
UNIVERSITY OF OSLO
Department of Informatics

Supporting
Distributed Active
Objects: A Virtual
Machine for Creol
on the Java Platform

Master thesis

Ivar Alm

1st May 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30839055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Distributed systems are becoming increasingly important. In order to fa­

cilitate the development of distributed systems, new high­level abstrac­

tions and programming languages may be convenient. Creol is an exper­

imental high­level object­oriented language for distributed objects. This

thesis investigates how to create a low­level run­time environment for

Creol by proposing a computational model for the language. A proto­

type of the model is implemented on the Java platform; this prototype

serves as a virtual machine on which Creol programs can be executed

and tested. The thesis looks into subject areas such as distribution, con­

currency, multiple inheritance, and interleaved execution of statement

lists.

i

ii

Preface

This thesis is part of the Creol research project1 at the Department of

Informatics at the University of Oslo. The project investigates program­

ming constructs and reasoning control in the context of open distributed

systems.

I would like to thank my supervisor Einar Broch Johnsen for all his help

throughout my thesis work. He has been a great support and has al­

ways been available with an open door policy, and given me excellent

guidance and constructive criticism. My fellow student Øystein Torget

deserves thanks for continuous feedback on my work and for inspiring

discussions. I also appreciate Arild Torjusen’s careful read­through of

the thesis.

1http://www.ifi.uio.no/~creol/

iii

iv

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Thesis Outline . 3

2 Background 5

2.1 The Creol Language . 6

2.1.1 Interfaces . 7

2.1.2 Classes . 8

2.1.3 Methods . 10

2.1.4 Imperative and Functional Code 11

2.1.5 Example: The Santa Claus Problem 15

2.2 Java Concurrency . 19

2.2.1 Java Threads . 20

2.2.2 Data Synchronization . 22

3 A Computational Model for Creol 27

3.1 Model Objectives . 27

3.2 The Model . 28

3.3 Structure and States . 28

3.3.1 The CVM . 29

3.3.2 The Central . 30

3.3.3 Class Definitions . 31

3.3.4 The Object . 34

3.3.5 The Process . 36

3.4 Computations . 38

v

vi CONTENTS

3.4.1 Initialization . 39

3.4.2 The Central . 40

3.4.3 The Object . 42

3.4.4 Message Processing . 47

3.4.5 Process Scheduling . 49

3.4.6 Process Execution . 52

3.4.7 Message Transportation 62

3.5 Summary . 63

4 Implementation of the Creol Virtual Machine 65

4.1 Preliminaries . 65

4.1.1 Java Properties . 65

4.1.2 JVM Assumptions . 66

4.2 Implementation Overview . 67

4.2.1 Main CVM Parts . 67

4.2.2 Activity: Flow of Control 68

4.2.3 Classes and Interfaces 69

4.3 Implementation Details . 71

4.3.1 Creol Program Representation 71

4.3.2 Initialization of the CVM 74

4.3.3 The Central . 75

4.3.4 The Creol Object . 78

4.3.5 Messages and Message Transportation 87

4.4 Example Run: The Santa Claus Problem 90

4.5 Summary . 91

5 Multiple Inheritance 93

5.1 Creol and Multiple Inheritance 95

5.1.1 Example: Combining Authorization Levels 97

5.2 Extending the Model . 100

5.2.1 Changes in the Structure 100

5.2.2 Changes in the Computation 102

5.3 Extending the Implementation 106

5.3.1 Changes to the Creol Program Representation 107

CONTENTS vii

5.3.2 Changes to the Central’s Services 107

5.4 Example Run: Authorization Policies 110

5.5 Summary . 112

6 CVM Intercommunication and Remote Objects 113

6.1 New Creol Language Constructs 113

6.1.1 Virtual Machines . 113

6.1.2 Remote Objects . 114

6.1.3 Example: File Downloads 116

6.2 Extending the Model . 118

6.3 Extending the Implementation 119

6.3.1 Background: Java RMI 120

6.3.2 Overview of the Changes 123

6.3.3 Detailed Changes . 124

6.4 Example Run: Distributed Santa Claus Problem 132

6.5 Summary . 134

7 Conclusion 135

7.1 Contributions . 135

7.2 Further Work and Research . 136

Bibliography 139

A Creol Examples 145

A.1 The Bounded Buffer . 145

A.2 The Santa Claus Problem . 146

A.3 Authorization Policies . 149

B Java Representation 151

B.1 The Bounded Buffer . 151

C Prototype Notes 155

C.1 Details . 155

C.2 Download and Use . 159

viii CONTENTS

Chapter 1

Introduction

In recent years, distributed programming has become increasingly im­

portant with the widespread use of Internet, faster networks, and less

expensive multiprocessor systems. The properties of distributed sys­

tems are different from those of non­distributed systems; e.g., delay or

loss of communication can occur in distributed systems [16]. Today’s

leading programming languages, such as Java, C++, and C#, are primarily

developed for sequential systems. These languages conventionally sup­

port only synchronous remote method calls. Synchronous calls result in

unnecessary waiting in the distributed setting [18]. Furthermore, error

handling in case of network errors are low­level and difficult. Languages

designed for sequential systems are far from perfect for developing effi­

cient and reliable distributed applications.

Creol is a new object­oriented programming language specifically de­

signed for distributed systems. In Creol, objects are active and run con­

currently, each with its own processor. Communication between objects

is asynchronous, and objects may perform other tasks while waiting

for the return of a method call. The execution of methods is seen as

processes, and control is transferred between processes by explicit pro­

cessor release points.

A new programming language needs to be tested to reveal its flaws and

weaknesses and to demonstrate its strengths. A virtual machine for

Creol has been developed [2] in the language Maude [5]. Using this virtual

machine to test Creol programs has revealed some flaws in the language

and hence contributed to the development of Creol. However, Maude

has some undesirable properties in this context such as its inability to

perform random executions. For a given program at most two different

executions are available. This severely limits the possibilities for testing

nondeterministic constructs and parallelism in the language. Therefore,

a runtime­environment which offers pseudo­random execution has been

1

2 CHAPTER 1. INTRODUCTION

developed [19] by using Maude’s reflective capabilities. Still, the run­time

environment does not support interaction with a user or a file system,

parallelism and distribution are only conceptual, and the execution is

inefficient.

The language OUN (Oslo University Notation) [27] is a precursor for

Creol. It addresses system specification and design. OUN has many

similarities to Creol such as active objects, objects typed by interfaces

and implemented by classes, multiple inheritance, and asynchronous

method invocations. However, OUN has a simpler execution model than

Creol, as OUN objects do not have inner processes and method execu­

tions are not interleaved. An OUN to Java compiler has been developed

[28]; this compiler translates OUN programs into Java programs. Hence,

OUN programs can be executed efficiently. The thread models of Java

and OUN differ, and Java does not support multiple inheritance. The

properties of Java has led to some restrictions on how much of the OUN

language can be compiled into Java code; e.g., multiple inheritance is not

supported.

Our goal is to create a virtual machine which does not impose any re­

strictions on the language but is still reasonable efficient. Translating

from Creol to Java (or a similar language) is not possible without impos­

ing restrictions. Instead, we develop a virtual machine for Creol on the

Java platform. Hopefully, our work will contribute to the Creol project

by suggesting how a low­level run­time environment can be developed,

and give a run­time environment in which Creol programs can be ex­

ecuted and tested. The latter will in turn test Creol as a programming

language. In the next section we define the problem statement of this

thesis more precisely.

1.1 Problem Statement

Creol is an object­oriented language which targets distributed systems

by proposing an asynchronous communication model for concurrent

objects. The language has an abstract operational semantics, formally

defined in Rewriting Logic [24]. At this level of abstraction, method

activations are achieved through code duplication and distribution is

merely conceptual. The main goal of this thesis is to bring Creol closer

to an efficient low­level run­time environment by answering the follow­

ing questions:

• Can a run­time model for Creol be defined which supports code

sharing?

1.2. THESIS OUTLINE 3

• Can Creol and its operational model be extended to support real

distribution?

By code sharing we mean that multiple method activations share the

same code segment. By real distribution we mean that objects are dis­

tributed among different physical machines.

In order to address the above questions in a specific way, we develop

­ a new imperative operational model

­ a prototype of this model, implemented in Java

The prototype is a proof of concept, that is, it will demonstrate the

model’s feasibility of computing Creol programs.

1.2 Thesis Outline

The rest of this thesis is structured as follows. Chapter 2 presents the

Creol language and Java concurrency. Chapter 3 presents a computa­

tional model for Creol intended to serve as a basis for a low­level im­

plementation in an object­oriented language. Chapter 4 presents the

implementation of the Creol virtual machine in Java. Chapter 5 presents

multiple inheritance in the Creol language and extends the model (from

Chapter 3) and the implementation (from Chapter 4) to support mul­

tiple inheritance. Chapter 6 extends the Creol language, the model and

the implementation so that we get real distribution of objects. Chapter

7 closes the thesis by summarizing the contributions of the thesis and

giving suggestions for further work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter we take a look at the Creol language (Section 2.1) and

concurrent programming in Java (Section 2.2). The example “Bounded

buffer” illustrates concepts in both languages and will be presented next.

It is assumed that the reader is familiar with basic notions of object

oriented languages in general and Java in particular.

The Bounded Buffer

A producer computes a stream of information. This is passed to a con­

sumer which analyzes it. The rate at which the producer computes in­

formation can vary over time, and so can the rate at which the consumer

is able to analyze it. The different rates can affect the efficiency of the

program; i.e., the producer must wait for the consumer or vice versa.

Therefore, a buffer is used to even out the different rates. A producer

adds information to the buffer and the consumer fetches it. As we do

not want the buffer to use to much memory, the buffer is bounded; i.e.,

the size of the buffer is limited.

Hoare [14] defines the buffer by two abstract operations append and

remove on a sequence of portions:

• append(x: portion):

sequence := sequence ∩ <x>;

• remove(result x: portion):

x:= first(sequence); sequence:= rest(sequence);

where ∩ denotes concatenation of two sequences, <x> is the sequence

whose only element is x, first selects the first item of a sequence and

5

6 CHAPTER 2. BACKGROUND

rest denotes the sequence with its first item removed. Here, x has type

portion, a supertype of all types.

The buffer is bounded, that is, the length of the sequence is limited. This

can be defined by a predicate

• len(sequence) <= limit

which must always be true. An append operation can only be done if the

length of the resulting sequence does not exceed the limit. Similarly, the

remove operation can only be done if the sequence is non­empty.

2.1 The Creol Language

Creol is a programming language under development at the University

of Oslo.1 It addresses distributed systems, and is based on concurrent

objects. Each object has its own thread of control, that is, the threads of

control are not separated from the objects as in, e.g., Java [12] (in Java,

the thread of control follows the method calls). Conceptually, a Creol

object has a processor, and methods are executed by processes. Only

one process can be executed at a time. The thread model of Creol has

two important impacts: an object acts like a monitor, and objects can

execute concurrently.

Communication between objects can be done by either synchronous or

asynchronous method calls. Creol has a notion of processor release

points which enables the objects to do other tasks while waiting for the

reply to an asynchronous method invocation. Processor release points

also enables the objects to dynamically change between active and react­

ive behavior (client and server).

Objects are typed by interfaces and implemented by classes. Creol sup­

ports multiple inheritance both at the interface and class level. Interface

inheritance gives a flexible way to type objects, whereas class inheritance

makes it possible to reuse code.

In the next sections, we take a look at interfaces, classes, methods and

method bodies (sections 2.1.1–2.1.4). We will define the syntax of Creol

by a BNF syntax where

• Square brackets are used as meta parenthesis: [. . .] is used for

optional parts (zero or one), [. . .]* is used for optional, repetitive

parts (zero, one or more), and [. . .]+ is used for repetitive parts (one

or more).

1This presentation of the Creol language is based on [2, 18, 21].

2.1. THE CREOL LANGUAGE 7

• Italic words are used as meta symbols.

To exemplify Creol constructs, we use the “Bounded Buffer” example

(defined in the introduction of this chapter). In Section 2.1.5 we present

a larger example: “The Santa Claus Problem”.

2.1.1 Interfaces

Creol uses interfaces to define both how objects communicate and to

give semantic requirements for the objects. The semantic requirements

are over the objects’ communication histories, that is, a predicate over

the method invocations and method returns [7, 8]. Here we ignore the

semantic requirements, as it has no influence on the thesis.

Syntax: The syntax of an interface is

interface I [inherits InhList]

begin

[with I’

MSIGs]

end

The string I is the name of the interface. InhList is a comma­separated

list of inherited interfaces. If the interface defines one or more methods,

I’ is the name of the cointerface of the following methods. MSIGs is a

list of method signatures op m[([in Param] [out Param])]. Param is a

comma separated list of v:T, where v is the variable name and T is the

type of the variable.

The specified cointerface imposes a restriction on the kind of objects

which are allowed to call the methods declared in this interface; the

caller must support the cointerface or a subinterface of it. The cointer­

face can be Any; if so, objects of all types can call the method.

An interface may inherit more than one interface. Multiple inheritance

imposes no problem with interfaces; if there are two method declara­

tions with the same method name, parameters and cointerface, only one

of the declarations is saved; i.e., the methods of the interface is the set

union of all its inherited interfaces.

Example: Recall the “Bounded buffer” example presented in the intro­

duction of this chapter. We have a producer and a consumer which both

need access to the bounded buffer. For the environment (the producer

and the consumer), it is not possible to see that the buffer is bounded,

8 CHAPTER 2. BACKGROUND

only the operations are visible. As a first solution we let all types of

objects access the methods, that is, the cointerface is Any:

interface Buffer

begin with Any

op append(in d:Data)

op remove(out d:Data)

end

To get a more fine­grained solution, we define two interfaces BufferA and

BufferP. Only objects of type Producer is allowed to access the append

method; the cointerface must be of interface Producer. Similarly, only

consumers may remove items from the buffer:

interface BufferP

begin with Producer

op append(in d:Data)

end

interface BufferC

begin with Consumer

op remove(out d:Data)

end

Of course a buffer needs both methods; this is solved by defining an

interface Buffer which inherits both the append and the remove methods

from BufferP and BufferC:

interface Buffer inherits BufferP, BufferC

begin

end

The producer and the consumer are typed by two interfaces without

methods:

interface Producer

begin

end

interface Consumer

begin

end

Part of the implementation of these interfaces will be discussed in the

next sections. For a complete listing of all the code, see Appendix A.1.

2.1.2 Classes

Classes define the objects’ persistent state variables and methods. Ob­

jects are typed by interfaces; the interface or interfaces an object sup­

ports are given by the class definition.

2.1. THE CREOL LANGUAGE 9

Syntax: The syntax of a class is

class C[(Param)] [inherits InhList] [implements ImpList]

begin

[var VarList;]

[[with I]

MDECL]*

end

The string C uniquely identifies the class and Param is as defined for in­

terfaces. InhList is a list of C’[(EL)], defining the inherited classes of

C . The list of expressions EL is optional; it is evaluated when an object

is created, and the result gives the actual parameters of the inherited

class. Multiple inheritance at the class level is quite complex, therefore,

the discussion of multiple inheritance is postponed to Chapter 5. The

interfaces that a class C implements are given in ImpList.2 VarList is

a comma separated list of variable declarations v:T[=e] where v is the

variable name, T the type of the variable and e an optional initial ex­

pression. The discussion of the cointerface given by I and the method

declaration given in MDECL is postponed to Section 2.1.3, where we take

a closer look at methods.

The objects’ persistent variables consist of both the variables declared

by var VarList and the parameters of the class.3 In addition, all objects

have a pseudo variable this which refers to the the object itself.

Example: The interface Buffer is implemented by a class BoundedBuf­

fer:

class BoundedBuffer(max:int) implements Buffer

begin

var buffer:List[Data]=empty, n:int=0;

with Producer

op append(in d:Data) == await n < max;

buffer := add(buffer,d);

n := n + 1
with Consumer

op remove(out d:Data) == await n > 0;

d := first(buffer);

buffer := rest(buffer);

n := n ­ 1

end

2Note that an object of class C is typed by the ’implements’ clause of class C only.

The class inherits only code from its superclasses; interfaces of superclasses are not

inherited.
3Class parameters give rise to persistent object variables; this is similar to Simula

[6]. It is different from many other object oriented languages; e.g., in Java, parameters

in constructors are local variables [12].

10 CHAPTER 2. BACKGROUND

The length of the buffer is given by a parameter max. The list buffer

stores data of type Data; initially it is empty. The current number of ele­

ments in the buffer is n. The methods are discussed in the next section.

2.1.3 Methods

Methods define what objects do. A special method run defines the active

behavior of the objects, whereas the methods which also are declared in

the interfaces defines the reactive behavior of the object. Creol classes

can define both internal and external methods. An internal method can

only be called from inside the object. If a method has no preceding with

clause, the method is internal. An external method can be called from

other objects. External methods are defined after a with clause; if a

method m is declared after with I, the calling object must be of a class

which implements the cointerface I.4 The with clause spans over the

succeeding methods, until the next with clause or the end of the class.

Syntax: The syntax of a method is:

op m[([in Param] [out Param])] == [var VarList;]

SList

The method name m must be unique within the class. Both in­ and out­

parameters are optional. Param and VarList are as defined for classes in

Section 2.1.2. The statement list SList consists of statements separated

by semicolons.

The local variables of methods consist of the in and out­parameters and

variable declarations. The in­parameters of methods are read­only. In

addition, methods have a pseudo variable caller, giving the object iden­

tifier of the caller of methods. The caller variable is typed by the coint­

erface.

Example: The append method of the class BoundedBuffer has Producer

as cointerface, a single in­parameter but no out­parameters nor variable

declarations:

with Producer

op append(in d:Data) == await n < max;

buffer := add(buffer,d);

n := n + 1

4An object may call its own external method if it implements the corresponding

cointerface.

2.1. THE CREOL LANGUAGE 11

The in­parameter d is of type Data, the supertype of all types. The

statement await n < max suspends the execution of the method until

the expression n < max is true. The assignment statement buffer :=

add(buffer,d) adds d to the buffer. These and other statements are

explained more carefully in the following sections.

2.1.4 Imperative and Functional Code

Creol is an imperative programming language, that is, statements are

executed one after the other, and these statements change the state of

the execution. In addition, Creol has a functional part; for example, we

have

• for integer expressions: arithmetics (+, ­, *, /) and comparison

(=, <, >)

• for object identifiers: object identifiers’ equality (=)

• for boolean expressions: logical constructs (∧, ∨, ¬)

• for lists: functions first(list), rest(list), add(list, item)

These functions do not alter the state. The semantics of the three first

are as expected. For lists, first(list) returns the first element of a se­

quence list, rest(list) returns list without the first element and add(list,

item) returns list with item added last.

Creol supports well­known statement constructs such as assignment

and if­expressions. For a variable list V, an expression list E, a boolean

expression b, statement lists S1 and S2, and a variable v, we have the

following statements:

• Multiple assignment: V := E

• Conditional: if b then S1 else S2 fi

• Object creation: v := new classname(E)

When V := E is executed, the expressions in the expression list E are

evaluated first, and then each variable in V is assigned the corresponding

(evaluated) expression in E. The semantics of the conditional statement

is as expected. The statement v := new classname(E) creates a new object

of the class classname, and the object identifier of this object is assigned

to v.

12 CHAPTER 2. BACKGROUND

Note: We do not define any loop construct as in [2, 18, 21]. However,

this is no problem as Creol supports recursive calls; all loop constructs

can be expressed by recursive calls.5

Synchronous and Asynchronous Method Calls

Creol supports both synchronous and asynchronous method calls. For

an object identifier o, a method name m, an expression list E, a variable

list V and label t, these are possible external method calls:

• Synchronous call: o.m(E;V)

• Asynchronous call: t!o.m(E); . . . ; t?(V)

• Method invocation: !o.m(E)

The first statement, o.m(E; V), is as a traditional synchronous method

call: the method m of object o is called with the evaluated expression

list E as in­parameters. Then the caller waits for the method return;

when this arrives the return values are bound to the variables given in

the list V.

The statement t!o.m(E) invokes the method m of object o. Instead of

waiting for the answer, the execution may continue. The answer is

fetched later on by the reply statement t?(V). The return values are as­

signed to the corresponding variables given in V. The label t identifies the

call; the use of labels makes it possible to start more than one method

call and still be able to get the answer for each.

The statement !o.m(E) is much like the second, except that no label is

given and so no answer may be used. Hence, this statement invokes a

method and never waits for the answer.

The object identifier o is omitted in corresponding internal method calls;

i.e., m(x; y) for synchronous local calls, t!m(E); . . . ; t?(V) for asynchron­

ous calls and !m(E) for method invocations.

A method call is said to be local if it is an internal call or if it is an

external call where the caller and callee are the same (a call to self). For

asynchronous method calls t!o.m(E); . . . ; t?(V) or t!m(E); . . . ; t?(V), the

return of the method invocation has not necessarily arrived when t?(V)

is to be executed. If the method call is local, this method is executed. If

the call is not local, the object blocks until the return arrives.

5The reason for omitting loop constructs from the language is that we want to be

able to update the code at run­time [20]. By using recursive calls to simulate a loop, it

is possible to update in the middle of the simulated loop.

2.1. THE CREOL LANGUAGE 13

Processor Release Points

In Creol, we define processor release points explicitly by await state­

ments:

• Release statement: await g

The guard g is constructed inductively:

• A boolean expression b over local variables and attributes is a

guard. This guard evaluates to true if the boolean expression eval­

uates to true.

• If t is a label, then t? and ¬t? are guards. The guard t? evaluates to

true if the reply identified by t has arrived. Similarly, ¬t? evaluates

to true if the reply has not arrived.

• An explicit release point is defined by the special guard wait which

is false until the process has been suspended in front of this await

statement.

• If g1 and g2 are guards, then g1 ∧ g2 is a guard. This guard evalu­

ates to true if both g1 and g2 evaluate to true.

If the guard evaluates to false, the processor can be released so that

other methods can be executed. To define this more precisely, we define

a predicate enabled over statements and statement lists:

• The release statement await g is enabled if g evaluates to true.

• The release statement await g is not enabled if g evaluates to false.

• Apart from the release statement, all atomic statements are always

enabled.

• A statement list is enabled if its first statement is enabled.

We call a statement atomic if it is not composed of other statements

or statement lists (the if statement is also called atomic as the actual

selection of the two statement lists S1 and S2 does not involve S1 nor S2).

So far, all statement constructs presented is atomic, and thus always

enabled.

14 CHAPTER 2. BACKGROUND

Non­deterministic Choice and Merge

For statement lists S1 and S2, we have statements

• Non­deterministic choice: (S1 � S2)

• Merge: (S1 ||| S2)

The non­deterministic choice statement (S1 � S2) selects one of S1 and

S2, but in such a way that the first statement of the selected statement

list is ready to execute. If neither is ready, the whole statement is not

ready and therefore not executed.

The merge statement (S1 ||| S2) is more complex. S1 and S2 are executed

in an interleaved manner; the control can move between S1 and S2 at

processor release points; i.e., control can move to the other statement

list in front of an await statement where the guard evaluates to false.

The � and ||| statements complicates the semantics of processor release

points. Both are non­atomic statements as they are composed of state­

ment lists. (S1 � S2) is enabled if either S1 or S2 is enabled; the same

applies to (S1 ||| S2).

Note that both � and ||| statements can be nested. This does not impose

any problems, as both are associative and commutative, which implies

that we have sets of statement lists. For instance, ((S1 � (S2 � S3)) ||| (S4

||| S5)) can be thought of as (S1 � S2 � S3) ||| S4 ||| S5. The enabledness of

nested � and/or ||| is no problem, as the enable predicate can be used

recursively. Intuitively, this nesting creates a tree of statement lists, and

the method execution can only be suspended if none of the branches is

enabled.

Examples: The producer and the consumer are implemented by classes

Prod and Cons, respectively. Both need a reference to the buffer; there­

fore, the buffer’s object identifier is passed as argument to Prod and

Cons. In this example, method m creates a buffer of length 10 and passes

the object identifier to the producer and the consumer:

op m == var b:Buffer, p:Producer, c:Consumer;

b := new BoundedBuffer(10);

p := new Prod(b);

c := new Cons(b)

The producer uses a loop method to produce the integers. A synchron­

ous call is used to append the integers to the buffer; it is important to

wait for the append method to return or else the producer may start an

2.1. THE CREOL LANGUAGE 15

arbitrary number of method calls before the consumer consumes any­

thing. Internally, the producer calls its methods by method invocations

without any return:

op run == !loop(0)

op loop(in i:int) == b.append(i); !loop(i+1)

The consumer is similar. The full buffer example is given in the ap­

pendix.

2.1.5 Example: The Santa Claus Problem

This is an example due to Trono [32], modified to illustrate Creol con­

structions and possibilities.

Santa Claus works at the north pole with his nine reindeer and his elves

(at least three). Each Christmas, Santa and the reindeer deliver presents

to children all over the world. This is hard work, and the rest of the

year the reindeer go on holiday, while Santa sleeps most of the time.

The elves produce the toys, and consult Santa if they have a problem.

As Santa needs a lot of sleep, he helps groups of three elves to be more

efficient. Hence, an elf must wait until at least two other elves need help.

Summarized, Santa sleeps until

• all of his 9 reindeer are back from holidays, or

• at least three elves need to consult him with a problem.

It is more important to deliver the toys than to help the elves. Thus,

if both all reindeer are back from holiday and at least three elves need

help, Santa and the reindeer deliver toys. Before Santa and the reindeer

can deliver toys, Santa must harness the reindeer. When they are back,

Santa most unharness the reindeer. Similarly, when (at least) three elves

want to talk to Santa, he opens the office door, let three elves in and

close the door. After the consultation, he opens the door, let the three

elves out and closes the door.

Communication: Interfaces

Santa, the reindeer and the elves are modeled by Creol objects. First we

take a look at how these objects communicate and the Creol interfaces

this communication yields.

A reindeer notifies Santa when it is back from holiday, and an elf notifies

Santa when he needs help. These events will be modeled by method

16 CHAPTER 2. BACKGROUND

calls backFromHoliday and haveProblem, respectively. As the reindeer­

to­Santa communication and the elf­to­Santa communication differ, we

use two interfaces SantaClausR and SantaClausE:

interface SantaClausR

begin with ReinDeer

op backFromHoliday

end

interface SantaClausE

begin with Elf

op haveProblem

end

Santa Claus’ communication with the reindeer consists of harnessing

and unharnessing them. The communication with the elves consists of

telling them to enter and leave the office. Therefore we have two inter­

faces Reindeer and Elf:

interface Reindeer

begin with SantaClausR

op harness

op unharness

end

interface Elf

begin with SantaClausE

op enterOffice

op leaveOffice

end

As Santa communicates with both reindeer and elves, we have an inter­

face SantaClaus which inherits both SantaClausR and SantaClausE:

interface SantaClaus inherits SantaClausR, SantaClausE

begin

end

An object of type SantaClaus can thus communicate with both reindeer

and elves.

Implementation: Classes

We implement Santa Claus by a class SantaClausC; see Figure 2.1. Santa

Claus sleeps most of the time. He wakes up (in a mysterious way) when

all nine reindeer are back from holiday, or if at least three elves want

to talk to him. To control this, the SantaClausC class has two integers

ct_rd and ct_elves, counting the number of waiting reindeer and elves, re­

spectively. References to the waiting reindeer are stored in a list wait_rd,

and references to harnessed reindeer are stored in a list harnessed_rd.

Similarly, the class has lists wait_elves and inoffice_elves for the elves.

The implementation of the method backFromHoliday is straight forward:

the counter is incremented and the reference to the reindeer, given by

the pseudo variable caller, is added to the wait list. The method have­

Problem is similar. The internal methods will be discussed later; first we

take a look at the implementation of the reindeer and elves.

2.1. THE CREOL LANGUAGE 17

1 class SantaClausC implements SantaClaus

begin

var ct_rd:nat=0, wait_rd:List[Reindeer]=empty,

harnessed_rd:List[Reindeer]=empty,

5 ct_elves:nat=0, wait_elves:List[Elf]=empty,

inoffice_elves:List[Elf]=empty

op run == !loop

op loop ==

(await ct_rd = 9; deliverToys() []

10 await ct_elves >= 3 /\ ct_rd != 9; talkToElves());

!loop

op deliverToys == ...

op talkToElves == ...

15 with Reindeer

op backFromHoliday ==

ct_rd := ct_rd + 1;

wait_rd := add(wait_rd,caller)

with Elf

20 op haveProblem ==

ct_elves := ct_elves + 1;

wait_elves := add(wait_elves,caller)

end

Figure 2.1: The Santa Claus class

The reindeer start to go on holiday. When they are back, they notify

Santa by sending a message backFromHoliday, and then they wait to get

harnessed. When they are harnessed, they deliver toys together with

Santa. When they are finished, Santa unharnesses them and they go on

holiday again. The class ReindeerC is given in Figure 2.2. The elves have

a similar behavior; the ElfC class is given in Figure 2.3.

The active behavior of the Santa Claus class consists of delivering toys

and to talk to elves. This is reflected by a method loop where Santa waits

for an activating condition to be true and then do the appropriate. See

Figure 2.1.

Before Santa can deliver toys, he must harness the reindeer. This is

done by invoking the method harness for all the reindeer objects (in the

wait_rd list). For efficiency reasons, this method is invoked for all the

reindeer before waiting for the answer; this way the method invocations

may be executed in parallel. After reindeer are harnessed, Santa delivers

the toys (together with the reindeer). When he is finished, he unhar­

nesses the reindeer by invoking the unharness method for all reindeer.

The method deliverToys is given in Figure 2.4.

Remark: In real life Santa and the reindeer would be finished delivering

toys at the same time. Here, this is not the case. Santa unharnesses the

18 CHAPTER 2. BACKGROUND

1 class ReindeerC(sc:SantaClausR) implements Reindeer

begin

op run == !holiday

op holiday == <<Go on holiday>>; !sc.backFromHoliday

5 op deliverToys == <<Deliver Toys>>

with SantaClausR

op harness == !deliverToys

op unharness == !holiday

10 end

Figure 2.2: The Reindeer class.

