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Background and formalism Overview and motivation

Overview of this talk

The ultimate goal of this work is to understand coupled cluster methods (CC)
applied to nuclei. One may consider (parabolic) quantum dots as minimal model
for nuclei, in a sense “artificial nuclei”
We will analyze the full configuration interaction (FCI) method for quantum dots
We will also see some illuminating numerical results
Finally, we will discuss CC methods and discuss how these may be analyzed
rigorously for quantum dots
Very little physics, only method talk: an outline of rigorous mathematical
analysis
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Background and formalism Overview and motivation

Motivation

Why do all this rigorous analysis?

People disagree on published results.
Curse of dimensionality⇒ computational constraints:

dim. of Hilbert space ∼ exp(A), A = no. particles

If we don’t understand FCI/CC for quantum dots, then what with nuclei? (See
next slides.)
Understanding might also lead to new or better methods, or make them easier to
implement
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Background and formalism Quantum dots as artificial nuclei

Parabolic quantum dots

A harmonic oscillator (HO) trap.
We place A electrons in the trap
They interact via Coulomb
repulsion
This gives us the Hamiltonian
(h̄ = m = 1 etc)

H = H0 +V =
A

∑
i=1

h(i)+
1
2 ∑

i6=j
u(i, j)

with
h(i) =−1

2
∇

2
i +

1
2

r2
i u(i, j) =

λ

‖ri− rj‖
(1)

λ= O(1) to O(10)
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Background and formalism Quantum dots as artificial nuclei

Quantum dots vs. nuclei

There are strong similarities between no-core shell model approach to nuclei and
parabolic quantum dots:

Quantum dots:

Rd, d = 1,2,3, spin-
1
2

HO confinement, h̄ω fixed
Singluar two-body interaction
λ/‖rij‖
Purely discrete spectrum

Nuclei:

R3, spin-
1
2

, isospin

HO pseudo-confinement, h̄ω
variational parameter
Highly singular
NN(N)-interactions; unknown
Complicated spectrum,
continua
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Background and formalism The Harmonic oscillator and model spaces

Multi-indices

We need the concept of a multi-index to ease notation.

Definition (Multi-index)

A tuple of d integers nj:

n = (n1,n2, · · · ,nd), nj ≥ 0.

We think of it as a vector of integers.
The “length” of n:

|n|= n1 +n2 + · · ·+nd.

We will use the multi-index to specify q.n.’s in each spatial direction x, y, z, . . .
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Background and formalism The Harmonic oscillator and model spaces

The harmonic oscillator Hamiltonian

I suppose we all know the HO and it’s eigenfunctions:

H0 =
A

∑
i=1

h(i) = ∑
α

εαc†
αcα

Here,
α≡ (n,σ) = (space q.n.,spin q.n.)

Single-particle functions φα(x):

φα(x) = φn(r)︸ ︷︷ ︸
space w.f.

χσ(s)︸ ︷︷ ︸
spin w.f.

, εα = |n|︸︷︷︸
shell

+
d
2

Separation of variables:

φn(r)≡ φn1(r1) · · ·φnd(rd)
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Background and formalism The Harmonic oscillator and model spaces

Examples of quantum numbers and shells

n

one dim

shell |n|= 4

|n|= nx +ny

two dim

|n|

general case

Finally, c†
α creates particle in orbital α

c†
α1

c†
α2
· · ·c†

αA
|−〉 ≡ |α1α2 · · ·αA〉︸ ︷︷ ︸

Slater determinant
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Background and formalism The Harmonic oscillator and model spaces

Single-particle function expansions

Arbitrary single-particle functions expanded in HO functions:

|ψ〉 = ∑
α

|α〉〈α|ψ〉= ∑
α

cα |α〉

ψ(x) = 〈x|ψ〉= ∑
α

cαφα(x)

