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Abstract 
This thesis claim that XSL Transformations combined with extensions can be used to 

process geodata encoded as GML. The assertion is backed up by the following deliver-

ables: 

• A working proof-of-concept for an XSLT based transformation of spatial data. 

• Tests providing measurements of functionality and performance.  

• Argumentation that shows how and why this is a viable approach by discussion and 

practical examples. 

The paper concludes with a confirmation on the feasibility of the approach inline with the 

research objectives and findings provided by the deliverables. 
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1 Introduction  
In this thesis I claim that XSL Transformations combined with extensions can be used to 

process geodata encoded as GML. The assertion is backed up by the following deliver-

ables: 

• A working proof-of-concept for an XSLT based transformation of spatial data. 

• Tests providing measurements of functionality and performance.  

• Argumentation that shows how and why this is a viable approach by discussion and 

practical examples. 

The paper concludes with a confirmation on the feasibility of the approach inline with the 

research objectives and findings provided by the deliverables. 

1.1 Research objectives 

 Through research and prototyping, the following research questions are under focus.  

1. Can the XSLT language in combination with extensions be used for proc-

essing geodata? 

2. What limitations on factors such as performance, flexibility, and scalabil-

ity will this approach imply? 

3. How will the use of this approach have an effect on code readability, ease 

of use, and the development of geospatial applications? 

1.2 Motivation 

We see an increasing trend of using web services and XML throughout the Internet. The 

standardization of workflows and data formats as facilitated by the use of this approach 

provides possibilities for the development and integration of different systems through 

open standards for communication and functionality. The GIS community embraces the 

use of web services in the transport and manipulation of geodata with the Web Feature 

Server (WFS) and Web Map Server (WMS) specifications. Data encoded as Geography 

Markup Language (GML) can be downloaded on demand from various sources. How-

ever, it may be necessary to do relatively complicated work to integrate the data or to per-

form generic spatial operations. Unfortunately, there is no guarantee that the necessary 

spatial operations are available on all platforms. Often there is a need to use external GIS 
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tools to do the spatial operations manually. In other, non-spatial settings, the transforma-

tion and formatting of XML based data is made easier by the use of XSL Transformations 

(XSLT). XSLT is a declarative XML based template language dedicated to the integra-

tion and manipulation of XML based data. The motivation for this thesis is the simplifica-

tion and standardization gained by applying the XSLT model of processing to geodata by 

integrating spatial capabilities into the language. The main advantages of this approach 

are: 

 

• The relative simplicity of XML processing with XSLT compared to generic func-

tional and object-oriented languages. 

• Platform independence 

• Changes to the templates can be performed without recompiling or altering the 

whole application. 

• Standardized interface to spatial operations 

 

By applying XSLT to the GML transformation process, an approach already used in 

many other systems based on web services can be used to simplify the work with spatial 

data. It is believed that easy access to spatial functionality directly available from within 

XSL templates will lower the threshold for using geodata in existing and new applications 

and has a potential for incurring a more widespread use.  

 

1.3 Method 

In the article "Software Engineering Research versus Software Development" (Marcos 

2005) Esperanza Marcos points out how engineering research differs from other research 

in that its aims are to find out how to do things or to create new objects. This thesis over-

laps with both Marcos' point of view and the more traditional research in that it proposes 

to create new objects and methods to implement an existing model of technology on a 

different field from what it is commonly used for today. Hence, the method chosen for 

this approach both has to provide a framework for the creation of new concepts, objects 

and methods along with the evaluation of existing practice. In regard of the traditional 

research methods, this thesis will use qualitative methods of research to evaluate current 
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programming practices and experiences of GIS systems by the analysis of previous stud-

ies, code and architectures. Qualitative methods are used to evaluate certain parameters of 

success, such as the simplification of code, usability of framework, flexibility, and the 

degree of separation of concerns achieved. Quantitative empirical methods are used for 

the evaluation of other parameters of success, such as the evaluation of performance, 

scalability and standards conformance. Marcos introduces the term creative research 

methods as methods for those sciences that "...require a high level of creativity as op-

posed to observation or experimentation" and "These methods are based on such charac-

teristics as imagination, premonition, visualization and the like...". By acknowledge of the 

creative component in the architectural design process for the experimental prototype 

used in this thesis, Marco's parallels between software development and the scientific 

method used in Software Engineering (SE) design are made available. The SE method is 

based on Bunge's general model as presented in Scientific Research (Bunge 1967) Basing 

the prototype development on a generally sound scientific model is done to bring more 

quality to the process and to assure results available for evaluation. Based on this reason-

ing, the following steps in the approach have been identified:  

• Identification of research objectives.  

• Definition of criteria for success  

• Prototyping/implementation  

• Evaluation of implementation  

• Discussion of findings in view of previous studies  

• Conclusion  

Each step is intended to be executed in iteration with the steps before and after to include 

the knowledge accumulated through each step. A continuous study of related studies and 

material is performed along each step.  

 

1.4 Expected research contributions 

The planned results of this thesis are:  

• A proof of concept for an XSLT based transformation of spatial data in  

Geographic Markup Language (GML)  

• A set of requirements for the development of spatial extensions to  
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(E)XSLT  

• Measurements and evaluations of performance  

• A conclusion on the viability of the idea and ideas for future work.  

1.5 Limitations 

This thesis does not aim to produce a fully working processing environment for GML, but 

to evaluate the feasibility of the approach through a combination of theoretical reasoning 

and partial practical experimentation. Hence, only a subset of the proposed features will 

be implemented. Due to the readily available resources for the processing of geodata on 

the Java platform in Java Topology Suite (JTS) and Geotools, the implementation will be 

done in Java.  

1.6 Structure of thesis 

Theoretical foundations  

This thesis' theoretical foundations are organized as three sections. Section XML Schema 

presents technology related to the implementation of the GeoXSLT framework and ex-

amples. Section 2.2.1 gives a walk-through of a geospatial workflow and shows how spa-

tial XSLT can be of use. Section 2.3 outlines a series of previous studies of relevance to 

the research done.  

Supported functionality 

Chapter 3 presents the functionality to be supported and explains the motivation and rela-

tion to community standards defined by the Open Geospatial Consortium. 

Implementation of core functionality 

Chapter 4 gives a detailed explanation of the motivations and design of the implemented 

architecture in the GeoXSLT framework. 

Testing 

Chapter 5 introduces the tests designed to validate correct functioning and technical and 

practical performance. 
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Findings 

Chapter 6 presents the findings from execution of the tests defined in Chapter 5.  

Discussion 

Chapter 7 discusses the findings and experience from the work with the GeoXSLT 

framework in view of the research questions and previous research. 

Conclusion 

Chapter 8 concludes with the viability of spatial XSLT, lists the major contributions 

made, and outlines future work. 
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2 Theoretical foundations 
This chapter will start off by giving a walkthrough of related technologies in 2.1. In sec-

tion 2.2 a description of a scenario where geospatial data is processed is used to show the 

motivation for why spatial extensions for XSLT are needed. The chapter is rounded off 

with a rundown of previous research in 2.3and a chapter summary in 2.4. 

2.1 Related technologies 

This section presents the technologies and concepts involved in XSL based template 

processing of GML  

2.1.1 XML Schema 

The XML format can be adapted to many different uses by defining rules for its composi-

tion and data allowed. XML Schema is a language for creating such rules (Biron, Perma-

nente et al. 2004; Fallside and Walmsley 2004; Thompson, Beech et al. 2004). The Open 

Geospatial Consortium (OGC) has used the Schema language to define the format of the 

Geography Markup Language (GML), a format tailored for encoding geographic data 

(OpenGeoSpatial 2002). A complete primer on XML Schema is provided in (Fallside and 

Walmsley 2004). 

2.1.2 Geography Markup Language 

This section will provide a quick background on what GML 2.1.2 is and explain the core 

features. Finally, a short explanation on the future of GML as defined in GML 3.0 is 

given. 

The Geography Markup Language (GML) is an XML format for representing entities in 

the real world, such as trees, buildings, and roads. Entities are represented as features that 

can describe both geometric and non-geometric properties. As an example, a building can 

have features representing the location (geometric) and the building-type (non-

geometric). GML is designed to support the encoding of both types of features, where 

non-geometric features can be associated through integration with other XML schemas. 

Table 2.1 below lists the GML representation of a building. The location is represented as 
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a geometric point feature, while type, status, number and other properties are represented 

as non-geometric features.  

