
This paper was presented at the NIK 2011 conference. For more information see
http://www.nik.no/

A full parallel radix sorting algorithm for multicore
processors

Arne Maus,
Dept. of Informatics, University of Oslo

 arnem@ifi.uio.no

Abstract
The problem addressed in this paper is that we want to sort an integer array a [] of
length n on a multi core machine with k cores. Amdahl’s law tells us that the inherent
sequential part of any algorithm will in the end dominate and limit the speedup we get
from parallelisation of that algorithm. This paper introduces PARL, a parallel left radix
sorting algorithm for use on ordinary shared memory multi core machines, that has just
one simple statement in its sequential part. It can be seen as a major rework of the
Partitioned Parallel Radix Sort (PPR) that was developed for use on a network of
communicating machines with separate memories. The PARL algorithm, which was
developed independently of the PPR algorithm, has in principle some of the same
phases as PPR, but also many significant differences as described in this paper. On a 32
core server, a speedup of 5-12 times is achieved compared with the same sequential
ARL algorithm when sorting more than 100 000 numbers and half that speedup on a 4
core PC work station and on two dual core laptops. Since the original sequential ARL
algorithm in addition is 3-5 times faster than the standard Java Arrays.sort algorithm,
this parallelisation translates to a significant speedup of approx. 10 to 30 for ordinary
user programs sorting larger arrays. The reason that we don’t get better results, i.e. a
speedup equal to the number of cores when the number of cores exceeds 2, is chiefly
explained by a limited memory bandwidth. This thread pool implementation of PARL is
also user friendly in that the user calling this PARL algorithm does not have to deal
with creating threads themselves; to sort their data, they just create a sorting object and
make a call to a thread safe method in that object.

Keywords: Parallel sorting, multicore, Left Radix, PPR, ARL, PARL, Quicksort.

Introduction
The chip manufacturers can not deliver what we really want, which is ever faster
processors. The heat generated increases with the square of the clock frequency,
and will make the chip malfunction and eventually melt above 4 GHz with today’s
technology. Instead they sell us multi core processors with now 2-12 processor
cores, but working prototypes of 50 to100 cores have been demonstrated [21, 22],
and the race for more processing cores on a chip doesn’t stop there. Each of these
cores has the processing power of the single CPUs sold some 10 years ago. Some
of these cores are also hyperthreaded, where some of the circuitry is duplicated
such that each core can run two threads in parallel with no or little interference.
Also, we see today servers with up to 4 such hyperthreaded multi cores
processors, meaning that up to 64 threads can run in parallel. We use one of these
servers in this paper. The conclusion to all this parallelism is that if we faster
programs, we must make parallel algorithms for exploiting these new machines.

The problem addressed in this paper is that we want to sort an integer
array a [] of length n on a shared memory machine with k cores [17]. We assume
no prior knowledge of the distribution or the maximum value of the keys in a[].
This paper presents a new full parallel version PARL of the ARL [2] (Adaptive

37

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30839063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Left Radix) sequential sorting algorithm that has been demonstrated to be some 3-
5 times faster than the standard Java sorting method Arrays.sort, which is an
implementation of Quicksort [3]. This parallel algorithm was developed
independently, but was found in some ways to be a further development of the
Partitioned Parallel Radix Sort (PPR) [1] algorithm that was developed for a
network of communicating machines with separate memories. The main
differences between these two algorithms are described in the section 4. The
PARL algorithm addresses the limitations posed to us by Amdahl’s law [4] that
basically says that any sequential part of an algorithm will sooner or later
dominate the execution time of the parallel algorithm, thus limiting the speedup
we can get with increased parallelism. PARL does this by having only one
sequential statement before going full parallel with all k threads to sort a[]. By full
parallel we mean that all threads start working as soon as the PARL method is
called, and load balancing is done such that all threads will work at full speed with
(almost) the same amount of keys to sort until all sorting is done. Waiting in
PARL might occur at 5 synchronization points where all threads have to wait on a
barrier for the other threads to get equally far in their code. None of the loops,
arrays etc. in the threads are longer than n/k. In theory then, with k cores, we
should get a speedup close to k.