1 class ElfC(sc:SantaClausE) implements Elf

begin

op run == !work

op work == <<Do work>>; !sc.haveProblem

5 op talkToSanta == <<Talk to Santa>>

with SantaClausE

op showIn == <<Go into Santa’s office>>; !talkToSanta

op showOut == <<Leave Santa’s office>>; !work

10 end

Figure 2.3: The Elf class.

1 op deliverToys ==

var t1:Label,..,t9:Label;

ct_rd := 0;

5 t1!first(wait_rd).harness;

harnessed_rd := add(harnessed_rd, first(wait_rd));

wait_rd := rest(wait_rd);

...

t9!first(wait_rd).harness;

10 harnessed_rd := add(harnessed_rd, first(wait_rd));

wait_rd := rest(wait_rd);

await t1? /\ t2? /\ ... /\ t9?;

15 <<Pick up and deliver toys>>;

!first(harnessed_rd).unharness;

harnessed_rd := rest(harnessed_rd);

...

20 !first(harnessed_rd).unharness;

harnessed_rd := rest(harnessed_rd)

Figure 2.4: The method deliverToys in class SantaClausC.

2.2. JAVA CONCURRENCY 19

1 class LeaderElfC(sc:SantaClausC, elves:List[Elf])

inherits ElfC(sc) implements Elf

begin

op run == !run@ElfC

5 op work ==

(<<Lead the elves>> ||| <<Make toys>>);

!sc.haveProblem

end

Figure 2.5: The Leader Elf class.

reindeer as soon as they have finished to deliver toys, and does not wait

for the unharness method to complete (he is eager to go back to sleep).

The talkToElves method is similar, except that Santa must wait for the

elves to leave the office before closing the door, in the same manner as

he waits for the reindeer to get harnessed before he deliver toys. The

full example with the talkToElves method and a starter class is given in

Appendix A.2.

Defining a Leader Elf using Inheritance

The use of interfaces makes it possible to have different kinds of elves.

For example, it is possible to define a leader elf which has other tasks

than the other elves. It is natural that a leader has control over the

workers; therefore, the leader has a list of the worker elves. For Santa, all

elves are equal. Thus, the communication with Santa is equal to the other

elves’ communication with Santa. The leader elf interleaves between

leading the working elves and to make toys as the other elves.

The leader elf is implemented by a class LeaderElfC. It inherits the ElfC

class, and redefines the work method. As the run method of inher­

ited classes (superclasses) is not started automatically, LeaderElfC has a

method run which simply calls the run method in ElfC.6 The LeaderElfC

class is given in Figure 2.5. Note that the reference to Santa Claus is

passed forward to the inherited ElfC class.

2.2 Java Concurrency

The concurrency model of the Java programming language is based on

multiple execution threads, in contrast to Creol’s concurrency model

6A method m of an inherited class C can be invoked explicit by m@C; this will be

discussed further in Chapter 5.

20 CHAPTER 2. BACKGROUND

which is based on active objects. In this section we give a brief sum­

mary of the Java thread model and some Java threading tools which we

use in the implementation part of this thesis. The reader is assumed

to be familiar with concurrent programming, that is, have a basic know­

ledge about threads and synchronization primitives such as, e.g., sem­

aphores, locks, and condition variables. Andrews [1] gives an excellent

overview of this area. The reader is also assumed to know the basics of

Java: classes, objects, interfaces, etc., and how sequential programs are

written in Java; Eckel [9] gives a good introduction to the basics of Java.

Java is used on a wide range of platforms; e.g., desktop computers, serv­

ers, mobile phones, and smart cards. Therefore, there is a number of

editions of Java. Here, we only consider the standard edition. In the

standard edition, it is possible to write concurrent programs by using

multiple threads. A thread is a light­weight process with its own execu­

tion thread; a program can consist of multiple threads which share the

same memory. In Section 2.2.1 we present how to create and start Java

threads, and discuss some properties about the thread scheduling.

A thread executes code independent of activity in other threads, but the

code in the different threads operate on values and objects residing in

a shared main memory. The shared memory is not automatically pro­

tected, in principle several threads may access the same address in the

shared memory at the same time. It is the programmers responsibility

to prevent race conditions. Because of this, some consider Java’s par­

allelism to be insecure [3]. However, safe programs can be written by

careful synchronization. Early versions of Java came with few tools for

thread synchronization, and advanced features were missing. However,

Java 2 Standard Edition Version 5.0 (J2SE 5.0) provides a utility package

which offers the tools we need for our implementation; in Section 2.2.2

we present some of the tools included in this version.

2.2.1 Java Threads

Java is an imperative object­oriented language which supports thread

concurrency. The execution threads and the objects are separated; a

thread executes code that operates on objects in the shared memory, and

multiple threads’ code can operate on the same object. However, there

is a connection between objects and threads, as a new thread is created

by making an instance (an object) of the Thread class. This object stores

thread­specific data and has thread­specific methods.

2.2. JAVA CONCURRENCY 21

1 class Producer implements Runnable {

Buffer buffer;

public Producer(Buffer b) {

buffer = b;

5 }

public void run() {

int i = 0;

while(true) {

10 buffer.append(new Integer(i));

i++;

}

}

}

Figure 2.6: A Producer class in Java.

Thread creation

Threads in Java may be created in one of the two following ways:

• Create a subclass of Thread, say MyThread. Override the run()

method of Thread, create an instance of MyThread and call the

start() method of this instance. Example: new MyThread().start()

• Create a class which implements the Runnable interface, say My­

Runnable. MyRunnable must implement a method run(). Create an

instance of MyRunnable and give this instance as a parameter to

the Thread constructor: new Thread(new MyRunnable()).start()

The start() method in the Thread class first initializes the thread and

then it calls the run() method. In the first approach, the run() method

is overridden by the programmer and the program­specific code is ex­

ecuted directly. In the second approach, the Thread.run() method calls

the MyRunnable.run() method.

Example: A producer

Assume that we have a class or an interface Buffer which offers the ap­

pend and remove operations defined at the beginning of this chapter

by methods append() and remove(), respectively. We create a producer

which produces the natural numbers and inserts each of them in the

buffer; see Figure 2.6. The class Producer implements the Runnable in­

terface and has a method run(). We create an instance of this class and

an execution thread for it, and start the execution thread:

22 CHAPTER 2. BACKGROUND

Producer p = new Producer(buffer);

Thread t = new Thread(p);

t.start();

The start() method in the Thread class calls the run() method in the

Thread class, which again calls the run() method in the Producer class.

Thread scheduling

The Java Virtual Machine Specification [22] does not specify in detail

how implementations of a Java virtual machine (JVM) should schedule

threads; the scheduling is implementation­specific. In particular, the

specification does not require that the virtual machine supports time­

slicing. On JVMs without time­slicing, some threads may never get to

run if there are more threads than processors. In this case we have star­

vation. The programmer must program carefully so that all threads are

given execution time. On JVMs with time­slicing on the other hand, all

threads are given execution time, and the programmer does not have to

worry about starvation. Sun’s latest versions of its JVM implementation

for desktop computers support time­slicing.

2.2.2 Data Synchronization

Java threads communicate via shared memory. The data in Java are

objects. By default, all objects have a single lock, called the object’s

monitor ; this lock is used by synchronized methods and synchronized

blocks. A method is declared to be synchronized by prefixing the method

declaration with the key word synchronized; for example

synchronized void inc() {

counter = counter + 1;

}

A synchronized method acquires the object’s lock at the beginning of

the method execution and releases it at the end; if all methods of a class

are synchronized and the class attributes are only accessed by these

methods, race conditions are avoided for objects of this class.

Each object has a single condition variable which is bound to the object’s

lock. Inside a synchronized method (or block) a thread can wait for

a signal by the call wait(); this call releases the lock and the thread is

suspended. A thread can signal one or all waiting threads by the calls

2.2. JAVA CONCURRENCY 23

notify() or notifyAll(), respectively. To illustrate this, we define a decrease

operation which decreases a counter when it is positive, and an increase

operation which first increases the counter and then signals that the

counter is different from 0:

synchronized void dec() {

while(counter == 0) wait();

counter = counter ­ 1;

}

synchronized void inc() {

counter = counter + 1;

notify();

}

Synchronized blocks are similar to synchronized methods and are not

discussed here.

There are some limitations to the synchronization primitives offered by

the Object class and the synchronized construct. Each thread has only

one condition variable; for some problems this does not suffice as differ­

ent threads might wait for different conditions to become true. Further­

more, the Java specification does not give any guarantees about fairness;

if multiple threads want to access synchronized methods in the same ob­

ject, there is a possibility of starvation, that is, some of the threads may

never get to execute.

The concurrent package offers additional synchronization tools such as

locks, semaphores and condition variables. Furthermore, this package

has data structures which are thread­safe, that is, are protected against

race­conditions; we will not discuss these data structures.

A simple lock is offered by the interface Lock and implemented by a

class ReentrantLock. The lock is acquired by calling its method lock()

and released by calling unlock(). The lock class has a method newCondi­

tion() which creates a new condition variable which is bound to the lock.

The condition variables provide several methods, including the methods

await() and signal(). When a thread calls await() on a condition variable

of a lock, the lock is released and the thread is suspended until awoken

by a signal on the same condition variable. When a thread calls signal()

the thread that has waited longest is awoken, that is, the await() method

of that thread will return.

Example: The Bounded Buffer

To illustrate, we implement the previously mentioned interface Buffer as

a class BoundedBuffer, see Figure 2.7. Object references are stored in an

24 CHAPTER 2. BACKGROUND

1 interface Buffer {

public void append(Object x);

public Object remove();

}

5

class BoundedBuffer implements Buffer {

private Lock lock;

private Condition notFull;

private Condition notEmpty;

10 private Object[] items;

private int putptr, takeptr, count;

public BoundedBuffer(int n) {

lock = new ReentrantLock(true);

15 notFull = lock.newCondition();

notEmpty = lock.newCondition();

items = new Object[n];

putptr = 0;

takeptr = 0;

20 count = 0;

}

public void append(Object x) {

lock.lock();

25 while (count == items.length) {

try { notFull.await(); }

catch (InterruptedException ie) { }

}

items[putptr] = x;

30 putptr = putptr + 1;

if (putptr == items.length) putptr = 0;

count = count + 1;

notEmpty.signal();

lock.unlock();

35 }

public Object remove() {

lock.lock();

while (count == 0) {

40 try { notEmpty.await(); }

catch (InterruptedException ie) { }

}

Object x = items[takeptr];

takeptr = takeptr + 1;

45 if (takeptr == items.length) takeptr = 0;

count = count ­ 1;

notFull.signal();

lock.unlock();

return x;

50 }

}

Figure 2.7: The Bounded Buffer using fair locks.

2.2. JAVA CONCURRENCY 25

array named items. The integers putptr and takeptr are used as indexes

pointing to where in the items array object references are inserted and

removed, respectively. The integer count stores the number of elements

in the items array. To protect the buffer from race conditions, we use

a fair lock lock and two condition variables notFull and notEmpty. The

attributes are initialized in the constructor. Note that true is given as

argument to the Lock constructor to specify that we want a fair lock.

The append() and remove() methods are very similar to each other; hence,

we only consider the append() method. First, the lock is acquired. Then,

if the buffer is full, the thread waits for the buffer to be not full by the

call notFull.await(). Suspended threads may be interrupted, that is, an

InterruptedException may be thrown; thus, the await() call is inside a

try­catch block and we catch interrupt exceptions. There is no guaran­

tee that the condition actually holds when await() returns; therefore, the

condition must be rechecked (hence the while­loop). When the while­

loop ends, the buffer is not full and the object can be inserted in the

buffer (lines 29­33). Finally the lock is released.

Read/write locks

The concurrent package has a read­write lock, which is useful when we

want multiple readers to access some shared data at the same time. It

can be used to solve the traditional readers/writers problem. The pack­

age has an interface ReadWriteLock; this interface is implemented by a

class ReentrantReadWriteLock. We create a fair read­write lock:

ReadWriteLock rwl = new ReentrantReadWriteLock(true);

The lock consists of a read­lock and a write­lock. When we want to ac­

quire the read­lock, the read­lock is first fetched by the method read­

Lock() and then acquired by the method lock(). It is released by the

method unlock(). The write­lock is used in a similar way. We use the

read­write lock as follows:

rwl.readLock().lock();

/* shared access, only read */

rwl.readLock().unlock();

rwl.writeLock().lock();

/* exclusive access, ok to write */

rwl.writeLock().unlock();

26 CHAPTER 2. BACKGROUND

The write­lock has a condition variable, which works as for other locks.

A thread which has taken the write­lock, can grab the read­lock, and

hence it can downgrade from a write­lock to a read­lock by acquiring the

read­lock and then releasing the write­lock. The other way around is not

possible, because other threads may also have acquired the read­lock.

Chapter 3

A Computational Model for

Creol

This chapter discusses a computational model for Creol, called Creol

Computational Model (CCM). The reader is assumed to be somewhat fa­

miliar with Creol, to the same extent as given in Section 2.1.

We start by motivating why we need a computational model and what

purposes it will serve in Section 3.1. Section 3.2 defines the model form­

ally. Section 3.3 presents the various components of the CCM. Section

3.4 discusses the execution of Creol programs in the model.

3.1 Model Objectives

The design and especially the implementation of a virtual machine is

complex, and details and implementation issues may overshadow the

main structure and behavior of the virtual machine. This is why we cre­

ate a computational model, which will abstract away inessential details

and thus be much easier to work with.

We will define the model formally, because this will make the model

unambiguous and because a formal notation helps us define the compu­

tations of the model in a concise manner. Working with a formal model

gives some important benefits:

• It will be comparatively short and concise. Therefore, it should be

easy to read and understand.

• It can be used as the high level model or an specification when

designing and implementing a virtual machine.

27

28 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

• The Creol language can be defined formally in the model.

• It is possible to reason about computations in the model.

The semantics of the Creol language is given in rewriting logic and forms

the basis of an implementation of a Creol interpreter in Maude [2]. Our

implementation of a virtual machine must observe the semantics of

Creol. This might be easier to accomplish if our model has the same

structure as the RL semantics. However, the structure used in the RL

semantics is not appropriate as the basis for an implementation in an

imperative and object oriented language. Our model will be quite differ­

ent. The differences may be interesting for the reader, but are omitted

to keep the description of the model compact.

3.2 The Model

A Creol computational model

(CVM names, Initial objects, Class definition set)

intended to represent a Creol program, is given by the following com­

ponents:

CVM names is a set of Strings. Each String serves the purpose of identi­

fying a Creol Virtual Machine (CVM), defined in Section 3.3.

Initial objects is a set of tuples (CVM name, Class name, parameters).

Each tuple specifies an object to be created at initialization. More

details in Section 3.4.

Class definition set represents the Creol program code. It is defined in

Section 3.3.3.

The execution of programs is modeled by computations of the model;

this is discussed in Section 3.4. We define computations as sequences of

states. How these states are represented is defined in Section 3.3.

3.3 Structure and States

This section describes the structure of a Creol Virtual Machine and the

formal representation of states. The structure described will serve as

a basis for an implementation of a CVM (Chapter 4), and is the main

focus of this section. The formal representation of states is for the con­

venience of describing computations in a concise and precise manner;

3.3. STRUCTURE AND STATES 29

computations are discussed in Section 3.4. Therefore, for each part of

the model we give an informal description to motivate the concepts and

then give the formal representation of the state.

Creol is a programming language designed to create distributed pro­

grams. Creol objects may be distributed on different nodes1. On each of

these nodes there is a Creol Virtual Machine (CVM). The CVMs commu­

nicate with each other. Formally, a state in a CCM computation is a set

of such machines, represented as

state = { CVM1, CVM2, . . . , CVMn }

Further, we will cut the state into pieces; we will describe, i.e., the state

of a CVM and the state of an object (in a CVM).

3.3.1 The CVM

Creol is an object oriented language; objects are fundamental in a Creol

program. Conceptually, an active object has its own thread of control.

In our model, we have CVM objects2, each with its own thread of control.

They live inside the CVM. A CVM object reflects a Creol object. Commu­

nication between objects is modeled by message passing. We will not

focus on how this is done, as we consider this to be an implementation

issue. Objects put messages in their out­queue and receive messages in

their in­queue; messages are transported between objects by some un­

derlying (low­level) mechanism.

We focuses on modeling execution of Creol programs on one node (vir­

tual machine). Yet, Creol objects may be distributed over different nodes,

so communication between nodes must be taken into consideration.

Therefore, the CVM has queues for communication with other CVMs.

Some features are common to all objects in the CVM; i.e., class defini­

tions and the creation of new objects. Therefore, each CVM has a cent­

ral which stores these common structures and which offers services to

the objects. The communication between the objects and the Central is

modeled by message passing; thus the Central has an in­queue and an

out­queue like the objects. See Figure 3.1.

The state of a CVM is represented as a tuple

CVM = 〈 Id, In­queue, Out­queue, Central, Objects 〉

1The nodes can be different computers in a network, but there is nothing wrong in

having more than one node on the same computer.
2We use CVM in front of object to distinguish these objects from objects in the

Creol language (when this is necessary).

30 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

Figure 3.1: The CVM has objects, a central, an in­queue and an out­queue.

where Id is a String identifying this particular CVM and the queues are

ordered3 multisets of messages; i.e., { msg1, msg2, . . . }. Central is spe­

cified in Section 3.3.2. Objects is a set of CVM objects; the structure and

formal representation of an object are specified in Section 3.3.4.

3.3.2 The Central

The Central is mostly motivated by the main purpose of the model; it will

be used as a high­level model for the implementation given in Chapter

4. The idea is that the Central should serve the objects in tasks like

creating new objects and method lookup; these are services offered by

the Central.4 The services “Create object” and “Get method definition”

are explained in Section 3.4.2.

Communication between the Central ad the CVM objects is modeled by

message passing, in the same manner as between objects; therefore, the

Central has an in­queue and an out­queue. When an object wants some

service offered by the Central, it sends a message to the Central which

then performs the requested service and sends an answer message back

to the object.

Formally, the state of a central is represented as a tuple

Central = 〈 In­queue, Out­queue, Class definition set 〉

The queues are ordered sets of messages. The In­queue may look like

3The type of ordering in the queues is unspecified, but a first­in, first­out policy is

probably a good choice for implementation.
4The services offered may be extended; i.e., Update class.

3.3. STRUCTURE AND STATES 31

{ newObj(. . .), newObj(. . .), getMethodDef(. . .), . . . }

The message syntax is explained in detail in Section 3.4.2. The compon­

ent Class definition set is explained in the next section.

3.3.3 Class Definitions

Class definitions are needed by the Central in order to create objects

and give objects method definitions. See Figure 3.1. Formally, the Class

definition set is a set of tuples, where each tuple specifies a Creol

class:

Class = 〈 Class name, ParamList,

InhList, Attributes, Methods 〉

where Class name is a String identifying the class, ParamList a list of

Strings specifying the formal parameters of this class, InhList is a list

of pairs <classname,exprList>, where classname identifies an inherited

class and exprList is a list of expressions over variables from ParamList.

Attributes is a set of pairs <var,val> where var is a String identifying

a variable with initial value val. Methods is a set of tuples

Method = 〈 Method name, Signature, Cointerface,

Parameter list, Return variables, Code 〉

The String Method name uniquely identifies the method (within the

class). Signature is a list (in1, in2, . . . , inn; out1, out2, . . . , outm),

where ini and outi are the types of the in and out parameters, respect­

ively. Cointerface is a String, and Parameter list and Return vari­

ables are lists of Strings giving the names of the parameters and return

parameters, respectively. Code is a statement list giving the code of this

method.

Translation from Creol class definitions to CCM representation

We assume strong static typing [21]. The type of an expression is de­

termined at compile time; therefore, we do not need to store the type

of variables. Nevertheless, as Creol supports virtual binding of method

calls, the signature of method calls must be preserved. (Method look­up

with multiple inheritance is explored in Chapter 5.) The CCM representa­

tion of the class name, parameter list and attributes are almost the same

as for Creol. We illustrate by an example. Consider the following Creol

class:

32 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

class A(v1:T1, v2:T2, ..., vn:Tn) inherits inhList

begin
var u1:T1 = expr1, u2:T2 = expr2, ..., um:Tm = exprm;

<methods>
end

The CCM representation of this class is

〈 A, (v1, v2, ..., vn), InhList,

(<u1,expr1>, <u2,expr2>, ..., <um,exprm>), Methods 〉

The inheritance list is not interesting for now, as we do not consider in­

heritance; however, we choose to store it in the class definitions to make

it easier to extend the model to support multiple inheritance (Chapter

5). Methods is a set { m1, m2, . . . , mn } of methods mi. Consider a Creol

method

with Co

op m(in: v1:Tin1 , v2:Tin2 , ..., vn:Tinn
out: u1:T

out
1 , u2:Tout2 , ..., um:Toutm) == Code

The CCM representation of this method is

〈 m, (Tin1 , Tin2 , ..., Tinn ; Tout1 , Tout2 , ..., Toutm), Co,

(v1, v2, ..., vn), (u1, u2, ..., un), Code 〉

(Tin1 , Tin2 , ..., Tinn ; Tout1 , Tout2 , ..., Toutm) is the signature, (v1, v2, ..., vn) is

the in parameters and (u1, u2, ..., un) is the out parameters. Code is a

list var vdecl; s1; s2; s3; . . . , where var vdecl; consists of local variable

declarations and si are statements. (var vdecl; may be omitted.) The

translation from Code to Code is not as straight forward as the rest of

the components. We will make some changes to the code which makes

it more convenient for computation and implementation. First, we make

some assumptions:

• The String wait is not used as a variable name in Code.

• All variable names in Code are different from those used in the

class.

• All variable declarations have initial values (possibly null).

It is a trivial matter to change the code to accomplish this (without chan­

ging the semantics of the program), if these assumptions are not already

met.

3.3. STRUCTURE AND STATES 33

The Creol statement await wait (or more generally await wait ∧ g for a

guard g) is an explicit processor release point. In a process, this state­

ment evaluates to false until the process has been suspended. To ac­

complish this, we have a Boolean system variable wait in the process’

local variables. When a process is suspended, wait is set to true, such

that await wait evaluates to true next time. When a statement (different

from � and |||) in the process is executed, wait is set to false; hence, next

time await wait evaluates to false and the process is suspended. The �

and ||| statements do not update the wait variable, as this would cause

processes to be suspended unintentionally (see Section 3.4.6).

We make the following changes to the statements:

New object: The creation of a new object is modeled by sending a

newObj message to the Central. A reference to this object is sent back

to the object by a newObjId message. The statement v := new class­

name(E); is changed to the statements new classname(E); waitObjId(v);

so that executing a statement is still one atomic step.

Merge operator: To execute a statement list s1, s2, s3, . . . , we execute

the statements si one by one, and after each statement si is executed,

control is set to si+1. In our model, we just remove si from the list. In the

implementation, we use pointers to the code to avoid code duplication.

In the Creol statement list (S1 ||| S2); S3, S1 and S2 are executed in an

interleaved manner. In the Maude interpreter, this is solved by manip­

ulating the code; that is, changing (S1 ||| S2) to (S2 ||| S1) at processor

release points and removing the first statement of S1 or S2 when ex­

ecuted. This is not very easy to do by pointer manipulations; therefore,

our computational model uses a different approach than [18].

We introduce a statement joinMerge(v) and changes (S1 ||| S2); S3 to

(S1 ||| S2); joinMerge(v); S3. The idea is that when the first statement

of (S1 ||| S2); joinMerge(v); S3 is executed, we split into two statement

lists S1; joinMerge(v); S3 and S2; joinMerge(v); S3. Both will be executed

in an interleaved manner, but the first to reach joinMerge(v) termin­

ates whereas the last one continues with S3. The variable v is not

used elsewhere in this method or in the class. A variable declaration

v:Boolean = false; is added in vdecl. The computation of the merge

statement and joinMerge(v) is defined formally in Section 3.4.6.

Remark: In case of nested merge statements, a joinMerge­statement is

added for each |||. For example, the statement list ((S1 ||| S2) ||| S3) is

changed to ((S1 ||| S2); joinMerge(v1) ||| S3); joinMerge(v2).

Return statement: After a process has terminated, a completion mes­

sage must be send to the caller. The process has terminated when there

are no more statements to execute; this is possible to figure out, but

34 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

Figure 3.2: The CVM object has an active process, a set of suspended

processes, attributes, a completion set, an in­queue, and an out­queue.

instead we introduce a special statement return variable list. variable

list is a list of Strings giving the names of the variables which will be

returned. Our previous example gives return (u1, u2, ..., un). This is in­

serted after the last statement of Code. The execution of the return

statement is explained in Section 3.4.6.

In addition, we make some changes to have fewer statement types to

consider:

• await t?(V) is translated to its equivalent await t?; t?(V)

• p(E;V) is translated to t!p(E); t?(V) for a fresh variable t, and var

t:Label is added in front of Code.

• await p(E;V) is translated to t!p(E); await t?; t?(V) for a fresh variable

t, and t:Label; is added to vdecl.

• !m(E) and t!m(E) are transformed into !this.m(E) and t!this.m(E),

respectively.

3.3.4 The Object

Creol objects are modeled by CVM objects, see Figure 3.2. These objects

live inside a CVM — the CVM is its environment. An object does not

know much about its environment, except that it can communicate with

it by sending and receiving messages through its queues. It also knows

which services the central offers, and how to invoke these services. To

3.3. STRUCTURE AND STATES 35

make a method call, an object sends a method invocation message. If

the call is external (another object), the message is put on the object’s

out­queue. If it is internal, the message is put on the object’s own in­

queue. In the same manner, the return of method calls result in method

completion messages.

Inside an object, we find components visible only to this particular ob­

ject. The most important ones are the attributes and the processes, as

these components more or less define the state and behavior of the ob­

ject. The attributes are instantiated local copies of the class parameters

and attributes. They are pairs <id, val>, where id is a String identifying

the variable, and val is the value of the variable (or null if the variable is

uninitialized). As Creol is a statically typed language, no type informa­

tion is necessary.5 Creol objects are active; they execute processes. The

active process is the process currently executing in the object. As Creol

objects create a new process for each method call, and these processes

may have processor release points, the CVM objects also have suspended

processes. This is a queue of processes; the ordering is unspecified (im­

plementation issue). Each object has a completion set, which serves as

a buffer where processes look for the return of their method calls. The

answer to a method invocation, external or local, is given by a comple­

tion message. This message is transformed into a pair <label, val> and

put into the completion set. In this pair, label identifies the method call

and val is the list of return values.6 As objects communicate, each object

needs a unique id. The class the object is an instance of, is needed to get

method definitions.

The state of the object is given by a tuple

Object = 〈 id, class, In­queue, Out­queue, Attributes,

Completion set, Active process,

Suspended processes, Status 〉

id is a unique identifier for the object. class is a String identifying

which class this object is an instance of. The queues are ordered sets of

messages (first in first out), Attributes is a set of pairs <id, val> such

5The only type information needed is the signature and the cointerface of method

calls. This is static type information determined during type checking (compilation)

and part of the method call at run time. Note however that we have not included

the signature and cointerface yet, it will be included when inheritance is taken into

account (Chapter 5).
6The completion messages could just stay in the in­queue of the object, but there

are a number of reasons for using a completion set: 1. The queue is shared and should

not be accessed more than necessary. 2. The queue is ordered in some way; this is

not necessary for completion messages. 3. Keeping the messages in the queue implies

that they need to be processed many times.

36 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

Figure 3.3: The process has active code, suspended code and local vari­

ables. The attributes, completion set and queues of the object are mod­

ified by the active code and therefore shown in the figure as stippled

boxes/arrows. Components modified by the active code are grouped as

“Process information”.

that there is no two pairs with the same id, Completion set is a set

of pairs <label, returnlist>, Active process is a process and Suspended

processes is an ordered set of processes (what sort of ordering is unspe­

cified). The processes are described in the next section. The Status is a

flag describing the current activity in the object. It is used to get a more

deterministic behavior in the model, making the model more suited for

implementation. This is explained Section 3.4.3.

3.3.5 The Process

In Creol, method calls are (conceptually) executed by processes; when an

object receives a method invocation message, it creates a new process

which executes the method and sends the return of the method invoca­

tion.

A process can be represented by its local variables and its code. The

local variables are initialized copies of the parameters of the method

and of the variable declarations in the method’s code. Due to Creol’s

merge operator |||, which interleaves the execution of statement lists, the

process may execute more than one statement list. In the Creol code (S1

||| S2); S3 the execution can change between statement lists S1 and S2 at

3.3. STRUCTURE AND STATES 37

CCM (CVM names, Initial objects, Class definition set)

CCM state { CVM1, CVM2, ..., CVMn }

CVM 〈 Id, In­queue, Out­queue, Central, Objects 〉

Central 〈 In­queue, Out­queue, Class definition set 〉

Class 〈 Name, ParamList, InhList, Att, Methods 〉

Method 〈 Name, Sig, Co, Param, RetVar, Code 〉

Object 〈 id, class, In­queue, Out­queue, Att, CompSet,

ActiveProcess, SuspendedProcesses, Status 〉

Process 〈 LocalVariables, ActiveCode,

SuspendedCode, id, dynamiclink 〉

Table 3.1: The state representation of various structures in CCM.

processor release points7. We split these statement lists into the active

code and the suspended code, where the active code is the statement list

currently executing, and the suspended code are suspended statement

lists. As the merge operator is commutative and associative, suspended

code is represented as a set of code.

The state of a process is given by a tuple

Process = 〈 Local variables, Active code,

Suspended code, id, dynamiclink 〉

The Local variables is a set of pairs <id, val>, reflecting the parameters

and the variable declarations in the method this process is an instance

of. The String id identifies the name of a variable and val the current

value of the variable; this is equivalent to the attributes in the object.

The Active code is a list of Creol statements. The Suspended code is

an unordered multiset of statement lists.

A process may block waiting for the return of a local method call. To

avoid deadlock, such local calls are allowed to be executed, and the cur­

rent process is suspended. When the call has completed, the suspended

process is reactivated. In order to ’return’ to the caller, each process

is identified by id. When a local call is activated, dynamiclink (of the

process representing the call) is set to the identifier id of the caller, and

this dynamic link is used to reactivate the caller. See Section 3.4.5 for

details.