<gml:featureMember> 
  <topp:bulroad fid="bulroad.2545"> 
    <topp:the_geom> 
      <gml:Point srsName="http://www.opengis.net/gml/srs/epsg.xml#32633"> 
        <gml:coordinates xmlns:gml="http://www.opengis.net/gml" decimal="." cs="," ts=" ">   
            357080,7766653 
        </gml:coordinates> 
       </gml:Point> 
      </topp:the_geom> 
      <topp:type>Outhouse</topp:type> 
      <topp:status>2</topp:status> 
      <topp:number>192574250</topp:number> 
      <topp:started>10101</topp:started> 
      <topp:updated>19940210</topp:updated> 
     </topp:bulroad> 
</gml:featureMember> 

Table 2.1 Example of an entity represented by both geometric and non-geometric 
features 

Structure 

The structure of a GML document is very flexible. Generally, it consists of a series of 

Features representing the real-world entities. The features are children of a FeatureCol-

lection which hence works as a container. One of the things that make the GML format so 

flexible is that each Feature also is a FeatureCollection. In this way, an entity can be rep-

resented by aggregations of other features. As an example, one can think of a park with 

trees, green areas, water, and roads. While each of these is an independent entity repre-

sented as a feature, the park can be defined as Feature/FeatureCollection consisting of all 

the trees, roads etc. GML also has support for defining other relations between different 

features through the use of XLinks. 

Geometric features supported 

The GML 2.1.2 schemas provide a method of encoding what the Open Geospatial Con-

sortium (OGC) defines as simple features (Ryden 2005). With simple, OGC means 

“…features whose geometric properties are restricted to ‘simple’ geometries for which 

coordinates are defined in two dimensions and the delineation of a curve is subject to lin-

ear interpolation” (Cox, Cuthbert et al. 2002). In short, this means that GML 2.1.2 mainly 

focuses on representing geometric features in two dimensions. The following is a list of 

the OGC simple geometry classes: 

• Point 
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• LineString 

• LinearRing 

• Polygon 

• MultiPoint 

• MultiLineString 

• MultiPolygon 

• MultiGeometry 

Based on sampled data, we provide examples of the first four geometries below while the 

complete schema definitions for all the geometries can be found in (OpenGeoSpatial 

2002). Multi geometries are simply feature collections consisting of one to many basic 

geometric features. 

 

<gml:Point srsName="http://www.opengis.net/gml/srs/epsg.xml#32633"> 
  <gml:coordinates xmlns:gml="http://www.opengis.net/gml" decimal="." cs="," ts=" "> 
     357080,7766653 
  </gml:coordinates> 
</gml:Point> 

Table 2.2 Example of Point geometry encoded as GML 

<gml:LineString> 
   <gml:coordinates xmlns:gml="http://www.opengis.net/gml" decimal="." cs="," ts=" "> 
      357015,7766698 357127,7766654 357205,7766613 357286,7766585 357364,7766577   
357389,7766583 357406,7766595 357488,7766710 357498,7766735 357502,7766771 
   </gml:coordinates> 
</gml:LineString> 

Table 2.3 Example of LineString geometry encoded as GML 

<gml:Polygon> 
 <gml:outerBoundaryIs> 
  <gml:LinearRing> 
   <gml:coordinates decimal="." cs="," ts=" "> 
       80,340 160,340 160,280 80,280 80,340 
   </gml:coordinates> 
  </gml:LinearRing> 
 </gml:outerBoundaryIs> 
 <gml:innerBoundaryIs> 
  <gml:LinearRing> 
   <gml:coordinates decimal="." cs="," ts=" "> 
                                           100,330 130,330 130,290 100,330 90,290 130,290 130,290 100,330 
                                     </gml:coordinates> 
  </gml:LinearRing> 
  <gml:LinearRing> 
   <gml:coordinates decimal="." cs="," ts=" "> 
        150,335 150,320 140,335 150,335 
   </gml:coordinates> 
  </gml:LinearRing> 
 </gml:innerBoundaryIs> 
</gml:Polygon> 

Table 2.4 Example of Polygon consisting of LinearRing(s) encoded as GML 
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GML 3.0 

According to (Lake 2004) GML 3.0 is almost entirely backwards compatible with GML 

2.1.2. The main difference with the two versions is that GML 3.0 has a larger feature set 

with support for more geometries, dynamic features, three-dimensional objects, and de-

fault styling to mention some. This thesis has focused on GML 2.1.2 due to its simpler 

nature and more widespread use. The backward compatibility of GML 3.0 indicates that 

the prototype developed at least should work on a subset of the geometric features defined 

without any changes. 

2.1.3 Web Feature Service 
This section describes Web Feature Services in terms of definitions and interaction work-

flow. 

Web services are a collection of standardized protocols and methods for communication 

between applications across the Internet over HTTP. (Cabrera, Kurt et al. 2004). With the 

Web Feature Service (WFS) specification (Vretanos 2005) OGC has defined web service 

interfaces for access and manipulation of geographic data. The operations available are 

(Vretanos 2005): 

• Create feature  

• Delete feature 

• Update feature 

• Lock feature 

• Get and query features based on geometric and non-geometric constraints. 

GML is used as the language for encoding queries and results of the transactions per-

formed. The use of GML for “transport” enables WFS servers to provide an abstraction 

level independent of the internal data sources. This makes data stored in formats such as 

Shape, SOSI or other proprietary or country specific standards available as GML over the 

WFS interfaces. This allows users to “..combine, use and manage geodata – the feature 

information behind a map image – from different sources..” (Vretanos 2005).  



  
  

10 

WFS Interaction workflow 

 

Figure 2.1 Workflow between client and WFS server (Vretanos 2005) 

Figure 2.1 describes the flow in a WFS interaction. First, the client issues a “getCapabili-

ties” request, which result in a WFS_Capabilities document containing the features avail-

able on the server. Based on this, the client can issue a request for the description of a 

given feature type. To this the WFS returns an XML schema containing descriptions of 

the feature. The client can now issue operations on the feature(s) according to operations 

available on the WFS. Section 2.2.2 goes into more detail around WFS interaction with a 

walkthrough of a WFS filter query. 

The above has described WFS as a set of interfaces for querying and manipulating geo-

spatial data. It should also be mentioned that OGC has defined a corresponding Web Map 

Server (WMS) specification, which deals with the visualization and presentation of the 

geospatial data (Beaujardiere 2006). 

2.1.4 XPath 

XPath is a language for identifying parts of XML documents, designed to be used in 

XSLT and XPointer (Clark and DeRose 1999; DeRose, Jr. et al. 2002). In XSLT the lan-

guage is used to match and select particular parts of the source tree for copying into the 

result document or further processing by the template rules (Harold and Means 2002). 

XPath expressions can be grouped into location paths, general expressions, and functions. 
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Location paths 

Location paths are powerful tools to identify a set of nodes in a document and consist of a 

series of location steps where each step is separated by a “/” char. There are two distinct 

types of location paths, relative and absolute. The two types are distinguished on how the 

series of location steps is specified.  

Location steps 

A location step is always a selection of nodes relative to the context node (Clark and 

DeRose 1999). For absolute location paths the first location step uses the source tree’s 

root node as context node (Bray, Paoli et al. 2006). Relative paths consist of location 

steps that start with the node currently being processed as context node.  

For each location step the identified set of nodes are used as the context node for the next 

step. Absolute location paths are also called root location paths (Harold and Means 

2002).  

/rootelement/feature 

Table 2.5 Example of absolute location path 
Feature 

Table 2.6 Example of relative location path 

The examples in Table 2.5 and Table 2.6 are location paths that apply to the XML docu-

ment listed in Table 2.9. The relative path in Table 2.6 would only return nodes if called 

from within a “rootelement” context. 

In addition to the node selection, each step contains an axis and an optional predicate test 

expressed with general expressions(Harold and Means 2002). 

The axis specifies the direction of which to perform the node selection and can be along 

one of a comprehensive set of axes as defined in (Clark and DeRose 1999). Only a small 

subset is presented below: 

• Ancestor All nodes that are parents of the context node. 

