 in [7]).
〈1〉5. ∀o′ ∈ [[d]] : ∃o ∈ [[d]] : o r o′

Proof: 〈1〉2, 〈1〉3 and 〈1〉4.
〈1〉6. Q.E.D.

Proof: 〈1〉1, 〈1〉5 and definition (21) of l.

2

Theorem 6. The limited refinement operator l is transitive.

Assume: (1) d l d′

(2) d′ l d′′

Prove: d l d′′

〈1〉1. d g d′′

Proof: The assumptions, definition (21) of l, and transitivity of g

(theorem 9 in [7]).
〈1〉2. Choose arbitrary o′′ = (p′′, n′′) ∈ [[d′′]]

Proof: [[d′′]] is non-empty by lemma 3.
〈1〉3. Choose o′ = (p′, n′) ∈ [[d′]] such that (p′, n′) r (p′′, n′′)

Proof: 〈1〉2, assumption 2 and definition (21) of l.
〈1〉4. Choose o = (p, n) ∈ [[d]] such that (p, n) r (p′, n′)

Proof: 〈1〉3, assumption 1 and definition (21) of l.
〈1〉5. (p, n) r (p′′, n′′)

Proof: 〈1〉4, 〈1〉3 and transitivity of r (lemma 26 in [7]).
〈1〉6. ∀o′′ ∈ [[d′′]] : ∃o ∈ [[d]] : o r o′′

Proof: 〈1〉2, 〈1〉4 and 〈1〉5.
〈1〉7. Q.E.D.

Proof: 〈1〉1, 〈1〉6 and definition (21) of l.

2

48 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

Appendix E. Monotonicity results

General proof sketch for all monotonicity proofs for limited refinement, l:
The first part of definition (21) of l follows from the assumption(s) and
the corresponding monotonicity theorem for general refinement, g. For the
second part of definition (21), the proof is symmetrical to the corresponding
monotonicity proof for g. The difference is that for g we choose an
arbitrary interaction obligation for the original interaction and find a refining
interaction obligation in the refinement, while for l we choose an arbitrary
interaction obligation in the refining interaction and find a corresponding
interaction obligation in the original interaction.

Appendix E.1 Interactions without data

Lemma 4. (To be used when proving monotonicity with respect to refuse.)

Assume: (p, n) r (p′, n′)
Prove: (∅, p ∪ n) r (∅, p′ ∪ n′)

〈1〉1. Requirement 1: p ∪ n ⊆ p′ ∪ n′

Proof: p ⊆ p′ ∪ n′ and n ⊆ n′ by the assumption and definition (19) of
 r.

〈1〉2. Requirement 2: ∅ ⊆ ∅ ∪ (p′ ∪ n′)
Proof: Trivial.

〈1〉3. Q.E.D.
Proof: Definition (19) of r.

2

Theorem 7. Monotonicity of g with respect to the refuse operator

Assume: d1 g d′1
Prove: refuse [d1] g refuse [d′1]

Proof sketch: Each obligation o ∈ [[refuse [d1]]] is constructed from an
obligation o1 ∈ [[d1]]. By the assumption, we may select an obligation
o′1 ∈ [[d′1]] such that o1 r o′1. Using o′1 we then construct an obligation
o′ ∈ [[refuse [d′1]]] and prove by lemma 4 that o r o′.

〈1〉1. Choose arbitrary o = (p, n) ∈ [[refuse [d1]]]
Proof: [[refuse [d1]]] is non-empty by lemma 3.

〈1〉2. Choose (p1, n1) ∈ [[d1]] such that p = ∅ and n = p1 ∪ n1

Proof: 〈1〉1 and definition (8) of refuse.
〈1〉3. Choose (p′1, n

′
1) ∈ [[d′1]] such that (p1, n1) r (p′1, n

′
1)

Proof: 〈1〉2, the assumption and definition (20) of g.
〈1〉4. o′ = (p′, n′) = (∅, p′1 ∪ n′

1) ∈ [[refuse [d′1]]]
Proof: 〈1〉3 and definition (8) of refuse.

〈1〉5. (p, n) r (p′, n′)

REFINING UML INTERACTIONS 49

Proof: 〈1〉2, 〈1〉3, 〈1〉4 and lemma 4.
〈1〉6. ∀o ∈ [[refuse [d1]]] : ∃o′ ∈ [[refuse [d′1]]] : o r o′

Proof: 〈1〉1, 〈1〉4, 〈1〉5 and ∀-rule.
〈1〉7. Q.E.D.

Proof: 〈1〉6 and definition (20) of g.

