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1 Introduction 
Traditionally compilers for programming languages have been written to generate a 
specific set of code. The Unified Modeling Language is different in that it does not 
specify complete semantics for all its concepts. UML is designed to be able to specify 
software system in a wide variety of domains. The generated code for the different 
domains will inevitably be different. For example there is a very different set of demands 
for a real-time system as opposed to a bookkeeping system. This was of course true 
before UML, but programming languages are at a lower level of abstraction and the set of 
choices made to implement the concepts of a programming language does not change 
much from domain to domain. UML on the other hand has a higher level of abstraction 
and thus require more choices about how to implement it. Since there is a wide variety of 
ways to implement concepts in UML, with different advantages and disadvantages, there 
is a need for different code generators and a way for the users to customize the generated 
code. 

This thesis is based on an existing UML compiler written by myself as a plug-in for 
Rational Software Modeler. I use a subset this compiler as an example scenario 
throughout this thesis. This scenario is implemented using different transformation 
technology and a transformation architecture is presented that aims at helping users 
produce code generators that are customizable in a compact and maintenance friendly 
way. 

1.1 Thesis structure 
Chapter 2 Technologies 

This chapter gives an overview of technologies and standards relevant to the thesis. Both 
modeling and transformation technologies are covered.  

Chapter 3 JavaFrame 

This chapter explains the JavaFrame framework JavaFrame is the target platform of the 
UML compiler and the example scenario. 

Chapter 4 Modularizing transformations 

This chapter introduces reuse mechanisms for transformation rules, explains how 
transformations can be used as modules by inheritance and composition. In addition the 
concept of an intermediate meta-model is introduced. 

Chapter 5 Case: UML2JavaFrame 

This chapter introduces a general transformation architecture and implements it using two 
different approaches. The choices made during the implementations and differences and 
similarities between the approaches are explained. 

Chapter 6 

Chapter 6 shows how the transformation architecture introduced in chapter 5 can be used 
to customize code generation.  
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Chapter 7 Summary and conclusions 

This chapter summarizes the thesis, and explains possible future work.  
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2 Technologies 
This chapter gives brief descriptions of relevant technologies and standards. First 
modeling and meta-modeling are explained and then transformation technologies and 
standards. 

2.1 Model technologies and standards 

2.1.1 Model Driven Architecture (MDA) 

Throughout the history of software development new concepts and languages have 
increased the level of abstraction, from assembler to procedural languages to object 
orientation. Creating models of systems raises the abstraction level another level. Besides 
raising the abstraction level, using models has other advantages: 

• Models help visualize the system and it becomes easier to get an overview of the 
system. 

• Models are documentation of the system in addition to specification. 

Model Driven Architecture (MDA) was proposed by Object Management Group (OMG) 
in 2002 and is an approach to software development that is based on formal use of 
models. Several models are used to describe a system. The process begins with creating a 
model of the system on an abstract platform independent level. Transformations are 
defined to transform the platform independent model to a platform specific model. The 
idea is to abstract away the platform by creating several transformations to different 
platforms and if a system needs to run on a different platform than originally intended all 
that needs to be done is transform the platform independent model using a different 
transformation. In this way implementation details are separated from application logic. 

The final step is to generate code from the platform specific model [1] and this is the 
focus of this thesis. Although code generation from models may follow the pattern 
described by MDA, it does not have to. This thesis makes no assumption about what 
platform the source model is specified for and whether or not MDA is used.  

2.1.2 Meta-Object Facility (MOF) 

In order to precisely define a model, for example a UML model, a set of concepts and 
constraints that define what legal UML models may look like is needed. This is achieved 
by creating a model of UML, this model is a model of a model: a meta-model. All UML 
models must conform to this UML meta-model. However all models must conform to 
their meta-model and the UML meta-model is no exception, a need for a metameta-
model* arises. This leads to a problem because even this metameta-model needs a meta-

                                                 
* I will not use the term metameta-model throughout this thesis. I will only separate between models and 
meta-models. 
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model to conform to, leading to an infinite chain of meta-models. MOF [2] solves this 
problem by defining a meta-model that conforms to itself. 

MOF is a standard from OMG for meta-modeling. It was originally created in order to 
have a meta-model to define UML. MOF may be described using the 3-level architecture 
shown in Figure 1. The 3-level architecture consists of 3 model levels: M1, M2 and M3.  

 
Figure 1 3-level meta-model architecture 

At the M1 level there are normal models, at the M2 level there are meta-models (e.g., the 
UML 2.0 meta-model) and at the M3 level there are metameta-models. MOF is at the M3 
level and is its own meta-model. Sometimes a M0 level is included which would 
represent the actual system a UML model represents.  

2.1.3 Eclipse Modeling Framework (EMF) 

EMF [3, 4] is a framework for modeling built on top of Eclipse. It was originally based 
on MOF, but it only provides a partial implementation of the MOF standard. EMF was a 
big influence on the EMOF (Essential MOF), which is part of the MOF specification. 
EMF provides essentially the same functionality as EMOF. 

Based on an EMF input model EMF can: 

• Generate a java implementation of the model 

• Generate a simple graphical editor for the model as a plugin for Eclipse. 

The input model consists of  

• Classes 

• Class attributes 

• Relationships between classes 

• Operations 

• Simple constraints (i.e., cardinality) 
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Essentially it represents a UML class diagram, although it does not have to be specified 
using UML. Different supported input formats are annotated Java classes, UML model 
and XML schema. 

EMF converts the input model to an Ecore model. Ecore is the meta-model for all EMF 
models. 

The generated java implementation of the model includes code for persistence using 
XML/XMI. Both serialization and deserialization is supported automatically.  

Uses of EMF include, among other things, modeling the data of an application and meta-
modeling. In this thesis I will use EMF to model meta-models. I use UML models as 
input models. 

2.1.4 The Unified Modeling Language (UML) 

OMG’s Unified Modeling Language [5-7] is a language primarily for designing and 
visualizing software systems, though it is not limited to modeling software and is often 
used for modeling business processes, organizational structure and many other kinds of 
systems/domains. UML is built upon object oriented concepts like classes and operation, 
however non object oriented systems may also be modeled using UML.  

UML is the OMG’s most used specification and together with MOF it provides the 
foundation for MDA.  

The first version of UML was released in 1997 and has since been expanded and revised 
several times. The current version of UML is 2.1, although in this thesis all uses of UML 
will be of version 2.0 because the tools are not yet updated to version 2.1.  

The UML standard is divided in four parts: Superstructure, Infrastructure, Diagram 
Interchange and Object Constraint Language (OCL). The superstructure and 
infrastructure documents define the UML meta-model using MOF. The diagram 
interchange document defines an extension to the UML meta-model so that diagram 
information is also included. OCL is a language for querying both MOF and UML 
models. 

UML specifies 13 different diagram types. These are organized in three categories: 

Structure Diagrams: Class Diagram, Object Diagram, Component Diagram, Composite 
Structure Diagram, Package Diagram and Deployment Diagram. 

Behavior Diagrams: Use Case Diagram, Activity Diagram and State Machine Diagram. 

Interaction Diagram: Sequence Diagram, Communication Diagram, Timing Diagram 
and Interaction Overview Diagram. 

The UML specification is very big and in this thesis I mainly use classes, composite 
structures and state machines. 

The Eclipse UML2 project provides an implementation of the UML 2.0 meta-model 
using EMF. 
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2.1.4.1 Profiles 

UML includes a built in way of extending the language. This is done using profiles. A 
profile consists of stereotypes, tagged values and constraints.  

A stereotype is defined as an extension to a meta-element and the stereotype may 
redefine the semantics of the element. A stereotype may have tagged values which are 
properties with name and type (the types of tagged values are restricted to primitive 
types). 

2.2 Transformation technologies and standards 

2.2.1 Properties of transformations 

T. Mens et al [8] and Czarnecki and Helsen [9] describes several different properties of 
transformation approaches. I show a short overview. 

2.2.1.1 Rules 

All transformation implementations use rules. A single transformation consists of set of 
rules. The rules can be defines either for imperative or declarative 
execution/interpretation. Rules can be a composite of other rules and it is possible to 
include object oriented properties such as inheritance and polymorphism. Rules are 
usually described textually, but can also be described graphically. 

2.2.1.2 Transformation composition 

A transformation can be a composition of other transformations and these sub-
transformations can be run either in sequence, parallel or other more advanced control 
flow mechanisms. 

2.2.1.3 Direction 

A transformation can be defined to transform in only one direction, in other words from 
one meta-model to another, or a transformation can be defined in such a way that it can 
be run both ways. Even more than 2 directions are possible if more than 2 meta-models 
are specified as input/output. Declarative transformations are often suited for defining 
transformation in two directions, however for many transformations it will not be 
possible to define more than one direction at a time.  

2.2.1.4 Trace 

A transformation can create trace elements between source and target elements. These 
trace elements can be of use for among other things debugging of the model and 
synchronization between models. The trace elements can be stored in the model itself or 
separately.  

2.2.1.5 Relation between source and target model 

Some transformations may have the same target and source model (for instance for 
refactoring), but the most common scenario is to have a separate source and target model. 
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Some approaches create a new target model and others may also update an existing target 
model. The updates can be constrained to only extension, that is elements in the target 
model can not be deleted. 

2.2.2 QVT 

Query View Transformation [10] is an upcoming standard from OMG, it is currently in 
the finalization faze. The QVT language is, as the name suggest, a language for querying, 
transforming and creating views from models.  

Queries are expressions that filter or select model elements, combined with imperative 
logic. QVT uses OCL (Object Constraint Language) for queries. 

A view is a model that is derived from another model and that should not be persisted. 
Views are not handled specifically by the QVT standard. 

A transformation generates a target model from a source model. This is the main part of 
QVT. Views and queries can be seen as side effects of the transformation language. The 
transformation language is a hybrid declarative/imperative language and actually consists 
of three languages: Relational, Core and Operational mappings.  

Conformance to the QVT standard is defined by a matrix of language levels and 
interoperability levels. The interoperability levels are: Syntax executable, syntax 
exportable, XMI executable, XMI exportable and the language levels are Relational, Core 
and Operational Mappings. Currently only partial implementations of the standard exist.  

2.2.2.1 Relational language 

The Relational language is a declarative language that specifies relationships between 
elements in MOF models. The example below is taken from the QVT standard and it 
shows a transformation between UML and a Relational Database System model.  
 
transformation umlRdbms (uml : SimpleUML, rdbms : SimpleRDBMS) { 
  
 relation PackageToSchema /* map each package to a schema */ 
 { 
  domain uml p:Package { name = pn } 
  domain rdbms s:Schema { name = pn } 
 } 
  
 relation ClassToTable /* map each persistent class to table */ 
 { 
  domain uml c:Class { 
   namespace = p:Package{}, 
   kind = 'Persistent', 
   name = cn 
  } 
  domain rdbms t:Table { 
   schema = s:Schema{}, 
   name = cn, 
   column = cl:Column { 
    name = cn + '_tid', 
    type = 'NUMBER' 
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   }, 
   primaryKey = k:PrimaryKey { 
    name = cn + '_pk', 
    column = cl 
   } 
  } 
  when { 
   PackageToSchema(p, s); 
  } 
  where { 
   AttributeToColumn(c, t); 
  } 
 } 
 ... 
} 
 

This relational transformation may be executed in both directions. The different 
directions are represented by the domain blocks in each rule. If the above transformation 
was executed from SimpleUML to SimpleRDBMS, the ClassToTable rule would first 
check if any source class elements match the ‘c’ domain. In order to match kind = 
‘Persistent’ must be true and the package that owns ‘c’ must be mapped to a Schema ‘s’. 
If these conditions hold there should be a Table element ‘t’ in the target model with ‘s’ as 
schema and the same name as ‘c’. If no such element exists the it is transformation 
engine’s responsibility to create one. 

2.2.2.2 Core language 

The Core language implements the same semantics as the Relational language, but at a 
lower level of abstraction. Transformations defined in the Core language are therefore 
more verbose than Relational. In the Relational language trace elements are automatically 
created on execution, in the Core language this must be specified manually.  

A transformation, defined in the Core language, from the Relational language to the Core 
language is provided in the QVT specification. This is so a transformation engine can 
simply implement the Core language and transform any relational language input before 
executing it. 

2.2.2.3 Operational mappings 

The operational mappings part of QVT is an imperative language. It can either be used to 
define a completely imperative transformation or to implement relations from a relational 
transformation.  

Below is an example of a package to schema mapping: 
 
mapping Package::packageToSchema() : Schema 
 when { self.name.startingWith() <> "_" } 
{ 
 name := self.name; 
 table := self.ownedElement->map class2table(); 
} 
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Operational Mappings provides OCL extensions with side effects that allow a more 
procedural style. Some problem are not possible to define using the declarative constructs 
found in the Relational language, the Operational Mappings language is more expressive.  

2.2.2.4 Black box operations 

QVT provides a way to ‘plug-in’ any MOF Operation as an implementation of a 
Relation. This makes it possible to implement Relations using any programming 
language that has a MOF binding (e.g., Java). 

This is advantages because some things may be difficult to express using the Relations or 
Operational Mappings languages. In addition this allows for reuse of existing domain 
specific APIs which would be a lot of work to recode using QVT. 

2.2.3 ATL 

The Atlas Transformation Language [11] is developed by INRIA research group located 
at the University of Nantes. Like QVT it is a hybrid declarative and imperative language 
and currently ATL is probably the language that most closely resembles the QVT 
standard.  

Unlike QVT ATL is unidirectional, that is a transformation definition can only be 
executed in one direction.  

Below is an example of a declarative transformation with only one rule.  

 
module SimpleUML2SimpleRDBMS; 
 
create OUT : UML from IN : RDBMS; 
 
rule Package2Schema { 
 from p : UML!Package 
 to  
  s : RDBMS!Schema( 
   name <- p.name 
  ) 
} 
 

The ‘from’ and ‘to’ statements are the equivalent to QVT Relational’s domain blocks. 

2.2.4 IBM Model transformation framework (MTF) 

MTF [12] was developed as a prototype for a transformation language and it is a 
completely declarative language for implementing transformations between EMF models.  

Below follows a rule that relates a package to a schema: 
 
relate Package2Schema( uml:Package p, rdbms:Schema s) { 
 equals(p.name, s.name), 
 Class2Table(over p.ownedMember, over s.tables) 
} 
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2.2.5 Rational Software Modeler transformation framework 

The Rational Software Modeler (RSM) transformations framework is a Java framework 
for transforming EMF models. Like transformation languages a RSM transformation 
consists of a set of rules. These rules are defined using Java classes that extend the 
framework class AbstractRule. Each rule implements a method for creating the target 
object (or target code if it is model-to-text). This rule directly manipulates the generated 
EMF APIs for the target and source meta-models. 

Using this approach is a lot more verbose than using a transformation language, but given 
the low level of maturity for current transformation languages, it may yet be a good 
option. 

2.2.6 MOFScript 

MOFScript [13] is an extension to QVT for model-to-text transformations. It is based on 
QVT Operational Mappings, which is the imperative part of QVT. MOFScript is 
currently under development by SINTEF.  
 
jfuml.JavaFramePackage::mapPackage() { 
 self.ownedMember->forEach(c : jfuml.JavaFrameClass) { 
   c.mapClass()  
 } 
 self.ownedMember->forEach(c:jfuml.JavaFramePackage) { 
   c.mapPackage()  
 } 
} 
 
jfuml.JavaFrameClass::mapPackageDeclaration() { 
 println("package "+self.owner.getQualifiedName()+ ";") 
} 
 
jfuml.JavaFrameClass::mapClassDeclarationStart() { 
 <%public class %> self.name <% extends %> self.getGeneralLiteral(OBJECT) <% { %> 
 nl  
} 

The above code shows examples of built in OCL expressions (the mapPackage rule), 
print statements and the template functionality. 