• Preceding-sibling All nodes that precede the context node and share the same par-

ent in reverse document order (Harold and Means 2002) 

• Descendant All descendants of the context node, but not the context node itself 

(Harold and Means 2002) 

Examples of various different location paths can be found throughout the thesis. 
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XPath functions 

XPath provides several functions that can be used separately or as part of gen-

eral/predicate expressions in location paths. The functions can be grouped by the data 

types they operate on: 

Boolean Number Node-set String 
Boolean() Ceiling() Count() Concat() 
False() Floor() Id() Contains() 
Lang() Number() Last() Normalize-space() 
Not() Round() Local-name() Starts-with() 
True() Sum() Name() String() 
  Namespace-uri() String-length() 
  Position() Substring() 
   Substring-after() 
   Substring-before() 
   Translage() 

Table 2.7 XPath functions grouped by data types (Clark 1999; Holzner 2001) 

The functionality provided by the XPath functions makes working with XPath more effi-

cient. As an example, the “count()” function makes it possible to bring the size of a given 

node-set into a predicate expression. Detailed explanations and examples of all standard 

functions can be found in (Holzner 2001; Harold and Means 2002). 

2.1.5 Extensible Stylesheet Language Transformations (XSLT) 

This section gives a presentation of the XML based XSLT language with a focus on the 

areas most relevant to this thesis.  

XSLT is a functional programming language for the specification of how one XML 

document should be converted into another document. Though common, the output 

document does not necessarily need to be an XML document.  

Basic workflow 

The transformation rules specified for how a document should be converted are enclosed 

within template rules (Clark 1999) and saved in a stylesheet. Each template has a “match” 

attribute. This attribute contains a pattern that identifies the source node or nodes to 

which the rule applies (Clark 1999). The pattern is defined with a language called XPath 

which is described further down. With a set of template rules saved in a stylesheet and an 

XML source to apply the rules on, an XSLT Processor is needed to perform the actual 

transformation. 
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Figure 2.2 The conceptual workflow of an XSLT transformation. 

The XSLT processor works by parsing both the source and stylesheet into separate tree 

structures. The source tree is then searched for nodes that fit some template’s match pat-

tern. Templates matched are then executed.  Table 2.8 below lists an example of a very 

simple XSLT stylesheet used to process the XML in Table 2.9. The transformation result 

is available in Table 2.10. 

<?xml version="1.0" encoding="UTF-8"?> 
<!—ROOT element, defining language version, namespaces and prefixes � 

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 
 
           <!—TOPLEVEL element defining output type and encoding of genereated result--> 

 <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/> 
 
            <!—Template rule with an intuitive match attribute --> 
 <xsl:template match="/rootelement/feature"> 
  <anotherRootElement><!— Element created by this template --> 
     <anotherfeature><!— Element created by this template --> 
 
                            <!— Instructing the processor to output the text-value of the current node.  
                                    As this template rule only matches the “feature” node of the “rootelement”, 
                                    this value will be the text-value of the feature node --> 
                                    <xsl:value-of select="."/>  
 
                              </anotherfeature> 
  </anotherRootElement> 
 </xsl:template> 
</xsl:stylesheet> 

Table 2.8 Simple stylesheet with explanations 

The basic stylesheet in Table 2.8 defines one template rule that matches the “feature” 

child of the “rootelement” node. The remaining flow is documented in the example.  
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<?xml version="1.0" encoding="UTF-8"?> 
<rootelement> 
 <feature>Featurevalue</feature> 
</rootelement> 

Table 2.9 Simple XML document 

 
<?xml version="1.0" encoding="UTF-8"?> 
<anotherRootElement> 
 <anotherfeature>Featurevalue</anotherfeature> 
</anotherRootElement> 

Table 2.10 Transformation result 

Only the very basic workflow and principles of XSLT has been presented here. A com-

plete listing of elements and features is available in (Clark 1999; Harold and Means 

2002). A comprehensive introduction to XSLT is available in (Holzner 2001). The thesis 

does also contain a set of template examples of varying complexity. 

XSLT Elements 

XSLT defines 37 elements, which can be organized in three overlapping categories; root, 

top-level, and instruction elements. (Harold and Means 2002).  Detailed explanations of 

the categories and elements can be found in (Clark 1999; Harold and Means 2002). This 

section will present one useful instruction element, the “xsl:element”. A common use of 

XSLT is to generate new XML documents based on merging and formatting a combina-

tion of other sources.  When generating new documents, there will often be a need to cre-

ate new XML elements as well. While XSLT supports the use of literal result elements, 

using the “xsl:element” allows us to determine the new element’s name at runtime.  

XSLT Functions 

While the XPath operations are focused on the nodes and values of those, XSLT provides 

additional functions with a more general application. Examples of commonly used func-

tions are the “document()” and “current()” functions. The “document()” function allows 

loading external XML documents during processing. The “current()” function is of prac-

tical use in loops etc, where it represents the current node being processed. (As opposed 

to the context node in location paths which is relative to the location path). 

Operation     
Current() Document() Element-available() Format-number() Function-available() 

Generate-id() Key() System-property() Unparsed-entity()  

Table 2.11 Standard XSLT Functions (Holzner 2001) 
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2.1.6 EXSLT 

XSLT defines two mechanisms for extending the behavior provided by the processor 

(Clark 1999; Leung 2004). XSLT Templates may contain EXSLT functions and ele-

ments.  These mechanisms allow developers to provide functionality implemented in 

some other language, e.g. Java, to be accessed from the templates during transformation 

runtime. 

EXSLT Functions 

EXSLT Functions provide access to the external functionality in a pattern similar to that 

of XSLT/XPath functions. As such, EXSLT functions can be used as part of location 

paths/predicates and to return generated node sets to mention some. The XSLT standard 

does not define any specific EXSLT functions, but a community effort to standardize 

common functionality is available at (EXSLT.ORG 2006). 

EXSLT Elements 

EXSLT elements generally provide more flexibility than what is possible with EXSLT 

functions. One reason for this is that the external language has access to more information 

about the parameters and context passed than what is available for EXSLT functions. 

Still, using extension elements in the templates is more cumbersome and complicated 

than with extension functions. The familiarity and integration of extension functions with 

XPath/XSLT functions is also something that should be considered. 

2.2 Processing geographic data 

As the introduction described the basic motivation for researching the use of EXSLT with 

geo data represented as GML, this section will give a top-level view of the current work-

flow and introduce the challenges of processing GML in a case based setting. 

2.2.1 Sources of geographic data 

Geographic data has been collected for a long time and is today represented on a host of 

formats and in many different systems without a common standard. Some systems are 

open, others closed. Data is also represented with different resolution levels, which makes 

it very difficult to integrate data from different sources. There are quite a few challenges 

related to this diversity, and both previous and ongoing research is working to address the 
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problems with accessing geographic data across different sources, formats, and resolu-

tions. The Open Geospatial Community (OGC) represents one such effort, and has ad-

dressed the need for a common standard for the encoding, transmission and query of geo-

spatial data through the development of specifications. For the representation of geo-

graphic data, the Geographic Markup Language (GML) has been developed. This allows 

for the encoding of both geographic features as well as other information related to the 

objects. GML (as of version 3.0) is very flexible and allows for custom tailoring of the 

format at both domain and application levels without breaking the standard. Section XX 

will go into further detail about GML and its features. For the transmission and query of 

spatial data, the Web Feature Service (WFS) has been developed. This specification pre-

sents a standard interface for querying and transmitting data encoded as GML over the 

Internet by using the HTTP protocol and dedicated WFS servers following a web services 

pattern.  

 

 

Figure 2.3 Accessing geographic data through WFS 

Figure 2.3 illustrates how servers implementing the WFS standard make many sorts of 

spatial data available through common interfaces and connections. Output is encoded as 

GML. Clients and other applications can find available servers with relevant data by que-

rying a Web Registry Service (WRS)/OGC Catalog Service, which describes available 

service offers (Lake 2004). The client/application can then through the standard interface 
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both execute operations and download data as defined in the WFS standard directly from 

the WFS server. While there are many possibilities in the various interactions available 

with WFS, this thesis focuses on operations performed on the data received.  

2.2.2 Accessing WFS 

To give a better explanation of WFS, this section provides a walk-through of a WFS 

query. Geoserver, the WFS implementation used is an open source OGC compliant 

WFS/WMS server (Owens 2006). Geoserver uses the publicly available TIGER dataset 

(U.S. Census Bureau 2005) as test data and this is also used for the example. The dataset 

provides a broad array of real-life data from the U.S. and makes it easier to keep in sync 

with practical applications of researched concepts and ideas.  

In a WFS request, the mandatory initial task is to define the area of focus and which fea-

tures inside the area that are of interest. When posting these data to the server, it will do a 

search based on the request and return the data encoded as GML.  