2

Theorem 8. Monotonicity of l with respect to the refuse operator

Assume: d1 l d′1
Prove: refuse [d1] l refuse [d′1]

〈1〉1. refuse [d1] g refuse [d′1]
Proof: The assumption and theorem 7 (monotonicity of g with respect
to refuse).

〈1〉2. Choose arbitrary o′ = (p′, n′) ∈ [[refuse [d′1]]]
Proof: [[refuse [d′1]]] is non-empty by lemma 3.

〈1〉3. Choose (p′1, n
′
1) ∈ [[d′1]] such that p′ = ∅ and n′ = p′1 ∪ n′

1
Proof: 〈1〉2 and definition (8) of refuse.

〈1〉4. Choose (p1, n1) ∈ [[d1]] such that (p1, n1) r (p′1, n
′
1)

Proof: 〈1〉3, the assumption and definition (21) of l.
〈1〉5. o = (p, n) = (∅, p1 ∪ n1) ∈ [[refuse [d1]]]

Proof: 〈1〉4 and definition (8) of refuse.
〈1〉6. (p, n) r (p′, n′)

Proof: 〈1〉3, 〈1〉4, 〈1〉5 and lemma 4.
〈1〉7. ∀o′ ∈ [[refuse [d′1]]] : ∃o ∈ [[refuse [d1]]] : o r o′

Proof: 〈1〉2, 〈1〉5, 〈1〉6 and ∀-rule.
〈1〉8. Q.E.D.

Proof: 〈1〉1, 〈1〉7 and definition (21) of l.

2

Theorem 9. Monotonicity of l with respect to the loop operator

Assume: d1 l d′1
Prove: loop I [d1] l loop I [d′1]

〈1〉1. loop I [d1] g loop I [d′1]
Proof: The assumption and monotonicity of g with respect to loop

(theorem 16 in [7]).
〈1〉2. Choose arbitrary o′ = (p′, n′) ∈ [[loop I [d′1]]]

Proof: [[loop I [d′1]]] is non-empty by lemma 3.
〈1〉3. For all i ∈ I, choose (p′i, n

′
i) ∈ µi[[d′1]] such that

p′ =
⋃

i∈I p′i and n′ =
⋃

i∈I n′
i

Proof: Definition (14) of loop and definition (11) of
⊎

.
〈1〉4. For all i ∈ I, choose (pi, ni) ∈ µi[[d1]] such that (pi, ni) r (p′i, n

′
i)

〈2〉1. ∀i ∈ I: ∀o′ ∈ µi[[d′1]] : ∃o ∈ µi[[d1]] : o r o′

Proof sketch: By induction on i.

50 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

〈3〉1. ∃o ∈ µi[[d1]] : o r o′ for arbitrary i ∈ I, o′ ∈ µi[[d′1]]
〈4〉1. Case: i = 0

〈5〉1. o′ = {({〈〉}, ∅)}
Proof: Definition (13) of µ0.

〈5〉2. o′ = {({〈〉}, ∅)} ∈ µ0[[d1]]
Proof: Definition (13) of µ0.

〈5〉3. o′ r o′

Proof: Reflexivity of r (lemma 25 in [7]).
〈5〉4. Q.E.D.

Proof: 〈5〉2 and 〈5〉3.
〈4〉2. Case: i = 1

〈5〉1. o′ ∈ [[d′1]]
Proof: Definition (13) of µ1.

〈5〉2. Choose o ∈ [[d1]] such that o r o′

Proof: 〈5〉1, the assumption and definition (21) of l.
〈5〉3. o ∈ µ1[[d1]]

Proof: 〈5〉2 and definition (13) of µ1.
〈5〉4. Q.E.D.

Proof: 〈5〉2 and 〈5〉3.
〈4〉3. Case: i > 1

〈5〉1. Assume: ∀o′ ∈ µk[[d′1]] : ∃o ∈ µk[[d1]] : o r o′

(induction hypothesis)
Prove: ∀o′ ∈ µk+1[[d′1]] : ∃o ∈ µk+1[[d1]] : o r o′

〈6〉1. ∃o ∈ µk+1[[d1]] : o r o′ for arbitrary o′ = (p′, n′) ∈
µk+1[[d′1]]

〈7〉1. Choose (p′k, n
′
k) ∈ µk[[d′1]] and (p′1, n

′
1) ∈ [[d′1]] such that

(p′, n′) = (p′k, n
′
k) % (p′1, n

′
1)

Proof: 〈6〉1, definition (13) of µn and definition (6) of %.
〈7〉2. Choose (pk, nk) ∈ µk[[d1]] such that

(pk, nk) r (p′k, n
′
k)

Proof: 〈7〉1 and the induction hypothesis.
〈7〉3. Choose (p1, n1) ∈ [[d1]] such that (p1, n1) r (p′1, n

′
1)

Proof: 〈7〉1 and the main assumption.
〈7〉4. o = (p, n) = (pk, nk) % (p1, n1) ∈ µk+1[[d1]]

Proof: 〈7〉2, 〈7〉3, definition (13) of µn and definition (6)
of %.

