View metadata, citation and similar papers at core.ac.uk brought to you byj: CORE

provided by NORA - Norwegian Open Research Archives

UNIVERSITY OF OSLO
Department of Informatics

Supporting
Distributed Active
Objects: A Virtual
Machine for Creol
on the Java Platform

Master thesis

Ivar Alm

1st May 2006

https://core.ac.uk/display/30839055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Distributed systems are becoming increasingly important. In order to fa-
cilitate the development of distributed systems, new high-level abstrac-
tions and programming languages may be convenient. Creol is an exper-
imental high-level object-oriented language for distributed objects. This
thesis investigates how to create a low-level run-time environment for
Creol by proposing a computational model for the language. A proto-
type of the model is implemented on the Java platform; this prototype
serves as a virtual machine on which Creol programs can be executed
and tested. The thesis looks into subject areas such as distribution, con-
currency, multiple inheritance, and interleaved execution of statement
lists.

ii

Preface

This thesis is part of the Creol research project! at the Department of
Informatics at the University of Oslo. The project investigates program-
ming constructs and reasoning control in the context of open distributed
systems.

I would like to thank my supervisor Einar Broch Johnsen for all his help
throughout my thesis work. He has been a great support and has al-
ways been available with an open door policy, and given me excellent
guidance and constructive criticism. My fellow student @ystein Torget
deserves thanks for continuous feedback on my work and for inspiring
discussions. I also appreciate Arild Torjusen’s careful read-through of
the thesis.

'http://www.ifi.uio.no/~creol/

iii

iv

Contents

1 Introduction

1.1 Problem Statement
1.2 Thesis Outline @ . ..

2 Background

2.1 The Creol Language,

2.1.1
2.1.2
2.1.3
2.1.4
2.1.5

Interfaces e

Classes o e e e

Imperative and Functional Code

Example: The Santa Claus Problem

2.2 Java CONCUITENCY . . . v v v v it e e e e e e e e e e e e e e

2.2.1
2.2.2

JavaThreads

Data Synchronization

3 A Computational Model for Creol
3.1 Model Objectives i
3.2 TheModel it

3.3 Structure and States e e e e

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5

The CVM e e e
The Central
Class Definitions
The Object

The Process v v i i e e e e e e e e e

3.4 ComputationsS o v v i i e

10
11
15
19
20
22

vi

3.4.1 Initialization
3.4.2 TheCentral
3.4.3 TheObject
3.4.4 Message Processing
3.4.5 Process Scheduling
3.4.6 Process Execution
3.4.7 Message Transportation

3.5 Summary. ...

4 Implementation of the Creol Virtual Machine

4.1 Preliminaries
4.1.1 Java Properties
4.1.2 JVM Assumptions

4.2 Implementation Overview
4.2.1 Main CVMParts
4.2.2 Activity: Flow of Control
4.2.3 Classes and Interfaces

4.3 ImplementationDetails
4.3.1 Creol Program Representation
4.3.2 Initialization of the CVM
4.3.3 TheCentral
4.3.4 The Creol Object.
4.3.5 Messages and Message Transportation . . .

4.4 Example Run: The Santa Claus Problem

45 SUmMmMary. v v e e e e e e e e

5 Multiple Inheritance

5.1 Creol and Multiple Inheritance

5.1.1 Example: Combining Authorization Levels

5.2 Extending the Model
5.2.1 Changes in the Structure
5.2.2 Changes in the Computation

5.3 Extending the Implementation

5.3.1 Changes to the Creol Program Representation

CONTENTS

CONTENTS vii

5.3.2 Changes to the Central’s Services 107

5.4 Example Run: Authorization Policies 110

T TN 10 1 0 - 1 112

6 CVM Intercommunication and Remote Objects 113
6.1 New Creol Language Constructs 113
6.1.1 Virtual Machines 113

6.1.2 Remote Objects 114

6.1.3 Example: File Downloads 116

6.2 Extending theModel. 118
6.3 Extending the Implementation 119
6.3.1 Background: JavaRMI 120

6.3.2 Overview of the Changes 123

6.3.3 Detailed Changes 124

6.4 Example Run: Distributed Santa Claus Problem 132
6.5 Summary.o v i e e 134

7 Conclusion 135
7.1 Contributions 135

7.2 Further Work and Research 136
Bibliography 139
A Creol Examples 145
A.1 The Bounded Buffer 145
A.2 The Santa Claus Problem 146
A.3 Authorization Policies 149

B Java Representation 151
B.1 The Bounded Buffer 151

C Prototype Notes 155
C.l Details e 155

C.2 Download and Use o i i i i i it e 159

viii CONTENTS

Chapter 1

Introduction

In recent years, distributed programming has become increasingly im-
portant with the widespread use of Internet, faster networks, and less
expensive multiprocessor systems. The properties of distributed sys-
tems are different from those of non-distributed systems; e.g., delay or
loss of communication can occur in distributed systems [16]. Today’s
leading programming languages, such as Java, C++, and C#, are primarily
developed for sequential systems. These languages conventionally sup-
port only synchronous remote method calls. Synchronous calls result in
unnecessary waiting in the distributed setting [18]. Furthermore, error
handling in case of network errors are low-level and difficult. Languages
designed for sequential systems are far from perfect for developing effi-
cient and reliable distributed applications.

Creol is a new object-oriented programming language specifically de-
signed for distributed systems. In Creol, objects are active and run con-
currently, each with its own processor. Communication between objects
is asynchronous, and objects may perform other tasks while waiting
for the return of a method call. The execution of methods is seen as
processes, and control is transferred between processes by explicit pro-
cessor release points.

A new programming language needs to be tested to reveal its flaws and
weaknesses and to demonstrate its strengths. A virtual machine for
Creol has been developed [2] in the language Maude [5]. Using this virtual
machine to test Creol programs has revealed some flaws in the language
and hence contributed to the development of Creol. However, Maude
has some undesirable properties in this context such as its inability to
perform random executions. For a given program at most two different
executions are available. This severely limits the possibilities for testing
nondeterministic constructs and parallelism in the language. Therefore,
a runtime-environment which offers pseudo-random execution has been

2 CHAPTER 1. INTRODUCTION

developed [19] by using Maude’s reflective capabilities. Still, the run-time
environment does not support interaction with a user or a file system,
parallelism and distribution are only conceptual, and the execution is
inefficient.

The language OUN (Oslo University Notation) [27] is a precursor for
Creol. It addresses system specification and design. OUN has many
similarities to Creol such as active objects, objects typed by interfaces
and implemented by classes, multiple inheritance, and asynchronous
method invocations. However, OUN has a simpler execution model than
Creol, as OUN objects do not have inner processes and method execu-
tions are not interleaved. An OUN to Java compiler has been developed
[28]; this compiler translates OUN programs into Java programs. Hence,
OUN programs can be executed efficiently. The thread models of Java
and OUN differ, and Java does not support multiple inheritance. The
properties of Java has led to some restrictions on how much of the OUN
language can be compiled into Java code; e.g., multiple inheritance is not
supported.

Our goal is to create a virtual machine which does not impose any re-
strictions on the language but is still reasonable efficient. Translating
from Creol to Java (or a similar language) is not possible without impos-
ing restrictions. Instead, we develop a virtual machine for Creol on the
Java platform. Hopefully, our work will contribute to the Creol project
by suggesting how a low-level run-time environment can be developed,
and give a run-time environment in which Creol programs can be ex-
ecuted and tested. The latter will in turn test Creol as a programming
language. In the next section we define the problem statement of this
thesis more precisely.

1.1 Problem Statement

Creol is an object-oriented language which targets distributed systems
by proposing an asynchronous communication model for concurrent
objects. The language has an abstract operational semantics, formally
defined in Rewriting Logic [24]. At this level of abstraction, method
activations are achieved through code duplication and distribution is
merely conceptual. The main goal of this thesis is to bring Creol closer
to an efficient low-level run-time environment by answering the follow-
ing questions:

- Can a run-time model for Creol be defined which supports code
sharing?

1.2. THESIS OUTLINE 3

- Can Creol and its operational model be extended to support real
distribution?

By code sharing we mean that multiple method activations share the
same code segment. By real distribution we mean that objects are dis-
tributed among different physical machines.

In order to address the above questions in a specific way, we develop

- a new imperative operational model

- a prototype of this model, implemented in Java

The prototype is a proof of concept, that is, it will demonstrate the
model’s feasibility of computing Creol programs.

1.2 Thesis Outline

The rest of this thesis is structured as follows. Chapter 2 presents the
Creol language and Java concurrency. Chapter 3 presents a computa-
tional model for Creol intended to serve as a basis for a low-level im-
plementation in an object-oriented language. Chapter 4 presents the
implementation of the Creol virtual machine in Java. Chapter 5 presents
multiple inheritance in the Creol language and extends the model (from
Chapter 3) and the implementation (from Chapter 4) to support mul-
tiple inheritance. Chapter 6 extends the Creol language, the model and
the implementation so that we get real distribution of objects. Chapter
7 closes the thesis by summarizing the contributions of the thesis and
giving suggestions for further work.

CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter we take a look at the Creol language (Section 2.1) and
concurrent programming in Java (Section 2.2). The example “Bounded
buffer” illustrates concepts in both languages and will be presented next.
It is assumed that the reader is familiar with basic notions of object
oriented languages in general and Java in particular.

