
Estimation Model for Kinematic Calibration ofManipulators with a Parallel StructureDimitris KugiumtzisDept. of InformaticsUniversity of OsloPb. 1080 Blindern, N-0314 Oslo, NorwayBjørn LillekjendlieSINTEF-SIP.b 124 Blindern, N-0314 Oslo, NorwayMarch 30, 1995AbstractThis paper provides an estimation model for calibrating the kinematics of manipulatorswith a parallel geometrical structure. Parameter estimation for serial link manipulatorsis well developed, but fail for most structures with parallel actuators, since the forwardkinematics is usually not analytically available for these. We extend parameter estimationto such parallel structures by developing an estimation method where errors in kinematicalparameters are linearly related to errors in the tool pose, expressed through the inversekinematics which is usually well know.The method is based on the work done to calibrate the MultiCraft robot. This robothas �ve linear actuators built in parallel around a passive serial arm, thus making up a two-layered parallel-serial manipulator, and the uniqueMultiCraft construction is reviewed. Dueto the passive serial arm, for this robot conventional serial calibration must be combinedwith estimation of the parameters in the parallel actuator structure.The developed kinematic calibration method is veri�ed through simulations with realisticdata and real robot kinematics, taking the MultiCraft manipulator as the case.1 IntroductionMany varieties of robot manipulators have been built for industrial applications. They can beseparated into classes of serial link manipulators, (an articulation of consecutive links combinedwith revolute or prismatic joints), parallel manipulators (a combination of parallel articulationsthat comprises of a closed loop) and parallel-serial manipulators with parallel articulations,stacked on top of each others. This paper discusses speci�cally kinematic calibration of a two-layered parallel actuator structure built around a passive serial arm, but the basic ideas can beapplied to most parallel and parallel-serial actuators.As noted in the article by Shahinpoor[1], it is possible to build highly accurate paralleland parallel-serial manipulators, so this class of manipulators is of special interest. Positioninginaccuracies are caused by many factors, but our e�orts have been directed toward identi�cationof kinematic parameter errors, that is errors in the geometrical model of the manipulator. Theprocess of computing accurate relations between tool poses (positions and orientations) andkinematic parameters has been called kinematic calibration. A complete kinematic calibrationprocess consists of three steps as noted in Roth[2]: (1) the mathematical formulation, based onthe kinematic model of the robot, that results in an observation equation from which the errorsources can be solved; (2) the identi�cation of the error sources utilizing measurements of actual1
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tool poses and applying parameter estimation methods, e.g. as described in Luenberger[3]);and �nally (3) the compensation of the parameter errors in the controller in order to obtain anaccurate kinematic model. In this paper, the �rst step is discussed in details, the second step isillustrated by simulations, and the third step is not treated at all.Methods for calibrating serial link arms, are well developed and described in e.g. Hayati[4],Hsu[5], Wu[6], Driels[7] and Renders[8]. Central to these methods are the transformation matrixi�1i T (�i�1; ai�1; di; �i) uniquely relating link i to i�1, where �, a, d, and � are the four Denavit-Hartenberger (DH) parameters. This representation is well known, and can be found e.g. inCraig[9]. Most serial arm parameter estimation methods build a linear kinematic model relatingdi�erential errors in the 4�n DH-parameters of the serial arm, n being the number of links,to di�erential errors in the tool pose. In essence, this linear relation is the Jacobian of theforward kinematics, so by utilizing the forward kinematics, optimal values for the unknownDH-parameter is determined from a linear least square problem.For calibration, the DH-parameter representation fails when there are parallel axes in twosuccessive joints. By introducing another link description, it is possible to treat this problem.The reader may refer to Ziegert[10] for a comprehensive literature review, as well as the workof Hayati[11] and Stone[12] for other link descriptions. In the general case, description of linksidenti�ed with parallel axes must be described through an expanded model, e.g. by adding a�fth parameter.Contrary to the serial arm case, Zhang[13] notes that forward kinematics is not readilyavailable in parallel structure manipulators, whereas the inverse kinematics is. This could bewhy calibration of parallel actuators is a little explored �eld. There are two recent works toour knowledge, Hollerbach and Lokhorst [14], and Zhuang and Roth [15]. Both methods aredeveloped for special type of manipulators. We develop a general estimation method where weonly require the measurements of the actuator lengths and the tool pose, further, no specialmotion pattern is required.In our method, di�erential errors in kinematical parameters are linearly related to di�erentialerrors in the tool pose, expressed through the inverse kinematics instead of the unavailableforward kinematics. Based on physical tool pose measurements, least square estimates of thekinematic parameters may be computed by this linear kinematic model.Our method is further developed to apply to the MultiCraft robot, which is a combination ofa passive serial arm supported by �ve linear actuators, constructing a two-layered parallel-serialmanipulator. In this robot, one joint variable in each link of the serial arm is determined by theunderlying parallel actuator structure. We replace the error in this varying joint variable by alinearized function of the errors of the geometrical parameters of the parallel structure. Thus,we arrive at a method where standard serial arm kinematical parameter estimation methods isapplied to most parameters in the serial arm, combined with the newly developed methods forestimating kinematical parameters in the parallel actuator structure.The paper is organised as follows: First a concise description of the kinematic model ofthe MultiCraft parallel-serial manipulator is given in section 2, and the mathematical relationsof forward and inverse kinematics are provided. Then, in section 3 we discuss the problemof analytically unknown forward kinematics of the parallel structure, and develop a methodto compute the Jacobian of this function through the Jacobians of the inverse kinematics. Insection 4 the estimation algorithm for the MultiCraft manipulator is developed, and �nally, insection 5, we describe the simulation results.In this article, scalar entities are written in standard typeface like i, whereas vector entitiesare set in boldface as x. We let @f@x(x) : < 7! < denote the derivative of the scalar function f(x) :< 7! <, @f@x(x) : <m 7! <m denotes the gradient row-vector of the scalar �eld f(x) : <m 7! <,and @f@x(x) : <m 7! <n;m is the Jacobian matrix of the vector �eld f(x) : <m 7! <n.2



2 Kinematics of the MultiCraft manipulatorThe patented MultiCraft manipulator construction consists of a passive serial arm supported by�ve linear ball-screw actuators in parallel with the arm. A complete description of the geomet-rical structure and analytical formulas of the MultiCraft kinematic can be found in Asdøl[16],here we only give a short summary.The degree of freedoms in the manipulator is denoted by n, which in the case of MultiCraftrobot is �ve, or six if an additional motor is added to the tool base.The robot is programmed in Cartesian coordinate space using homogeneous matrices �1n+1T ,which refer the robot tool frame, numbered n + 1, to the world frame, numbered �1. Varioustools may be attached to the robots tool base at a point denoted by the �xture point. Thetransformation nn+1T referring the tool pose relative to the �xture frame, numbered n, is �xedfor a particular tool. Similarly, a �xed transformation �10 T relates the robot base, numbered 0,to the external world coordinate frame.2.1 The central, serial link armAs depicted in Figure 1, the MultiCraft robot has an arm with �ve, or six, successive jointswhere the main part is a long prismatic joint. A lower universal joint connects the robot baseto the prismatic joint with two rotational degrees of freedom, �1 and �2. An identical upperuniversal joint with two other rotational degrees of freedom, �4 and �5, connects the other endof the prismatic joint to the tool base. The length of the prismatic joint is denoted `, and thereare no rotations in this joint. An optional, separate motor mounted at the tool base may give asixth rotation degree of freedom denoted �6. Except for this optional sixth joint, all joints arepassive.According to the kinematic model of Asdøl[16], the DH-parameters of one possible con�gu-ration of a 6 degree-of-freedom (DOF) MultiCraft robot are as displayed in Table I. There aremany other possible con�gurations, as the sixth motor can be positioned rather freely.For link i = 1; : : : ; n, we collect the DH-parameters in the 4�1 vectors ji. At each link i, oneof the DH-parameters varies and is denoted jvi , while the three others are assigned �xed valuesduring manufacturing, and they compose the 3�1 vector jfi of �xed joint parameters. As anexample, for link 1 of the MultiCraft robot we havejv1 = �1;jf1 = [�0; a0; d1]T ;where the superscript T denotes the transpose.During ordinary robot movements, Cartesian manipulator pose �1n+1T is a function of the