2.2.7 Java Emitter Templates 

Java Emitter Templates (JET) [14] is a template based language for text generation. A 
JET template consists of pure text with embedded java code in <% %> markers. An 
example is shown below. 
 
<% ClassBuilder c = (ClassBuilder)argument; %> 
package <%= c.package %>; 
 
public <%= c.abstract ? “abstract ” : “”%>class <%= c.className %> extends <% c.superType %> { 
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<% …. %> 
} 
 

Each JET template has a Java object passed to it as an argument; the ClassBuilder object 
in the example above. A JET template file is compiled to a java class. This generated 
class has a single method which takes a single object as a parameter and returns the 
generated code as a String. 

 



 17 

3 JavaFrame 
This thesis is based on an existing transformation written in Java that generates Java code 
from UML 2.0. I will use the same scenario and equivalent transformations implemented 
using different technologies as an ongoing example throughout this thesis. The generated 
Java code is based on JavaFrame. In order to explain these examples I will first explain 
how generated JavaFrame code represents the source UML model. 

JavaFrame is a framework for implementing a subset of UML in Java. It consists of a 
Java API (Application Programming Interface) for implementing models in Java and a set 
of programming guidelines. The API contains classes for model elements like 
StateMachine, Composite and Mediator (representing a UML port). A class diagram for 
the JavaFrame concepts is shown in Figure 2. A JavaFrame system is a Composite which 
contains ActiveObjects. These ActiveObjects can be either other Composites or 
StateMachines. The ActiveObjects communicate with each other by sending 
asynchronous messages through Mediators. However the details of how JavaFrame 
systems work are beyond the scope of this thesis.  

 
Figure 2 JavaFrame concepts 

To implement models using JavaFrame new classes that extend the API classes must be 
implemented using the programming guidelines/patterns. Below follows examples of 
UML 2.0 model elements and the JavaFrame code that implements those elements. 

3.1 StateMachines 
A UML Statemachine is implemented by two Java classes, one extends the JavaFrame 
StateMachine class and the other extends the JavaFrame CompositeState class. 
Respectively they represent UML statemachine and region elements. Like UML 
statemachine elements a JavaFrame statemachine can have ports, attributes and 
operations, in addition it has a static compositestate representing its UML region. 
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Figure 3 Tree view of PtnStateMachine from RSM model explorer 

Figure 3 shows a statemachine with two ports and one attribute (of type String which is 
not shown) and below is the code that implements this statemachine in JavaFrame. 

 
public class PtnStateMachine extends StateMachine { 
 
 static CompositeState states = new PtnStateMachineStates("outermostState"); 
 
 /* Formal ports */ 
 public Mediator myinputmediator; 
 public Mediator myoutputmediator; 
 
 /* Attributes */ 
 public String myAttribute; 
 
 protected void execStartTransition() { 
  states.enterState(this); 
 } 
 
 public PtnStateMachine(Scheduler sched, Mediator myinputmediator, 
   Mediator myoutputmediator) { 
  super(sched); 
  myinputmediator.addAddress(this); 
  this.myinputmediator = myinputmediator; 
  this.myoutputmediator = myoutputmediator; 
 } 
} 
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Figure 4 The region of PtnStateMachine 

Figure 4 shows a regular UML state machine diagram of PtnStateMachine. Note that the 
effects of the transitions are represented by UML activity element. These are used to 
represent java code as text. This code is executed whenever the transition fires.  

The JavaFrame class that implements this region is shown below. The states are 
implemented as static fields and each statemachine instance has a pointer to its own 
current state. All the transition logic is implemented by the execTrans method. This 
checks the current state and the received message and fires any transitions according to 
the model. 

 
public class PtnStateMachineStates extends CompositeState { 
 
    static State state1 = new State("state1"); 
    static State state2 = new State("state2"); 
 
    public PtnStateMachineStates(String sn) { 
        super(sn); 
        state1.enclosingState = this; 
        state2.enclosingState = this; 
    } 
 
    public void enterState(StateMachine curfsm) { 
        PtnStateMachine csm = (PtnStateMachine) curfsm; 
        entry(curfsm); 
        state1.enterState(curfsm); 
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    } 
 
    protected boolean execTrans(Message signal, State st, StateMachine curfsm) { 
        PtnStateMachine csm = (PtnStateMachine) curfsm; 
        if (st == state1) { 
            if (signal instanceof PtnSignal) { 
                PtnSignal sig = (PtnSignal) signal; 
                performExit(csm); 
                //Begin effect code 
                System.out.println(sig.messageContent()); 
                //End effect code 
                if (Math.random() < 0.5) { 
                    state1.enterState(curfsm); 
                } else { 
                    state2.enterState(curfsm); 
                } 
                return true; 
            } 
        } else if (st == state2) { 
            if (signal instanceof PtnSignal) { 
                PtnSignal sig = (PtnSignal) signal; 
                performExit(csm); 
                //Begin effect code 
                csm.myAttribute = sig.x; 
                //End effect code 
                state1.enterState(curfsm); 
                return true; 
            } 
        } 
        return false; 
    } 
} 

3.2 Composites 
Figure 5 shows the internal structure of the UML class PtnComposite. It has two parts: 
sm1 and sm2. Both parts are of type PtnStateMachine. The tree-view to the left shows the 
child elements of PtnComposite and PtnStateMachine. PtnComposite has 9 child 
elements: 4 connectors, 2 ports, 2 parts (sm1 and sm2) and 1 diagram. The parts are 
actually property elements with the isComposite attribute set to true.  

Note that in the diagram both the parts are shown with ports. These ports are inferred 
from the type of the part, in this case PtnStateMachine. As shown in the tree-view 
PtnStateMachine has two ports, myinputmediator and myoutputmediator.  
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Figure 5 Internal structure of an example Composite 

The produced JavaFrame code for the PtnComposite class is shown below. The ports 
owned by PtnComposite (i.e., formal ports) are declared as fields and so are the parts. In 
addition the ports of the parts (i.e., actual ports) are also declared as fields using the 
concatenation of the name of the part and the name of the port as the name of the field.  

 
public class PtnComposite extends Composite { 
  
 /* Used internally by JavaFrame */ 
 protected Scheduler sched; 
  
 /* Formal ports of PtnComposite */ 
 public PtnRouterMediator inputmediator; 
 public Mediator outputmediator; 
  
 /* Part sm1 */ 
 protected PtnStateMachine sm1; 
 public Mediator sm1myinputmediator; 
 public Mediator sm1myoutputmediator; 
  
 /* Part sm2 */ 
 protected PtnStateMachine sm2; 
 public Mediator sm2myoutputmediator; 
 public Mediator sm2myinputmediator; 
  
 public PtnComposite(Scheduler sched, PtnRouterMediator inputmediator, Mediator 
       outputmediator) { 
  super(); 
  this.sched = sched; 
   
  this.inputmediator = inputmediator;  
  this.outputmediator = outputmediator; 
   
  /* Creating property sm1 */ 
  sm1myinputmediator = new Mediator(); 
  sm1myoutputmediator = new Mediator(); 
  sm1 = new PtnStateMachine(sched, sm1myinputmediator, 
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          sm1myoutputmediator); 
  addActiveObject(sm1); 
  
  /* Creating property sm2 */ 
  sm2myoutputmediator = new Mediator(); 
  sm2myinputmediator = new Mediator(); 
  sm2 = new PtnStateMachine(sched, sm2myinputmediator,  

sm2myoutputmediator); 
  addActiveObject(sm2); 
  
  /* Setting addresses for the mediators based on UML connectors */ 
  inputmediator.addAddress(sm1myinputmediator); 
  inputmediator.addAddress(sm2myinputmediator); 
  sm2myoutputmediator.addAddress(outputmediator); 
  sm1myoutputmediator.addAddress(outputmediator); 
 } 
} 
 

The four last lines of addAddress function calls represent the UML connectors.  

3.3 Mediators 
Mediators are JavaFrame representations of UML ports. Or rather an instance of a 
mediator represents a UML port. A mediator class represents the possible type of a port. 
The PtnComposite class shown as an example above has two formal ports. One of them 
has no type the other is of type PtnRouterMediator. PtnRouterMediator is a UML class 
with the Mediator stereotype applied. In the code this is represented by the fields of the 
PtnComposite class.  

Custom mediator classes are implemented by extending the Mediator class from the 
JavaFrame API. The Mediator class from the JavaFrame API implements the 
Addressable interface. This interface contains one method: public void forward(Message 
sig). Any custom mediator class must implement this method. In the UML model the 
code implementing the forward method is represented as regular text by either an 
Activity or the Actions of an Activity. 

3.4 Messages 
Messages are the JavaFrame representations of UML signals. Each signal element is 
transformed to a class that extends the Message class from the JavaFrame API.  

In UML signals are sent between ports, and in JavaFrame message objects are sent 
between mediator instances. This is achieved by using the forward method implemented 
by mediator classes. Like UML signals JavaFrame messages also trigger transitions in 
statemachines. 
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4 Modularizing transformations 
Although UML elements like classes and attributes can be directly mapped to 
programming language classes and attributes, most elements in UML do not have any 
direct counterpart in programming languages (e.g. there is no concept of statemachines 
and composite structures in Java). When a transformation bridge abstraction levels it will 
inevitably become complicated and the need to split the transformation into manageable 
modules arises.  

This chapter explains how transformations can be modularized using both rules and entire 
transformations as modules. The concept of an intermediate meta-model is introduced. 

4.1 Rules as modules 
A transformation definition consists of a set of rules. These rules form the basic modular 
elements of a transformation. This is discussed in detail by Kurtev et al in [15]. 

In order to effectively use rules as modules there need to be reuse mechanisms for the 
rules. There are several different ways of achieving this, including rule inheritance, 
composition, polymorphism and others. I will give some examples of reuse mechanisms 
from different model transformation languages.  

In the declarative transformation language MTF rules can be reused by inheritance and 
composition. The two rules shown below is an example of this. The rules are taken from 
a transformation that copies a UML model. 

 
abstract relate mapClassifier extends mapNamedElement(uml:Classifier e1, uml:Classifier e2) { 
 mapGeneralization [0..1] (over e1.generalization, over e2.generalization) 
 ,ordered mapPackageImport(over e1.packageImport, over e2.packageImport) 
} 
 
relate mapClass extends mapClassifier(uml:Class e1, uml:Class e2) { 
 ordered mapProperty(over e1.ownedAttribute, over e2.ownedAttribute) 
 ,ordered mapOperation(over e1.ownedOperation, over e2.ownedOperation) 
 ,ordered mapActivity(over e1.ownedBehavior, over e2.ownedBehavior) 
} 
 

The first rule relates Classifier elements in the source model to Classifier elements in the 
target model. This rule extends the mapNamedElement rule which is not shown and just 
makes sure the elements have the same name. The mapClassifier rule explicitly invokes 
two other rules: mapGeneralization and mapPackageImport, this is an example of a rule 
composed of two other rules. 

The second rule, mapClass, inherits from the first. The semantics of this is similar to 
normal object oriented inheritance. The mapClass rule inherits the two rules invoked 
from mapClassifier. And the signature of mapClass strengthens the constraints of the 
mapClassifier signature (Class is a subtype of Classifier). 
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Using this approach if I were to define a mapSignal rule that extended mapClassifier 
(Signal is a subtype of Classifier, but not of Class) I would not have specify 
mapGeneralization and mapPackageImport again. As meta-models usually have large 
type hierarchies such a mechanism is very useful. 

Unfortunately the QVT Relational (declarative) language does not have such an 
inheritance mechanism, however the QVT Operational Mappings (imperative) language 
does. Below is an example of inheritance in the Operational Mappings language. 
 
mapping Classifier::mapClassifier() : Classifier inherits mapNamedElement { 
 generalization := self.generalization->map mapGeneralization(); 
 packageImport := self.packageImport->map mapPackageImport(); 
} 
 
mapping Class::mapClass() : Class inherits mapClassifier { 
 ownedAttribute := self.ownedAttribute->map mapProperty(); 
 ownedOperation := self.ownedOperation->map mapOperation(); 
 ownedBehavior := self.ownedBehavior->map mapActivity(); 
} 
 

MOFScript is a model-to-text transformation language so it is a little different. It does not 
have inheritance between rules, but it does have polymorphism. MOFScript rules are 
defined with a context element. The two MOFScript rules shown below is an example of 
polymorphism. 

 
jfuml.JavaFrameClass::mapClassDeclarationStart() { 
 <%public class %> self.name <% extends %> self.getGeneralLiteral(OBJECT) <% { %> 
 nl  
} 
 
jfuml.CompositeClass::mapClassDeclarationStart() {  
 <% public class %> self.name <% extends Composite { %> 
 nl 
} 
 

Since CompositeClass is a subtype of JavaFrameClass the second rule overrides the first. 
Like normal polymorphism the type of the actual object at run-time specifies which rule 
is executed.  

4.2 Transformations as modules and intermediate meta-
models 

In addition to rule modularization, transformations may be used as modules as well. 
There are two ways to achieve this, either by transformation inheritance or by composite 
transformations. 

Reuse mechanisms for transformation rules forms the basis for transformations 
inheritance. The rules in the sub-transformation may reuse rule definitions in the super-
transformation.  
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The second way is to introduce an intermediate meta-model and split a transformation in 
two parts. Figure 6 shows an example of a transformation that has been split it two 
composite parts. In [16] Oldevik discusses composition of transformations in more detail. 

 
Figure 6 UML2Java composite transformation 

The use of general intermediate representations, in the form of data structures and code, 
is used by compilers in order to separate the front end from the back end, and for splitting 
the code generation in modular parts [17]. The first intermediate representation a 
compiler uses is usually an abstract syntax tree of the source code. This abstract syntax 
tree is then transformed to intermediate code. A normal form for the intermediate code is 
stack based byte-code, effectively bridging the abstraction level between the abstract 
syntax tree and assembler type code. Examples of intermediate code include Java byte-
code and CIL (Microsoft’s Common Intermediate Language). The intermediate code may 
be interpreted at run-time or assembler code for the target machine may be generated. 

For the same reasons compilers use intermediate representations it might be a good idea 
to use intermediate meta-models for code generation from models. The intermediate 
meta-model can be any MOF model, optionally with additional constraints. It may for 
instance be a UML model with a certain profile applied. In [18] Vanhooff and Berbers 
suggest using UML profiles to specify input and output model characteristics. Below 
follows some alternatives for what an intermediate meta-model may be: 

• A subset of the UML meta-model that directly maps to code (i.e. no 
statemachines and composite structures, just classes/attributes/operations). A 
profile for the programming language will probably be needed. Suggested by 
Chauvel and Jézéquel in [19].  

• A meta-model of the abstract syntax of the programming language.  

• A dedicated meta-model for the implementation (e.g., a JavaFrame meta-model).  

These different choices are discussed in detail in chapter 5.  

An intermediate model should ideally satisfy these requirements: 
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• Simple to generate code from 

• Simple to generate from the source UML model 

• Simple to define 

• Preferably not add any platform restrictions beyond what is already in the source 
UML model 

 



 27 

5 Case: UML2JavaFrame 
In chapter 3 I gave an explanation of JavaFrame and how it relates to UML. The UML 
2.0 compiler this thesis is based on implements a transformation from UML to 
JavaFrame. I have implemented a subset of that transformation using two different 
intermediate meta-models and different transformation technologies. This chapter 
explains the process and the choices that were made while creating both the intermediate 
meta-models and the transformations. 

First different ways of creating an intermediate meta-model is discussed and two different 
approaches are chosen. Then I present a general transformation architecture and discuss 
the decision of both model-to-model and model-to-text transformation technologies. 
Finally I show and explain the intermediate meta-models and the implemented 
transformations. 