The Bounded Buffer

A producer computes a stream of information. This is passed to a con-
sumer which analyzes it. The rate at which the producer computes in-
formation can vary over time, and so can the rate at which the consumer
is able to analyze it. The different rates can affect the efficiency of the
program; i.e., the producer must wait for the consumer or vice versa.
Therefore, a buffer is used to even out the different rates. A producer
adds information to the buffer and the consumer fetches it. As we do
not want the buffer to use to much memory, the buffer is bounded, i.e.,
the size of the buffer is limited.

Hoare [14] defines the buffer by two abstract operations append and
remove on a sequence of portions:

- append(x: portion):
sequence = sequence N <x>;
remove(result x: portion):

x:= first(sequence); sequence:= rest(sequence);

where N denotes concatenation of two sequences, <x> is the sequence
whose only element is x, first selects the first item of a sequence and

6 CHAPTER 2. BACKGROUND

rest denotes the sequence with its first item removed. Here, x has type
portion, a supertype of all types.

The buffer is bounded, that is, the length of the sequence is limited. This
can be defined by a predicate

- len(sequence) <= limit

which must always be true. An append operation can only be done if the
length of the resulting sequence does not exceed the limit. Similarly, the
remove operation can only be done if the sequence is non-empty.

2.1 The Creol Language

Creol is a programming language under development at the University
of Oslo.! It addresses distributed systems, and is based on concurrent
objects. Each object has its own thread of control, that is, the threads of
control are not separated from the objects as in, e.g., Java [12] (in Java,
the thread of control follows the method calls). Conceptually, a Creol
object has a processor, and methods are executed by processes. Only
one process can be executed at a time. The thread model of Creol has
two important impacts: an object acts like a monitor, and objects can
execute concurrently.

Communication between objects can be done by either synchronous or
asynchronous method calls. Creol has a notion of processor release
points which enables the objects to do other tasks while waiting for the
reply to an asynchronous method invocation. Processor release points
also enables the objects to dynamically change between active and react-
ive behavior (client and server).

Objects are typed by interfaces and implemented by classes. Creol sup-
ports multiple inheritance both at the interface and class level. Interface
inheritance gives a flexible way to type objects, whereas class inheritance
makes it possible to reuse code.

In the next sections, we take a look at interfaces, classes, methods and
method bodies (sections 2.1.1-2.1.4). We will define the syntax of Creol
by a BNF syntax where

- Square brackets are used as meta parenthesis: [...] is used for
optional parts (zero or one), [...]* is used for optional, repetitive
parts (zero, one or more), and |... |+ is used for repetitive parts (one
or more).

IThis presentation of the Creol language is based on [2, 18, 21].

2.1. THE CREOL LANGUAGE 7

- Italic words are used as meta symbols.

To exemplify Creol constructs, we use the “Bounded Buffer” example
(defined in the introduction of this chapter). In Section 2.1.5 we present
a larger example: “The Santa Claus Problem”.

2.1.1 Interfaces

Creol uses interfaces to define both how objects communicate and to
give semantic requirements for the objects. The semantic requirements
are over the objects’ communication histories, that is, a predicate over
the method invocations and method returns [7, 8]. Here we ignore the
semantic requirements, as it has no influence on the thesis.

Syntax: The syntax of an interface is

interface I [inherits InhlList]
begin

[with I’

MSIGs]
end

The string T is the name of the interface. InhList is a comma-separated
list of inherited interfaces. If the interface defines one or more methods,
I’ is the name of the cointerface of the following methods. MSIGs is a
list of method signatures op m[([in Param] [out Param])]. Paramis a
comma separated list of v:T, where v is the variable name and T is the
type of the variable.

The specified cointerface imposes a restriction on the kind of objects
which are allowed to call the methods declared in this interface; the
caller must support the cointerface or a subinterface of it. The cointer-
face can be Any; if so, objects of all types can call the method.

An interface may inherit more than one interface. Multiple inheritance
imposes no problem with interfaces; if there are two method declara-
tions with the same method name, parameters and cointerface, only one
of the declarations is saved; i.e., the methods of the interface is the set
union of all its inherited interfaces.

Example: Recall the “Bounded buffer” example presented in the intro-
duction of this chapter. We have a producer and a consumer which both
need access to the bounded buffer. For the environment (the producer
and the consumer), it is not possible to see that the buffer is bounded,

8 CHAPTER 2. BACKGROUND

only the operations are visible. As a first solution we let all types of
objects access the methods, that is, the cointerface is Any:

interface Buffer
begin with Any
op append(in d:Data)
op remove(out d:Data)
end

To get amore fine-grained solution, we define two interfaces BufferA and
BufferP. Only objects of type Producer is allowed to access the append
method; the cointerface must be of interface Producer. Similarly, only
consumers may remove items from the buffer:

interface BufferP interface BufferC
begin with Producer begin with Consumer

op append(in d:Data) op remove(out d:Data)
end end

Of course a buffer needs both methods; this is solved by defining an
interface Buffer which inherits both the append and the remove methods
from BufferP and BufferC:

interface Buffer inherits BufferP, BufferC
begin
end

The producer and the consumer are typed by two interfaces without
methods:

interface Producer interface Consumer
begin begin
end end

Part of the implementation of these interfaces will be discussed in the
next sections. For a complete listing of all the code, see Appendix A.1.

2.1.2 Classes

Classes define the objects’ persistent state variables and methods. Ob-
jects are typed by interfaces; the interface or interfaces an object sup-
ports are given by the class definition.

2.1. THE CREOL LANGUAGE 9

Syntax: The syntax of a class is

class C[(Param)] [inherits InhList] [implements ImpList]
begin
[var VarList;]
[[with I]
MDECL]*
end

The string C uniquely identifies the class and Param is as defined for in-
terfaces. InhList is a list of C’[(EL)], defining the inherited classes of
C. The list of expressions EL is optional; it is evaluated when an object
is created, and the result gives the actual parameters of the inherited
class. Multiple inheritance at the class level is quite complex, therefore,
the discussion of multiple inheritance is postponed to Chapter 5. The
interfaces that a class C implements are given in ImpList.’> VarList is
a comma separated list of variable declarations v:T[=e] where v is the
variable name, T the type of the variable and e an optional initial ex-
pression. The discussion of the cointerface given by I and the method
declaration given in MDECL is postponed to Section 2.1.3, where we take
a closer look at methods.

The objects’ persistent variables consist of both the variables declared
by var VarList and the parameters of the class.3 In addition, all objects
have a pseudo variable this which refers to the the object itself.

Example: The interface Buffer is implemented by a class BoundedBuf-
fer:

class BoundedBuffer(max:int) implements Buffer
begin
var buffer:List[Data]=empty, n:int=0;
with Producer
op append(in d:Data) == await n < max;
buffer := add(buffer,d);

. n:=n+1
with Consumer

op remove(out d:Data) == await n > 0;
d := first(buffer);
buffer := rest(buffer);
n:=n-1
end

2Note that an object of class C is typed by the 'implements’ clause of class C only.
The class inherits only code from its superclasses; interfaces of superclasses are not
inherited.

3(Class parameters give rise to persistent object variables; this is similar to Simula
[6]. It is different from many other object oriented languages; e.g., in Java, parameters
in constructors are local variables [12].

10 CHAPTER 2. BACKGROUND

The length of the buffer is given by a parameter max. The list buffer
stores data of type Data; initially it is empty. The current number of ele-
ments in the buffer is n. The methods are discussed in the next section.

2.1.3 Methods

Methods define what objects do. A special method run defines the active
behavior of the objects, whereas the methods which also are declared in
the interfaces defines the reactive behavior of the object. Creol classes
can define both internal and external methods. An internal method can
only be called from inside the object. If a method has no preceding with
clause, the method is internal. An external method can be called from
other objects. External methods are defined after a with clause; if a
method m is declared after with I, the calling object must be of a class
which implements the cointerface I.# The with clause spans over the
succeeding methods, until the next with clause or the end of the class.

Syntax: The syntax of a method is:

op m[([in Param] [out Param])] == [var VarList;]
SList

The method name m must be unique within the class. Both in- and out-
parameters are optional. Param and VarList are as defined for classes in
Section 2.1.2. The statement list SL7ist consists of statements separated
by semicolons.

The local variables of methods consist of the in and out-parameters and
variable declarations. The in-parameters of methods are read-only. In
addition, methods have a pseudo variable caller, giving the object iden-
tifier of the caller of methods. The caller variable is typed by the coint-
erface.

Example: The append method of the class BoundedBuffer has Producer
as cointerface, a single in-parameter but no out-parameters nor variable
declarations:

with Producer

op append(in d:Data) == await n < max;
buffer := add(buffer,d);
n:=n+1

4An object may call its own external method if it implements the corresponding
cointerface.

2.1. THE CREOL LANGUAGE 11

The in-parameter d is of type Data, the supertype of all types. The
statement await n < max suspends the execution of the method until
the expression n < max is true. The assignment statement buffer :=
add(buffer,d) adds d to the buffer. These and other statements are
explained more carefully in the following sections.