jointvariables jvi , i = 1; : : : ; n, only. However, when parameter estimation is concerned, parametererrors in the �xed geometry of the central arm act on the manipulator pose; thus �1n+1T dependson all DH-parameters which compose the joint parameter vector j of dimension 4n�1. From theelements of j we can distinguish two subvectors: the n�1 joint variable vector jv = [ jv1 ; : : : ; jvn ]Tand the 3n�1 �xed joint parameter vector jf , so jT = [ jfT ; jvT ]. The joint variable vector for a6-DOF MultiCraft robot is jv = [�1; �2; `; �4; �5; �6]T .2.2 Parallel actuatorsMotions of the MultiCraft robot are due to �ve linear ball-screw actuators with variable lengths,driven by electric motors. These actuators determine the joint variables of the serial arm, andas a result of that, the tool pose. Three base actuators move the prismatic joint of the serialarm relative to the robot base, and two wrist actuators rotate the tool base relative to the sameprismatic joint. Each of the linear actuators is a complete articulation with one universal jointat each end, and the prismatic ball-screw joint avi in-between. Figure 2 schematically illustratesthe complete structure of the MultiCraft robot.3



The �ve actuator lengths av1 to av5 constitute together with the rotation �6, the actua-tor variable vector avof dimension n�1 in the MultiCraft robot. For estimation purposes, theposition of the central arm also depends on a set of s actuator parameters �xed during manufac-turing. These variables constitute the s�1 �xed actuator parameter vector af , and the collectionaT = [afT ; avT ] is the actuator parameter vector.The number s of �xed actuator parameters is usually rather high in parallel constructions. Forthe MultiCraft robot, each of the �ve linear actuators is an individual articulation which consistsof the poses of both ends relative to the serial arm, plus four rotational and one controllableprismatic link. Each of these �ve links are described by four DH-parameters, so the completemodel of the MultiCraft parallel actuator structure involves s = 5�(2�6+5�4) = 160 parameters.Fortunately, many of these parameters are in practice very accurately known, and others do nota�ect the tool position signi�cantly.To identify the critical parameter, a sensitivity analysis is required. Kugiumtzis[17] analysisof the MultiCraft robot indicates that only 10�15 parameters are critical to the overall accuracy,the remaining 145�150 parameters are negligible.2.3 Forward and inverse kinematicsThere are no singularities in the reachable workspace of the MultiCraft robot, and there is aone-to-one correspondence among pose representations in the Cartesian coordinate space, thespace of joint variable vectors, and the space of actuator variable vectors.Conversion between the three coordinate-spaces is a two stage process. For ordinary robotmotions, the forward and inverse kinematics between Cartesian and joint space are de�ned as�1n+1T = f(jv) and jv = f�1(�1n+1T ) respectively, whereas the forward and inverse kinematicsbetween joint and actuator space are de�ned as jv = g(av), and av = g�1(jv). The �xedentities jf and af are here constants in the functions. The functions f , f�1, and g�1 are knownanalytically, for g only an iterative numerical solution exists.The four functions depend on combinations of jf , jv, av, and af as (1) to (4) show.�1n+1T = f(jv; jf ); (1)jv = f�1(�1n+1T ; jf ); (2)jv = g(av; af ; jf ); (3)av = g�1(jv; af ; jf ): (4)The full transformation scheme is illustrated in Figure 3. In the estimation process, errorsin jf and af are to be estimated. The errors in the actuator variables av are encoder o�seterrors which also must be estimated. There are no encoders for the joint variables jv, so jv aremathematical quantities with no o�set errors, and thus not included in the estimation.For notational convenience, we introduce the (n + s +3n)�1 vectors pT = [avT ; af T ; jfT ] =[aT ; jf T ] and qT = [af T ; jvT ; jfT ] = [af T ; jT ]. We may thus write jv = g(p) and av = g�1(q).3 Basic parameter estimation method of parallel actuatorsParameter estimation is based on deviations of nominal values from actual values in entities ofthe robot kinematics. Nominal and actual values are denoted with superscript N and A, andthe errors are actual minus nominal values. As an example, in link 1 of the MultiCraft robot,the errors in DH-parameters are�jv1 = jv1A � jv1N = ��1;�jf1 = jf1A � jf1N = [ ��0; �a0; �d1]T ;where ��0, �a0, and �d1 are among the parameter errors we will estimate.4