5.1 Intermediate meta-model choice 
In chapter 4 I introduce the concept of an intermediate meta-model. In this section I 
propose different choices for intermediate meta-models, discuss the advantages and 
disadvantages of each choice and choose two options to implement. 

5.1.1 A subset of the UML meta-model 

A subset of the UML meta-model is used as an intermediate meta-model. The subset is a 
direct mapping of Java code to UML elements. Because UML has a lot in common with 
object oriented programming languages like Java it is possible to represent a Java 
program with UML elements.  

Like Java, UML contains concepts like class, interface, and package. UML attributes are 
very similar to Java fields and UML operations are almost equivalent to Java methods. 
There are differences though, for instance UML supports multiple inheritance, but Java 
does not. Also UML operations support multiple return values, which are not possible in 
Java.  

The structure of a Java language may be represented in UML using these previously 
described elements, but UML operations really only represents the signature of a Java 
method (i.e., the name, return value and parameters). The implementation of an operation 
is represented by an activity element. It may be possible to use a UML activity element to 
represent the body of a Java method, but activities are not designed to be a Java action 
language. In [20] Rumbaugh et al discusses action languages for UML: 
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5.1.1.1 Behavior problem  

As described above the main problem with using a subset of UML as an intermediate 
meta-model is how to deal with behavior / method bodies. How should a UML activity 
element represent Java code? One option is to simply insert the code as text. This is not a 
good solution for an intermediate meta-model because the model to model transformation 
would have to generate this code, something that is better left to the final model to text 
transformation.  

A way of solving the behavior problem is to use stereotyped activity and action elements 
to represent the code. The idea would be not to use the control flow mechanisms of 
regular UML activities, but rely on the ordering of elements. This may be a problem with 
certain declarative transformation technologies if the order of generated model elements 
is nondeterministic. A possible stereotype could be ChoiceActivity which represents 
either switch or if-else statement others could be Call, Assignment and 
VariableDeclaration. This would alter the semantics of the Activity and Action UML 
elements and it is probably better to use an approach like one of the two suggested below. 

Another option is to use the control flow mechanisms in UML activity diagrams and 
develop a Java profile for UML which contains stereotypes for activities and actions. 
UML already has different action elements which may be reused. Examples of these 
include Create action, Raise exception action, Return action, Test identity action and 
Write action.  

Yet another way of representing behavior is to use a programming language independent 
UML action language, such as the Kermeta action language [21].  

5.1.1.2 Fixed code problem 

Even if the method body problem were solved there is another problem which remains. 
When a single element in the source model is implemented by a large amount of fixed 
code, this must be represented by a large number of elements in the intermediate meta-
model. For example the JavaFrame Main class is generated once for every JavaFrame 
model and large parts of the generated code is fixed (i.e., it does not vary from model to 
model). One method which is an example of this is shown below. 

 
  public static void main(String[] args) { 
  String hostname = ""; 
  int portnumber = 0; 
  for (int i = 0; i < args.length; i++) { 
   String token = args[i]; 

“The selection of one programming language as the basis for an action 
language would, therefore, have the effect of discouraging the others, which 
the designers did not want to do. The semantics of actions have therefore 
been left low level and free of implementation concerns within UML itself. 
For many practical uses, such as code generation, UML must be augmented 
with the action language (often standard programming language) that is 
being used.”  [20] page 144  
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   if (token.equals("-remote")) { 
    if (i == (args.length - 1)) { 
     System.out.println("No remote specified."); 
     usage(); 
     System.exit(1); 
    } 
    int index = args[++i].indexOf(':'); 
    if (index != -1) { 
     hostname = args[i].substring(0, index); 
     Integer portnumberInt = new Integer(args[i] 
       .substring(index + 1)); 
     portnumber = portnumberInt.intValue(); 
    } else { 
     usage(); 
     System.exit(1); 
    } 
   }  
  } 
  new CompositeNameMain(hostname, portnumber); 
 } 

This code is the same for all models. The only exception is the constructor call on the last 
line where the name of the composite is used (CompositeNameMain is an example). If 
this entire method should be represented by using UML action elements or an action 
language it would be a very large and complex representation. The first model-to-model 
transformation would have to construct this fixed representation from one source 
element. This is a very cumbersome approach compared to generating this code in a 
model-to-text transformation where the code can just be written as is.  

It might be possible to solve this problem by introducing parameterized template 
elements in the intermediate meta-model. However this will leave the responsibility for 
generating this fixed code to the model-to-model transformation. In my opinion it this is 
better left to the final model-to-text transformation. 

5.1.1.3 Existing code problem 

Another problem arises when the generated code should reuse existing code. In this case 
the generated code is based on an existing JavaFrame API. How can the UML model 
specify for instance that a class should extend a JavaFrame statemachine? One way is to 
use a JavaFrame extension to UML as described in 5.1.3, another is to reverse engineer 
the JavaFrame source code into a UML model and use a regular UML generalization to 
the appropriate class in the reverse engineered model. Although this will require that the 
transformation is aware of this third model and which classes in it represents which 
JavaFrame concepts. 

Because of the problems listed above, the behavior problem, the fixed code problem and 
the existing code problem, it is my conclusion that using a subset of UML to directly 
represent the code leaves too much of the transformation logic to the first model-to-
model transformation and I will not implement transformations using this intermediate 
meta-model. Though if these problems were solved it would be an interesting experiment 
too perform.  
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5.1.2 Java meta-model 

The intermediate meta-model is a meta-model of the Java language. Like the previously 
described option this intermediate meta-model is a direct representation of the code. As a 
consequence of that some of the same problems apply.  

The behavior problem is not a problem for a Java meta-model because Java has a well 
defined way of representing method bodies using various statement and expression 
elements. 

The other two problems of directly representing the code remain; the fixed code problem 
and the existing code problem. In addition a Java meta-model adds a platform restriction 
in the capacity of being specific to Java. It may be possible to generate other kind of 
object oriented code (e.g., C++, C#) from a Java meta-model, but it will probably be 
more inconvenient than if UML was used. 

Creating a meta-model for a programming language may require a lot of work. To make 
this process a little more automatic the meta-model may be generated from BNF using a 
tool such as agramm / mmm which is described in [22].  

The conclusion for this option is the same as the last one; I believe this representation is 
too close to the code.  

5.1.3 JavaFrame meta-model 

As explained above both the previously described intermediate meta-models are basically 
another way to represent the actual code. This leaves almost all the transformation logic 
to the first model to model transformation, which probably is too much for a single 
transformation and much of the problems with generating code directly from the original 
UML model remain. In addition, the ability for the model to text transformation to 
customize the generated code is very limited if such an intermediate meta-model is 
chosen. A way of solving this is introducing JavaFrame specific elements in the 
intermediate model, either as a stand alone JavaFrame meta-model or as an extension to 
one of the previously described intermediate meta-models. 

Having the JavaFrame meta-model extend either the UML meta-model or a Java meta-
model provides the possibility of modularizing the transformations. The transformations 
may be split in a core part and an extended part as explained in section 5.2.1. Because of 
this I decided to drop the stand alone version of the intermediate meta-model and 
implement two intermediate meta-models with transformations, one that extends the 
UML meta-model and another that extends a Java meta-model. These will be called 
JfUml and JfJava respectively and are explained in section 5.4 and 5.5. 

Defining the intermediate meta-model as an extension to the UML meta-model provides 
both advantages and disadvantages. A disadvantage is that there is a dependency on 
UML. If UML changes from one version to the next it may effect the intermediate model 
and any transformations from it. An advantage of extending UML is that elements that 
exist both in UML and JavaFrame do not need to be redefined (e.g., both UML and 
JavaFrame have concepts like class, attribute and operation). This provides advantages 
not only in that it is easier to define the meta-model, but also when defining 
transformations because these elements can simply be copied to the target model.  
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If the JavaFrame meta-model is defined as an extension to the UML meta-model inter-
model references may also be used. That is, the target model may link to elements in the 
source model. This may be useful if creating an alternative representation of an element 
is not needed for code generation. For instance it may be decided that UML region 
elements are sufficiently easy to generate code from, and that creating alternative 
intermediate meta-model elements to represent a UML region is not necessary. 

An essential property of the JavaFrame meta-model is how close it is to the code and how 
close it is to the UML model. When I modeled the meta-models I tried to create a one to 
one mapping between the meta-model and the produced JavaFrame code, this turned out 
to be a good guideline, although on some occasions it was necessary to deviate from this.  

Another question is if any relations between model elements be replaced by string 
attributes? For instance can a generalization between two classes simply be replaced by 
the name of the extended class? Certain such shortcuts might make it easier to generate 
code, but the meta-model looses navigability. It is worth to note that navigability is very 
important in a meta-model and that the code generation should be very simplified to 
justify such a change. For this reason I decided not do this in my intermediate meta-
models. 

5.2 Transformation architecture and technology 

5.2.1 Transformation architecture 

Both of the chosen intermediate meta-models consist of a core part and an extension. The 
core parts are UML and Java meta-models and the extension is a JavaFrame meta-model 
in both cases. This allows me to create a general transformation architecture that I will 
use with slight modifications in both cases. 

In chapter 4 I described a composite transformation, which consisted of an intermediate 
meta-model, a model-to-model transformation, and model-to-text transformation. When 
an intermediate meta-model extension is introduced, two more transformations need to be 
implemented. Both of these extend the original transformations. The general architecture 
is shown in Figure 7. 

UML and Java are used as source and target in this diagram, but any meta-model and 
programming language could be substituted. 
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Figure 7 Transformation architecture with extended intermediate meta-model 

Using this architecture what started out as one big transformation is now divided in four 
much smaller parts.  

5.2.2 Transformation technology choice 

Having chosen the architecture previously described, I needed to choose the 
transformation languages/technologies to implement the transformations. The 
architecture sets two requirements for the transformation technologies: 

1. Transformation extension/inheritance must be supported. 

2. The source or target meta-model must be possible to specify using two meta-
models in separate files. 

The second requirement is needed because when transforming for instance from a 
JavaFrame meta-model that extends the UML meta-model the transformation rules need 
access to not only elements from the JavaFrame meta-model, but also elements from the 
extended meta-model (i.e., the UML meta-model). In order to achieve this, the 
transformation must specify that the source meta-model is actually defined in two files, 
one for JavaFrame and one for UML. For model-to-model technologies it is the target 
meta-model that needs to be defined using two files, while for model-to-text it is the 
source. 

For model to model transformation the ideal option would be to use QVT. However there 
are no sufficient implementations of QVT available at the moment. Borland has 
implemented part of the QVT standard, but it is only an implementation of the 
Operational Mappings language, none of the declarative languages (Relational and Core) 
are implemented. In addition the implementation is based on the QVT-Merge [23] 
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submission, not the final adopted specification. However the biggest problem is that no 
rule reuse functionality is implemented, making it very difficult to use with my 
transformation architecture.  

The most commonly used model-to-model transformation language today is probably 
ATL, but this does not support any of the two requirements specified.  

Two viable options are MTF and using the RSM transformation framework. I decided to 
use both of them; MTF for the intermediate meta-model that extends UML and the RSM 
framework for the intermediate meta-model that extends Java.   

For model to text the alternatives are JET, MTF and MOFScript. MTF has a very limited 
support for text generation, which is primarily designed to create documents like for 
instance html. Because of MTF’s limited support for text generation and that it only has 
declarative rules I chose not to use MTF.  

JET is what I used for code generation in the transformation this thesis is based on. It 
offers limited modularization and no form of inheritance, although extension points may 
be defined. JET is not a transformation technology in its own, but a template language. 
To create a model-to-text transformation using JET, Java would have to be used to 
traverse the model and invoke the templates.  

MOFScript has good QVT like imperative rules and is specifically designed to transform 
models to text. Although MOFScript currently support neither of the requirements 
specified it is in early stages of development and is likely to implement this at a later 
stage.  

The final choice for model-to-text technology was MOFScript because it is very similar 
to QVT and once its limitations are overcome it will be a very good text-transformation 
language. 

The problem that MOFScript does not support transformation extension sufficiently in 
the current version was solved by creating only one transformation and marking what 
part of it should be a subtransformation. 

The problem of MOFScript not supporting source meta-models in several files was 
solved differently by each approach. 

5.3 Advanced meta-model concepts 
Before I explain the intermediate meta-models I created I will explain some not so well 
known UML constructs, I will explain the semantics of these and how they are shown in 
the diagram. I assume the reader is familiar with concepts like generalization, 
composition, visibility and multiplicity. More details about all these concepts can be 
found in [4, 6, 20]. 

Both meta-models are implemented using EMF and so a few advanced EMF concepts are 
also explained. 

All these advanced concepts are regarding meta-properties of property elements.  
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5.3.1 Read-only 

The read-only property means just what it says, it can only be read. In practice this means 
that the EMF code generator will generate a get method, but not a set method for the 
property. Because read-only and other properties do not have a graphical representation 
in class diagrams I use curly braces and list which of these properties are applied. 

5.3.2 Derived 

Derived means that the value of the property is computed from other properties. A 
derived property does not represent any additional object state. For instance a qualified 
name property of a java package is the concatenation of its own name and the names of 
its owning packages (with ‘.’ in between). Such a property should be derived. Derived is 
denoted by a ‘/’ in front of the property name. The generated code is unaffected by the 
derived property, but when a model object is copied derived properties are not copied. 

5.3.3 Subsets 

A property may subset another property. This means that the collection associated with 
an instance of the subsetting property must be a subset of the collection associated with 
the corresponding instance of the subsetted property. For instance Class has a ‘field’ 
property (a containment list of type Field), this property subsets ‘ownedElement’ from 
Element. This means that all fields owned by a class will also be contained in the 
‘ownedElement’ property. The fact the a property is a subset of another does not effect 
the code generated for the subsetting property, however it does effect the generated code 
for the property that is subsetted as explained under derived union. 

5.3.4 Derived union 

A property marked as a derived union is derived by the union of all properties that subset 
it. The ‘ownedElement’ property of Element is an example of this. Continuing the 
example from subsets, Class not only has a ‘field’ property that subsets ‘ownedElement’, 
but also a ‘method’ property. This means that the ‘ownedElement’ property will contain 
all methods and fields of a class. The effect of marking a property derived union is that 
the generated get method will return a list containing the union of the values of all 
subsetting properties. 

5.3.5 Redefines 

A property may redefine another. It can change the name, multiplicity, type (to a subtype 
of the original) and other values. Multiplicity constraints can only be strengthened. That 
is the lower bound may be increased and the upper bound may be lowered. An example 
from the JfJava meta-model is the ‘mediator’ property of MediatorField which redefines 
‘type’ from TypedElement, constraining the type to be a MediatorClass. 

Most EMF properties are generated by a protected field holding the actual value of the 
property and a get and set method. A redefined property generates a set and get method 
like other properties, the difference is that the field that stores the value of the property is 
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shared with the redefined property. In the example of mediator from MediatorField 
redefining type from TypedElement, the MediatorField implementation has both getType 
and getMediator methods, but both return the protected mediator field. 

5.3.6 Ecore profile 

The previous concepts are all part of UML 2.0. However the model also includes some 
additional EMF specific concepts. This is achieved through a Ecore profile. The profile 
includes eAttribute and eReference stereotypes. Both have several tagged values, the 
relevant ones are isVolatile and isTransient. 

If a property is transient it means that it should not be persisted. That is when a model 
instance is serialized as XMI (XML Metadata Interchange) any transient properties are 
not stored. 

Usually EMF generates both getter and setter methods for properties. However if a 
property is marked as volatile just a method signature is generated, the implementation 
must be written manually. 

Usually any derived properties are both volatile and transient (e.g., qualifiedName). 

5.3.7 Eclipse vs. RSM 

Rational Software Modeler is built on Eclipse version 3.0. This version includes versions 
of EMF and UML2 that do not support subsetting and redefinitions of properties. To 
work around this problem I originally planned to model the meta-model in RSM, export 
it and generate code and plug-in from Eclipse version 3.1. Then I could install the 
generated plug-in in RSM. However it turns out that even the generated code requires a 
newer version of UML2 than the one in RSM.  