2.1.4 Imperative and Functional Code

Creol is an imperative programming language, that is, statements are
executed one after the other, and these statements change the state of
the execution. In addition, Creol has a functional part; for example, we
have

- for integer expressions: arithmetics (+, -, *, /) and comparison
(= <,>)

- for object identifiers: object identifiers’ equality (=)
- for boolean expressions: logical constructs (A, v, =)

- for lists: functions first(list), rest(list), add(list, item)

These functions do not alter the state. The semantics of the three first
are as expected. For lists, first(list) returns the first element of a se-
quence list, rest(list) returns list without the first element and add(list,
item) returns list with item added last.

Creol supports well-known statement constructs such as assignment
and if-expressions. For a variable list V, an expression list E, a boolean
expression b, statement lists §; and S,, and a variable v, we have the
following statements:

- Multiple assignment: V ;= E
- Conditional: if b then Sy else S fi

- Object creation: v := new classname(E)

When V = E is executed, the expressions in the expression list E are
evaluated first, and then each variable in V is assigned the corresponding
(evaluated) expression in E. The semantics of the conditional statement
is as expected. The statement v := new classname(E) creates a new object
of the class classname, and the object identifier of this object is assigned
tov.

12 CHAPTER 2. BACKGROUND

Note: We do not define any loop construct as in [2, 18, 21]. However,
this is no problem as Creol supports recursive calls; all loop constructs
can be expressed by recursive calls.”

Synchronous and Asynchronous Method Calls

Creol supports both synchronous and asynchronous method calls. For
an object identifier o, a method name m, an expression list E, a variable
list V and label t, these are possible external method calls:

- Synchronous call: o.m(E;V)
- Asynchronous call: tlo.m(E); ... ; t2(V)

- Method invocation: !'o.m(E)

The first statement, o.m(E; V), is as a traditional synchronous method
call: the method m of object o is called with the evaluated expression
list E as in-parameters. Then the caller waits for the method return;
when this arrives the return values are bound to the variables given in
the list V.

The statement t'o.m(E) invokes the method m of object o. Instead of
waiting for the answer, the execution may continue. The answer is
fetched later on by the reply statement t?(V). The return values are as-
signed to the corresponding variables given in V. The label t identifies the
call; the use of labels makes it possible to start more than one method
call and still be able to get the answer for each.

The statement !'o.m(E) is much like the second, except that no label is
given and so no answer may be used. Hence, this statement invokes a
method and never waits for the answer.

The object identifier o is omitted in corresponding internal method calls;
i.e., m(x; y) for synchronous local calls, t!m(E); ... ; t?2(V) for asynchron-
ous calls and !'m(E) for method invocations.

A method call is said to be local if it is an internal call or if it is an
external call where the caller and callee are the same (a call to self). For
asynchronous method calls tlo.m(E); ... ; t2(V) or tIm(E); ... ; t2(V), the
return of the method invocation has not necessarily arrived when t?(V)
is to be executed. If the method call is local, this method is executed. If
the call is not local, the object blocks until the return arrives.

5The reason for omitting loop constructs from the language is that we want to be
able to update the code at run-time [20]. By using recursive calls to simulate a loop, it
is possible to update in the middle of the simulated loop.

2.1. THE CREOL LANGUAGE 13

Processor Release Points

In Creol, we define processor release points explicitly by await state-
ments:

- Release statement: await g

The guard g is constructed inductively:

- A boolean expression b over local variables and attributes is a
guard. This guard evaluates to true if the boolean expression eval-
uates to true.

- If t is alabel, then t? and —t? are guards. The guard t? evaluates to
true if the reply identified by t has arrived. Similarly, —t? evaluates
to true if the reply has not arrived.

- An explicit release point is defined by the special guard wait which
is false until the process has been suspended in front of this await
statement.

- If g1 and g- are guards, then g; A g- is a guard. This guard evalu-
ates to true if both g; and g, evaluate to true.

If the guard evaluates to false, the processor can be released so that
other methods can be executed. To define this more precisely, we define
a predicate enabled over statements and statement lists:

- The release statement await g is enabled if g evaluates to true.
- The release statement await g is not enabled if g evaluates to false.

- Apart from the release statement, all atomic statements are always
enabled.

- A statement list is enabled if its first statement is enabled.

We call a statement atomic if it is not composed of other statements
or statement lists (the if statement is also called atomic as the actual
selection of the two statement lists S; and S does not involve S; nor Ss).
So far, all statement constructs presented is atomic, and thus always
enabled.

14 CHAPTER 2. BACKGROUND

Non-deterministic Choice and Merge
For statement lists S; and S5, we have statements

- Non-deterministic choice: (S; O S»)

- Merge: (S1 1] S2)

The non-deterministic choice statement (S; [J S5) selects one of $; and
Sy, but in such a way that the first statement of the selected statement
list is ready to execute. If neither is ready, the whole statement is not
ready and therefore not executed.

The merge statement (S ||| S2) is more complex. S and S5 are executed
in an interleaved manner; the control can move between S; and S, at
processor release points; i.e., control can move to the other statement
list in front of an await statement where the guard evaluates to false.

The [0 and ||| statements complicates the semantics of processor release
points. Both are non-atomic statements as they are composed of state-
ment lists. (S; O S») is enabled if either S; or S is enabled; the same
applies to (S1 ||| S2).

Note that both [J and ||| statements can be nested. This does not impose
any problems, as both are associative and commutative, which implies
that we have sets of statement lists. For instance, ((S; O (S O S3)) []] (S4
[l| S5)) can be thought of as (S; [0 So [S3) ||| S4 ||| S5. The enabledness of
nested [J and/or ||| is no problem, as the enable predicate can be used
recursively. Intuitively, this nesting creates a tree of statement lists, and
the method execution can only be suspended if none of the branches is
enabled.

Examples: The producer and the consumer are implemented by classes
Prod and Cons, respectively. Both need a reference to the buffer; there-
fore, the buffer’s object identifier is passed as argument to Prod and
Cons. In this example, method m creates a buffer of length 10 and passes
the object identifier to the producer and the consumer:

op m == var b:Buffer, p:Producer, c:Consumer;
b := new BoundedBuffer(10);
p := new Prod(b);
c := new Cons(b)

The producer uses a loop method to produce the integers. A synchron-
ous call is used to append the integers to the buffer; it is important to
wait for the append method to return or else the producer may start an

2.1. THE CREOL LANGUAGE 15

arbitrary number of method calls before the consumer consumes any-
thing. Internally, the producer calls its methods by method invocations
without any return:

op run == !Toop(0)
op Toop(in i:int) == b.append(i); !Toop(i+l)

The consumer is similar. The full buffer example is given in the ap-
pendix.

2.1.5 Example: The Santa Claus Problem

This is an example due to Trono [32], modified to illustrate Creol con-
structions and possibilities.

Santa Claus works at the north pole with his nine reindeer and his elves
(at least three). Each Christmas, Santa and the reindeer deliver presents
to children all over the world. This is hard work, and the rest of the
year the reindeer go on holiday, while Santa sleeps most of the time.
The elves produce the toys, and consult Santa if they have a problem.
As Santa needs a lot of sleep, he helps groups of three elves to be more
efficient. Hence, an elf must wait until at least two other elves need help.
Summarized, Santa sleeps until

- all of his 9 reindeer are back from holidays, or

- at least three elves need to consult him with a problem.

It is more important to deliver the toys than to help the elves. Thus,
if both all reindeer are back from holiday and at least three elves need
help, Santa and the reindeer deliver toys. Before Santa and the reindeer
can deliver toys, Santa must harness the reindeer. When they are back,
Santa most unharness the reindeer. Similarly, when (at least) three elves
want to talk to Santa, he opens the office door, let three elves in and
close the door. After the consultation, he opens the door, let the three
elves out and closes the door.

Communication: Interfaces

Santa, the reindeer and the elves are modeled by Creol objects. First we
take a look at how these objects communicate and the Creol interfaces
this communication vyields.

A reindeer notifies Santa when it is back from holiday, and an elf notifies
Santa when he needs help. These events will be modeled by method

16 CHAPTER 2. BACKGROUND

calls backFromHoliday and haveProblem, respectively. As the reindeer-
to-Santa communication and the elf-to-Santa communication differ, we
use two interfaces SantaClausR and SantaClausE:

interface SantaClausR interface SantaClausE
begin with ReinDeer begin with E1f

op backFromHoliday op haveProblem
end end

Santa Claus’ communication with the reindeer consists of harnessing
and unharnessing them. The communication with the elves consists of
telling them to enter and leave the office. Therefore we have two inter-
faces Reindeer and Elf:

interface Reindeer interface E1f

begin with SantaClausR begin with SantaClausE
op harness op enterOffice
op unharness op TeaveOffice

end end

As Santa communicates with both reindeer and elves, we have an inter-
face SantaClaus which inherits both SantaClausR and SantaClauskE:

interface SantaClaus inherits SantaClausR, SantaClausE
begin
end

An object of type SantaClaus can thus communicate with both reindeer
and elves.

Implementation: Classes

We implement Santa Claus by a class SantaClausC; see Figure 2.1. Santa
Claus sleeps most of the time. He wakes up (in a mysterious way) when
all nine reindeer are back from holiday, or if at least three elves want
to talk to him. To control this, the SantaClausC class has two integers
ct_rd and ct_elves, counting the number of waiting reindeer and elves, re-
spectively. References to the waiting reindeer are stored in a list wait_rd,
and references to harnessed reindeer are stored in a list harnessed_rd.
Similarly, the class has lists wait_elves and inoffice_elves for the elves.