Table 3.1 gives an overview of the representation of the structures which

are discussed so far in this chapter.

7See Section 2.1 for the definition of processor release points.

38 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

3.4 Computations

The previous section discussed how Creol programs may be represented

in a Creol computational model and how the states of an execution of a

program are represented. In this section we discuss the computations in

the model, representing the execution of Creol programs.

Formally, a computation of a CCM is a sequence s0, s1, s2, . . . of states,

where s0 is the initial state (soon to be defined), and each si (i > 0)

follows from s(i−1) by using the rules we will define in this section.

First we will describe the initialization of the model; for a CCM, we define

the initial state s0. Then we will describe each rule. For each rule, we de­

scribe the precondition and the postcondition of the rule, which give the

conditions for when the rule may be applied and the effect of applying

it, respectively. The rules are thus specified in an implicit manner [25].

This is very similar to the implicit specification of operations in the Vi­

enna Development Method (VDM) [29]. The use of a precondition and a

postcondition is best explained by an example. Assume the state si of

the CCM is

si = { . . . , CVMi, . . . }

CVMi = 〈 Id, In­queue, Out­queue, Central, Objects 〉

Objects = { . . . , Objecti, . . . }

Objecti = 〈 id, class, In­queue, Out­queue, Attributes,

Completion set, Active process,

Suspended processes, Status 〉

Say, for the sake of example, that an object may go from the state “pass­

ive” to “active” whenever the in­queue is not empty. The precondition

would be:

Status = “passive” ∧ In­queue != { }

The other components of the object and other objects are not taken into

consideration, as there are no constraints of their values. The postcon­

dition would be

Status = “active”

Components not affected by this rule are not mentioned. Formally, this

is just a short notation for the precondition

3.4. COMPUTATIONS 39

state = { CVMi, RESTOFCVMS } ∧

CVMi = 〈 ID, IN­QUEUE, OUT­QUEUE, CENTRAL,

{ Objecti, RESTOFOBJECTS } 〉 ∧
. . .

Status = “passive” ∧

In­queue != { }

and the postcondition

state = { CVMi’, RESTOFCVMS } ∧

CVMi’ = 〈 ID, IN­QUEUE, OUT­QUEUE, CENTRAL,

{ Objecti’, RESTOFOBJECTS } 〉 ∧
. . .

Status’ = “active”

Here, ITALIC CAPS are used to match an arbitrary value in the precon­

dition and then used to preserve this in the postcondition. Small Caps

are used to refer to components in the precondition and likewise primed

versions of Small Caps are used in the postcondition.

The point is that all components which are not mentioned in the post­

condition, are not modified by the rule.

To be able to refer to rules, we will give each of them a number; i.e., (3.3).

This is printed at the right side of the page, just before the precondition.

The rule is referred to as “Rule 3.3”.

3.4.1 Initialization

We now define the initialization of the set of CVMs. Recall that a Creol

program is represented as a tuple (CVM names, Initial objects, Class

definition set). At initialization, we make an instance of a CVM for each

CVM name (at least one CVM). Each CVM will have a central and an empty

set of objects. To create the initial objects, we make newObj­messages

and put them into the in­queue of the Central of the specified CVM.

Formally, the initialization gives rise to a state s0, called the initial state.

Assume that CVM names = {id1, id2, . . . , idn}, Initial objects = {(idi,

class name, parameters), . . . } and Class definition set = classdef. Then

s0 will be a set of CVMs with empty queues, a central, and an empty

set of objects. The Central will have newObj­messages in its in­queue,

corresponding to the initial objects. Example:

CVMi = 〈 idi, { }, { }, 〈 {newObj(null, class name, parameters), . . . },

{ }, classdef 〉, { } 〉

Note that just after initialization, the class definition set is equal for all

CVMs; this set can change if we introduce dynamic updates.

40 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

Figure 3.4: The Central stores the class definitions and offers two ser­

vices: “New object” and “Get method definition”.

3.4.2 The Central

The Central offers services to the objects; see Figure 3.4. A service is

invoked by sending a message to the Central. The Central processes

each message it receives in its in­queue, performs the requested service,

and send an answer message (via its out­queue) back to the object. The

services are presented next.

Service: New object

A new CVM object is created when the Central receives a message

newObj(objfrom, classname, actual parameters)

Recall that the Central is modeled by a tuple containing queues and class

definitions. Assume the Central has a newObj message first in its in­

queue:

(3.1)
〈 {newObj(objfrom, A, (ap1, ap2, . . . , apn)), . . . },

Out­queue, Class definition set 〉

A identifies the class and apis identify the actual parameters. Further,

assume

〈A, (v1, v2, . . . , vn), inhList, (<u1,e1>, <u2,e2>, . . . , <um,em>),

Methods 〉 ∈ Class definition set

The vi’s identify formal parameters and the ui’s identify attributes. The

inheritance list inhList is not interesting for now. A new object

3.4. COMPUTATIONS 41

〈 id, class, In­queue, Out­queue, Att, Comp set,

Active process, Suspended processes, Status 〉

is created, where

id = id

class = A

In­queue = { }

Out­queue = { }

Att = { <this,id>, <v1,ap1>, <v2,ap2>, ..., <vn,apn>,

<u1,val1>, <u2,val2>, ..., <um,valm> }

Comp set = { }

Suspended processes = { }

Status = “Process scheduling”

The object identifier id is a fresh value not used as any other object

identifier; vi and ui is assumed to be distinct variable names different

from this, caller, label and wait.8 Each attribute ui is assigned the evalu­

ated value of ei (over parameters), that is, vali = evaluate(ei). If the run9

method exists, that is

〈 run, (), ǫ, (), (), Code 〉 ∈ Methods

a new process p is created. Recall that a process is represented as a tuple

〈Local variables, Active code, Suspended code, id, dynamiclink〉.

The process p’s components are:

Local variables = {<caller,null>,<label,null>,<wait,true>}

Active code = Code

Suspended code = { }

id = null

dynamiclink = null

The Active process is set to p; if there is no run method, active pro­

cess is set to null. If objfrom is not null, an object is waiting to get the

new object’s identifier. Therefore, the Central sends a newObjId mes­

sage to the object:

newObjId(objfrom , id)

This is the case when objects execute statements v := new classname(E).

8The Strings this, caller, label and wait are special variable names.
9Recall that the run method has no parameters nor return variables, an empty sig­

nature, and no cointerface. Hence the empty lists () and empty String ǫ.

42 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

Service: Get method definition

The second service offered by the Central is Get method definition. This

service is invoked by sending a message getMethodDef to the Central.

The message has the following syntax:

getMethodDef(obj, class, method)

The object identifier obj identifies the object requesting the method

definition, class is the object’s class name, method is the method name.

Assume that the Central receives a message

(3.2)
getMethodDef(objA, A, m)

We do not consider inheritance at this point; therefore, as we assume

strong static typing, the class definition set in the Central is guaranteed

to have the class definition of A with a method m:

〈 A, Parameter list, Inheritance list, Attributes,

{ < m, sig, co, param, retVar, Code >, . . . } 〉

The Central answers this inquiry by sending a methodDef message back

to object, in this case objA. The syntax of this message is

methodDef(obj, par list, ret var, code)

The object identifier obj identifies the object to which the message is

supposed to be sent, par list is the parameter list of the object and ret

var is a list of Strings giving the variable values which are to be re­

turned. The method body is given as a list of statements in code. To

construct the actual message, the parameter list par, return variables

list ret and the method body code is fetched in the class definition set.

This is straight forward and therefore omitted. Note however that the

signature sig and cointerface co is irrelevant for now, as we do not con­

sider inheritance.

3.4.3 The Object

In Section 3.3.4 we looked at the structure of the CVM object. Now we

take a look at the behavior of the object, which is given by the three

main tasks of the object: message processing, process scheduling, and

process execution. See Figure 3.5.

3.4. COMPUTATIONS 43

Figure 3.5: The object tasks and the flow of control.

Message processing: The object receives messages in its in­queue. These

messages are of two types (invocation or completion of a method call)

and must be processed accordingly.10 See Section 3.4.4.

Process scheduling is the task of deciding which process is to be executed

next. It is the active process or one of the suspended processes. Details

are explained in Section 3.4.5.

Process execution: The object must check if the active process is able to

execute its next statement, and if so execute this statement. Details are

discussed in Section 3.4.6.

The object interchanges between these tasks. Depending on which of

the tasks it is currently doing, the object is in the state of message pro­

cessing, process scheduling or process execution, and has a correspond­

ing status. In addition, we need a status wait for message because it is

possible that the object is not able to do anything before it gets a mes­

sage. This is the case if there is no process to execute or if the active

process blocks, waiting for the return of an external method call.11 See

Figure 3.6.

Enabledness and readiness of processes and program statements

To define the transitions between the object’s tasks, we need the defini­

tion of when a process is ready and when it is enabled.

The use of a predicate enabled is to precisely define processor release

points, that is, when the processor may be released to other processes.

10Messages of type methodDef and newObjId (defined in Section 3.4.2) are also put

in the object’s in­queue; however, these message types are used differently (see Rule

3.9 and Rule 3.24).
11I.e., t!o.m(E); t?(V); where o is not the object in which the statements are executed.

44 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

Process
scheduling

Wait for
message

Process
execution

Message
processing

Active process

process = null or
not ready

Active

In queue != { }

not ready

Active process != null
 and ready

In queue = { }

Figure 3.6: Object status changes.

The processor may be released when the active process’ next statement

is not enabled. It is the await statement which defines processor release

points in Creol; thus, most of the definition is concerned with the await

statement:

• A process p is enabled if p.Active code is enabled or there exists

a statement list S in p.Suspended code such that S is enabled.

• A statement list S is enabled if its first statement is enabled.

• (S1 � S2) is enabled if S1 or S2 is enabled.

• (S1 ||| S2) is enabled if S1 or S2 is enabled.

• await g1 ∧ g2 for guards g1 and g1 is enabled if await g1 and await

g2 are enabled.

• await b for a Boolean expression b is enabled if b evaluates to true.

• await t? is enabled if the object’s Completion set contains a pair

<t, val>, where val can be any list of data values.

• await ¬ t? is enabled if the object’s Completion set does not con­

tain a pair <t, val>.

• await wait12 is enabled if the wait variable for this process is true,

that is: p.Local variables = 〈 <wait,true>, . . . 〉

• All other statements are always enabled (particularly t?(V) is always

enabled).

Intuitively, a process is ready if it is able to execute at least one state­

ment. It is defined as follows:

12The use of wait as a control variable is explained in Section 3.3.3.

3.4. COMPUTATIONS 45

• A process p is ready if p.Active code is ready, or if p.Active

code is null or not enabled and there exists a statement list S in

p.Suspended code such that S is ready.

• A statement list S is ready if its first statement is ready.

• (S1 � S2) is ready if S1 or S2 is ready.

• (S1 ||| S2) is ready if S1 or S2 is ready.

• The statement t?(V) is ready if the object’s Completion set con­

tains a pair <t, val>, where val can be any list of data values.

• For all other statements s, s is ready if it is enabled.

The only way a process can be enabled but not ready, is if it is waiting

for a reply of a method invocation by a reply statement t?(V) and this

reply has not yet arrived.

State changes

The status flag of the object specify what kind of operation the object is

currently doing. For an object

〈 id, class, In­queue, Out­queue,

Attributes, Completion set, Active process,

Suspended processes, Status 〉,

Status takes the values “Process execution”, “Message processing”, “Pro­

cess scheduling” and “Wait for message”. There are five transitions

which changes the status flag, as given in Figure 3.6 and by the following

rules:

Process execution ­> Message processing

The object continues to execute the active process until it is no longer

ready.

PRECONDITION: (3.3)

Active process is not ready ∧

Status = “Process execution”

POSTCONDITION:

Status = “Message processing”

46 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

Message processing ­> Process scheduling

The object processes all messages before scheduling processes.

PRECONDITION: (3.4)

In­queue = { } ∧

Status = “Message processing”

POSTCONDITION:

Status = “Process scheduling”

Process scheduling ­> Process execution

If the object is able to select a ready process, it goes to the task of pro­

cess execution.

PRECONDITION: (3.5)

Active process is ready ∧

Status = “Process scheduling”

POSTCONDITION:

Status = “Process execution”

Process scheduling ­> Wait for message

If there is no ready process, the object must wait for a message to arrive.

PRECONDITION: (3.6)

Active process = AP ∧

Suspended processes = SP ∧

Status = “Process scheduling” ∧

((AP = null ∧ ¬ ∃ p ∈ SP s.t. p is ready) ∨

(AP is enabled but not ready ∧

¬ ∃ p : (p ∈ SP ∧ p is ready ∧ AP is waiting for p)))

POSTCONDITION:

Status = “Wait for message”

The infix function is waiting for is defined in Section 3.4.5. It is used to

activate local method calls.

Wait for message ­> Message processing

The object waits for an message to arrive.

3.4. COMPUTATIONS 47

Figure 3.7: Message processing in the object.

PRECONDITION: (3.7)

In­queue != { } ∧

Status = “Wait for message”

POSTCONDITION:

Status = “Message processing”

In all other cases, the object must continue execution of the current

task, without changing the status flag. The next three sections define the

rules of the tasks message processing, process scheduling and process

execution. Waiting for a message is not really an object task, as there is

nothing to do except from waiting for a message; therefore, there are no

rules with “Wait for message” as status.

3.4.4 Message Processing

This section describes the object task of processing messages; it gives

rules for what the object should do in the state “Message processing”.

There are two different cases to explore; the first is that the object re­

ceives a method invocation message, and the second is that it receives a

method completion message. We will now give a rather formal descrip­

tion of the effect these two cases have on the object’s state.

See Figure 3.7 for an overview of the message flow inside an object. It

might give a better intuitive understanding than the formal description.

Method invocation message

A method invocation message has the following syntax:

48 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

invoc(objto, objfrom, label, method, par)

The object identifiers objto and objfrom give the callee and the caller of

the method, respectively. The label value identifies the call inside objfrom.

The String method gives the method name. The actual parameters par

is a list of data values.

The state of an object processing such a message, is given by a tuple:

(3.8)
〈 id, class, {invoc(id, caller, label, method, par), . . . },

Out­queue, Attributes, Completion set,

Active process, Suspended processes, “Message processing” 〉

To create the new process, the object needs the method definition. There­

fore, it sends a message

getMethodDef(id, class, method)

to the Central. Then it waits for the answer; a methodDef message.

This is received in the object’s In­queue. Other messages in the queue

are bypassed by this message.13 The service Get method definition is

described in Section 3.4.2. So, when

(3.9)
methodDef(id, par list, ret var, code) ∈ In­queueid

then the object creates a new process p, given by a tuple

〈 Local variables, Active code,

Suspended code, id, dynamiclink 〉

Assume par list is (v1, v2, ..., vn), ret var is (u1, u2, ..., um) and par is

(val1, val2, ..., valn). Then the components of the process is:

Local variables = { <caller,obj>, <label,l>, <wait,true>,

<v1,val1>, <v2,val2>, ..., <vn,valn>,

<u1,null>, <u2,null>, ...,<um,null> }

Active code = code

Suspended code = { }

id = a new unique id

dynamiclink = null

The message is removed from the in­queue, and the new process is in­

serted in the set of suspended processes.

13The reason for treating the communication with the Central different from the

other objects, is to make it easier to implement this as method calls; the object sends

a message and waits for the answer, this is (more or less) equivalent to a traditional

method call; i.e., Java method calls.

3.4. COMPUTATIONS 49

Method completion message

A method completion message has the following syntax:

comp(destination, label, return values)

The object identifier destination identifies the object which made the call

(and is waiting for the return), label is the label identifying the call within

the object, and return values is a list of data values.

Consider an object which receives a comp message:

(3.10)
〈 id, {comp(id, label, return values), . . . },

Out­queue, Attributes, Completion set,

Active process, Suspended processes, “Message processing” 〉

The message is removed from the in­queue, transformed into a pair <la­

bel, val> and inserted into the completion set:

〈 id, { . . . }, Out­queue, Attributes,

Completion set ∪ { <label, return values> },

Active process, Suspended processes, “Message processing” 〉

The process waiting for the completion of the method call identified by

label may now fetch the result in the completion set and avoid inspecting

the in­queue directly.

3.4.5 Process Scheduling

The task of process scheduling is to suspend or terminate the active pro­

cess, and to select the new active process (which will be executed next).

Activating a suspended process

If there is no active process, any ready process may be selected:

PRECONDITION: (3.11)

Active process = null ∧

Suspended processes = SP ∧ p ∈ SP ∧ p is ready

POSTCONDITION:
Active process = p ∧

Suspended process = SP \ { p }

50 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

Activation of local calls

When a process is blocked, that is, it is enabled but not ready, we must

activate local calls. The purpose is to allow local processes that the active

process is waiting for, to proceed.

To describe this precisely, we use an infix predicate is waiting for :

p is waiting for p’ if

Attributes = {<this,id>, . . . } ∧

p’.Local variables = {<caller,id>,<label,lval>,. . . } ∧

lval ∈ waitsFor(p)

The function waitsFor takes as argument a process and returns a set

of label values, giving the label values for which the process is waiting.

For a process p, p’s active code AC, p’s suspended code SP, and p’s local

variables LV,

waitsFor(p) =











waitsFor(AC, LV) if AC is enabled

waitsFor({AC} ∪ SC, LV) if AC is not enabled

waitsFor(SC, LV) if AC is null

For SSL, a set of statement lists Si,

waitsFor(SSL, LV) = waitsFor(S1, LV) ∪ ... ∪ waitsFor(Sn, LV)

For a statement s and a statement list S,

waitsFor(s;S, LV) = waitsFor(s, LV)

For statement lists S1 and S2, a label t, a variable list V, guards g1 and

g2, a boolean expression b, and a set of variables LV,

waitsFor((S1 � S2), LV) = waitsFor(S1, LV) ∪ waitsFor(S2, LV)

waitsFor((S1 ||| S2), LV) = waitsFor(S1, LV) ∪ waitsFor(S2, LV)

waitsFor(t?(V), LV) = { eval(t, LV) }

waitsFor(await t?, LV) = { eval(t, LV) }

waitsFor(await ¬ t?, LV) = { }

waitsFor(await wait, LV) = { }

waitsFor(await b, LV) = { }

waitsFor(await g1 ∧ g2, LV) = waitsFor(await g1, LV) ∪

waitsFor(await g2, LV)

The eval function returns the value of the given variable name, that is,

eval(t, LV) returns the label value. The function is defined in Section

3.4.6. For all other statements s,

waitsFor(s, LV) = { }

Remark: The relation is waiting for and hence the function waitsFor is

only used when the active process is not ready. Therefore, the values of

3.4. COMPUTATIONS 51

waitsFor(S1 ||| S2) and other statements which is always ready, is of no

importance.

Now we are ready to define the rule of activating local calls. Notice

that the activated process’ dynamic link is set, as it is supposed to give

control back to the caller when it terminates.

PRECONDITION: (3.12)

Active process = AP ∧ AP is enabled ∧ AP is not ready ∧

Suspended processes = SP ∧ p ∈ SP ∧ p is ready ∧

AP is waiting for p ∧

AP.id = id

POSTCONDITION:
Active process = p ∧

Suspended process = (SP \ { p }) ∪ { AP } ∧

p.dynamiclink = id

Terminated process

A process has terminated if

p.Active code = null ∧ p.Suspended code = { }

If the dynamic link is not set, or if the process identified by the dynamic

link has terminated, no process is selected as the active process. The

active process is set to null:

PRECONDITION: (3.13)

Active process = AP ∧

AP.Active code = null ∧ AP.Suspended code = { } ∧

Suspended processes = SP ∧

(AP.dynamiclink = null ∨

¬ ∃ p : (p ∈ SP ∧ p.id = AP.dynamiclink))

POSTCONDITION:

Active process = null

If the dynamic link is set and the process p identified by the dynamic

link has not terminated, p is set as the active process:

PRECONDITION: (3.14)

Active process = AP ∧

AP.Active code = null ∧ AP.Suspended code = { } ∧

AP.dynamiclink != null ∧ Suspended processes = SP ∧

p ∈ SP ∧ p.id = AP.dynamiclink

52 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

POSTCONDITION:

Active process = p

Suspending the active process

If the active process has not terminated but is not enabled, it is inserted

into the queue of suspended processes:

PRECONDITION: (3.15)

Active process = AP ∧ AP is not enabled ∧

(AP.Active code != null ∨ AP.Suspended code != { }) ∧

AP.Local variables = LV ∧

Suspended processes = SP

POSTCONDITION:
Active process = null ∧

AP.Local variables = update(LV, wait, true) ∧

Suspended process = SP ∪ { AP }

Notice that wait is updated; thus, enabled(await wait) evaluates to true

after suspension, which corresponds to the semantics of await wait.

3.4.6 Process Execution

The following describe the effect of executing statements. This is done

when the object is in the state Process execution. Formally, the state of

the object for which the following rules apply is:

〈 id, class, In­queue, Out­queue, Attributes,

Completion set, Active process,

Suspended processes, “Process execution” 〉

It is the active process’ statements that are executed; these statements

must be ready14 to be executed. If the active process is not ready, the

object will go to the state Message processing (Rule 3.3).

Recall the definition of the state of a process:

〈 Local variables, Active code, Suspended code,

id, dynamiclink 〉

We will soon define the rules concerning execution of each type of state­

ment, but first we define some functions used in these rules.

14See Section 3.4.5 for the definition of ready.

3.4. COMPUTATIONS 53

Preliminary definitions

The function eval is used to evaluate expressions. It takes as argument

an expression and a set of pairs <id,val>. It returns data values; e.g., a

String, an Integer or a Boolean value.

eval(Expression, VariableSet)

For a variable name id,

eval(id, {<id,val>, . . . }) = val

In Boolean expressions, ∧, ∨ and ¬ are evaluated as expected. In Integer

expressions, +, −, ∗, etc. are evaluated as expected. The function is

extended to list of expressions; if its first argument is a list, it returns a

list of data values.

The function evalGuard takes as arguments a guard, a variable set and

a label set. Both the variable set and the label set are a set of pairs

<id,val>.

evalGuard(Guard, VariableSet, LabelSet)

The set variable set corresponds to the local variables of a process and

the persistent variables of an object, and the label set corresponds to

the completion set of an object. The function returns a Boolean. For a

Boolean expression b, a label t, guards g1 and g2, a variable set VS and

a label set LS,

evalGuard(b, VS, LS) = eval(b, VS)

evalGuard(t?, VS, LS) = eval(t, VS) ∈ var(LS)

evalGuard(¬ t?, VS, LS) = not eval(t, VS) ∈ var(LS)

evalGuard(g1 ∧ g2, VS, LS) = evalGuard(g1, VS, LS) and

evalGuard(g2, VS, LS)

The function update is used to update variable values in the local vari­

ables and the attributes. It takes as arguments a set of pairs <id,val>,

a list of variable names (v1, v2, ..., vn) and a list of values (val1,

val2, ..., valn):

update(VariableSet, VariableList, ValueList)

Note that for a given variable name vi in the variable list, it does not ne­

cessarily exist a pair with corresponding identifier. The function updates

only pairs which exist in the variable set. To be more precise, we define

the function as follows: for all vi ∈ VariableList and corresponding vali
∈ ValueList, if there exists id and val such that vi = id and <id,val> ∈

VariableSet, then <id,val> is replaced by <vi,vali>. The resulting set is

returned. Where appropriate, we will use a single variable name v and

corresponding value val as an abbreviation for the lists (v) and (val),

respectively.

54 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

In the following, the set union operator ∪ is used for both ordered and

unordered sets; if the set is ordered, the ordering is preserved. We use \

for set intersection and + for list concatenation and application.

Suspending and activating code

If the process’ Active code is not enabled, it is suspended:

PRECONDITION: (3.16)

Active code = code ∧ Suspended code = SC ∧

code is not enabled

POSTCONDITION:

Active code = null ∧ Suspended code = SC ∪ { code }

If there is no active code to execute, one of the suspended statement

lists which is ready is selected as the active code:

PRECONDITION: (3.17)

Active code = null ∧

Suspended code = SP ∪ { code } ∧ code is ready

POSTCONDITION:

Active code = code ∧ Suspended code = SP

Statement execution

We now define rules for the execution of Creol statements in the model.

The statements must be ready, as defined in Section 3.4.3. The system

variable wait is, as explained in Section 3.3.3, updated to false when

executing an ’atomic’ statement; that is, for statements different from

(S1 � S2) and (S1 ||| S2), wait := false is a side­effect of executing the

statement. When executiong (S1 � S2) or (S1 ||| S2), wait is not updated.

The reason for this is that updating wait may cause the process to be

suspended twice. Consider the following example: The active process’

next statement is (await wait; S1 � await wait; S2). As neither the left

nor the right branch is enabled, the process is suspended and the wait

variable is updated to true. When this process is activated, both the left

and the right branch are ready and either of them is selected, say the left:

await wait; S1. If the wait variable is updated to false now, await wait is

evaluated to false and the process is suspended again, unintentionally.

By only updating wait when executing ’atomic’ statements, we avoid this

problem.

3.4. COMPUTATIONS 55

Variable declaration var u1:T1=e1,u2:T2=e2,...,un:Tn=en

For each variable ui, ui is added to the local variables. The expression

ei is evaluated and the resulting value is assigned to ui.

PRECONDITION: (3.18)

Active code = var u1:T1=e1,u2:T2=e2,...,un:Tn=en; S ∧

Local variables = LV ∧ Attributes = ATT

POSTCONDITION:

Active code = S ∧

Local variables = update(LV, wait, false) ∪

{<u1,eval(e1,LV∪ATT)>, . . . ,<un,eval(en,LV∪ATT)> }

Multiple assignment V := E

For variable list V and expression list E, each ei ∈ E is evaluated and the

resulting value is assigned to vi ∈ V. Strong typing ensures that each vi
∈ V exists. Further, we have assumed that all variable names are distinct.

Thus, there is a pair <vi,val> in the local variables or in the attributes,

but not in both.

PRECONDITION: (3.19)

Active code = V := E; S ∧

Local variables = LV ∧ Attributes = ATT

POSTCONDITION:

Active code = S ∧

Local variables = update(LV, V+wait, eval(E,LV∪ATT)+false) ∧

Attributes = update(ATT, V, eval(E, LV ∪ ATT))

Passing of processor release point await g

To execute an Await statement, this statement must be ready. As other

basic statements, a side effect is that wait is set to false:

PRECONDITION: (3.20)

Active code = await g; S ∧

Local variables = LV ∧ Attributes = ATT ∧

Completion set = CS ∧

evalGuard(g, LV ∪ ATT, CS) = true

POSTCONDITION:

Active code = S ∧

Local variables = update(LV, wait, false)

Note that all statements including this is not executed if it is not ready,

that is, if evalGuard(g, LV ∪ ATT, CS) = false. Then other rules apply;

e.g., Rule 3.16.

56 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

If statement if b then S1 else S2 fi

For the if statement, there are two cases to explore.

1) b evaluates to true:

PRECONDITION: (3.21)

Active code = if b then S1 else S2 fi; S3 ∧

Local variables = LV ∧ Attributes = ATT ∧

eval(b, LV ∪ ATT) = true

POSTCONDITION:

Active code = S1; S3 ∧

Local variables = update(LV, wait, false)

2) b evaluates to false:

PRECONDITION: (3.22)

Active code = if b then S1 else S2 fi; S3 ∧

Local variables = LV ∧ Attributes = ATT ∧

eval(b, LV ∪ ATT) = false

POSTCONDITION:

Active code = S2; S3 ∧

Local variables = update(LV, wait, false)

New object new classname(E); waitObjId(v)

Recall that the Creol statement v := new classname(E) is changed to the

statements new classname(E); waitObjId(v) in CCM. Further, the wait­

ObjId(v) is ready even though the newObjId message has not yet arrived;

thus, it blocks the object in the process execution state.

To execute these statements, the object must send a newObj message to

the Central, wait for an answer message newObjId and assign the object

value given by this message to v.

PRECONDITION: (3.23)

Active code = new classname(E); waitObjId(v); S ∧

Local variables = LV ∧

Attributes = ATT = { <this,myid>, . . . } ∧

Out­queue = OQ

POSTCONDITION:

Active code = waitObjId(v); S ∧

Out­queue = OQ ∪ {newObj(myid, classname, eval(E, LV ∪ ATT)}

Now the object must wait to get the object identifier of the new object;

when it arrives the identifier is applied to v:

3.4. COMPUTATIONS 57

PRECONDITION: (3.24)

Active code = waitObjId(v); S ∧

Local variables = LV ∧ Attributes = ATT ∧

In­queue = { newObjId(idthis , idnewobject) } ∪ IQ

POSTCONDITION:

Active code = S ∧ In­queue = IQ ∧

Local variables = update(LV, (v, wait), (idnewobject, false)) ∧

Attributes = update(ATT, (v), (idnewobject))

Remark: The statement waitObjId(v) is always ready, even when it is not

possible to execute it. This may seem strange. The reason for blocking

the object in the execution state, is that we consider the statement v :=

new classname(E) to be implemented by method calls. Sending a mes­

sage and waiting for the answer is in accordance with traditional method

calls as in, e.g., Java.

Method invocation without label !o.m(E)

The first type of method invocation statement is !o.m(E), where o is an

object expression, m is the method name and E is an expression list.