〈7〉5. o r o′

Proof: 〈7〉1, 〈7〉2, 〈7〉3, 〈7〉4 and monotonicity of r with
respect to % (lemma 30 in [7]).

〈7〉6. Q.E.D.
Proof: 〈7〉4 and 〈7〉5.

〈6〉2. Q.E.D.
Proof: ∀-rule.

〈5〉2. Q.E.D.
〈4〉4. Q.E.D.

Proof: The cases are exhaustive as i must be a natural number.

REFINING UML INTERACTIONS 51

〈3〉2. Q.E.D.
Proof: ∀-rule.

〈2〉2. Q.E.D.
Proof: 〈1〉3 and 〈2〉1.

〈1〉5. o = (p, n) = (
⋃

i∈I pi,
⋃

i∈I ni) ∈ [[loop I [d1]]]
Proof: 〈1〉4, definition (14) of loop and definition (11) of

⊎

.
〈1〉6. (p, n) r (p′, n′)

〈2〉1. Requirement 1: n ⊆ n′, i.e.
⋃

i∈I ni ⊆
⋃

i∈I n′
i

Proof: ∀i ∈ I : ni ⊆ n′
i by 〈1〉4 and definition (19) of r.

〈2〉2. Requirement 2: p ⊆ p ∪ n′, i.e.
⋃

i∈I pi ⊆
⋃

i∈I p′i ∪
⋃

i∈I n′
i

Proof: ∀i ∈ I : pi ⊆ p′i ∪ n′
i by 〈1〉4 and definition (19) of r.

〈2〉3. Q.E.D.
Proof: Definition (19) of r.

〈1〉7. ∀o′ ∈ [[loop I [d′1]]] : ∃o ∈ [[loop I [d1]]] : o r o′

Proof: 〈1〉2, 〈1〉5, 〈1〉6 and ∀-rule.
〈1〉8. Q.E.D.

Proof: 〈1〉1, 〈1〉7 and definition (21) of l.

2

Theorem 10. Monotonicity of l with respect to the seq operator

Assume: ∀i ∈ [1,m] : di l d′i
Prove: seq [d1, . . . , dm] l seq [d′1, . . . , d

′
m]

〈1〉1. seq [d1, . . . , dm] g seq [d′1, . . . , d
′
m]

Proof: The assumption and monotonicity of g with respect to seq

(theorem 13 in [7]).
〈1〉2. Choose arbitrary o′ = (p′, n′) ∈ [[seq [d′1, . . . , d

′
m]]]

Proof: [[seq [d′1, . . . , d
′
m]]] is non-empty by lemma 3.

〈1〉3. ∃o ∈ [[seq [d1, . . . , dm]]] : o r o′

Proof sketch:By induction on m, the number of seq-operands.
〈2〉1. Base case: m = 1

〈3〉1. o′ ∈ [[d′1]]
Proof: 〈1〉2 and definition (7) of seq.

〈3〉2. Choose o ∈ [[d1]] such that o r o′

Proof: 〈3〉1, the assumption and definition (21) of l.
〈3〉3. o ∈ [[seq [d1]]]

Proof: 〈3〉2 and definition (7) of seq.
〈3〉4. Q.E.D.

Proof: 〈3〉2 and 〈3〉3.
〈2〉2. Induction step: m = k + 1

Assume: ∀o′ ∈ [[seq [d′1, . . . , d
′
k]]] : ∃o ∈ [[seq [d1, . . . , dk]]] : o r o′

(induction hypothesis)
Prove: ∀o′ ∈ [[seq [d′1, . . . , d

′
k+1]]] :

∃o ∈ [[seq [d1, . . . , dk+1]]] : o r o′

〈3〉1. Choose arbitrary o′ = (p′, n′) ∈ [[seq [d′1, . . . , d
′
k+1]]]

52 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

Proof: [[seq [d′1, . . . , d
′
k+1]]] is non-empty by lemma 3.