The implementation of the method backFromHoliday is straight forward:
the counter is incremented and the reference to the reindeer, given by
the pseudo variable caller, is added to the wait list. The method have-
Problem is similar. The internal methods will be discussed later; first we
take a look at the implementation of the reindeer and elves.

15

20

2.1. THE CREOL LANGUAGE 17

class SantaClausC +implements SantaClaus
begin
var ct_rd:nat=0, wait_rd:List[Reindeer]=empty,
harnessed_rd:List[Reindeer]=empty,
ct_elves:nat=0, wait_elves:List[E1f]=empty,
inoffice_elves:List[El1f]=empty
op run == !loop
op loop ==
(await ct_rd = 9; deliverToys() []
await ct_elves >= 3 /\ ct_rd != 9; talkToElves());
!Toop
op deliverToys == ...
op talkToElves == ...

with Reindeer
op backFromHoliday ==
ct_rd := ct_rd + 1;

wait_rd := add(wait_rd,caller)
with E1f
op haveProblem ==
ct_elves := ct_elves + 1;
wait_elves := add(wait_elves,caller)

end

Figure 2.1: The Santa Claus class

The reindeer start to go on holiday. When they are back, they notify
Santa by sending a message backFromHoliday, and then they wait to get
harnessed. When they are harnessed, they deliver toys together with
Santa. When they are finished, Santa unharnesses them and they go on
holiday again. The class ReindeerC is given in Figure 2.2. The elves have
a similar behavior; the EIfC class is given in Figure 2.3.

The active behavior of the Santa Claus class consists of delivering toys
and to talk to elves. This is reflected by a method loop where Santa waits
for an activating condition to be true and then do the appropriate. See
Figure 2.1.

Before Santa can deliver toys, he must harness the reindeer. This is
done by invoking the method harness for all the reindeer objects (in the
wait_rd list). For efficiency reasons, this method is invoked for all the
reindeer before waiting for the answer; this way the method invocations
may be executed in parallel. After reindeer are harnessed, Santa delivers
the toys (together with the reindeer). When he is finished, he unhar-
nesses the reindeer by invoking the unharness method for all reindeer.
The method deliverToys is given in Figure 2.4.

Remark: In real life Santa and the reindeer would be finished delivering
toys at the same time. Here, this is not the case. Santa unharnesses the

10

10

1

10

15

20

18 CHAPTER 2. BACKGROUND

class ReindeerC(sc:SantaClausR) implements Reindeer
begin
op run == !holiday
op holiday == <<Go on holiday>>; !sc.backFromHoliday
op deliverToys == <<Deliver Toys>>

with SantaClausR

op harness == !deliverToys
op unharness == !holiday
end

Figure 2.2: The Reindeer class.

class E1fC(sc:SantaClausE) 1implements E1f

begin
op run == !work
op work == <<Do work>>; !sc.haveProbTlem

op talkToSanta == <<Talk to Santa>>

with SantaClausE

op showIn == <<Go into Santa’s office>>; !talkToSanta
op showOut == <<Leave Santa’s office>>; !work
end

Figure 2.3: The EIf class.

op deliverToys ==
var tl:Label,..,t9:Label;
ct_rd := 0;

tl!first(wait_rd).harness;

harnessed_rd := add(harnessed_rd, first(wait_rd));
wait_rd := rest(wait_rd);
t9!first(wait_rd).harness;

harnessed_rd := add(harnessed_rd, first(wait_rd));
wait_rd := rest(wait_rd);

await t1? /\ t2? /\ ... /\ t97;

<<Pick up and deliver toys>>;

Ifirst(harnessed_rd) .unharness;
harnessed_rd := rest(harnessed_rd);

Ifirst(harnessed_rd) .unharness;
harnessed_rd := rest(harnessed_rd)

Figure 2.4: The method deliverToys in class SantaClausC.

2.2. JAVA CONCURRENCY 19

class LeaderE1fC(sc:SantaClausC, elves:List[E1f])
inherits E1fC(sc) implements E1f
begin
op run == !run@ElfC
op work ==
(<<Lead the elves>> ||| <<Make toys>>);
Isc.haveProblem
end

Figure 2.5: The Leader Elf class.

reindeer as soon as they have finished to deliver toys, and does not wait
for the unharness method to complete (he is eager to go back to sleep).

The talkToElves method is similar, except that Santa must wait for the
elves to leave the office before closing the door, in the same manner as
he waits for the reindeer to get harnessed before he deliver toys. The
full example with the talkToElves method and a starter class is given in
Appendix A.2.

Defining a Leader Elf using Inheritance

The use of interfaces makes it possible to have different kinds of elves.
For example, it is possible to define a leader elf which has other tasks
than the other elves. It is natural that a leader has control over the
workers; therefore, the leader has a list of the worker elves. For Santa, all
elves are equal. Thus, the communication with Santa is equal to the other
elves’ communication with Santa. The leader elf interleaves between
leading the working elves and to make toys as the other elves.

The leader elf is implemented by a class LeaderEIfC. It inherits the EIfC
class, and redefines the work method. As the run method of inher-
ited classes (superclasses) is not started automatically, LeaderEIfC has a
method run which simply calls the run method in EIfC.5 The LeaderEIfC
class is given in Figure 2.5. Note that the reference to Santa Claus is
passed forward to the inherited EIfC class.

2.2 Java Concurrency

The concurrency model of the Java programming language is based on
multiple execution threads, in contrast to Creol’s concurrency model

6A method m of an inherited class C can be invoked explicit by m@C; this will be
discussed further in Chapter 5.

20 CHAPTER 2. BACKGROUND

which is based on active objects. In this section we give a brief sum-
mary of the Java thread model and some Java threading tools which we
use in the implementation part of this thesis. The reader is assumed
to be familiar with concurrent programming, that is, have a basic know-
ledge about threads and synchronization primitives such as, e.g., sem-
aphores, locks, and condition variables. Andrews [1] gives an excellent
overview of this area. The reader is also assumed to know the basics of
Java: classes, objects, interfaces, etc., and how sequential programs are
written in Java; Eckel [9] gives a good introduction to the basics of Java.

Java is used on a wide range of platforms; e.g., desktop computers, serv-
ers, mobile phones, and smart cards. Therefore, there is a number of
editions of Java. Here, we only consider the standard edition. In the
standard edition, it is possible to write concurrent programs by using
multiple threads. A thread is a light-weight process with its own execu-
tion thread; a program can consist of multiple threads which share the
same memory. In Section 2.2.1 we present how to create and start Java
threads, and discuss some properties about the thread scheduling.

A thread executes code independent of activity in other threads, but the
code in the different threads operate on values and objects residing in
a shared main memory. The shared memory is not automatically pro-
tected, in principle several threads may access the same address in the
shared memory at the same time. It is the programmers responsibility
to prevent race conditions. Because of this, some consider Java’s par-
allelism to be insecure [3]. However, safe programs can be written by
careful synchronization. Early versions of Java came with few tools for
thread synchronization, and advanced features were missing. However,
Java 2 Standard Edition Version 5.0 (J2SE 5.0) provides a utility package
which offers the tools we need for our implementation; in Section 2.2.2
we present some of the tools included in this version.

2.2.1 Java Threads

Java is an imperative object-oriented language which supports thread
concurrency. The execution threads and the objects are separated; a
thread executes code that operates on objects in the shared memory, and
multiple threads’ code can operate on the same object. However, there
is a connection between objects and threads, as a new thread is created
by making an instance (an object) of the Thread class. This object stores
thread-specific data and has thread-specific methods.

1

2.2. JAVA CONCURRENCY 21

class Producer implements Runnable {
Buffer buffer;
public Producer(Buffer b) {
buffer = b;
}

public void run() {
int i = 0;
while(true) {
buffer.append(new Integer(i));
T4+;

Figure 2.6: A Producer class in Java.

Thread creation

Threads in Java may be created in one of the two following ways:

- Create a subclass of Thread, say MyThread. Override the run()
method of Thread, create an instance of MyThread and call the
start() method of this instance. Example: new MyThread().start()

- Create a class which implements the Runnable interface, say My-
Runnable. MyRunnable must implement a method run(). Create an
instance of MyRunnable and give this instance as a parameter to
the Thread constructor: new Thread(new MyRunnable()).start()

The start() method in the Thread class first initializes the thread and
then it calls the run() method. In the first approach, the run() method
is overridden by the programmer and the program-specific code is ex-
ecuted directly. In the second approach, the Thread.run() method calls
the MyRunnable.run() method.

Example: A producer

Assume that we have a class or an interface Buffer which offers the ap-
pend and remove operations defined at the beginning of this chapter
by methods append() and remove(), respectively. We create a producer
which produces the natural numbers and inserts each of them in the
buffer; see Figure 2.6. The class Producer implements the Runnable in-
terface and has a method run(). We create an instance of this class and
an execution thread for it, and start the execution thread:

22 CHAPTER 2. BACKGROUND

Producer p = new Producer(buffer);
Thread t = new Thread(p);
t.start();

The start() method in the Thread class calls the run() method in the
Thread class, which again calls the run() method in the Producer class.