Table 2.12 Initial WFS query to be posted 

<wfs:GetFeature service="WFS" version="1.0.0"  

outputFormat="GML2"  

xmlns:topp="http://www.openplans.org/topp"  

xmlns:wfs="http://www.opengis.net/wfs"  

xmlns:ogc="http://www.opengis.net/ogc"  

xmlns:gml="http://www.opengis.net/gml"  

xmlns:xsi="  

http://www.w3.org/2001/XMLSchema-instance"  

xsi:schemaLocation="http://www.opengis.net/wfs  

http://schemas.opengis.net/wfs/1.0.0/WFS-basic.xsd">  

<wfs:Query typeName="tiger:tiger_roads">  

 <ogc:Filter>  

  <ogc:BBOX>  

   <ogc:PropertyName>the_geom</ogc:PropertyName>  

  <gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">  

    <gml:coordinates>  

          -73.966331198449,40.78195219458531 -73.96139758516432,40.78442509210824  

    </gml:coordinates>  

   </gml:Box>  

  </ogc:BBOX>  

 </ogc:Filter>  
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</wfs:Query> 

 

Table 2.12 is an example of a WFS-request posted to Geoserver to get all the roads in a 

given area from the tiger data-set. A visualization of the area is provided in Figure 2.4 

 

Figure 2.4 Visualization of data returned from the query in Table 2.12 

Figure 2.4 visualizes the result of the query in Table 2.12. The returned data is a represen-

tation of the 85th St Transverse along with a rendering of the lake to provide some con-

text.  

Table 2.13 GML Return from Geoserver WFS query  

<wfs:FeatureCollection  

xsi:schemaLocation="http://www.census.gov  

http://localhost:8080/geoserver/wfs/DescribeFeatureType?  

typeName=tiger:tiger_roads  

http://www.opengis.net/wfs http://localhost:8080  

/geoserver/schemas/wfs/1.0.0/WFS-basic.xsd">  

<gml:boundedBy>  

<gml:Box  

srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">  

<gml:coordinates decimal="." cs="," ts=" ">  

-73.96738,40.781319 -73.962847,40.78438  

</gml:coordinates>  

</gml:Box>  

</gml:boundedBy>  

<gml:featureMember>  
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<tiger:tiger_roads fid="tiger_roads.7752">  

<tiger:the_geom>  

<gml:MultiLineString  

srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">  

<gml:lineStringMember>  

<gml:LineString>  

<gml:coordinates decimal="." cs="," ts=" ">  

-73.96738,40.78438  

-73.964179,40.783234  

-73.962847,40.781319  

</gml:coordinates>  

</gml:LineString>  

</gml:lineStringMember>  

</gml:MultiLineString>  

</tiger:the_geom>  

<tiger:CFCC>A41</tiger:CFCC>  

<tiger:NAME>85th St Transverse</tiger:NAME>  

</tiger:tiger_roads>  

</gml:featureMember>  

</wfs:FeatureCollection> 

 

As is shown in the previous visualization and the GML listed in Table 2.13, the correct 

road is returned along with the available non-geographic properties. In the case of this 

specific road it amounts to a code (A41) and the name of the road (85th St Transverse).  

2.2.3 Processing WFS results 

Assuming the user wants to create a buffer around the received data to use in a new WFS 

query, there are mainly two approaches. He can either use a DOM/SAX parser to repre-

sent the data received for direct programmatic manipulation, or it can use the template 

based XSLT approach. Neither of the two have any native support for dealing with spatial 

data. This makes it difficult and complicated to do any operations on or with the geo-

graphic data. As an example, say that the previous result from the WFS server returned 

two roads, and that the user wants to know if and where they cross each-other. Perform-

ing this conceivably simple act would take quite a lot of effort, and what if the user 

needed to do more complicated operations, such as generalization or distance calcula-

tions? One could try combinations of different queries based on the returned data from the 
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WFS, but this might again be made difficult by such simple things as using multiple data 

sources and still having to deal with the details in the data format. There is a need for 

utilities to do operations on downloaded geographic data inside an XSLT context. An in-

teractive approach has several good toolkits, such as Udig (Refractions Research 2006) 

and JUMP (JUMP 2006), but these are mostly used as standalone desktop applications. 

For the programmatic approach, there are several libraries available. Amongst them is the 

Java Topology Suite (Davis 2006), (Davis 2003). This is a very popular library used by 

numerous other projects to work with geospatial data. But, even though it has all the spa-

tial functionality needed, the programmer still has to create application logic and func-

tionality for the instantiation of the correct JTS objects to match the corresponding GML 

elements. This demands a rather intimate knowledge of both JTS and GML, is time con-

suming, and may result in overly complex systems with high coupling. As touched briefly 

in section 1.2, XSLT has been successfully used in other settings where the transforma-

tion of XML data to some other format is needed. XSLT is designed as a declarative lan-

guage such as SQL, allowing the developer to focus on what should be done instead of 

the implementation details. One of the positive things about the XSLT approach is the 

pattern-matching ideology defined in the Processing-Model (Clark 1999). Instead of the 

traditional procedural dataflow, each template declares a pattern of data it matches. When 

running the stylesheet, data applied is matched with each template which in turn is exe-

cuted if the match is a success. This allows for very flexible templates that can be used in 

different contexts. Additionally, being XML itself, it is completely independent of the 

platform and language deploying it, and can be used on a wide array of systems without 

ever changing the stylesheet itself. If XSLT could be extended to support standard spatial 

operations, it would probably not only standardize a lot of work with GML in applica-

tions, but also lower the bar for working with and including spatial data for everyone to 

use. If doing spatial queries on WFS and then operate on the data could be just as easy as 

working with ordinary web services and XSLT with functions, axis, and elements, it is 

tempting to assume that its use would be more widespread and spatial functionality find 

its way into many more applications. Another scenario is the need to lookup and merge 

data from two separate datasets or layers. An example of this can be taken from the tiger 

dataset available with the 1.3.1 distribution of GeoServer. In addition to the aforemen-

tioned road layer, the set has a layer representing points of interest (poi) in Manhattan. 
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Say that we were developing a website or application for tourists that want a list of attrac-

tions along the road they are heading (or any given road for that sake). To achieve this 

with the WFS based data source, it would then be necessary to first get the coordinates of 

the road strip and then do a search within the proximity of the road along its length.  

 

Figure 2.5 illustration of buffer 
scenario 

Figure 2.5 illustrates the concept. 

The tourist walks down a road 

strip, and   

landmarks 1,2, and 3 are of interest 

because they are within a given 

zone/proximity along the road. 

Landmark 4 is too far away and is 

not of interest. The key here is to 

compute the bounding box of the 

buffer zone and then do a new 

search within the landmark data. 

With plain vanilla XSL, this 

bounding box calculation would 

imply some rather ugly code, -if possible at all. The intuitive approach would be to use 

XSL or DOM manipulation to extract the bounding box of the road, and then use JTS or 

some other geospatial functionality directly for the calculation of the bounding box of the 

buffer zone, and then issue a new request to the landmark web service. The returned data 

would then have to go through another XSLT process or DOM manipulation for extrac-

tion and formatting of the landmarks into a list. What is needed, is a way to calculate the 

buffer zone's bounding box on the fly from within the initial XSLT process, so that cor-

rect requests for landmarks can be done from within XSL by way of a "document()" call 

or some other extension function and then integrated into the generated list. The proposed 

conceptual flow can be illustrated by the sequence diagram below.  



  
  

22 

 

Figure 2.6 Sequence diagram showing the need for a possibility to calculate a buffer surrounding selected fea-

tures of the GML. 

In the diagram the application makes the initial request to the Roads WS. This can be 

achieved either by sending coordinates received from the Global Positioning System or 

such (searching for roads containing the given coordinates), or by sending the feature-id 

of the road (typically selected by the user in a previous window) to identify it for the 

WFS. The returned GML is then sent through an XSL transformation where the road's 

buffer zone is computed using the buffer operator (see Chapter 3 for details on the buffer 

operator). The returned string containing the bounding box from the buffer operator is 

then concatenated to a “getFeatures” request to the landmarks WFS using the “docu-

ment()” function of XSLT for acquirement, or eventually some other wrapper function for 

external HTTP access. The returned GML can be formatted using the existing XSLT 

process and returned as formatted data to the application. With formatted data it is here 

meant anything from plain text to HTML, PDF or SVG. An alternative to using the pro-

posed extensions for buffer operations is to implement it directly in XSLT. Although such 

operations probably can be implemented in XSL to a certain degree, there are several ar-

guments not to:  

• XSLT is a language specifically designed for dealing with XML, not with the im-

plementation of geospatial calculations. As mentioned in section 1.2, the main 

motivation of moving GML processing from the generic programming languages 

to XSLT is to simplify the workflow, allowing developers to concentrate on the 
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task at hand instead of the implementation details of geospatial standards. Imple-

menting the calculations in directly in XSL is kind of the opposite, where the 

functionality is most easily implemented in Java or another programming lan-

guage. XSLT code with a procedural workflow containing many conditionals and 

parameters easily gets ugly, incomprehensible, and difficult to maintain.  