〈3〉2. Choose (p′1k, n
′
1k) ∈ [[seq [d′1, . . . , d

′
k]]] and

(p′k+1, n
′
k+1) ∈ [[d′k+1]] such that (p′, n′) = (p′1k, n

′
1k) % (p′k+1, n

′
k+1)

Proof: 〈3〉1 and definitions (6)–(7) of seq.
〈3〉3. Choose (p1k, n1k) ∈ [[seq [d1, . . . , dk]]] such that

(p1k, n1k) r (p′1k, n
′
1k)

Proof: 〈3〉2 and the induction hypothesis.
〈3〉4. Choose (pk+1, nk+1) ∈ [[dk+1]] such that

(pk+1, nk+1) r (p′k+1, n
′
k+1)

Proof: 〈3〉2, the main assumption and definition (21) of l.
〈3〉5. o = (p, n) = (p1k, n1k) % (pk+1, nk+1) ∈ [[seq [d1, . . . , dk+1]]]

Proof: 〈3〉3, 〈3〉4, and definitions (6)–(7) of seq.
〈3〉6. o r o′

Proof: 〈3〉1–〈3〉5 and monotonicity of r with respect to % (lemma
30 in [7]).

〈3〉7. Q.E.D.
Proof: 〈3〉5 and 〈3〉6.

〈2〉3. Q.E.D.
Proof: The cases are exhaustive as m is a natural number.

〈1〉4. ∀o′ ∈ [[d′]] : ∃o ∈ [[d]] : o r o′

Proof: 〈1〉2, 〈1〉3 and ∀-rule.
〈1〉5. Q.E.D.

Proof: 〈1〉1, 〈1〉4 and definition (21) of l.

2

Theorem 11. Monotonicity of l with respect to the alt operator

Assume: ∀i ∈ [1,m] : di l d′i
Prove: alt [d1, . . . , dm] l alt [d′1, . . . , d

′
m]

〈1〉1. alt [d1, . . . , dm] g alt [d′1, . . . , d
′
m]

Proof: The assumption and monotonicity of g with respect to alt (the-
orem 11 in [7]).

〈1〉2. Choose arbitrary o′ = (p′, n′) ∈ [[alt [d′1, . . . , d
′
m]]]

Proof: [[alt [d′1, . . . , d
′
m]]] is non-empty by lemma 3.

〈1〉3. For all i ∈ [1,m], choose (p′i, n
′
i) ∈ [[d′i]] such that p′ =

⋃

i∈[1,m] p
′
i and

n′ =
⋃

i∈[1,m] n
′
i

Proof: 〈1〉2, definition (10) of alt and definition (11) of
⊎

.
〈1〉4. For all i ∈ [1,m], choose (pi, ni) ∈ [[di]] such that (pi, ni) r (p′i, n

′
i)

Proof: 〈1〉3, the assumption and definition (21) of l.
〈1〉5. o = (p, n) = (

⋃

i∈[1,m] pi,
⋃

i∈[1,m] ni) ∈ [[alt [d1, . . . , dm]]]

Proof: 〈1〉4, definition (10) of alt and definition (11) of
⊎

.
〈1〉6. (p, n) r (p′, n′)

〈2〉1. Requirement 1: n ⊆ n′, i.e.
⋃

i∈[1,m] ni ⊆
⋃

i∈[1,m] n
′
i

Proof: ∀i ∈ [1,m] : ni ⊆ n′
i by 〈1〉4 and definition (19) of r.

〈2〉2. Requirement 2: p ⊆ p′ ∪ n′, i.e.
⋃

i∈[1,m] pi ⊆
⋃

i∈[1,m] p
′
i ∪

⋃

i∈[1,m] n
′
i

REFINING UML INTERACTIONS 53

Proof: ∀i ∈ [1,m] : pi ⊆ p′i ∪ n′
i by 〈1〉4 and definition (19) of r.

〈2〉3. Q.E.D.
Proof: Definition (19) of r.

〈1〉7. ∀o′ ∈ [[alt [d′1, . . . , d
′
m]]] : ∃o ∈ [[alt [d1, . . . , dm]]] : o r o′

Proof: 〈1〉2, 〈1〉5, 〈1〉6 and ∀-rule.
〈1〉8. Q.E.D.

Proof: 〈1〉1, 〈1〉7 and definition (21) of l.