Thread scheduling

The Java Virtual Machine Specification [22] does not specify in detail
how implementations of a Java virtual machine (JVM) should schedule
threads; the scheduling is implementation-specific. In particular, the
specification does not require that the virtual machine supports time-
slicing. On JVMs without time-slicing, some threads may never get to
run if there are more threads than processors. In this case we have star-
vation. The programmer must program carefully so that all threads are
given execution time. On JVMs with time-slicing on the other hand, all
threads are given execution time, and the programmer does not have to
worry about starvation. Sun’s latest versions of its JVM implementation
for desktop computers support time-slicing.

2.2.2 Data Synchronization

Java threads communicate via shared memory. The data in Java are
objects. By default, all objects have a single lock, called the object’s
monitor; this lock is used by synchronized methods and synchronized
blocks. A method is declared to be synchronized by prefixing the method
declaration with the key word synchronized; for example

synchronized void inc() {
counter = counter + 1;

}

A synchronized method acquires the object’s lock at the beginning of
the method execution and releases it at the end; if all methods of a class
are synchronized and the class attributes are only accessed by these
methods, race conditions are avoided for objects of this class.

Each object has a single condition variable which is bound to the object’s
lock. Inside a synchronized method (or block) a thread can wait for
a signal by the call wait(); this call releases the lock and the thread is
suspended. A thread can signal one or all waiting threads by the calls

2.2. JAVA CONCURRENCY 23

notify() or notifyAll(), respectively. To illustrate this, we define a decrease
operation which decreases a counter when it is positive, and an increase
operation which first increases the counter and then signals that the
counter is different from O:

synchronized void dec() {
while(counter == 0) wait();
counter = counter - 1;

3

synchronized void inc() {
counter = counter + 1;
notify(Q);

}

Synchronized blocks are similar to synchronized methods and are not
discussed here.

There are some limitations to the synchronization primitives offered by
the Object class and the synchronized construct. Each thread has only
one condition variable; for some problems this does not suffice as differ-
ent threads might wait for different conditions to become true. Further-
more, the Java specification does not give any guarantees about fairness;
if multiple threads want to access synchronized methods in the same ob-
ject, there is a possibility of starvation, that is, some of the threads may
never get to execute.

The concurrent package offers additional synchronization tools such as
locks, semaphores and condition variables. Furthermore, this package
has data structures which are thread-safe, that is, are protected against
race-conditions; we will not discuss these data structures.

A simple lock is offered by the interface Lock and implemented by a
class ReentrantLock. The lock is acquired by calling its method lock()
and released by calling unlock(). The lock class has a method newCondi-
tion() which creates a new condition variable which is bound to the lock.
The condition variables provide several methods, including the methods
await() and signal(). When a thread calls await() on a condition variable
of a lock, the lock is released and the thread is suspended until awoken
by a signal on the same condition variable. When a thread calls signal()
the thread that has waited longest is awoken, that is, the await() method
of that thread will return.

Example: The Bounded Buffer

To illustrate, we implement the previously mentioned interface Buffer as
a class BoundedBuffer, see Figure 2.7. Object references are stored in an

10

15

20

25

30

35

40

45

50

24

CHAPTER 2. BACKGROUND

interface Buffer {
public void append(Object x);
public Object remove();

}

class BoundedBuffer implements Buffer {
private Lock lock;
private Condition notFull;
private Condition notEmpty;
private Object[] items;
private int putptr, takeptr, count;

public BoundedBuffer(int n) {

3

lock = new ReentrantLock(true);
notFull = Tock.newCondition();
notEmpty = lock.newCondition();
items = new Object[n];

putptr = 0
takeptr

= 0;
count = 0;

public void append(Object x) {

}

Tock.Tock();
while (count == items.length) {
try { notFull.await(); }
catch (InterruptedException ie) { }
}
items[putptr] = x;
putptr = putptr + 1;
if (putptr == items.length) putptr = 0;
count = count + 1;
notEmpty.signal(Q);
Tock.unTock();

public Object remove() {

Tlock.Tock();
while (count == 0) {
try { notEmpty.await(); }
catch (InterruptedException ie) { }
}
Object x = items[takeptr];
takeptr = takeptr + 1;
if (takeptr == items.length) takeptr = 0;
count = count - 1;
notFull.signal(Q);
Tock.unTock();
return x;

Figure 2.7: The Bounded Buffer using fair locks.

2.2. JAVA CONCURRENCY 25

array named items. The integers putptr and takeptr are used as indexes
pointing to where in the items array object references are inserted and
removed, respectively. The integer count stores the number of elements
in the items array. To protect the buffer from race conditions, we use
a fair lock lock and two condition variables notFull and notEmpty. The
attributes are initialized in the constructor. Note that true is given as
argument to the Lock constructor to specify that we want a fair lock.

The append() and remove() methods are very similar to each other; hence,
we only consider the append() method. First, the lock is acquired. Then,
if the buffer is full, the thread waits for the buffer to be not full by the
call notFull.await(). Suspended threads may be interrupted, that is, an
InterruptedException may be thrown; thus, the await() call is inside a
try-catch block and we catch interrupt exceptions. There is no guaran-
tee that the condition actually holds when await() returns; therefore, the
condition must be rechecked (hence the while-loop). When the while-
loop ends, the buffer is not full and the object can be inserted in the
buffer (lines 29-33). Finally the lock is released.

Read/write locks

The concurrent package has a read-write lock, which is useful when we
want multiple readers to access some shared data at the same time. It
can be used to solve the traditional readers/writers problem. The pack-
age has an interface ReadWriteLock; this interface is implemented by a
class ReentrantReadWriteLock. We create a fair read-write lock:

ReadWriteLock rwl = new ReentrantReadWriteLock(true);

The lock consists of a read-lock and a write-lock. When we want to ac-
quire the read-lock, the read-lock is first fetched by the method read-
Lock() and then acquired by the method lock(). It is released by the
method unlock(). The write-lock is used in a similar way. We use the
read-write lock as follows:

rwl.readLock().lock();
/* shared access, only read */
rwl.readLock() .unTock();

rwl.writeLock().lock();
/* exclusive access, ok to write */
rwl.writeLock().unlock();

26 CHAPTER 2. BACKGROUND

The write-lock has a condition variable, which works as for other locks.
A thread which has taken the write-lock, can grab the read-lock, and
hence it can downgrade from a write-lock to a read-lock by acquiring the
read-lock and then releasing the write-lock. The other way around is not
possible, because other threads may also have acquired the read-lock.

Chapter 3

A Computational Model for
Creol

This chapter discusses a computational model for Creol, called Creol
Computational Model (CCM). The reader is assumed to be somewhat fa-
miliar with Creol, to the same extent as given in Section 2.1.

We start by motivating why we need a computational model and what
purposes it will serve in Section 3.1. Section 3.2 defines the model form-
ally. Section 3.3 presents the various components of the CCM. Section
3.4 discusses the execution of Creol programs in the model.

3.1 Model Objectives

The design and especially the implementation of a virtual machine is
complex, and details and implementation issues may overshadow the
main structure and behavior of the virtual machine. This is why we cre-
ate a computational model, which will abstract away inessential details
and thus be much easier to work with.

We will define the model formally, because this will make the model
unambiguous and because a formal notation helps us define the compu-
tations of the model in a concise manner. Working with a formal model
gives some important benefits:

- It will be comparatively short and concise. Therefore, it should be
easy to read and understand.

- It can be used as the high level model or an specification when
designing and implementing a virtual machine.

27

28 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

- The Creol language can be defined formally in the model.

- It is possible to reason about computations in the model.

The semantics of the Creol language is given in rewriting logic and forms
the basis of an implementation of a Creol interpreter in Maude [2]. Our
implementation of a virtual machine must observe the semantics of
Creol. This might be easier to accomplish if our model has the same
structure as the RL semantics. However, the structure used in the RL
semantics is not appropriate as the basis for an implementation in an
imperative and object oriented language. Our model will be quite differ-
ent. The differences may be interesting for the reader, but are omitted
to keep the description of the model compact.

3.2 The Model

A Creol computational model
(CVM names, Initial objects, Class definition set)

intended to represent a Creol program, is given by the following com-
ponents:

CVM names is a set of Strings. Each String serves the purpose of identi-
fying a Creol Virtual Machine (CVM), defined in Section 3.3.

Initial objects is a set of tuples (CVM name, Class name, parameters).
Each tuple specifies an object to be created at initialization. More
details in Section 3.4.

Class definition set represents the Creol program code. It is defined in
Section 3.3.3.

The execution of programs is modeled by computations of the model;
this is discussed in Section 3.4. We define computations as sequences of
states. How these states are represented is defined in Section 3.3.

3.3 Structure and States

This section describes the structure of a Creol Virtual Machine and the
formal representation of states. The structure described will serve as
a basis for an implementation of a CVM (Chapter 4), and is the main
focus of this section. The formal representation of states is for the con-
venience of describing computations in a concise and precise manner;

3.3. STRUCTURE AND STATES 29

computations are discussed in Section 3.4. Therefore, for each part of
the model we give an informal description to motivate the concepts and
then give the formal representation of the state.