Expansion in eigenspaces:

|ψ〉=
∞

∑
N=0

PN

Projects onto

space with HO

energy N +d/2

|ψ〉

We define shell-probability p(N):

p(N)≡ 〈ψ|PN |ψ〉
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Background and formalism The Harmonic oscillator and model spaces

The shell-probability

Recall the shell-probability p(N):

p(N)≡ 〈ψ|PN |ψ〉 , PN projects onto N’th shell

We have:
p(N) = ∑

|n|=N
|cn|2

n
N

n1

n2

N

n1

n2

n3

N
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Background and formalism The Harmonic oscillator and model spaces

Many-body harmonic oscillator

It is important to keep in mind that:
Mathematically, we may treat the many-body |Ψ〉 as a higher-dimensional
one-body function!
Trivial separation property of HO gives:

H0 =
A

∑
i=1

h(i) =−1
2

∇
2
R +

1
2

R2, R = (r1, · · · ,rA) ∈ RAd

The Slater determinants are eigenfunctions:

H0 |α1 · · ·αA〉= (εα1 + · · ·+ εαA) |α1 · · ·αA〉

“Shell number” for this interpretation:

N = |N|= |n1|+ |n2|+ · · ·+ |nA|
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Background and formalism The Harmonic oscillator and model spaces

Many-particle function expansions

Arbitrary many-body functions expanded in HO Slater det.’s:

|Ψ〉 = ∑
α1···αA

cα1···αA |α1 · · ·αA〉

Expansion in eigenspaces:

|Ψ〉=
∞

∑
N=0

PN

Projects onto space with

total HO energy N +Ad/2

|Ψ〉

Again, we define “shell”-probability p(N):

p(N)≡ 〈Ψ|PN |Ψ〉
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Background and formalism The Harmonic oscillator and model spaces

Model spaces: cutting down ∞ dimensions

α1

α2

Direct product space:

Allow only |n| ≤ Nmax in single-particle space.

VDP = Span{|α1 · · ·αA〉 | max |ni| ≤ Nmax}
⊂HA ← (complete A-body Hilbert space)

Energy cut space:

Restrict total HO energy instead:

VEC = Span

{
|α1 · · ·αA〉 | ∑

i
|ni|= N ≤ Nmax

}
= (P0 +P1 + · · ·+PNmax)HA
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The full configuration interaction method
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The full configuration interaction method Formulation

Configuration Interaction (CI)

Variational formulation of eigenvalue problem:
Find the |Ψ〉 ∈H that minimizes the energy:

E = min
|Ψ〉∈H

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

Rayleigh-Ritz: Restrict to model space V ⊂H :
Find the |Ψh〉 ∈ V that minimizes the energy:

Eh = min
|Ψh〉∈V

〈Ψh|H|Ψh〉
〈Ψh|Ψh〉

This is CI with respect to V , using VDP or VEC gives FCI.
Let |Φi〉 be basis for V . We obtain the matrix formulation

Huh = Ehuh, Hij = 〈Φi|H|Φj〉
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The full configuration interaction method How to analyze FCI

Questions of accuracy and convergence

When studying convergence,
accuray, etc., norms are useful:

‖Ψ‖2 = 〈Ψ|Ψ〉 ← standard L2 norm
‖Ψ‖2

1 = 〈Ψ|H0|Ψ〉 ← “energy norm”

We study errors of the
approximations:

|δΨ〉 = |Ψh〉− |Ψ〉 ← error in numerical solution
δE = Eh−E ← error in energy

Q |Ψ〉 = (1−P) |Ψ〉 ← error in projection onto V

H

V

|Ψ〉

|Ψh〉

|δ
Ψ
〉
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The full configuration interaction method How to analyze FCI

Questions of accuracy and convergence II

Theorem (A priori error estimate (see Babuska and Osborn))

There exists a constant C1, dependent on u(i, j) only, such that the error |δΨ〉 is
bounded by

‖δΨ‖ ≤ C1‖QΨ‖1 = C1 〈QΨ|H0|QΨ〉1/2 .