2

Theorem 12. Monotonicity of l with respect to the xalt operator

Assume: ∀i ∈ [1,m] : di l d′i
Prove: xalt [d1, . . . , dm] l xalt [d′1, . . . , d

′
m]

〈1〉1. xalt [d1, . . . , dm] g xalt [d′1, . . . , d
′
m]

Proof: The assumption and monotonicity of g with respect to xalt

(theorem 12 in [7]).
〈1〉2. Choose arbitrary o′ = (p′, n′) ∈ [[xalt [d′1, . . . , d

′
m]]]

Proof: [[xalt [d′1, . . . , d
′
m]]] is non-empty by lemma 3.

〈1〉3. Choose i ∈ [1,m] such that (p′, n′) ∈ [[d′i]]
Proof: 〈1〉2 and definition (12) of xalt.

〈1〉4. Choose o = (p, n) ∈ [[di]] such that (p, n) r (p′, n′)
Proof: 〈1〉3, the assumption and definition (21) of l.

〈1〉5. (p, n) ∈ [[xalt [d1, . . . , dm]]]
Proof: 〈1〉4 and definition (12) of xalt.

〈1〉6. ∀o′ ∈ [[alt [d′1, . . . , d
′
m]]] : ∃o ∈ [[alt [d1, . . . , dm]]] : o r o′

Proof: 〈1〉2, 〈1〉4, 〈1〉5 and ∀-rule.
〈1〉7. Q.E.D.

Proof: 〈1〉1, 〈1〉6 and definition (21) of l.

2

Appendix E.2 Interactions with data

Lemma 5. (To be used when proving monotonicity with respect to guarded
alt.)

Assume: (1) ∀i ∈ [1,m] : c′i ⇒ ci

(2) ∀i ∈ [1,m] : (pi, ni) r (p′i, n
′
i)

Let: (1) p = (
⋃

i∈[1,m] pi) ∪ {〈check(σ)〉 | (
∧

j∈[1,m] ¬cj)(σ)}

(2) n =
⋃

i∈[1,m] ni

(3) p′ = (
⋃

i∈[1,m] p
′
i) ∪ {〈check (σ)〉 | (

∧

j∈[1,m] ¬c′j)(σ)}

(4) n′ =
⋃

i∈[1,m] n
′
i

Prove: (p, n) r (p′, n′)

〈1〉1. Requirement 1: n ⊆ n′, i.e.
⋃

i∈[1,m] ni ⊆
⋃

i∈[1,m] n
′
i

Proof: ∀i ∈ [1,m] : ni ⊆ n′
i by assumption 2 and definition (19) of r.

54 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

〈1〉2. Requirement 2; p ⊆ p′ ∪ n′,
i.e. (

⋃

i∈[1,m] pi) ∪ {〈check (σ)〉 | (
∧

j∈[1,m] ¬cj)(σ)}

⊆ (
⋃

i∈[1,m] p
′
i) ∪ {〈check (σ)〉 | (

∧

j∈[1,m] ¬c′j)(σ)} ∪
⋃

i∈[1,m] n
′
i

〈2〉1. {〈check (σ)〉 | (
∧

j∈[1,m] ¬cj)(σ)} ⊆ {〈check (σ)〉 | (
∧

j∈[1,m] ¬c′j)(σ)}

〈3〉1. ∀j ∈ [1,m] : c′j(σ) ⇒ cj(σ)
Proof: Assumption 1.

〈3〉2. ∀j ∈ [1,m] : ¬cj(σ) ⇒ ¬c′j(σ)
Proof: 〈3〉1 and propositional logic (a ⇒ b is equivalent to
¬b ⇒ ¬a).

〈3〉3.
∧

j∈[1,m] ¬cj(σ) ⇒
∧

j∈[1,m] ¬c′j(σ)

Proof: 〈3〉2 and propositional logic (a1 ⇒ b1 and a2 ⇒ b2 gives
a1 ∧ a2 ⇒ b1 ∧ b2).

〈3〉4. Q.E.D.
Proof: 〈3〉3 and elementary set theory (a ⇒ a′ gives
{x | a} ⊆ {x | a′}).

〈2〉2.
⋃

i∈[1,m] pi ⊆
⋃

i∈[1,m] p
′
i ∪

⋃

i∈[1,m] n
′
i

Proof: ∀i ∈ [1,m] : pi ⊆ p′i ∪n′
i by assumption 2 and definition (19) of

 r.
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉3. Q.E.D.

Proof: Definition (19) of r.

