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ABSTRACT
We present a new wireless transceiver board for the CUI32
sensor interface, aimed at creating a solution that is flexible,
reliable, and with little power consumption. Communica-
tion with the board is based on the ZigFlea protocol and
it has been evaluated on a CUI32 using the StickOS oper-
ating system. Experiments show that the total sensor data
collection time is linearly increasing with the number of sen-
sor samples used. A data rate of 0.8 kbit/s is achieved for
wirelessly transmitting three axes of a 3D accelerometer.
Although this data rate is low compared to other systems,
our solution benefits from ease-of-use and stability, and is
useful for applications that are not time-critical.
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1. INTRODUCTION
Wireless sensing is an important issue in many new digital
interfaces for musical expression. The ideal solution here is
to build devices that allow for connecting a lot of sensors,
and that at the same time are small, fast, inexpensive, accu-
rate/precise, consume little battery power, and, perhaps the
most important: are reliable in all sorts of performance con-
texts. While there are numerous cabled sensing platforms
to choose from these days, e.g., Arduino, CUI32, Phidgets,
there are not many easy-to-use wireless sensing solutions
that are stable enough for music-related applications.

The de facto standard for short range wireless transmis-
sion is Bluetooth (IEEE 802.15.1), a technology which is
currently embedded in a variety of commercial devices, rang-
ing from computer mice to mobile phones, cameras, print-
ers, etc. While it certainly works in many contexts, our ex-
perience is that Bluetooth is not reliable enough for music-
related applications. Then WLAN (IEEE 802.11) solutions
are much more powerful and reliable, but such systems
are also typically larger, more expensive, and more power-
consuming than Bluetooth systems. An alternative solution
is to use ZigBee (IEEE 802.15.4), which allows for creating
systems that are smaller and less power-consuming than
Bluetooth, while at the same time being reliable.

In this paper we report on a project aimed at creating
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a low-rate and low-power wireless sensor platform, which
should at the same time be easy to use also for people that
are more interested in creating musical applications than
the electronics itself. A sensor collection system is always
a compromise between throughput of data and power con-
sumption. High speed is often critical when designing musi-
cal instruments, where a total latency of approx. 10 ms may
be the upper limit [18]. However, in adaptive music devices,
aimed at giving the user an active listening experience, the
tolerance for latency may be considerably higher [6, 12]. On
the other hand, in such devices power consumption is often
more important, and this is what we are mainly targeting
with the solution discussed in this paper.

The paper starts with a brief overview of the core compo-
nents that our platform is based on: CUI32, StickOS, Zig-
Bee and ZigFlea. Then our custom-built wireless extension
board for the CUI32 is presented, followed by a report on a
series of experiments to test its performance with different
types and numbers of sensors.

2. BACKGROUND
2.1 CUI32
The CUI32 is a do-it-yourself USB sensor interface [4], based
on the original CREATE User Interface (CUI) [13]. It is an
open hardware platform based on the 32-bit PIC micro-
controller (PIC32MX440F512H) [11], with a 512 KB flash
memory, 32 KB RAM, and 16 analog sensor inputs. The two
SPI (Serial Peripheral Interface) connections on the con-
troller make it easy to connect a transceiver for wireless
communication.

2.2 StickOS
The CUI32 ships with StickOS pre-installed [3], which makes
it easy to get started and taking full advantage of the pow-
erful 32-bit PIC microcontroller. StickOS is a full operat-
ing system with an on-board BASIC compiler, line editor,
debugger, profiler, and a simple file system to create new
firmware programs, save them and run them. All this can be
done without installing any software on the host computer,
only using a standard terminal emulator for the communi-
cation. StickOS also supports wireless data transmission,
and for logging data to a USB memory stick. For our in-
tended use, creating sensing solutions for music-related ap-
plications, StickOS is a good choice: the easy syntax and
built-in help system make it possible to get started quickly,
and advanced users may appreciate it as a quick prototyping
environment.

2.3 ZigBee
ZigBee (IEEE 802.15.4) is a low-cost, low-power, wireless
network standard [10]. It is somewhat similar to Bluetooth
(see comparison in [9]), but overcoming some of the prob-
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lems often experienced in Bluetooth devices, e.g. (re)connection
to other devices. The ZigBee protocol has a raw transfer
rate of around 250 Kbps and 16 channels in the 2.4 GHz
band, with the protocol headers and tails included. This
maximum transmission range is possible between 10 and 75
m, dependent on the surroundings (walls, etc.).

