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Abstract

This paper provides an estimation model for calibrating the kinematics of manipulators
with a parallel geometrical structure. Parameter estimation for serial link manipulators
is well developed, but fail for most structures with parallel actuators, since the forward
kinematics is usually not analytically available for these. We extend parameter estimation
to such parallel structures by developing an estimation method where errors in kinematical
parameters are linearly related to errors in the tool pose, expressed through the inverse
kinematics which is usually well know.

The method is based on the work done to calibrate the MultiCraft robot. This robot
has five linear actuators built in parallel around a passive serial arm, thus making up a two-
layered parallel-serial manipulator, and the unique MultiCraft construction is reviewed. Due
to the passive serial arm, for this robot conventional serial calibration must be combined
with estimation of the parameters in the parallel actuator structure.

The developed kinematic calibration method is verified through simulations with realistic
data and real robot kinematics, taking the MultiCraft manipulator as the case.

1 Introduction

Many varieties of robot manipulators have been built for industrial applications. They can be
separated into classes of serial link manipulators, (an articulation of consecutive links combined
with revolute or prismatic joints), parallel manipulators (a combination of parallel articulations
that comprises of a closed loop) and parallel-serial manipulators with parallel articulations,
stacked on top of each others. This paper discusses specifically kinematic calibration of a two-
layered parallel actuator structure built around a passive serial arm, but the basic ideas can be
applied to most parallel and parallel-serial actuators.

As noted in the article by Shahinpoor[1], it is possible to build highly accurate parallel
and parallel-serial manipulators, so this class of manipulators is of special interest. Positioning
inaccuracies are caused by many factors, but our efforts have been directed toward identification
of kinematic parameter errors, that i1s errors in the geometrical model of the manipulator. The
process of computing accurate relations between tool poses (positions and orientations) and
kinematic parameters has been called kinematic calibration. A complete kinematic calibration
process consists of three steps as noted in Roth[2]: (1) the mathematical formulation, based on
the kinematic model of the robot, that results in an observation equation from which the error
sources can be solved; (2) the identification of the error sources utilizing measurements of actual
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tool poses and applying parameter estimation methods, e.g. as described in Luenberger[3]);
and finally (3) the compensation of the parameter errors in the controller in order to obtain an
accurate kinematic model. In this paper, the first step i1s discussed in details, the second step is
illustrated by simulations, and the third step is not treated at all.

Methods for calibrating serial link arms, are well developed and described in e.g. Hayati[4],
Hsu[5], Wu[6], Driels[7] and Renders[8]. Central to these methods are the transformation matrix
ﬁ_lT(ai_l,ai_l, d;, 0;) uniquely relating link ¢ to i — 1, where «, a, d, and 0 are the four Denavit-
Hartenberger (DH) parameters. This representation is well known, and can be found e.g. in
Craig[9]. Most serial arm parameter estimation methods build a linear kinematic model relating
differential errors in the 4xn DH-parameters of the serial arm, n being the number of links,
to differential errors in the tool pose. In essence, this linear relation is the Jacobian of the
forward kinematics, so by utilizing the forward kinematics, optimal values for the unknown
DH-parameter is determined from a linear least square problem.

For calibration, the DH-parameter representation fails when there are parallel axes in two
successive joints. By introducing another link description, it is possible to treat this problem.
The reader may refer to Ziegert[10] for a comprehensive literature review, as well as the work
of Hayati[11] and Stone[12] for other link descriptions. In the general case, description of links
identified with parallel axes must be described through an expanded model, e.g. by adding a
fifth parameter.

Contrary to the serial arm case, Zhang[13] notes that forward kinematics is not readily
available in parallel structure manipulators, whereas the inverse kinematics is. This could be
why calibration of parallel actuators is a little explored field. There are two recent works to
our knowledge, Hollerbach and Lokhorst [14], and Zhuang and Roth [15]. Both methods are
developed for special type of manipulators. We develop a general estimation method where we
only require the measurements of the actuator lengths and the tool pose, further, no special
motion pattern is required.

In our method, differential errors in kinematical parameters are linearly related to differential
errors in the tool pose, expressed through the inverse kinematics instead of the unavailable
forward kinematics. Based on physical tool pose measurements, least square estimates of the
kinematic parameters may be computed by this linear kinematic model.

