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Abstract
The problem addressed in this paper is that we want to sort an integer array a [] of 
length n on a multi core machine with k cores. Amdahl’s law tells us that the inherent 
sequential part of any algorithm will in the end dominate and limit the speedup we get 
from parallelisation of that algorithm. This paper introduces PARL, a parallel left radix 
sorting algorithm for use on ordinary shared memory multi core machines, that has just 
one simple statement in its sequential part. It can be seen as a major rework of the 
Partitioned Parallel Radix Sort (PPR) that was developed for use on a network of 
communicating machines with separate memories. The PARL algorithm, which was 
developed independently of the PPR algorithm, has in principle some of the same 
phases as PPR, but also many significant differences as described in this paper. On a 32 
core server, a speedup of 5-12 times is achieved compared with the same sequential 
ARL algorithm when sorting more than 100 000 numbers and half that speedup on a 4 
core PC work station and on two dual core laptops. Since the original sequential ARL 
algorithm in addition is 3-5 times faster than the standard Java Arrays.sort algorithm, 
this parallelisation translates to a significant speedup of approx. 10 to 30 for ordinary 
user programs sorting larger arrays. The reason that we don’t get better results, i.e. a 
speedup equal to the number of cores when the number of cores exceeds 2, is chiefly 
explained by a limited memory bandwidth. This thread pool implementation of PARL is 
also user friendly in that the user calling this PARL algorithm does not have to deal 
with creating threads themselves; to sort their data, they just create a sorting object and 
make a call to a thread safe method in that object.  

Keywords: Parallel sorting, multicore, Left Radix, PPR, ARL, PARL, Quicksort. 

Introduction 
The chip manufacturers can not deliver what we really want, which is ever faster 
processors. The heat generated increases with the square of the clock frequency, 
and will make the chip malfunction and eventually melt above 4 GHz with today’s 
technology.  Instead they sell us multi core processors with now 2-12 processor 
cores, but working prototypes of 50 to100 cores have been demonstrated [21, 22], 
and the race for more processing cores on a chip doesn’t stop there. Each of these 
cores has the processing power of the single CPUs sold some 10 years ago. Some 
of these cores are also hyperthreaded, where some of the circuitry is duplicated 
such that each core can run two threads in parallel with no or little interference. 
Also, we see today servers with up to 4 such hyperthreaded multi cores 
processors, meaning that up to 64 threads can run in parallel. We use one of these 
servers in this paper. The conclusion to all this parallelism is that if we faster 
programs, we must make parallel algorithms for exploiting these new machines. 

The problem addressed in this paper is that we want to sort an integer 
array a [] of length n on a shared memory machine with k cores [17]. We assume 
no prior knowledge of the distribution or the maximum value of the keys in a[]. 
This paper presents a new full parallel version PARL of the ARL [2] (Adaptive 
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Left Radix) sequential sorting algorithm that has been demonstrated to be some 3-
5 times faster than the standard Java sorting method Arrays.sort, which is an 
implementation of Quicksort [3]. This parallel algorithm was developed 
independently, but was found in some ways to be a further development of the 
Partitioned Parallel Radix Sort (PPR) [1] algorithm that was developed for a 
network of communicating machines with separate memories. The main 
differences between these two algorithms are described in the section 4. The 
PARL algorithm  addresses the limitations posed to us by Amdahl’s law [4] that 
basically says that any sequential part of an algorithm will sooner or later 
dominate the execution time of the parallel algorithm, thus limiting the speedup 
we can get with increased parallelism.  PARL does this by having only one 
sequential statement before going full parallel with all k threads to sort a[]. By full 
parallel we mean that all threads start working as soon as the PARL method is 
called, and load balancing is done such that all threads will work at full speed with 
(almost) the same amount of keys  to sort until all sorting is done. Waiting in 
PARL might occur at 5 synchronization points where all threads have to wait on a 
barrier for the other threads to get equally far in their code. None of the loops, 
arrays etc. in the threads are longer than n/k. In theory then, with k cores, we 
should get a speedup close to k.