See Section 3.3.3. Recall that a message invocation message has the

following syntax (see Section 3.4.4):

invoc(objto , objfrom, label, method, par)

This message type is used by all method invocation variations; if the

method call has no label, this is set to null. The call may be local or

external; therefore, we have two rules. The first rule considers local

calls:

PRECONDITION: (3.25)

Active code = !o.m(E); S ∧

Local variables = LV ∧

Attributes = ATT = {<this,id>, . . . } ∧

In­queue = IQ ∧

eval(o, LV ∪ ATT) = id

POSTCONDITION:

Active code = S ∧

Local variables = update(LV, wait, false) ∧

In­queue = IQ ∪ invoc(id, id, null, m, eval(E,LV∪ATT))

The second rule considers external calls:

58 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

PRECONDITION: (3.26)

Active code = !o.m(E); S ∧

Local variables = LV ∧

Attributes = ATT = {<this,id>, . . . } ∧

Out­queue = OQ ∧

eval(o, LV ∪ ATT) != id

POSTCONDITION:

Active code = S ∧

Local variables = update(LV, wait, false) ∧

Out­queue = OQ ∪ invoc(eval(o, LV ∪ ATT), id, null, m,

eval(E, LV ∪ ATT))

Method invocation with label t!o.m(E)

The second type of method invocation statement is t!o.m(E). The only

difference is the additional label t, which is guaranteed to be declared by

strong static typing. To give t a unique value, we use a function fresh()

which gives a new fresh identifier each time it is used. (This may be

implemented by having an integer for each object which is incremen­

ted and returned each time fresh() is called.) As for calls without label,

the call may be local or external, and we will have two rules. The first

considers local calls:

PRECONDITION: (3.27)

Active code = t!o.m(E); S ∧

Local variables = LV ∧

Attributes = ATT = {<this,id>, . . . } ∧

In­queue = IQ ∧

eval(o, LV ∪ ATT) = id

POSTCONDITION:

Active code = S ∧ label = fresh() ∧

Local variables = update(LV, (t, wait), (label, false)) ∧

In­queue = IQ ∪ invoc(id,id,label,m,eval(E,LV∪ATT))

The second rule considers external calls:

PRECONDITION: (3.28)

Active code = t!o.m(E); S ∧

Local variables = LV ∧

Attributes = ATT = {<this,id>, . . . } ∧

Out­queue = OQ ∧

eval(o, LV ∪ ATT) != id

3.4. COMPUTATIONS 59

POSTCONDITION:

Active code = S ∧ label = fresh() ∧

Local variables = update(LV, (t, wait), (label, false)) ∧

Out­queue = OQ ∪ invoc(eval(o, LV ∪ ATT), id, label, m,

eval(E, LV ∪ ATT))

Reply t?(V)

The reply statement assigns the values of the reply identified by the

label value of t to the given variables in the variable list V. As only ready

statements are executed, the reply identified by t must arrive before this

rule can be applied. In the following, D is the data list returned.

PRECONDITION: (3.29)

Active code = t?(V); S ∧

Local variables = LV = {<t,label>, . . . } ∧

Attributes = ATT ∧ Completion set = { <label,D>, . . . }

POSTCONDITION:

Active code = S ∧

Local variables = update(LV, V + wait, D + false) ∧

Attributes = update(ATT, V, D)

Nondeterministic choice (S1 � S2)

The nondeterministic choice statement selects a statement list which is

ready. At least one of the statement lists must be ready, or else it will

not be executed. If both are ready, either one may be selected. This gives

two symmetric rules; the first selects the left branch:

PRECONDITION: (3.30)

Active code = (S1 � S2); S3 ∧ ready(S1)

POSTCONDITION:

Active code = S1; S3

The second rule selects the right branch:

PRECONDITION: (3.31)

Active code = (S1 � S2); S3 ∧ ready(S2)

POSTCONDITION:

Active code = S2; S3

As discussed previously, the wait variable is not updated.

60 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

Merge (S1 ||| S2)

The merge operator interleaves the execution of two statement lists. To

simulate this, we use the construct suspended code. As at least one of

the two branches must be suspended, ||| should be defined as a processor

release point. Thus we can suspend both branches.

PRECONDITION: (3.32)

Active code = (S1 ||| S2); S3 ∧ Suspended code = SP

POSTCONDITION:

Active code = null ∧

Suspended code = SP ∪ { S1; S3 } ∪ { S2; S3 }

Recall that the first statement of S3 is a joinMerge statement. The join­

Merge statement is executed twice; the rest of S3 is only executed once.

Join Merge joinMerge(v)

Recall (Section 3.3.3) that v is initially false (Section 3.3.3). When the

first statement list is finished, v is set to true:

PRECONDITION: (3.33)

Active code = joinMerge(v); S ∧

Local variables = LV = { <v,false>, . . . }

POSTCONDITION:

Active code = null ∧

Local variables = update(LV, v, true)

When the second statement list finishes, the statement is passed, and S

is executed:

PRECONDITION: (3.34)

Active code = joinMerge(v); S ∧

Local variables = { <v,true>, . . . }

POSTCONDITION:

Active code = S

Remark: As the variable v is unique for this particular |||, the variable will

not be used again (as Creol has no loop construct). Therefore, v may be

left unchanged. Introducing a while statement to Creol implies that the

rule must be changed; i.e., adding Local variables = update(LV, wait,

false) to the postcondition of rule 3.34.

3.4. COMPUTATIONS 61

Sending completion message return VarList

Recall that the statement list defining the method body is extended with

a statement return VarList, where VarList is a list giving the return para­

meters. The return­statement is the last statement of the method body;

hence the active code is set to null after this statement is executed.

There are three different possibilities, reflected by three rules. The first

considers the possibility that this was a method invocation without label

(rules 3.25 and 3.26); this is the case if the process’ label variable is

null. Then no completion message is sent:

PRECONDITION: (3.35)

Active code = return (u1, u2, ..., un) ∧

Local variables = {<label,null>, . . . }

POSTCONDITION:

Active code = null

If the process’ label variable is different from null, a completion mes­

sage must be sent. Recall the syntax of a completion message:

comp(destination, label, return values)

The second rule considers local calls. If the process’ caller variable is

equal to the attribute this, the message is put in the in­queue:

PRECONDITION: (3.36)

Active code = return (u1, u2, ..., un) ∧

Local variables = { <label,l>,<caller,c>,

<u1,v1>,<u2,v2>, . . . ,<un,vn>, . . . } ∧

Attributes = {<this,id>, . . . } ∧

In­queue = IQ ∧

l != null ∧ c = id

POSTCONDITION:

Active code = null ∧

In­queue = IQ ∪ comp(id, l, (v1,v2,..,vn))

The third rule considers external calls. If the process’ caller variable is

not equal to the attribute this, the message is put in the out­queue:

PRECONDITION: (3.37)

Active code = return (u1, u2, ..., un) ∧

Local variables = { <label,l>,<caller,c>,

<u1,v1>,<u2,v2>, . . . ,<un,vn>, . . . } ∧

Attributes = {<this,id>, . . . } ∧

Out­queue = OQ ∧

l != null ∧ c != id

62 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

POSTCONDITION:

Active code = null ∧

Out­queue = OQ ∪ comp(c, l, (v1,v2,..,vn))

Remark: If the method has no return variables, the empty list () is

returned, similar to an acknowledgment message. Note also that the

suspended code set is empty when the return statement is executed;

hence, after executing this statement, the process’ active code is null

and the suspended code is empty; thus, the process has terminated and

is removed (by rules 3.13 and 3.14).

3.4.7 Message Transportation

All the rules we have defined so far describe local transitions in the

objects and in the Central. We have not defined any rules for message

transportation. This is omitted on purpose, as we do not want to dictate

how this should be implemented.

Here we will sketch how the model may be extended to take care of mes­

sage transportation. First, we need rules for communication between

objects and the Central (within a CVM):

• Service messages getMethodDef(. . .) and newObj(. . .) in an object’s

out­queue must be moved to the Central’s in­queue.

• Service messages methodDef(o, . . .) and newObjId(o, . . .) in the Cent­

ral’s in­queue must be moved to the in­queue of the object o.

Second, we need rules for communication between objects. As objects

may be distributed among different CVMs, this yields four rules:

• If a message comp(o, . . .) or invoc(o, . . .) in an object’s out­queue is

addressed to an object in the same CVM, that is, there is an object

with id o in the CVM, the message is just moved directly to o’s

in­queue.

• If there is no such object in the CVM, the message is moved to the

CVM’s out­queue.

• A message comp(o, . . .) or invoc(o, . . .) in a CVM’s out­queue is

moved to the in­queue of the CVM in which the object with id o

exists.

• A message comp(o, . . .) or invoc(o, . . .) in a CVM’s in­queue is moved

to o’s in­queue.

3.5. SUMMARY 63

Communication between objects in different CVMs may be a challenge

for implementation, as each CVM is supposed to be run on different

physical machines.

3.5 Summary

In this chapter we have developed a computational model for Creol.

First, we presented our motivation for defining a formal model: it gives

an unambiguous and concise way of describing the computations of pro­

grams. Then the model was presented: a representation of a Creol pro­

gram as a tuple (CVM names, Initial objects, Class definition set). The

structure and representation of states were presented as tuples and sets.

We saw that in order to make computations feasible, we had to make

some changes to and assumptions about the method bodies (the imper­

ative code). The initial state of the computation of CCM was defined, and

the successor states were defined by pre­ and post­conditions. Finally,

we gave an informal description of message transportation.

64 CHAPTER 3. A COMPUTATIONAL MODEL FOR CREOL

Chapter 4

Implementation of the Creol

Virtual Machine

This chapter discusses the implementation of a Creol Virtual Machine

(CVM). The Creol Computational Model goes beyond this, as it discusses

a set of CVM’s. The difference is not substantial, except that communic­

ation between CVM’s must be handled if we have more than one CVM.

Communication between CVM’s will be discussed in Chapter 6.

The CVM will be implemented in Java. The choice of language is, of

course, not arbitrary. In Section 4.1 we start by pointing out some im­

portant properties of Java which were important for choosing Java as

the implementation language. The section also discusses some early de­

cisions and assumptions we made about the Java Virtual Machine. In

Section 4.2 we present an overview of the implementation; in Section 4.3

we look into details. The reader is assumed to be familiar with Creol

and Java, including Java threads. The introductions to Creol and Java in

Chapter 2 should suffice.

4.1 Preliminaries

Before discussing the implementation of the virtual machine, we con­

sider some aspects of Java which made it attractive as an implementa­

tion language, and we present some assumptions we have made about

the Java Virtual Machine.

4.1.1 Java Properties

The project is to write a virtual machine for Creol. First, we had to

choose an implementation language. Both C++ and C# were considered

65

66 CHAPTER 4. IMPLEMENTATION OF THE CREOL VIRTUAL MACHINE

to be adequate; however, we chose Java. Without discussing other lan­

guages, we list some properties of Java which was important for the

decision to choose it as the implementation language:

• Object oriented: Java is an object oriented language. This fits well

with how we model the execution of Creol programs.

• Multi­threaded: This is important as Creol objects are active and

execute concurrently (at least conceptually).

• Network: Java has extensive and easy­to­use communication prim­

itives, and both code and objects may be transferred across net­

works. These properties are important for communication between

CVMs and for distributed updating of Creol class definitions at run­

time.

• Widespread use: We wanted to use an implementation language

which is familiar to many people, both because this makes the im­

plementation easier to understand for a reader and because others

may want to change or expand the implementation.

4.1.2 JVM Assumptions

The Java specification does not give strong guarantees about fairness of

threads, nor does it say anything about the number of threads a JVM

implementation needs to support. This is unfortunate, as we would like

to use the multi­threaded capabilities of Java and therefore need some

guarantees concerning thread scheduling and efficiency.

An implementation of a Java Virtual Machine may give better properties

than what is given by the Java specification. This is the case for Sun’s

JVM (version 1.5) for both Windows and Linux. The following assump­

tions are fulfilled by Sun’s JVM and probably by most other JVMs.

First, we assume that the JVM is preemptive, that is, after some period of

time (i.e. 10 ms), the current executing thread is suspended and another

thread is executed. This property implies that all threads are given pro­

cessor time, even if other threads run forever without blocking.1 Hence,

we can benefit from the scheduling of threads in the JVM.

Second, we assume that the JVM supports a high number of threads.

Normally, the number of threads supported is limited by memory size.

Tests of Sun’s JVM showed that it could handle about 3500 threads on

1Java threads may have different priorities and some JVMs do not execute a thread

if there is a higher priority thread which is not blocked. We do not consider this to be

an issue, as giving all threads the same priority solves this problem.

4.2. IMPLEMENTATION OVERVIEW 67

a Linux implementation and about 7000 threads on a Windows imple­

mentation. We consider this to be enough for our purpose.

4.2 Implementation Overview

In this section we give an overview of the structure of the virtual ma­

chine. The implementation follows the Creol Computational Model to a

great extent; however, there are some differences due to efficiency, ease

of implementation and properties of Java.

4.2.1 Main CVM Parts

We now give an overview of the objects which compose the virtual ma­

chine. In later sections we go into details and discuss the actual imple­

mentation of the different parts.

In the model in Chapter 3 we identified components as

• The CVM

• The Central

• CVM objects

• Message queues

In the implementation, we find a similar structure. The virtual machine

is composed of

A central which offers services.

Creol objects which corresponds to what was called CVM objects in the

model and objects in the Creol language.

Message queues which corresponds to the message queues in the model.

In addition we have an object responsible for initializing the virtual ma­

chine and creating initial objects; this object we simply call ’CVM’. As in

the model, the Central must support the services “New object” and “Get

method definition”. Later we will add other services to the Central. Each

Creol object has an in­queue and an out­queue.2 A Creol object inserts

messages in its out­queue and receives messages in its in­queue; mes­

sage transportation is not part of the object’s tasks. How messages are

transported is discussed in the next section.

2We do not consider communication between different CVMs yet; therefore, there

are no CVM queues.

68 CHAPTER 4. IMPLEMENTATION OF THE CREOL VIRTUAL MACHINE

4.2.2 Activity: Flow of Control

In Java, the flow of control is separated from the objects, that is, each

object does not have its own execution thread as in Creol. Because the

thread models differ, an important design choice is how the control flow

should be implemented. The choice of solution will have great impact

on both the efficiency of the program and on how parts of the program

should be implemented.

The activity in a CVM, corresponding to computations in the model, is

distributed among different components. Each Creol object has internal

activity. The Central has activity in form of the services offered. In

addition, we have the activity of message transportation.

We will use one execution thread for each Creol object. This simplifies

the implementation considerably, as the operating system and the Java

VM take care of the scheduling of Creol objects. We get concurrency for

free and can concentrate on internal activity in the Creol object.

In the model, the Central is modeled as an active object which receives

service messages, carries out the services and answers by completion

messages. The object for which the Central is performing a service,

waits until it receives the completion message. For efficiency reasons,

the Central will not be implemented as an active object. Instead, the

services will be offered by two methods: getMethodDefinition() and new­

Object(). The Creol objects call these methods to invoke the services;

thus, we use the Creol object’s execution thread when performing a ser­

vice. This is more efficient because:

• The services can be invoked without involving another thread; no

thread context switch is needed.

• It enables Creol objects to invoke services concurrently, as Java al­

lows multiple threads to execute an object’s methods at the same

time. We must synchronize to get exclusive write access, but by us­

ing a lock which supports multiple readers we still get concurrent

execution of part of the services.3

Message transportation is not defined in the model. There are a number

of possibilities for how it can be implemented:

3We give preference to parallel execution over the amount of synchronization. The

additional synchronization which is required to get this increased parallelism, might

make our solution more inefficient than a more ’straight­forward’ solution using e.g.

the synchronized construct. However, we focus on efficiency in theory and not in

practice.

4.2. IMPLEMENTATION OVERVIEW 69

• A message transporter object polls out­queues for messages and

moves each message to the in­queue of the addressed Creol object.

• Each Creol object transports the messages.

• Each out­queue transports the messages.

The first solution is inefficient. The transporter would have to inspect

all the out­queues to look for messages, then sleep for a while before

checking all the out­queues again. It can be done more efficiently if each

Creol object signals the transporter object each time a message is sent,

but this would violate the principle of encapsulation as the transporter

object and the out­queue (or the Creol object) would be tied together.

The second solution violates the principle of encapsulation; we do not

want the Creol object to worry about message transportation. The Creol

object is only supposed to put messages in the out­queue and nothing

more.

It will be the out­queue which transports the messages. However, we will

use the Creol object’s execution thread. That is, the out­queue offers a

method put() to the Creol object. When called, this method forwards

the message to the in­queue. This solution implies that the Creol object

is blocked for a while, but we consider this as a fair trade off for less

threads and less synchronization. To be able to transport a message,

the out­queue needs a reference to the in­queue of the addressed Creol

object. As it is the Central which creates the Creol objects and their

queues, it is natural that it also stores references to the in­queues. We

extend the Central to offer a service “Get queue”. As other services in the

Central, “Get queue” is implemented by a method. The out­queue calls

getQueue() which returns the in­queue of the specified Creol object (spe­

cified by the object identifier). Then the out­queue inserts the message

in the in­queue.

4.2.3 Classes and Interfaces

We now take a closer look at the actual implementation of the objects

discussed in the previous sections.

Objects in Java are implemented by classes and typed by classes and

interfaces. Java supports single inheritance for classes and multiple in­

heritance for interfaces. We use interfaces to enforce encapsulation, that

is, objects hide their data and methods from the rest of the world. This

way the internal data and methods of an object can be changed without

changing the way the object is used. The dependencies between the vir­

tual machine components are reduced, and the machine will be easier

70 CHAPTER 4. IMPLEMENTATION OF THE CREOL VIRTUAL MACHINE

to understand and modify. It will be easier to understand because we

can reason about one part of the machine at a time; e.g., the Creol ob­

ject. It will be easier to modify because we can change one compon­

ent which does not affect other components; e.g., if we want to change

the out­queue to have its own execution thread, this is possible without

changing anything in the Creol object.

The initializing CVM object is implemented by a class CVM, whereas the

Central is implemented by a class Central. The service offered by the

Central to message queues is of no interest for the Creol object, and

vice versa. Therefore, we use two interfaces CreolObjectServices and

MsgQueueServices to restrict which methods can be accessed by the

Creol objects and the message queues, respectively. These interfaces

are implemented by the Central class.

The Creol object is implemented by a class CreolObject. As this object

is supposed to be active, it must either inherit the Thread class or im­

plement the Runnable interface; we have chosen the latter solution. The

Creol objects use message queues to communicate. The Creol object is

not concerned about how the queues are actually implemented, as long

as they offer the methods needed. For the out­queue, a method insert() is

the only method required; therefore, we have an interface MsgQueueOut

which offers this method. Similarly, we have an interface MsgQueueIn

which offers a method next() and some additional methods which will be

discussed later. The Creol object also needs to treat the in­queue as an

out­queue, as invocation and completion messages will be inserted dir­

ectly into the in­queue if the call is local. Therefore, we have an interface

MsgQueueInOut which inherits both MsgQueueIn and MsgQueueOut. As

discussed in Section 4.2.2, the out­queue will forward the message to

the in­queue of the intended Creol object. Therefore, we have a class

ForwardingMsgQueue which implements MsgQueueOut. We also have a

class MsgQueue which implements the interface MsgQueueInOut.

Summarized, we have the following classes and interfaces:

• class CVM

• class Central

• interface CreolObjectServices, implemented by Central

• interface MsgQueueServices, implemented by Central

• class CreolObject, which implements Runnable

• interfaces MsgQueueIn, MsgQueueOut and MsgQueueInOut

• class MsgQueue, which implements MsgQueueInOut

4.3. IMPLEMENTATION DETAILS 71

• class ForwardingMsgQueue, which implements MsgQueueOut

Figure 4.1 shows a graphical representation of the classes and interfaces,

and their relationships.

4.3 Implementation Details

In this section we look more into details. We present how Creol pro­

grams are represented, and discuss the class CVM and initialization of

the CVM. Further, we discuss the Creol object, the Central and the mes­

sage queues.

We will not discuss the implementation of basic data structures as lists

and sets, nor will we discuss methods which are straight forward imple­

mentations of functions defined in the model in Chapter 3. The selec­

ted code snippets and Java classes we present are without comments to

keep things short; the explanations are given in the text. The full code

is available on Internet, see Appendix C. To refer to a class A’s method

m, we use dot notation: A.m(), even when the method m is not static4 .

The same will be done for interfaces; i.e., I.m(), even though this does

not make sense within the Java language. We leave out parameters when

these are not interesting.

4.3.1 Creol Program Representation

The Creol virtual machine executes Creol programs. These programs

should be represented in such a way that execution is efficient and

simple. We could read, interpret and manipulate textual Creol code at

run time. Then there would be no need to translate the code before ex­

ecuting it. But we believe this to be both error­prone and inefficient, and

it would make our machine very complex. Instead of interpreting text,

all Creol constructs are transformed into Java objects (instances of Java

classes). This way we can define operations on an object in its class,

and we enforce encapsulation. For instance, the semantics of execut­

ing an assignment statement is defined by a method execute() in a class

Assignment.

In Chapter 3, we defined a Creol computational model

(CVM names, Initial objects, Class definition set)

4In Java, if A is a class and m is a method, A.m() is called a static reference. Static

references to non­static methods are not allowed. These methods are called by object

references; i.e., for an object o of class A: o.m().

72 CHAPTER 4. IMPLEMENTATION OF THE CREOL VIRTUAL MACHINE

Figure 4.1: UML class diagram [23] giving an overview of some of the

interfaces and classes of the Creol Virtual Machine.

4.3. IMPLEMENTATION DETAILS 73

1 public class BoundedBuffer implements CreolProgram {

public ClassDefinitionSet getClassDefinitions() {

ClassDefinitionSet classdef = new ClassDefinitionSet();

...

5 return classdef;

}

public InitObjectList getInitObjects() {

return new InitObjectList(new InitObject("Starter", null));

10 }

}

Figure 4.2: The Bounded Buffer translated into the Java representation.

For now, we do not consider multiple CVMs; therefore, no CVM name is

needed, and all initial objects must, necessarily, be created in the single

CVM. We define classes InitObject and InitObjectList to be able to repres­

ent the set of initial objects as a Java object. Similarly, we define a class

ClassDefininitionSet to store the class definitions. At last we define an

interface CreolProgram with methods getClassDefinitions() and getInit­

Objects(). A Creol program is translated into an object of a class which

implements CreolProgram. For example, we translate the bounded buf­

fer example from Chapter 2 into a Java class BoundedBuffer; see Figure

4.2. An instance of this class is created:

CreolProgram creolprogram = new BoundedBuffer()

The object creolprogram refers to is now a Java object representation

of the Creol program Bounded Buffer, and can be given as a program

to the Creol Virtual Machine. We have omitted the code where class

definitions are added to the classdef object, as it is low­level details;

the interested reader is referred to Appendix B. The class definition

set is an object with a mapping from class names to objects of class

CreolClass. The CreolClass object has, among other things, a mapping

from method names to CreolMethod objects. Statements are represen­

ted by instances of classes which implements the interface Statement. In

these classes, the semantics of the statement is defined by methods; e.g.,

execute(), enabled() and ready(). The statements are concatenated to a

statement list by a next pointer, that is, the objects will have a pointer to

the next statement (or next statements in case of branching statements

as the if statement). The functional part of Creol is also represented as

Java objects. For integers, booleans and strings we have classes IntVal,

BoolVal and StrVal. Objects of these classes work as wrappers for the

corresponding Java types and new instances are created when needed;

e.g., new IntVal(2), new BoolVal(true) and new StrVal(“HelloWorld”). These

74 CHAPTER 4. IMPLEMENTATION OF THE CREOL VIRTUAL MACHINE

1 public class CVM {

public CVM(CreolProgram cp) {

/* Create central */

5 Central central = new Central(cp.getClassDefinitions());

/* Create Initial objects */

InitObject io;

InitObjectList iol = cp.getInitObjects();

10

while(iol != null) {

io = iol.first();

central.newObject(io.getClassname(), io.getParameters());

iol = iol.rest();

15 }

}

}

Figure 4.3: The class CVM.

classes will implement the interface Data. For compound expressions, as

integer addition, boolean tests and object identifiers equality, we have

corresponding classes. All expressions have a method evaluate().

Note: Later, we will extend the implementation to support multiple in­

heritance (Chapter 5) and communication between CVMs (Chapter 6).

Then we will need the subtype graph and a CVM­name to Internet­address

mapping. The CreolProgram interface and the classes which implements

CreolProgram will then be extended with necessary methods.

4.3.2 Initialization of the CVM

As previously mentioned, the class CVM has the responsibility to ini­

tialize the virtual machine. As in the model (Chapter 3, Section 3.4.1),

a central is created. As the service “New object” is invoked by method

calls and not messages, the creation of initial objects is a bit different

from the model; the CVM will call the newObject() method for each ini­

tial object. Figure 4.3 gives the class definition of CVM. The constructor

takes as argument a CreolProgram reference. Assume that creolprogram

is a reference to an object of a class which implements CreolProgram.

Then, a new Creol virtual machine is created by the statement

new CVM(creolprogram)

and the program defined by the creolprogram object is executed.

4.3. IMPLEMENTATION DETAILS 75

1 public class Central implements CreolObjectServices,

MsgQueueServices {

private ClassDefinitionSet classdef;

5 private HashMap<ObjVal,MsgQueue> inqueues;

private int objCnt;

private ReadWriteLock classdefLock, inqueuesLock, objCntLock;

public Central(ClassDefinitionSet classdef) { ... }

10

public ObjVal newObject(String classname,

DataList actualParameters) { ... }

public CreolMethod getMethodDef(String methodname) { ... }

15

public MsgQueue getQueue(ObjVal ov) { ... }

}

Figure 4.4: The class Central (private methods are omitted).

4.3.3 The Central

The Central supports three services: create a new object, get the method

definition and get the in­queue of an object. Therefore, the Central needs

to store the class definitions, the Creol objects’ in­queues, and a counter

used to give unique object identifiers to objects; therefore, we will have

attributes classdef, in­queues and objCnt. In addition, we use locks to

ensure exclusive write­access: one read­write lock for each of the three

mentioned attributes.5 Thus, we allow multiple readers. At initializa­

tion, the locks are declared to be fair; this is to prevent starvation. All

attributes are declared private, such that they are not visible to other

objects. The attributes are initialized in the constructor of Central. An

outline of the Central class is given in Figure 4.4.

Services offered to Creol objects

The Central offers two services to the Creol objects, which both will be

implemented by method calls: newObject() and getMethodDefinition().

As previously mentioned, these methods are declared in an interface

CreolObjectServices to restrict the Creol objects from accessing other

services.

5The read­write lock is a reentrant lock, that is, a thread which has the lock succeeds

in locking it again. This has no influence here; the use of reentrant lock is simply

because this is what the Java API offers.

76 CHAPTER 4. IMPLEMENTATION OF THE CREOL VIRTUAL MACHINE

1 public ObjVal newObject(String classname, DataList actualParam) {

ObjVal id = freshId(classname);

MsgQueue inQ = new MsgQueue();

5 MsgQueueOut outQ = new ForwardingMsgQueue(this);

inqueuesLock.writeLock().lock();

inqueues.put(id, inQ);

inqueuesLock.writeLock().unlock();

10 VarSet attributes = new VarSet();

attributes.put("this", id);

attributes.put("sys_class", new StrVal(classname));

classdefLock.readLock().lock();

15 CreolClass creolclass = classdef.getClass(classname);

declareParameters(attributes, creolclass, actualParam);

declareAttributes(attributes, creolclass);

classdefLock.readLock().unlock();

20 CreolObject co = new CreolObject(attributes,this,inQ,outQ);

Thread t = new Thread(co);

t.start();

return id;

}

Figure 4.5: The method newObject() in class Central.

The CVM objects will have a reference to the Central, and call these meth­

ods to invoke the services; i.e., central.newObject(. . .). This way of imple­

menting the Central’s services differs from how it is done in the CCM.

Recall that in the CCM, the invocation of these services is done by send­

ing messages to the Central:

newObj(obj, classname, actual parameters) and

getMethodDef(obj, class, method, sig, co)

This corresponds to the method calls in the implementation. The re­

turn of the method calls corresponds to the answer messages from the

central:

newObjId(obj, id) and

methodDef(obj, par list, ret var, code)

As Java methods only return one value, the getMethodDef () method will

return a reference to a CreolMethod object, which contains the formal

parameter list, return parameter list and the code.

The newObject() method is given in Figure 4.5. It implements Rule 3.1

from Chapter 3. First, a fresh identifier is created for the object (wrapped

4.3. IMPLEMENTATION DETAILS 77

1 public CreolMethod getMethodDef(String classname, String mtdname) {

classdefLock.readLock().lock();

CreolClass cc = classdef.getClass(classname);

CreolMethod cm = cc.getMethod(mtdname);

5 classdefLock.readLock().unlock();

return cm;

}

Figure 4.6: The method getMethodDef() in class Central.

in a ObjVal object). Then, in­ and out­queues are created for the Creol

object, and the in­queue is stored in the inqueues­attribute of Central.

Note that a reference to the Central is passed as a parameter to the out­

queue; message queues are discussed in Section 4.3.5.

A variable set to store the Creol object’s persistent state variables is cre­

ated. The object identifier is stored as a read­only variable this, and the

object’s class is stored as a special system variable sys_class. The class

definition is fetched and the parameters and attributes are declared by

two private methods declareParameters() and declareAttributes(). For

now, these methods are rather simple; when multiple inheritance is in­

troduced (Chapter 5), things becomes more difficult. We postpone the

discussion of these methods to Chapter 5.

At last the Creol object is created. In addition to the in­queue, out­queue

and the attribute set, a reference to the Central is passed as arguments

to the CreolObject class. An execution thread is created for the Creol

object and the thread is started. The reference to the object is returned.

The Creol object is discussed in Section 4.3.4.

The getMethodDef () method is straight forward as we do not consider

inheritance; see Figure 4.6. It implements Rule 3.2 from Chapter 3.

Service offered to message queues

The Central has a method getQueue() which are used by out­queues to

forward messages to the intended in­queues. The method is defined in

the interface MsgQueueServices. It is implemented by a simple look­up

in the in­queue register; see Figure 4.7. As the in­queue register is a

shared object, the look­up is protected by a lock. This lock is declared

as fair; therefore, this method will eventually succeed in getting the lock

(and therefore it will eventually return). Creol objects can only send

messages to objects after they are created. The in­queue of an object is

created and inserted in the in­queue register before the object itself is

created; therefore, we are guaranteed that the queue exists.

78 CHAPTER 4. IMPLEMENTATION OF THE CREOL VIRTUAL MACHINE

1 public MsgQueue getQueue(ObjVal ov) {

inqueuesLock.readLock().lock();

MsgQueue msgQ = inqueues.get(ov);

inqueuesLock.readLock().unlock();

5 return msgQ;

}

Figure 4.7: The method getQueue() in class Central.