Our method is further developed to apply to the MultiCraft robot, which is a combination of
a passive serial arm supported by five linear actuators, constructing a two-layered parallel-serial
manipulator. In this robot, one joint variable in each link of the serial arm is determined by the
underlying parallel actuator structure. We replace the error in this varying joint variable by a
linearized function of the errors of the geometrical parameters of the parallel structure. Thus,
we arrive at a method where standard serial arm kinematical parameter estimation methods is
applied to most parameters in the serial arm, combined with the newly developed methods for
estimating kinematical parameters in the parallel actuator structure.

The paper is organised as follows: First a concise description of the kinematic model of
the MultiCraft parallel-serial manipulator is given in section 2, and the mathematical relations
of forward and inverse kinematics are provided. Then, in section 3 we discuss the problem
of analytically unknown forward kinematics of the parallel structure, and develop a method
to compute the Jacobian of this function through the Jacobians of the inverse kinematics. In
section 4 the estimation algorithm for the MultiCraft manipulator is developed, and finally, in
section b, we describe the simulation results.

In this article, scalar entities are written in standard typeface like i, whereas vector entities

are set in boldface as x. We let %(1‘) : ]} — R denote the derivative of the scalar function f(z) :

R — R, %(X) : R — RN denotes the gradient row-vector of the scalar field f(x) : R™ — R,

and %(X) SR — R™ s the Jacobian matrix of the vector field f(x) : ®R™ — R7.



2 Kinematics of the MultiCraft manipulator

The patented MultiCraft manipulator construction consists of a passive serial arm supported by
five linear ball-screw actuators in parallel with the arm. A complete description of the geomet-
rical structure and analytical formulas of the MultiCraft kinematic can be found in Asdgl[16],
here we only give a short summary.

The degree of freedoms in the manipulator is denoted by n, which in the case of MultiCraft
robot is five, or six if an additional motor is added to the tool base.

The robot is programmed in Cartesian coordinate space using homogeneous matrices ;}rlT,
which refer the robot tool frame, numbered n + 1, to the world frame, numbered —1. Various
tools may be attached to the robots tool base at a point denoted by the fixture point. The
transformation 7, 7" referring the tool pose relative to the fixture frame, numbered n, is fixed
for a particular tool. Similarly, a fixed transformation alT relates the robot base, numbered 0,
to the external world coordinate frame.

2.1 The central, serial link arm

As depicted in Figure 1, the MultiCraft robot has an arm with five, or six, successive joints
where the main part is a long prismatic joint. A lower universal joint connects the robot base
to the prismatic joint with two rotational degrees of freedom, #; and ;. An identical upper
universal joint with two other rotational degrees of freedom, 84 and 65, connects the other end
of the prismatic joint to the tool base. The length of the prismatic joint is denoted ¢, and there
are no rotations in this joint. An optional, separate motor mounted at the tool base may give a
sixth rotation degree of freedom denoted 5. Except for this optional sixth joint, all joints are
passive.

According to the kinematic model of Asdgl[16], the DH-parameters of one possible configu-
ration of a 6 degree-of-freedom (DOF) MultiCraft robot are as displayed in Table I. There are
many other possible configurations, as the sixth motor can be positioned rather freely.

For link ¢ = 1,...,n, we collect the DH-parameters in the 4x1 vectors j,. At each link 7, one
of the DH-parameters varies and is denoted j,,, while the three others are assigned fixed values
during manufacturing, and they compose the 3x1 vector j; of fixed joint parameters. As an
example, for link 1 of the MultiCraft robot we have

jvl — 91,
jfl — [0[0, o, dl]Ta
where the superscript 7 denotes the transpose.

During ordinary robot movements, Cartesian manipulator pose ;}rlT is a function of the joint
variables j,,, ¢ = 1,...,n, only. However, when parameter estimation is concerned, parameter
errors in the fixed geometry of the central arm act on the manipulator pose; thus ;ilT depends
on all DH-parameters which compose the joint parameter vector j of dimension 4nx1. From the
elements of j we can distinguish two subvectors: the nx1 joint variable vector j, = [Ju,, - -, Ju, |*
and the 3nx1 fixed joint parameter vector j, so it = [jfT,jvT]. The joint variable vector for a

6-DOF MultiCraft robot is j, = [01, 02, ¢, 04,05, 06]".

2.2 Parallel actuators

Motions of the MultiCraft robot are due to five linear ball-screw actuators with variable lengths,
driven by electric motors. These actuators determine the joint variables of the serial arm, and
as a result of that, the tool pose. Three base actuators move the prismatic joint of the serial
arm relative to the robot base, and two wrist actuators rotate the tool base relative to the same
prismatic joint. Each of the linear actuators is a complete articulation with one universal joint
at each end, and the prismatic ball-screw joint a,, in-between. Figure 2 schematically illustrates
the complete structure of the MultiCraft robot.