Parallel sorting algorithms are abundant [15, 26]. As with sequential
sorting, we can distinguish between comparison based methods, where the values
of two (or more) keys are compared to do the sorting; and content based methods,
where the value of some bits in a single key determines where it will be sorted.
Most work has been done on parallel comparison based algorithms. We find first
of all a set of algorithms for special purpose network machines, but also for grids
of more ordinary machines [1,5,6,8,9, 27]. In the early days, content based
algorithms were published that for sorting n numbers required n2, n or some fixed
fraction of n processors to sort the n keys. Most relevant to this paper are bucket
sort [7] and bitonic sort [8,9,13,14], a variation of the comparison based merge
sort; sample sort, a generalization of Quicksort that sort the keys into many
buckets before sorting each bucket with ordinary Quicksort [11,12, 26]; and of
course the contents based parallel radix sort [1]. A number of the algorithms
seems either to be of the Quicksort type with a relative slow start (first sequential,
then two parallel, four parallel,..), or with a slow ending like merge and bitonic
sort, where parallelism decreases as longer, but fewer sequences are merged (the
last step is two-parallel in ordinary merge sort). When radix sort is parallelised, it
is almost without exception using the Right Radix sorting (sorting the rightmost,
least significant digit first) algorithm. PPR, starts with Left Radix sorting in its
first phase, but then continues with a one-bit Right Radix, while PARL uses only
Left Radix sorting.

The rest of this paper is organised as follows. In section 2 it is explained
how we use a thread pool to implement the fully parallel PARL algorithm, and in
section 3 the pseudo code for the PARL algorithm is given. In section 4 the
differences between the PPR and PARL algorithms are explained. In section 5,
tests comparing PARL with three other algorithms on four different machines
with from 32 to 2 cores, are presented. The results from these tests then are
analysed in section 6. In section 7 the paper is concluded.

38

2. Reducing overhead and ensuring thread safety
A part of the sequential overhead of any parallel algorithm, is the creation of
threads to make this parallelism happen. To start threads in Java costs
approximately 2 to 3 milliseconds, and adds substantiality to the sequential
overhead for small problems. To implement PARL efficiently, a special design
pattern is used for generating a thread pool of k threads (an old idea), the same
number of threads as processor cores. This is done when creating an object of the
class ParaSort. The class ParaSort also contains the sorting method. In its
constructor, this object starts the k threads in an ever lasting loop controlled by
two CyclicBarriers. The threads then wait for the next call to the synchronized
sorting method that implements PARL. Each call to the sorting method in one
such sorting object will then just let all the threads do one more iteration in their
loop, sort the array, and finally, let the calling main thread be released when
finished.

Because of the sorting object, PARL sorting is thread safe in the sense
that a sorting object will only sort one array at a time; two threads can, each with
their own sorting object, sort two different arrays in parallel - or use one and the
same sorting object and sort two different arrays in sequence with no interference
or data race occurring. However, if two or more threads try to sort the same array
by the use of two or more sorting objects simultaneously, the result is ill defined
(but that would also be a logical programming error).