4.3.4 The Creol Object

In the model (Section 3.3.4), the object is represented as a tuple:

〈 id, class, In­queue, Out­queue, Attributes,

Completion set, Active process,

Suspended processes, Status 〉

Most of the components translate into attributes of the class Creol­

Object. However, due to implementation issues, we will make some

changes. The object identifier is stored as a special read­only attrib­

ute this, and the class is stored as a special system attribute sys_class.

This is done to reduce the number of attributes.6 The status flag was

used in the model to enforce a more deterministic computation of the

programs; in the Java implementation there is no need for such a flag,

as the execution (within the object) is deterministic.

The rest of the Creol object components are attributes in the CreolObject

class: references to the Central, the in­queue, the out­queue, the attrib­

utes, the completion set, the active process and the queue of suspended

processes; see Figure 4.8. The queues and the attributes are created

by the Central, whereas the completion set and the queue of suspen­

ded processes are created in the constructor of CreolObject. The refer­

ence to the active process is set to null by the constructor. If the (Creol)

method run exists, a new process instance of this method is created

in the (Java) method CreolObject.run(); the attribute activeProcess is set

to refer to this process. The Creol object also needs two more attrib­

utes: processCnt and labelcount; these are used to give unique values to

identify processes and message invocation messages, respectively.

6All our system variables which have nothing to do with the Creol program are

given the prefix ’sys_’ to distinguish them easier. Identifiers beginning with sys_ are

assumed not to be used by Creol programs.

4.3. IMPLEMENTATION DETAILS 79

1 public class CreolObject implements Runnable {

private CreolObjectServices central;

private VarSet attributes;

private MsgQueue inqueue, outqueue;

5 private CompSet compset;

private ProcessQueue processQueue;

private CreolProcess activeProcess;

private int processCnt;

private LabelCount labelcount;

10

public CreolObject(VarSet attr, CreolObjectServices central, ←֓

→֒MsgQueueInOut inqueue, MsgQueueOut outqueue) { ... }

public void run() { ... }

private void controller() { ... }

15 private void processScheduling() { ... }

private void processExecution() { ... }

private void waitForMessage() { ... }

private void messageProcessing() { ... }

private CreolProcess newProcess(InvocMsg msg) { ... }

20 private String processId(String methodname) { ... }

}

Figure 4.8: The class CreolObject.

Object tasks

Recall from Section 3.4.3 that the object performs three tasks: message

processing, process scheduling, and process execution. In addition there

is the ’task’ of waiting for a message. Each of these tasks is implemented

by private methods of the class CreolObject:

• processScheduling()

• processExecution()

• messageProcessing()

• waitForMessage()

The top level method that calls these tasks is called controller(). We now

discuss controller() and the four methods it calls.

The method controller()

The controller() method in the class CreolObject controls the activity

in the object, by calling the methods processScheduling(), processExecu­

tion(), messageProcessing() and waitForMessage() at the appropriate time

80 CHAPTER 4. IMPLEMENTATION OF THE CREOL VIRTUAL MACHINE

1 private void controller() {

while(true) {

processScheduling();

5 if(activeProcess != null && activeProcess.ready())

processExecuting();

else

waitForMessage();

10 messageProcessing();

}

}

Figure 4.9: The controller loop of the object.

and in the right order. As previously mentioned, these methods are

closely related to the status flag in the model. The controller() method

must call the methods such that it observes the rules 3.3 to 3.7 in Chapter

3. When the object has finished a task, the method corresponding to the

next task is called; i.e., processExecution() is called after processSchedul­

ing(), corresponding to Rule 3.5. A new object starts with the task of

process scheduling (Section 3.4.2). Hence the first method to call is pro­

cessScheduling(). The next method to run depends of the result of the

scheduling. If it was able to select a ready process, the next method

to run is processExecution(); this corresponds to Rule 3.5. If it was not

able to select a ready process, the next method is waitForMessage(), cor­

responding to Rule 3.6. After processExecution() or waitForMessage() re­

turns, the next method is messageProcessing() (rules 3.3 and 3.7), before

processScheduling() is called again (Rule 3.4). Summarized, the algorithm

to implement is:

1. Start with method processScheduling().

2a. If a ready process was selected, that is, the active process is different

from null and it is ready, call processExecution().

2b. If a ready process was not selected, call waitForMessage().

3. When processExecution() or waitForMessage() terminates, call message­

Processing().

4. When messageProcessing() returns, go to 1.

The transitions are implemented by using an endless while­loop and an

if statement; see Figure 4.9.

4.3. IMPLEMENTATION DETAILS 81

1 private void messageProcessing() {

Message msg;

while(inqueue.hasMsg()) {

msg = inqueue.nextMsg();

5 if (msg instanceof InvocMsg) {

CreolProcess p = newProcess((InvocMsg) msg);

processQueue.insert(p);

}

10 else if (msg instanceof CompMsg) {

CompMsg compmsg = (CompMsg) msg;

compset.insert(compmsg.getLabel(),compmsg.getRetVal());

}

else { /* Not supposed to happen */ }

15 }

}

Figure 4.10: The message processing in the object.

Message processing

Message processing is described in Section 3.4.4 in Chapter 3. The mes­

sage queue has methods hasMsg() and nextMsg(). These are used to pro­

cess all messages currently in the in­queue of the object.

There are two types of messages to process: invocation messages and

completion messages. An invocation message is an object of class In­

vocMsg, a completion message is an object of class CompMsg. Java

has an infix operator instanceof which checks if an object is of a spe­

cified class; this is used to figure out the message type. The messagePro­

cessing() method is given in Figure 4.10. Invocation messages give rise

to new processes; we define a method newProcess() which creates the

new process in accordance with the invocation message. Processes are

discussed below. The return values of method calls, given in completion

messages, are inserted into the completion set.

Note that the messageProcessing() method terminates when the in­queue

has no messages. This is in accordance with the precondition of Rule

3.4: when there is no more messages in the in­queue the object goes

from message processing to process scheduling.

Wait for message

In the model, there are no rules describing what the object should do

when it has the status “Wait for message”; this is quite natural as there is

nothing to do. The object goes from status “Wait for message” to status

“Message processing” when the in­queue is non­empty. The method

82 CHAPTER 4. IMPLEMENTATION OF THE CREOL VIRTUAL MACHINE

waitForMessage() will therefore wait until this condition is satisfied, and

then it will return. This is implemented by introducing a method wait­

ForMsg() in the class MsgQueue.7 The class MsgQueue uses a condition

variable msgArrived to wait for and signal the arrival of a message. The

use of signals is imperative; without it the object would need to poll the

in­queue for messages. This would lead to an inefficient solution with

“busy waiting”.

Process scheduling

The process scheduling, described in Section 3.4.5 in Chapter 3, is im­

plemented by a method processScheduling().

Recall that the object has an attribute processQueue of class Process­

Queue. The process queue and its methods are important in the al­

gorithm for choosing which process to execute. The methods are:

• insert(CreolProcess p): Inserts the process at the end of the queue.

• nextReady(): Returns the next ready process.

• nextReady(ObjVal caller, LabelSet labelSet): If there exists a process

with the given caller and a label within the given label set, the first

such process is returned.

• getProcess(String id): If the process identified by id exists, this pro­

cess is returned. If not (that is, it has terminated), null is returned.

Figure 4.11 shows the whole scheduling algorithm in Java code. The first

block of code (lines 4–9) suspends the active process if it is not ready.

This corresponds to Rule 3.15. This rule says that the wait variable

should be updated to true; therefore, sys_wait is set to true. The active

process is inserted in the process queue.

The next block of code (lines 12–20) addresses the case of a terminated

process. In the model this is taken care of by the rules 3.13 and 3.14.

Rule 3.14 says that if the dynamic link is set, the process identified by

this link is to be selected as the active process. Thus the call getPro­

cess(dynamiclink) on line 14. Note that this call is made even if the

process has terminated; in this case ProcessQueue.getProcess() returns

null, and the active process is set to null corresponding to Rule 3.13. If

7We have chosen to have a method waitForMsg() in the queue. Another solution is

to use the method nextMsg() which waits for a message to arrive and then returns the

message. The use of nextMsg() implies that the message returned most be handled in

the Creol object’s waitForMessage() method, that is, we would not follow the model.

4.3. IMPLEMENTATION DETAILS 83

1 private void processScheduling() {

/* Suspending the active process. */

if(activeProcess != null &&

5 !activeProcess.enabled() && !activeProcess.terminated()) {

activeProcess.procInfo.lvar.put("sys_wait", new BoolVal(←֓

→֒true));

processQueue.insert(activeProcess);

activeProcess = null;

}

10

/* Terminated process */

if(activeProcess != null && activeProcess.terminated()) {

ObjVal dynamiclink = (ObjVal) activeProcess.procInfo.lvar.←֓

→֒get("sys_dynamiclink");

if(dynamiclink != null) {

15 activeProcess = processQueue.getProcess(dynamiclink);

}

else {

activeProcess = null;

}

20 }

/* Activation of local call */

if(activeProcess != null && activeProcess.enabled() &&

!activeProcess.ready() && activeProcess.waitsFor() != null){

25 CreolProcess childProcess = processQueue.nextReady((ObjVal)←֓

→֒ attributes.get("this"), activeProcess.waitsFor());

if(childProcess != null) {

ObjVal ov = (ObjVal) activeProcess.procInfo.lvar.get("←֓

→֒sys_id");

childProcess.procInfo.lvar.put("sys_dynamiclink", ov);

30 processQueue.insert(activeProcess);

activeProcess = childProcess;

}

}

35 /* Activating a suspended process */

if(activeProcess == null) {

activeProcess = processQueue.nextReady();

}

}

Figure 4.11: The scheduling of processes in the object.

84 CHAPTER 4. IMPLEMENTATION OF THE CREOL VIRTUAL MACHINE

1 private void processExecution() {

while(activeProcess.ready())

activeProcess.execute();

5 }

Figure 4.12: The execution of processes in the object.

the dynamic link is not set, the active process is also set to null; this

corresponds to Rule 3.13.

The activation of local calls is a bit tricky. It is handled by the third block

of code (lines 23–33). It corresponds to Rule 3.12. The method Creol­

Process.waitsFor() is similar to the definition of the function waitsFor in

the model (Section 3.4.5), except that only label values identifying local

method invocations are returned. Thus it is not necessary to check if

the call is local (as the function isWaitingFor does). If the nextReady()

method succeeds in selecting a ready process, the dynamic link of this

process is set to the active process. The active process is suspended and

the new ready process is set as the active process.

The last block of code (lines 36–38) handles activation of a suspended

process. This is done only if the active process is null; this corresponds

to Rule 3.11.

Note that when the method CreolObject.processScheduling() terminates,

one of the precondition of Rule 3.5 or Rule 3.6 is satisfied. Hence the

task of process scheduling is finished.

Process execution

Section 3.4.6 describes process execution. The method processExecution()

in the class CreolObject implements process execution, given by the

rules 3.16–3.37. The method is given in Figure 4.12. To execute pro­

cesses, or more precisely, execute process statements, processExecution()

calls the method CreolProcess.execute(), which executes one statement.

This method must only be called when the process is ready. Therefore,

we use a while­loop and check if it is possible to execute a statement by

the call activeProcess.ready().

Processes

Recall the representation of a process in CCM:

〈 Local variables, Active code, Suspended code, id, dynamiclink 〉

4.3. IMPLEMENTATION DETAILS 85

The components id and dynamiclink are translated into local variables

sys_id and sys_dynamiclink; this is done to reduce the number of attrib­

utes in the class CreolProcess.

The statement is executed by calling the method execute() for the given

statement. A statement needs access to components of the object and

the process. This has an impact on how we organize things: we collect

all components necessary in an object procInfo of class ProcessInform­

ation. Then, when a statement s is to be executed, s.execute(procInfo)

is called. The class ProcessInformation has attributes corresponding to

the local variables, the object attributes, the in­queue, the out­queue, the

suspended code, the completion set, and the Central. In addition it has

a pointer to an object which gives unique label values, and an attribute

where all local label values are stored. The latter mentioned is used to

determine if a call was local, used by the method CreolProcess.waitsFor().

In Chapter 3, we defined some functions for the process. In the imple­

mentation, we have corresponding methods (without side­effects):

• enabled()

• ready()

• terminated()

• waitsFor()

The first three methods are straight forward implementations of the

definitions given in Section 3.4.3 and Section 3.4.5. The last method,

waitsFor(), is slightly different from the function waitsFor defined in Sec­

tion 3.4.5 — it returns only label values identifying local calls. The last

method of the class CreolProcess is the most interesting one: execute().

It is described in the next section.

The method CreolProcess.execute()

The method CreolProcess.execute() implements the execution of a single

statement, the activation of suspended code, and the suspending of not

enabled code (described in Chapter 3, Section 3.4.6). For a given state­

ment type, we have a Java class which represents the statement. This

way we can define the appropriate effect the statement has by a method

execute() in the corresponding class. All classes representing a statement

implements the interface Statement; this is necessary to be able to treat

all types of statements as a common type.

86 CHAPTER 4. IMPLEMENTATION OF THE CREOL VIRTUAL MACHINE

1 public void execute() {

if(activeCode == null) {

activeCode = procInfo.suspendedCode.getReady(procInfo);

}

5

activeCode = activeCode.execute(procInfo);

if(activeCode != null && !activeCode.enabled(procInfo)) {

procInfo.suspendedCode.insert(activeCode);

10 activeCode = null;

}

}

Figure 4.13: The execute() method in class CreolProcess.

1 public interface Statement {

CreolCode execute(ProcessInformation pi);

boolean enabled(ProcessInformation pi);

boolean ready(ProcessInformation pi);

5 LabelSet localCalls(ProcessInformation pi);

}

Figure 4.14: The interface Statement.

The Java code for Process.execute() is given in Figure 4.13. When active­

Process.execute() is called, execute() is called for the current statement.

The execute() method returns the next statement to be executed; hence

we have

activeCode = activeCode.execute(procInfo)

The process’ code consists of a set of statement lists, that is, the active

code and the suspended code. Any of these statement lists may be ready.

Therefore, the class SuspendedCode has a method getReady() which is

called if the attribute activeCode is null (lines 2­4); this corresponds

to Rule 3.16. Similarly, when the first statement of the active code is

executed, if the next is not enabled, the active code is suspended (lines

8­11); this corresponds to Rule 3.17.

Next we look at some details for the statements.

The method Statement.execute()

In our implementation, the active code attribute is a reference to an ob­

ject of a class implementing the interface Statement (see Figure 4.14).

4.3. IMPLEMENTATION DETAILS 87

1 public class AssignmentList implements Statement {

VarList variables;

ExprList el;

Statement next;

5

public CreolCode execute(ProcessInformation pi) {

VarList vl = variables;

DataList dl = el.evaluate(pi);

while(vl != null) {

10 if(pi.lvar.has(vl.first()))

pi.lvar.put(vl.first(), dl.first());

else

pi.att.put(vl.first(), dl.first());

vl = vl.rest();

15 dl = dl.rest();

}

return next;

}

...

20 }

Figure 4.15: The execution of the multiple assignment statement.

The methods enabled(), ready() and localCalls() are straight forward im­

plementations of the corresponding functions defined in Section 3.4.3

and Section 3.4.5.

The multiple assignment statement V := E for a variable list V and an

expression list E is implemented by a class AssignmentList. The execute()

method of this class is given in Figure 4.15; it corresponds to Rule 3.19.

Note that the expression list is evaluated before each of the variable

is assigned the corresponding value, and that the sys_wait attribute is

updated to false.

The conditional if ­statement if b then S1 else S2 fi for a boolean expres­

sion b and statement lists S1 and S2 is implemented by a class IfThenElse.

The execute() method of this class is given in Figure 4.16. Recall that

statements are also statement lists, as statements have a next­pointer.

As for the assignment statement, the sys_wait attribute is updated to

false. Then the boolean expression b is evaluated, and the appropriate

statement (list) is returned (Rule 3.21 and Rule 3.22).

4.3.5 Messages and Message Transportation

The Creol objects communicate by asynchronous method calls, modeled

by sending invocation and completion messages. The messages are ob­

jects of class InvocMsg or CompMsg, both implementing the interface

88 CHAPTER 4. IMPLEMENTATION OF THE CREOL VIRTUAL MACHINE

1 public class IfThenElse implements Statement {

BoolExpr be;

Statement ifStatement, elseStatement;

5 public CreolCode execute(ProcessInformation pi) {

BoolVal res = be.evaluate(pi);

pi.lvar.put("sys_wait", new BoolVal(false));

if(res.getValue())

return ifStatement;

10 else

return elseStatement;

}

...

}

Figure 4.16: The execution of the if ­statement.

Message and a method getDestination(). This method returns the object

identifier of the destination Creol object.

As previously discussed, the object must be able to treat its in­queue

as an out­queue, that is, it must be able to insert messages in its in­

queue. Therefore, the in­queue is implemented by a class MsgQueue

which implements MsgQueueInOut; the code is given in Figure 4.17.

The messages are stored in a linked list of messages. We use a lock

to protect the in­queue against interference and a condition variable to

signal the arrival of a message. The lock is declared to be fair to prevent

starvation. The nextMsg() and waitForMsg() methods wait for a message

to arrive; the call msgArrived.await() call is done in a loop and within a

try block because of special Java properties; see Section 2.2.

The transportation of messages between objects will be taken care of

by the Creol object’s out­queue, implemented by a class ForwardingMsg­

Queue; see Figure 4.18. The class has one method: insert(). When called,

this method uses the message queue services object to get a reference

to the in­queue of the Creol object for which the message is addressed.

Note that in the class ForwardingMsgQueue, no persistent object vari­

ables are modified; hence, there is no need for synchronization and

therefore no locks. Also, the out­queue is only accessed by the Creol

object, so there would be no risk of interference even if some variable

was modified.

4.3. IMPLEMENTATION DETAILS 89

1 public class MsgQueue implements MsgQueueInOut {

private LinkedList<Message> queue;

protected Lock lock;

protected Condition msgArrived;

5

public MsgQueue() {

queue = new LinkedList<Message>();

lock = new ReentrantLock(true);

msgArrived = lock.newCondition();

10 }

public Message nextMsg() {

lock.lock();

try {

15 while(queue.size() == 0) msgArrived.await();

} catch (InterruptedException ie) {}

Message msg = queue.remove();

lock.unlock();

return msg;

20 }

public void insert(Message msg) {

lock.lock();

queue.addLast(msg);

25 msgArrived.signal();

lock.unlock();

}

public boolean hasMsg() {

30 lock.lock();

boolean answer = queue.size() > 0;

lock.unlock();

return answer;

}

35

public void waitForMsg() {

lock.lock();

try {

while(queue.size() == 0) msgArrived.await();

40 } catch (InterruptedException ie) {}

lock.unlock();

return;

}

}

Figure 4.17: The class MsgQueue.

90 CHAPTER 4. IMPLEMENTATION OF THE CREOL VIRTUAL MACHINE

1 public class ForwardingMsgQueue implements MsgQueueOut {

private MsgQueueServices mqs;

public ForwardingMsgQueue2(MsgQueueServices mqs) {

5 this.mqs = mqs;

}

public void insert(Message msg) {

MsgQueue msgQ = mqs.getQueue(msg.getDestination());

10 msgQ.insert(msg);

}

}

Figure 4.18: The class ForwardingMsgQueue.

4.4 Example Run: The Santa Claus Problem

We test our implementation by coding the Santa Claus problem in the

Java representation. We do not have any notion of a console or a ’print’

statement in Creol, and we do not get any output from the programs.

Therefore, we define a new statement print expr where expr is an ex­

pression over strings and variables (here, + is used to concatenate ex­

pressions). We use Java’s System.out.println() statement to write to the

console.

We are only interested in what Santa Claus is doing; hence, we translate

the pseudo code «Pick up and deliver toys»; to print “Santa Claus deliv­

ers toys.”; and «Talk to elves»; to print “Santa Claus talks to elves: “ +

inoffice_elves; A run gives the following output on the console:

$ java SantaClauseProblem

Santa Claus delivers toys.

Santa Claus talks to elves: (cvm,11), (cvm,12), (cvm,14)

Santa Claus delivers toys.

Santa Claus delivers toys.

Santa Claus delivers toys.

Santa Claus talks to elves: (cvm,13), (cvm,15), (cvm,11)

Santa Claus delivers toys.

Santa Claus delivers toys.

Santa Claus delivers toys.
Santa Claus talks to elves: (cvm,12), (cvm,14), (cvm,13)

Santa Claus delivers toys.

.

.

The (cvm,11), (cvm,12), etc. are object identifiers for elves.

4.5. SUMMARY 91

4.5 Summary

In this chapter we have presented an implementation of the Creol vir­

tual machine. Java was chosen as the implementation language because

it has some properties that appealed to us: it is object­oriented, multi­

threaded, has network capabilities and is in widespread use. However,

we made some assumptions about the Java virtual machines to take

full advantages of multi­threading. We argued for using one execution

thread for each Creol object, and also for using this execution thread for

message transportation. We defined a number of classes and interfaces

in a way that supported encapsulation and hiding of data. The design

follows the model to a large extent, and most of the implementation

was straight­forward; however, we had to put a lot of emphasize on syn­

chronization to achieve safe and efficient communication between the

Creol objects and the Central, and between message queues. Finally, we

gave an example run of the Santa Claus problem.

92 CHAPTER 4. IMPLEMENTATION OF THE CREOL VIRTUAL MACHINE

Chapter 5

Multiple Inheritance

In this chapter we present multiple inheritance in the Creol language

and discuss how to extend the model and the CVM implementation with

multiple inheritance. We have inheritance both at the interface and class

level; here, only inheritance at the class level is discussed. First, we take

a look at multiple inheritance in general.

A class C inherits from another class B if B is an ancestor class of C; the

ancestor class can be either direct or indirect. With single inheritance,

a class is derived from at most one direct ancestor class (Figure 5.1a),

whereas for multiple inheritance there may be several direct ancestors

(Figure 5.1b). An ancestor B of a class C is called a superclass of C; C is

called a subclass of B.

Class level inheritance facilitates code reuse: a class inherits the meth­

ods and attributes of its superclasses. Methods may share the same

name and the signature may overlap, in which case which method defini­

tion to use must be determined. Likewise, there may be attribute naming

conflicts. For single inheritance, the inheritance graph defines a total or­

dering1 of the inherited classes. This ordering can be used to determine

which method definition or attribute to use. With multiple inheritance,

the inheritance graph defines only a partial ordering2; therefore, the

conflicts are more difficult to resolve.

The class of an object is not always statically known. Therefore, many

programming languages bind methods virtually; a method is virtually

bound if the body corresponding to a method invocation is selected at

run­time. In Creol, external calls to objects typed by interfaces are al­

ways virtually bound.

1An ordering R over a set S is total if all elements in S are comparable, that is, for

all c1 and c2 in S, R(c1,c2) can be determined.
2An ordering R over a set S is partial if there may be elements in S which is not

comparable.

93

94 CHAPTER 5. MULTIPLE INHERITANCE

Figure 5.1: Examples of class inheritance: a) single inheritance, b) mul­

tiple inheritance, c) duplicate inheritance, and d) a common ancestor in

the inheritance graph. A, B, C and D denotes class names, m a method

and x an attribute.

We identify four problems (or challenges) with multiple inheritance which

must be resolved:

Method ambiguities: If a method is inherited from two or more super­

classes which are not in the same inheritance path (Figure 5.1b),

how should we determine which method definition to use?

Duplicate inheritance: If a class is inherited more than once, either dir­

ectly (Figure 5.1c) or indirectly (Figure 5.1d), should there be one

or more instances of the attributes in the object?

Invocation of a superclass’ methods: How can a method be called from

a method in a subclass, possibly a redefinition of the method?

Attribute naming conflicts: How should attribute naming conflicts be

resolved, such that superclasses’ attributes can be accessed even if

there are naming conflicts?

C++ allows multiple inheritance at the class level [30]. Ambiguities are

removed by explicit resolution. The object gets multiple copies of the

attributes if a class is inherited more than once. Java [12] and C# [11] do

not support multiple inheritance at the class level and therefore avoid

the first two problems. In C++, the class names are used to access super­

class’ methods and attributes. The inheritance graph can be followed to

the intended class; e.g., Class1::Class2::method(). In Java, only the meth­

ods of the direct ancestor of a class can be called; this is done by using

the keyword super; e.g., super.m(). Similarly, attributes can be accessed

by, e.g., super.a.

In the next section, we will see how potential problems with multiple

inheritance are solved in the Creol language.

5.1. CREOL AND MULTIPLE INHERITANCE 95

Figure 5.2: An unintended method definition can be selected due to same

method name and signature in two unrelated classes.

5.1 Creol and Multiple Inheritance

Creol supports multiple inheritance at both the interface and class level.

Interfaces define the types of objects; therefore, interface inheritance

define subtypes. Interface inheritance is rather simple: a set union of all

the methods of the inherited classes. Multiple inheritance at the class

level imposes some challenges. We will now discuss how the challenges

encountered in the previous section are solved in the Creol language.

The presentation is based on [17, 21].

Methods may have the same name but different signature or cointerface.

Consequently, in addition to the method name, the bounded method

must also match the signature and cointerface. In the following discus­

sion we will ignore the signatures and cointerfaces of method calls; this

is to keep the presentation as simple as possible.

Method binding

In Creol, we do not require explicit resolution of ambiguities, nor do we

define any ordering of the classes (besides the ordering defined by the in­

heritance graph). Methods are bound virtually, and which method body

to bind is selected non­deterministically among the candidates. How­

ever, we need a restriction to avoid unintended methods to become can­

didates.

Consider this example: A class B has a method m’ which invokes a

method m; see Figure 5.2. The method m exists in class A, a super­

class of B. Obviously, A.m or a redefinition of this method is supposed

to be called; however, we have no guarantee that the method which is

bound actually is a redefinition: Assume we have a class C which inherits

A, B and a unrelated class D, and that class D also has a method m. As

96 CHAPTER 5. MULTIPLE INHERITANCE

methods are bound at run­time based on the actual class of an object, we

risk that D.m is bound to the call, which was not intended. Creol avoids

this problem by the pruned binding strategy. To explain it, we need two

predicates over classes:

• A class A is above a class C if A is the same class as C or if A is a

superclass of C.

• A class A is below a class C if A is the same class as C or if A is a

subclass of C.

For a method call m, type checking guarantees that there is a matching

method definition in some class A above the class in which the method

call is made. The class A is thus identified at compile time. The actual

binding is restricted to a method in a class below A; we denote this by

m<A.

• The pruned binding strategy ensures that a method call m is only

bound to an intended redefinition of m. At compile time, a method

call m in a class C is replaced by m<A where A is the statically

identified class above C. When executed, the binding of the method

call is restricted to methods defined in classes below A.

In Creol, it is possible to call methods in superclasses by using qualified

names. A method call to a method m in a superclass C is written m@C.

The exact semantics is that this is a call to a method m above C, that

is, the class C need not implement m, but C or a superclass of C must

implement m. In our previous example, a method in C might make a call

m@B. We use the class names directly; we do not follow the inheritance

graph as in, e.g., C++. This works fine because we only get one copy

of the class attributes even if a class is inherited more than once (see

below).

Note: The invocation of superclass’ methods is done explicitly by the

programmer, whereas the pruning of method calls is done by the com­

piler. In our example, the method call m@B would be replaced by m@B<A

by the compiler.

Attributes and parameters

If a class is inherited more than once, as for the inheritance graphs c)

and d) in Figure 5.1, the object only gets one instance of the attributes of

each class; e.g., only one variable with name x for each class. Attributes

5.1. CREOL AND MULTIPLE INHERITANCE 97

1 class SAuth

var gr:Agent=null

begin

op grant(in x:Agent) == await gr = null; gr := x

5 op revoke(in x:Agent) == if gr = x then gr := null fi

op auth(in x:Agent) == await (gr = x)

end

class MAuth

10 var gr:Set[Agent]=empty

begin

op grant(in x:Agent) == gr := gr U { x }

op revoke(in x:Agent) == gr := gr \ { x }

op auth(in x:Agent) == await (x in gr)

15 end

Figure 5.3: Single and multiple authorization policies.

in superclasses are accessed by qualified names; e.g., x@A. Thus, there

will be no naming conflicts between class attributes.

Note that also parameters (including the parameters of superclasses)

give rise to persistent object variables. At object creation, parameter

values may be passed down to inherited classes. The attributes are given

initial values by expressions over the class’ parameters and inherited

parameters and attributes.

5.1.1 Example: Combining Authorization Levels

We now present an example to illustrate the use of multiple inheritance

in Creol. The example is presented in [17, 21]; however, here we present

a slightly different version.

Assume we have a database

class DB

begin

op access(in key:int, high:bool out y:Data) == ...

op clear(in x:Agent out ok:bool) == ...

end

The method access(in key:int, high:bool out y:Data) accesses the data­

base and returns the data associated by integer key. If high is true,

more (sensitive) information may be given. The method clear(in x:Agent

out ok:bool) checks if an agent x has access to sensitive data.

The database does not implement any interfaces; thus, the methods and

thereby the data can not be accessed from outside. The reason for this

98 CHAPTER 5. MULTIPLE INHERITANCE

is that we want to control the access to the database. We want high

clearance agents to have unique access to (classified) data, whereas low

clearance agents may share access to unclassified data. To implement

this, we first define two classes SAuth and MAuth, used to give single and

multiple access to a resource; see Figure 5.3. These classes implement

methods grant, revoke and auth, used to grant access to the resource,

revoke access and to wait for an agent to be granted access (authorized).

The access to the database is through the interfaces High and Low and

implemented by classes HAuth and LAuth, see Figure 5.4. The class

HAuth inherits both DB and SAuth, the latter used to enforce exclus­

ive access to the database. As the methods of SAuth are internal and

are not offered through any interface, low clearance agents can not call

the grant method to bypass the openH method and get access to clas­

sified data. The Low interface is similar with methods openL and closeL

(openL always succeeds and therefore it does not have an out­parameter

as openH).