The five actuator lengths a,, to a,, constitute together with the rotation fs, the actua-
tor variable vector a,of dimension nx1 in the MultiCraft robot. For estimation purposes, the
position of the central arm also depends on a set of s actuator parameters fixed during manufac-
turing. These variables constitute the sx1 fixed actuator parameter vector a;, and the collection
a’ =[a;T a,”] is the actuator parameter vector.

The number s of fixed actuator parameters is usually rather high in parallel constructions. For
the MultiCraft robot, each of the five linear actuators is an individual articulation which consists
of the poses of both ends relative to the serial arm, plus four rotational and one controllable
prismatic link. Each of these five links are described by four DH-parameters, so the complete
model of the MultiCraft parallel actuator structure involves s = 5#(2x6+45%4) = 160 parameters.
Fortunately, many of these parameters are in practice very accurately known, and others do not
affect the tool position significantly.

To identify the critical parameter, a sensitivity analysis is required. Kugiumtzis[17] analysis
of the MultiCraft robot indicates that only 10-15 parameters are critical to the overall accuracy,
the remaining 145-150 parameters are negligible.

2.8 Forward and inverse kinematics

There are no singularities in the reachable workspace of the MultiCraft robot, and there is a
one-to-one correspondence among pose representations in the Cartesian coordinate space, the
space of joint variable vectors, and the space of actuator variable vectors.

Conversion between the three coordinate-spaces is a two stage process. For ordinary robot
motions, the forward and inverse kinematics between Cartesian and joint space are defined as

;}rlT = f(j,) and j, = f_l(;}rlT) respectively, whereas the forward and inverse kinematics
between joint and actuator space are defined as j, = g(a,), and a, = g=*(j,). The fixed

L are known

entities j; and a; are here constants in the functions. The functions f, f~! and g~
analytically, for g only an iterative numerical solution exists.

The four functions depend on combinations of j;, j,, a,, and a; as (1) to (4) show.

o T = £(,.0), (1)
i = GLTp), (2)
jo = slav,apjp), (3)
Ay = g_l(jv’af’jf)' (4)

The full transformation scheme is illustrated in Figure 3. In the estimation process, errors
in j; and a; are to be estimated. The errors in the actuator variables a, are encoder offset
errors which also must be estimated. There are no encoders for the joint variables j,, so j, are
mathematical quantities with no offset errors, and thus not included in the estimation.

For notational convenience, we introduce the (n + s + 3n)x1 vectors p? = [a, T, afT,jfT] —

[aT,jfT] and q7 = [afT,jvT,jfT] = [afT,jT]. We may thus write j, = g(p) and a, = g~'(q).

3 Basic parameter estimation method of parallel actuators

Parameter estimation is based on deviations of nominal values from actual values in entities of
the robot kinematics. Nominal and actual values are denoted with superscript N and A, and
the errors are actual minus nominal values. As an example, in link 1 of the MultiCraft robot,
the errors in DH-parameters are

6jv1 - jle _jle = 00,
. . A .« N
6Jf1 Ji — I - [6a0a6a0a6d1]Ta

where dag, dap, and 8d; are among the parameter errors we will estimate.



A . .
Assume the actual tool pose values ;ilT are measured relative to the world coordinate

frame by some sensor system, and that the nominal tool poses ;}ATN are given relative to the
same world coordinate in a robot program. The discrepancy

SGhT) = b1t - LTt (5)
between these two poses is denoted the tool pose error, and is in principle input to the calibration
process.

We search for a linearized relation between errors in the parameters of the parallel structure,
and errors in the tool pose from (5). Given such a relation, it is possible to estimate the
parameter errors by collecting many measurements at various tool poses, and applying e.g. a
least square estimation technique.

Such a linearized relation is only accurate to the first order. Since geometrical parameters
are rather accurately known beforehand, this is not seen as a major drawback.

We consider the MultiCraft case first. Here, the linearized, functional relationships of dif-
ferential errors in tool poses, joint, and actuator parameters are given by the Jacobians of the
corresponding functions f and g. Since g is unknown, its Jacobian g—% can not be computed
analytically. This is a problem common to all parallel manipulators, since as Zhang[13] points
out, g is rarely analytically available, whereas g=! usnally is.