3. The ARL and the PARL algorithms
The sequential ARL sorting algorithm was first published in 2002 and is a left
radix recursive decent sorting algorithm sorting first on the leftmost, most
significant digit. The algorithm will only be briefly described here for two
reasons: It is well documented in [2], but more importantly, it is not necessary to
have a detailed understanding of the sequential ARL algorithm to understand
PARL. It is only needed to have a understanding of how any radix sorting
algorithm sorts an array a[] on one digit and the supporting integer array border []
used to determine where to put the keys with different values in the sorting digit.
 A integer left radix sorting algorithm, like ARL, should first find the maximum
value in the part of an array a[] it is called to sort. This defines how many bits in
the keys we have to sort and this number of bits is then divided into one or more
digits (for simplicity here assumed to be of the same length, m bits wide, say 6-11
bits). As an example, if we want to sort 1 million uniformly drawn integers less
than 1 million, we then have to sort the keys in a[] on their 21 lowest bits 20-0;
the upper bits 21-31 will all be zero. The algorithm then does two scans of all the
keys in a[]. First it counts how many keys there are with each possible value:
0,1,..2m-1 of the sorting digit. This counting is done in array border[0.. 2m-1].
Then these values are added such that border[j] will point to where in a[] to store
the next key with value ‘j’ in the sorting digit. In the next scan of the keys, each
key is stored in its new place by its value ‘j’ on the sorting digit as specified by
the appropriate value in border[j], which is afterwards increased by 1.

In ordinary Radix (Right Radix) this correct placement is done by copying
between two arrays of length n according the value of the keys in the sorting digit
and the values in border[]. In ARL, however, the sorting on a sorting digit it is
done by moving the keys in their permutation cycles. We then pick up the first

39

unmoved key a[h], and by its value j of the sorting digit, border[j] will then
directly point to where a[h] should be placed, but before we place it in
a[border[j]], we pick up the number there. Say it has value k on the sorting key,
but before we place it the number at a[border[k]] we pick up the number there,..
and so on until we find a number that should be placed where we found the first
key in this permutation cycle. We then store the last element, and have completed
one permutation cycle, which may have any length between 1 and n, and all keys
moved by this cycle has now been sorted on this digit. We then find the next
unmoved key in a[], moves it in a new permutation cycle until eventually all keys
have been moved in a permutation cycle. This is sorting which does not need an
extra array of length n as right radix does. Sorting by permutation cycles is also as
fast as right radix, but is not stable sorting – meaning that equal valued elements
on input might be interchanged after ARL sorting.

What is also important for understanding PARL, is that after having moved all
keys in a[] to their proper places on the current sorting digit, all values in border[]
points one place below in a[] where all keys with that value have been stored
(Figure 1).

Figure 1. Explaining the use of array border in a radix algorithm when sorting on a digit with m
bits. The illustration is after sorting on that digit, and it is here assumed that the whole array a[]
is sorted; a section of a[] can also, as with ARL, be sorted this way. We see that there are two keys
in (this sorted part of) a[] with the value 0 on that digit, 4 keys with value 1,…,and 1 key with
value 2m-1.

We can now give the pseudo code for the sorting done in thread i by the call
to threadSortARL(a,i). The arrays a[], localMax[], allBorders [][] and
bucketSize[] are all variables in the sorting object of class ParaSort, in addition to
the Cyclic Barrier compute that is used to synchronize the threads when they
need to read results produced by other threads from shared memory. The only
sequential statement in PARL is assigning the parameter value ‘a’ to a local array
pointer. After that statement, the threads in the thread pool are started. The threads
then perform all the sorting.

This is then the pseudo code for thread i:

 ------ 1 Wait on the start of the threads in the pool -----------------

 localMax[i] = max value in a[i*n/numThreads,...,(i+1)*n/numThreads-1]

border

a

0
1
2
.
.
.

2m�1

40

------ 2. Wait on the ‘compute’ Barrier'-----------------

 globalMax = max(localMax[0...numThreads-1]) //find global max value in a[]

 <all threads now calculate the same number of bits to sort, and the
 same size for the first sorting digit>

 // sequential ARL then sort the i’th part of a[] on the first digit
 // return border-array

 allBorders[i]= oneDigitARL(a, i*n/numThreads, (i+1)*n/numThreads-1,globalMax);

 ------ 3. Wait on ‘compute Barrier'-----------------

// put the keys on the values of first digit (0,1,.., 2m-1) in
// numThreads buckets. Thread 'i' will sort the i'th such bucket
// on the rest of the digits (2,3..) with sequential ARL for each value in bucket