Parallel sorting algorithms are abundant [15, 26]. As with sequential 
sorting, we can distinguish between comparison based methods, where the values 
of two (or more) keys are compared to do the sorting; and content based methods, 
where the value of some bits in a single key determines where it will be sorted. 
Most work has been done on parallel comparison based algorithms. We find first 
of all a set of algorithms for special purpose network machines, but also for grids 
of more ordinary machines [1,5,6,8,9, 27]. In the early days, content based 
algorithms were published that for sorting n numbers required n2, n or some fixed 
fraction of n processors to sort the n keys. Most relevant to this paper are bucket 
sort [7] and bitonic sort [8,9,13,14], a variation of the comparison based merge 
sort; sample sort, a generalization of Quicksort that sort the keys into many 
buckets before sorting each bucket with ordinary Quicksort [11,12, 26]; and of 
course the contents based parallel radix sort [1].  A number of the algorithms 
seems either to be of the Quicksort type with a relative slow start (first sequential, 
then two parallel, four parallel,..), or with a slow ending like merge and bitonic 
sort, where parallelism decreases as longer, but fewer sequences are merged (the 
last step is two-parallel in ordinary merge sort). When radix sort is parallelised, it 
is almost without exception using the Right Radix sorting (sorting the rightmost, 
least significant digit first) algorithm.  PPR, starts with Left Radix sorting in its 
first phase, but then continues with a one-bit Right Radix, while PARL uses only 
Left Radix sorting.

The rest of this paper is organised as follows. In section 2 it is explained 
how we use a thread pool to implement the fully parallel PARL algorithm, and in 
section 3 the pseudo code for the PARL algorithm is given. In section 4 the 
differences between the PPR and PARL algorithms are explained. In section 5, 
tests comparing PARL with three other algorithms on four different machines 
with from 32 to 2 cores, are presented. The results from these tests then are 
analysed in section 6. In section 7 the paper is concluded.
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2. Reducing overhead and ensuring thread safety  
A part of the sequential overhead of any parallel algorithm, is the creation of 
threads to make this parallelism happen. To start threads in Java costs 
approximately 2 to 3 milliseconds, and adds substantiality to the sequential 
overhead for small problems. To implement PARL efficiently, a special design 
pattern is used for generating a thread pool of k threads (an old idea), the same 
number of threads as processor cores. This is done when creating an object of the 
class ParaSort. The class ParaSort also contains the sorting method. In its 
constructor, this object starts the k threads in an ever lasting loop controlled by 
two CyclicBarriers. The threads then wait for the next call to the synchronized 
sorting method that implements PARL. Each call to the sorting method in one 
such sorting object will then just let all the threads do one more iteration in their 
loop, sort the array, and finally, let the calling main thread be released when 
finished. 

Because of the sorting object,  PARL sorting is thread safe in the sense 
that a sorting object will only sort one array at a time; two threads can, each with 
their own sorting object,  sort two different arrays in parallel - or use one and the 
same sorting object and sort two different arrays in sequence with no interference 
or data race occurring. However, if two or more threads try to sort the same array 
by the use of  two or more sorting objects simultaneously, the result is ill defined 
(but that would also be a logical programming error). 

3. The ARL and the PARL algorithms 
The sequential ARL sorting algorithm was first published in 2002 and is a left 
radix recursive decent sorting algorithm sorting first on the leftmost, most 
significant digit. The algorithm will only be briefly described here for two 
reasons: It is well documented in [2],  but more importantly, it is not necessary to 
have a detailed understanding of  the sequential ARL algorithm to understand 
PARL. It is only needed to have a understanding of how any radix sorting 
algorithm sorts an array a[] on one digit and the supporting integer array border [] 
used to determine where to put the keys with different values in the sorting digit. 
     A integer left radix sorting algorithm, like ARL, should first find the maximum 
value in the part of an array a[] it is called to sort.  This defines how many bits in 
the keys we have to sort and this number of bits is then divided into one or more 
digits (for simplicity here assumed to be of the same length, m bits wide, say 6-11 
bits).  As an example, if we want to sort 1 million uniformly drawn integers less 
than 1 million, we then have to sort the keys in a[] on their 21 lowest bits 20-0;  
the upper bits 21-31 will all be zero. The algorithm then does two scans of all the 
keys in a[]. First it counts how many keys there are  with  each possible value: 
0,1,..2m-1 of the sorting digit. This counting is done in array border[0.. 2m-1].
Then these values are added such that border[j] will point to where in a[] to store 
the next key with value ‘j’ in the sorting digit. In the next scan of the keys, each 
key is stored in its new place by its value ‘j’ on the sorting digit as specified by 
the appropriate value in border[j], which is afterwards increased by 1. 