It is possible to compute o8 numerically, e.g. by central differences, but in the Appendix we

ap
prove that
8 %8 98
2| R a3y . (6)

where the entities on the right hand side of the equation are found from the known inverse

kinematics g=! as
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-1
o _ _fea”)  emTl (10)
a) ¢ 93y a) ¢

Note that all derivatives are evaluated at their nominal values jN, q", etc., which we have not
explicitly indicated in the formulas to improve readability.

This relation is also the core point when estimating kinematic parameter errors in more
conventional parallel structure manipulators. For such manipulators, the first stage in the Mul-
tiCraft kinematics can be omitted since there are no serial arm, so only the g-function is of
interest. The j, vector would be derived from the tool pose ;}rlT, not being the varying param-
eters of the serial arm as in the MultiCraft case. Thus, equations (1) to (4) simplifies to

Jo = g(avaaf)’ (11)
ay = g_l(jvaaf)’ (12)

since the non-existing j; vector must be removed from the original equations. Equation (6)
simplifies to

3 3 3
B | (13)
where the two submatrices are as defined as in (8) and (9).
These expressions assumes that the degrees of freedom (dimension) in j, equals the degrees
of freedom in the actuators a,, which is reasonable.



For most parallel structure manipulators, the parameter errors 6a, and éa; can thus be
found from the relation
. 8 3
8, = gas0au T garoa;. (14)
Here, 6j, is derived from the measured error given in (5), and the two matrices can be computed
from the nominal tool pose and parameter sets.

For the MultiCraft robot, the situation is more complicated because of its two stage kine-
matics, and in the next section we develop the equivalent to (14) for the MultiCraft robot. Some
finer details concerning suitable representations of the measured errors will also come clear in
the next section, as well as in the section describing the simulations.

4 Relation between joint parameter error and tool pose
error

In defining how errors §j in the joint variables affect the tool pose error 6(;Jlr1T), we closely
follow Hayati [4]. The only major difference is that we address the errors relative to the world
coordinates rather than to the tool, because we assume the measurements are also referred to
world coordinates.

The deviation of the nominal from the actual transformation in link ¢ is given by the error
model

s(mtry = i-tpt i (15)
Linearization of this equation gives, accurate to the first order,
. z 1 z 1 z:—l z 1
6(i7MT) = G T&az L T&az L+ U Lsd; + elT(sai, (16)

since Z:_lT is a function of a;_1, a;_1, d;, and #;. The errors in the DH-parameters of link ¢
constitute the link error vector 8j; = [6a;_1,6a;_1,8d;, 80;]%.
A differential change 6(2_1T) referred to link ¢ — 1 may alternatively be given by

671y = AT (17)

where i_lA(ﬁ_lT) is the differential error transformation, referring the error due to link 7 pa-
rameter errors to the preceding link i — 1. Thus we can solve (17) with respect to SIAGTIT)
and find an expression for it. According to Paul [18], *"*A(:~'T) can be written

0 —(SZZ' (Syl' dl‘l
0 0 0 1

TIAGTT) =

From this form of i_lA(i_lT) we easily identify the components dx;, dy;, and dz; of the position
error, and components éx;, dy;, and é6z; of the rotation error. The 6x1 error vector addressed to
link ¢ — 1 is thus defined as i_le(ﬁ_lT) = [dx;, dy;, dz;, 625, 6y, 62 |7

Equations (16) and (17) show that each component of i_lA(Z:_lT), and hence of i_le(z_lT),
depends linearly on the link errors ¢j;, so we may write

“le(tTMT) = H; 8j;. (19)

Here H; is a 6x4 observation matrix containing only expressions involving nominal joint param-
eters. The explicit form of H; is

0 1 0 0
0 0 —sina;_1 —a;_1cosq;_q
| 0 0 cosaj_y  —aj_ysina;_y
Hi=17 9 0 0 (20)
0 0 0 —sin o_1q
0 0 0 COS ;1



The errors i_le(ﬁ_lT) referred to link ¢ — 1, can be addressed back to world coordinates by
the error transformation matrix Z»__llJ as

Tle(TIT) = 4T eI, (21)

The form of ;1,.J is similar to Paul’s form [18] which concerns transformations addressing the

errors to the top of the manipulator. Since we apply the opposite transformation, Z»__llJ has the
form
RT (xxR)T

2= R : (22)

where R and x are the rotational and translational part of the transform i__llT (the inverse of

Z»__llT). The cross product x x R denotes the cross product of the vector of translation x with
each of the three columns of the matrix of rotation R.