2

Lemma 6. Strengthening constraints
(c′ ⇒ c) ⇒ (constr(c) l constr(c′))

Assume: c′ ⇒ c

Prove: constr(c) l constr(c′)

Proof sketch: constr(c) and constr(c′) has only one interaction obligation
each, where the different 〈check(σ)〉-traces are positive or negative depend-
ing on the value of c(σ) and c′(σ), respectively. The trace 〈check(σ)〉 is
negative for constr(c) if c(σ) is false. In this case, c′(σ) is false as well (by
the assumption), meaning that the trace is also negative for constr(c′) as
required. The trace 〈check(σ)〉 is positive for constr(c) if c(σ) is true. As
required, this trace is either positive or negative in constr(c′), depending on
the value of c′(σ).

〈1〉1. [[constr(c)]] = {(p, n)}
where p = {〈check (σ)〉 | c(σ)} and n = {〈check (σ)〉 | ¬c(σ)}

Proof: Definition (16) of constr.
〈1〉2. [[constr(c′)]] = {(p′, n′)}

where p′ = {〈check (σ)〉 | c′(σ)} and n′ = {〈check (σ)〉 | ¬c′(σ)}
Proof: Definition (16) of constr.

〈1〉3. (p, n) r (p′, n′)

REFINING UML INTERACTIONS 55

〈2〉1. Requirement 1: n ⊆ n′,
i.e. {〈check(σ)〉 | ¬c(σ)} ⊆ {〈check (σ)〉 | ¬c′(σ)}

Proof: The assumption gives c′(σ) ⇒ c(σ), i.e. ¬c(σ) ⇒ ¬c′(σ).
〈2〉2. Requirement 2: p ⊆ p′ ∪ n′,

i.e. {〈check(σ)〉 | c(σ)} ⊆ {〈check (σ)〉 | c′(σ)} ∪ {〈check (σ)〉 | ¬c′(σ)}
Proof: Trivial, as the right side equals {〈check(σ)〉 | σ ∈ Var → Val}.

〈2〉3. Q.E.D.
Proof: Definition (19) of r.

〈1〉4. ∀o ∈ [[constr(c)]] : ∃o′ ∈ [[constr(c′)]] : o r o′

Proof: 〈1〉1, 〈1〉2 and 〈1〉3.
〈1〉5. ∀o′ ∈ [[constr(c′)]] : ∃o ∈ [[constr(c)]] : o r o′

Proof: 〈1〉1, 〈1〉2 and 〈1〉3.
〈1〉6. Q.E.D.

Proof: 〈1〉4, 〈1〉5 and definitions (20)–(21) of l.

2

Lemma 7. (c′ ⇒ c ∧ d g d′) ⇒ (seq [constr(c), d] g seq [constr(c′), d′])

Assume: (1) c′ ⇒ c

(2) d g d′

Prove: seq [constr(c), d] g seq [constr(c′), d′]

〈1〉1. constr(c) g constr(c′)
Proof: Assumption 1, lemma 6 and definition (21) of l.

〈1〉2. d g d′

Proof: Assumption 2.
〈1〉3. Q.E.D.

Proof: By monotonicity of g with respect to the seq operator (theorem
13 in [7]).

2

Lemma 8. (c′ ⇒ c ∧ d l d′) ⇒ (seq [constr(c), d] l seq [constr(c′), d′])

Assume: (1) c′ ⇒ c

(2) d l d′

Prove: seq [constr(c), d] l seq [constr(c′), d′]

〈1〉1. constr(c) l constr(c′)
Proof: Assumption 1 and lemma 6.

〈1〉2. d l d′

Proof: Assumption 2.
〈1〉3. Q.E.D.

Proof: Theorem 10 (monotonicity of l with respect to the seq oper-
ator).

2

Theorem 13. Monotonicity of g with respect to the guarded alt operator

56 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

For guarded alt,

(i) the operands may be refined separately, and

(ii) constraining the guards is a valid refinement step.

Assume: (1) ∀i ∈ [1,m] : c′i ⇒ ci

(2) ∀i ∈ [1,m] : di g d′i
Prove: alt [c1 → d1, . . . , cm → dm] g alt [c′1 → d′1, . . . , c

′
m → d′m]

Proof sketch: Each obligation o ∈ [[alt [c1 → d1, . . . , cm → dm]]] is con-
structed as the inner union of a set of obligations oi ∈ [[seq [constr(ci), di]]]
(for i ∈ [1,m]), together with the extra no-guard-true obligation. By the
assumptions and lemma 7, we may for each oi select a refining obligation
o′i ∈ [[seq [constr(c′i), d

′
i]]]. Using these o′i’s and the extra no-guard-true ob-

ligation, we then construct an obligation o′ ∈ [[alt [c′1 → d′1, . . . , c
′
m → d′m]]].