In ordinary Radix (Right Radix) this correct placement is done by copying 
between two arrays of length n according the value of the keys in the sorting digit 
and the values in border[]. In ARL, however, the sorting on a sorting digit it is 
done by moving the keys in their permutation cycles. We then pick up the first 
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unmoved key a[h], and by its value j of the sorting digit, border[j] will then 
directly point to where a[h] should be placed, but before we place it in 
a[border[j]], we pick up the number there. Say it has value k on the sorting key, 
but before we place it the number at a[border[k]] we pick up the number there,.. 
and so on until we find a number that should be placed where we found the first 
key in this permutation cycle. We then store the last element, and have completed 
one permutation cycle, which may have any length between 1 and n, and all keys 
moved by this cycle has now been sorted on this digit. We then find the next 
unmoved key in a[],  moves it in a new permutation cycle until eventually all keys 
have been moved in a permutation cycle. This is sorting which does not need an 
extra array of length n as right radix does. Sorting by permutation cycles is also as 
fast as right radix, but is not stable sorting – meaning that equal valued elements 
on input might be interchanged after  ARL sorting. 

What is also important for understanding PARL, is that after having moved all 
keys in a[] to their  proper places on the current sorting digit, all values in border[] 
points one place below in a[] where all keys with that value have been stored 
(Figure 1). 

Figure 1. Explaining the use of array border in a radix algorithm when sorting on a digit with m 
bits. The illustration is after sorting on that digit, and it is here assumed that the whole array a[] 
is sorted; a section of a[] can also, as with ARL, be sorted this way. We see that there are two keys 
in (this sorted part of) a[] with the value 0 on that digit, 4 keys with value 1,…,and 1 key with 
value 2m-1. 

We can now give the pseudo code for  the sorting done in thread i by the call 
to threadSortARL(a,i). The arrays  a[], localMax[],  allBorders [][] and 
bucketSize[] are all variables in the sorting object of class ParaSort, in addition to 
the Cyclic Barrier compute that is used to synchronize the threads when they 
need to read results produced by other threads from shared memory.  The only 
sequential statement in PARL is assigning the parameter value ‘a’ to a local array 
pointer. After that statement, the threads in the thread pool are started. The threads 
then perform all the sorting.

This is then the pseudo code for thread i: 

      ------  1 Wait on the start of the threads in the pool ----------------- 

 localMax[i] =   max value in a[i*n/numThreads,...,(i+1)*n/numThreads-1] 

border

a

0
1
2
.
.
.

2m�1

40



------  2. Wait on the ‘compute’ Barrier'----------------- 

 globalMax = max( localMax[0...numThreads-1]) //find global max value in a[] 

 <all threads now calculate the same number of bits to sort, and the  
 same size for the first sorting digit> 
   
   // sequential ARL then sort  the i’th part of a[] on the first digit 
   // return border-array 

 allBorders[i]= oneDigitARL(a, i*n/numThreads, (i+1)*n/numThreads-1,globalMax); 
   
 ------  3. Wait on  ‘compute Barrier'----------------- 

//  put the keys on the values of first digit (0,1,.., 2m-1) in 
//  numThreads buckets. Thread 'i' will sort  the i'th such bucket 
// on the rest of the digits (2,3..)  with sequential ARL for each value in bucket 

 <loop through allBorders[][] and count mi= number of keys in bucket 'i'> 
 bucketSize [i] = mi; 