4.1 Relation between all parameter errors and tool pose error

Unlike conventional serial manipulators, the errors éj, in the parallel-serial MultiCraft manipu-
lator are functions of additional parameters whose errors should also be estimated, namely a,
and a;. As an example, in link 1 of the MultiCraft robot,

6jv1 :gl(avA’a?’j?)_gl(a{)\f’anV’ijV)’ (23)

so here all the errors in éa,, éay, and éj; should be estimated, not only 63, .

Completing the estimation process requires first the definition of a functional relationship
between the joint variable errors 8j, and the errors 6pT = [6avT,6afT,6jfT], and then the
inclusion of this relationship into the existing joint estimation model.

First we concentrate on an arbitrary link ¢ of the central axis and quantify the effects of the
errors 6p on the variable joint parameter j,,. The error é7,, in 7,, is given as 6j,, = j{f‘l — jf)\: =
g:(p?) — ¢;(p"), which linearized gives

. a4,
8jv, = ai) op. (24)
Here g; 1s the i-th component of the vector field g, and g“g is row ¢ in the Jacobian g—%.

We now consider (19) which relates the Cartesian errors in link ¢ to the link error vector
8J); through the matrix H;. We must seperate the joint variable error éj,, from the fixed joint
parameter error j;, and therefore we consider the 6x4 matrix H; as a collection of four 6x1
vectors. Equation (19) can then be expanded to

(7MY = hy, ju, + Hj, 8y, (25)

where hy, is the column vector that corresponds to j,, and Hy, is the 6x3 observation matrix
corresponding to the fixed joint parameters.
Substituting the joint variable error 83, from (24) into (25) gives

le((TIT) = hy, G5 ép + Hy, b, (26)

Since gg, also depends on j;,, we split p into the set of the actuator variables and parameters

a and the fixed joint parameters j;. The gradient vector in the preceding equation can also be
split in two gradient vectors according to the desired seperation, and the equation becomes

“le(i™'T) = 7L T (hy, % ba + hy, gjf/?usjf + Hy, 6j;,), (27)

where the pre-multiplication with Z»__llJ transforms the error into world coordinates.



Let Z»__llC' = Z»__llJ hy, %‘g be the observation matrix related to the actuator parameters da,

and Z»__llB = Z.__llJ hy, (%q’ the observation matrix related to the fixed joint parameters 8j;,. Both

matrices can be computed since the entities on the right-hand side of the equations are known.
The equation now reads

_19(2:_171) - ;—11063 + z'_—llBéjf + z'_—llefz 6jf,' (28)

This shows that the error _1e(§_1T) due to errors affecting link i, can be written as a sum
where the first term expresses the linear dependency upon the errors in actuator variables and
parameters denoted by éa, and the other two terms express the linear dependency upon joint
parameter errors; specifically the second term defines the dependency on errors in fixed joint
parameters §j; due to the conversion of the joint variable error éj,, in link 7 to actuator parameter
errors da, and the third term defines the dependency on the errors ¢j;, of the three fixed joint
parameters of link ¢.

Assembling the influences from all links e = 1,... n, we get
> le(IT'T) = Céa+ Bbj; + Y 7T Hy, 6y, (29)
i=1 i=1

where we have set B = Y " | LB and C = Yo 71, C. Note that the differential vectors éa
and éj; interfere in every link error, and are therefore post multiplied with the matrix sums B
and C'.

We wish to conglomerate the second and third term on the right-hand side of the equation
above, because the fixed joint parameter errors appear in both. Therefore we subdivide the
6x3n matrix B into n submatrices By, for ¢ = 1,...,n of dimension 6x3. Then the second term
of the right-hand side of (29) can be written B éj; = S B 6j;,, and substituting this result
into (29) gives

n n

> Tle(iTMT) =Csa + > Jiby,, (30)
i=1 i=1

where we have substituted J; = B; + Z»__llJ Hy,. This equation illustrates the linear dependency
of the Cartesian errors on the actuator and joint parameter errors.

However, the estimation model given by (30) is not yet complete. Since the transformation
errors _1e(0_1T) = Hyéxp in the manipulator base, and "e(}} 1) = Hy,y16%X,11 in the tool
frame do not depend on joint errors, we have Hy = H,y1 = Isxs. We add 6x¢ and éx,41
(assumed as 6x1 error vectors) to (30) and derive the complete functional relationship between
the tool pose error and errors in the geometric parameters:

e=0xg + Cba + Y Jibj; + 2'J 6Xpp1. (31)

i=1

Here, e = >°° | _1e(§_1T) is the error vector which expresses the three position (dz, dy, dz)
and three rotation (8x, &y, éz) elements of the tool pose error relative to the world system.