In the end I had to generate code from RSM and this means that subsetting and 
redefinitions do not currently work as intended. When a newer version of RSM is 
released what is needed is only a new code generation.  

Without support for subsetting and redefinitions in the intermediate meta-models the 
transformations may have to do some workarounds. 

5.4 JfJava intermediate meta-model 
This section first explains the two parts of the JfJava meta-model, and then the 
implemented transformations are presented. Finally I examine the possibility of using a 
tool to generate a Java meta-model from BNF.  

The JFJava intermediate meta-model consists of a Java meta-model and a JavaFrame 
extension. Even though they should be two separate models I decided to model them as 
one. This is because if they were modeled as separate models, a MOFScript 
transformation could only handle elements from one of them. If this situation changes it 
should be very easy to refactor the model into two separate models. 
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Figure 8 The JfJava meta-model composed of two parts 

Figure 8 shows the JfJava meta-model and its two parts. Sections 5.4.1 and 5.4.2 describe 
the contents of these two meta-model parts. 

5.4.1 Java meta-model 

The Java meta-model was created partly based on the BNF for the Java language, partly 
from an existing Java meta-model from Sun which is used internally in Netbeans [24] and 
partly from my special needs. In addition the UML meta-model was used as inspiration 
for more general meta-model features. 

Figure 9 show the core parts of the Java meta-model. The Java meta-model represents 
only a subset of Java. The model is very similar to an abstract syntax tree representation 
used by compilers, however this subset does not include any form of behavior. By 
behavior in this context I mean detailed expressions and statements, like for instance 
MethodInvocation, ForEachStatement and ConditionalExpression. These would have to 
be included if the model should be a complete representation of Java. To replace these 
elements there is a generic CodeString element (specializing both Statement and 
Expression), which represents any arbitrary code in a string attribute. This is used 
whenever code is represented as strings in the UML source model. For instance the 
existing transformation interprets the default value of a property as code; this string is 
transformed to a CodeString element. 
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Figure 9 Java meta-model kernel 

Element is the supertype of all classes in the model. This class has one composition 
association to itself. Both association end properties are derived unions and read-only. All 
composition association of subtypes of Element (i.e., all composition associations in the 
model) specialize this association and their association end properties subset owner or 
ownedElement. This is similar to how it is done in the UML 2.0 meta-model. 

Element, NamedElement, TypedElement and Type are general abstract elements 
common to most meta-models.  

One option for extension is to include a Model element as a root element of all models 
(like the UML meta-model). This could be used to contain java classes which should be 
part of the default (nameless) package. And it could have contained meta information 
about the model, for instance the path on the file system and maybe even the contents of 
the classpath. In addition a Namespace element would probably have been advantages.  

The StringType element was needed to represent strings. In UML String is a primitive 
type, but in Java there is no equivalent such primitive type.  

Figure 10 shows the rest of the Java meta-model. The two most central classes are 
CompilationUnit and Class. A compilationunit represents a java file and consists of a list 
of import statements and type declarations. In this model a type declaration can only be a 
class/interface, this could have been expanded to also include enumeration.  
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Figure 10 CompilationUnit, Class and related elements 

When I was designing this meta-model I had a choice about how to structure the package 
and compilationunit elements. I could either use the BNF of the Java language as a 
starting point or use a more meta-model like approach.   

The BNF rule for compilationunit looks like this: 

CompilationUnit := PackageDecl Import* TypeDeclaration* 

This would be the equivalent of ComilationUnit element with three composite 
associations to Import, TypeDeclaration and PackageDecl. PackageDecl would then be a 
new element with a reference to a Package element.  

The other way, and the way I have chosen, is to have a composite association from 
Package to CompilationUnit. This leaves out the PackageDecl element and makes sure 
that all compilation units are contained within a package.  

The reason the BNF for Java does not handle package structures very well is because it 
only describes the content of a single Java file, as opposed to the meta-model that must 
describe several files and packages.  

Another omission is a Constructor element; this is because I let the model to text 
transformation generate constructors. 

5.4.2 JavaFrame meta-model extension 

The JavaFrame extension to the Java meta-model was created partly based on the UML 
2.0 meta-model and partly from the structure of the JavaFrame implementation/code.  
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Figure 11 shows the main structure of the JavaFrame extension. Each class that has a 
special implementation in JavaFrame is represented by a class that extends the Class 
element from the Java meta-model. 

 
Figure 11 The structure of the JavaFrame extension to the Java meta-model 

The CompositeClass represents a UML class with internal structure. The composite 
association to the ActiveObjectField element represents UML parts, the composite 
association to MediatorField, which is inherited from ActiveObjectClass, represents 
UML ports and the composite association to MediatorConnection represents UML 
connector elements.  

Both ActiveObjectField and MediatorField extend the Field element from the Java meta-
model. However as ActiveObjectField represents a UML part it also needs to represent 
any actual ports on that part. This is achieved by a composite association to 
MediatorField. The effect of this is that each UML port of a part is represented by a 
MediatorField element in this meta-model. In UML a port is only one element, the parts 
themselves do not have port elements. This causes problems because connector elements 
connect to the ports of specific part not the general port of a type. A connector end has a 
‘part with port’ property for determining which part the port belongs to. This is quite 
difficult to generate code directly from and the JavaFrame meta-model solves this 
problem by having each ActiveObjectField (uml: part) contain their own MediatorField 
(uml: port) elements. As shown the MediatorConnection class, which represents a UML 
connector, is directly connected to MediatorField with source and target associations, no 
‘part with port’ construct is needed. 

The JavaFrame meta-model need to represent the behavior, as well as the structure, of the 
implementation, this is done by introducing high level abstract elements. The behavior 
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that needs to be represented is the region of a statemachine. This is achieved by using the 
UML meta-model as a starting point and making it better suited for code generation to 
JavaFrame. As presented in chapter 3, a UML region is implemented by fields for states 
and a method called execTrans for the transitions. The execTrans method is a combined 
switch on current state and received signal type. All this is implemented by the 
JavaFrame CompositeStateClass which is shown in Figure 12 along with other related 
elements. 

 

 
Figure 12 The CompositeStateClass element and its contents representing a UML region 

Like in the UML meta-model, an abstract Vertex class is the supertype of all pseudostates 
and states. The CompositeStateClass has a composite association to the Vertex class and 
in addition several conveniences association to the concrete subtypes of Vertex. These 
are all derived, read-only, transient and volatile. 

The UML region class has a composite association to the transition class. In this meta-
model this is changed and Vertex is the class that owns transitions instead. This fits better 
with the execTrans method where first current state is checked then all outgoing 
transitions from that state is checked. 

An advantage of keeping the intermediate meta-model on a relatively high abstraction 
level is that there is a choice about how to implement these abstract features. In this case 
there are at least two different ways to implement transitions. In the standard JavaFrame 
approach the code for transitions (guard, effect and new state entered) are inserted in the 
execTrans method. Another approach would be to generate a method for each transition. 
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Such a change might have been more difficult if the intermediate meta-model was closer 
to the code. 

5.4.3 JfJava Transformations 

The general transformation architecture used to implement the transformations from 
UML to JfJava and from JfJava to code. For this scenario I chose to use the RSM 
transformation framework as model-to-model technology. This allowed me to reuse part 
of the original UML compiler, as that was also written using the RSM transformation 
framework. The JfJava transformations are shown in Figure 13. 

 
Figure 13 JfJava transformation architecture 

Because of limited time the MOFScript transformation was not implemented completely. 
The transformation would have been very similar to the MOFScript transformation from 
JfUml (which is fully implemented). The RSM transformation was not implemented in 
two parts for the same reason, however how to extend RSM transformations is described 
in [25].  

As explained in section 2.2.5 the RSM transformation framework is a Java framework for 
creating transformations. A transformation consists of a set of rules which is represented 
by Java classes that extends the AbstracRule framework class. To implement a rule the 
code directly manipulates the meta-model API generated by EMF, in this case this is the 
generated UML 2.0 API. This approach is much more verbose than using a dedicated 
transformation language such as MTF, but it also gives a larger degree of control and 
expressiveness to the transformation. An excerpt from the rule used to transform a UML 
property to a Java field is given below. 
 
    protected Object createTarget(ITransformContext ruleContext) 
            throws Exception { 
        Property source = (Property) ruleContext.getSource(); 
        Field target = createTargetObject(); 
        if (ruleContext.getTargetContainer() instanceof Class) { 
            Class owner = (Class) ruleContext.getTargetContainer(); 
            setTargetContainer(target, owner); 
        } 
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        if (source.getType() instanceof Classifier) { 
            // adding import to owning compilation unit 
            CompilationUnit cu = getCompilationUnit(target); 
            TypeImport typeImport = JmmFactory.eINSTANCE.createTypeImport(); 
            typeImport.setCompilationUnit(cu); 
            References.setFeatureUnknownValue(typeImport, JmmPackage.eINSTANCE 
                    .getTypeImport_ImportedType(), source.getType()); 
        } 
 
        updateTarget(source, target); 
        References.mapReference(source, target); 
        return target; 
    } 
 

Inheritance between rules is possible and I did implement a small inheritance hierarchy of 
rules, but this requires much manual preparation and is not nearly as convenient as 
extending MTF rules. 

Some of the central classes in the RSM transformation are shown in Appendix B.  

5.4.4 Generating meta-models from BNF 

In [22] Fischer et al describes a method for developing meta-models from BNF [26]. 
Since I was making a meta-model for the Java language I examined the possibility of 
using this method to create the Java meta-model. In the end I decided against using this 
method for reasons I will explain later. 

The method includes two steps. The first step is to generate a primitive meta-model from 
the BNF definition. In the second step advanced meta-model concepts like generalization, 
structural composition, and general abstract concepts are added manually. This manual 
step is needed because meta-models are more expressive than grammars and those 
concepts cannot be generated from the BNF definition.  

Two things have to be manually provided for the second step of the process. The first is a 
model of abstract concepts used by the language and the second is information about 
which concrete language concept is a refinement of which abstract concept. Figure 14 
shows a simplified activity diagram of the process. 
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Figure 14 A simplified model showing the process of creating a meta-model from BNF 

If this process is used on several programming languages, common abstract concepts may 
be identified and a shared base of concept definitions may be used for related languages. 
Such a language alignment would be helpful when creating transformations between 
different modeling languages and programming languages. 

The application mapping (step 1) is done by a tool called agramm and the model 
transformation is implemented in Java using the mmm API, which is an API for model 
transformation based on JMI*. 

I will present an example of a very small BNF grammar, the transformation and the meta-
model produced from it. The grammar is shown below. Note that this grammar does not 
describe any actual syntax (i.e., there are no terminals in this grammar). 
 
Name :: TOKEN; 
 
Class_name :: Name; 
Import_name :: Name; 
Package_name :: Name; 
Field_name :: Name; 
 
Identifier :: Package_name* Name; 
Package_identifier :: Identifier; 
Class_identifier :: Identifier; 
 
CompilationUnit :: PackageDecl ImportDecl* ClassDecl; 
PackageDecl :: Package_identifier; 
ImportDecl :: Package_identifier | Class_identifier; 
ClassDecl :: Class_name Field*; 
Field :: Class_identifier Field_name; 
 

                                                 
* Java Metadata Interface. Sun’s implementation of MOF. 
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The BNF is run through the agramm tool and a primitive meta-model is produced, this 
completes step 1. For step 2 I need a model of abstract concepts and I need to implement 
a transformation that links the abstract concepts to the concrete concepts of my language. 
I will reuse the common abstract concepts used by Fischer et al. The transformation was 
written manually, and an excerpt from it is presented below. 
 
       // CompilationUnit 
       compilationUnit.setContainer(structure); 
       compilationUnit.setMetaSupertype(getAbstractModelElements().getNamespace()); 
       compilationUnit.addContainedType(packageDeclaration.getBase()); 
       compilationUnit.addContainedType(importDeclaration.getBase()); 
       compilationUnit.addContainedType(classDeclaration.getBase()); 
         

// ClassDecl 
        classDeclaration.setContainer(structure); 
        classDeclaration.setMetaSupertype(getAbstractModelElements().getNamespace()); 
        classDeclaration.setMetaSupertype(getAbstractModelElements().getNamedElement()); 
        classDeclaration.setIsNamedElement(); 
        classDeclaration.addContainedType(field.getBase()); 
 

The final produced meta-model is shown in Figure 15. The four elements in the Common 
package are reused abstract elements. 

 
Figure 15 Meta-model produces from BNF 

As I said in the beginning I chose not to use this method, the first reason for this is that I 
would have to modify the existing Java BNF. By modifying it I loose some of the 
advantages of this approach; that it should be more automatic and less error prone. There 
are several reasons I need to modify the BNF, the first is that the structure of the BNF 
and the desired structure of the meta-model do not always match. For example the 
CompilationUnit production of the grammar states that the CompilationUnit element 
should have a composite association to PackageDecl. A better meta-model structure 
would be to have a Package element with a composite association to CompilationUnit. 
This problem is explained in section 5.4.1. Two other less important reasons I needed to 
modify the BNF is that I was only creating a meta-model of a subset of the Java language 
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and I would have needed to remove superfluous parts of the BNF. And I would have 
needed to remove all terminals to make the grammar work with agramm. 

The second reason is that the coding of the model transformation would be time 
consuming and error prone, partly because the BNF needed to be modified and partly 
because another difference between the grammar and the meta-model. The grammar 
needs to have several identifiers (e.g., Class_identifier) because textually this is the only 
way to identify elements. These identifiers are not needed in meta-models, direct 
associations to the correct element is used instead. This change needed to be manually 
implemented in the transformation. Fischer et al discuss this problem and conclude that 
mostly it can be solved by modeling concepts that would use identifier in the grammar as 
abstract concepts, thus removing the problem. However in Java some concrete elements 
use identifiers, for instance ImportDecl. Note that the grammar I have shown includes 
some identifiers, but these have not been implemented in the transformation. 

The third reason is that the output meta-model was in the form of a MOF model. This 
was a problem because no good MOF to EMF transformation tool was found. In addition 
the generated MOF meta-model was structured in packages, the EMF code generator 
treats each package as a different meta-model, though this is a minor point. 

For all those reasons and because I was only going to create a meta-model of a subset of 
the Java language, making the meta-model relatively simple, I chose to model it using 
UML 2.0 and RSM instead. If I was making a meta-model of the complete Java language 
I would not have to modify the BNF as much and the benefit of the generation would 
have been bigger. In that case this approach might have been worth using. 

5.5 JfUml intermediate meta-model 
The JfUml meta-model consists of a subset of the UML 2.0 meta-model and a JavaFrame 
extension to the UML 2.0 meta-model. In this section I explain the meta-model and the 
transformations implemented. 

As explained in section 5.2.2 MOFScript does not support input meta-models in several 
files, this means that no UML 2.0 elements are available from the MOFScript 
transformations. The JfJava intermediate meta-model solved this by simply defining the 
two parts of the meta-model as one, but as this is not an option for this meta-model I 
solved it by creating elements that extend the needed UML 2.0 elements. These elements 
are shown in Figure 16. The metaclass stereotype shows that the element is from the 
UML 2.0 meta-model.   
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Figure 16 JfUml adaptations of UML 2.0 elements 

Figure 17 shows a JavaFrame meta-model that extends the UML meta-model. It is very 
similar to the JavaFrame extension of JfJava. The differences are partly due to limitations 
of the MTF transformation language and partly due to just trying different approaches.  