While ZigBee has been used in some musical projects, e.g.
[2, 5, 8], there have not been many systematic studies of its
suitability for musical applications. We have previously un-
dertaken some work on determining the possible throughput
of ZigBee for an accelerometer-based sensor system using an
Atmel AVR microcontroller [17]. In this paper we propose a
more general ZigBee-approach for the CUI32/PIC platform.

2.4 ZigFlea
ZigFlea is a subset of the ZigBee protocol, implemented in
StickOS. It equals ZigBee regarding the physical layer, but
is a point-to-point protocol focused on sending in only one
direction at a time (half-duplex). The benefit of this is that
the protocol stack is as little as 3 KB, as compared to the
30 KB of ZigBee. Our solution is based on the Freescale
MC13201 transceiver, which supports the IEEE 802.15.4
standard used by ZigBee and ZigFlea, as well as the Serial
Peripheral Interface (SPI) standard for synchronous serial
data transfer. The transceiver runs at 2.4 GHz and has
support for 16 channels and a speed of up to 250 Kbps. Both
point-to-point networks and star networks are possible.

3. A NEW TRANSCEIVER BOARD
The aim was to design a wireless transceiver board that
could be easily connected to the CUI32. After testing sev-
eral possible solutions, we settled on an integrated design
where the transceiver board can easily be connected on top
of the CUI32, as can be seen in Figures 1 and 2. The eagle
files for the board are freely available [1].

Figure 1: Our custom-built ZigFlea board.

The dimensioning of the antenna is based on the Freescale
guidelines [15] and [16]. It was a challenge to find the best
possible placement of the antenna. Placing it right above
the microcontroller on the CUI32 board led to the shortest
operation range, probably due to the ground plane cover-
ing the (CUI32) board – and disturbing the antenna signal.
Thus, the antenna was placed slightly on the side of the
board, as can be seen in Figure 2.

4. EXPERIMENTS
A number of tests have been undertaken to determine the
capability of the wireless platform, and will be presented
in the following sessions: (a) continuous reading of one and
multiple sensors, (b) infrequent sensor reading, (c) different
types of network topologies. All the results that will be
presented are average values of 10 runs.

Figure 2: ZigFlea board mounted on top of the
CUI32 board. The antenna is the part sticking out
on the left side.

4.1 One Sensor
In the first experiments, we tested with only one sensor, a
3D accelerometer (ADXL335), to get an indication of the
highest possible wireless transmission speed. As shown in
Table 1, the polling time increases linearly with the number
of data samples being read, each containing data from one
accelerometer channel. When reading data from all three
axes of the accelerometer, the update frequency is 8.3 Hz.
If one sample is read and placed in a local variable, not to
be transmitted wirelessly, the program uses around 2 ms
per reading. This illustrates that the wireless transmission
takes the largest fraction of the time for each reading, and
that the microcontroller is not a bottleneck in the system.

Table 1: Measurements of update time and fre-
quency for sampling different numbers of sensor
channels of a 3D accelerometer.

# samples Time (ms) Freq. (Hz) Time/sensor (ms)
3 120.1 8.3 40.0
2 78.9 12.7 39.5
1 38.1 26.3 38.1
0 0.8 1250.0 —

The stability of the system was very good in this setup,
and it reconnected quickly if the two connected transceivers
got out of range.

4.2 Multiple Sensors Connected
The second setup was used to test how the platform handles
reading several different sensors concurrently. The following
sensors were used:

• One orientation (inertial) sensor with a combination of
magnetometer, accelerometer and gyroscope (CHrobotics
CHR-6dm)

• One distance sensor based on sonar (XL Maxson-EZ1,
MB1210)

• One RFID sensor (ID-12)

The distance sensor was connected to the microcontroller
through the analog inputs on the CUI32 while the two other
sensors were connected through universal asynchronous re-
ceivers/transmitters (UARTs). The RFID sensor is based
on interrupt control while the orientation sensor is based on
polling. For each data polling, 15 samples from the orien-
tation sensor and one sample from the distance sensor were
read, respectively.