This total transformation error vector e may alternatively be computed by the total error
model of (5) when actual (measured) and nominal tool poses are provided. Equation (5) does
not apply directly, since position and rotation errors is not explicitly described. However, re-
placing the i-th link transformation by the total transformations in (16) to (18), transforms the
measurements into the sought dz, dy, dz, éz, dy, and 6z values.

In a real calibration process, we consider measured values as the actual tool poses, and
therefore we account measurement noise in the implementation of the algorithm as the simulation
process of the next section indicates.

Equation (31) can be written as a matrix obervation equation

e=Jéx (32)



where

J:[I c Jo... J, ;1J] (33)
and ~ _
6X0
ba
83f,
bx = f (34)
03y,
| 0%Xnq1 |

Here .J is a 6x(6 + (s + 6) + 3n + 6) observation matrix, and éx is the (6 4+ (s + 6) + 3n + 6)x1
error vector to be estimated. The number of fixed joint parameter errors is 3n, s + 6 is the
number of actuator parameters and variables, and 6 + 6 parameters define the pose of the tool
and the base of the manipulator.

5 Simulation results

5.1 Estimating kinematic parameter errors

Calibration tests were done on a simulated b degree-of-freedom MultiCraft robot, so now n = 5.
From the MultiCraft robot manufacturer, we obtained nominal parameters a® and j~. Further,
bounds on position parameter errors for this robot vary between +0.01 mm and £0.2 mm, and
rotation error bounds are approximately +0.1°. To simulate actual parameters, we set a}“ =

alf + sa; and 3}4 = ij + 6j;, where éa; and 8j; are zero-mean Gaussian random variables
with standard deviations equal to the above mentioned tolerances. The five error offsets éa, in
actuator values were drawn from a zero-mean Gaussian distribution with a standard deviation
of 0.1 mm.

To simplify the task somewhat, we set the transformations 7 7" and alT to identity,
and assumed no errors in these entities. In a previous sensitivity analysis documented in
Kugiumtzis[17], we identified 10 critical a; parameters. We thus aim at estimating 5+10+5%3 =
30 parameters, 15 from the passive serial arm, and 15 from the parallell part of the structure.

For calibration, extreme robot poses must be used, otherwise the observation matrix will not
contain enough information. To generate a wide range of poses, we draw random joint variables
Ju, and then compute the nominal tool poses ;}rlT by the f-function. Therefore, all nominal

calibration poses ;}rlTN stem from j, vectors where the angles 61, f5, 64, and 65 are all drawn
uniformly from the set [—45°, —25°]U[25°,45°]. The length £ of the prismatic link of the central
axis is drawn from the range 800-1400mm.

Simulated calibration poses were generated by drawing random joint variables j,, and then
computing the nominal tool poses ;}rlT by the f-function. For calibration, extreme robot poses
must be used, otherwise the observation matrix will not contain enough information. Therefore,

all nominal calibration poses ;}HTN stem from j, vectors where the angles 61, 65, 84, and 05 are
all drawn uniformly from the set [—45°, —25°]1 U [25°,45°]. The length £ of the prismatic link of
the central axis is drawn from the range 800-1400mm.

At a nominal calibration pose, the uncompensated robot controller will compute the nominal

N . . . .
actuator values a¥ = g_l(f_l(;}rlT ,ijv),ajfv,thv). An actual, physical robot is simulated
A

by first computing actual actuator variables a;

_ A . .
n 1T = f(g(ad,af,ji),if)-

= al + éa,, and then the actual tool pose

From the actual and nominal poses ;}HTA and ;}HTN, we compute the acutal error vector
e? by applying (16) to (18).

However, actual tool poses are not available in a real calibration setup, since measurement
noise is inevitable. This noise is simulated by 3+3 independent zero-mean Gaussian random
variables; €, €, , and ¢, for positions along each axis, and ¢, _, €., and ¢, for rotations around



each axis. Standard deviations are SD(e,) and SD(e,) in positions and rotations respectively.
Following Hayati[4] we can model the differential noise influence on the actual measurements as

1 —€

z Ery Epz
1 TM B €r, 1 —€r, €, | -1 TA 35
n+1 _€ry €r, 1 €pz n+1 ’ ( )

0 0 0 1

M . . . .
where ;}rlT denotes the measured tool pose. This measured tool pose is available, so applying

(16) to (18) to ;}ATM and ;}HTN, gives the measured error vector eM of dimension 6x1, where
eM is the error between nominal and measured tool poses. From (33) we then compute the
J-matrix for this calibration pose, and do now have the relation eM = Jéx.