 
Figure 17 A JavaFrame meta-model that extends classes from the UML meta-model 

An example of a difference is the MediatorConnection element and its association to 
MediatorField called end. This would have been better represented by two associations 
called source and target. This was not possible because this is represented as a single 
association in the UML meta-model and because MTF has no way of distinguishing 
between the order of elements in an association. 
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Figure 18 CompositeStateClass and related elements 

Figure 18 shows the CompositeStateClass and related elements, this almost the same as 
the equivalent diagram in JfJava. The difference is that this meta-model do not have an 
InitialState class, instead an initialTransition composite association from 
CompositeStateClass to Transition represents this. 

5.5.1 Transformations 

The general transformation architecture was adapted to implement the transformations 
needed for this intermediate meta-model. A difference from the general scenario is that 
UML is both the source meta-model and the core part of the intermediate meta-model. 
This has the consequence that the model-to-model transformations use UML as both 
input and output and a UMLCopy transformation was needed. Figure 19 shows the 
adapted transformation architecture. For this scenario MTF was chosen as model-to-
model transformation technology. 
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Figure 19 Transformations using a JavaFrame intermediate meta-model that extends the UML 
meta-model. 

The UMLCopy transformation has rules for copying, among other things, classes, 
attributes and operations. This is not useful by itself, but it allows for these rules to be 
reused by any transformation that extend UMLCopy. Below is an example of a rule from 
UMLCopy, it copies UML Property elements. This rule is then reused by extending it in 
the UML2JavaFrame transformation. 

. 
relate mapProperty extends mapTypedElement(uml:Property e1, uml:Property e2) { 
  equals(e1.visibility, e2.visibility) 
  ,equals(e1.aggregation, e2.aggregation) 
  ,equals(e1.default, e2.default) 
  ,equals(e1.isStatic, e2.isStatic) 
  ,equals(e1.isUnique, e2.isUnique) 
  ,equals(e1.isLeaf, e2.isLeaf) 
  ,mapLiteralSpecification(over e1.lowerValue, over e2.lowerValue) 
 ,mapLiteralSpecification(over e1.upperValue, over e2.upperValue) 
} 

The next rule is a UML2JavaFrame rule that transforms ports to mediatorfield elements. 
Since both Port and MediatorField are subtypes of Property, this rule can extend 
mapProperty from UMLCopy.  
 
relate mapMediatorField extends mapProperty(uml:Port e1, jf:MediatorField e2) { 
 equals(e1.isBehavior, e2.isInput) 
} 

The UMLCopy transformation might have been generated by a transformation that takes 
any meta-model as input and outputs code for copying that meta-model. Such a 
transformation is defined with M3 level meta-models as source and is run with M2 level 
meta-models as input, as opposed to the normal transformations that are defined with M2 
level meta-models as source and are run with M1 level models as input.  

For example I could have created a MOFScript transformation with Ecore meta-models 
as source to produce a MTF transformation that copies any model that conforms to the 
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input meta-model. I would then need to run the transformation with a UML Ecore meta-
model as input and a MTF transformation that copies UML models would have been 
generated. Dennis Wagelaar [27] has created such a transformation using ATL as a 
transformation language and MOF as source meta-model. This transformation generates 
copy transformations defined in ATL. 

As explained in section 5.2.2 MOFScript does not currently support transformation 
inheritance sufficiently so UMLClasses2JavaCode and UML2JavaFrameCode was 
implemented in one transformation called JfUml2Java. The three transformation files are 
shown in Appendix A. 

The core transformations may be reused to generate any Java code, not just code based on 
JavaFrame. Also not all code generation scenarios warrant the use of an intermediate 
meta-model, but even if no intermediate meta-model is used the UMLClasses2JavaCode 
transformation may be useful to extend. 

5.6 Comparing the JfUml to JfJava approaches 
Even though the JfUml and JfJava intermediate meta-models started from two different 
technologies, one from the Java programming language and the other from a subset of 
UML, in the end they turned out to be quite similar. This is mostly because the core parts 
only used structural concepts common to most object oriented systems. No behavior was 
represented there. That was added in the JavaFrame extension, and that was going to 
represent the same thing in both approaches. 

One difference is the use of a CompilationUnit class in the JfJava meta-model, UML has 
no such concept. Tough this is a minor difference. 

The bigger differences in the intermediate meta-models were how they were created. 
Creating an extension to the UML meta-model, and getting the code-generator to 
generate correct code proved a technical challenge. The reuse of existing UML elements 
made JfUml faster to create and gave it access to a lot of well thought out elements from 
UML meta-model. However if some of those elements are better suited to be represented 
differently in the intermediate meta-model, it can prove a problem. 

The big difference regarding transformations is that JfUml can generate the UMLCopy 
transformation. This has a potential to save time and to create a transformation that is 
error free and well suited for extension. 

The JfUml and JfJava intermediate meta-models are similar in level of abstraction. It 
would be interesting to see how they compared with intermediate meta-models that are 
closer to the code. Two good candidates for this are a complete Java meta-model and a 
subset of the UML meta-model with a platform independent action language. 
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6 Customizing the generated code 
The previous chapter described the architecture and implementation of a transformation 
from UML to JavaFrame. The transformations were implemented using two different 
intermediate meta-models. In this chapter I look at how, given such a transformation, a 
user can customize the generated code.  

First different user roles involved in implementing and using transformations is 
identified. Second a classification of customization alternatives is given and examples of 
scenarios with partial implementations are shown. Finally how the transformation 
architecture can benefit maintenance is discussed. 

6.1 User roles 
The different user roles involved in the implementation of and use of transformations are: 

• Transformation designer / implementer 

• Expert user / transformation extender 

• Transformation user 

Transformation designer is the role I have been addressing so far in this thesis. The 
transformation designer creates the intermediate meta-models and implements 
transformations. He may also be involved in creating extensions to existing 
transformations. 

The expert user is a user that not only uses the transformations to generate code, but also 
customizes the generated code. 

The transformation user creates models and runs the transformation(s). This thesis does 
not discuss this user role. 

This chapter describes how generated code can be customized and so the relevant user 
roles are transformation designer and expert user. 

6.2 Classification of changes 
This section gives a short description of different types of possible changes to existing 
transformations. A short outline of how the transformation architecture  

6.2.1 Supporting more of UML 

The existing transformation from UML to JavaFrame transforms composite structures, 
statemachines and classes to Java code. A way of extending this transformation is to 
support more of UML. Examples of this can be activity diagrams, deployment diagrams 
and interactions.   
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To implement such additions, the added source concepts must be represented in the 
intermediate meta-model. Either the existing intermediate meta-model may be reused or 
it must be extended to include the new concepts.  

6.2.2 Supporting extensions to UML 

The transformation can be extended to support extensions to UML. The UML extensions 
are usually in the form of a profile. The effect on the transformations of this is very 
similar to the last point about supporting more of UML. 

6.2.3 Model checking 

It may be desirable to not only generate code for running the model normally, but also to 
run model checks. There are several ways to do this; it is for example possible to check a 
running statemachine against a sequence diagram specification to verify that the 
statemachine behaves according to the specification. 

This would probably require change in the input, to specify which statemachine to verify 
against which sequence diagram, and some change in the generated code, in other words 
the intermediate meta-model needs to be extended. 

6.2.4 Quality of Service (QoS) change 

QoS changes is a large group of changes, some may require an intermediate meta-model 
change, but a lot will probably only need a model-to-text extension. In section 6.3.3 I 
show an implementation of an example of a QoS change; adding memory optimization to 
signal classes. 

6.2.5 Platform change 

A possible change is to generate code for a different platform. Depending on the level of 
the intermediate meta-model this may require an intermediate meta-model change; if it 
does a lot needs to be changed. If not only the model-to-text transformations need to be 
replaced. 

6.2.6 Different semantic variation point implementation 

One or more semantic variation points may be implemented differently. An example of 
this is the choice of which transition to fire when outgoing transitions from a single state 
has conflicting triggers. If a state has two outgoing transitions, one triggered by SignalA 
and the other triggered by SignalB and SignalB is a subtype of SignalA, which transition 
should be triggered if a SignalA object is received? This is a semantic variation point in 
UML 2.0 and a conflict resolutions mechanism is needed. The default JavaFrame 
behavior is to select a consistent arbitrary transition (based on order). Another solution 
would be to choose randomly each time such a conflict occurs. It could be argued that 
this is better for fairness purposes, but it is also less deterministic. This change could be 
implemented by extending the model-to-text transformation. However UML 2.0 has 
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many semantic variation points and some of them would probably require an intermediate 
meta-model change to implement. 

In [19] Chauvel and Jézéquel discusses in detail how semantic variation points can be 
modeled and how different code can be generated for different solutions. 

6.3 Examples 
This section explains some specific examples of customization of the generated code. I 
use the JfUml transformations as a starting point and show what changes need to be made 
to implement the customizations. 

6.3.1 Generating Tests for JavaFrame models 

The UML 2.0 Testing profile is used to specify tests for the model and JavaFrame 
specific tests are generated. 

This is an example of adding support for an extension to UML and an extension that 
requires a change in the intermediate meta-model. The changes are shown in Figure 20 
where a new extension layer is added to the JfUml transformations. The extension layer 
consists of an intermediate meta-model extension and two transformation extensions. 

Whenever an extension to the intermediate meta-model is required such an extensions 
layer needs to be added. 

 
Figure 20 JfUml transformation architecture extended with support for UML Testing Profile 

6.3.2 Generating C# code 

If JavaFrame was ported to C#Frame there would be possible to generate C# code. This is 
an example of a platform change. The existing intermediate meta-model and model-to-
model transformation could be reused but the model-to-text transformations would need 
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to be replaced. The modified transformation architecture of the JfUml transformations is 
shown in Figure 21. 

 
Figure 21 C#Frame Transformations 

6.3.3 Adding memory optimization to signals 

This change is a Quality of Service (QoS) change. It does not require an extension to the 
intermediate meta-model. Extending the model to text transformation is all that is 
required. 

Figure 22 shows the JfUml transformation architecture with an additional MOFScript 
transformation. This transformation specializes the code generated from signal elements. 

 
Figure 22 QoS Signal memory optimization 

Methods for creation and destruction of signal objects is created and added to all signal 
classes. If these methods are used instead of the Java ‘new’ operator a lot of unnecessary 
object creation and garbage collection may be avoided. 

To implement this change, four additional methods need to be generated for each signal 
class.  
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/* QoS extension: Add freelist to signals */ 
import "UmlJF2JavaFrame.m2t" 
 
texttransformation SignalFreelist(in jf:"http:///JF.ecore") extends UmlJF2JavaFrame 
 
jf.SignalClass::mapConstructor() { 
 super.mapConstructor() 
 var constructorPars = self.getConstructorParameterString() 
 var constructorArgs = self.getConstructorArgString() 
   newline  
<% 

private static %>self.name<% %> self.name<%Freelist; // top of the freelist stack 
 private %> self.name <% %>self.name<%Next; // the list pointer 
 
 synchronized public static %>self.name<% New%>self.name<%() {  
  // method contents … 

} 
 
synchronized public static %>self.name<%New%>self.name<%(%>constructorPars<%) { 
 // method contents … 
} 
 
synchronized private static void %>self.name<%DelMsg (%>self.name<% sig) { 
 // method contents … 
} 
 
public void del() { 
     %>self.name<%DelMsg (this); 
} 

%> 
} 
 

This transformation contains only one rule: mapConstructor. This rule overrides a rule 
defined in UmlJF2JavaFrame which generates a constructor for the class. This have the 
effect of replacing the original rule with this one, but because I still want to generate a 
constructor for the class I call super.mapConstructor() which will call the original rule. 

Note that this extension does not currently work as it is shown here due to a bug in the 
inheritance mechanism of MOFScript. To run the transformation I implemented all the 
three MOFScript transformations as one transformation. This transformation is shown in 
Appendix A. 

6.3.4 Reusing the core 

If a transformation from UML to Java for something that is unrelated to JavaFrame needs 
to be implemented, the core part of the transformation architecture may still be reused. 
Figure 23 shows a transformation were the JavaFrame extension layer has been replaced 
by a GWT* extension layer.  

                                                 
* Google Web Toolkit, a framework for developing web-applications in Java. 
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Figure 23 GWT extension, reusing the core transformation layer 

6.4 Maintenance 
Change is inevitable and transformations must prepare for it. The reasons for changing 
transformations may be new demands, bugs, and changes in the source or target 
language. 

By separating the source from the target with an intermediate meta-model the 
consequences of a change in the source or target language is limited. In the case of a 
change from UML version 2.0 to 2.1, only the model-to-model transformations need 
changing. Although the JfUml meta-model uses a subset of UML this is probably 
unlikely to change much, as this subset (classes, attributes, etc.) are well established 
concepts. 

Changes in the transformation that do not require an intermediate meta-model change can 
probably be limited to changing one of the four transformations. However if a change of 
the intermediate meta-model is needed, at least two transformations must be changed 
(one model-to-model and one model-to-text).  

Changes performed in a super-transformation may require changes in any sub-
transformations, although if none of the signatures of the rules in the super-
transformations are changed, the change can be limited to only that transformation. 
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7 Summary and conclusions 
The background for this thesis was an existing UML compiler producing JavaFrame code 
from UML 2.0 models annotated with JavaFrame-specific stereotypes. The compiler was 
written as a single transformation using Java and the RSM transformation framework. 

The main problem was how transformations could be made more user-friendly in the 
sense that there would be easier to customize the generated code. 

To answer this I developed a general transformation architecture that uses an intermediate 
meta-model in two parts: one core meta-model and one extension. The use of an 
intermediate meta-model allowed the transformation to be split in a model-to-model 
transformation and a model-to-text transformation. And because the intermediate meta-
model was defined in two parts, both of these transformations could be split in a core and 
an extended part. 

Different ways of creating intermediate meta-models were presented and analyzed, and 
two intermediate meta-models were created. The first intermediate meta-model used a 
Java meta-model as a core part and the second used a subset of the UML meta-model. 
Both used a JavaFrame meta-model as an extension. Even though the two intermediate 
meta-models had different starting points they turned out to be quite similar.  

The general transformation architecture was adapted to the specific scenarios and 
transformations were implemented using MTF, the RSM transformation framework, and 
MOFScript. 

Using the transformation architecture I showed how the generated code could be 
customized either by extending the transformation or by replacing parts of it. The fact 
that the transformation architecture consists of several small transformation, that 
transformation inheritance is used, and that the intermediate meta-model provide a 
separation layer between the source and the target allow for these customization and 
replacements to be implemented while reusing large parts of the existing transformation.  

7.1 Future work 
When choosing intermediate meta-models I discussed using a subset of UML or a Java 
meta-model as an intermediate meta-model and I identified problems with intermediate 
meta-models this close to the code. Trying to overcome these problems and 
implementing transformations for such an intermediate meta-model would be an 
interesting experiment. 