There exists a constant C2 such that the energy error is bounded by

δE ≤ C2‖δΨ‖2 ≤ C2C1‖QΨ‖2
1.

We need to understand . . .
Approximating properties of basis function expansions in |Φi〉. “What does
P |Ψ〉 capture?”
Behaviour of exact A-body wave function |Ψ〉
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The full configuration interaction method How to analyze FCI

Properties of basis functions

Already seen: |Φi〉 are harmonic oscillator eigenfunctions in Ad dimensions.
Let P project onto V = VEC, and Q = 1−P:

P = P0 +P1 + · · ·+PNmax

Consider expansion of some wave function |Ψ〉:

|Ψ〉= (P+Q)∑
i

ci |Φi〉=
D

∑
i=1

ci |Φi〉+
∞

∑
i=D+1

ci |Φi〉

P |Ψ〉 is the best approximation in V , in both ‖ · ‖ and ‖ · ‖1 norms.
If the ci, i > D are small, it is also good
Behaviour of ci will be related to the analytic properties of |Ψ〉
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The full configuration interaction method How to analyze FCI

Properties of basis functions for A = d = 1

For A = d = 1, we have 〈x|Φi(x)〉 −→ φn(x):

φn(x) = (2nn!
√
π)−1/2 Hn(x)e−x2/2

Exponential fall-off, smooth, increasing number of oscillations

x
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The full configuration interaction method How to analyze FCI

Hermite function approximation: 1D result

Consider the expansion

ψ(x) =
∞

∑
n=0

cnφn(x).

Theorem (Approximation by Hermite functions (See S.K. ’09))

Assume ψ(x) falls off exponentially. Then ψ(x) ∈ Hk(R) if and only if

∞

∑
n=0
|cn|2nk < +∞

That is,
p(n) = |cn|2 ∼ n−(k+1).

What is Hk(R)? All (weak) partial derivatives up to order k exist and are
L2-integrable
Rapid fall-off of p(n) (and cn)⇔ ψ(x) is smooth
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The full configuration interaction method How to analyze FCI

Numerical calculation

We consider

f (x) = (1+2|x|)e−x2/2

g(x) = f ′(x)

We have:

|cn| ∼ n−1.28

|cn| ∼ n−0.74

Notice: k not
necessarily an integer!

100 101 102 10310−4

10−2

100

102

log(n+1)

lo
g(
|c

n|
)
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The full configuration interaction method How to analyze FCI

Weak differentiability, again

Would it be sufficient to consider standard derivatives of ψ(x)?
No! The concept of weak differentiability is essential to this result.
Both the below functions are smooth everywhere except at x = 0. But the jump
discontinuity distinguishes the two.

f (x) ∈ H1(R)
x|cn| ∼ n−1

f ′(x) ∈ H0(R)
x|cn| ∼ n−1/2
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The full configuration interaction method How to analyze FCI

Generalization to d dimensions

Consider expansion of ψ(r),

ψ(r) = ∑
n

cnφn(r)

=
∞

∑
n1=0
· · ·

∞

∑
nd=0

cn1···ndφn1(r1) · · ·φnd(rd)

How do we study the limit “large n” as we have a d-dimensional array of
coefficients?

n n1

n2

n1

n2

n3
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The full configuration interaction method How to analyze FCI

Generalization to d dimensions II

Solution: Study behaviour of shell probability p(N):

p(N)≡ 〈ψ|PN |ψ〉 , PN projects onto N’th shell

We have:
p(N) = ∑

|n|=N
|cn|2

n
N

n1

n2

N

n1

n2

n3

N
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The full configuration interaction method How to analyze FCI

Harmonic oscillator function approximation: general result

Consider the expansion
ψ(r) = ∑

n
cn φn(r).