A complete calibration requires many, let us say K, calibration poses. The complete error
vector € is obtained by stacking all K error vectors on top of each other, and similarly all K
J-matrices on top of each other gives the entire observation matrix J. In our tests, K = 35
calibration poses were used, so the complete measured error vector €™ has dimension 210x1.
With 30 estimation variables, our complete observation matrix J is a 210x30 dimensional matrix.

The 30x1 parameter error vector éx may now be found by a least square method, e.g. via
the pseudo-inverse as éx — jT eM — (jTj)_le eM

However, as could be expected from the geometrical structure of the actuator, a direct
pseudo-inverse solution is not feasible. Some of the parameters to be estimated depend almost
linearly upon each other, so some column vectors of J are almost parallel. This leads to small
singular values in J, and thus a large maximal singular value o1 in the pseudo-inverse jT. We
experienced ¢y in the range 250-500 in some of our experiments.

To solve the problem of linear dependence of calibration parameters, we computed the angles
between all possible pairs of the 30 column vectors in J. By manual inspection we identified the
vector combinations with the smallest angles, and could then remove 7 redundant calibration
parameters from the original set, 5 from af, and 2 from j;. All removed parameters were
universal joint offsets almost parallel to the varying length of the adjacent prismatic joint, which
is perfectly reasonable. After this simplification, the new jT matrix of dimension 23x210 got a
typical norm of 30-130, and then a simple pseudo-inverse method gave reasonable éx estimates.

Large singular values in jT may amplify the estimation error. To illustrate this problem, we
follow Hayati[4] and write to first order accuracy the e as a sum of the actual error vector ¢4
and an additional measurement noise error vector ¢, so ¢ = ¢4 + §e. Applying the triangle
inequality, and the fact that ||jT|| — ¢y for the spectral-norm, we see that

x| < |71 2]+ 17T 62l < ol + o ][52]l. (36)

Evidently, a small measurement noise error ¢ may cause large errors in the estimated éx due
to possible amplification during multiplication with jT.

To 1dentify the linear dependencies in J, we computed the angles between all possible pairs
of the 30 column vectors in J. By manual inspection we identified the vector combinations
with the smallest angles, and could then remove 7 redundant calibration parameters from the
original set, 5 from ay, and 2 from j;. After this simplification, the new jT matrix of dimension
23x210 got a typical norm of 30-130, and then a simple pseudo-inverse method gave reasonable
0x estimates. All removed parameters were universal joint offsets almost parallel to the varying
length of the adjacent prismatic joint. This is a consequence of the mechanical parallel structure,
since actuators in such structures usually have a limited range of roll-pitch angles. Offsets in
universal acutator joints will therefore be hard to distinguish from the offsets in the controlled
actuator lengths. Related problems with the condition number of the identification Jacobians
are recently reported by Zhuang and Roth [19].

Our inspection of vector pairs is a simple manual method. A more complete automatic
algorithm for identifying the linearly dependent parameters is described in Menq et.al. [20].
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Their algorithm follows from the separation of parameters into observable and unobservable
subspaces.

5.2 Testing the calibrated robot controller

Testing the calibrated robot controller was done over 20 randomly drawn nominal robot-program
poses. The simulation was repeated for various levels of measurement noise, which had a zero-
mean normal distribution with standard deviation SD(e,) for positions and SD(e,.) for rotations.
At each program pose, the position error between nominal and calibrated actual pose, §¢, was
computed together with the position error between nominal and uncalibrated actual pose, 64.
The average of §¢ and §* over the 20 poses, denoted by AV(6%) and AV(é4), are given in
Table II. In addition, the table gives the maximal values of the same error quantites, denoted
by max(6%) and max(§4).

In the last test (third line in Table II) we used SD(e,) = 0.1mm, SD(e,) = 0, to simulate
the case where rotation measurements are unavailable. Here we have only used the position
components in (32). Since half of the measurements are gone, we now used 70 measurement
points instead of 35 as in the other cases.