 <loop through allBorders[][] and count mi= number of keys in bucket 'i'>
 bucketSize [i] = mi;

 <make a local array b = new int[mi] >

 <loop though all values in bucket ‘i’ > {
 <copy the relevant keys in a[] to b[] in for that value>
 <sort these keys on digits 2 , 3,.. using recursive, sequential ARL>
 }
 ------ 4. Wait on ‘compute Barrier'-----------------

 <sum values in bucketSize[] to find place in a[] for the now
 totally sorted set of keys in b[]>

 <copy all keys in b[] back to relevant continuous segment in a[]

 ------ 5. Finished – wait for next sorting in the thread-pool -----------------

Program 1. Pseudo code for a thread in PARL. It first sorts on the first digit the i’th part of a[].
Then it copies a bucket of all keys with the i’th set of values on this first digit from all the different
parts of a[] to a local array b[]. And for each value in this set, it sorts b[] on the rest of the digits
with the sequential ARL algorithm; and finally, copies b[] back to a[].

Some comments to the pseudo code. The most important thing to notice is
that first thread i sorts on the first digit, the i’th first part of a[]. Then it takes
responsibility for a different set of keys. We then consider the different values of
the first sorting digit, and by reading the ‘border’ arrays for all the threads, copies
from a[] to a local array b[] all keys with the i’th set of such values in that digit:
[(i-1)*2m : i*2m -1], after first having counted how many that is. In other words,
thread i now have the set of the i’th largest numbers in a[] sorted on the first digit.
Thread i then fully sorts b[] by using the sequential ARL for each value on the
first digit in b[]. This can be done because the keys in b[] are copied into b[]
sorted on the first digit – i.e. first all keys starting with (i-1)*2m are sorted, then all
starting with (i-1)*2m n+1,... .As its last operation, thread i copies its b[] back to
its proper place in a[].

Note also that when the ‘border’ arrays from each thread are made
available to the other threads, only pointers to them are copied to the two-

41

dimensional array ‘allBorders[][]‘ because all the border arrays are in shared
memory. Java’s way of having pointers to arrays showed itself to be very efficient
here.

The pseudo code doesn’t show that any very short sub segment during
sorting, say less than 32 keys, are sorted with Insertion Sort, because that is faster.
Also arrays, say with fewer than 10 000 - 100 000 keys are sorted with the
ordinary sequential ARL algorithm when the PARL method is called (10 000 is
used for the laptops, 100 000 for the PC and server). The reason for this last
decision is again that it is faster. Even using the described thread pool, there is
still an overhead in the order of one millisecond when starting and stopping all
threads, and the sequential ARL algorithm sorts 100 000 integers in 2,3
milliseconds on the PC. This overhead is, however, constant and hence soon a
very small part of the total execution time for larger arrays.

If we compare the PARL with sequential ARL, we see that in PARL all
keys in a[] are copied twice, first to the b[] arrays in each thread and then back to
a[]; where as in sequential ARL, there is no such copying.

4. The differences between the PARL and PRR algorithms
Since PARL have many features in common with PPR, the main differences
between the two algorithms are worth noticing:

� PPR works on memory distributed among a set of p machines
communicating with MPI [25], while PARL uses a shared memory
model and synchronizes access to that memory using CyclicBarriers in
Java when needed.

� Two of the phases in PPR do an all-to-all communication between the
p machines, an O(p2) operation. That is not needed in PARL, where
the threads read the same information from shared memory in parallel.

� The initial step in PPR, the distribution of 1/p of the keys to the each
processor, is not needed in PARL where the threads only work
different sections on the array a[] in shared memory.

� The step of finding the g most significant bits in the array to be sorted,
is different and a clear improvement in PARL compared with PPR.
PARL does a parallelized computation of the maximum value of all
keys to be sorted and uses the next 10 bits as the most significant bits.
PPR, however, uses first the 8 leftmost bits in the word (bits:31-25 for
32 bit integers) and tests if that gives a good spread of values. If we
only sort small numbers, these bits are all 0, and PPR then iteratively
increases the number of bits it tests on by 2 each time until it gets
enough bins with different valued keys.