Theorem (Approximation by h.o. functions (See S.K. ’09))

Assume ψ(r) falls off exponentially. Then ψ(r) ∈ Hk(Rd) if and only if

∞

∑
N=0

p(N)Nk < +∞

That is,
p(N)∼ N−(k+1).

Rapid fall-off of p(N)⇔ ψ(r) is smooth
Notice: Valid for many-body wave-functions as well!
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∞

∑
N=0

p(N)Nk < +∞

That is,
p(N)∼ N−(k+1).

Rapid fall-off of p(N)⇔ ψ(r) is smooth
Notice: Valid for many-body wave-functions as well!
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The full configuration interaction method How to analyze FCI

Approximation in model space

Let’s recall the “hyper-pyramid”/energy cut model space VEC:

VA = Span{Slater det’s with h.o. energy ≤ Emax}

As the Slater determinants are Ad-dimensional h.o. eigenfunctions,

VA = Span{Slater det’s with h.o. energy ≤ Nmax +Ad/2}
= (P0 +P1 + · · ·+PNmax)︸ ︷︷ ︸

≡P

H

We obtain for the error in the norm

‖QΨ‖2 =
∞

∑
N=Nmax+1

p(N)∼ N−k
max
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The full configuration interaction method How to analyze FCI

Approximation using Slater determinants

Using this information, we obtain the following:

Theorem (Accuracy of FCI calculations)

Suppose we solve the many-body problem with FCI using HO basis functions in an
energy cut model space with parameter Emax = Nmax +Ad/2. Assume that the exact
solution |Ψ〉 ∈ Hk(RAd)⊗CqA

. Then:

‖δΨ‖1 ≤ C1N−(k−1)/2
max

and
δE ≤ C2N−(k−1)

max

The constants depends roughly linearly on the strength of the interactions.
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The full configuration interaction method How to analyze FCI

Behaviour of exact wave function

Singular potential u(i, j)⇒ well-known cusp conditions on wave functions
across singularities (see Hoffmann-Ostenhof et al.)

Ground state for two-electron dot with λ= 1:

Ψ0(r1,r2) = (1+ cr12)e−(r2
1+r2

2)/2

Pauli principle⇒ smoothness varies for different wave functions
Also some other interesting results are available: Work of Yserentant, Hackbush,
Hoffmann-Ostenhof and others
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The full configuration interaction method Numerical results

Convergence of parabolic dot FCI

N is number of particles, R = Nmax, M is total angular momentum, S is total electron
spin. Curves show δE/E.
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The full configuration interaction method Numerical results

Exponential (?) convergence in NCSM calculations
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h̄ω= 24 MeV, |E−Efadd| ∼ Ce−0.15N From Navratil & Barrett, PRC 57, p. 562
(1998). Convergence test of NCSM for
3H, Nijmegen II effective interaction.
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Coupled cluster methods (CC)

Outline

1 Background and formalism
Overview and motivation
Quantum dots as artificial nuclei
The Harmonic oscillator and model spaces

2 The full configuration interaction method
Formulation
How to analyze FCI
Numerical results

3 Coupled cluster methods (CC)
Brief outline of method
“Imagined” convergence analysis
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Coupled cluster methods (CC) Brief outline of method

From CI to coupled cluster (CC)

CI is a variational search within a linear space V .
CC is a non-variational search within a non-linear space X (⊂ V )
X consists of functions on the form:

|Ψ〉= eT |Φ0〉
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From CI to coupled cluster (CC)

CI is a variational search within a linear space V .
CC is a non-variational search within a non-linear space X (⊂ V )
X consists of functions on the form:

True ground
state; ansatz
always valid

|Ψ〉= eT

Cluster oper-
ator; excita-
tion operator
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Unperturbed
HO ground
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Coupled cluster methods (CC) Brief outline of method

Excitation operators

Suppose |Φ0〉 is filled with states up
to εF:

|Φ0〉= c†
α1
· · ·c†

αA
|−〉

Let (ai) be below and (bi) above
Fermi level. Define:

Xb
a = c†

b1
· · ·c†

bn
can · · ·ca1

Moves particles from below εF to
above εF

Notice: Xb
a |Φ0〉 generates basis for

VDP.