Creol is a programming language designed to create distributed pro-
grams. Creol objects may be distributed on different nodes!. On each of
these nodes there is a Creol Virtual Machine (CVM). The CVMs commu-
nicate with each other. Formally, a state in a CCM computation is a set
of such machines, represented as

state = { CVM;, CVM,, ..., CVM,, }

Further, we will cut the state into pieces; we will describe, i.e., the state
of a CVM and the state of an object (in a CVM).

3.3.1 The CVM

Creol is an object oriented language; objects are fundamental in a Creol
program. Conceptually, an active object has its own thread of control.
In our model, we have CVM objects?, each with its own thread of control.
They live inside the CVM. A CVM object reflects a Creol object. Commu-
nication between objects is modeled by message passing. We will not
focus on how this is done, as we consider this to be an implementation
issue. Objects put messages in their out-queue and receive messages in
their in-queue; messages are transported between objects by some un-
derlying (low-level) mechanism.

We focuses on modeling execution of Creol programs on one node (vir-
tual machine). Yet, Creol objects may be distributed over different nodes,
so communication between nodes must be taken into consideration.
Therefore, the CVM has queues for communication with other CVMs.
Some features are common to all objects in the CVM,; i.e., class defini-
tions and the creation of new objects. Therefore, each CVM has a cent-
ral which stores these common structures and which offers services to
the objects. The communication between the objects and the Central is
modeled by message passing; thus the Central has an in-queue and an
out-queue like the objects. See Figure 3.1.

The state of a CVM is represented as a tuple

CVM = (ID, IN-QUEUE, OUT-QUEUE, CENTRAL, OBJECTS)

1The nodes can be different computers in a network, but there is nothing wrong in
having more than one node on the same computer.

2We use CVM in front of object to distinguish these objects from objects in the
Creol language (when this is necessary).

30 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

CVM

Out
queue

In
wee Central

queue

In
queue

Figure 3.1: The CVM has objects, a central, an in-queue and an out-queue.

where ID is a String identifying this particular CVM and the queues are
ordered?® multisets of messages; i.e., { msgi, msgs, ...}. CENTRAL is spe-
cified in Section 3.3.2. OBJECTS is a set of CVM objects; the structure and
formal representation of an object are specified in Section 3.3.4.

3.3.2 The Central

The Central is mostly motivated by the main purpose of the model; it will
be used as a high-level model for the implementation given in Chapter
4. The idea is that the Central should serve the objects in tasks like
creating new objects and method lookup; these are services offered by
the Central.* The services “Create object” and “Get method definition”
are explained in Section 3.4.2.

Communication between the Central ad the CVM objects is modeled by
message passing, in the same manner as between objects; therefore, the
Central has an in-queue and an out-queue. When an object wants some
service offered by the Central, it sends a message to the Central which
then performs the requested service and sends an answer message back
to the object.

Formally, the state of a central is represented as a tuple

CENTRAL = (IN-QUEUE, OUT-QUEUE, CLASS DEFINITION SET)

The queues are ordered sets of messages. The IN-QUEUE may look like

3The type of ordering in the queues is unspecified, but a first-in, first-out policy is
probably a good choice for implementation.
4The services offered may be extended; i.e., Update class.

3.3. STRUCTURE AND STATES 31

{ newObj(...), newObj(...), getMethodDef(...), ...}

The message syntax is explained in detail in Section 3.4.2. The compon-
ent CLASS DEFINITION SET is explained in the next section.

3.3.3 C(Class Definitions

Class definitions are needed by the Central in order to create objects
and give objects method definitions. See Figure 3.1. Formally, the CLASS
DEFINITION SET is a set of tuples, where each tuple specifies a Creol
class:

CrAss = (CLASS NAME, PARAMLIST,
INHLIST, ATTRIBUTES, METHODS)

where CLASS NAME is a String identifying the class, PARAMLIST a list of
Strings specifying the formal parameters of this class, INHLIST is a list
of pairs <classname,exprList>, where classname identifies an inherited
class and exprList is a list of expressions over variables from PARAMLIST.
ATTRIBUTES is a set of pairs <var,val> where var is a String identifying
a variable with initial value val. METHODS is a set of tuples

METHOD = { METHOD NAME, SIGNATURE, COINTERFACE,
PARAMETER LIST, RETURN VARIABLES, CODE)

The String METHOD NAME uniquely identifies the method (within the
class). SIGNATURE is a list (iny, ing, ..., in,; outy, outs, ..., outy),
where in; and out; are the types of the in and out parameters, respect-
ively. COINTERFACE is a String, and PARAMETER LIST and RETURN VARI-
ABLES are lists of Strings giving the names of the parameters and return
parameters, respectively. CODE is a statement list giving the code of this
method.

Translation from Creol class definitions to CCM representation

We assume strong static typing [21]. The type of an expression is de-
termined at compile time; therefore, we do not need to store the type
of variables. Nevertheless, as Creol supports virtual binding of method
calls, the signature of method calls must be preserved. (Method look-up
with multiple inheritance is explored in Chapter 5.) The CCM representa-
tion of the class name, parameter list and attributes are almost the same
as for Creol. We illustrate by an example. Consider the following Creol
class:

32 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

class A(vq:Tq, va:Ta, ..., vi:Ty) inherits inhList
begin
var up:Ty = expry, Us:To = expra, ..., Um:Tm = eXprm;

<methods>
end

The CCM representation of this class is

(A, (Vi, Vo, ..., Vi), INHLIST,
(<uq,expri>, <Us,eXpro>, ..., <Upm,eXpry>), METHODS)

The inheritance list is not interesting for now, as we do not consider in-
heritance; however, we choose to store it in the class definitions to make
it easier to extend the model to support multiple inheritance (Chapter

5). METHODS is a set { My, My, ..., My } of methods M;. Consider a Creol
method
with Co ' '
op m(in: vi:Ti", voiTH, .., vy T
out: up:TO%E Uy TUE, ..., U :TOU!) == Code

The CCM representation of this method is

(m, (T, T L, Tin, TOUE TgUE L, T9UL), Co,
(vll V21 ey V?’L), (ull u21 ey Un), CODE >

(Ti", T, ..., Tin, TOUL T9ut | TOUl)is the signature, (vi, Vg, ..., Vy) is
the in parameters and (ui, us, ..., Uy) is the out parameters. Code is a
list var vdecl; si; so; s3; ..., where var vdecl; consists of local variable
declarations and s; are statements. (var vdecl; may be omitted.) The
translation from Code to CODE is not as straight forward as the rest of
the components. We will make some changes to the code which makes
it more convenient for computation and implementation. First, we make
some assumptions:

- The String wait is not used as a variable name in Code.

- All variable names in Code are different from those used in the
class.

- All variable declarations have initial values (possibly nulT).

It is a trivial matter to change the code to accomplish this (without chan-
ging the semantics of the program), if these assumptions are not already
met.

3.3. STRUCTURE AND STATES 33

The Creol statement await wait (or more generally await wait A g for a
guard g) is an explicit processor release point. In a process, this state-
ment evaluates to false until the process has been suspended. To ac-
complish this, we have a Boolean system variable wait in the process’
local variables. When a process is suspended, wait is set to true, such
that await wait evaluates to true next time. When a statement (different
from [J and ||]) in the process is executed, wait is set to false; hence, next
time await wait evaluates to false and the process is suspended. The [
and ||| statements do not update the wait variable, as this would cause
processes to be suspended unintentionally (see Section 3.4.6).

We make the following changes to the statements:

New object: The creation of a new object is modeled by sending a
newObj message to the Central. A reference to this object is sent back
to the object by a newObjId message. The statement v := new class-
name(E); is changed to the statements new classname(E); waitObjld(v);
so that executing a statement is still one atomic step.

Merge operator: To execute a statement list 51, 59, 53, ..., we execute
the statements s; one by one, and after each statement s; is executed,
control is set to s;, 1. In our model, we just remove s; from the list. In the
implementation, we use pointers to the code to avoid code duplication.

In the Creol statement list (57 ||| S2); S3, S; and Sy are executed in an
interleaved manner. In the Maude interpreter, this is solved by manip-
ulating the code; that is, changing (S; ||| S2) to (S2 ||| S1) at processor
release points and removing the first statement of S; or Sy when ex-
ecuted. This is not very easy to do by pointer manipulations; therefore,
our computational model uses a different approach than [18].

We introduce a statement joinMerge(v) and changes (57 ||| S2); S3 to
(S1 11l S2); joinMerge(v); S3. The idea is that when the first statement
of (S1 1] S2); joinMerge(v); S3 is executed, we split into two statement
lists S1; joinMerge(v); S3 and So; joinMerge(v); S3. Both will be executed
in an interleaved manner, but the first to reach joinMerge(v) termin-
ates whereas the last one continues with S3. The variable v is not
used elsewhere in this method or in the class. A variable declaration
v:Boolean = false; is added in vdec/. The computation of the merge
statement and joinMerge(v) is defined formally in Section 3.4.6.

Remark: In case of nested merge statements, a joinMerge-statement is
added for each [||. For example, the statement list ((Sy ||| S2) ||| S3) is
changed to ((51 [Il $2); joinMerge(v1) |I| S3); joinMerge(vs).