Table 2 shows the results of the experiment. It took about
652.5 ms (1.5 Hz) to read and transmit data from all the 16



sensors. When only 3 sensor readings were sent, however,
the update frequency was 8.3 Hz. Thus, the difference in
time per sensor data was minimal compared to the first
setup with only a single 3D accelerometer. This tells us that
the wireless transmission takes up much more of the time
than reading from the sensor locally in the sensor unit. Also,
the time needed for reading and transmitting data scales
almost linearly with the number of sensor data samples. So
an easy way of increasing the overall frequency is to simply
limit the number of sensors being read.

Table 2: Measurements of update time and fre-
quency for sampling different numbers of sensor
channels for multiple sensors.

# samples Time (ms) Freq. (Hz) Time/sensor (ms)
16 652.5 1.5 40.8
15 611.8 1.6 40.8
14 569.9 1.8 40.7
13 529.6 1.9 40.7
12 488.7 2.0 40.7
11 448.0 2.2 40.7
10 406.7 2.5 40.7
9 365.8 2.7 40.6
8 325.1 3.1 40.6
7 283.6 3.5 40.5
6 243.2 4.1 40.5
5 202.2 5.0 40.4
4 161.3 6.2 40.3
3 120.4 8.3 40.1
2 79.1 12.6 39.6
1 38.7 25.8 38.7
0 8.9 112.4 -

In terms of stability, this setup had a tendency to get
stuck when the RFID sensor issued an interrupt. To solve
this problem, we introduced a short break (a few ms) be-
tween each polling.

4.3 Infrequent Sensor Reading
The goal of this experiment was to test how the platform
works with sensors that are not dependent on frequent read-
ing and high speed wireless transmission.

Here we first tested a setup based on only one RFID
reader, connected to the CUI32 through the serial UART
interface. The aim was to find the time needed for reading
an RFID tag and transferring the whole tag ID wirelessly.
This is also a way of testing the interrupt system of StickOS
without other sensors interfering.

The results show that, on average, it took 16 ms to read
the tag and another 408 ms to transfer all the RFID tag
data. Since the RFID tag consists of ten characters, it was
sent as ten variables in StickOS. This means that the time
it takes to send a character per variable is approximately
the same as measured in the experiment in Section 4.2.

To study how adding a second sensor would influence the
data, we connected a pulse sensor to the analog input of the
CUI32, while keeping the RFID reader connected. Such a
system could be relevant for using the RFID to detect the
location of a person in a room while the pulse sensor could
represent the “quantity of motion” of the person.

Sending the raw pulse data wirelessly would result in
varying delays and a slightly erroneous pulse frequency. In-
stead we measured the time between pulses in the CUI32,
calculated the pulse frequency, and only sent the frequency
over the wireless connection every 2s. In this setup, the
pulse frequency as well as the RFID data were successfully
transferred. It may therefore be possible to conclude that
the setup works well for non-time-critical wireless sensing.

4.4 Star Network Topology
In addition to testing our platform with different numbers of
sensors, we were also interested in seeing how different types
of network topologies would influence the performance. One
such type of topology is a star network, in which multiple
sensor devices send data to a shared main unit. This is
typically useful if several sensors are distributed on different
parts of the body. Here our setup consisted of two sensor
devices, one with a 3D accelerometer connected (the same as
in Section 4.1), and another device toggling between sending
“0” and “1”.

We started testing with both sensor devices transferring
data continuously. This resulted in one of the devices being
blocked and not able to transmit data, a result of the main
unit being busy with receiving data from the other sensor
device. To overcome this problem, we introduced pauses in
the transmission. Here we found that it was necessary to
introduce a pause of 100 ms to ensure that both sensor units
got data sent. Even with such a pause, we experienced some
dropouts, and that one unit sent out data more frequently
than the other. It was therefore not so easy to measure the
average time it took to transfer a variable, so an average
of 20 rounds of sensor data collection was applied (i.e. 60
sensor data samples).

The results from testing transmission with pauses of 100,
150 and 200 ms can be seen in Table 3. The table com-
pares the time used in a star network setup with a setup
having just a single sensor device transmitting data. We
see that the time difference decreases as the pause interval
increases. Thus, the star network creates less conflict as the
pause length increases. The optimal interval depends on the
response requirement needed for the given application.