The major obstacle for developing large transformations is the immaturity of current 
transformation languages. The developed transformation architecture had a set of 
requirements for model transformation languages, these requirements were to demanding 
for most transformation languages. A lot of work remains implementing transformation 
languages that are suited for modular development. 
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Appendix A - JfUml Transformations 

UMLCopy.rdl (MTF v 1.1) 
 
import uml "http:///com/ibm/mtf/uml.ecore" 
import uml "http://www.eclipse.org/uml2/1.0.0/UML" 
import util "http:///com/ibm/mtf/util.ecore" 
import ecore "http://www.eclipse.org/emf/2002/Ecore" 
import emf "http:///com/ibm/mtf/model/emf.ecore" 
import ws "http:///com/ibm/mtf/model/workspace.ecore" 
 
relate File(ws:IFile file1, ws:IFile file2){ 
 mapModel( 
  over file1.resource.contents,  
  over file2.resource.contents)  
} 
 
relate mapModel (uml:Model m1, uml:Model m2) { 
 equals(m1.name, m2.name) 
 ,equals(over m1.profiles, over m2.profiles) 
 ,ordered mapElement(over m1.ownedMember, over m2.ownedMember) 
} 
 
relate mapElement(uml:Element e1, uml:Element e2) { 
 //equals(over e1.stereotypes, over e2.stereotypes) 
} 
 
abstract relate mapNamedElement extends mapElement( 
 uml:NamedElement e1,  
 uml:NamedElement e2)  
 when equals(e1.name, e2.name) {} 
 
relate mapPackageImport(uml:PackageImport e1, uml:PackageImport e2) 
{ 
 mapLocalPackageImport(e1, e2), 
 mapReferencePackageImport(e1, e2) 
} 
 
relate mapLocalPackageImport /*extends 
mapPackageImport*/(uml:PackageImport e1, uml:PackageImport e2) 
 when ref mapPackage(e1.importedPackage, e2.importedPackage) 
{ 
  ref mapPackage(e1.importedPackage, e2.importedPackage) 
} 
 
relate mapReferencePackageImport /*extends 
mapPackageImport*/(uml:PackageImport e1, uml:PackageImport e2) 
 when !equals(e1.importedPackage.model, e1.model) 
{ 
 equals(e1.importedPackage, e2.importedPackage) 
} 
 



 60 

relate stereotypeByName(uml:Stereotype e1, ecore:EString name)  
 when equals(e1.name, name) 
 
/* 
* Should seperate between types that are part of the model and types 
that  
* are inter-model references. Types that are part of the model should  
* link to the new element in the target model, types that are  
* inter-model references should link to the same element in the  
* referenced model. 
*/ 
abstract relate mapTypedElement extends mapNamedElement( 
 uml:TypedElement e1,  
 uml:TypedElement e2) { 
 mapTypedElementType(e1,e2) 
} 
 
 
abstract relate mapTypedElementType( 
 uml:TypedElement e1, uml:TypedElement e2) 
 
relate mapTypedElementPrimitiveType extends mapTypedElementType( 
 uml:TypedElement e1 ,  
 uml:TypedElement e2) 
  when util:InstanceOf "uml:PrimitiveType" (e1.type) { 
 equals(e1.type, e2.type)   
} 
 
relate mapTypedElementClassType extends mapTypedElementType( 
 uml:TypedElement e1 when util:InstanceOf"uml:Class" (e1.type),     
 uml:TypedElement e2) { 
 ref mapClass(e1.type, e2.type)  
} 
 
relate mapTypedElementNullType extends mapTypedElementType( 
 uml:TypedElement e1,  
 uml:TypedElement e2) when !util:InstanceOf "uml:Element" (e1.type) 
 
relate mapPackage extends mapNamedElement( 
 uml:Package e1, uml:Package e2) { 
 mappedPackage(e1), 
 ordered mapClassifier(over e1.ownedMember, over e2.ownedMember) 
 ,ordered mapPackage(over e1.ownedMember, over e2.ownedMember) 
} 
 
relate mappedPackage(uml:Package e1) 
 
abstract relate mapClassifier extends mapNamedElement( 
  uml:Classifier e1,  
  uml:Classifier e2) { 
 mapGeneralization [0..1]( 
  over e1.generalization,  
  over e2.generalization) 
 ,ordered mapPackageImport(over e1.packageImport, over 
e2.packageImport) 
} 
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relate mapClass extends mapClassifier(uml:Class e1, uml:Class e2) { 
 ordered mapProperty(over e1.ownedAttribute, over e2.ownedAttribute), 
 ordered mapOperation( 
  over e1.ownedOperation,  
  over e2.ownedOperation) 
 ,ordered mapActivity(over e1.ownedBehavior, over e2.ownedBehavior) 
} 
 
relate mapGeneralization extends mapElement( 
 uml:Generalization e1,  
 uml:Generalization e2) { 
 ref mapClassifier [1](over e1.general, over e2.general) 
} 
 
relate mapProperty extends mapTypedElement(uml:Property e1, 
uml:Property e2) { 
  equals(e1.visibility, e2.visibility) 
  ,equals(e1.aggregation, e2.aggregation) 
  ,equals(e1.default, e2.default) 
  ,equals(e1.isStatic, e2.isStatic) 
  ,equals(e1.isUnique, e2.isUnique) 
  ,equals(e1.isLeaf, e2.isLeaf) 
  ,mapLiteralSpecification( over e1.lowerValue, over e2.lowerValue) 
 ,mapLiteralSpecification( over e1.upperValue, over e2.upperValue) 
} 
 
/* 
relate mapMultiplicityElement extends mapElement( 
 uml:MultiplicityElement e1, uml:MultiplicityElement e2) { 
 mapLiteralSpecification( 
  over e1.lowerValue, over e2.lowerValue) 
 ,mapLiteralSpecification( 
  over e1.upperValue, over e2.upperValue) 
} 
*/ 
 
abstract relate mapLiteralSpecification extends mapElement ( 
 uml:LiteralSpecification e1, uml:LiteralSpecification e2) 
 
relate mapLiteralInteger extends mapLiteralSpecification( 
 uml:LiteralInteger e1, uml:LiteralInteger e2) 
{ 
 equals(e1.value, e2.value)  
} 
 
relate mapLiteralUnlimitedNatural extends mapLiteralSpecification( 
 uml:LiteralUnlimitedNatural e1, uml:LiteralUnlimitedNatural e2) 
{ 
 equals(e1.value, e2.value)  
} 
 
relate mapLiteralString extends mapLiteralSpecification( 
 uml:LiteralString e1, uml:LiteralString e2) 
{ 
 equals(e1.value, e2.value)  
} 
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relate mapLiteralBoolean extends mapLiteralSpecification( 
 uml:LiteralBoolean e1, uml:LiteralBoolean e2) 
{ 
 equals(e1.value, e2.value)  
} 
 
 
relate mapOperation extends mapTypedElement( 
 uml:Operation e1,  
 uml:Operation e2) { 
 equals(e1.isLeaf, e2.isLeaf) 
 ,equals(e1.isStatic, e2.isStatic) 
 ,mapParameter [0..1] (over e1.returnResult, over e2.returnResult) 
 ,ordered mapParameter (over e1.ownedParameter, over 
e2.ownedParameter) 
 ,ref mapActivity [0..1] (over e1.method, over e2.method) 
} 
 
relate mapParameter extends mapTypedElement ( 
 uml:Parameter e1,  
 uml:Parameter e2) { 
  equals(e1.visibility, e2.visibility) 
  ,equals(e1.default, e2.default) 
  ,equals(e1.isUnique, e2.isUnique) 
  ,equals(e1.lower, e2.lower) 
  ,equals(e1.upper, e2.upper) 
  ,equals(e1.direction, e2.direction) 
  ,ref mapActivity(e1.effect, e2.effect) 
} 
 
relate mapActivity extends mapNamedElement( 
 uml:Activity e1,  
 uml:Activity e2) { 
 mapActivityEdge(over e1.edge, over e2.edge) 
 ,mapNode(over e1.node, over e2.node) 
} 
 
abstract relate mapNode extends mapNamedElement(uml:ActivityNode e1,  
  uml:ActivityNode e2) {} 
 
relate mapInitial extends mapNode( 
 uml:InitialNode e1, uml:InitialNode e2) 
relate mapAction extends mapNode(uml:Action e1, uml:Action e2) 
relate mapFinal extends mapNode( 
 uml:ActivityFinalNode e1, uml:ActivityFinalNode e2) 
 
abstract relate mapActivityEdge extends mapNamedElement( 
 uml:ActivityEdge e1, uml:ActivityEdge e2) 
 when ref mapNode(e1.source, e2.source)  
   & ref mapNode(e1.target, e2.target) 
   
relate mapControlFlow extends mapActivityEdge( 
 uml:ControlFlow e1, uml:ControlFlow e2) 
 
relate mapObjectFlow extends mapActivityEdge( 
 uml:ObjectFlow e1, uml:ObjectFlow e2) 
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UML2JavaFrame.rdl (MTF v 1.1) 
 
import "UMLCopy.rdl" 
 
import jf "http:///JF.ecore" 
 
/*  
 * The rules in this transformation extend rules defined in 
 * UMLCopy.rdl 
 */ 
abstract relate mapActiveObjectClass extends mapJavaFrameClass( 
 uml:Class e1 when util:InstanceOf "uml:StateMachine" (e1)  
 | stereotypeByName(match over e1.stereotypes, "Composite") ,  
 jf:ActiveObjectClass e2) { 
 //createSchedulerProperty [1] (match over e2.ownedAttribute), 
 ordered mapMediatorField(over e1.ownedPort, over e2.formalMediator) 
} 
 
relate createSchedulerProperty(jf:JavaFrameProperty e1 when equals(e1.name, "sched")) { 
 //equals(e1.type, "jf:Scheduler"), 
 //equals(e1.name, "sched") 
} 
 
/* StateMachine and CompositeState */ 
relate mapStateMachine extends mapActiveObjectClass( 
 uml:StateMachine e1,  
 jf:StateMachineClass e2) { 
 mapCompositeStateClass [1](over e1.region, over e2.package.ownedMember), 
 ref mapCompositeStateClass(over e1.region, e2.compositeState) 
} 
 
relate mapCompositeStateClass(uml:Region e1, jf:CompositeStateClass e2) 
 when util:MatchString "{0}_{1}"  (e1.stateMachine.name, e1.name, e2.name) { 
 ref mapStateMachine(e1.stateMachine, e2.stateMachine) 
 ,ordered mapState(over e1.subvertex, over e2.state) 
 ,ordered mapChoice(over e1.subvertex, over e2.choice) 
 ,mapInitialTransition[0..1](over e1.subvertex, e2.initialTransition) 
 //,ordered mapTransition(over e1.transition, over e2.transition) 
} 
 
 
/*  
relate createCompositeStateClass( 
 jf:CompositeStateClass e1,  
 uml:Region e3,  
 ecore:EString e2)  
 when util:MatchString "{0}States" (e2, e1.name) { 
 equals(e1.region, e3), 
 ref mapStateMachine(e3.stateMachine, e1.stateMachine) 
}  
*/  
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abstract relate mapVertex(uml:Vertex e1, jf:JavaFrameVertex e2) { 
 //ordered mapTransition(over e1.owner.ownedElement, over e2.outgoing, e1) 
 ordered mapTransition(over e1.outgoing, over e2.outgoing) 
} 
 
relate mapState extends mapVertex( 
  uml:State e1,  
  jf:JavaFrameState e2) { 
 equals(e2.visibility, "public") 
  //,equals(e1.default, e2.default) 
  //,equals(e1.isComposite, e2.isComposite) 
  ,equals(e2.isStatic, "true") 
  //,equals(e2.isUnique, "false") 
  ,equals(e2.isLeaf, "false") 
 ,equals(e1.name, e2.name) 
 //,mapDefaultTransition [0..1](over e1.owner.ownedElement, e2.defaultTransition, e1) 
} 
 
 
relate mapFinalState extends mapState(uml:FinalState e1, jf:JavaFrameFinalState e2) { 
 //equals(e2.name, "finalState") 
} 
 
relate mapChoice extends mapVertex( 
  uml:Pseudostate e1 when equals(e1.kind, "choice"), 
  jf:JavaFrameChoice e2) { 
 //ordered mapTransition(over e1.owner.ownedElement, over e2.outgoing, e1) 
} 
 
relate mapTransition( 
 uml:Transition e1, jf:JavaFrameTransition e2) { 
 //ref mapVertex(e3, e2.source), 
 mapGuard(e1.guard.specification, e2), 
 mapActivity(e1.effect, e2.effect), 
 mapSignalTrigger(over e1.trigger, e2), 
 ref mapVertex(e1.target, e2.target), 
 ref mapVertex(e1.source, e2.source) 
} 
 
relate mapInitialTransition( 
 uml:Pseudostate e1 when equals(e1.kind, "initial" ), 
 jf:JavaFrameTransition e2) { 
 mapTransition[1](over e1.outgoing, e2)  
} 
 
/*  
relate mapDefaultTransition( 
 uml:Transition e1, jf:JavaFrameTransition e2, uml:State e3) 
 when !ref checkNotDefaultGuard(e1.guard.specification) { 
 mapActivity(e1.effect, e2.effect), 
 mapSignalTrigger(over e1.trigger, e2), 
 ref mapVertex(e1.target, e2.target)  
}  
 
relate checkNotDefaultGuard(uml:OpaqueExpression e1)  
 when !(equals(e1.body, "else") | equals(e1.body, "")) 
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*/  
 
relate mapGuard(uml:OpaqueExpression e1, jf:JavaFrameTransition e2) { 
 equals(e1.body, e2.guardPredicate) 
} 
 
relate mapSignalTrigger(uml:SignalTrigger e1, jf:JavaFrameTransition e2) { 
 mapTrigger(over e1.signal, e2)  
} 
 
relate mapTrigger(uml:Signal e1, jf:JavaFrameTransition e2) { 
 ref mapSignal(e1, over e2.trigger) 
} 
 
/* END StateMachine and CompositeState section */ 
 
relate mapMediator extends mapJavaFrameClass( 
 uml:Class e1 when stereotypeByName( 
  match over e1.stereotypes, "Mediator"), 
 jf:MediatorClass e2) { 
 //ref mapForwardAcitivity [0..1](e1.activity, e2.forward)  
} 
 
relate mapComposite extends mapActiveObjectClass( 
 uml:Class e1, jf:CompositeClass e2)  
 when stereotypeByName(match over e1.stereotypes,"Composite"){ 
 //ordered mapActiveObjectField(over e1.ownedAttribute, over e2.activeobjectfield), 
 ordered mapConnector( 
  over e1.ownedConnector,  
  over e2.mediatorconnection) 
 ,createMainClass[1](e1, over e2.package.ownedMember) 
} 
 
relate createMainClass (uml:Class e1, jf:MainClass e2)  { 
 util:MatchString "{0}_Main"  (e1.name, e2.name), 
 createMainActiveObjectField(e1, e2.composite) 
} 
 
relate createMainActiveObjectField(uml:Class e1, jf:ActiveObjectField e2) { 
 equals(e2.name, "Main"), 
 ref mapComposite(e1, e2.type), 
 equals(e2.aggregation, "composite"), 
 ordered mapMediatorField(over e1.ownedPort, over e2.actualMediator) 
} 
 
 
relate mapSignal extends mapClassifier(uml:Signal e1, jf:SignalClass e2) { 
 ordered mapProperty(over e1.ownedAttribute, over e2.ownedAttribute) 
} 
 
relate mapActiveObjectField extends mapJavaFrameProperty  ( 
 uml:Property e1 when equals(e1.isComposite, "true"),  
 jf:ActiveObjectField e2) { 
 mapActualMediatorField(over e1.type, e2,  e1) 
} 
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relate mapActualMediatorField( 
 uml:Class e1,  
 jf:ActiveObjectField e2,  
 uml:Property e3) { 
 mapActiveObjectMediatorField( 
  over e1.ownedPort,  
  over e2.actualMediator, e3) 
} 
 
relate mapActiveObjectMediatorField( 
 uml:Port e1,  
 jf:MediatorField e2,  
 uml:Property e3)  
 when util:MatchString "{0}_{1}"  (e3.name, e1.name, e2.name){ 
  equals(e1.visibility, e2.visibility) 
  ,equals(e1.default, e2.default) 
  //,equals(e1.isComposite, e2.isComposite) 
  ,equals(e1.isStatic, e2.isStatic) 
  ,equals(e1.isUnique, e2.isUnique) 
  ,equals(e1.isLeaf, e2.isLeaf) 
  ,equals(e1.lower, e2.lower) 
  ,equals(e1.upper, e2.upper) 
  ,mapTypedElementType(e1, e2) 
}  
 
relate mapMediatorField extends mapJavaFrameProperty( 
 uml:Port e1, jf:MediatorField e2) { 
 equals(e1.isBehavior, e2.isInput) 
} 
 
relate mapConnector(uml:Connector e1, jf:MediatorConnection e2) { 
 ordered mapConnectorEnd(over e1.end, e2) 
} 
 
 
abstract relate mapConnectorEnd( 
 uml:ConnectorEnd e1, jf:MediatorConnection e2) {} 
 
relate mapActualPortConnectorEnd extends mapConnectorEnd( 
 uml:ConnectorEnd e1, jf:MediatorConnection e2)  
  when util:InstanceOf "uml:Property" (e1.partWithPort) { 
 ref mapActiveObjectMediatorField ( 
  e1.role, e2.end, e1.partWithPort) 
} 
 
relate mapFormalPortConnectorEnd extends mapConnectorEnd( 
 uml:ConnectorEnd e1, jf:MediatorConnection e2)  
  when !util:InstanceOf "uml:Property" (e1.partWithPort){ 
 ref mapMediatorField (over e1.role, over e2.end) 
} 
/*  
 * These to compensate for not being able to access uml element  
 * in MOFScript  
 */ 
relate mapJavaFrameModel extends mapModel( 
 uml:Model e1, jf:JavaFrameModel e2) 
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relate mapJavaFramePackage extends mapPackage( 
 uml:Package e1, jf:JavaFramePackage e2) 
 
relate mapJavaFrameProperty extends mapProperty( 
 uml:Property e1, jf:JavaFrameProperty e2) 
  
relate mapJavaFrameParameter extends mapParameter( 
 uml:Parameter e1, jf:JavaFrameParameter e2) 
 
relate mapJavaFrameClass extends mapClass( 
 uml:Class e1, jf:JavaFrameClass e2) 
 
relate mapJavaFrameOperation extends mapOperation( 
 uml:Operation e1, jf:JavaFrameOperation e2) 
  
relate mapJavaFrameActivity extends mapActivity( 
 uml:Activity e1, jf:JavaFrameActivity e2) 
 