Assume the actual tool pose values �1n+1TA are measured relative to the world coordinateframe by some sensor system, and that the nominal tool poses �1n+1TN are given relative to thesame world coordinate in a robot program. The discrepancy�(�1n+1T ) = �1n+1TA � �1n+1TN (5)between these two poses is denoted the tool pose error, and is in principle input to the calibrationprocess.We search for a linearized relation between errors in the parameters of the parallel structure,and errors in the tool pose from (5). Given such a relation, it is possible to estimate theparameter errors by collecting many measurements at various tool poses, and applying e.g. aleast square estimation technique.Such a linearized relation is only accurate to the �rst order. Since geometrical parametersare rather accurately known beforehand, this is not seen as a major drawback.We consider the MultiCraft case �rst. Here, the linearized, functional relationships of dif-ferential errors in tool poses, joint, and actuator parameters are given by the Jacobians of thecorresponding functions f and g. Since g is unknown, its Jacobian @g@p can not be computedanalytically. This is a problem common to all parallel manipulators, since as Zhang[13] pointsout, g is rarely analytically available, whereas g�1 usually is.It is possible to compute @g@p numerically, e.g. by central di�erences, but in the Appendix weprove that @g@p = h @g@a @g@jf i ; (6)where the entities on the right hand side of the equation are found from the known inversekinematics g�1 as @g@a = h @g@av @g@af i ; (7)@g@av = �@g�1@jv ��1 ; (8)@g@af = � �@g�1@jv ��1 @g�1@af ; (9)@g@jf = � �@g�1@jv ��1 @g�1@jf : (10)Note that all derivatives are evaluated at their nominal values jN , qN , etc., which we have notexplicitly indicated in the formulas to improve readability.This relation is also the core point when estimating kinematic parameter errors in moreconventional parallel structure manipulators. For such manipulators, the �rst stage in the Mul-tiCraft kinematics can be omitted since there are no serial arm, so only the g-function is ofinterest. The jv vector would be derived from the tool pose �1n+1T , not being the varying param-eters of the serial arm as in the MultiCraft case. Thus, equations (1) to (4) simpli�es tojv = g(av;af ); (11)av = g�1(jv;af ); (12)since the non-existing jf vector must be removed from the original equations. Equation (6)simpli�es to @g@p = h @g@av @g@af i ; (13)where the two submatrices are as de�ned as in (8) and (9).These expressions assumes that the degrees of freedom (dimension) in jv equals the degreesof freedom in the actuators av, which is reasonable.5



For most parallel structure manipulators, the parameter errors �av and �af can thus befound from the relation �jv = @g@av �av + @g@af �af : (14)Here, �jv is derived from the measured error given in (5), and the two matrices can be computedfrom the nominal tool pose and parameter sets.For the MultiCraft robot, the situation is more complicated because of its two stage kine-matics, and in the next section we develop the equivalent to (14) for the MultiCraft robot. Some�ner details concerning suitable representations of the measured errors will also come clear inthe next section, as well as in the section describing the simulations.4 Relation between joint parameter error and tool poseerrorIn de�ning how errors �j in the joint variables a�ect the tool pose error �(�1n+1T ), we closelyfollow Hayati [4]. The only major di�erence is that we address the errors relative to the worldcoordinates rather than to the tool, because we assume the measurements are also referred toworld coordinates.The deviation of the nominal from the actual transformation in link i is given by the errormodel �(i�1i T ) = i�1i TA � i�1i TN : (15)Linearization of this equation gives, accurate to the �rst order,�(i�1i T ) = @i�1i T@�i�1 ��i�1 + @i�1i T@ai�1 �ai�1 + @i�1i T@di �di + @i�1i T@�i ��i; (16)since i�1i T is a function of �i�1, ai�1, di, and �i. The errors in the DH-parameters of link iconstitute the link error vector �ji = [��i�1; �ai�1; �di; ��i]T .A di�erential change �(i�1i T ) referred to link i � 1 may alternatively be given by�(i�1i T ) = i�1�(i�1i T ) i�1i TN ; (17)where i�1�(i�1i T ) is the di�erential error transformation, referring the error due to link i pa-rameter errors to the preceding link i � 1. Thus we can solve (17) with respect to i�1�(i�1i T )and �nd an expression for it. According to Paul [18], i�1�(i�1i T ) can be writteni�1�(i�1i T ) = 2664 0 ��zi �yi dxi�zi 0 ��xi dyi��yi �xi 0 dzi0 0 0 1 3775 : (18)From this form of i�1�(i�1i T ) we easily identify the components dxi, dyi, and dzi of the positionerror, and components �xi, �yi, and �zi of the rotation error. The 6�1 error vector addressed tolink i � 1 is thus de�ned as i�1e(i�1i T ) = [dxi; dyi; dzi; �xi; �yi; �zi ]T .Equations (16) and (17) show that each component of i�1�(i�1i T ), and hence of i�1e(i�1i T ),depends linearly on the link errors �ji, so we may writei�1e(i�1i T ) = Hi �ji: (19)Here Hi is a 6�4 observation matrix containing only expressions involving nominal joint param-eters. The explicit form of Hi isHi = 26666664 0 1 0 00 0 � sin�i�1 �ai�1 cos�i�10 0 cos�i�1 �ai�1 sin�i�11 0 0 00 0 0 � sin�i�10 0 0 cos�i�1 37777775 : (20)6