• Encapsulating geospatial function as EXSLT calls follows the pattern of existing 

XSLT functions for operations on strings and node sets. This thesis presents a 

suggestion for the mapping between a standardized set of spatial features defined 

in the OGC Simple Features Specification (SFS) and an EXSLT function set. This 

could possibly form a basis for potential inclusion in the standard XSLT functions 

available at a later time.  

• When the spatial functionality is integrated only through interfaces and function 

calls, it is easier to combine different and specialized implementations without al-

tering the XSLT template. Implementations of the spatial operations following in-

terfaces based on the SFS and made available as standardized EXSLT functions 

allows for easier optimization of performance completely independent of XSL 

code. External vendors or open source projects can then create different libraries 

of functions following the same common interfaces but with different properties 

regarding performance and support for underlying elements and data sources. 

XSLT developers can then "upgrade" their libraries without touching the XSLT 

code. 

 

2.3 Prior studies 

There has not been done a large amount of research around the use of XSLT in a geospa-

tial context. This section discusses findings of relevance and ideas from other studies with 

a focus on template based processing and query of XML Spatial queries and XML. To 

define the set of functionality to be supported it is necessary to evaluate the experiences 

from previous studies in combination with practical knowledge and analysis of the poten-

tial fields for use. As mentioned in the motivation, there is an intuitive interest in basing 

the functionality on the operations as defined in (Ryden 2005) and (Vretanos 2005) as 

these are the community accepted standards supported in various degrees by many pro-
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jects and applications, open source and commercial alike (MySQL; Refractions Research; 

Davis 2003; Directions Staff 2003; Oracle 2005; ESRII 2006; Owens 2006; Schulz 2006). 

In (Corcoles and Gonzalez 2004), it is investigated how geographic referenced data en-

coded as GML can be queried in the Geospatial web, integrating spatial and non-spatial 

resources in a web context. Their research is of relevance as both the context and opera-

tions they discuss coincide with the motivational points of this thesis. A more detailed 

study on the language they have designed is presented in (Córcoles and González 2001). 

While they focus on query construction and how a wrapper can be used to bridge the spa-

tial queries to a defined RDBMS by converting to spatial SQL queries, it is clear that an 

XSLT process could be used as the mediator in the process presented in (Corcoles and 

Gonzalez 2004). XSLT is suitable because it was designed to create templates for data 

transformation from one or more sources and data models into an output of choice and 

simultaneously extracting data of interest through path declarations with XPath. (Provost; 

W3C; Clark 1999; Holzner 2001). A common use is the generation of HTML/XHTML 

based on transforming and querying XML from separate sources of data, such as web 

services. (Corcoles and Gonzalez 2004) lists the comparative operators “cross”, ”over-

lap”, and ”touch” together with “area” and “length” for analysis. These can all be found 

in the Simple Features Specification (Ryden 2005) section 2.1.1.1-2.1.1.3. Having estab-

lished that XSLT has the potential to fit into a mediator role of the model in the Simple 

Features Specification and that the available queries described match those of defined in 

it, it is interesting to note that substituting the wrapper for bridging queries to the RDBMS 

with the EXSLT functionality introduced in 2.1 and 3.2 should be possible as the opera-

tions available seem to overlap, - both implement the geometry operations of the Simple 

Features Specification (Ryden 2005). A possible advantage of using the EXSLT approach 

in addition to the motivations mentioned in section 2 is that while the RDBMS wrapper in 

(Corcoles and Gonzalez 2004) relates to a singular or limited number of databases di-

rectly available to the mediator process, the EXSLT approach as introduced in this thesis 

is based on WFS. WFS is available over HTTP as a web service and allows for easier in-

tegration of multiple data sources without being dependent of proprietary database driv-

ers, syntax, and frameworks (Vretanos 2005). While both (Corcoles and Gonzalez 2004) 

and (Córcoles and González 2001) support the spatial queries defined in (Vretanos 2005), 

they are both dependent of a wrapper to translate the queries into syntax compatible with 
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the RDBMS currently used. The need to implement a wrapper from scratch as done in 

(Córcoles and González 2001; Corcoles and Gonzalez 2004) to accommodate the query 

language is indicated as a complicating factor in both (Vatsavai 2002) and (Warnill, 

Soon-Young et al. 2004) and is not in line with the WFS scenario which is the context of 

this thesis. In (Vatsavai 2002) Vatsavai discusses the use of XQuery for spatial queries on 

GML using the language GML-QL, which is an extension of XQuery. XQuery is a do-

main-specific language for querying XML documents and features a very powerful syn-

tax for accessing and filtering the different parts (Brundage 2004; Fernández, Malhotra et 

al. 2006). It is not a competitor to XPath, which is used in XSLT, but a more complicated 

alternative with a larger set of functionality and a procedural workflow that complements 

XPath/XSLT for the settings where that is needed. XQuery seems to be most commonly 

used in connection with database queries at the time of writing. While (Vatsavai 2002) 

has a focus on spatial queries using XQuery in relation to returned data from a database 

system, the nature of XQuery is so close to that of XSLT/XPath that the operations and 

syntax used is of relevance. Vatsavai has explicitly chosen to support the features as de-

fined in (Vretanos 2005), but with an adaptation to fit the operational calls into the 

XQuery syntax. While (Vretanos 2005) defines operations as methods on spatial objects 

called with dot-notation, the examples in (Vatsavai 2002) use operations implemented as 

function calls where the geometries are passed as parameters. This is a syntax that 

matches the XSLT functions generally available and is easy to understand both in relation 

to (Vretanos 2005) and (Ryden 2005). Section 3.3 goes into further detail around integra-

tion of query interface. 

Table 2.14 

Operation definition in specification [2]  

geometryA.operation(geometryB)  

 

Operation example call in [18]  

operation(geometryA,geometryB)  

 

Vatsavai does not go into details around the implementation of the given functionality 

and has a perspective of using a database system as a data source. Still, it seems viable 

that a library built to support these operations in XSLT could also be used in an XQuery 

context as the operations work on the already extracted data. In (Warnill, Soon-Young et 
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al. 2004) the authors discuss a similar extension of XQuery to support queries on moving 

objects. Whether to use XSLT/Xpath or XQuery would then be a matter of which sce-

nario one is working in. A discussion of when to use XSLT/Xpath or XQuery can be 

found in (Brundage 2004; Fernández, Malhotra et al. 2006). 

2.4 Chapter summary 

This chapter has presented a view on how Web Feature Servers are sources of geographic 

data. Further it described the need to process returned GML data locally, and how XSLT 

fits into the workflow. It also discussed guidelines for the implementation of necessary 

spatial functionality and in the review of previous research it showed how extension of 

XQuery has been used to implement spatial functionality. 
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3 Supported functionality 
As the previous research in 2.3 outlines a syntax that can be used with external functions 

for access from XSLT, this section will present the operations suggested for implementa-

tion and the motivation for their use. 

 The OpenGIS Filter Encoding Implementation Specification (FEIS) and the OpenGIS 

Simple Features Specification (SFS) define a set of spatial operators for comparison and 

analysis. While these are a required component of queries to WFS servers, they are also 

used in other OGC web services such as Gazetteer and Web Registry Services (Vretanos 

2005). By supporting these operations we ensure that there is a common set of analysis 

and comparison operations shared between WFS queries and local operations from within 

on the loaded data set. Aside from the good practice of standard compliance, this makes 

both general usage and implementation easier. Support for these operations also contrib-

utes to make the XSLT approach fit into the OGC workflow. What follows is a presenta-

tion of the spatial operators from the two specifications that apply to generic geographic 

objects with comments on why and how they can be of use in a XSLT/template context 

and an API specification of their use from XSLT. Section 3.1 presents the comparison 

operations, while 3.2 details the analysis operations. Section 3.3 defines and exemplifies 

the interface determined used for the integration between EXSLT and calls to the frame-

work implemented the spatial operations. 