 <make a local array b = new int[mi] > 
   
  <loop though all values in bucket ‘i’ > { 
      <copy the relevant keys in a[] to b[] in for that value> 
      <sort these keys on digits 2 , 3,.. using recursive, sequential ARL> 
    } 
 ------ 4. Wait on  ‘compute Barrier'----------------- 
     
    <sum values in bucketSize[] to find place in a[] for the now 
      totally sorted set of keys in b[]> 
     
    <copy all keys in b[] back to relevant continuous segment in a[ ] 
     
 ------ 5. Finished – wait for next sorting in the thread-pool -----------------

Program 1. Pseudo code for  a thread in PARL. It first sorts on the first digit the i’th part of a[]. 
Then it copies a bucket of all keys with the i’th set of values on this first digit from all the different 
parts of a[] to a local array b[]. And for each value in this set, it sorts b[] on the rest of the digits 
with the sequential ARL algorithm; and finally, copies b[] back to a[]. 

Some comments to the pseudo code. The most important thing to notice is 
that first thread i sorts on the first digit, the i’th first part of a[]. Then it takes 
responsibility for a different set of keys. We then consider the different values of 
the first sorting digit, and by reading the ‘border’ arrays for all the threads, copies 
from a[] to a local array b[] all keys with the i’th set of such values in that digit: 
[(i-1)*2m : i*2m -1], after first having counted how many that is. In other words, 
thread i now have the set of the i’th largest numbers in a[] sorted on the first digit.  
Thread i then fully sorts b[] by using the sequential ARL for each value on the 
first digit in b[]. This can be done because the keys in b[] are copied into b[] 
sorted on the first digit – i.e. first all keys starting with (i-1)*2m are sorted, then all 
starting with (i-1)*2m n+1,... .As its last operation, thread i copies its  b[] back to 
its proper place in a[].   

Note also  that when the ‘border’ arrays from each thread are made 
available to the other threads, only pointers to them are copied to the two-
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dimensional array ‘allBorders[][]‘ because all the border arrays are in shared 
memory. Java’s way of having pointers to arrays showed itself to be very efficient 
here.

The pseudo code doesn’t show that any very short sub segment during 
sorting, say less than 32 keys, are sorted with Insertion Sort, because that is faster. 
Also arrays, say  with fewer than 10 000 - 100 000 keys are sorted with the 
ordinary sequential ARL algorithm when the PARL method is called (10 000 is 
used for the laptops, 100 000 for the PC and server). The reason for this last 
decision is again that it is faster. Even using the described thread pool, there is 
still  an overhead  in the order of one millisecond when starting and stopping all 
threads, and the sequential ARL algorithm sorts 100 000 integers in 2,3 
milliseconds on the PC. This overhead is, however, constant and hence soon a 
very small part of the total execution time for larger arrays.   

If we compare the PARL with sequential ARL, we see that in PARL all 
keys in a[] are copied twice, first to the b[] arrays in each thread and then back to 
a[]; where as in sequential ARL, there is no such copying.

4. The differences between the PARL and PRR algorithms 
Since PARL have many features in common with PPR, the main differences 
between the two algorithms are worth noticing: 

� PPR works on memory distributed among a set of p machines 
communicating with MPI [25], while PARL uses a shared memory 
model and synchronizes access to that memory using CyclicBarriers in 
Java when needed. 

� Two of the phases in PPR do an all-to-all communication between the 
p machines, an O(p2) operation. That is not needed in PARL, where 
the threads read the same information from shared memory in parallel. 

� The initial  step in PPR, the distribution of 1/p of the keys to the each 
processor, is not needed in PARL where the threads only work 
different sections on the array a[] in shared memory. 

� The step of finding the g most significant bits in the array to be sorted, 
is different and a clear improvement in PARL compared with PPR. 
PARL does a parallelized computation of the maximum value of all 
keys to be sorted and uses the next 10 bits as the most significant bits. 
PPR, however, uses first the 8 leftmost bits in the word (bits:31-25 for 
32 bit integers) and tests if that gives a good spread of values. If we 
only sort small numbers, these bits are all 0, and PPR then iteratively 
increases the number of bits it tests on by 2 each time until it gets 
enough bins with different valued keys. 