JFUml2Java.m2t (MOFScript v 1.1.4) 
 
texttransformation JfUml2Java (in jfuml:"http:///JF.ecore") 
 
property OBJECT = "Object" 
property file_extension = ".java" 
 
property targetDir = "gen-src/" 
 
jfuml.JavaFrameModel::main() { 
   self.mapModel() 
} 
 
jfuml.JavaFrameModel::mapModel() { 
 self.ownedMember->forEach(c:jfuml.JavaFramePackage) { 
   c.mapPackage()  
 } 
} 
 
jfuml.JavaFramePackage::mapPackage() { 
 self.ownedMember->forEach(c : jfuml.JavaFrameClass) { 
   c.mapClass()  
 } 
 self.ownedMember->forEach(c:jfuml.JavaFramePackage) { 
   c.mapPackage()  
 } 
} 
 
jfuml.JavaFrameClass::mapClass() { 
 file (targetDir + self.owner.getFolderName() + "/" + self.name + file_extension) 
 
 self.mapPackageDeclaration() 
 nl 
 self.mapImportDeclarations() 
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 nl 
 self.mapClassDeclarationStart() 
 nl 
 self.mapFields() 
 nl 
 self.mapConstructor() 
 nl 
 self.ownedOperation->forEach(o:jfuml.JavaFrameOperation) { 
  o.mapOperation() 
 } 
 nl 
 self.mapClassDeclarationEnd() 
} 
 
jfuml.JavaFrameClass::mapClassDeclarationStart() { 
 <%public class %> self.name <% extends %> self.getGeneralLiteral(OBJECT) <% { %> 
 nl  
} 
 
jfuml.JavaFrameClass::mapClassDeclarationEnd() { 
<%}%>nl  
} 
 
jfuml.JavaFrameClass::mapPackageDeclaration() { 
 println("package "+self.owner.getQualifiedName()+ ";") 
} 
 
jfuml.JavaFrameClass::mapImportDeclarations() { 
   var imports:Hashtable // use hashtable to avoid duplicates 
   self.ownedAttribute->forEach(c:jfuml.JavaFrameProperty) { 
    if (c.type != null) { 
     if (c.type.oclIsKindOf(jfuml.JavaFrameClass)) { 
      if (c.type.owner != self.owner) { // dont import types from same package 
       imports.put(c.type, c.type) 
      } 
     }  
    }  
   } 
   imports->forEach(c : jfuml.JavaFrameClass) { 
    println("import " + c.getQualifiedName() + ";") 
   } 
    
   self.packageImport->forEach(c) { 
    println("import " + c.importedPackage.getQualifiedName() + ".*;")  
   } 
   self.mapImportDeclarationsMergeExtension() 
} 
 
jfuml.JavaFrameClass::mapFields() { 
   self.mergesMapFields() 
 self.ownedAttribute->forEach(p:jfuml.JavaFrameProperty) { 
  p.mapProperty() 
 } 
 
} 
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jfuml.JavaFrameClass::mergesMapFields() {} 
 
jfuml.JavaFrameProperty::mapProperty() { 
 tab<%%>self.getVisibilityLiteral() <% %> self.getTypeLiteral() <% %> self.name <%;%>nl 
} 
 
jfuml.JavaFrameClass::mapConstructor() { 
 self.mapDefaultConstructor() 
 nl 
 if (!(self.ownedAttribute.isEmpty() && self.inheritedMember.isEmpty())) 
  self.mapParameterizedConstructor()  
 nl 
 self.inheritsMapConstructor() 
} 
 
jfuml.JavaFrameClass::inheritsMapConstructor() {} 
 
jfuml.JavaFrameClass::mapParameterizedConstructor() { 
<% public %> self.name <%(%> self.getConstructorParameterString() <%) { 
  super(%> self.getConstructorSuperArgString() <%); 
%> 
 self.ownedAttribute->forEach(c) { 
  tab(2)<%this.%> c.name <% = %> c.name <%;%>nl 
 } 
<% } 
%>  
} 
 
jfuml.JavaFrameClass::mapDefaultConstructor() { 
<% public %> self.name <%() { 
  super(); 
 } 
%>  
} 
 
jfuml.JavaFrameOperation::mapOperation() { 
   var return:String 
   var parameters:String 
   if (self.returnResult.isEmpty()) { 
    return = "void" 
   } else { 
    return = self.returnResult.first().getTypeLiteral() 
   } 
   self.ownedParameter->forEach(p:jfuml.JavaFrameParameter) { 
    parameters += p.getTypeLiteral() + " " + p.name + ", "  
   } 
   if (parameters.size() > 0) { 
    parameters = parameters.substring(0, parameters.size() - 2) 
   } 
 tab<%%> self.visibility <% %> return <% %> self.name <%(%> parameters <%) {  
%> 
 self.method->forEach(a:jfuml.JavaFrameActivity) { 
  a.mapActivity() 
 } 
<% } 
%> 
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} 
 
jfuml.JavaFrameActivity::mapActivity() { 
 if (self.action.isEmpty()) { 
  println(self.name) 
 } else { 
  self.action->forEach(a) { 
   println(a.name) 
  }  
 } 
} 
 
/* HELPERS */ 
jfuml.JavaFrameProperty::getTypeLiteral() : String { 
 if (self.type = null) { 
    result = OBJECT 
 } else { 
   result = self.type.name 
 } 
} 
 
jfuml.JavaFrameParameter::getTypeLiteral() : String { 
 if (self.type = null) { 
    result = OBJECT 
 } else { 
   result = self.type.name 
 } 
} 
 
jfuml.JavaFrameProperty::getVisibilityLiteral() : String { 
 if (self.visibility = "package")  
  result = "" 
 else  
  result = self.visibility  
} 
 
jfuml.JavaFrameClass::getGeneralLiteral(default:String) : String { 
  result = default 
  if (!self.general.isEmpty()) { 
   result = self.general.first().name 
  } 
} 
 
jfuml.JavaFrameClass::getConstructorParameterString() : String { 
  var cp:String 
 self.ownedAttribute->forEach(c:jfuml.JavaFrameProperty) { 
   cp += c.getTypeLiteral() + " " + c.name + ", " 
 } 
 self.inheritedMember->forEach(c:jfuml.JavaFrameProperty) { 
   cp += c.getTypeLiteral() + " " + c.name + ", " 
 } 
 // Remove trailing comma 
 if (cp.size() > 0) { cp = cp.substring(0, cp.size() - 2) } 
  result = cp 
} 
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jfuml.JavaFrameClass::getConstructorArgString() : String { 
 var args:String 
 args = self.mergesGetConstructorArgString() 
 self.ownedAttribute->forEach(c:jfuml.JavaFrameProperty) { 
  args += c.name + ", " 
 } 
 self.inheritedMember->forEach(c:jfuml.JavaFrameProperty) { 
  args += c.name + ", " 
 } 
 // Remove trailing comma 
 if (args.size() > 0) { args = args.substring(0, args.size() - 2) } 
  result = args 
} 
 
jfuml.JavaFrameClass::mergesGetConstructorArgString() : String {  
  result = ""  
} 
 
jfuml.JavaFrameClass::getConstructorSuperArgString() { 
 var args:String 
 self.inheritedMember->forEach(c:jfuml.JavaFrameProperty) { 
  args += c.name + ", " 
 } 
 // Remove trailing comma 
 if (args.size() > 0) { args = args.substring(0, args.size() - 2) } 
  result = args 
} 
 
jfuml.JavaFramePackage::getQualifiedName() : String { 
 result = self.qualifiedName.replace("::", ".")  
} 
 
jfuml.JavaFramePackage::getFolderName() : String { 
 result = self.qualifiedName.replace("::", "/")  
} 
 
jfuml.JavaFrameClass::getQualifiedName() : String { 
  if (self.owner.oclIsKindOf(jfuml.JavaFramePackage)) { 
   result = self.owner.getQualifiedName() + "." + self.name 
  } else { 
    result = self.name  
  } 
} 
 
jfuml.JavaFramePrimitiveType::getQualifiedName() : String { 
  result = self.name  
} 
 
 
/* JAVAFRAME SPECIFIC (MOFScript help) */ 
jfuml.JavaFrameClass::mapImportDeclarationsMergeExtension() { 
 println("import se.ericsson.eto.norarc.javaframe.*;") 
} 
 
/* ActiveObject */ 
jfuml.ActiveObjectClass::mergesMapFields() { 
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<% Scheduler sched = null; 
 
 /* Formal mediators */ 
%> 
 self.formalMediator->forEach(c) { 
  c.mapProperty();  
 }  
} 
 
/* ActiveObjectField */ 
jfuml.ActiveObjectField::mapProperty() { 
nl 
<% /* Part %> self.name <% */%>nl 
 self.actualMediator->forEach(c) { 
  tab<%%> c.getTypeLiteral() <% %> c.name <%;%>nl 
 } 
 tab<%%> self.getTypeLiteral() <% %> self.name <%;%>nl 
} 
 
jfuml.ActiveObjectField::mapInit() { 
 self.actualMediator->forEach(c) { 
  tab(2)<%%>c.name<% = new %>c.getTypeLiteral()<%(/*DefaultValue*/);%>nl 
 } 
 tab(2)<%%>self.name<% = new 
%>self.getTypeLiteral()<%(%>self.getConstructorArgString()<%);%>nl 
} 
 
jfuml.ActiveObjectClass::getConstructorParameterString() { 
 var r = "Scheduler sched, " 
 self.formalMediator->forEach(c) { 
  r += c.getTypeLiteral() + " " + c.name + ", " 
 } 
 r = r.substring(0, r.size() -2 ) 
 result = r  
} 
 
jfuml.ActiveObjectField::getConstructorArgString() { 
 var r = "sched, " 
 self.actualMediator->forEach(c) { 
  r += c.name + ", " 
 } 
 r = r.substring(0, r.size() -2 ) 
 result = r 
} 
 
/* Composite */ 
jfuml.CompositeClass::mapClassDeclarationStart() {  
 <% public class %> self.name <% extends Composite { %> 
 nl 
} 
 
jfuml.CompositeClass::mapConstructor() { 
 
<% public %>self.name<%(%>self.getConstructorParameterString()<%) { 
  this.sched = sched; 
%> 
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 self.formalMediator->forEach(m) { 
<%  this.%> m.name <% = %> m.name <%;%>nl 
 } 
   nl 
 self.ownedAttribute->forEach(a : jfuml.ActiveObjectField) { 
  a.mapInit() 
 } 
 nl 
 self.mediatorconnection->forEach(c) { 
<%  %>c.end.first().name<%.addAddress(%>c.end.last().name<%);%>nl 
 } 
<% } 
%> 
} 
 
/* StateMachine */ 
jfuml.StateMachineClass::mapClassDeclarationStart() {  
<%public class %> self.name <% extends StateMachine {  
    
 static CompositeState states = new %>self.compositeState.name<%("outermostState"); 
%> 
 nl 
} 
 
jfuml.StateMachineClass::mapConstructor() { // TODO seperate parameter/attribute for SM 
 var cp = self.getConstructorParameterString() 
<% public %> self.name <%(%> cp <%) { 
  super(sched); 
  this.sched = sched; 
%> 
 self.formalMediator->forEach(c) { 
  tab(2)<%this.%> c.name <% = %> c.name <%;%>nl 
 } 
<% } 
 
%> 
 self.mapExecStartTransition() 
} 
 
jfuml.StateMachineClass::mapExecStartTransition() { 
<% 
 protected void execStartTransition() { 
  states.enterState(this); 
 } 
%> 
} 
 
/* CompositeStates */ 
jfuml.CompositeStateClass::mapClassDeclarationStart() { 
<%public class %> self.name <% extends CompositeState { 
%> 
} 
 
jfuml.CompositeStateClass::mergesMapFields() { 
<% /* States declared as static fields */%>nl 
 self.state->forEach(c) { 
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  c.mapProperty()  
 } 
 nl 
} 
 
jfuml.CompositeStateClass::mapConstructor() { 
<% public %>self.name<%(String name) { 
  super(name); 
%> 
 self.state->forEach(c) { 
  tab(2)<%%>c.getName()<%.enclosingState = this;%>nl   
 } 
<% 
 } 
%> 
 self.inheritsMapConstructor() 
} 
 
jfuml.CompositeStateClass::inheritsMapConstructor() { 
 self.mapEnterState() 
 self.mapExecTrans() 
} 
 
jfuml.CompositeStateClass::mapEnterState() { 
<% 
 public void enterState(StateMachine curfsm) { 
  %>self.stateMachine.name<% csm = (%>self.stateMachine.name<%)curfsm; 
%> 
 self.initialTransition.mapFireTransition("if") 
<% 
 } 
%> 
} 
 
jfuml.CompositeStateClass::mapExecTrans() { 
<% 
 protected boolean execTrans(Message signal, State st, StateMachine curfsm) { 
  %>self.stateMachine.name<% csm = (%>self.stateMachine.name<%)curfsm; 
%> 
 self.state->forEach(s | !s.oclIsKindOf(jfuml.JavaFrameFinalState)) { 
<%  if (st == %>s.getName()<%) { 
%>  s.outgoing->forEach(t) { 
     t.mapTransition() 
  } 
<%  } 
%> 
 } 
<% 
  return false; 
 } 
%> 
} 
 