� As mentioned above, PPR uses a mix of Left and one-bit right Radix.
After having distributed the keys to each machine using left radix, it
then turn to one-bit right radix sorting for the rest of the sorting. which
is special in that it does not first count how many there are of each
value, but only place each element in either the queue with value ‘1’
or the queue with value ‘0’ on the current digit. To sort on k bits in
this way, each key is moved k times using k sorting digits, each one
bit long. PARL exclusively uses Left Radix sorting, which is generally

42

faster and does inline sorting in the array [2] – no need for extra
arrays, or queues as one-bit right Radix does.

� While the communication is explicit coded in PPR, the general tread
pool pattern in PARL hides much of this from the programmer of a
parallel algorithm, and hides it completely from the ordinary user .

� Sorting with PARL is almost as user friendly (ParaSort p = new
ParaSort(); p.pARL(a);) as calling the ordinary Arrays.sort() method
in Java. The interface to the user is not explained in PPR.

� The current implementation of PARL does not do stable sorting;
meaning that same valued keys on input are not always sorted in the
same order on output. It is unclear from the paper defining PPR[1] and
how it does ‘bucket Sort’ in phase 1 of its algorithm, whether or not
PPR sorting is stable. However, PARL could be made stable by
parallelizing the stable version of the sequential ARL algorithm [23],
but that would be a somewhat slower algorithm.

There may be other minor differences, but the above differences seem enough
to consider PARL as a separate algorithm.

5. The test results
The PARL algorithm was compiled using Java 1.6 on a Unix HP based server and
using Java 1.7 on one Windows 7 based PC workstation and two Windows 7
based laptops. To test the PARL algorithm, the same data was also sorted with the
standard Java library Arrays.sort algorithm, which is a Quicksort [5]
implementation. Also a parallel version of Quicksort was tested, and the ARL
sequential algorithm [] was run on the same data to compare performance.

Just a few notes on the parallel Quicksort used for comparison. It uses the
sequential Quicksort code proposed by Nico Lamuto [16] as a starting point. It
first calculates how many times it can split the array until the number of cores
equals the number of segments – i.e. for how many levels in the top of the
recursion tree we should start new threads. Deeper that level, the sequential
Quicksort is used, and very short segments are also here sorted with Insertion sort.
We also use the sequential Quicksort for shorter arrays than 100 000 keys for the
same reason than for ARL, it is faster. No thread pool of tasks is used and no
optimality is claimed for this implementation, it is just included for comparison.
But as Quicksort goes, the first split of a[] in two is done by sequential code, and
on the next recursion level only two cores can be used. If we have up to 64 cores it
takes some time before parallel Quicksort uses all the available cores.

The n integer keys to be sorted are drawn from a uniform 0:n-1 distribution,
and for the server, up to 300 million keys are first sorted, for the PC Workstation
250 million keys and for the Laptops a maximum of 100 million keys are sorted.
From the maximum number, then two arrays of maximum/2 length are sorted,
then four times arrays of length maximum/4,.., until a number less than 100 for all
machines is reached. The reason for this multiple sorting of smaller arrays, is to
get more accurate time estimates. Time is measured with the Java system call:
System.nanoTime().

Since, except for Figure 1, all execution times are presented relative to
Arrays.sort for the same length of the array, it might be interesting to know what
the absolute execution times are. In Table 1 the execution time for the various

43

machines are given for sorting 100 million integers with Arrays.sort. The three
fastest machines have hyperthreaded cores.

Time�to�sort�100million �32�bit�integer�keys
��with�Arrays.sort()�–�sequential�quicksort:�

Millisec.
2�(2)Dual�core�1.6�GHz 37493

2(4)�core�Intel�i5�560�,�2,55�GHz 14143
4(8)�core�Itel�i7,�3Ghz 10624

32(64)�core�XenonL7555�1.87GHz 18975
�

Table 1. Time to sort 100 million 32 bit integers with Arrays.sort on the four
machines used. We see that, except for the smallest laptop, the sequential

performance ratios between the three fastest machines are less than 1 to 2.