Each negative trace in o is negative in one of the oi’s. By definition (19) of
refinement it is also negative in the corresponding o′i and therefore negative
in o′ as required. Similarly, each positive trace in o is either positive in the
no-guard-true obligation and therefore positive also in o′, or positive in one
of the oi’s meaning that by definition (19) it is positive or negative in the
corresponding o′i, and therefore positive or negative in o′ as required.

〈1〉1. Choose arbitrary o = (p, n) ∈ [[alt [c1 → d1, . . . , cm → dm]]]
Proof: [[alt [c1 → d1, . . . , cm → dm]]] is non-empty by lemma 3.

〈1〉2. For all i ∈ [1,m], choose (pi, ni) ∈ [[seq [constr(ci), di]]] such that
p = (

⋃

i∈[1,m] pi) ∪ {〈check(σ)〉 | (
∧

j∈[1,m] ¬cj)(σ)} and n =
⋃

i∈[1,m] ni

Proof: 〈1〉1, definition (17) of guarded alt and definition (11) of
⊎

.
〈1〉3. For all i ∈ [1,m], choose (p′i, n

′
i) ∈ [[seq [constr(c′i), d

′
i]]] such that

(pi, ni) r (p′i, n
′
i)

Proof: 〈1〉2, the assumptions, lemma 7 and definition (20) of g.
〈1〉4. o′ = (p′, n′) =((

⋃

i∈[1,m] p
′
i) ∪ {〈check (σ)〉 | (

∧

j∈[1,m] ¬c′j)(σ)},
⋃

i∈[1,m] n
′
i)

∈ [[alt [c′1 → d′1, . . . , c
′
m → d′m]]]

Proof: 〈1〉3, definition (17) of guarded alt and definition (11) of
⊎

.
〈1〉5. (p, n) r (p′, n′)

Proof: Assumption 1, 〈1〉2, 〈1〉3, 〈1〉4 and lemma 5.
〈1〉6. ∀o ∈ [[alt [c1 → d1, . . . , cm → dm]]] :

∃o′ ∈ [[alt [c′1 → d′1, . . . , c
′
m → d′m]]] : o r o′

Proof: 〈1〉1, 〈1〉4, 〈1〉5 and ∀-rule.
〈1〉7. Q.E.D.

Proof: 〈1〉6 and definition (20) of g.

2

Theorem 14. Monotonicity of g with respect to the guarded xalt operator

For guarded xalt,

(i) the operands may be refined separately, and

REFINING UML INTERACTIONS 57

(ii) constraining the guards is a valid refinement step.

Assume: (1) ∀i ∈ [1,m] : c′i ⇒ ci

(2) ∀i ∈ [1,m] : di g d′i
Prove: xalt [c1 → d1, . . . , cm → dm] g xalt [c′1 → d′1, . . . , c

′
m → d′m]

Proof sketch: For each obligation o ∈ [[xalt [c1 → d1, . . . , cm → dm]]],
there exists an i such that o ∈ [[seq [constr(ci), di]]]. By the assumptions
and lemma 7, we may select an obligation o′ ∈ [[seq [constr(c′i), d

′
i]]] such

that o r o′. By definition (18) of guarded xalt, o′ is also an obligation in
[[xalt [c′1 → d′1, . . . , c

′
m → d′m]].

〈1〉1. Choose arbitrary o = (p, n) ∈ [[xalt [c1 → d1, . . . , cm → dm]]]
Proof: [[xalt [c1 → d1, . . . , cm → dm]]] is non-empty by lemma 3.

〈1〉2. Choose i ∈ [1,m] such that (p, n) ∈ [[seq [constr(ci), di]]]
Proof: 〈1〉1 and definition (17) of guarded xalt.

〈1〉3. Choose o′ = (p′, n′) ∈ [[seq [constr(c′i), d
′
i]]] such that (p, n) r (p′, n′)

Proof: 〈1〉2, the assumptions, lemma 7 and definition (20) of g.
〈1〉4. (p′, n′) ∈ [[xalt [c′1 → d′1, . . . , c

′
m → d′m]]]

Proof: 〈1〉3 and definition (18) of guarded xalt.
〈1〉5. ∀o ∈ [[alt [c1 → d1, . . . , cm → dm]]] :

∃o′ ∈ [[alt [c′1 → d′1, . . . , c
′
m → d′m]]] : o r o′

Proof: 〈1〉1, 〈1〉3, 〈1〉4 and ∀-rule.
〈1〉6. Q.E.D.

Proof: 〈1〉5 and definition (20) of g.