The errors i�1e(i�1i T ) referred to link i � 1, can be addressed back to world coordinates bythe error transformation matrix �1i�1J as�1e(i�1i T ) = �1i�1J i�1e(i�1i T ): (21)The form of �1i�1J is similar to Paul's form [18] which concerns transformations addressing theerrors to the top of the manipulator. Since we apply the opposite transformation, �1i�1J has theform �1i�1J = � RT (x �R)T0 RT � ; (22)where R and x are the rotational and translational part of the transform i�1�1 T (the inverse of�1i�1T ). The cross product x � R denotes the cross product of the vector of translation x witheach of the three columns of the matrix of rotation R.4.1 Relation between all parameter errors and tool pose errorUnlike conventional serial manipulators, the errors �jv in the parallel-serial MultiCraft manipu-lator are functions of additional parameters whose errors should also be estimated, namely avand af . As an example, in link 1 of the MultiCraft robot,�jv1 = g1(aAv ; aAf ; jAf )� g1(aNv ; aNf ; jNf ); (23)so here all the errors in �av, �af , and �jf should be estimated, not only �jv1 .Completing the estimation process requires �rst the de�nition of a functional relationshipbetween the joint variable errors �jv and the errors �pT = [ �avT ; �af T ; �jf T ], and then theinclusion of this relationship into the existing joint estimation model.First we concentrate on an arbitrary link i of the central axis and quantify the e�ects of theerrors �p on the variable joint parameter jvi . The error �jvi in jvi is given as �jvi = jAvi � jNvi =gi(pA)� gi(pN), which linearized gives �jvi = @gi@p �p: (24)Here gi is the i-th component of the vector �eld g, and @gi@p is row i in the Jacobian @g@p .We now consider (19) which relates the Cartesian errors in link i to the link error vector�ji through the matrix Hi. We must seperate the joint variable error �jvi from the �xed jointparameter error �jfi , and therefore we consider the 6�4 matrix Hi as a collection of four 6�1vectors. Equation (19) can then be expanded toi�1e(i�1i T ) = hvi �jvi + Hfi �jfi ; (25)where hvi is the column vector that corresponds to jvi and Hfi is the 6�3 observation matrixcorresponding to the �xed joint parameters.Substituting the joint variable error �jvi from (24) into (25) givesi�1e(i�1i T ) = hvi @gi@p �p + Hfi �jfi : (26)Since @gi@p also depends on jfi , we split p into the set of the actuator variables and parametersa and the �xed joint parameters jf . The gradient vector in the preceding equation can also besplit in two gradient vectors according to the desired seperation, and the equation becomes�1e(i�1i T ) = �1i�1J (hvi @gi@a �a + hvi @gi@jf �jf + Hfi �jfi); (27)where the pre-multiplication with �1i�1J transforms the error into world coordinates.7



Let �1i�1C = �1i�1J hvi @gi@a be the observation matrix related to the actuator parameters �a,and �1i�1B = �1i�1J hvi @gi@jf the observation matrix related to the �xed joint parameters �jfi . Bothmatrices can be computed since the entities on the right-hand side of the equations are known.The equation now reads�1e(i�1i T ) = �1i�1C �a + �1i�1B �jf + �1i�1J Hfi �jfi : (28)This shows that the error �1e(i�1i T ) due to errors a�ecting link i, can be written as a sumwhere the �rst term expresses the linear dependency upon the errors in actuator variables andparameters denoted by �a, and the other two terms express the linear dependency upon jointparameter errors; speci�cally the second term de�nes the dependency on errors in �xed jointparameters �jf due to the conversion of the joint variable error �jvi in link i to actuator parametererrors �a, and the third term de�nes the dependency on the errors �jfi of the three �xed jointparameters of link i.Assembling the in�uences from all links i = 1; : : : ; n, we getnXi=1 �1e(i�1i T ) = C�a+B�jf + nXi=1 �1i�1J Hfi �jfi ; (29)where we have set B = Pni=1�1i�1B and C = Pni=1�1i�1C. Note that the di�erential vectors �aand �jf interfere in every link error, and are therefore post multiplied with the matrix sums Band C.We wish to conglomerate the second and third term on the right-hand side of the equationabove, because the �xed joint parameter errors appear in both. Therefore we subdivide the6�3n matrix B into n submatrices Bi, for i = 1; : : : ; n of dimension 6�3. Then the second termof the right-hand side of (29) can be written B �jf =Pni=1Bi �jfi , and substituting this resultinto (29) gives nXi=1 �1e(i�1i T ) = C �a + nXi=1 Ji �jfi ; (30)where we have substituted Ji = Bi + �1i�1J Hfi . This equation illustrates the linear dependencyof the Cartesian errors on the actuator and joint parameter errors.However, the estimation model given by (30) is not yet complete. Since the transformationerrors �1e(�10 T ) = H0 �x0 in the