Combining the authorization policies

We will now use multiple inheritance to combine the authorization poli­

cies. We define a class HLAuth which implements both the Low and High

interface; see Figure 5.5. An object of the HLAuth class supports both

high and low access to data. The access method is redefined so that

agents which have succeeded in getting high access rights (by the openH

method) get access to sensitive information while agents which have low

access rights (by the openL method) only get insensitive information.

Both SAuth and MAuth have an attribute gr. This is no problem, as

the access method uses a qualified reference gr@SAuth to access gr in

SAuth. Qualified names are also used to call the acc methods of HAuth

and LAuth. The methods of HAuth and LAuth call methods in SAuth and

MAuth, respectively. The pruned binding of method calls ensures that

the correct methods are called; e.g., the call auth(x) in HAuth is changed

to auth<SAuth(x) by the compiler, restricting the auth call to be bound

to a method below SAuth. Thus, in an instance of class HLAuth, the

auth in SAuth will be called as SAuth is the only class below SAuth with

a method auth. As class attributes are only inherited once even if the

class is inherited more than once, there will be only one instance of the

data (attributes) in the database.

Note that we allow low level access at the same time as high access is

performed. We can give exclusive access to the database to agents with

high clearance by redefining the openH and openL methods. High access

succeeds when no agents have high nor low access:

5.1. CREOL AND MULTIPLE INHERITANCE 99

1 interface High

begin

with Agent

op openH(out ok:Bool)

5 op access(in key:int out y:Data)

op closeH

end

interface Low

10 begin

with Agent

op openL

op access(in key:int out y:Data)

op closeL

15 end

class HAuth implements High inherits SAuth, DB

begin

op acc(in x:Agent, key:int out y:Data) ==

20 auth(x);

await access@DB(key, true; y)

with Agent

op openH(out ok:Bool) ==

await clear(caller; ok);

25 if ok then grant(caller) fi

op access(in key:int out y:Data) ==

acc(caller, key; y)

op closeH == revoke(caller)

end

30

class LAuth implements Low inherits MAuth, DB

begin

op acc(in x:Agent, key:int out y:Data) ==

auth(x);

35 await access@DB(key, false; y)

with Agent

op openL == grant(caller)

op access(in key:int out y:Data) ==

acc(caller, key; y)

40 op closeL == revoke(caller)

end

Figure 5.4: High and low access to data.

100 CHAPTER 5. MULTIPLE INHERITANCE

1 interface HighLow inherits High, Low

begin

end

5 class HLAuth implements HighLow inherits LAuth, HAuth

begin with Agent

op access(in key:int out y:Data) ==

if caller=gr@SAuth

then acc@HAuth(caller, key; y)

10 else acc@LAuth(caller, key; y)

fi

end

Figure 5.5: Both high and low access to data.

op openH(out ok:bool) ==

await clear(caller;ok);

if ok then await gr@MAuth = empty ∧ gr@SAuth = null;

grant@SAuth(caller)

fi

Similarly, the opening of a low clearance access must wait until there is

no high clearance agent accessing the database:

op openL == await gr@LAuth = null; grant@MAuth(caller)

5.2 Extending the Model

In order to allow multiple inheritance, we must extend the model with

some additional information and change some of the computation part.

5.2.1 Changes in the Structure

The changes in the structure consist of adding more information to the

method calls an to add a subtype graph to CCM and the Central.

Method calls

External calls must be extended with the signature and cointerface of

the call; internal calls must in addition preserve above­constraints and

the below­constraints must be added. Recall that in the model (Sec­

tion 3.3.3), we changed some of the method call statements to min­

imize the number of different statements. We will do the same here,

5.2. EXTENDING THE MODEL 101

and denote missing information by ǫ. The general method call is either

t!o.m@C<C’(E)sig,co or !o.m@C<C’(E)sig,co. The class names C and C’ give

the above­constraint and below­constraint, respectively. Method calls

with and without labels are very similar; method calls with labels are

changed in the following way:

• t!o.m(E) is changed to t!o.m@ǫ<ǫ(E)sig,co

• t!m@C(E) is changed to t!this.m@C<C’(E)sig,co

• t!m(E) is changed to t!this.m@ǫ<C’(E)sig,co

where sig and co are the signature and cointerface of the method call,

respectively. The class C’ is the class in which the type analysis finds

the method m with matching signature and cointerface. The types of

the actual in­ and out­parameters are determined at compile time and

added to the method invocation. Likewise the cointerface is determined

at compile time and preserved. See [21] for details.

Example: Assume that the method’s statement list contains the method

call t!o.methodName(E); t?(V). The types of the expressions in the ex­

pression list E and the the variables in the variable list V are given by

lists of types T in and T out, respectively. Further, assume that the object

in which this call is made is of interface I. Then t!o.methodName(E) is

changed to t!o.methodName(E)sig,I where sig is T in; T out .

We do not go into more details about how the signature, cointerface and

below constraint can be determined, as it is outside the scope of this

thesis. However, an important fact is that it will always succeed in any

well­typed program [21].

Subtype graph

To check if signatures and cointerfaces match, the Central needs to store

the subtype graph. The subtype graph is defined by the inherits clause of

interfaces and predefined subtypes of data types. In addition, we denote

by Data the supertype of all types, and Any the supertype of all interface

types. There is one exception: the type Internal is a special interface

type which is used in internal calls, that is, the cointerface of internal

methods is Internal and internal calls are made by giving Internal as the

interface of the caller. Internal has no supertypes.

The model is extended with the subtype graph:

CCM = (CVM names, Initial objects, Class def. set, Subtype graph)

102 CHAPTER 5. MULTIPLE INHERITANCE

Figure 5.6: The Central is extended with the subtype graph. The services

are changed.

Likewise, the Central is extended with the subtype graph:

Central = 〈 In­queue, Out­queue,

Class definition set, Subtype graph 〉

The subtype graph is a set of pairs <type,supertypes>, where supertypes

is a list of types (t1,..,tn) where each type ti is a supertype of type.

Only the direct supertypes are given, that is, indirectly defined super­

types are determined by traversing the graph. Example:

Subtype graph = { <int,(Data)>, <bool,(Data)>, <nat,(int)>,

<Any,(Data)>, <High,(Any)>, <Low,(Any)>,

<HighLow,(High,Low)>, . . . }

It may be more efficient to store all superclasses of a class, but we do not

consider efficiency to be important. Furthermore, updates may be easier

to handle with our solution. Figure 5.6 presents the extended central.

5.2.2 Changes in the Computation

Recall that we have extended both the model and the Central by the sub­

type graph. At initialization, the Central’s Subtype graph component is

set equal to the subtype graph given in the CCM tuple.

We must change the Central’s services “New object” and “Get method

definition” and how the latter service is invoked. To define these ser­

vices, we will use functions over the messages received by the Central,

the class definition set and the subtype graph. We will use matching

of arguments; e.g., to get the first item of a list, we will write (first,

rest) which will match any non­empty list; in case of a list of a single

item, rest will be ǫ. We also denote the empty list by ǫ. The functions

are close to the actual implementation presented in Section 5.3.

5.2. EXTENDING THE MODEL 103

Service: New object

The creation of a new object with and without class inheritance is very

similar; the only difference is that with inheritance, we must also instan­

tiate parameters and attributes of superclasses. Recall that a new object

is created when the Central receives a message

newObj(objfrom, classname, actParam)

We now define how to create and initialize the persistent variables of the

object; we refer to these as the attributes; however, they also include the

class parameters. We create a set of pairs <id,val> while traversing the

inheritance graph, by a function varSet:

Attributes = varSet(classname, actParam, Class def set)

The function varSet first instantiates the parameters and then the attrib­

utes by two functions instPar and instAtt:

varSet(class, actPar, CD) =

instAtt(instPar(∅, <class,actPar>, CD), class, CD)

The two functions instPar and instAtt are now presented.

Instantiation of the parameters: The function instPar traverses a list of

pairs <class­name, expression­list> and instantiates parameters for

each class. The inherited classes (with parameter expressions) are added

in front of the list; hence, parameters are instantiated depth­first.

instPar(VAR, ǫ, CD) = VAR

instPar(VAR, (<class,E>,rest), CD) =

instPar(applyP(VAR,par(class,CD),E), (inhList(class,CD), rest), CD)

The function inhList returns the inheritance list of the class, whereas

applyP traverses a list of variables and assigns to each of the variables

the corresponding evaluated expression:

applyP(VAR, ǫ, ǫ) = VAR

applyP(VAR, (v,V), (e,E)) = applyP(VAR ⊕ {<v,eval(VAR,e)>}, V, E)

The function eval evaluates an expression in the context of the given

variable mapping. The operator ⊕ is similar to a set union operator. It

takes two set of pairs <id,val> and keeps the left version if both have a

pair with same id:

104 CHAPTER 5. MULTIPLE INHERITANCE

S ⊕ ∅ = S
S ⊕ {<id,val>, rest} =

if(∃ val’ s.t. <id,val’> ∈ S) then S ⊕ {rest}

else S ∪ {<id,val>} ⊕ {rest} fi

Instantiation of the attributes: The function instAtt is similar to instPar ;

however, as attributes are initialized by expressions over inherited class’

attributes, superclass’ attributes are instantiated first.

instAtt(VAR, ǫ, CD) = VAR

instAtt(VAR, (class,rest), CD) =

instAtt(applyA(instAtt(VAR, inhC(class,CD), CD), att(class,CD)),

rest, CD)

The class attributes are looked up by a function att which simply re­

turns the Attributes component of the class; inhC returns the inherited

classes (without the initial expression). The function applyA is almost as

applyP, except from how the variable names and expressions are given:

applyA(VAR, ǫ) = VAR

applyA(VAR, (<v,e>,rest)) = applyA(VAR ⊕ <v,eval(VAR,e)>)

Service: Get method definition

The introduction of multiple inheritance implies that we must make

some changes to the statements, the invocation messages, the “get method

definition” messages and how the actual look­up of methods is per­

formed.

Recall that methods are invoked by sending invocation messages. The

format of this message type must be changed; we need to extend it with

the above and below constraints, the signature and the cointerface:

invoc(objto, objfrom, label, method, above­class, below­class, sig, co, par)

The rules which concern method calls must be changed (rules 3.25­3.28).

In Section 5.2.1 we changed the call statements so that we only have two

different call statements:

1) t!o.m@C<C’(E)sig,co

2) !o.m@C<C’(E)sig,co

The changes to the rules is straight forward: C, C’, sig and co is added

to the invocation message; for instance:

5.2. EXTENDING THE MODEL 105

invoc(objto, objfrom, label, m, C, C’, sig, co, par)

When an object receives an invocation messages, method definitions are

fetched by sending a get method definition message. As for invocation

messages, we must change the format of this message:

getMethodDef(obj, method, above­class, below­class, sig, co)

Note that we have removed the class part of the message, as now the

class is defined by the above and below constraints. Invocation messages

where the above­class is ǫ, above­class is set to the class of the object obj.

The other components in the get method definition message are as in the

invocation message. For the example of an invocation message given

above, the receiving object obj sends a message

getMethodDef(obj, m, C, C’, sig, co)

to the Central (assuming the above­class parameter is not null). Now,

when the Central receives this message, it looks up the method defini­

tion in the class definition set. To check for a matching signature and

cointerface, the subtype graph is also used. The look­up is defined by a

function lookUp; this function is soon to be defined. The Central answers

by a methodDef message:

methodDef(obj, parList(M), retVar(M), code(M))

where

M = lookUp(m,sig,co,C’,C,ClassDefSet,SubtypeGraph)

The method look­up mechanism (Rule 3.2) is changed to take inheritance

into account. We start in the above­class C and search for a method

which matches the method name, signature and cointerface, with the

constraint that the method must be in a class below C’. As we start

to search in C and only search upwards through the class inheritance

graph, we are assured that we only visit classes above C. The search

algorithm is defined by a recursive function

lookUp(method name, signature, cointerface, below class,

class list, class definition set, subtype graph)

106 CHAPTER 5. MULTIPLE INHERITANCE

The first three arguments are the method’s name, signature and cointer­

face. The fourth argument gives the class below which the method must

be bound. The fifth argument is a list of class names. The search for the

method is done by adding inherited classes at the beginning of this list,

giving a depth­first search. The two last arguments are the class defin­

ition set and the subtype graph, respectively. The function’s definition

is

lookUp(mname, sig, co, belowClass, (class, rest), CD, SG) =

if(isBelow(class,belowClass,CD) and

∃ M ∈ methods(class,CD) s.t. match(mname,sig,co,M,SG))
then M

else if(isBelow(class,belowClass,CD))

then lookUp(mname,sig,co,belowClass,(inhC(class,CD),rest),CD,SG)

else lookUp(mname,sig,co,belowClass,rest,CD,SG)

fi fi

where the the function methods returns the methods of the class, the

function inhC returns the a list of the inherited classes and the functions

isBelow and match are defined as

isBelow(class1, class2, CD) =
class2 == ǫ or class1 == class2 or

(∃ c ∈ inhC(class1,CD) s.t. isBelow(c,class2,CD))

match(mname, sig, co, <MNAME,SIG,CO,..>, SG) =

mname == MNAME and matchSig(sig,SIG,SG) and isSubtype(co,CO,SG)

The function == checks for equality and the functions matchSig and is­

Subtype are defined as

matchSig((sigin; sigout), (SIGin; SIGout), SG) =

length(sigin) == length(SIGin) and length(sigout) == length(SIGout)
and ∀ i ∈ length(sigin) : isSubtype(sigini , SIGini , SG)

and ∀ i ∈ length(sigout) : isSubtype(SIGouti , sigouti , SG)

isSubtype(type1, type2, SG) =

type1 == type2 or ∃ <type1,(..,t,..)> ∈ SG s.t. isSubtype(t, type2, SG)

The function length gives the length of the list.

5.3 Extending the Implementation

In this section, we will show how the Creol Virtual Machine implement­

ation is changed to support multiple inheritance. Most of the changes

are straight forward implementations of the functions defined in Section

5.2.

5.3. EXTENDING THE IMPLEMENTATION 107

5.3.1 Changes to the Creol Program Representation

The subtype graph is implemented by using a Java Hash­Map with the

type as the key and a list of supertypes as the value. The interface

CreolProgram is extended with a method

public SubtypeGraph getSubtypeGraph()

Thus, the subtype graph is part of the Java class which represents a

Creol program (and implements the CreolProgram interface). The class

SubtypeGraph has a method

public boolean isSubtypeOf(String type1, String type2)

which implements the function isSubtype from the previous section. The

subtype graph and its method is used by the getMethodDef() method.

We define new classes Sig and Co which are used to give the signature

and cointerface in method calls and method definitions. The class Sig

has a method

public boolean matches(Sig sig, SubtypeGraph sg)

which implements the matchSig function from the previous section.

The call statement is changed so that the above and below class can

be specified (for internal calls) and the signature and cointerface is ad­

ded. The invocation message is changed accordingly. These changes

are straight forward and therefore we will not describe the changes any

further.

5.3.2 Changes to the Central’s Services

Service: New object

The method Central.newObject() is given in Figure 4.5 in Chapter 4. The

introduction of inheritance implies that we must declare and initialize

the parameters and attributes of superclasses. The methods

Central.declareParameters() and

Central.declareAttributes()

implements the functions declPar and declAtt, respectively; see Figure

5.7.

108 CHAPTER 5. MULTIPLE INHERITANCE

1 private void declareParameters(VarSet att, CreolClass creolclass, ←֓

→֒DataList actualParameters) {

/* Parameters for this class */

DataList parValues = actualParameters;

VarList vl = creolclass.getParameters();

5 while(vl != null) {

att.put(vl.first(), parValues.first());

vl = vl.rest();

parValues = parValues.rest();

}

10

/* Parameters for inherited classes */

InheritsList il = creolclass.getInheritsList();

Inherits inh;

while(il != null) {

15 inh = il.first();

if(inh.getParameters() != null)

declareParameters(att, classdef.getClass(inh.getClassname()), ←֓

→֒inh.getParameters().evaluate(att));

else

declareParameters(att, classdef.getClass(inh.getClassname()), ←֓

→֒null);

20 il = il.rest();

}

}

private void declareAttributes(VarSet att, CreolClass creolclass) {

25 /* Inherited attributes */

InheritsList il = creolclass.getInheritsList();

while(il != null) {

declareAttributes(att, classdef.getClass(il.first().getClassname←֓

→֒()));

il = il.rest();

30 }

/* Attributes of this class */

VdeclList vl = creolclass.getAttributes();

Vdecl vdecl;

35 while(vl != null) {

vdecl = vl.first();

if(vdecl.getInitial() != null)

att.put(vdecl.getName(), vdecl.getInitial().evaluate(att));

else

40 att.put(vdecl.getName(), null);

vl = vl.rest();

}

}

Figure 5.7: The methods used to create the persistent variables of the

object.

5.3. EXTENDING THE IMPLEMENTATION 109

1 public CreolMethod getMethodDef(String above, String below, String ←֓

→֒methodname, Sig sig, Co co) {

classdefLock.readLock().lock();

String classname;

CreolMethod cm = null;

5 CreolClass cc;

LinkedList<String> classes = new LinkedList<String>();

classes.add(above);

while(classes.size() > 0) {

10 classname = classes.remove();

if(!isBelow(classname,below)) continue;

cc = classdef.getClass(classname);

15 cm = cc.getMethod(methodname);

if(cm != null) {

if(sig.matches(cm.getSig(), subtypeGraph) && subtypeGraph.←֓

→֒isSubtypeOf(co.getValue(), cm.getCo().getValue())) {

classdefLock.readLock().unlock();

return cm;

20 }

}

/* Add all inheriated classes to the classes list */

InheritsList il = cc.getInheritsList();

25 while(il != null) {

classes.addFirst(il.first().getClassname());

il = il.rest();

}

}

30 return null;

}

Figure 5.8: The method Central.getMethodDef() returns the method

definition.

110 CHAPTER 5. MULTIPLE INHERITANCE

Service: Get method definition

In Chapter 4, the method Central.getMethodDef() was a simple look­

up of a method. Now, as we have introduced multiple inheritance, this

method is rather complicated. The method’s arguments are changed: the

class name is replaced by an above constraint, and the below­constraint,

the signature and the cointerface are added; see Figure 5.8.

We have chosen to use a linked list of strings where we first add the

class name given by the above argument; inherited classes are added to

this list at the end of the method (lines 24­27). The inherited classes are

added at the front of the list so that we get a depth first search. The

below­constraint is observed by skipping classes which are not below

the below­class, that is, a jump is made to the top of the while loop (line

12).

We have assumed that within a class, all method names are unique;

therefore, methods are fetched by the method name and the class name

(lines 14­15). Then, if the specified class has a method with the reques­

ted method name, this method is checked to see if the signature and

cointerface match, and if so, the method is returned.

Note that the class definition set is protected by the lock classdefLock.

As we do not alter the class definitions, we use a read­lock to allow mul­

tiple readers to call Central.getMethodDef() at the same time. (The

reason for protecting the class definitions is to prepare for class defin­

ition updates; for class updates a write­lock must be used to enforce

unique access.)

5.4 Example Run: Authorization Policies

To test the new look­up mechanism, we use the authorization policies

example from Section 5.1.1. Recall that the HLAuth class inherits a class

DB and controls the access to the database. We create a small database

of customers by implementing the DB class; see Figure 5.9. We have

only one customer: Ole Hansen. His customer number is 123, and his

sensitive information is his telephone number. For simplicity, all agents

are granted high access; still, the result depends on whether openH or

openL is used.

To test the database, we make a class TestAgent which contacts the data­

base and asks for information about customer 123 (both high and low

access) and customer 456 (only low access). See Figure 5.10.

In the example run, we create an instance of the HLAuth class; say db =

new HLAuth(). Further, we create an instance of the TestAgent class. The

5.4. EXAMPLE RUN: AUTHORIZATION POLICIES 111

1 class DB

begin

op access(in key:int, high:bool out y:Data) ==

if key = 123

5 then

if high then

y := ’’123 is customer Ole Hansen. Phone no: 90807060.’’

else

y := ’’123 is customer Ole Hansen.’’

10 fi

else

y := ’’Unknown customer.’’

fi

15 op clear(in x:Agent out ok:bool) == ok := true

end

Figure 5.9: A small customer database.

1 class TestAgent(db:HighLow) implements Agent

begin

op run ==

var result:String, ok:bool;

5 db.openH(;ok);

if ok

then

db.access(123; result);

print ’’Result 1: ’’ + result;

10 db.closeH;

fi;

db.openL;

db.access(123; result);

15 print ’’Result 2: ’’ + result;

db.access(456; result);

print ’’Result 3: ’’ + result;

db.closeL

end

Figure 5.10: An agent which tests the database.

112 CHAPTER 5. MULTIPLE INHERITANCE

object identifier of the database is given as an parameter: agent = new

TestAgent(db). The following is the output on the console:

$ java AuthorizationPolicies

Result 1: 123 is customer Ole Hansen. Phone no: 90807060.

Result 2: 123 is customer Ole Hansen.

Result 3: Unknown customer.

As expected, the given information about customer 123 depends on the

access level, and customer 456 is unknown.

5.5 Summary

In this chapter we first took a look at challenges related to multiple in­

heritance and how these are solved in the Creol language, by the pruned

binding strategy for method binding and qualified names for access­

ing superclass methods and superclass attributes. We have shown how

to change the model to support multiple inheritance: we extended the

method calls with information about the above­ and below­class, the sig­

nature, and the cointerface, and we added the subtype graph. The Cent­

ral’s services were changed: parameters and attributes of superclasses

are included as new object persistent variables, and a new look­up mech­

anism is introduced. The implementation was changed the same way,

and we tested it with the authorization policies example.

Chapter 6

CVM Intercommunication and

Remote Objects

The objects in the Creol language and the communication between these

objects are constructed in such a way that the objects can be distributed

among different nodes; e.g., different machines. However, the Creol lan­

guage as presented in Chapter 2 has no concept of nodes, machines or

virtual machines. Therefore, we need to extend the Creol language to be

able to have true distributed objects. In Section 6.1 we extend the Creol

language with a notation for virtual machines and remote objects. The

new constructs imply that the model and the implementation must be

changed; the changes to the model are presented in Section 6.2 and the

changes to the implementation are presented in Section 6.3.

6.1 New Creol Language Constructs

We extend the Creol language with a notation for virtual machines and

remote objects. We try to incorporate the new constructs as seamlessly

as possible, and in such a way that “old” programs don’t have to be

rewritten but have the same semantics in the extended language.

6.1.1 Virtual Machines

The virtual machines on which we want to distribute the objects must

somehow be identified. We choose to give each virtual machine a unique

identifier. In addition, we specify the machine name where the virtual

machine runs; this is necessary to communicate over a network; e.g., the

Internet.

113

114 CHAPTER 6. CVM INTERCOMMUNICATION AND REMOTE OBJECTS

We use a construct similar to the define construct in languages such as,

e.g., C and C++. The keyword #CVM is used followed by the virtual ma­

chine identifier and the machine name of the machine where the virtual

machine exists:

#CVM <cvm identifier> <machine name>

We may for instance declare a virtual machine cvm1 which exists on the

machine einn.ifi.uio.no:

#CVM cvm1 “einn.ifi.uio.no”

The line above specifies that a virtual machine with identifier cvm1 is to

be created on the machine with host name einn.ifi.uio.no. The identifier

cvm1 can be used to refer to this virtual machine.

Note: On the Internet, it is common to specify a communication port by

the host name (or ip address) and a port number. We will use a standard

port number for all virtual machines to keep things simple and only use

the host names. Even so, on each host there may be more than one CVM,

as each has its own unique identifier.

6.1.2 Remote Objects

We want the Creol objects to be distributed among different virtual ma­

chines. In relation to an object o1, we say that an object o2 is local if it is

on the same virtual machine as o1 and remote if it is on another virtual

machine.

We introduce a new statement type “new remote object” into the Creol

language. This statement is very similar to the “new object” statement,

except that it specifies the virtual machine on which the object is to

be created. The new statement is created by appending a “new object”

statement with @ followed by the virtual machine identifier. The syntax

is

v := new classname(E) @ CVM­id

where v is an object variable and E an expression list. A new object

of class classname is created on the Creol virtual machine identified

by CVM­id and v is assigned the new object’s identifier. For instance,

the statement prod := new Prod(bb) @ cvm1 creates a new producer on

the previously declared virtual machine cvm1, and prod is assigned the

object identifier.

6.1. NEW CREOL LANGUAGE CONSTRUCTS 115

Note that there is no difference between the local and remote object

identifiers, that is, remote object identifiers are used in just the same

way as local object identifiers to invoke methods and can also be sent

between objects as parameters. Note also that an object created by the

new remote object statement may be local, as the specified virtual ma­

chine might be the same as the object on which the statement is ex­

ecuted.

New predicates over object identifiers

As objects are now distributed and these objects’ identifiers can be sent

between objects, it is possible that an object’s actions depend on where

other objects are. For instance, if an object has access to multiple data­

bases, a local database is preferred in favor of a remote database.

We introduce predicates isLocal, inCVM and inSameCVM with the fol­

lowing syntax and semantics:

• isLocal(o) for an object identifier o. It returns true if and only if the

object identified by o is local, that is, o exists on the same CVM as

the object in which the call is made.

• (o inCVM cvm) for an object identifier o and a virtual machine

identifier cvm. It returns true if and only if the object identified

by o exists on the virtual machine identified by cvm.

• (o1 inSameCVM o2) for object identifiers o1 and o2. It returns true

if and only if the objects identified by o1 and o2 exists on the same

virtual machine.

Examples: The expression (prod inSameCVM cons) checks if a producer

and a consumer object is on the same virtual machine; (prod inCVM cvm1)

checks if the producer exists on the cvm1 virtual machine; isLocal(prod)

checks if the producer is a local object.

Initial objects

We must somehow define the initial objects of the program and where

these objects are to be created. Therefore, we introduce a program ini­

tialization statement

#initobject cvm­id classname(parameters)

116 CHAPTER 6. CVM INTERCOMMUNICATION AND REMOTE OBJECTS

1 interface DB

begin

with Server

op get(in filename:String out ok:bool, file:File)

5 end

interface Server

begin

with Client

10 op get(in filename:String out ok:bool, file:File)

end

interface Client

begin

15 end

Figure 6.1: Distributed databases and servers: Interfaces.

which specifies that an object of class classname is to be created on the

virtual machine identified by cvm­id. For instance,

#initobject cvm1 Starter(42)

declares that the cvm1 virtual machine should create an object of class

Starter at startup.

Note that all virtual machines run the same program; however, their

behaviors are different because they start with different initial objects

and because objects can be created on a specified virtual machine.

6.1.3 Example: File Downloads

We now illustrate how the new constructs by an example. Multiple In­

ternet servers share a distributed database of files, which can be down­

loaded by users. Each server offers the same files, but may have different

presentations of the files and use different languages. The servers can be

located on different machines, and the servers do not necessarily have

access to all databases.

Popular and heavily accessed files are stored in many or all of the data­

bases, not­so­popular files are stored in one or a few of the databases.

Therefore, when a server gets a file request, it might have to check mul­

tiple databases before it locates the file. It may even not have the file in

any of the databases it has access to, in which case it returns no file.

Clients communicate with servers and a server communicates with its

databases. This way the clients do not need to know more than one

6.1. NEW CREOL LANGUAGE CONSTRUCTS 117

1 class ServerC(dbList:List[DB]) implements Server

begin

op local(in inList:List[DB] out outList:List[DB]) ==

var restList:List[DB];

5 if inList = ni l

then outList := ni l

else local(rest(inList); restList);

if isLocal(first(inList))

then outList := append(first(inList), restList)

10 else outList := restList

fi

fi

op remote(in inList:List[DB] out outList:List[DB])==/*similar*/

op tryGet(in list:List[DB], filename:String

15 out ok:bool, file:File) ==

if list = ni l

then (ok, file) := (false, null)

else first(list).get(filename; ok, file);

if not(ok)

20 then tryGet(rest(list), filename; ok, file)

fi

fi

with Client

25 op get(in filename:String out ok:bool, file:File) ==

var dbList2:List[DB];

local(dbList; dbList2);

tryGet(dbList2, filename; ok, file);

if not(ok)

30 then remote(dbList; dbList2);

tryGet(dbList2, filename; ok, file)

fi

end

Figure 6.2: The implementation of a server.

server to access multiple databases. We define interfaces DB, Server and

Client; see Figure 6.1.

The implementation of the server is given in Figure 6.2. The server has

a list of its databases. When a server receives a request for a file, it

first checks local databases before it checks remote databases. It has

an internal method local which selects the local databases by using the

predicate isLocal (on line 8). Similarly, it has a method remote which

selects the databases which is not local. Further, the server has a method

tryGet which takes as arguments a list of databases and a filename, and

tries to download the specified file from one of the databases.

We create a number of databases and servers, both locally and remote;

see Figure 6.3. We assume the database is implemented by a class DB­

118 CHAPTER 6. CVM INTERCOMMUNICATION AND REMOTE OBJECTS

1 #CVM cvm1 ’’einn.ifi.uio.no’’

#CVM cvm2 ’’tva.ifi.uio.no’’

#CVM cvm3 ’’tva.ifi.uio.no’’

#initobject cvm1 Starter()

5

class Starter

begin

op run ==

var db:DB, dbList:List[DB]=nil ,

10 s:Server, sList:List[Server]=ni l;

db := new DBclass(..);

dbList := add(dbList, db);

db := new DBclass(..) @ cvm2;

dbList := add(dbList, db);

15 db := new DBclass(..) @ cvm3;

dbList := add(dbList, db);

s := new Server(dbList);

sList := add(sList, s);

s := new Server(dbList) @ cvm3;

20 sList := add(sList, s);

...

end

Figure 6.3: Initializing the databases and servers.

class. We declare three virtual machines: one on “einn” and two on “tva”.

The initial object is specified on line 4: an instance of class Starter is

created on the cvm1 virtual machine.

The class Starter declares three databases: one on each virtual machine

(the first database is a new local object, which happens to be in cvm1).

Two servers are created: one local and one on the cvm3 virtual machine;

both are given a list of the databases.