The SFS additionally defines operations specific to the different geometric types. While it 

is possible to implement these with the framework developed here, doing so is outside of 

the scope of this thesis. 

3.1 Operations for testing spatial relations on generic geo-

graphic objects  

These operators enable the user to test for the validity of certain fundamental spatial con-

ditions, and return either true or false. In addition to being used on   
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WFS servers today, they are also supported on databases with spatial capabilities such as 

PostGIS, MySQL and Oracle. In other words they are proven to be of vital importance 

and should have a natural place in any system designed for work with geographic data. 

Equals  

Equals(anotherGeometry:Geometry):Integer - Returns 1 (TRUE) if this  

Geometry is 'spatially equal' to anotherGeometry. (Ryden 2005) 

This operation is used to compare one geometric object to another. In a  

template context, this can be very useful. One practical example is the need for  

removal of duplicate geometries when merging datasets from multiple WFS  

queries.  

Table 3.1 

Param types #Params Return value 
Nodes containing GML adher-
ent geometry elements 

2 True | false 

 

Table 3.2 

<xsl:variable name="example" select="geo:equals(elem1,elem2)" /> 

Disjoint  

Disjoint(anotherGeometry:Geometry):Integer- Returns 1 (TRUE) if this  

Geometry is 'spatially disjoint' from anotherGeometry. (Ryden 2005) 

This operation is used to check if two objects in any way cover parts of the  

same area (a.Disjoint(b) a b). In a practical application this can be used in a  

check of uniqueness of coverage. For example, when working with  

georeferenced real-estate data, checks on disjointness can be used to detect if  someone 

has built something on someone else's property. If a house is not built  

on property a, it is disjoint to property a.  

Param types #Params Return value 
Nodes containing GML adher-
ent geometry elements 

2 True | false 

Table 3.3 

<xsl:variable name="example" select="geo:disjoint(elem1,elem2)" /> 

Table 3.4 
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Intersects  

Intersects(anotherGeometry:Geometry):Integer- Returns 1 (TRUE) if this  

Geometry 'spatially intersects' anotherGeometry. (Ryden 2005) 

Intersects corresponds to the intersect operator of traditional set theory applied   

on geographic objects. A practical use of the intersects operator is to check if an area at 

least partly covers another area. 

Param types #Params Return value 
Nodes containing GML adher-
ent geometry elements 

2 True | false 

Table 3.5 

<xsl:variable name="example" select="geo:disjoint(elem1,elem2)" /> 

Table 3.6 

Touches  

 
Touches(anotherGeometry:Geometry):Integer- Returns 1 (TRUE) if this  

Geometry 'spatially touches' anotherGeometry. (Ryden 2005).  

According to the SFS, this operation applies to all geographic objects except   

for points. Hence it can be used for operations such as checking if the boundaries of any 

two given roads touch. This again can be used in the computation of road-descriptions; if 

two roads touch each other, it could be possible to cross from one road to the other.  

Param types #Params Return value 
Nodes containing GML adher-
ent geometry elements 

2 True | false 

Table 3.7 

<xsl:variable name="example" select="geo:touches(elem1,elem2)" /> 

Table 3.8 
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Crosses  

 

Crosses(anotherGeometry:Geometry):Integer- Returns 1 (TRUE) if this  

Geometry 'spatially crosses' anotherGeometry. (Ryden 2005)  

Corresponds to intersects, but for use with lines and points relative to lines and areas.  

Param types #Params Return value 
Nodes containing GML adher-
ent geometry elements 

2 True | false 

Table 3.9 

<xsl:variable name="example" select="geo:crosses(elem1,elem2)" /> 

Table 3.10 

Within  

 
Within(anotherGeometry:Geometry):Integer - Returns 1 (TRUE) if this  

Geometry is 'spatially within' anotherGeometry. (Ryden 2005)  

This operator checks whether a geometry is situated within the area of another  geometry. 

For example, it can be used to check if a house is within a given administrative district.  

Param types #Params Return value 
Nodes containing GML adher-
ent geometry elements 

2 True | false 

Table 3.11 

<xsl:variable name="example" select="geo:within(elem1,elem2)" /> 

Table 3.12 

Contains  

Contains(anotherGeometry:Geometry):Integer - Returns 1 (TRUE) if this  

Geometry 'spatially contains' anotherGeometry. (Ryden 2005) 
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Corresponds to the within operator, but check if a given geometry has another geometry 

within its area. 

Param types #Params Return value 
Nodes containing GML adher-
ent geometry elements 

2 True | false 

Table 3.13 

<xsl:variable name="example" select="geo:contains(elem1,elem2)" /> 

Table 3.14 

Overlaps  

 
Overlaps(anotherGeometry:Geometry):Integer - Returns 1 (TRUE) if this  

Geometry 'spatially overlaps' anotherGeometry. (Ryden 2005)  

Param types #Params Return value 
Nodes containing GML adher-
ent geometry elements 

2 True | false 

Table 3.15 

<xsl:variable name="example" select="geo:overlaps(elem1,elem2)" /> 

Table 3.16 

Relate  

Relate(anotherGeometry:Geometry,  

intersectionPatternMatrix:String):Integer- Returns 1 (TRUE) if this Geometry is spatially 

related to anotherGeometry, by testing for intersections between the Interior, Boundary 

and Exterior of the two geometries as specified by the values in the intersectionPattern-

Matrix. (Ryden 2005). 

Not a part of the FEIS.  

Param types #Params Return value 
Nodes containing GML adher-
ent geometry elements 

2 True | false 

Table 3.17 

<xsl:variable name="example" select="geo:relate(elem1,elem2)" /> 

Table 3.18 
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3.2 Operations that support spatial analysis on generic geo-

graphic objects 

In addition to the spatial test operators, there is a need to manipulate  geographic data. To 

support this, there is a need to support the methods for spatial analysis as defined in the 

SFS. This section gives a listing of the required methods with brief comments on their 

practical use. 

Distance  

Distance(anotherGeometry:Geometry):Double - Returns the shortest  

distance between any two points in the two geometries as calculated in the  

spatial reference system of this Geometry. (Ryden 2005). 

The distance method is designed to calculate the distance between two objects.   

This can be used in a practical application such as measuring the distance between two 

buildings, ships, or landmarks.  

Param types #Params Return value 
Nodes containing GML adher-
ent geometry elements 

2 XSLT Number 

Table 3.19 

<xsl:variable name="example" select="geo:distance(elem1,elem2)" /> 

Table 3.20 

Buffer  

Buffer(distance:Double):Geometry - Returns a geometry that represents all  
points whose distance from this Geometry is less than or equal to distance.  

Calculations are in the Spatial Reference System of this Geometry.  

(Ryden 2005).  

Param types #Params Return value 
Node containing GML adher-
ent geometry elements 

1 XSLT Node set 

Table 3.21 

<xsl:variable name="example" select="geo:buffer(elem1,elem2)" /> 

Table 3.22 
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Convex hull  

 

ConvexHull( ):Geometry - Returns a geometry that represents the convex  

hull of this Geometry. (Ryden 2005).  

Param types #Params Return value 
Nodes containing GML adher-
ent geometry elements 

2 XSLT Node set 

Table 3.23 

<xsl:variable name="example" select="geo:convexhull(elem1,elem2)" /> 

Table 3.24 

Intersection  

 
Intersection(anotherGeometry:Geometry):Geometry - Returns a geome-

try that represents the point set intersection of this Geometry with  

anotherGeometry. (Ryden 2005).  

Param types #Params Return value 
Nodes containing GML adher-
ent geometry elements 

2 XSLT Node set 

Table 3.25 

<xsl:variable name="example" select="geo:intersection(elem1,elem2)" /> 

Table 3.26 

Union  

Union(anotherGeometry:Geometry):Geometry - Returns a geometry that  

represents the point set union of this Geometry with anotherGeometry.  