manipulator base, and ne(nn+1T ) = Hn+1 �xn+1 in the toolframe do not depend on joint errors, we have H0 = Hn+1 = I6�6. We add �x0 and �xn+1(assumed as 6�1 error vectors) to (30) and derive the complete functional relationship betweenthe tool pose error and errors in the geometric parameters:e = �x0 + C �a + nXi=1 Ji �jfi + �1n J �xn+1: (31)Here, e = Pni=1�1e(i�1i T ) is the error vector which expresses the three position (dx, dy, dz)and three rotation (�x, �y, �z) elements of the tool pose error relative to the world system.This total transformation error vector e may alternatively be computed by the total errormodel of (5) when actual (measured) and nominal tool poses are provided. Equation (5) doesnot apply directly, since position and rotation errors is not explicitly described. However, re-placing the i-th link transformation by the total transformations in (16) to (18), transforms themeasurements into the sought dx, dy, dz, �x, �y, and �z values.In a real calibration process, we consider measured values as the actual tool poses, andtherefore we account measurement noise in the implementation of the algorithmas the simulationprocess of the next section indicates.Equation (31) can be written as a matrix obervation equatione = J �x (32)8



where J = � I C J1 : : : Jn �1n J � (33)and �x = 266666664 �x0�a�jf1...�jfn�xn+1 377777775 : (34)Here J is a 6�(6 + (s+ 6) + 3n+ 6) observation matrix, and �x is the (6 + (s +6)+ 3n +6)�1error vector to be estimated. The number of �xed joint parameter errors is 3n, s + 6 is thenumber of actuator parameters and variables, and 6+ 6 parameters de�ne the pose of the tooland the base of the manipulator.5 Simulation results5.1 Estimating kinematic parameter errorsCalibration tests were done on a simulated 5 degree-of-freedomMultiCraft robot, so now n = 5.From the MultiCraft robot manufacturer, we obtained nominal parameters aN and jN . Further,bounds on position parameter errors for this robot vary between �0:01mm and �0:2mm, androtation error bounds are approximately �0:1�. To simulate actual parameters, we set aAf =aNf + �af and jAf = jNf + �jf , where �af and �jf are zero-mean Gaussian random variableswith standard deviations equal to the above mentioned tolerances. The �ve error o�sets �av inactuator values were drawn from a zero-mean Gaussian distribution with a standard deviationof 0:1mm.To simplify the task somewhat, we set the transformations nn+1T and �10 T to identity,and assumed no errors in these entities. In a previous sensitivity analysis documented inKugiumtzis[17], we identi�ed 10 critical af parameters. We thus aim at estimating 5+10+5�3 =30 parameters, 15 from the passive serial arm, and 15 from the parallell part of the structure.For calibration, extreme robot poses must be used, otherwise the observation matrix will notcontain enough information. To generate a wide range of poses, we draw random joint variablesjv, and then compute the nominal tool poses �1n+1T by the f-function. Therefore, all nominalcalibration poses �1n+1TN stem from jv vectors where the angles �1, �2, �4, and �5 are all drawnuniformly from the set [�45�;�25�][ [25�; 45�]. The length ` of the prismatic link of the centralaxis is drawn from the range 800�1400mm.Simulated calibration poses were generated by drawing random joint variables jv, and thencomputing the nominal tool poses �1n+1T by the f-function. For calibration, extreme robot posesmust be used, otherwise the observation matrix will not contain enough information. Therefore,all nominal calibration poses �1n+1TN stem from jv vectors where the angles �1, �2, �4, and �5 areall drawn uniformly from the set [�45�;�25�][ [25�;45�]. The length ` of the prismatic link ofthe central axis is drawn from the range 800�1400mm.At a nominal calibration pose, the uncompensated robot controller will compute the nominalactuator values aNv = g�1(f�1(�1n+1TN ; jNf );aNf ; jNf ). An actual, physical robot is simulatedby �rst computing actual actuator variables aAv = aNv + �av, and then the actual tool pose�1n+1TA = f(g(aAv ;aAf ; jAf ); jAf ).From the actual and nominal poses �1n+1TA and �1n+1TN , we compute the acutal error vectoreA by applying (16) to (18).However, actual tool poses are not available in a real calibration setup, since measurementnoise is inevitable. This noise is simulated by 3+3 independent zero-mean Gaussian randomvariables; �px , �py , and �pz for positions along each axis, and �rx , �ry , and �rz for rotations around9