2

Theorem 15. Monotonicity of l with respect to the guarded alt operator

Assume: (1) ∀i ∈ [1,m] : c′i ⇒ ci

(2) ∀i ∈ [1,m] : di l d′i
Prove: alt [c1 → d1, . . . , cm → dm] l alt [c′1 → d′1, . . . , c

′
m → d′m]

〈1〉1. alt [c1 → d1, . . . , cm → dm] g alt [c′1 → d′1, . . . , c
′
m → d′m]

Proof: The assumptions and theorem 13 (monotonicity of g with re-
spect to guarded alt).

〈1〉2. Choose arbitrary o′ = (p′, n′) ∈ [[alt [c′1 → d′1, . . . , c
′
m → d′m]]]

Proof: [[alt [c′1 → d′1, . . . , c
′
m → d′m]]] is non-empty by lemma 3.

〈1〉3. For all i ∈ [1,m], choose (p′i, n
′
i) ∈ [[seq [constr(c′i), d

′
i]]] such that

p′ = (
⋃

i∈[1,m] p
′
i) ∪ {〈check(σ)〉 | (

∧

j∈[1,m] ¬c′j)(σ)} and n′ =
⋃

i∈[1,m] n
′
i

Proof: 〈1〉2, definition (17) of guarded alt and definition (11) of
⊎

.
〈1〉4. For all i ∈ [1,m], choose (pi, ni) ∈ [[seq [constr(ci), di]]] such that

(pi, ni) r (p′i, n
′
i)

Proof: 〈1〉3, the assumptions, lemma 8 and definition (21) of l.
〈1〉5. o = (p, n) =((

⋃

i∈[1,m] pi) ∪ {〈check(σ)〉 | (
∧

j∈[1,m] ¬cj)(σ)},
⋃

i∈[1,m] ni)

∈ [[alt [c1 → d1, . . . , cm → dm]]]
Proof: 〈1〉4, definition (17) of guarded alt and definition (11) of

⊎

.

58 R. K. RUNDE, Ø. HAUGEN, K. STØLEN

〈1〉6. (p, n) r (p′, n′)
Proof: Assumption 1, 〈1〉3, 〈1〉4, 〈1〉5 and lemma 5.

〈1〉7. ∀o′ ∈ [[alt [c′1 → d′1, . . . , c
′
m → d′m]]] :

∃o ∈ [[alt [c1 → d1, . . . , cm → dm]]] : o r o′

Proof: 〈1〉2, 〈1〉5, 〈1〉6 and ∀-rule.
〈1〉8. Q.E.D.

Proof: 〈1〉1, 〈1〉7 and definition (21) of l.

2

Theorem 16. Monotonicity of l with respect to the guarded xalt operator

Assume: (1) ∀i ∈ [1,m] : c′i ⇒ ci

(2) ∀i ∈ [1,m] : di l d′i
Prove: xalt [c1 → d1, . . . , cm → dm] l xalt [c′1 → d′1, . . . , c

′
m → d′m]

〈1〉1. xalt [c1 → d1, . . . , cm → dm] g xalt [c′1 → d′1, . . . , c
′
m → d′m]

Proof: The assumptions and theorem 14 (monotonicity of g with re-
spect to guarded xalt).

〈1〉2. Choose arbitrary o′ = (p′, n′) ∈ [[xalt [c′1 → d′1, . . . , c
′
m → d′m]]]

Proof: [[xalt [c′1 → d′1, . . . , c
′
m → d′m]]] is non-empty by lemma 3.

〈1〉3. Choose i ∈ [1,m] such that (p′, n′) ∈ [[seq [constr(c′i), d
′
i]]]

Proof: 〈1〉2 and definition (18) of guarded xalt.
〈1〉4. Choose o = (p, n) ∈ [[seq [constr(ci), di]]] such that (p, n) r (p′, n′)

Proof: 〈1〉3, the assumptions, lemma 8 and definition (21) of l.
〈1〉5. (p, n) ∈ [[xalt [c1 → d1, . . . , cm → dm]]]

Proof: 〈1〉4 and definition (18) of guarded xalt.
〈1〉6. ∀o′ ∈ [[alt [c′1 → d′1, . . . , c

′
m → d′m]]] :

∃o ∈ [[alt [c1 → d1, . . . , cm → dm]]] : o r o′

Proof: 〈1〉2, 〈1〉4, 〈1〉5 and ∀-rule.
〈1〉7. Q.E.D.

Proof: 〈1〉1, 〈1〉6 and definition (21) of l.

2