� As mentioned above, PPR uses a mix of Left and one-bit right Radix. 
After having distributed the keys to each machine using left radix, it 
then turn to one-bit right radix sorting for the rest of the sorting. which 
is special in that it does not first count how many there are of each 
value, but only place each element in either the queue with value ‘1’ 
or the queue with value ‘0’ on the current digit. To sort on k  bits in 
this way, each key is moved k times using k  sorting digits, each one 
bit long. PARL exclusively uses Left Radix sorting, which is generally 
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faster and does inline sorting in the array [2 ] – no need for extra 
arrays, or queues as one-bit right Radix does.

� While the communication is explicit coded in PPR, the general tread 
pool pattern in PARL hides much of this from the programmer of a 
parallel algorithm, and hides it completely from the ordinary user . 

� Sorting with PARL is almost as user friendly (ParaSort p = new 
ParaSort(); p.pARL(a);) as calling the ordinary Arrays.sort() method 
in Java. The interface to the user is not explained in PPR. 

� The current implementation of PARL does not do stable sorting; 
meaning that same valued keys on input are not always sorted in the 
same order on output. It is unclear from the paper defining PPR[1] and 
how it does ‘bucket Sort’ in phase 1 of its algorithm, whether or not  
PPR sorting is stable. However, PARL could be made stable by 
parallelizing the stable version of the sequential ARL algorithm [23], 
but that would be a somewhat slower algorithm. 

There may be other minor differences, but the above differences seem enough 
to consider PARL as a separate algorithm. 

5. The test results 
The PARL algorithm was compiled using Java 1.6 on a Unix HP based server and 
using  Java 1.7 on one Windows 7 based PC workstation and two Windows 7 
based laptops. To test the PARL algorithm, the same data was also sorted with the 
standard Java library Arrays.sort algorithm, which is a Quicksort [5] 
implementation. Also a parallel version of Quicksort was tested, and the ARL 
sequential algorithm [] was run on the same data to compare performance. 

Just a few notes on the parallel Quicksort used for comparison. It uses the 
sequential Quicksort code proposed by Nico Lamuto [16] as a starting point. It 
first calculates how many times it can split the array until the number of cores 
equals the number of segments – i.e. for how many levels in the top of the 
recursion tree we should start new threads. Deeper that level, the sequential 
Quicksort is used, and very short segments are also here sorted with Insertion sort. 
We also  use the sequential Quicksort for shorter arrays than 100 000 keys for the 
same reason than for ARL, it is faster. No thread pool of tasks is used and no 
optimality is claimed for this implementation, it is just included for comparison. 
But as Quicksort goes, the first split of a[] in two is done by sequential code, and 
on the next recursion level only two cores can be used. If we have up to 64 cores it 
takes some time before parallel Quicksort uses all the available cores.  

The n integer keys to be sorted are drawn from a uniform 0:n-1 distribution, 
and for the server, up to 300 million keys are first sorted, for the PC Workstation 
250 million keys and for the Laptops a maximum of 100 million keys are sorted.  
From the maximum number, then two arrays of maximum/2 length are sorted, 
then four times arrays of length maximum/4,.., until a number less than 100 for all 
machines is reached. The reason for this multiple sorting of smaller arrays, is to 
get more accurate time estimates. Time is measured with the Java system call: 
System.nanoTime().  

Since, except for Figure 1, all execution times are presented relative to 
Arrays.sort for the same length of the array, it might be interesting to know what 
the absolute execution times are. In Table 1 the execution time for the various 
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machines are given for sorting 100 million  integers with Arrays.sort. The three 
fastest machines have hyperthreaded cores. 

Time�to�sort�100million �32�bit�integer�keys
��with�Arrays.sort()�–�sequential�quicksort:�

Millisec.
2�(2)Dual�core�1.6�GHz 37493

2(4)�core�Intel�i5�560�,�2,55�GHz 14143
4(8)�core�Itel�i7,�3Ghz 10624

32(64)�core�XenonL7555�1.87GHz 18975
�

Table 1. Time to sort 100 million 32 bit integers with Arrays.sort on the four  
machines used. We see that, except for the smallest laptop, the sequential  

performance ratios between the three fastest machines are less than 1 to 2. 