each axis. Standard deviations are SD(�p) and SD(�r) in positions and rotations respectively.Following Hayati[4] we can model the di�erential noise in�uence on the actual measurements as�1n+1TM = 2664 1 ��rz �ry �px�rz 1 ��rx �py��ry �rx 1 �pz0 0 0 1 3775�1n+1TA; (35)where �1n+1TM denotes the measured tool pose. This measured tool pose is available, so applying(16) to (18) to �1n+1TM and �1n+1TN , gives the measured error vector eM of dimension 6�1, whereeM is the error between nominal and measured tool poses. From (33) we then compute theJ-matrix for this calibration pose, and do now have the relation eM = J�x.A complete calibration requires many, let us say K, calibration poses. The complete errorvector " is obtained by stacking all K error vectors on top of each other, and similarly all KJ-matrices on top of each other gives the entire observation matrix J . In our tests, K = 35calibration poses were used, so the complete measured error vector "M has dimension 210�1.With 30 estimation variables, our complete observationmatrixJ is a 210�30 dimensionalmatrix.The 30�1 parameter error vector �x may now be found by a least square method, e.g. viathe pseudo-inverse as �x = J y "M = (J TJ )�1J T "M .However, as could be expected from the geometrical structure of the actuator, a directpseudo-inverse solution is not feasible. Some of the parameters to be estimated depend almostlinearly upon each other, so some column vectors of J are almost parallel. This leads to smallsingular values in J , and thus a large maximal singular value �1 in the pseudo-inverse J y. Weexperienced �1 in the range 250�500 in some of our experiments.To solve the problem of linear dependence of calibration parameters, we computed the anglesbetween all possible pairs of the 30 column vectors in J . By manual inspection we identi�ed thevector combinations with the smallest angles, and could then remove 7 redundant calibrationparameters from the original set, 5 from af , and 2 from jf . All removed parameters wereuniversal joint o�sets almost parallel to the varying length of the adjacent prismatic joint, whichis perfectly reasonable. After this simpli�cation, the new J y matrix of dimension 23�210 got atypical norm of 30�130, and then a simple pseudo-inverse method gave reasonable �x estimates.Large singular values in J y may amplify the estimation error. To illustrate this problem, wefollow Hayati[4] and write to �rst order accuracy the "M as a sum of the actual error vector "Aand an additional measurement noise error vector �", so "M = "A + �". Applying the triangleinequality, and the fact that jjJ yjj = �1 for the spectral-norm, we see thatjj�xjj � jjJ y "Ajj+ jjJ y �"jj � �1jj"Ajj+ �1jj�"jj: (36)Evidently, a small measurement noise error �" may cause large errors in the estimated �x dueto possible ampli�cation during multiplication with J y.To identify the linear dependencies in J , we computed the angles between all possible pairsof the 30 column vectors in J . By manual inspection we identi�ed the vector combinationswith the smallest angles, and could then remove 7 redundant calibration parameters from theoriginal set, 5 from af , and 2 from jf . After this simpli�cation, the new J y matrix of dimension23�210 got a typical norm of 30�130, and then a simple pseudo-inverse method gave reasonable�x estimates. All removed parameters were universal joint o�sets almost parallel to the varyinglength of the adjacent prismatic joint. This is a consequence of the mechanical parallel structure,since actuators in such structures usually have a limited range of roll-pitch angles. O�sets inuniversal acutator joints will therefore be hard to distinguish from the o�sets in the controlledactuator lengths. Related problems with the condition number of the identi�cation Jacobiansare recently reported by Zhuang and Roth [19].Our inspection of vector pairs is a simple manual method. A more complete automaticalgorithm for identifying the linearly dependent parameters is described in Menq et.al. [20].10



Their algorithm follows from the separation of parameters into observable and unobservablesubspaces.5.2 Testing the calibrated robot controllerTesting the calibrated robot controller was done over 20 randomly drawn nominal robot-programposes. The simulation was repeated for various levels of measurement noise, which had a zero-mean normal distribution with standard deviation SD(�p) for positions and SD(�r) for rotations.At each program pose, the position error between nominal and calibrated actual pose, �C , wascomputed together with the position error between nominal and uncalibrated actual pose, �A.The average of �C and �A over the 20 poses, denoted by AV(�C) and AV(�A), are given inTable II. In addition, the table gives the maximal values of the same error quantites, denotedby max(�C) and max(�A).In the last test (third line in Table II) we used SD(�p) = 0:1mm, SD(�r) = 0, to simulatethe case where rotation measurements are unavailable. Here we have only used the positioncomponents in (32). Since half of the measurements are gone, we now used 70 measurementpoints instead of 35 as in the other cases.In more detail, the simulation procedure is as follows: First, the calibrated parameter