Return statement: After a process has terminated, a completion mes-
sage must be send to the caller. The process has terminated when there
are no more statements to execute; this is possible to figure out, but

34 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

CVM object

Active
process

Suspended Completion
processes set

Figure 3.2: The CVM object has an active process, a set of suspended
processes, attributes, a completion set, an in-queue, and an out-queue.

Attributes

instead we introduce a special statement return variable list. variable
list is a list of Strings giving the names of the variables which will be
returned. Our previous example gives return (uy, Us, ..., Uy). This is in-
serted after the last statement of Code. The execution of the return
statement is explained in Section 3.4.6.

In addition, we make some changes to have fewer statement types to
consider:

- await t?(V) is translated to its equivalent await t?; t?(V)

- p(E;V) is translated to t!p(E); t?(V) for a fresh variable t, and var
t:Label is added in front of Code.

- await p(E;V) is translated to t!p(E); await t?; t?(V) for a fresh variable
t, and t:Label; is added to vdecl.

- Im(E) and t!'m(E) are transformed into !this.m(E) and t!this.m(E),
respectively.

3.3.4 The Object

Creol objects are modeled by CVM objects, see Figure 3.2. These objects
live inside a CVM — the CVM is its environment. An object does not
know much about its environment, except that it can communicate with
it by sending and receiving messages through its queues. It also knows
which services the central offers, and how to invoke these services. To

3.3. STRUCTURE AND STATES 35

make a method call, an object sends a method invocation message. If
the call is external (another object), the message is put on the object’s
out-queue. If it is internal, the message is put on the object’s own in-
queue. In the same manner, the return of method calls result in method
completion messages.

Inside an object, we find components visible only to this particular ob-
ject. The most important ones are the attributes and the processes, as
these components more or less define the state and behavior of the ob-
ject. The attributes are instantiated local copies of the class parameters
and attributes. They are pairs <id, val>, where id is a String identifying
the variable, and val is the value of the variable (or null if the variable is
uninitialized). As Creol is a statically typed language, no type informa-
tion is necessary.”> Creol objects are active; they execute processes. The
active process is the process currently executing in the object. As Creol
objects create a new process for each method call, and these processes
may have processor release points, the CVM objects also have suspended
processes. This is a queue of processes; the ordering is unspecified (im-
plementation issue). Each object has a completion set, which serves as
a buffer where processes look for the return of their method calls. The
answer to a method invocation, external or local, is given by a comple-
tion message. This message is transformed into a pair <label, val> and
put into the completion set. In this pair, label identifies the method call
and val is the list of return values.® As objects communicate, each object
needs a unique id. The class the object is an instance of, is needed to get
method definitions.

The state of the object is given by a tuple

OBJECT = (ID, CLASS, IN-QUEUE, OUT-QUEUE, ATTRIBUTES,
COMPLETION SET, ACTIVE PROCESS,
SUSPENDED PROCESSES, STATUS)

ID is a unique identifier for the object. CLASS is a String identifying
which class this object is an instance of. The queues are ordered sets of
messages (first in first out), ATTRIBUTES is a set of pairs <id, val> such

5The only type information needed is the signature and the cointerface of method
calls. This is static type information determined during type checking (compilation)
and part of the method call at run time. Note however that we have not included
the signature and cointerface yet, it will be included when inheritance is taken into
account (Chapter 5).

6The completion messages could just stay in the in-queue of the object, but there
are a number of reasons for using a completion set: 1. The queue is shared and should
not be accessed more than necessary. 2. The queue is ordered in some way; this is
not necessary for completion messages. 3. Keeping the messages in the queue implies
that they need to be processed many times.

36 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

CVM process

L
| T
Comp set

Active
code

Lvar 'b_ Suspended
Attributes code

Process information

Figure 3.3: The process has active code, suspended code and local vari-
ables. The attributes, completion set and queues of the object are mod-
ified by the active code and therefore shown in the figure as stippled
boxes/arrows. Components modified by the active code are grouped as
“Process information”.

that there is no two pairs with the same id, COMPLETION SET is a set
of pairs <label, returnlist>, ACTIVE PROCESS is a process and SUSPENDED
PROCESSES is an ordered set of processes (what sort of ordering is unspe-
cified). The processes are described in the next section. The STATUS is a
flag describing the current activity in the object. It is used to get a more
deterministic behavior in the model, making the model more suited for
implementation. This is explained Section 3.4.3.

3.3.5 The Process

In Creol, method calls are (conceptually) executed by processes; when an
object receives a method invocation message, it creates a new process
which executes the method and sends the return of the method invoca-
tion.

A process can be represented by its local variables and its code. The
local variables are initialized copies of the parameters of the method
and of the variable declarations in the method’s code. Due to Creol’s
merge operator |||, which interleaves the execution of statement lists, the
process may execute more than one statement list. In the Creol code (S;
[l S2); S3 the execution can change between statement lists $; and S, at

3.3. STRUCTURE AND STATES 37

CCM (CVM names, Initial objects, Class definition set)

CCM state | { CVMy, CVMay, ..., CVM,, }

CVM (ID, IN-QUEUE, OUT-QUEUE, CENTRAL, OBJECTS)

Central (IN-QUEUE, OUT-QUEUE, CLASS DEFINITION SET)

Class (NAME, PARAMLIST, INHLIST, ATT, METHODS)

Method (NAME, SIG, CO, PARAM, RETVAR, CODE)

Object (ID, CLASS, IN-QUEUE, OUT-QUEUE, ATT, COMPSET,
ACTIVEPROCESS, SUSPENDEDPROCESSES, STATUS)

Process (LOCALVARIABLES, ACTIVECODE,
SUSPENDEDCODE, ID, DYNAMICLINK)

Table 3.1: The state representation of various structures in CCM.

processor release points’. We split these statement lists into the active
code and the suspended code, where the active code is the statement list
currently executing, and the suspended code are suspended statement
lists. As the merge operator is commutative and associative, suspended
code is represented as a set of code.

The state of a process is given by a tuple

PROCESS = (LOCAL VARIABLES, ACTIVE CODE,
SUSPENDED CODE, ID, DYNAMICLINK)

The LOCAL VARIABLES is a set of pairs <id, val>, reflecting the parameters
and the variable declarations in the method this process is an instance
of. The String id identifies the name of a variable and val the current
value of the variable; this is equivalent to the attributes in the object.
The ACTIVE CODE is a list of Creol statements. The SUSPENDED CODE is
an unordered multiset of statement lists.

A process may block waiting for the return of a local method call. To
avoid deadlock, such local calls are allowed to be executed, and the cur-
rent process is suspended. When the call has completed, the suspended
process is reactivated. In order to 'return’ to the caller, each process
is identified by 1D. When a local call is activated, DYNAMICLINK (of the
process representing the call) is set to the identifier 1D of the caller, and
this dynamic link is used to reactivate the caller. See Section 3.4.5 for
details.

Table 3.1 gives an overview of the representation of the structures which
are discussed so far in this chapter.

“See Section 2.1 for the definition of processor release points.

38 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL
3.4 Computations

The previous section discussed how Creol programs may be represented
in a Creol computational model and how the states of an execution of a
program are represented. In this section we discuss the computations in
the model, representing the execution of Creol programs.

Formally, a computation of a CCM is a sequence sy, s1, So, ... of states,
where sy is the initial state (soon to be defined), and each s; (i > 0)
follows from s(;_1) by using the rules we will define in this section.

First we will describe the initialization of the model; for a CCM, we define
the initial state syg. Then we will describe each rule. For each rule, we de-
scribe the precondition and the postcondition of the rule, which give the
conditions for when the rule may be applied and the effect of applying
it, respectively. The rules are thus specified in an implicit manner [25].
This is very similar to the implicit specification of operations in the Vi-
enna Development Method (VDM) [29]. The use of a precondition and a
postcondition is best explained by an example. Assume the state s; of
the CCM is

si={...,CVM;, ...}
CVM; = (ID, IN-QUEUE, OUT-QUEUE, CENTRAL, OBJECTS)
OBJECTS ={ ... , OBJECTj, ...}

OBJECT; = (ID, CLASS, IN-QUEUE, OUT-QUEUE, ATTRIBUTES,
COMPLETION SET, ACTIVE PROCESS,
SUSPENDED PROCESSES, STATUS)

Say, for the sake of example, that an object may go from the state “pass-
ive” to “active” whenever the in-queue is not empty. The precondition
would be:

STATUS = “passive” A IN-QUEUE !={}

The other components of the object and other objects are not taken into
consideration, as there are no constraints of their values. The postcon-
dition would be

STATUS = “active”

Components not affected by this rule are not mentioned. Formally, this
is just a short notation for the precondition

3.4. COMPUTATIONS 39

state = { CVM;, RESTOFCVMS } A
CVM; = (ID, IN-QUEUE, OUT-QUEUE, CENTRAL,
{ OBJECT;, RESTOFOBJECTS }) A

STATUS = “passive” A
IN-QUEUE !={}

and the postcondition

state = { CVM;’, RESTOFCVMS } A
CVM;’ = (ID, IN-QUEUE, OUT-QUEUE, CENTRAL,
{ OBJECT;’, RESTOFOBJECTS }) A

STATUS’ = “active”

Here, ITALIC CAPS are used to match an arbitrary value in the precon-
dition and then used to preserve this in the postcondition. SMALL CAPS
are used to refer to components in the precondition and likewise primed
versions of SMALL CAPS are used in the postcondition.