(Ryden 2005) 

Param types #Params Return value 
Nodes containing GML adher-
ent geometry elements 

2 XSLT Node set 

Table 3.27 

<xsl:variable name="example" select="geo:union(elem1,elem2)" /> 

Table 3.28 

 

Difference 
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Difference(anotherGeometry:Geometry):Geometry - Returns a geometry that represents 

the point set difference of this Geometry with anotherGeometry. (Ryden 2005) 

Param types #Params Return value 
Nodes containing GML adher-
ent geometry elements 

2 XSLT Node set 

Table 3.29 

<xsl:variable name="example" select="geo:difference(elem1,elem2)" /> 

Table 3.30 

Symmetric difference  

Figure 3.1 

SymDifference(anotherGeometry:Geometry):Geometry - Returns a  

geometry that represents the point set symmetric difference of this  

geometry with another geometry. (Ryden 2005)  

Param types #Params Return value 
Nodes containing GML adher-
ent geometry elements 

2 XSLT Node set 

Table 3.31 

<xsl:variable name="example" select="geo:symmetricdifference(elem1,elem2)" /> 

Table 3.32 

3.3 Interface integration 

The interface provided to the developers of XSL templates must be powerful  

enough to be of practical use, yet it must adhere to the language standards and general 

usage patterns for XSL. This section defines how the spatial functionality in focus can be 

available for XSLT as an API resembling regular functionality. The XSLT 1.0 specifica-

tion allows for two kinds of extensions to XSL; functions and elements (Clark 1999). 

While both of these are described in Section 2.1, we have favored extension-functions for 

integration of the defined spatial functionality. Extension elements do provide the flexi-

bility and functionality needed, but an approach using functions to make the operations 

available resembles the more well-known XSLT functions and fundamental XPath syntax 

better. More details around the use of functions versus elements are presented in 0 where 

the use of extension elements for configuration is discussed. It is also assumed that it will 

be easier to start adopting the interface when the user can build upon concepts and pat-

terns with which he or she has experience.  
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Table 3.33 

Operation definition in specification [2]  

geometryA.operation(geometryB)  

 

Operation example call in [18]  

operation(geometryA,geometryB)  

As discussed more closely in the next section, the operations to be made   

available can be split between the ones returning boolean values and the ones returning 

new geometric elements. 

Table 3.34 

1. Regular XSLT Function for string concatenation:  

<xsl:variable name="strings" select="concat(string1,string2)" />  

 

2. Proposed EXSLT function for union operations  

<xsl:variable name="areas" select="geo:union(area1,area2)" />  

3.4 Chapter summary 

This chapter has presented the operations that the framework should support and the rea-

soning for why they should be supported. Further, a definition and explanation for the 

syntax used in the EXSLT calls has been given. While the functions described have been 

limited to standard operations of the Simple Feature Specification, operations for gener-

alization/simplification and other spatial calculations are of relevance. Although the im-

plementation of these has not been the main focus of the work with the thesis, the frame-

work developed supports many operations through the functionality available in the Java 

Topology Suite (JTS) (Davis 2003; Davis 2006). JTS is used as an underlying framework 

for geospatial calculations, and is discussed further in chapter 4.  Section 7.3 also presents 

and discusses an experimental implementation of the Douglas Peucker simplification al-

gorithm. 
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4 Implementation of supported    

functionality 
This chapter presents the design and implementation of GeoXSLT, a system supporting 

the defined extension functions. A top-down view of the architecture and the ideas behind 

the division of functionality is given in 4.1. To provide the necessary understanding of 

how extension calls from XSLT are integrated with the implementation, section 4.2 out-

lines how function calls in XSLT can be mapped to Java classes. Sections 4.3-4.5 give a 

detailed explanation of the various system levels outlined in 4.1. 

4.1 Division of levels 

Based on similarities with standard XSLT functions, examples 

from the Simple Features Specification (Ryden 2005), and the 

work of Vatsavai (Vatsavai 2002), Chapter 3 defined the func-

tionality and syntax to be supported. The aim of this EXSLT 

implementation is hence to support the given operations within 

a context of easy use and adaptation, while at the same time 

keeping the door open for later performance improvements in 

the underlying framework.  

A focus has also been placed on making it very simple to integrate other operations which 

can operate on pre-made geometry objects. The simplicity of general use and integration 

of new functionality is sought done with a division of the system into three different lev-

els. There is no need to do any changes to existing Java code to start using it, as long as 

the jar/class files are available on the classpath. Figure 4.1 illustrates the division of 

levels. As indicated by the figure, operations called from the XSL templates relate to the 

level 1 classes. An overview of the contents for each level is presented below: 

• Level 1, Front-end. The general idea is that front-end classes support given 

operations by implementing interfaces defining method signatures and return 

values. No calculations are to occur at this level. Front-end classes are designed 

to act as wrappers, passing the request on to an implementing level 2 class for 

processing. By doing this, functionality implemented across several level 2 

Figure 4.1: System 
levels 
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classes can be accessed through a singular class/interface. This allows for the 

grouping of operations by functionality under a relevant namespace, without hav-

ing to change the underlying class model(s). In the thesis’ implementation, a sin-

gular namespace has been created for the practical combination of comparison 

operations; called predicates, and for analysis operations. This matches the opera-

tion definitions in 3.1 and 3.2.  

• Level 2, Implementation. The implementation classes are the units where the cal-

culations are performed. The experience with the development done shows that 

these classes usually implement operations at a high level, as external libraries 

have been used for the calculations and level 3 classes handle all data conversion. 

With this in mind, the level 2 classes can be thought of as implementing the logic 

of the operation. 

• Level 3, Handlers and factories. The level 3 classes are the workhorses of this 

framework and are exclusively used by the implementation classes at level 2. 

They provide functionality to convert data structures from the XSLT process into 

objects that support the operations performed in the implementation classes at 

level 2. Further, they provide functionality for conversion of the resulting data 

from analysis operations back into a format acceptable for return to the XSLT 

process. As of now, conversion between GML node structures and geometry ob-

jects of the Java Topology suite are supported. 

4.2 Access to EXSLT functions from XSLT 

This section gives a rundown on how extension functionality is available from XSLT 

templates. A special focus is on how the functionality of the implemented framework can 

be accessed. 

To use extension functionality; EXSLT, in XSLT, the general approach is to define a 

namespace representing the specific group of extensions in the root element of the 

stylesheet (Clark 1999; Apache Xalan Community 2005; EXSLT.ORG 2006). Standard 

extensions, such as those defined by exslt.org are defined by a URI to a resource available 

on the web. The API documentation is usually available at the address for reference. 
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<?xml version="1.0" encoding="UTF-8"?> 
<xsl:stylesheet version="1.0"  
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
 xmlns:math="http://exslt.org/math"> 

Table 4.1 Example of namespace declaration for standard extensions. 

Standard extensions are defined by the community (EXSLT.ORG 2006) and very often 

implemented as an internal part of the XSLT processor. The processor used here, Xalan 

(Apache Xalan Community 2005), supports many of them. A complete listing of sup-

ported extensions is available online (Apache Xalan Community 2005). In the case of ex-

tensions that are not handled automatically based on an http based URI, the Java class or 

package name (Apache Xalan Community 2005) has to be defined in the namespace dec-

laration of the stylesheet. This is the case with the extension framework of this thesis. 

<?xml version="1.0" encoding="UTF-8"?> 
<xsl:stylesheet version="1.0"  
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
 xmlns:geo="xalan://package[.classname]" 
 > 

Table 4.2 Example of how the a java class is tied into the “geo” namespace 

In Table 4.2 an example of how Java functionality not handled automatically is made 

available from XSLT stylesheets processed with Xalan is listed. For all templates con-

tained in the stylesheet, defining the "geo" namespace, the methods of the class "class-

name" are available as functions. Each of the operations implemented in this thesis has an 

example of an XSLT function call in 3.1 and 3.2. In the case of community-wide accep-

tance for the set of spatial extensions, a similar http based namespace mapping in Xalan 

as for the exslt.org functions could of course be integrated. 

4.3 Implementation of Front-end/Level 1 

This section gives a presentation of the level 1 architecture introduced. 

The front-end classes make out the interface between the extension call from XSLT and 

the Java framework. When a call is made, Xalan automatically converts the XSLT types 

to Java objects as listed in Table 4.3. 