setsaCf = aNf + �af and jCf = jNf + �jf were generated, where �jf and �af are parts of the estimatedparameter vector �x. To generate a program pose, jv was drawn with the four �-values uniformlydistributed between �45� and 45�, and ` in the range 800�1400mm. Then, �1n+1TN = f(jv; jCf )was generated as the nominal program tool pose. Actuator variables calculated by the calibratedrobot controller will be av = g�1(f�1(�1n+1TN ; jCf ); aCf ; jCf ) = g�1(jv; aCf ; jCf ), and the actuatoro�set errors are compensated by generating the calibrated actuator setpoints aCv = av � �avwhere �av is also part of the estimated �x. The actual tool pose reached by the calibratedrobot is now given as �1n+1TC = f(g(aCv ; aCf ; jCf ); jCf ). In comparison, an uncalibrated robotwould compute the actuator values aAv = g�1(f�1(�1n+1TN ; jNf );aNf ; jNf ), and reach the actualpose �1n+1TA = f(g(aAv ; aAf ; jAf ); jAf ).To compare a calibrated pose to an uncalibrated, we computed the pose position errors�C = jjxC �xN jj and �A = jjxA�xN jj, where xN , xA, and xC are the 3�1 tool position vectorsof �1n+1TN , �1n+1TA, and �1n+1TC respectively.6 ConclusionWe faced the problem of estimating the parameter errors of the MultiCraft parallel-serial ma-nipulator in two stages. First we built the parameter estimation model as if the manipulatorhad a simple serial link form. Then we extended the model to include also the errors in thegeometry of the parallel structure. This was succeeded by developing the di�erential relationbetween errors in the joint variables of the serial structure, and parameter errors in the parallelstructure.Crucial to this method is how we expressed the linearized relation between errors in thekinematical parameters and errors in acutal (measured) tool pose. We expressed the Jacobian ofthe forward, and unknown, kinematics in terms of the Jacobian of the known inverse kinematics.Parameter estimation of more convetional parallel manipulators can be treated in this way, andis thus covered by the method outlined in this paper. In fact, calibrating a parallel actuator isan easier problem, as all the joint parameters of the serial arm can be dropped from the �nalmatrix error equation.The simulation has shown that the estimation algorithm gives satisfactory results when theparameters to be calibrated are few and independently de�ned. Therefore two processes turnout to be essential before implementing a practical estimation algorithm: the sensitivity analysiswhich identi�es the most critical parameters for position inaccuracy, and the extraction of thelinear dependent parameter errors from the set of parameter errors to be estimated. Under these11



assumptions the method can be easily implemented and seems to be numerically stable. Thesimulations for the MultiCraft robot show a reduction of position inaccuracies due to kinematicalparameter errors between 60% and 90%.Certainly we have not solved the complete calibration problem yet; the development of theestimation model is only the �rst step. The second step, measurements, requires measurementinstrumentation and correct choice of calibration points in order to avoid singularities in theestimation process. The third step, compensation of errors in the controller, requires thoroughconsideration as we must build an algorithm that corrects the nominal values for each inputpoint in real time.This work was supported by the Research Council of Norway, B.Lillekjendlie was also sup-ported by SINTEF-SI. The authors would also thank Tom Kavli and Svein Linge at SINTEF-SIfor valuable discussions and careful reading of the manuscript.APPENDIX The Jacobian of gThe di�erential functional equation for the errors �jv in all joint variables is given as �jv = @g@p �p.Since p is the set of av, af , and jf , the Jacobian can be split into three submatrices giving�jv = @g@av �av + @g@af �af + @g@jf �jf : (37)The results should be expressed in terms of the known g�1, so we observe that@g@av = �@g�1@jv ��1 : (38)As in (37), the di�erential error �av is given in terms of g�1 as �av = @g�1@q �q, which can bewritten �av = @g�1@jv �jv + @g�1@af �af + @g�1@jf �jf : (39)Substituting �jv from (37) into (39) and then applying (38), gives0 = �@g�1@jv @g@af + @g�1@af � �af + �@g�1@jv @g@jf + @g�1@jf � �jf : (40)The parameter error vectors �af and �jf are independent to each other and therefore the solutionis @g�1@jv @g@af + @g�1@af = @g�1@jv @g@jf + @g�1@jf = 0; (41)which proves that @g@af = � �@g�1@jv ��1 @g�1@af ; (42)@g@jf = � �@g�1@jv ��1 @g�1@jf : (43)The entire Jacobian is the collection of the three submatrices given by (38), (42) and (43).The problem of computing the n�(n+ s +3n) Jacobian @g@p is now reduced to computing theinverse of the n�n Jacobian @g�1@jv , the n�s Jacobian @g�1@af and the n�3n Jacobian @g�1@jf .12
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