Table 3: Comparing a star network with two sensor
devices and a network with only one sensor unit.
All numbers in ms.

Pause
Star network One sensor device

Diff.
3 1 3 1

samples sample samples sample
0 — — 121.4 40.4 —

100 358.6 119.5 192.0 64.0 55.5
150 375.7 125.2 242.0 80.7 44.5
200 417.9 139.3 295.0 98.3 41.0

We also tested with an RFID reader connected to the
second sensor device. In this setup the accelerometer sent
data continuously, with sporadic interrupts by the RFID
sensor. Here we found that the RFID sensor used the same
time as in Section 4.3, i.e. 16 ms for reading the sensor and
408 ms for the wireless transmission. This will, obviously,
influence the transmission of accelerometer data, which will
be delayed by the same 408 ms.

4.5 Point-to-Point Network
A different network topology is a point-to-point connection,
where one sensor device transmits its sensor data through
another sensor device to reach the main unit. The sensor
setup in this experiment was the same as the first one in
the previous section: a 3D accelerometer in the first sensor
unit, and a toggle (0/1) in the second device. The latter was
receiving data from the first sensor and transmitted this as
well as its own data to the main unit.

During testing it quickly became obvious that the second
unit (the middle) got problems with receiving and sending
data at the same time. The communication bottleneck be-
came larger than in the previous setup, even when pauses
were introduced. In fact, it was difficult to record sufficient
timing data for this test since the transmission was so un-



predictable. Even with a pause of 300 ms it took, at best,
455 ms per data variable to be transmitted. So we can safely
conclude that this point-to-point network was less suitable
than the star network.

5. DISCUSSION
The results show that the ZigFlea implementation in the
current version of StickOS (version 1.92) is not optimized.
For example, it was found that a frequency of 8.3 Hz is
all that is possible for wirelessly transmitting three axes
of a 3D accelerometer. Because ZigFlea and ZigBee are
half-duplex protocols, they require StickOS (or any other
firmware) to wait for an acknowledgement after transmit-
ting data. In order to allow the remote node enough time
to switch from “receiving” to “transmitting” mode (to reply
with the acknowledgement of the received packet), a 40 ms
delay is currently hard-coded into the StickOS ZigFlea pro-
tocol, and can be seen in the StickOS source code. Future
tests should explore the possibility of re-compiling StickOS
with this hard-coded delay set to approximately one order
of magnitude less (i.e. 4 ms), in order to optimize the per-
formance of ZigFlea.

It can also be seen that ZigFlea variables in StickOS are
transmitted one-at-a-time, as soon as they are updated in
the user’s BASIC program, which explains why the ob-
served transmission times linearly increase with the num-
ber of samples being sent. The overall data rate of ZigFlea
in StickOS could easily be improved by packaging multiple
variables together before sending them. This would obvi-
ously come at the cost of slightly increased latency, albeit
not much, as gathering multiple channels of sensor data can
be accomplished in less than 1 ms in StickOS. This packag-
ing or “bundling” of sensor data is something that will be
examined in future versions of StickOS, in order to achieve
the full throughput of ZigFlea (250 Kbps). Nonetheless,
the achievable actual data throughput will still be less than
this maximum specified bit rate, due to required packet
overhead. A similar approach has already been taken for
non-wireless communication with StickOS. For example, the
CUI32 is capable of sustaining the throughput of full-speed
USB even with small packets, again achieved by bundling
data together before transmission.

Another optimization possibility is to allow sending 16-
bit values over ZigFlea, when the current standard of 32-bit
values are not needed. Further, the need for introducing
pauses when two units try to send concurrently indicates
lack of support for synchronization between multiple trans-
mitters. So some system is needed to ensure stability and
predictability with multiple transmitters.

When comparing with alternative platforms, our setup
benefits from an integrated add-on board for the CUI32 and
the ease-of-use through a simple programming language. As
such, the system is suitable for applications in need of a low-
power and low-rate sensor. If speed and latency are critical,
however, other solutions would be preferable. Implement-
ing a full ZigBee solution is one possibility here, as XBee
modules can be attached to a CUI32. Or it might even be
possible to use WiFi (802.11b/g), which allows OpenSound
Control (OSC) packets to be sent directly from the CUI32
[14].
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