6.2 Extending the Model

The model as defined in Chapter 3 has most of what is needed to define

virtual machines and remote objects. We abstract away the physical ma­

chines’ host names given by the #CVM preprocessor construct; hence,

the introduction of this construct has no influence on the model. The

virtual machines of the initial objects are already defined in the model;

therefore, the #initobject construct imposes no changes. What is miss­

ing is the statement “new remote object” and a way to invoke the “new

object” service of other virtual machines.

We introduce two new message types newRemoteObject and newRemote­

ObjId. They are used to forward newObject messages and newObjId

6.3. EXTENDING THE IMPLEMENTATION 119

messages, respectively. The syntax is:

• newRemoteObject(CVM­idto , CVM­idfrom, newObject(...))

• newRemoteObjId(CVM­idto , CVM­idfrom, newObjId(...))

For both message types, the last argument is the wrapped message. The

Central is extended with a service “new remote object”; this is as the

“new object” service except that it is invoked from objects in other vir­

tual machines and the object identifier is sent back. It uses the new

message types.

When a new remote object statement v := new A() @ cvm is executed, the

Creol object creates a message

newRemoteObject(cvmto , cvmfrom, newObject(obj, ...))

where the new object message is as for a new object statement. This

message is transported to the virtual machine cvmfrom’s out­queue,

then to the cvmto’s in­queue and at last to the Central in cvmto. A new

object is created just as for the “new object” service. Then a message

newRemoteObjId(cvmfrom , newObject(obj, ...))

is sent back to cvmfrom so the identifier can be returned to the creator

object.

6.3 Extending the Implementation

In Section 6.1 we extended the Creol language with a concept of virtual

machines and a new statement to create remote objects; in Section 6.2

we made some small changes to the model to include the new statement.

For the implementation part, the communication between the virtual ma­

chines is another challenge. Since our implementation is based on the

Java platform, we will use Java’s remote method invocation (RMI) [13]

for CVM intercommunication.

The use of Java RMI has a great impact on the virtual machine as a whole;

therefore, we start by presenting Java RMI in Section 6.3.1. Then we give

an overview of the changes in Section 6.3.2 and details in Section 6.3.3.

120 CHAPTER 6. CVM INTERCOMMUNICATION AND REMOTE OBJECTS

6.3.1 Background: Java RMI

A Java program runs on a single Java Virtual Machine (JVM). Java has

streams and sockets1 which can be used by a program to communic­

ate over the Internet with other programs on other JVMs; however, us­

ing streams and sockets involves lots of details and is a tedious and

low­level way of programming. For example, objects must be trans­

formed into streams and vice­versa. These transformations are called

marshalling and demarshalling of data.

The Java Remote Method Invocation (RMI) framework [13] is designed to

make it easier to communicate between JVMs. Java RMI automatically

generates code which takes care of:

• Launching and configuration: setting up connections between JVMs.

• Marshalling and demarshalling of data, and the mechanism of in­

voking a method in another JVM.

Remote objects

Remote objects in Java are described as follows [31]:

In the Java platform’s distributed object model, a remote ob­

ject is one whose methods can be invoked from another Java

virtual machine, potentially on a different host. An object

of this type is described by one or more remote interfaces,

which are interfaces written in the Java programming lan­

guage that declare the methods of the remote object.

A remote interface extends the Remote interface and declares a set of

remote methods. Each remote method must declare RemoteException

in its throw clause; RemoteException is the common superclass for a

number of communication­related exceptions that may occur during the

execution of a remote method call. The class UnicastRemoteObject is

used for exporting a remote object and obtaining a stub that communic­

ates to the remote object. An alternative, which we will use, is to create

a subclass of UnicastRemoteObject.

To illustrate, we use the bounded buffer example from Chapter 2. We

want the bounded buffer’s methods to be invoked from other JVMs. We

define a remote interface Buffer which extends the Remote interface; see

Figure 6.4. Note that the methods of the Buffer interface are declared

1A stream is a continuous flow of data, designed to be processed sequentially. A

socket is an access point, usually the combination of an IP address and a port number.

6.3. EXTENDING THE IMPLEMENTATION 121

1 interface Buffer extends Remote {

public void append(Object x) throws RemoteException;;

public Object remove() throws RemoteException;;

}

5

class BoundedBuffer extends UnicastRemoteObject implements Buffer {

private static final long serialVersionUID = 42;

...

public BoundedBuffer(int n) throws RemoteException {

10 ...

}

public void append(Object x) {

...

}

15 public Object remove() {

...

}

}

Figure 6.4: A remotely accessible bounded buffer.

to throw a RemoteException. The class BoundedBuffer implements the

Buffer interface, and extends the class UnicastRemoteObject. The con­

structor of UnicastRemoteObject may throw a RemoteException; hence,

the constructor of BoundedBuffer is declared to throw RemoteException.

The BoundedBuffer class has an attribute serialVersionUIO which serves

the purpose of version control for remote objects (check if the client and

the server have the same version of the BoundedBuffer class).

Stubs and RMI compiler

Objects which call methods on objects on another JVM are referred to as

client objects; the objects which are called are referred to as server ob­

jects. Client objects communicate with server objects through a stub. A

stub is a client­side object which represents a single server object inside

the client’s JVM. The stub implements the same methods as the server

object, maintains a socket connection to the server object’s JVM and is

responsible for marshalling and demarshalling data on the client side. It

is automatically generated by the RMI compiler. The class defining the

server object is compiled and a new class file is created and given the

extension “_Stub”. The command

$ rmic BoundedBuffer

creates a stub for the bounded buffer, that is, a file BoundedBuffer_Stub.­

class. The RMI compilation must be done after the usual Java compilation

122 CHAPTER 6. CVM INTERCOMMUNICATION AND REMOTE OBJECTS

and before the program is started.

Remote object registry

On the Internet (and other networks), programs use ports to identify

connection points. The program “rmiregistry” listens to a specified port.

Servers can bind objects to this port by giving a String to identify the

object. Similarly, clients can get references to objects which are already

bound to a port and a name. We let the rmiregistry program listen to

port number 8181:

$ rmiregistry 8181

To bind a server object, we use the method Naming.rebind(). Note that

an exception is thrown if the URL is malformed, if the rmiregistry is not

started (with the specified port) or another network related exception

occurs. We create a bounded buffer and bind this to the name “buffer”

on port number 8181 (assuming the machine name is “tva.ifi.uio.no”):

Buffer b = new BoundedBuffer(10);

try {

Naming.rebind(‘‘rmi://tva.ifi.uio.no:8181/buffer’’, b);

}

catch(RemoteException e) {

/* do appropriate */

}

catch(MalformedURLException me) {

/* do appropriate */

}

Now, a reference to the buffer is fetched by the call Naming.lookup() (pos­

sibly on another host):

Buffer buffer;

try {

buffer = (Buffer) Naming.lookup(‘‘rmi://einn.ifi.uio.no←֓

→֒:8181/buffer’’);

}

catch(RemoteException e) {

/* do appropriate */

}

catch(MalformedURLException me) {

/* do appropriate */

}

6.3. EXTENDING THE IMPLEMENTATION 123

The reference buffer can now be used to call the buffer’s methods; e.g.,

buffer.append(new Integer(42)).

6.3.2 Overview of the Changes

Now we are ready to present the changes in the implementation. We first

give an overview of the changes; we identify five changes:

• The introduction of a virtual machine identifier and a mapping

from each virtual machine to the actual machine in which it runs.

• Each initial object has a specified virtual machine.

• The new service “New remote object”.

• Communication between virtual machines.

• The new statement v := classname(E) @ CVM­id.

The identifier of a given virtual machine is given at start­up, that is, as a

command­line argument. The mapping from virtual machine identifiers

to host names is part of the program; each #CVM declaration is stored in

the CreolProgram object which represent the program.

The initial objects are stored in the same way as before, except that

each initial object is extended with the virtual machine identifier. At

initialization, the virtual machine’s identifier is compared to that of the

initial objects; only initial objects with matching identifier are created.

The Central is extended with the new service “New remote object”, im­

plemented by a method newRemoteObject(). The interface CreolObject­

Services is also extended with this method.

As in the model, our implementation has an in­queue and an out­queue

for each virtual machine. The in­queue is remotely accessible, and the

out­queue at one virtual machine is responsible for communicating with

the in­queue of another virtual machine. The out­queue will obviously

transport messages, but in addition it will forward the invocation of the

new remote object service to the specified virtual machine. It may seem

unnatural that the queues have anything to do with services; however,

in order to reduce the complexity we concentrate all communication

between virtual machines through the queues.

The new queues are implemented by classes CVMinQueue and CVM­

outQueue. We use Java RMI to get the in­queue remotely accessible;

therefore, the class CVMinQueue is a subclass of UnicastRemoteObject.

124 CHAPTER 6. CVM INTERCOMMUNICATION AND REMOTE OBJECTS

Figure 6.5: UML class diagram [23] showing new classes, interfaces and

associations.

CVMinQueue also implements an interface CVMinQueueInterface, as re­

mote method invocations are always through interfaces. The out­queue

is active, that is, the class CVMoutQueue implements the interface Run­

nable and we start a new thread at initialization.

The implementation of the “new remote object” statement is very similar

to the “new object” statement, except that it invokes the Central.new­

RemoteObject() method instead of Central.newObject() method.

Recall the UML class diagram from Chapter 4 (Figure 4.1). Figure 6.5

shows a UML diagram after the changes.

6.3.3 Detailed Changes

We now discuss the details of the changes in the implementation. We

start with the queues, as this is the most difficult part.

The in­queue

We have an in­queue for each virtual machine. This queue serves the pur­

pose of forwarding messages to the addressed Creol objects and to in­

voke the “new object”­service of the Central. We define an interface CVM­

inQueueInterface with methods insert() and newRemoteObject(). The

class CVMinQueue implements CVMinQueueInterface and hence the in­

terface’s methods. In addition, it is a subclass of UnicastRemoteObject.

6.3. EXTENDING THE IMPLEMENTATION 125

1 public interface CVMinQueueInterface extends Remote {

public ObjVal newRemoteObject(String cname, DataList par)

throws RemoteException;

public void insert(Message msg) throws RemoteException;

5 }

public class CVMinQueue extends UnicastRemoteObject

implements CVMinQueueInterface {

private static final long serialVersionUID = 1;

10 private RemoteServices central;

public CVMinQueue(RemoteServices central) throws RemoteException {

super();

this.central = central;

15 }

public void insert(Message msg) {

MsgQueueOut msgQ = central.getQueue(msg.getDestination());

msgQ.insert(msg);

}

20 public ObjVal newRemoteObject(String cname, DataList par) {

return central.newObject(cname, par);

}

}

Figure 6.6: The virtual machine’s in­queue.

See Figure 6.6. Further, we define an interface RemoteServices with

methods newRemoteObject() and getQueue(); this interface is implemen­

ted by the Central and defines the services available for the in­queue.

As described in Section 6.3.1, we make the queue remotely accessible by

compiling the queue with the program rmic (Remote Method Invocation

Compiler):

$ rmic CVMinQueue

This generates the stub which is necessary for remote method invoca­

tion; the stub is explained in Section 6.3.1.

The out­queue

The out­queue is implemented by the class CVMoutQueue. It implements

the interface MsgQueueOut (see Chapter 4, Section 4.2.3) and it has pub­

lic methods insert() and newRemoteObject(). The latter method is used

by the Central to forward the “new remote object” call.

Recall that we use the Creol object’s execution thread to forward mes­

sages from the Creol object’s out­queue to the addressed in­queue. We

126 CHAPTER 6. CVM INTERCOMMUNICATION AND REMOTE OBJECTS

1 public class CVMoutQueue implements MsgQueueOut, Runnable {

private HashMap<String,String> nameMapping;

private HashMap<String,CVMinQueueInterface> queueMapping;

private LinkedList<Message> queue;

5 private Lock msgLock, mappingLock;

private Condition msgArrived;

public CVMoutQueue(HashMap<String,String> nameMapping) {

super();

10 this.nameMapping = nameMapping;

this.queueMapping = new HashMap<String,CVMinQueueInterface>();

queue = new LinkedList<Message>();

msgLock = new ReentrantLock(true);

msgArrived = msgLock.newCondition();

15 mappingLock = new ReentrantLock(true);

}

...

}

Figure 6.7: The class CVMoutQueue.

consider this to be a good solution because it does not involve any extra

threads and because it only gives a small delay. The sending of messages

to objects in other virtual machines involves bigger delays. Therefore,

we do not use the Creol object’s execution thread; the out­queue is an

active object which forwards messages to the addressed virtual machine.

Hence, the class CVMoutQueue implements the Runnable interface. For

the “new remote object” service, the situation differs, as the Creol object

must wait for the object identifier anyway. Therefore, for this service we

use the Creol object’s execution thread.

The out­queue must store a mapping from virtual machine identifiers to

the host names; for this it uses a hash map nameMapping. This mapping

is used to set up a connection to a virtual machine’s in­queue. Once a

connection has been set up, it stores a reference to the virtual machine’s

in­queue in a hash map queueMapping. Further, it has a list of messages

(the attribute queue) and fair locks to protect queueMapping and queue.

To signal the arrival of a message, we use a condition variable called

msgArrived. See Figure 6.7 for the attributes and the constructor of class

CVMoutQueue.

We define a method setupConnection() to set up a connection between

an out­queue and an in­queue; see Figure 6.8. As discussed previously,

the host name is given in the nameMapping hash map, and we use port

number 8181. The actual binding to the in­queue of the specified vir­

tual machine is done by the call Naming.lookup(host) (line 8). The remote

virtual machine may not have been started yet; if so, either a connect

6.3. EXTENDING THE IMPLEMENTATION 127

1 private CVMinQueueInterface setupConnection(String cvm) {

CVMinQueueInterface inqueue = null;

String mname = nameMapping.get(cvm);

String host = "rmi://" + mname + ":8181/" + cvm;

5

while(inqueue == null) {

try {

inqueue = (CVMinQueueInterface) Naming.lookup(host);

}

10 catch(ConnectException ce) {

try { Thread.sleep(1000); } catch (InterruptedException ie) {}

}

catch(NotBoundException nbe) {

try { Thread.sleep(1000); } catch (InterruptedException ie) {}

15 }

catch(Exception e) {

e.printStackTrace();

System.exit(1);

}

20 }

return inqueue;

}

Figure 6.8: The method CVMoutQueue.setupConnection().

exception or a not bound exception is thrown. We do not want to make

any assumptions about the order in which virtual machines are initial­

ized; therefore, we catch these exceptions and go for sleep for a while,

waiting for the remote virtual machine to be ready for connections. At

success, the in­queue of the remote virtual machine is returned.

Message transportation from a virtual machine’s out­queue to another

virtual machine’s in­queue is performed by the out­queue’s execution

thread; see Figure 6.9.

Creol objects insert messages by the method insert(). This method is

quite simple: the message is appended to the end of the message queue

and the out­queue thread is notified using the msgArrived condition vari­

able.

The out­queue’s active behavior is defined by a method sendMessages()

and started in the run() method. The out­queue waits for and receives

messages by the method nextMsg(). It checks if there exists a connection

to the addressed virtual machine, and if so this connection is used, if

not a new connection is set up (line 31). Then the message is inserted in

the in­queue by using the insert() method of the in­queue (line 37). Note

that the actual sending of a message is outside a critical region; thus,

Creol objects can insert messages while the out­queue sends messages,

enabling parallel execution.

128 CHAPTER 6. CVM INTERCOMMUNICATION AND REMOTE OBJECTS

1 public void insert(Message msg) {

msgLock.lock();

queue.addLast(msg);

msgArrived.signal();

5 msgLock.unlock();

}

private Message nextMsg() {

msgLock.lock();

10 while(queue.size() == 0) {

try { msgArrived.await(); }

catch (InterruptedException ie) {}

}

Message msg = queue.remove();

15 msgLock.unlock();

return msg;

}

private void sendMessages() {

20 CVMinQueueInterface inqueue;

String destCVM;

Message msg;

while(true) {

msg = nextMsg();

25 destCVM = msg.getDestination().getCvm();

mappingLock.lock();

if(queueMapping.containsKey(destCVM)) {

inqueue = queueMapping.get(destCVM);

}

30 else {

inqueue = setupConnection(destCVM);

queueMapping.put(destCVM,inqueue);

}

mappingLock.unlock();

35

try {

inqueue.insert(msg);

}

catch (RemoteException re) {

40 re.printStackTrace();

System.exit(1);

}

}

}

45

public void run() {

sendMessages();

}

Figure 6.9: The transportation of messages between virtual machines.

6.3. EXTENDING THE IMPLEMENTATION 129

1 public ObjVal newRemoteObject(String cname,DataList par,String at){

CVMinQueueInterface inqueue;

ObjVal result = null;

mappingLock.lock();

5 if(queueMapping.containsKey(at)) {

inqueue = queueMapping.get(at);

}

else {

inqueue = setupConnection(at);

10 queueMapping.put(at,inqueue);

}

mappingLock.unlock();

try {

15 result = inqueue.newRemoteObject(cname, par);

}

catch (RemoteException re) {

re.printStackTrace();

System.exit(1);

20 }

return result;

}

Figure 6.10: The method Central.newRemoteObject()

The out­queue has a method newRemoteObject() used by the Central to

invoke the corresponding service in a remote virtual machine; see Figure

6.10. As for the sending of messages, the queueMapping hash map is

checked to see if there is a connection to the remote virtual machine,

if not, a new connection is set up. Then a call to the in­queue’s new­

RemoteObject() method is made, and the result of this method call is

returned.

Creol program representation

We extend the Creol program representation with a method getCVMto­

MachineMapping(). This method returns a mapping from virtual ma­

chine identifiers to the host name of the physical machine on which the

virtual machine runs. The mapping is given in a hash map and used

by the CVM out­queue for setting up connections to remote virtual ma­

chines.

Each initial object is extended with the name of the virtual machine on

which it will be created, that is, the class InitObject is extended with a

method getCvm() which returns the virtual machine identifier.

130 CHAPTER 6. CVM INTERCOMMUNICATION AND REMOTE OBJECTS

The CVM

Each virtual machine is identified by a String, and the constructor of

class CVM is therefore extended with an argument String id. The creation

of initial objects is changed: we only create the objects with matching

virtual machine identifier. The CVM also initializes the in­queue and the

out­queue. The class CVM is given in Figure 6.11.

As mentioned previously, we want the new constructs to have as little

impact on the virtual machine as possible. The introduction of virtual

machine queues imposes the use of the program rmiregistry. For pro­

grams which only run on one virtual machine, it is not necessary to set

up queues; therefore, we use a special virtual machine identifier “cvm”

to specify that we only have one virtual machine and thus should not

create any virtual machine queues.

In case the virtual machine queues are needed, a new out­queue and a

thread for the out­queue are created. Then the Central is created and a

reference to the out­queue is given as a parameter to the Central. The

method remoteSetup() creates an in­queue and this in­queue is bound to

the port number 8181 with the virtual machine identifier. Finally, the

inital objects are created; this is straight forward.

The Central: A new service

The Central offers a new service: “New remote object”. Therefore, the

interface CreolObjectServices and the class Central are extended with a

method newRemoteObject(). The Central uses the virtual machine’s out­

queue to forward the method call to the target virtual machine. In case

the specified cvm is this cvm, the newRemoteObject() method simply

calls newObject() in the same central. See Figure 6.12.

Virtual machine’s initialization

Recall that we declare virtual machines by #CVM initialization statements.

For each of the host in these definitions, we must start rmiregistry on

the specified host. We must also start an instance of a virtual machine

for each of the specified CVM. For a given initialization statement #CVM

cvmid ”hostname”, we start rmiregistry and the virtual machine as follows:

$ rmiregistry 8181 &

[1] 15976

$ java Program cvmid

where Program is a Java class with the representation of the Creol pro­

gram we want to run.

6.3. EXTENDING THE IMPLEMENTATION 131

1 public class CVM {

public CVM(String name, CreolProgram creolprogram) {

Central central;

if(name.equals("cvm")) {

5 central = new Central(name, creolprogram.getClassDefinitions←֓

→֒(), creolprogram.getSubtypeGraph(), null);

}

else {

CVMoutQueue outqueue =

new CVMoutQueue(creolprogram.getCVMtoMachineMapping());

10 Thread t = new Thread(outqueue, name + ".CVMouQueue");

t.start();

central = new Central(name, creolprogram.getClassDefinitions←֓

→֒(), creolprogram.getSubtypeGraph(), outqueue);

remoteSetup(name, central);

}

15

InitObject io;

InitObjectList iol = creolprogram.getInitObjects();

/* Create initial objects */

20 while(iol != null) {

io = iol.first();

if(io.getCvm().equals(name)) {

central.newObject(io.getClassname(), io.getParameters());

iol = iol.rest();

25 }

}

}

private void remoteSetup(String cvm, Central central){

30 CVMinQueueInterface inqueue = null;

try {

inqueue = new CVMinQueue(central);

} catch(RemoteException re) {

e.printStackTrace();

35 System.exit(1);

}

String host = "rmi://" + ":8181/" + cvm;

try {

Naming.rebind(host, inqueue);

40 } catch (Exception e) {

e.printStackTrace();

System.exit(1);

}

}

45 }

Figure 6.11: The class CVM.

132 CHAPTER 6. CVM INTERCOMMUNICATION AND REMOTE OBJECTS

1 public ObjVal newRemoteObject(String classname, DataList ←֓

→֒actualParameters, String at) {

if(at.equals(cvmname)) {

return newObject(classname, actualParameters) throws ←֓

→֒RemoteException;;

}

5 else {

return outqueue.newRemoteObject(classname, actualParameters←֓

→֒, at) throws RemoteException;;

}

}

Figure 6.12: The method Central.newRemoteObject().

6.4 Example Run: Distributed Santa Claus Problem

Recall the Santa Claus problem from Chapter 2. In Chapter 4 we changed

it somewhat to get some output on the console: we introduced a print

statement and the Santa Claus class was changed to print to the console

whenever he interacts with the reindeer or elves. We now make similar

changes to the reindeer and elves. Further, we introduce three virtual

machines called “cvm1”, “cvm2” and “cvm3” and specify the hosts on

which they are to be run; see Figure 6.13. The Santa Claus is created

locally whereas the reindeer and elves are created on remote virtual ma­

chines.

The virtual machine “cvm1” is run on host “viisi.ifi.uio.no”, “cvm2” on

host “kolme.ifi.uio.no”, and “cvm3” on host “kaksi.ifi.uio.no”. We start

the remote object registry on each of these machines (rmiregistry 8181)

and then we run the Santa Claus problem. The initial object and thus the

Santa Claus are created on “cvm1”; the following is the output on the

“cvm1” console:

$ java SantaClauseProblemRemote cvm1

Santa Claus delivers toys.

Santa Claus talks to elves: (cvm3,0), (cvm3,1), (cvm3,2)

Santa Claus delivers toys.

Santa Claus talks to elves: (cvm3,3), (cvm3,4), (cvm3,0)

Santa Claus talks to elves: (cvm3,2), (cvm3,1), (cvm3,3)

...

On host “kolme.ifi.uio.no” we start the virtual machine “cvm2”. The

reindeer are the only objects on this machine. We get the following

output on the console:

$ java SantaClauseProblemRemote cvm2

Reindeer ’(cvm2,1)’ delivers toys!

Reindeer ’(cvm2,4)’ delivers toys!

6.4. EXAMPLE RUN: DISTRIBUTED SANTA CLAUS PROBLEM 133

1 #CVM cvm1 ’’viisi.ifi.uio.no’’

#CVM cvm2 ’’kolme.ifi.uio.no’’

#CVM cvm3 ’’kaksi.ifi.uio.no’’

#initobject cvm1 Starter()

5

class Starter

begin

op run ==

var sc:SantaClaus, r:Reindeer, e:Elf;

10 sc := new SantaClaus();

r := new Reindeer(sc) @ cvm2;

r := new Reindeer(sc) @ cvm2;

...

r := new Reindeer(sc) @ cvm2;

15 e := new Elf(sc) @ cvm3;

e := new Elf(sc) @ cvm3;

...

e := new Elf(sc) @ cvm3

end

Figure 6.13: A distributed version of the Santa Claus problem.

Reindeer ’(cvm2,3)’ delivers toys!

Reindeer ’(cvm2,2)’ delivers toys!

Reindeer ’(cvm2,0)’ delivers toys!

Reindeer ’(cvm2,5)’ delivers toys!

Reindeer ’(cvm2,6)’ delivers toys!

Reindeer ’(cvm2,8)’ delivers toys!

Reindeer ’(cvm2,7)’ delivers toys!

...

The elves are created on virtual machine “cvm3”; we get the following

output on the “cvm3” console:

$ java SantaClauseProblemRemote cvm3

Elf ’(cvm3,1)’ talks to Santa!

Elf ’(cvm3,2)’ talks to Santa!

Elf ’(cvm3,0)’ talks to Santa!

Elf ’(cvm3,3)’ talks to Santa!

Elf ’(cvm3,4)’ talks to Santa!

Elf ’(cvm3,0)’ talks to Santa!

Elf ’(cvm3,2)’ talks to Santa!

Elf ’(cvm3,1)’ talks to Santa!

Elf ’(cvm3,3)’ talks to Santa!

...

Consider the three first lines on the “cvm3” console. As expected, the

three first elves which talk to Santa correspond to the first group of elves

Santa talks to (see the “cvm1” console).

134 CHAPTER 6. CVM INTERCOMMUNICATION AND REMOTE OBJECTS

6.5 Summary

In this chapter we have introduced a notion of virtual machines into

the Creol language, and the possibility to create objects on remote vir­

tual machines. Only small changes in the model had to be done; we in­

troduced message wrappers to forward newObject and newObjId mes­

sages to other virtual machines. For the implementation part, the chang­

es were more extensive. We presented Java RMI which was used for com­

munication between virtual machines. We saw that remote queues could

be used in the same way as local queues. Finally, we gave an example

run of a distributed version of the Santa Claus problem.

Chapter 7

Conclusion

In this chapter we summarize the contributions of this thesis and give

suggestions for further research.

7.1 Contributions

This thesis has presented a new run­time model for Creol and a proto­

type of the model has been implemented on the Java Platform. To ex­

plore the thesis’ contributions in detail, we review the questions presen­

ted in Chapter 1.

• Can a run­time model for Creol be defined which supports code

sharing?

We have described a model which can represent Creol programs. A com­

putation of the model is defined as operations on a state using rules

defined by pre­ and postconditions. The model does not impose any

restrictions to Creol. In particular, multiple inheritance is supported.

We have made a prototype implementation of the model on the Java

platform. By using Java threads the prototype faithfully implements the

model with regard to concurrency. This in turn implies the possiblity

of true concurrency on mulitprocessor systems. The multithreading has

also contributed to make the model and the implementation similar. The

prototype demonstrates that the model can serve as a basis for low­level

implementations of Creol run­time environments.

For the sake of simplicity, the model itself does not have code sharing;

however, the code is changed in a way that makes code sharing possible

in an implementation. Our prototype implementation has code sharing.

135

136 CHAPTER 7. CONCLUSION

• Can Creol and its operational model be extended to support real

distribution?

We have introduced new Creol constructs used to specify how Creol ob­

jects may be distributed over multiple virtual machines. Instead of using

a host name, each virtual machine is given a unique identifier. This ab­

straction makes programming with explicit virtual machines, which may

be found somewhat low­level, more elegant. We claim that the new Creol

constructs are intuitive and easy to use.

Further, we have extended the model to support the new Creol con­

structs. Java RMI is used to implement distribution in the prototype,

and different virtual machines can be located on different hosts on the

Internet. Thus, the prototype supports real distribution in the sense that

objects are distributed among different physical machines.

7.2 Further Work and Research

The work presented in this thesis is part of the Creol project1. Hence,

further work and research concerning our model and implementation

should be seen in the context of this project. With this in mind, the

following areas may be suggested for further research.

Verifying the correctness of the model

In Chapter 2 we gave an informal definition of the semantics of Creol.

In Chapter 3 the semantics was defined precisely by a computational

model. However, we have not shown that the model is correct, that is,

computes Creol programs in accordance with the semantics of the lan­

guage. Our example­runs in the prototype implementation behaved as

expected. This indicates that the model is correct. To verify the correct­

ness of the model such indications are not enough. We must validate

that the model is sound with respect to the formal semantics of the lan­

guage.

Creol has an abstract operational semantics which is formally defined

in Rewriting Logic (RL) [24]. The RL semantics define the valid compu­

tations of Creol programs. The possible executions of a program in our

model must also be possible in the RL semantics, given some appro­

priate notion of state transformation. This can hopefully be proved by

induction over computations.

1http://www.ifi.uio.no/~creol/

7.2. FURTHER WORK AND RESEARCH 137

A full proof of the model’s correctness requires a lot of work. Neverthe­

less, a comparison of the two models is interesting. In many aspects, our

model and the RL semantics are very similar; however, there are some

noteworthy differences:

• Status flag: In our model, the objects have a status flag which ex­

plicitly expresses the current task of the object. The RL semantics

does not have a status flag.

• The merge statement: In order to support code sharing, we have

introduced a set of suspended program statement lists used to im­

plement the merge statement. We have also introduced a state­

ment joinMerge. This solution is very different from that of the RL

semantics, where code is manipulated directly.

• The return of method calls: We have introduced a statement return

which sends the completion message to the caller. The sending of

a completion message is defined differently in the RL semantics.

• Explicit processor release points: The evaluation of the wait guard

is done differently in our model than in the RL semantics.

• Multiple inheritance: The method look­up mechanism is differently

defined; in our model we use functions whereas the RL semantics

use messages.

A first validation of our model should focus on these subjects. For in­

stance, it must be shown that the introduction of the status flag does not

impose any problems. In particular, it must be checked that the objects

can under no circumstances go into dead­lock because of the use of a

status flag.

Creol compiler

The way we represent Creol programs as Java objects is low­level, and

despite that it is straight­forward it is error­prone to manually trans­

late from Creol programs to the Java representation. To really get the

benefits from having a virtual machine and to experiment with Creol

programs, we need a compiler which can do this automatically and in

addition do type checking.