εF

Emax

Xb1
a1

b2
a2

b3
a3
|Φ0〉
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Coupled cluster methods (CC) Brief outline of method

The cluster operator T

Recall the ansatz:
|Ψ〉= eT |Φ0〉

T is on the form
T = T1 +T2 + · · ·+TK

where
Tn = ∑

a,b
tb1b2···bn
a1a2···an Xb1b2···bn

a1a2···an

If K = 1, we get CCS (“singles”). K = 2 gives CCSD (“singles and doubles”),
et.c. K = A is exact!
We set t = (t(1), · · · , t(K)); a vector of all the amplitudes.

T = T(t) ←− a linear function of the amplitudes t(n)
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Coupled cluster methods (CC) Brief outline of method

CC equations

Nonlinear search space X for CCSD· · ·K:

X =
{

eT(t) |Φ0〉 : t = (t(1), · · · , t(K))
}

Could attempt a variational search within X , but this is too complicated.
Instead, non-variational amplitude equations are used:

f(t) = 0, fi(t)≡ 〈Φi|e−T(t)HeT(t)|Φ0〉= 0 ∀i 6= 0

Energy expression:

ECC = J(t) ≡ 〈Φ0|e−T(t)HeT(t)|Φ0〉

= 〈Φ0|H(1+T2 +
1
2

T2
1 )|Φ0〉

Simen Kvaal (University of Oslo) Rigorous analysis of ab initio calculations for parabolic quantum dots ECT*2009 37 / 44



Coupled cluster methods (CC) Brief outline of method

CC equations

Nonlinear search space X for CCSD· · ·K:

X =
{

eT(t) |Φ0〉 : t = (t(1), · · · , t(K))
}

Could attempt a variational search within X , but this is too complicated.
Instead, non-variational amplitude equations are used:

f(t) = 0, fi(t)≡ 〈Φi|e−T(t)HeT(t)|Φ0〉= 0 ∀i 6= 0

Energy expression:

ECC = J(t) ≡ 〈Φ0|e−T(t)HeT(t)|Φ0〉

= 〈Φ0|H(1+T2 +
1
2

T2
1 )|Φ0〉

Simen Kvaal (University of Oslo) Rigorous analysis of ab initio calculations for parabolic quantum dots ECT*2009 37 / 44



Coupled cluster methods (CC) Brief outline of method

CC equations

Nonlinear search space X for CCSD· · ·K:

X =
{

eT(t) |Φ0〉 : t = (t(1), · · · , t(K))
}

Could attempt a variational search within X , but this is too complicated.
Instead, non-variational amplitude equations are used:

f(t) = 0, fi(t)≡ 〈Φi|e−T(t)HeT(t)|Φ0〉= 0 ∀i 6= 0

Energy expression:

ECC = J(t) ≡ 〈Φ0|e−T(t)HeT(t)|Φ0〉

= 〈Φ0|H(1+T2 +
1
2

T2
1 )|Φ0〉

Simen Kvaal (University of Oslo) Rigorous analysis of ab initio calculations for parabolic quantum dots ECT*2009 37 / 44



Coupled cluster methods (CC) Brief outline of method

CC equations

Nonlinear search space X for CCSD· · ·K:

X =
{

eT(t) |Φ0〉 : t = (t(1), · · · , t(K))
}

Could attempt a variational search within X , but this is too complicated.
Instead, non-variational amplitude equations are used:

f(t) = 0, fi(t)≡ 〈Φi|e−T(t)HeT(t)|Φ0〉= 0 ∀i 6= 0

Energy expression:

ECC = J(t) ≡ 〈Φ0|e−T(t)HeT(t)|Φ0〉

= 〈Φ0|H(1+T2 +
1
2

T2
1 )|Φ0〉

Simen Kvaal (University of Oslo) Rigorous analysis of ab initio calculations for parabolic quantum dots ECT*2009 37 / 44



Coupled cluster methods (CC) Brief outline of method

Basics of the coupled cluster method

VFCI

VCISD

VCIS

|Φ0〉

Left: Illustration of CI spaces formed
by K-fold excitations of |Φ0〉.
Illustration of CCS, truncating T at
T1. Notice: eT = 1+T +T2/2+ · · ·
contains higher order excitations
CISD; covering more of VDP

And so on . . .
CC works extremely well because of
the “exponentiating”
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Coupled cluster methods (CC) “Imagined” convergence analysis

Two axes of convergence/accuracy

Cluster operator truncation at T = T1 + · · ·TK

(At least) semi-empirically: For nuclei: CCS gives 90 % correlation energy, CCSD
gives 99 %

⇒ Truncating T seems to give rise to a non-vanishing error in converged results,
becoming smaller as we move from CCS to CCSD, and so on.

Model space size parameter Emax

(At least) semi-empirically: Relevant quantities converge in the same way as FCI.

⇒ The FCI analysis should be useful for the CC analysis as well. The errors in CCS,
CCSD, etc, could be understood from such analysis as well. Same types of estimates.

Goal

|E−ECC| ∼ (E−Eh,FCI)+∆ECCS +∆ECCSD + · · ·+∆ECCSD···K
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⇒ Truncating T seems to give rise to a non-vanishing error in converged results,
becoming smaller as we move from CCS to CCSD, and so on.

Model space size parameter Emax

(At least) semi-empirically: Relevant quantities converge in the same way as FCI.

⇒ The FCI analysis should be useful for the CC analysis as well. The errors in CCS,
CCSD, etc, could be understood from such analysis as well. Same types of estimates.

Goal

|E−ECC| ∼ (E−Eh,FCI)+∆ECCS +∆ECCSD + · · ·+∆ECCSD···K
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Coupled cluster methods (CC) “Imagined” convergence analysis

Imagined route for quantum dots

1 Analysis of the Hartree-Fock method for quantum dots
Usually, HF orbitals are used instead of “bare” orbitals. We haven’t discussed this.
But . . .
Luckily, we deal with the harmonic oscillator: simple analysis
Known abstract results (P-L. Lions and others) greatly simplify

2 Formulation of abstract results in terms of analytic properties of |Ψ〉, i.e., k in
|Ψ〉 ∈ Hk(RAd)

Work along the same lines as for the FCI is underway
Relevant literature by W. Kutzelnigg, R. Schneider, and others
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Coupled cluster methods (CC) “Imagined” convergence analysis
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Weak differentiability

Hilbert spaces of differentiable functions⇒Weak differentiability concept
Derivative in “average sense”; it “works” with respect to partial integration
f (x) ∈ L2(R) is said to have a weak derivative if there exists g(x) ∈ L2 if:∫

f (x)φ′(x)dx =−
∫

g(x)φ(x)dx ∀φ ∈ C∞
0 .

Then f ′(x) = g(x) in the weak sense.
Sobolev space Hk(Rn):

k times weakly differentiable funcions in L2(Rn)
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Weak differentiability II

f (x)

φ′(x)
x

g(x)

φ(x)
x

g(0) need not
be defined

φ(x) a smooth test function
“Checks” a candidate for a weak derivative using i.b.p.
Note: f (x) is w. differentiable. g(x) not w. differentiable due to jump.
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FCI with renormalized interaction

Comparing with calculations using renormalized interaction of Lee-Suzukui type
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FCI with renormalized interaction

Comparing with calculations using renormalized interaction of Lee-Suzukui type
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FCI with renormalized interaction

Comparing with calculations using renormalized interaction of Lee-Suzukui type
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