/* State */ 
jfuml.JavaFrameState::mapProperty() { 
<% static %> self.getTypeLiteral() <% %> self.name <% = new %>  
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 self.getTypeLiteral() <%("%>self.name<%");%>nl 
} 
 
jfuml.JavaFrameFinalState::mapProperty() { 
<% static State finalState = new State("finalState");%>nl 
} 
 
jfuml.JavaFrameState::getTypeLiteral() : String { 
 if (self.type = null) 
  result = "State" 
 else 
  result = self.type.name 
} 
 
jfuml.JavaFrameState::mapStateChangeCode() { 
 tab(2)<%%>self.getName()<%.enterState(csm);%>nl 
} 
 
jfuml.JavaFrameFinalState::mapStateChangeCode() { 
<%   csm.moveStateMachine(null); 
   finalState.enterState(csm); 
   csm.owner.removeActiveObject(csm); 
%> 
} 
 
jfuml.JavaFrameChoice::mapStateChangeCode() { 
   var test:String = "if" 
<% /* Enter choice */ 
%> 
 self.outgoing->forEach(t | !t.isDefault()) { 
  t.mapFireTransition(test) 
  test = "else if" 
 } 
 self.outgoing->forEach(t | t.isDefault()) { 
  t.mapFireTransition(test) 
 } 
} 
 
jfuml.JavaFrameState::getName() : String { result = self.name } 
jfuml.JavaFrameFinalState::getName() : String { result = "finalState" } 
 
/* Transition */ 
jfuml.JavaFrameTransition::isDefault() : Boolean { 
 var g:String = self.guardPredicate 
 if (self.guardPredicate = null) { 
  result = "true" 
 } 
 if (g.equals("else") or g.equals("")) { 
  result = true 
 } else { 
  result = false 
 } 
} 
 
jfuml.JavaFrameTransition::getGuardLiteral() : String { 
   if (self.guardPredicate = null) 
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    result = "true" 
   else { 
  if (self.guardPredicate.equals("") or self.guardPredicate.equals("else")) 
   result = "true" 
  else  
   result = self.guardPredicate 
   } 
} 
 
jfuml.JavaFrameTransition::mapFireTransition(test:String) { 
 tab(2)<%%>test<% (%>self.getGuardLiteral()<%) { 
%> 
 if (!(self.effect = null)) { 
  tab(3)<%%>self.effect.mapActivity() nl 
 } 
 self.target.mapStateChangeCode() 
 tab(2)<%} 
%> 
} 
 
jfuml.JavaFrameTransition::mapTransition() : String { 
 var r:String = "\t\tif (" 
 self.trigger->forEach(c) { 
  r += "signal instanceof " + c.getQualifiedName() + " || " 
 } 
 r = r.substring(0, r.size() - 3) 
 r += ") {\n" 
 if (!self.trigger.size() > 1) 
  r += "\t\t\t" + self.trigger.first().getQualifiedName() + " sig = (" 
   +self.trigger.first().getQualifiedName()+")signal;\n" 
 else 
  r += "\t\t\tMessage sig = signal;\n" 
 print(r) 
 self.mapFireTransition("if") // TODO include opt return stmt in mapFire.. 
<%   return true; 
  } 
%> 
} 
 
/* Mediator */ 
jfuml.MediatorClass::mapClassDeclarationStart() {  
 <% public class %> self.name <% extends %> self.getGeneralLiteral("Mediator") <% { %> 
 nl 
} 
 
/* Signal */ 
jfuml.SignalClass::mapClassDeclarationStart() {  
 <% public class %> self.name <% extends %> self.getGeneralLiteral("Message") <% { %> 
 nl 
} 
 
/* Overridden helpers */ 
jfuml.MediatorField::getTypeLiteral() : String { 
 if (self.type = null) { 
    result = "Mediator" 
 } else { 
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   result = self.type.name 
 } 
} 
 
/* Main class */ 
jfuml.MainClass::mapFields() { 
 self.composite.mapProperty() 
} 
 
jfuml.MainClass::mapConstructor() { 
<% public %>self.name<%(String hostname, int portnumber) { 
  Trace trc = null; 
  // Create Trace object with socket communication 
  // Establish socket communication with JFTrace 
  if (hostname.length() != 0) { // JFTrace connection specified? 
   try { 
    trc = new Trace(true, hostname, portnumber); 
   } catch (Exception e) { 
    System.err.println("Socket connection to JFTrace failed to establish: "+ e); 
   } 
  } 
  Scheduler sched; 
  if (trc != null) 
   sched = new Scheduler(trc); // with socket connected Trace object 
  else 
   sched = new Scheduler(); // with default Trace object 
 
  Thread t1 = new Thread(sched); // associating the Scheduler with a Thread 
   
%> 
 self.composite.mapInit() 
<% 
  // Required: start the JavaFrame machinery when the whole system is initialized 
  t1.start(); 
  System.out.println("*********** JavaFrame starting ***************"); 
 } 
  
 public static void main(String[] args) { 
  // Process command options 
  // Necessary if the JavaFrame application will use socket communication 
  // with JFTrace 
  String hostname = ""; 
  int portnumber = 0; 
  for (int i = 0; i < args.length; i++) { 
   String token = args[i]; 
   if (token.equals("-remote")) { 
    if (i == (args.length - 1)) { 
     System.out.println("No remote specified."); 
     usage(); 
     System.exit(1); 
    } 
    int index = args[++i].indexOf(':'); 
    if (index != -1) { 
     hostname = args[i].substring(0, index); 
     Integer portnumberInt = new Integer(args[i] 
       .substring(index + 1)); 
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     portnumber = portnumberInt.intValue(); 
    } else { 
     usage(); 
     System.exit(1); 
    } 
   } // process other options here 
  } 
 
  new %>self.name<%(hostname, portnumber); 
 } 
 
 private static void usage() { 
  // Writes command line options 
  System.out.println("Usage: " + "%>self.name<%" 
    + " [ -remote <hostname>:<port-number> ]"); 
  System.out.println(); 
 } 
%> 
} 
 
/***********************************************/ 
/* QoS extension: Add freelist to signals */ 
jfuml.SignalClass::inheritsMapConstructor() { 
 var constructorPars = self.getConstructorParameterString() 
 var constructorArgs = self.getConstructorArgString() 
   nl 
<% private static %>self.name<% %> self.name<%Freelist; // top of the freelist stack 
 private %> self.name <% %>self.name<%Next; // the list pointer 
 
 synchronized public static %>self.name<% New%>self.name<%() { 
  %>self.name<% returnmessage; 
  if (%>self.name<%Freelist != null) {// take a message from the freelist 
   returnmessage = %>self.name<%Freelist; 
   %>self.name<%Freelist = %>self.name<%Freelist.%>self.name<%Next; 
 
  } else // freelist empty, new message must be generated 
   returnmessage = new %>self.name<%(); 
 
  returnmessage.%>self.name<%Next = returnmessage; /* designating live object*/ 
  return returnmessage; 
 } 
 
%> if (constructorPars.size() > 0) {<% 
 synchronized public static %>self.name<% New%>self.name<%(%>constructorPars<%) { 
  %>self.name<% returnmessage; 
  if (%>self.name<%Freelist != null) {// take a message from the freelist 
   returnmessage = %>self.name<%Freelist; 
   %>self.name<%Freelist = %>self.name<%Freelist.%>self.name<%Next; 
%> 
  self.ownedAttribute->forEach(c) { 
   tab(3)<%returnmessage.%>c.name <% = %> c.name <%;%>nl   
  } 
  self.inheritedMember->forEach(c) { 
   tab(3)<%returnmessage.%>c.name <% = %> c.name <%;%>nl   
  } 
<% 
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  } else // freelist empty, new message must be generated 
   returnmessage = new %>self.name<%(%>constructorArgs<%); 
 
  returnmessage.%>self.name<%Next = returnmessage; /* designating live object*/ 
  return returnmessage; 
 } 
  
%> }<% 
 synchronized private static void delMsg(%>self.name<% sig) { 
  if (sig.%>self.name<%Next==sig) { // check that it is live 
   sig.%>self.name<%Next = %>self.name<%Freelist; 
  %>self.name<%Freelist = sig; 
  } else { 
   System.err.println("**%>self.name<%.del: Object not live"); 
  } 
    } 
   
 public void del() { 
     delMsg(this); 
 } 
%>  
} 
 

Appendix B - JfJava Transformations 

UML2JavaMetamodel (RSM Transformation) 

ClassRule.java 
package no.uio.ifi.javaframetransformation.rules; 
 
import jmm.Class; 
import jmm.CompilationUnit; 
import jmm.JmmFactory; 
import jmm.JmmPackage; 
import jmm.Package; 
import no.uio.ifi.javaframetransformation.tools.ClassBuilder; 
import no.uio.ifi.javaframetransformation.tools.JavaNameTool; 
import no.uio.ifi.javaframetransformation.tools.References; 
 
import org.eclipse.uml2.Classifier; 
 
import com.ibm.xtools.transform.core.AbstractRule; 
import com.ibm.xtools.transform.core.ITransformContext; 
 
public class ClassRule extends AbstractRule { 
 
    public ClassRule() { 
        super(); 
    } 
 
    public ClassRule(String id, String name) { 
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        super(id, name); 
    } 
 
    protected Class createTargetObject() { 
        return JmmFactory.eINSTANCE.createClass(); 
    } 
 
    protected Object createTarget(ITransformContext ruleContext) 
            throws Exception { 
        Classifier source = (Classifier) ruleContext.getSource(); 
        CompilationUnit cu = JmmFactory.eINSTANCE.createCompilationUnit(); 
        Class target = createTargetObject(); 
        target.setName(JavaNameTool.asClass(source.getName())); 
        target.setIsAbstract(source.isAbstract()); 
        target.setIsPublic(true); 
        cu.setName(JavaNameTool.asClass(source.getName())); 
         
        Classifier superClass = ClassBuilder.getSuperType(source); 
        if (superClass != null) 
            References.setFeatureUnknownValue(target, JmmPackage.eINSTANCE.getClass_SuperClass(), 
superClass); 
 
        if (ruleContext.getTargetContainer() instanceof Package) { 
            Package owner = (Package) ruleContext.getTargetContainer(); 
            cu.setPackage(owner); 
            /* Add class as type decl to cu */ 
            target.setCompilationUnit(cu); 
            /* Add cu to package */ 
            cu.setPackage(owner); 
            /* Map reference */ 
            References.mapReference(source, target); 
        } 
        return target; 
    } 
 
    public boolean canAccept(ITransformContext context) { 
        Classifier source = (Classifier) context.getSource(); 
        return source.getAppliedStereotypes().isEmpty(); 
    } 
} 

PackageRule.java 
package no.uio.ifi.javaframetransformation.rules; 
 
import jmm.JmmFactory; 
import jmm.Package; 
import no.uio.ifi.javaframetransformation.tools.JavaNameTool; 
import no.uio.ifi.javaframetransformation.tools.References; 
 
import com.ibm.xtools.transform.core.AbstractRule; 
import com.ibm.xtools.transform.core.ITransformContext; 
 
public class PackageRule extends AbstractRule { 
 
    public PackageRule(String id, String name) { 
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        super(id, name); 
    } 
     
    protected Object createTarget(ITransformContext ruleContext) throws Exception { 
        org.eclipse.uml2.Package source = (org.eclipse.uml2.Package)ruleContext.getSource(); 
         
        jmm.Package target = JmmFactory.eINSTANCE.createPackage(); 
        target.setName(JavaNameTool.asPackage(source.getName())); 
         
        if (ruleContext.getTargetContainer() instanceof jmm.Package) { 
            Package owner = (jmm.Package)ruleContext.getTargetContainer(); 
            target.setSuperPackage(owner); 
            References.mapReference(source, target); 
         return target; 
     } 
        return null; 
    } 
} 
 

References.java 
 
package no.uio.ifi.javaframetransformation.tools; 
 
import java.util.ArrayList; 
import java.util.HashMap; 
import java.util.List; 
 
import org.eclipse.emf.common.util.EList; 
import org.eclipse.emf.ecore.EObject; 
import org.eclipse.emf.ecore.EReference; 
 
public class References { 
 
    protected static HashMap references = new HashMap(); 
     
    protected static List unknownTargetDeferedTargets = new ArrayList(); 
    protected static List unknownTargetDeferedFeatures = new ArrayList(); 
    protected static List unknownTargetDeferedValues = new ArrayList(); 
     
    protected static List unknownValueDeferedTargets = new ArrayList(); 
    protected static List unknownValueDeferedFeatures = new ArrayList(); 
    protected static List unknownValueDeferedValue = new ArrayList(); 
 
    protected static List unknownBothDeferedTargets = new ArrayList(); 
    protected static List unknownBothDeferedFeatures = new ArrayList(); 
    protected static List unknownBothDeferedValue = new ArrayList(); 
     
    public static void mapReference(EObject source, EObject target) { 
        references.put(source, target); 
    } 
     
    protected static EObject getMappedReference(Object source) { 
        return (EObject)references.get(source); 
    } 
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    public static void setFeatureUnknownTarget(EObject target, EReference feature, EObject value) { 
        EObject ref = getMappedReference(target); 
        if (ref != null) { 
            setFeature(ref, feature, value); 
        } else { 
            deferFeatureUnknownTarget(target, feature, value); 
        } 
    } 
     
    public static void setFeatureUnknownValue(EObject target, EReference feature, EObject value) { 
        EObject ref = getMappedReference(value); 
        if (ref != null) { 
            setFeature(target, feature, ref); 
        } else { 
            deferFeatureUnknownValue(target, feature, value); 
        } 
    } 
     
    public static void setFeatureUnknownBoth(EObject target, EReference feature, EObject value) { 
        EObject value_ref = getMappedReference(value); 
        EObject target_ref = getMappedReference(target); 
        if (value_ref != null && target_ref != null) { 
            setFeature(target_ref, feature, value_ref); 
        } else { 
            deferFeatureUnknownBoth(target, feature, value); 
        } 
    } 
     
    protected static void deferFeatureUnknownTarget(EObject target, EReference feature, EObject value) { 
        unknownTargetDeferedTargets.add(target); 
        unknownTargetDeferedFeatures.add(feature); 
        unknownTargetDeferedValues.add(value); 
    } 
 
    protected static void deferFeatureUnknownValue(EObject target, EReference feature, EObject value) { 
        unknownValueDeferedTargets.add(target); 
        unknownValueDeferedFeatures.add(feature); 
        unknownValueDeferedValue.add(value); 
    } 
     
    protected static void deferFeatureUnknownBoth(EObject target, EReference feature, EObject value) { 
        unknownBothDeferedTargets.add(target); 
        unknownBothDeferedFeatures.add(feature); 
        unknownBothDeferedValue.add(value); 
    } 
     
    public static void setDeferedFeatures() { 
        for (int i=0; i<unknownTargetDeferedTargets.size();i++) { 
            EObject target = (EObject)unknownTargetDeferedTargets.get(i); 
            EReference feature = (EReference)unknownTargetDeferedFeatures.get(i); 
            EObject value = (EObject)unknownTargetDeferedValues.get(i); 
             
            EObject refTarget = getMappedReference(target); 
            if (refTarget != null) 
                setFeature(refTarget, feature, value); 
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        } 
        for (int i=0; i<unknownValueDeferedTargets.size();i++) { 
            EObject target = (EObject)unknownValueDeferedTargets.get(i); 
            EReference feature = (EReference)unknownValueDeferedFeatures.get(i); 
            EObject value = (EObject)unknownValueDeferedValue.get(i); 
            setFeature(target, feature, getMappedReference(value)); 
        } 
        for (int i=0; i<unknownBothDeferedTargets.size(); i++) { 
            EObject target = (EObject)unknownValueDeferedTargets.get(i); 
            EReference feature = (EReference)unknownValueDeferedFeatures.get(i); 
            EObject value = (EObject)unknownValueDeferedValue.get(i); 
            EObject target_ref = getMappedReference(target); 
            EObject value_ref = getMappedReference(value); 
            if (target_ref != null && value_ref != null) 
                setFeature(target_ref, feature, value_ref); 
            // TODO - add warning if null in reference 
        } 
    } 
     
    public static void setFeature(EObject target, EReference feature, EObject newValue) { 
        if (feature.isMany()) { 
            EList featureList = (EList)target.eGet(feature); 
            featureList.add(newValue); 
            //target.eSet(feature, featureList); 
        } else { 
            target.eSet(feature, newValue); 
        } 
    } 
     
} 
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