It is not easy to produce graphs that demonstrate how the four algorithms perform
relative to one another when n varies from 100 to 250 000, and sorting times from
1 milliseconds to almost one minute. The data in figure 1 this is the same data as
in figure 3 but without logarithmic scales on the y- and x-axis. In this authors
opinion, this graph totally hides the performance for sorting short arrays less than
1 million keys, and is not used in the rest of this paper.

Figure 1. The absolute execution times of four sorting algorithms when sorting an array of
length n of uniformly distributed (0:n-1) keys on a 4 core (hyperthreaded) PC workstation.
For n= 250mill, 125mill,...(divided by 2 until n <100). This is the same data as in Figure 3.

0

5000

10000

15000

20000

25000

30000

0 100�000�000 200�000�000

m
ill

ise
co

nd
s

n

Execution�times�on��a�4�(8)�core�PC:�
HP�Compaq�8100�Elite�CMT��Itel�i7,�3Ghz�

(lower�is�better)

Arrays,sort

Quick�Parallel

Arl�Sequential

PARL

44

Figure 2. The relative performance of three sorting algorithms when sorting
an array of length n of uniformly numbers compared with sequential
Quicksort(Arrays.sort) on a 32 core (64 hyperthreaded) server. For n=
300mill, 150mill,.....,143, 71(divided by 2 until n <100).

Figure 3. The relative performance of three sorting algorithms when sorting an array of
length n of uniformly integers compared with sequential Quicksort (Arrays.sort) on a 4

core (hyperthreaded) PC workstation. For n= 250mill, 125mill,...
(divided by 2 until n <100).

1

10

100

100 1�000 10�000 100�000 1�000�000 10�000�000 100�000�000

R
el

at
iv

e
to

 A
rr

ay
s.

so
rt

 =
10

0
(l

og
 s

ca
le

)

n (log scale)

Relative�execution� times�on�a�32(64)�core�server:�
Intel�Xenon�L7555�1,87GHz,�Dell�PowerEdge�M910

(lower�is�better)

Arrays,sort

Quick�Parallel

Arl�Sequential

PARL

1

10

100

100 1�000 10�000 100�000 1�000�000 10�000�000 100�000�000

R
el

at
iv

e
to

 A
rr

ay
s.

so
rt

 =
10

0
(l

og
 s

ca
le

)

n�(log�scale)

Relative�execution� times�on�4�(8)�core�PC:�
HP�Compaq�8100�Elite�CMT��Itel�i7,�3Ghz�

(lower�is�better)

Arrays,sort

Quick�Parallel

Arl�Sequential

PARL

45

Figure 4. The relative performance of three sorting algorithms when sorting an array of length n
of uniformly distributed integers compared with sequential Quicksort(Arrays.sort) on a high end

laptop, with a hyperthreaded dual core For n= 100mill, 50mill,...(divided by 2 until n <100).

Figure 5. The relative performance of three sorting algorithms when sorting an array of length n
of uniformly distributed integers compared with sequential Quicksort(Arrays.sort) on a low end

laptop, with a non-hyperthreaded dual core For n= 100mill, 50mill,...(divided by 2 until n <100).