A prototype compiler for Creol has been developed [10]; this compiler

creates Creol machine code for the virtual machine in Maude [2]. This

work can be used as a starting point for a compiler for our virtual ma­

chine in Java.

138 CHAPTER 7. CONCLUSION

Dynamic updates

The Creol run­time environment in Maude has been extended with a

mechanism for dynamic updates [26]. Classes and interfaces are up­

dated at run­time. Due to virtual binding of methods, the code which is

executed by method calls, can change over time. It would be interesting

to extend our implementation to support dynamic updates.

We have made a model with centralized code, that is, each virtual ma­

chine has the class definitions stored in a central. This way of organizing

the code should make dynamic updates feasible. However, introducing

new class attributes will be a challenge as an object has to be exten­

ded with these attributes before it executes code which refers to these

attributes.

CVM variables and run­time creation of virtual machines

We have used a preprocessor construct #CVM to define virtual machines.

This construct is static and not very flexible. For instance, it is not pos­

sible to send references to virtual machines between objects. Introdu­

cing virtual machine variables into the Creol language may facilitate new

possibilities in program design.

Further, our virtual machines are defined statically. It would be interest­

ing to create new virtual machines dynamically at run­time. The Creol

language must be extended with a new construct for creating new virtual

machines. Implementing run­time initialization of virtual machines on

the Java platform may be a challenge.

Process scheduling

In our model we have not specified how to schedule processes; a ready

process is selected nondeterministically. In our implementation, the first

ready process is selected by using a first­in first­out queue. Processes in

the queue are re­checked for readiness; this re­checking is inefficient. Es­

pecially when it comes to recursive calls this reevaluation is inefficient as

many processes wait for method returns. A study of process scheduling

in Creol may lead to better performance in program execution.

In Creol, each object has a single execution thread and hence processes

execute one at a time. In combination with the processor release points

(the await statement), this mutual exclusion has similarities to condi­

tional critical regions [15]. Brinch Hansen states that it does not seem

possible to implement conditional critical regions efficiently and that

7.2. FURTHER WORK AND RESEARCH 139

the root of the problem is the unbounded reevaluation of Boolean ex­

pressions until they are true [4]. However, the await statement in Creol

also includes the testing for method returns. The return of a method

call can be treated as a conditional variable, that is, the return can signal

the process which waits for the return. This can dramatically reduce the

number of reevaluated processes.

We also believe that the evaluation of boolean expressions can be done

more efficiently; e.g., by only reevaluating a guard if at least one of the

variables has changed.

140 CHAPTER 7. CONCLUSION

Bibliography

[1] G. R. Andrews. Foundations of Multithreaded, Parallel, and Distrib­

uted Programming. Addison­Wesley, Reading, Mass., 2000.

[2] M. Arnestad. En abstrakt maskin for Creol i Maude. Master’s thesis,

Department of Informatics, University of Oslo, Nov. 2003. In Nor­

wegian. Available from http://heim.ifi.uio.no/~creol.

[3] P. Brinch Hansen. Java’s Insecure Parallelism. ACM SIGPLAN Notices,

34(4):38–45, April 1999.

[4] P. Brinch Hansen. The Invention of Concurrent Programming. In The

Origin of Concurrent Programming: From Semaphores to Remote

Procedure Calls, pages 3–61. Springer­Verlag New York, Inc., 2002.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí­Oliet, J. Meseguer,

and J. F. Quesada. Maude: Specification and Programming in Rewrit­

ing Logic. Theoretical Computer Science, 285:187–243, Aug. 2002.

[6] O.­J. Dahl, B. Myhrhaug, and K. Nygaard. Some features of the SIM­

ULA 67 language. In Proceedings of the Second Conference on Ap­

plications of Simulations, pages 29–31. Winter Simulation Confer­

ence, 1968.

[7] J. Dovland, E. B. Johnsen, and O. Owe. Reasoning about Asynchron­

ous Method Calls and Inheritance. In Proc. of the Norwegian In­

formatics Conference (NIK’04), pages 213–224. Tapir Academic Pub­

lisher, Nov. 2004.

[8] J. Dovland, E. B. Johnsen, and O. Owe. Verification of Concurrent

Objects with Asynchronous Method Calls. In Proceedings of the IEEE

International Conference on Software Science, Technology & Engin­

eering(SwSTE’05), pages 141–150. IEEE Computer Society Press, Feb.

2005.

[9] B. Eckel. Thinking in Java. Prentice Hall, Third edition, 2003.

141

142 BIBLIOGRAPHY

[10] J. H. Fjeld. Compiling Creol Safely. Master’s thesis, Department of

Informatics, University of Oslo, May 2005.

[11] P. Golde, A. Hejlsberg, and S. Wiltamuth. The C# Programming Lan­

guage. Addison Wesley Professional, 2003.

[12] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Spe­

cification. Addison­Wesley, Third edition, 2005.

[13] W. Grosso. Java RMI. O’Reilly & Associates, Inc., Sebastopol, CA,

USA, 2001.

[14] C. A. R. Hoare. Monitors: An Operating Systems Structuring

Concept. Communications of the ACM, 17(10):549–557, 1974.

[15] C. A. R. Hoare. Towards a Theory of Parallel Programming. In

The Origin of Concurrent Programming: From Semaphores to Re­

mote Procedure Calls, pages 231–244. Springer­Verlag New York,

Inc., 2002.

[16] E. B. Johnsen and O. Owe. Object­Oriented Specification and Open

Distributed Systems. In O. Owe, S. Krogdahl, and T. Lyche, editors,

From Object­Orientation to Formal Methods: Essays in Memory of

Ole­Johan Dahl, volume 2635 of Lecture Notes in Computer Science,

pages 137–164. Springer­Verlag, 2004.

[17] E. B. Johnsen and O. Owe. A Dynamic Binding Strategy for Mul­

tiple Inheritance and Asynchronously Communicating Objects. In

F. S. de Boer, M. M. Bonsangue, S. Graf, and W.­P. de Roever, edit­

ors, Proc. 3rd International Symposium on Formal Methods for Com­

ponents and Objects (FMCO 2004), volume 3657 of Lecture Notes in

Computer Science, pages 274–295. Springer­Verlag, 2005.

[18] E. B. Johnsen and O. Owe. An Asynchronous Communication Model

for Distributed Concurrent Objects. Software and Systems Model­

ling, 2006. To appear.

[19] E. B. Johnsen, O. Owe, and E. W. Axelsen. A Run­Time Environ­

ment for Concurrent Objects with Asynchronous Method Calls. In

N. Martí­Oliet, editor, Proc. 5th International Workshop on Rewrit­

ing Logic and its Applications (WRLA’04), Mar. 2004, volume 117

of Electronic Notes in Theoretical Computer Science, pages 375–392.

Elsevier, Jan. 2005.

[20] E. B. Johnsen, O. Owe, and I. Simplot­Ryl. A Dynamic Class Con­

struct for Asynchronous Concurrent Objects. In M. Steffen and

G. Zavattaro, editors, Proc. 7th International Conference on Formal

BIBLIOGRAPHY 143

Methods for Open Object­Based Distributed Systems (FMOODS’05),

volume 3535 of Lecture Notes in Computer Science, pages 15–30.

Springer­Verlag, June 2005.

[21] E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A Type­Safe Object­

Oriented Model for Distributed Concurrent Systems. Research Re­

port 327, Department of Informatics, University of Oslo, June 2005.

[22] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.

Addison­Wesley, Second edition, 1999.

[23] K. S. Martin Fowler. UML Distilled: A Brief Guide to the Standard

Object Modeling Language. Addison­Wesley Publishing, Second edi­

tion, 1999.

[24] J. Meseguer. Conditional Rewriting Logic as a Unified Model of Con­

currency. Theoretical Computer Science, 96:73–155, 1992.

[25] J.­F. Monin. Understanding Formal Methods. Springer Verlag, 2002.

[26] M. Ofstad. Dynamic Updates in the Creol Framework. Master’s

thesis, Department of Informatics, University of Oslo, Apr. 2005.

[27] O. Owe and I. Ryl. The Oslo University Notation: A Formalism for

Open, Object Oriented, Distributed Systems. Research Report 270,

Department of Informatics, University of Oslo, 1999.

[28] M. Persson. Kompilator fra OUN til Java. Master’s thesis, Depart­

ment of Informatics, University of Oslo, Feb. 2002. In Norwegian.

[29] N. Plat and P. G. Larsen. An Overview of the ISO/VDM­SL Standard.

SIGPLAN Not., 27(8):76–82, 1992.

[30] B. Stroustrup. The C++ Programming Language, Special Edition.

Addison­Wesley Verlag, Boston, 2000.

[31] Sun Microsystems. Java Technology. http://java.sun.com/.

[32] J. A. Trono. A New Exercise in Concurrency. SIGCSE Bull., 26(3):8–

10, 1994.

144 BIBLIOGRAPHY

Appendix A

Creol Examples

In the following sections, we list the complete Creol code for the ex­

amples “The Bounded Buffer”, “The Santa Claus Problem” and “Author­

ization policies”.

A.1 The Bounded Buffer

1 /* First the interfaces */

interface BufferP

begin with Producer

op append(in d:Data)

5 end

interface BufferC

begin with Consumer

op remove(out d:Data)

10 end

interface Buffer inherits BufferP, BufferC

begin

end

15

interface Consumer

begin

end

20 interface Producer

begin

end

/* The implementation of the buffer */

25 class BoundedBuffer(max:int) implements Buffer

begin

var buffer:List[Data]=empty, n:int=0

145

146 APPENDIX A. CREOL EXAMPLES

with Producer

30 op append(in d:Data) == await n < max;

buffer := add(buffer,d); n := n + 1

with Consumer

op remove(out d:Data) == await n > 0;

35 d := first(buffer); buffer := rest(buffer); n := n ­ 1

end

/* The producer creates the natural numbers: */

class Prod(b:BufferA) implements Producer

40 begin

op run == !loop(0)

op loop(in i:int) == b.append(i); !loop(i+1)

end

45

/* The consumer fetches and simply prints the number: */

class Cons(b:BufferR) implements Consumer

begin

op run == !loop

50 op loop == var y:Data; b.remove(;y); print(y); !loop

end

/* A starter class */

class Starter

55 begin

op run == var b:Buffer, p:Producer, c:Consumer;

b := new BoundedBuffer(10);

p := new Prod(b);

c := new Cons(b)

60 end

A.2 The Santa Claus Problem

1 /* The interfaces */

interface SantaClausR

begin with ReinDeer

op backFromHoliday

5 end

interface SantaClausE

begin with Elf

op haveProblem

10 end

interface SantaClaus inherits SantaClausR, SantaClausE

begin

end

15

A.2. THE SANTA CLAUS PROBLEM 147

interface Reindeer

begin with SantaClausR

op harness

op unharness

20 end

interface Elf

begin with SantaClausE

op enterOffice

25 op leaveOffice

end

/* The classes */

class SantaClausC implements SantaClaus

30 begin

var ct_rd:nat=0, wait_rd:List[Reindeer]=empty,

harnessed_rd:List[Reindeer]=empty, ct_elves:nat=0,

wait_elves:List[Elf]=empty, inoffice_elves:List[elf]=empty

35 op run == !loop

op loop ==

(await ct_rd = 9; deliverToys(;) []

await (ct_elves >= 3 /\ ct_rd != 9); talkToElves(;));

40 !loop

op deliverToys ==

var t1:Label,..,t9:Label;

ct_rd := 0;

45 t1!first(wait_rd).harness;

harnessed_rd := add(harnessed_rd, first(wait_rd));

wait_rd := rest(wait_rd);

...

t9!first(wait_rd).harness;

50 harnessed_rd := add(harnessed_rd, first(wait_rd));

wait_rd := rest(wait_rd);

await t1? /\ ... /\ t9?;

<<Pick up and deliver Toys>>;

!first(harnessed_rd).unharness;

55 harnessed_rd := rest(harnessed_rd);

...

!first(harnessed_rd).unharness;

harnessed_rd := rest(harnessed_rd);

60

op talkToElves ==

var t1:Label,t2:Label,t3:Label;

<<Open door>>;

ct_elves := ct_elves ­ 3;

65 t1!first(wait_elves).showIn;

inoffice_elves := add(inoffice_elves, first(wait_elves);

wait_elves := rest(wait_elves);

t2!first(wait_elves).showIn;

inoffice_elves := add(inoffice_elves, first(wait_elves);

148 APPENDIX A. CREOL EXAMPLES

70 wait_elves := rest(wait_elves);

t3!first(wait_elves).showIn;

inoffice_elves := add(inoffice_elves, first(wait_elves);

wait_elves := rest(wait_elves);

await t1? /\ t2? /\ t3?;

75 <<Close door>>;

<<Talk to elves>>;

<<Open door>>;

t1!first(inoffcie_elves).showOut;

inoffice_elves := rest(inoffice_elves);

80 t2!first(inoffcie_elves).showOut;

inoffice_elves := rest(inoffice_elves);

t3!first(inoffcie_elves).showOut;

inoffice_elves := rest(inoffice_elves);

await t1 /\ t2 /\ t3;

85 <<Close door>>

with Reindeer

op backFromHoliday ==

ct_rd := ct_rd + 1;

90 wait_rd := add(wait_rd,caller)

with Elf

op haveProblem ==

ct_elves := ct_elves + 1;

95 wait_elves := add(wait_elves,caller)

end

class ReindeerC(sc:SantaClausR) implements Reindeer

100 begin

op run == !holiday

op holiday == <<Go on holiday>>; !sc.backFromHoliday

op deliverToys == <<Deliver Toys>>

105 with SantaClausR

op harness == !deliverToys

op unharness == !holiday

end

110

class ElfC(sc:SantaClausE) implements Elf

begin

op run == !work

op work == <<Do work>>; !sc.haveProblem

115 op talkToSanta == <<Talk to Santa>>

with SantaClausE

op showIn == <<Go into Santa’s office>>; !talkToSanta

op showOut == <<Leave Santa’s office>>; !work

120 end

class LeaderElfC(sc:SantaClaus, elves:List[Elves])

inherits ElfC(sc) implements Elf

A.3. AUTHORIZATION POLICIES 149

begin

125 op run == !loop

op work == (<<Lead the elves>> ||| <<Make toys>>); !sc.←֓

→֒haveProblem

end

class Christmas

130 begin

op run ==

var sc:SantaC, r1:Reindeer,...,r9:Reindeer, e1:Elf,...,e7:Elf;

sc := new SantaClausC;

r1 := new ReindeerC(sc);

135 r2 := new ReindeerC(sc);

...

r9 := new Reindeer(sc);

e1 := new ElfC(sc);

e2 := new ElfC(sc);

140 ...

e6 := new ElfC(sc);

e7 := new LeaderElfC(sc, [e1,e2,...,e6])

end

A.3 Authorization Policies

1 interface High

begin

with Agent

op openH(out ok:Bool)

5 op access(in key:int out y:Data)

op closeH

end

interface Low

10 begin

with Agent

op openL

op access(in key:int out y:Data)

op closeL

15 end

interface HighLow inherits High, Low

begin

end

20

class DB

begin

op access(in key:int, high:bool out: y:Data) == /* ... */

op clear(in x:Agent out ok:bool) == /* ... */

25 end

class SAuth

150 APPENDIX A. CREOL EXAMPLES

var gr:Agent=null

begin

30 op grant(in x:Agent) == await (gr = null); gr := x

op revoke(in x:Agent) == if gr = x then gr := null fi

op auth(in x:Agent) == await (gr = x)

end

35 class MAuth

var gr:Set[Agent]=empty

begin

op grant(in x:Agent) == gr := gr U { x }

op revoke(in x:Agent) == gr := gr \ { x }

40 op auth(in x:Agent) == await (x in gr)

end

class HAuth implements High inherits SAuth, DB

begin

45 op acc(in x:Agent, key:int out y:Data) ==

auth(x);

await access@DB(key, true; y)

with Agent

op openH(out ok:Bool) ==

50 await clear(caller; ok);

if ok then grant(caller) fi

op access(in key:int out y:Data) ==

acc(caller, key; y)

op closeH == revoke(caller)

55 end

class LAuth implements Low inherits MAuth, DB

begin

op acc(in x:Agent, key:int out y:Data) ==

60 auth(x);

await access@DB(key, false; y)

with Agent

op openL == grant(caller)

op access(in key:int out y:Data) ==

65 acc(caller, key; y)

op closeL == revoke(caller)

end

70 class HLAuth implements HighLow inherits LAuth, HAuth

begin with Agent

op access(in key:int out y:Data) ==

if caller=gr@SAuth

then acc@HAuth(caller, key; y)

75 else acc@LAuth(caller, key; y)

fi

end

Appendix B

Java Representation

The Java representation of Creol programs is low­level and boring de­

tails; therefore, we will not discuss it in detail. However, we list the Java

representation of the Bounded Buffer example in the next section.

Note that in case of a branching statement, e.g., the if­statement, a method

toListRep() is called in order to set some “next statement”­pointers. See

Appendix C for further notes.

B.1 The Bounded Buffer

1 public class BoundedBuffer extends StandardMachines

implements CreolProgram {

public static void main(String[] argv) {

if(argv.length == 0)

5 new CVM("cvm", new BoundedBuffer());

else

new CVM(argv[0], new BoundedBuffer());

}

10 public ClassDefinitionSet getClassDefinitions() {

ClassDefinitionSet classdef = new ClassDefinitionSet();

/* BoundedBuffer class */

15 CreolClass boundedbuffer =

new CreolClass(

null,

new VdeclList(new Vdecl("buffer", new DataList(null)),new ←֓

→֒VdeclList(new Vdecl("max",new IntVal(10)),new VdeclList(←֓

→֒new Vdecl("n",new IntVal(0))))),

null,

20 new HashMap<String, CreolMethod>());

boundedbuffer.addMethod("append",

151

152 APPENDIX B. JAVA REPRESENTATION

new CreolMethod(

new VarList("d"),

new Await(new IntL(new IntVar("n"), new IntVar("max")),

25 new Assignment("buffer", new DataListAdd("buffer", new ←֓

→֒DataVar("d")),

new Assignment("n", new Plus(new IntVar("n"), new IntVal(1))←֓

→֒,

new Return(null)))),

null,

new Sig(new StringList("Data"), null),

30 new Co("Producer")));

boundedbuffer.addMethod("remove",

new CreolMethod(

null,

new Await(new IntL(new IntVal(0), new IntVar("n")),

35 new Assignment("d", new DataListFirst(new DataListVar("←֓

→֒buffer")),

new Assignment("buffer", new DataListRest(new DataListVar("←֓

→֒buffer")),

new Assignment("n", new Minus(new IntVar("n"), new IntVal(1)←֓

→֒),

new Return(new VarList("d")))))),

new VarList("d"),

40 new Sig(null,new StringList("Data")),

new Co("Consumer")));

classdef.addClass("BoundedBuffer", boundedbuffer);

/* Prod class */

45 CreolClass prod =

new CreolClass(new VarList("b@Prod"),null,null,new HashMap<←֓

→֒String, CreolMethod>());

prod.addMethod("run",

new CreolMethod(

null,

50 new Call(null,"loop",null,"Prod",new ExprList(new IntVal(1))←֓

→֒,new Sig(new StringList("int"),null),new Co("Void")),

null,

new Sig(null, null),

new Co("Void")));

prod.addMethod("loop",

55 new CreolMethod(

new VarList("i"),

new VarDecl("t",null,

new Print("### Producer sends: ’", new IntVar("i"), "’\n",

new ExternalCall("t", new ObjVar("b@Prod"), "append", new ←֓

→֒ExprList(new IntVar("i")),new Sig(new StringList("int"←֓

→֒),null),new Co("Producer"),

60 new Await(new ReplyGuard("t"),

new Reply("t", null,

new Call(null,"loop",null,"Prod",new ExprList(new Plus(new ←֓

→֒IntVar("i"), new IntVal(1))),new Sig(new StringList("←֓

→֒int"),null),new Co("Void"),

new Return(null))))))),

null,

B.1. THE BOUNDED BUFFER 153

65 new Sig(new StringList("int"), null),

new Co("Void")));

classdef.addClass("Prod", prod);

/* Cons class */

70 CreolClass cons = new CreolClass(new VarList("b@Cons"),null,null,←֓

→֒new HashMap<String, CreolMethod>());

cons.addMethod("run",

new CreolMethod(null,

new Call(null,"loop",null,"Cons",null,new Sig(null,null),new←֓

→֒ Co("Void")), null, new Sig(null, null), new Co("Void")←֓

→֒));

cons.addMethod("loop",

75 new CreolMethod(

null,

new VarDecl("t",null,

new VarDecl("y", null,

new ExternalCall("t", new ObjVar("b@Cons"), "remove", null,←֓

→֒new Sig(null, new StringList("Data")),new Co("Consumer←֓

→֒"),

80 new Await(new ReplyGuard("t"),

new Reply("t", new VarList("y"),

new Print("### Consumer prints: ’", new IntVar("y"), "’\n",

new Call(null,"loop",null,"Cons",null,new Sig(null,null),←֓

→֒new Co("Void"),

new Return(null)))))))),

85 null,

new Sig(null, null),

new Co("Void")));

classdef.addClass("Cons", cons);

90 /* Starter class */

CreolClass starter =

new CreolClass(null, null, null, new HashMap<String,←֓

→֒CreolMethod>());

starter.addMethod("run",

new CreolMethod(

95 null,

new VarDecl("b", null,

new VarDecl("p", null,

new VarDecl("c", null,

new NewObject("b", "BoundedBuffer", null,

100 new NewObject("p", "Prod", new ExprList(new ObjVar("b")),

new NewObject("c", "Cons", new ExprList(new ObjVar("b"))))))←֓

→֒)),

null,

new Sig(null,null),

new Co("Void")));

105 classdef.addClass("Starter", starter);

return classdef;

}

110 public InitObjectList getInitObjects() {

154 APPENDIX B. JAVA REPRESENTATION

return new InitObjectList(new InitObject("Starter", null));

}

public SubtypeGraph getSubtypeGraph() {

115 HashMap<String, StringList> subtypes = new HashMap<String, ←֓

→֒StringList>();

subtypes.put("int", new StringList("Data"));

subtypes.put("nat", new StringList("int"));

subtypes.put("string", new StringList("Data"));

subtypes.put("Any", new StringList("Data"));

120 subtypes.put("BufferA", new StringList("Any"));

subtypes.put("BufferR", new StringList("Any"));

subtypes.put("Buffer", new StringList("BufferA", new StringList("←֓

→֒BufferR")));

subtypes.put("Producer", new StringList("Any"));

subtypes.put("Consumer", new StringList("Any"));

125 SubtypeGraph sg = new SubtypeGraph(subtypes);

return sg;

}

}

Appendix C

Prototype Notes

Here we present some additional notes and details about the CVM pro­

totype:

• Organization of classes and interfaces in packages.

• Logging.

• How to use the prototype.

• Where to download the prototype.

C.1 Details

This section describes some details for which no room was found in the

thesis, but which are important for those who want to use the CVM or

who want to change or extend the CVM.

Packages

The CVM prototype consists of many classes and interfaces. These

classes and interfaces need some kind of organization. Therefore, we

have collected them in different packages. Each of these packages is a

sub­package of cvm:

cvm.classdef contains classes and interfaces which are in close relation­

ship with the Creol program definition; e.g., the interface CreolPro­

gram and classes ClassDefinitionSet, CreolClass, CreolMethod, etc.

155

156 APPENDIX C. PROTOTYPE NOTES

cvm.code contains the Statement interface and the classes which imple­

ment statements; e.g., AssignmentList, Await, NewObject, etc.

cvm.func contains classes and interfaces which define the functional

part of Creol; e.g., interface Data, BoolExpr, Label, IntVal, IntEq, etc.

cvm.logg contains two classes for logging purposes: CVMLogger and

ObjLogger

cvm.msg contains classes and interfaces defining the message queues

and the message types.

cvm.node contains the classes CVM and Central and the interfaces which

Central implements.

cvm.object contains classes which define the Creol object and the com­

ponents of the Creol object; e.g., classes CreolObject, CreolProcess,

CompSet, etc.

The test programs are stored in a package cvmtest (this is not a sub­

package of cvm).

Logging

The development of a virtual machine is a demanding and difficult job.

Often programming errors do not give compilation errors but appear as

strange behavior of the program. To reveal and fix errors, the use of a

logger has been crucial.

We have used the Apache log4j1 logger to log the execution of the virtual

machine. Figure C.1 shows the Logger class from the log4j package.

Each logger has a debug level; this level can be set at run­time and hence

the degree of debugging can be set without recompiling. We use a file

config.log4j to specify the configuration properties; e.g., the debugging

level for each type of loggers. This file is read by the prototype program.

The use of a logger is rather simple: a call to the method specifying

the appropriate debugging level. For instance, we log the execution of a

Creol assignment statement with debug level “info”:

logger.info(id + ‘‘:=’’ + expr.toString());

1http://logging.apache.org/log4j/

C.1. DETAILS 157

1 package org.apache.log4j;

public class Logger {

// Creation & retrieval methods:

5 public static Logger getRootLogger();

public static Logger getLogger(String name);

// printing methods:

public void debug(Object message);

public void info(Object message);

10 public void warn(Object message);

public void error(Object message);

public void fatal(Object message);

// generic printing method:

public void log(Level l, Object message);

15 }

Figure C.1: The Logger class.

where id is the variable identifier and expr is the expression which is

evaluated and assigned to id. If the debugging level for this logger is set

to “info” or below, this will log information to a given file. We will not go

into more details about how loggers are set up and used; the interested

reader is referred to Apache’s home site: http://logging.apache.org/

log4j/.

We have used a number of loggers. Each logger has a name, and logs to

a file in the logg directory. The most important loggers are:

• An execution log for each Creol object. The execution of a state­

ment is logged.

Name: ExecLog.<objid>

Filename: <objid>.execution.log

• A variable log for each object. All local variables and attributes

between the execution of statements are logged.

Name: VarLog.<objid>

Filename: <objid>.variables.log

• A console log for each object, which log whatever the object writes

to the console (using the print statement).

Name: ConsoleLog.<objid>

Filename: <objid>.console.log

• Loggers for the objects’ in­queue and out­queue. These loggers log

when a message is inserted and removed. There are also loggers

for each virtual machine’s in­queue and out­queue.

158 APPENDIX C. PROTOTYPE NOTES

1 public class StandardMachines {

public HashMap<String,String> getCVMtoMachineMapping() {

HashMap<String,String> hm = new HashMap<String,String>();

hm.put("cvm1", "viisi.ifi.uio.no");

5 hm.put("cvm2", "kolme.ifi.uio.no");

...

return hm;

}

}

Figure C.2: The StandardMachines class.

1 public class SantaClausProblem extends StandardMachines

implements CreolProgram {

public static void main(String[] argv) {

if(argv.length == 0)

5 new CVM("cvm", new SantaClausProblem());

else

new CVM(argv[0], new SantaClausProblem());

}

public ClassDefinitionSet getClassDefinitions() { ... }

10 public InitObjectList getInitObjects() { ... }

public SubtypeGraph getSubtypeGraph() { ... }

}

Figure C.3: The SantaClausProblem class.

The logging files are stored in the catalog logg. The debugging of each

type of logger can be set in config.log4j by using the logger name; how

this is done is self­explained by investigating the file. <objid> is the

object identifier of the object; e.g., (cvm1,0) is the first created object

on the virtual machine cvm1.

Specifying Host Machines

Recall from Chapter 6 that the CreolProgram interface has a method

getCVMtoMachineMapping(). We have a class StandardMachines which has

this method so that we do not need to specify new virtual machine for

each program we make, see Figure C.2. Hence the classes which imple­

ment CreolProgram can extend this class and thus the method does not

need to be specified. The class StandardMachines must be modified so

that the host names correspond to the machines on which the virtual

machines will run.

The Creol program classes have a method main which creates an instance

of CVM; see Figure C.3. As discussed in Chapter 6, not all programs

C.2. DOWNLOAD AND USE 159

need multiple virtual machines. If no virtual machine is specified at

start­up, the special virtual machine identifier “cvm” is used to pass this

information to the CVM constructor.

C.2 Download and Use

This is a “How to” for downloading, installing, and using the prototype

virtual machine.

log4j

The log4j must be downloaded (http://logging.apache.org/log4j/).

This is a Java jar file. The excact name depends on the version num­

ber; for instance it can be log4j­1.2.12.jar. This file must be added to the

Java class path. How this is done is system dependent. On unix systems

with a bash shell, write

export CLASSPATH=$CLASSPATH:path/log4j­1.2.12.jar

either in bash or in the file .bashrc.

Prototype Download

The prototype is available for download at

http://heim.ifi.uio.no/~ivaralm/thesis/

All files are available in the cvm directory. The files are also packed in

a file called cvm.tar.gz. Download this file and unpack by tar; e.g., the

command

~ $ tar ­xvzf cvm.tar.gz

This command creates a directory cvm which contains three sub­director­

ies (cvm, cvmtest and logg) and one file (config.log4j). The cvm dir­

ectory corresponds to the cvm package and contains the sub­packages.

The cvmtest directory corresponds to the cvmtest package. The logg dir­

ectory is an empty directory for log files. The config.log4j file is the

logging configuration file. After unpacking the cvm.tar.gz file, the cvm

directory should look something like:

160 APPENDIX C. PROTOTYPE NOTES

~/cvm $ ls

config.log4j cvm cvmtest logg

~/cvm $ ls cvm

classdef code func logg msg node object

Compiling

The Java files need to be compiled before execution. For example, if you

want to execute the Santa Claus Problem example, compile cvmtest/­

SantaClausProblem.java:

~/cvm $ javac cvmtest/SantaClausProblem.java

To be able to run distributed programs, the CVM in­queue stub must

first be created, that is, the CVMinQueue.java file must be compiled by

the RMI compiler:

~/cvm $ rmic cvm.msg.CVMinQueue

Run

The Santa Claus problem is now ready for execution:

~/cvm $ java cvmtest.SantaClausProblem

In case you want to execute a distributed version, the virtual machine

identifier must also be given, for instance

~/cvm $ java cvmtest.SantaClausProblemRemote cvm1

The examples at the end of the chapters 4, 5 and 6 give additional in­

formation about how to execute the programs.