The point is that all components which are not mentioned in the post-
condition, are not modified by the rule.

To be able to refer to rules, we will give each of them a number; i.e., (3.3).
This is printed at the right side of the page, just before the precondition.
The rule is referred to as “Rule 3.3”.

3.4.1 Initialization

We now define the initialization of the set of CVMs. Recall that a Creol
program is represented as a tuple (CVM names, Initial objects, Class
definition set). At initialization, we make an instance of a CVM for each
CVM name (at least one CVM). Each CVM will have a central and an empty
set of objects. To create the initial objects, we make newObj-messages
and put them into the in-queue of the Central of the specified CVM.

Formally, the initialization gives rise to a state sg, called the initial state.
Assume that CVM names = {id,, ids, ..., idy}, Initial objects = {(id;,
class name, parameters), ...} and Class definition set = classdef. Then
so will be a set of CVMs with empty queues, a central, and an empty
set of objects. The Central will have newObj-messages in its in-queue,
corresponding to the initial objects. Example:

CVM; = (id;, { }, {1}, ({newObj(null, class name, parameters), ...},
{}, classdef),{})

Note that just after initialization, the class definition set is equal for all
CVMs; this set can change if we introduce dynamic updates.

40 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

Central

In "New
queue object" Class

out definition

queue "Get method set
definition”

Figure 3.4: The Central stores the class definitions and offers two ser-
vices: “New object” and “Get method definition”.

3.4.2 The Central

The Central offers services to the objects; see Figure 3.4. A service is
invoked by sending a message to the Central. The Central processes
each message it receives in its in-queue, performs the requested service,
and send an answer message (via its out-queue) back to the object. The
services are presented next.

Service: New object

A new CVM object is created when the Central receives a message

newObj (objfrom, classname, actual parameters)

Recall that the Central is modeled by a tuple containing queues and class
definitions. Assume the Central has a newObj message first in its in-
queue:

(3.1)
({neWObj(Obeyom, A! (apl’ ap2: L] apn)), e }l
OUT-QUEUE, CLASS DEFINITION SET)

A identifies the class and ap;s identify the actual parameters. Further,
assume

(A, V1, Vo, ..., Vn), inhList, (<uy,e1>, <us,e9>, ..., <Um,em>),
METHODS) € CLASS DEFINITION SET

The v;’s identify formal parameters and the u;’s identify attributes. The
inheritance list inhList is not interesting for now. A new object

3.4. COMPUTATIONS 41

(ID, CLASS, IN-QUEUE, OUT-QUEUE, ATT, COMP SET,
ACTIVE PROCESS, SUSPENDED PROCESSES, STATUS)

is created, where

ID =1id

CLASS = A

IN-QUEUE = { }

OUT-QUEUE = { }

ATT={<this,id>, <vi,api>, <v2,aps>, ..., <Vyu,adPn>,
<uyi,vali>, <ug,vale>, ..., <um,valm>}

CoMP SET ={ }

SUSPENDED PROCESSES = { }

STATUS = “Process scheduling”

The object identifier id is a fresh value not used as any other object
identifier; v; and u; is assumed to be distinct variable names different
from this, caller, label and wait.® Each attribute u; is assigned the evalu-
ated value of e; (over parameters), that is, val; = evaluate(e;). If the run?
method exists, that is

(run, (), €, (), (), Code) € METHODS

anew process p is created. Recall that a process is represented as a tuple
(LOCAL VARIABLES, ACTIVE CODE, SUSPENDED CODE, ID, DYNAMICLINK).
The process p’s components are:

LOCAL VARIABLES = {<caller,null>,<label,null>,<wait, true>}
ACTIVE CODE = Code

SUSPENDED CODE = { }

ID =null

DYNAMICLINK = nulT

The ACTIVE PROCESS is set to p; if there is no run method, ACTIVE PRO-
CESS is set to null. If objryom is not null, an object is waiting to get the
new object’s identifier. Therefore, the Central sends a newObjId mes-
sage to the object:

newObjId(objryom, 1d)

This is the case when objects execute statements v := new classname(E).

8The Strings this, caller, label and wait are special variable names.
9Recall that the run method has no parameters nor return variables, an empty sig-
nature, and no cointerface. Hence the empty lists () and empty String €.

42 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

Service: Get method definition

The second service offered by the Central is Get method definition. This
service is invoked by sending a message getMethodDef to the Central.
The message has the following syntax:

getMethodDef(obj, class, method)

The object identifier obj identifies the object requesting the method
definition, class is the object’s class name, method is the method name.
Assume that the Central receives a message

(3.2)
getMethodDef(objA, A, m)

We do not consider inheritance at this point; therefore, as we assume
strong static typing, the class definition set in the Central is guaranteed
to have the class definition of A with a method m:

(A, Parameter list, Inheritance list, Attributes,
{ < m, sig, co, param, retVar, Code >, ...})

The Central answers this inquiry by sending a methodDef message back
to object, in this case objA. The syntax of this message is

methodDef(obj, par list, ret var, code)

The object identifier obj identifies the object to which the message is
supposed to be sent, par list is the parameter list of the object and ret
var is a list of Strings giving the variable values which are to be re-
turned. The method body is given as a list of statements in code. To
construct the actual message, the parameter list par, return variables
list ret and the method body code is fetched in the class definition set.
This is straight forward and therefore omitted. Note however that the
signature sig and cointerface co is irrelevant for now, as we do not con-
sider inheritance.

3.4.3 The Object

In Section 3.3.4 we looked at the structure of the CVM object. Now we
take a look at the behavior of the object, which is given by the three
main tasks of the object: message processing, process scheduling, and
process execution. See Figure 3.5.

3.4. COMPUTATIONS 43

CVM object

Suspended Active —,
processes process A

Attributes Comp. Out
set queue

Figure 3.5: The object tasks and the flow of control.

Message processing: The object receives messages in its in-queue. These
messages are of two types (invocation or completion of a method call)
and must be processed accordingly.!? See Section 3.4.4.

Process scheduling is the task of deciding which process is to be executed
next. It is the active process or one of the suspended processes. Details
are explained in Section 3.4.5.

Process execution: The object must check if the active process is able to
execute its next statement, and if so execute this statement. Details are
discussed in Section 3.4.6.

The object interchanges between these tasks. Depending on which of
the tasks it is currently doing, the object is in the state of message pro-
cessing, process scheduling or process execution, and has a correspond-
ing status. In addition, we need a status wait for message because it is
possible that the object is not able to do anything before it gets a mes-
sage. This is the case if there is no process to execute or if the active
process blocks, waiting for the return of an external method call.!! See
Figure 3.6.

Enabledness and readiness of processes and program statements

To define the transitions between the object’s tasks, we need the defini-
tion of when a process is ready and when it is enabled.

The use of a predicate enabled is to precisely define processor release
points, that is, when the processor may be released to other processes.

10Messages of type methodDef and newObjId (defined in Section 3.4.2) are also put
in the object’s in-queue; however, these message types are used differently (see Rule
3.9 and Rule 3.24).

Hpe., tlo.m(E); t2(V); where o is not the object in which the statements are executed.

44 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

Inqueve=1{}

Message Process
proc ng Active scheduli ng

process = null or
Inqueue!={} [Waitfor y
message

Active process != null
and ready

Process

Active process .
execution

not ready

Figure 3.6: Object status changes.

The processor may be released when the active process’ next statement
is not enabled. It is the await statement which defines processor release
points in Creol; thus, most of the definition is concerned with the await
statement:

- A process P is enabled if P.ACTIVE CODE is enabled or there exists
a statement list S in P.SUSPENDED CODE such that S is enabled.

- A statement list S is enabled if its first statement is enabled.
- (57 0 8y) is enabled if S; or Ss is enabled.
- (81 Il S») is enabled if S; or S» is enabled.

- await g1 A go for guards g, and g is enabled if await g; and await
go are enabled.

- await b for a Boolean expression b is enabled if b evaluates to true.

- await t? is enabled if the object’s COMPLETION SET contains a pair
<t, val>, where val can be any list of data values.

- await = t? is enabled if the object’s COMPLETION SET does not con-
tain a pair <t, val>.

- await wait!? is enabled if the wait variable for this process is true,
that is: P.LOCAL VARIABLES = (<wait,true>,...)

- All other statements are always enabled (particularly t?(V) is always
enabled).

Intuitively, a process is ready if it is able to execute at least one state-
ment. It is defined as follows:

12The use of wait as a control variable is explained in Section 3.3.3.

3.4. COMPUTATIONS 45

- A process P is ready if P.ACTIVE CODE is ready, or if P.ACTIVE
CODE is null or not enabled and there exists a statement list S in
P.SUSPENDED CODE such that § is ready.

- A statement list S is ready if its first statement is ready.
- (S1 0 Sy) is ready if S; or Sy is ready.
- (S1 Il S9) is ready if S; or S5 is ready.

- The statement t?(V) is ready if the object’s COMPLETION SET con-
tains a pair <t, val>, where val can be any list of data values.

- For all other statements s, s is ready if it is enabled.

The only way a process can be enabled but not ready, is if it is waiting
for a reply of a method invocation by a re