6. Analysis of the test results
We see that for n > 100 000 on the server and the PC, and for n > 10 000 on the
laptops, when PARL is different from sequential ARL, it is roughly 5-10 times
faster than the sequential ARL on a 32(64) core server, 2-4 times faster on a 4(8)
core PC, and twice as fast on the two laptops with 2 and 2(4) cores. On the
slowest laptop, it is sometimes more than 2 times as fast (super scaling) which can
be described as the effect of caching. We have then halved the size of our
problem, more of the data are in the caches, and since they are much faster than

1

10

100

100 1�000 10�000 100�000 1�000�000 10�000�000 100�000�000Re
la

tiv
e�

to
�A

rr
ay

s.
so

rt
�=

10
0�

(�l
og

�s
ca

le
)

n�(log�scale)

Relative�execution� times�on��Laptop�1:
2(4)�core�Dell�Lattitude�E4310�,��Intel�i5�560��2.66GHz

(lower���is�better)

Arrays.sort

Quick�Parallel

Arl�Sequential

PARL

1

10

100

100 1�000 10�000 100�000 1�000�000 10�000�000 100�000�000

Re
la

tiv
e�

to
�A

rr
ay

s.
so

rt
�=

10
0�

(�l
og

�sc
al

e)

n�(log�scale)

Relative�execution�times�on�Laptop�2:�
2�core�Dell�Lattitude�Intel�Core�2�Duo�U9600� 1,6�Ghz

(lower�is�better)

Arrays.sort

Quick�Parallel

Arl�Sequential

PARL

46

main memory, we can expect such an effect [18,19,20]. Also the effect of halving
and parallelizing a problem which is O (n*log n), should also in theory be more
than twice as fast since: n*log n > 2*(n/2*log n/2).

However, the reason we in machines with more than 2 parallel threads don’t
get execution times at least inversely proportional to the number of cores, must be
explained by the throughput of the memory channels connecting the processing
cores to the main memory. Sorting is a very data intensive application. The
memory channels simply can’t cope with all the reading and writing of data from
64, 8 or 4 parallel threads – queues will form. This problem has also been
recognized by industry that a new organization of access to main memory is
needed.

The parallel Quicksort is somewhat faster than Arrays.sort even when no
parallelism is employed. That must be the effect of the very tight loop in the
Lamuto formulation of Quicksort. By and large, for larger values of n, this parallel
Quicksort is twice as fast as Arrays.sort.

The sequential ARL is again 3-5 times faster than Arrays.sort on all machines,
but we see that on the server, sequential ARL is up to 10 times slower than PARL.

We can, however, be rather satisfied with these results – that PARL sort 10 to
30 times faster for sufficiently large values of n than the standard Java sort
method, is a rather good result. Also, since the user does not have to be aware of
threads, this is a user friendly solution. They only create a sorting object and a
pointer to that (p = new ParaSort()), and every time they want to sort an array a[],
they just call the sorting method through that pointer (p.pARL(a)).

7. Conclusion
I have presented a new algorithm PARL that sorts significantly faster than the
standard sequential Quicksort on a shared memory computer with more than one
core. Sorting times are significantly lower, a speedup in the order of 20 to 30
when sorting larger arrays, where sorting times matters most.

I have also used a parallel design pattern for keeping a pool of threads that
reduces overhead when doing repeated calls to the parallel algorithm. The threads
involved are hidden from the user who doesn’t need to know about threads at all.
This thread safe PARL algorithm implementation will be made public on my
sorting home page[24].

8. Acknowledgements
I will like to thank Stein Krogdahl for commenting on an earlier version of this
paper and the referees for suggesting quite a number of improvements to the
submitted paper.

Bibliography
[1] Shin-Jae Lee, Minsoo Jeon, Dongseung Kim, Andrew Sohn, Partitioned Parallel

Radix Sort, Journal of Parallel and Distributed Computing, Volume 62, Issue 4, April
2002, Pages 656-668, ISSN 0743-7315, DOI: 10.1006/jpdc.2001.1808.