In more detail, the simulation procedure is as follows: First, the calibrated parameter sets
a? = an +éa; and J? :ij + 6j; were generated, where éj; and éay are parts of the estimated
parameter vector éx. To generate a program pose, j, was drawn with the four #-values uniformly

L. . N ..
distributed between —45° and 45°, and £ in the range 800-1400mm. Then, ;ilT = f(Jv,J?)
was generated as the nominal program tool pose. Actuator variables calculated by the calibrated

. - N . . . .
robot controller will be a, = g=1(f 1(;}rlT ,J?),a?,J?) = g_l(Jv,a?,J?), and the actuator
offset errors are compensated by generating the calibrated actuator setpoints a = a, — éa,

where éa, is also part of the estimated éx. The actual tool pose reached by the calibrated

. . C . . . .
robot is now given as ;ilT = f(g(al)c,a?,J?),J?). In comparison, an uncalibrated robot

N . .
would comj)ute the actuator values a! = g_l(f_l(;}rlT ,ijv),ajfv,thv), and reach the actual
-1 <Ay sA
pose ;1T = f(g(a',a?,i7),i7)-
To compare a calibrated pose to an uncalibrated, we computed the pose position errors
§¢ = ||x —xN|| and 64 = ||x?* — x|, where xV | x4, and x“ are the 3x1 tool position vectors

1 N i A 1 ,C .
of rHl»lT , n{l»lT , and nilT respectively.

6 Conclusion

We faced the problem of estimating the parameter errors of the MultiCraft parallel-serial ma-
nipulator in two stages. First we built the parameter estimation model as if the manipulator
had a simple serial link form. Then we extended the model to include also the errors in the
geometry of the parallel structure. This was succeeded by developing the differential relation
between errors in the joint variables of the serial structure, and parameter errors in the parallel
structure.

Crucial to this method is how we expressed the linearized relation between errors in the
kinematical parameters and errors in acutal (measured) tool pose. We expressed the Jacobian of
the forward, and unknown, kinematics in terms of the Jacobian of the known inverse kinematics.
Parameter estimation of more convetional parallel manipulators can be treated in this way, and
is thus covered by the method outlined in this paper. In fact, calibrating a parallel actuator is
an easier problem, as all the joint parameters of the serial arm can be dropped from the final
matrix error equation.

The simulation has shown that the estimation algorithm gives satisfactory results when the
parameters to be calibrated are few and independently defined. Therefore two processes turn
out to be essential before implementing a practical estimation algorithm: the sensitivity analysis
which identifies the most critical parameters for position inaccuracy, and the extraction of the
linear dependent parameter errors from the set of parameter errors to be estimated. Under these
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assumptions the method can be easily implemented and seems to be numerically stable. The
simulations for the MultiCraft robot show a reduction of position inaccuracies due to kinematical
parameter errors between 60% and 90%.

Certainly we have not solved the complete calibration problem yet; the development of the
estimation model is only the first step. The second step, measurements, requires measurement
instrumentation and correct choice of calibration points in order to avoid singularities in the
estimation process. The third step, compensation of errors in the controller, requires thorough
consideration as we must build an algorithm that corrects the nominal values for each input
point in real time.

This work was supported by the Research Council of Norway, B.Lillekjendlie was also sup-
ported by SINTEF-SI. The authors would also thank Tom Kavli and Svein Linge at SINTEF-SI
for valuable discussions and careful reading of the manuscript.

APPENDIX The Jacobian of g

The differential functional equation for the errors 8j,, in all joint variables is given as 6j, = g—% op.
Since p is the set of a,, ay, and j;, the Jacobian can be split into three submatrices giving

0, = e + garda + %g?éjf. (37)

1

The results should be expressed in terms of the known g~", so we observe that

-1
B og 1
w-lm] (39
. . . .. . 501 .
As in (37), the differential error a, is given in terms of g~ as da, = _%q_éq, which can be
written . . .
og~1 .. og~ ag~1 .
Sa, — %@v + Aa%véaf + 4;%;5”. (39)
Substituting 8j, from (37) into (39) and then applying (38), gives
0 — og! og + og~! Sas - og” ! og + og~! 53 (40)
o ajv 6af 6af ! ajv ajf ajf Jf

The parameter error vectors éay and ¢j; are independent to each other and therefore the solution

18
1

og_' og | eg”'  og”l og | og”

), oar ' oay T o), o)y | o)y =9 (41)
which proves that
og _ _[og™' ] og! 49
m - 83, aaf ’ ( )
-1
og _ _feg | emsl (43)
a) ¢ 93y a) ¢

The entire Jacobian is the collection of the three submatrices given by (38), (42) and (43).
The problem of computing the nx(n + s + 3n) Jacobian 98 is now reduced to computing the

op
—1 -1 -1
o8 , the nxs Jacobian 98 __ and the nx3n Jacobian 28—,
aJv an

iverse of the nxn Jacobian

aaf
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