It is not easy to produce graphs that demonstrate how the four algorithms perform 
relative to one another when n varies from 100 to 250 000, and sorting times from 
1 milliseconds to almost one minute. The data in figure 1 this is the same data  as 
in figure 3 but without logarithmic scales on the y- and x-axis. In this authors 
opinion, this graph totally hides the performance for sorting short arrays less than 
1 million keys, and is not used in the rest of this paper.  

Figure 1. The absolute execution times  of four sorting algorithms when sorting an array of 
length n of uniformly distributed (0:n-1) keys on a 4 core (hyperthreaded) PC workstation. 
For n= 250mill, 125mill,...(divided by 2 until n <100). This is the same data as in Figure 3. 
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Figure 2. The relative performance of three sorting algorithms when sorting 
an array of length n of uniformly numbers compared with sequential 
Quicksort(Arrays.sort) on a 32 core (64 hyperthreaded) server. For n= 
300mill, 150mill,.....,143, 71(divided by 2 until n <100). 

Figure 3. The relative performance of three sorting algorithms when sorting an array of 
length n of uniformly integers compared with sequential Quicksort (Arrays.sort) on a 4 

core (hyperthreaded) PC workstation. For n= 250mill, 125mill,... 
(divided by 2 until n <100). 
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Figure 4. The relative performance of three sorting algorithms when sorting an array of length n 
of uniformly distributed integers compared with sequential Quicksort(Arrays.sort) on a high end 

laptop, with a hyperthreaded dual core For n= 100mill, 50mill,...(divided by 2 until n <100). 

Figure 5. The relative performance of three sorting algorithms when sorting an array of length n 
of uniformly distributed integers compared with sequential Quicksort(Arrays.sort) on a low end 

laptop, with a non-hyperthreaded dual core For n= 100mill, 50mill,...(divided by 2 until n <100). 
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main memory, we can expect such an effect [18,19,20]. Also the effect of halving 
and parallelizing a problem which is O (n*log n), should also in theory be more 
than twice as fast since: n*log n > 2*(n/2*log n/2).

However, the reason we in machines with more than 2 parallel threads don’t 
get execution times at least inversely proportional to the number of cores, must be 
explained by the throughput of the memory channels connecting the processing 
cores to the main memory. Sorting is a very data intensive application. The 
memory channels simply can’t cope with all the reading and writing of data from 
64, 8 or 4 parallel threads – queues will form. This problem has also been 
recognized by industry that a new organization of access to main memory is 
needed.

The parallel Quicksort is somewhat faster than Arrays.sort even when no 
parallelism is employed. That must be the effect of the very tight loop in the 
Lamuto formulation of Quicksort. By and large, for larger values of n, this parallel 
Quicksort is twice as fast as Arrays.sort. 

The sequential ARL is again 3-5 times faster than Arrays.sort on all machines, 
but we see that on the server, sequential ARL is up to 10 times slower than PARL.  

We can, however, be rather satisfied with these results – that  PARL sort 10 to 
30 times faster for sufficiently large values of n than the standard Java sort 
method, is a rather good result. Also, since the user does not have to be aware of 
threads, this is a user friendly solution. They only create a sorting object and a 
pointer to that (p = new ParaSort()), and every time they want to sort an array a[], 
they just call the sorting method through that pointer (p.pARL(a)). 

7. Conclusion 
I have presented a new algorithm PARL that sorts significantly faster than the 
standard sequential Quicksort on a shared memory computer with more than one 
core. Sorting times are significantly lower, a speedup in the order of 20 to 30  
when sorting larger arrays, where sorting times matters most.  

I have also used a parallel design pattern for keeping a pool of threads that 
reduces overhead when doing repeated calls to the parallel algorithm. The threads 
involved are hidden from the user who doesn’t need to know about threads at all. 
This thread safe PARL algorithm implementation will be made public on my 
sorting home page[24]. 
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