[2] Arne Maus. ARL, a faster in-place, cache friendly sorting algorithm. in NIK'2002,
Norwegian Informatics Conf, Kongsberg, Norway, 2002 (ISBN 82-91116-45-8)

[3] C.A.R Hoare : Quicksort, Computer Journal vol. 5(1962), 10-15

47

[4] http://en.wikipedia.org/wiki/Amdahl%27s_law
[5] J. JaJa, Introduction to Parallel Algorithms, Addison–Wesley, Reading, MA, 1992.
[6] Frank Thomson Leighton, Introduction to Parallel Algorithms and Architectures:

Arrays, Trees, Hypercubes, Morgan Kaufmann Pub, Sept. 1991,
(ISBN:9781558601178)

[7] Bogdan S. Chlebus, A parallel bucket sort, Information Processing Letters,vol.27,
Issue 2, 29 February 1988, Pages 57-61 doi:10.1016/0020-0190(88)90092-0

[8] A. Borodin and J. E. Hopcroft, Routing, merging, and sorting on parallel models of
computation , Journal of Computer and System Sciences, Volume 30, Issue 1, February
1985 , Pages 130-145

[9]. K. E. Batcher, Sorting networks and their applications, Proc. AFIPS Conference,
1968,pp. 307–314.

[10] Y. C. Kim, M. Jeon, D. Kim, and A. Sohn, Communication-efficient bitonic sort on a
distributed memory parallel computer, Proc. International Conference on Parallel and
Distributed Systems,ICPADS’2001, Kyongju, Korea, June 26–29, 2001.

[11]. D. R. Helman, D. A. Bader, and J. JaJa, Parallel algorithms for personalized
communication and sorting with an experimental study, Proc. ACM Symposium on
Parallel Algorithms and Architectures, Padua, Italy, 1996, pp. 211–220.

[12] J. S. Huang and Y. C. Chow, Parallel sorting and data partitioning by sampling,
Proc. the 7th Computer Software and Applications Conference, 1983, pp. 627–631.

[13] J.-D. Lee and K. E. Batcher, Minimizing communication in the bitonic sort, IEEE
Trans. Parallel Distrib. Systems 11(5) (2000), pp.459–474.

[14] Zhaofang Wen, Multiway Merging in Parallel, IEEE Transactions on Parallel and
Distributed Systems Volume 7, Issue 1, January 1996

[15] Amato et al : A Comparison of Parallel Sorting Algorithms on Different
 Architectures, Technical Report 98-029, Department of Computer Science, Texas

A&M University, College Station, January 1996
 [16] Jon Bentley, Programming Pearls, Second Edition, Addison-Wesley, 2000. ISBN

0-201-65788-0.
[17] Donald Knuth :The Art of Computer Programming, Volume 3: Sorting and

Searching, Second Edition. Addison-Wesley, 1998.
[18] Arne Maus and Stein Gjessing: A Model for the Effect of Caching on Algorithmic

Efficiency in Radix based Sorting, The Second International Conference on Software
Engineering Advances, ICSEA 25.Aug. 2007, France

[19]S. Sen and S. Chatterjee. Towards a theory of cache-efficient algorithms.
 11th ACM Symposium of Discrete Algorithms, pages 829–838, 2000.

[20] R. Wickremesinghe, L. Arge, J. S. Chase, and J. S. Vitter. Efficient sorting using
registers and caches. ACM Journal of Experimental Algorithmics, 7(9), 2002

[21] www.intel.com/go/terascale
[22] (Tile-GX 100 core) http://www.Tilera.com
[23] Arne Maus, Making a fast unstable sorting algorithm stable, in NIK'2006,

Norwegian Informatics Conf, Molde, Norway, 2006 (ISBN 978-82-519-2186-2)
[24] Arne Maus‘ sorting homepage: http://www.heim.ifi.uio.no/~arnem/sorting/
[25] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard,

Technical Report, University of Tennessee, Knoxville, TN, June 1995.
[26]David R. Cheng, Alan Edelman, John R. Gilbert, and Viral Shah. A novel parallel

sorting algorithm for contemporary architectures. Submitted to ALENEX06, 2006
[27] Lasse Natvig. Logarithmic Time Cost Optimal Parallel Sorting is Not Yet Fast in

Practice! in Practice!", Proc Supercomputing 90, IEEE, p486-494, 1990

48