Table 4.3 Xalan conversion of XSLT types to Java objects 
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XSLT Type Java Type 
Node Set Org.w3c.dom.NodeList 

String Java.lang.String 

Boolean Java.lang.Boolean 

Number Java.lang.Double 

Result Tree Fragment Org.w3c.doc.NodeList 

Methods in the front-end classes therefore need to use the parameter signatures as listed 

above. For practical reasons, the functionality defined in chapter 3 is accessible through 

one front-end class, but there is no reason why it cannot be split based on another group-

ing.  
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Figure 4.1 Dependency diagram for implemented front-end architecture 

The diagram in Figure 4.1 displays the relations between the front-end class “SFSOpera-

tions” and the underlying level 2 classes which implement the logic. Note the implemen-
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tation to interfaces representing the operation definitions in chapter 3. The front-end class 

only has references to the underlying classes, and uses them to pass on the request. 

    public Node buffer(NodeList n1, double distance) { 
        return ao.buffer(n1,distance); 
    } 

Table 4.4 Example of operation “wrapping” in front-end class 

In the listing above, “ao” is a reference to the “AnalysisOperations” class as displayed in 

Figure 4.1 Dependency diagram for implemented front-end architecture. The result from 

the implementing level-2 class is returned directly to the XSLT process after processing. 

In an XSLT context wrapping of calls to the implementing class means that all geo-

graphic functionality used for a given template can be accessed through one convenient 

namespace/prefix instead of declaring multiple namespaces. Additionally, developers are 

free to change between different underlying level 2 classes implementing the same inter-

faces by either altering level-1 source code or using injection of control (IoC) (Harrop and 

Machacek 2005) through Spring (Spring Community 2006) or similar frameworks. All 

this can be done without worrying about anything else than the simple instantiation of 

level 2 classes with zero parameter constructors.   

4.4 Architecture of implementation classes/level 2 

This section explains the workflow and architecture of the level 2 classes. 

While the front end classes represent the operations available to the XSLT process, the 

input is only passed as parameters to the classes in level 2 as described in section 4.3.  

 

Figure 4.2 Level 1 wrapping of operations 

Figure 4.2 above gives an example of how a call to the SFS operation "buffer" propagates 

from the XSLT template/process to the defined level 1 interfacing front-end (green). The 
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front-end passes the parameters on to the implementation in the level 2 class Analy-

sisOperations (yellow). Figure 4.3 shows how the level 2 class then uses the level 3 class 

GMLUtilities to construct a JTS Geometry from the GML NodeList initially passed from 

Xalan. 

 

Figure 4.3 Using a level 3 class to build JTS geometries 

The implementation developed in this thesis uses Java Topology Suite (JTS) (Davis 2006) 

as the main engine for geographic calculations. Generalizing out the building of JTS Ge-

ometry objects (Davis 2003) to level 3 classes as shown in Figure 4.3, the main area of 

concern for level 2 classes and their methods is to call methods corresponding to the ex-

pected calculations on the pre-made geometry objects and evaluate the results. This 

makes it relatively straight-forward to implement operations in level 2, and may inspire 

developers to integrate new functionality by using the building blocks available in the 

level 3 architecture. In the scope of the thesis the utility operations of level 3 make it eas-

ier to create JTS objects without unnecessary obfuscation and code redundancy. In a 

wider scope, it may open up for approaches inline with the Factory Pattern [28], allowing 

use of alternate libraries to JTS depending on the need and situation to generate the nec-

essary geometrical representations. 
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Figure 4.4 Execution of calculations on JTS geometry objects 

When the calculated result for return to the XSLT process is something else than the 

types automatically converted by Xalan, the data is run by a level 3 class for conversion 

to a Xalan compatible type. In the current system, only calculations that return JTS ge-

ometries need result conversion. Table 4.5 Table 4.5 Displays Xalan accepted Java types 

and their corresponding XSLT type. lists XSL data types and Java mappings as accepted 

by Xalan. Only the subset that are of relevance to this implementation is shown.  The 

process of converting a JTS geometry to a Xalan compatible data type is termed "JTS se-

rialization". 

 

Figure 4.5 Level 2 class utilizing the level 3 architecture for serializing JTS Geome-
try to Xalan compatible format by calling the “encode” method of the GMLFactory 
class. 

 
 
Java Types XSLT Type 
org.w3c.dom.traversal.Node (and subclasses) 
org.w3c.dom.traversal.NodeList 

Node-Set 

Java.lang.Double, int, double Number 

Java.lang.Boolean, Boolean Boolean 

Table 4.5 Displays Xalan accepted Java types and their corresponding XSLT type.  
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4.5 Implementation of the level 3 classes 

This section describes the core of the framework for spatial support in XSLT.  

While the front-end classes in this model act as wrappers and the level 2 classes define 

logic expressed on existing objects, the major trunk of development has been centered on 

level 3. Level 3 creates as a bridge between nodes from the XSLT process and the per-

formed geo-operations. The functionality developed in level 3 for detecting geometries 

and building JTS geo-objects from node lists provided by Xalan is crucial to allow for the 

integration of any spatial operation defined in Chapter 3. Additionally, the library for “se-

rializing” the geo-objects into node objects as required by Xalan is necessary for all spa-

tial operations that are to return anything else than numeric or Boolean values.  

4.5.1 Cost of use 

All the conversion does come at a cost, as such the bridge provided by the level 3 classes 

can be regarded as a performance penalty induced by the need for data conversion to sup-

port the easier and more accessible geo-functionality provided in the XSLT context. It is 

important to be aware that this implementation is not designed particularly with speed in 

mind, but as a proof of concept. Even so, as later sections will go into further detail on, 

there are several changes that can be applied for quick wins with regard for the speed op-

timizing of parsing and serialization.   

4.5.2 Service interfaces 

Inline with the layered and loosely coupled architecture of the whole implementation, the 

level 3 classes communicate with level 2 through only two operations; one for building 

JTS geometry objects, and another for serializing them.   

4.5.3 Creation of JTS Geometries from node lists. 

What follows is an overview of the workflow for the build process of geometry objects 

based on the node lists passed on from Xalan.  
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Figure 4.6 Class diagram of GMLUtilities 

 

Detection of geometry representations 

The level 3 class “GMLUtilities” receives a call to the “gmlSearch” method with a list of 

nodes (org.w3c.dom.NodeList). The list is then iterated and each node is checked by run-

ning it through the “isGML” Boolean method. The isGML method in this implementation 

simply checks whether the namespace is “http://www.opengis.net/gml” and then if the 

element’s local name/tag name is among the defined names in a local collection of valid 

GML element names. Whilst this can be a relatively naïve approach for detection of GML 

elements, there should not be any significant problems to extend it for use of actual 

schema validation. The reason it was not done in this case is that it was not deemed nec-

essary for a proof-of-concept implementation and would also have a significant effect on 

execution speed.  
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Construction of geometry objects 

If a node is found to be a GML node, it is sent to the “create” method of “SubHandlerFac-

tory”. 

 

Figure 4.7 Class diagram of SubHandlerFactory 

The factory implementation has a line of handlers extending a “SubHandler” super class 

and specialized for each GML type supported. The modular design allows for the integra-

tion of better and faster handlers as developed and needed.  

 

 

Figure 4.8 SubHandler super class and SubHandlerLinestring 

The current “SubHandler” super class provides an instance of the GMLUtilities class, the 

CoordinateFactory, and the JTS library ”com.vividsolutions.jts.geom.GeometryFactory”. 

Figure 4.8 displays an illustrative example of the relation between the SubHandler, 

GMLUtilities and the specialization class for handling line string geometries. 
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The shared constructor of the super class initializes the common precision model (pro-

vided by the implementation’s static and dedicated configuration class) and other plumb-

ing. Additionally, it executes a search for the node containing the coordinates enclosed as 

a child of the GML node passed to it. The search for the element containing the coordi-

nates is not implemented locally in the SubHandler, but is performed by a “node search” 

method of the GMLUtilities class, taking a node list and a target name as parameters.  

The reasoning behind this is that it allows for later optimization, without having to change 

the handler classes. Currently the node search is only a shallow iterative check for node 

names matching the target. The coordinate node found is then sent to the CoordinateFac-

tory which configures itself based on the attributes Comma Separation (CS), Tuple Sepa-

ration (TS), and decimal character of the coordinate node as allowed by the GML 2.1.2 

specification, Section 4.3.1 (Cox, Cuthbert et al. 2002) (OpenGeoSpatial 2002).  Each 

vertex found is passed to the “com.vividsolutions.jts.geom.Coordinate” (Davis 2004) 

constructor and the generated coordinate object is then stored in a list structure for return 

after the reading is complete. 

Specialized coordinate parsing in sub handlers 

 The specialization done in the different extensions of SubHandler varies depending on 

the complexity of the JTS object to be built. For handlers representing the simpler geome-

tries point, line, and linear ring, the only extension done is to call the corresponding fac-

tory creation method of the JTS GeometryFactory class. The list structure with coordi-

nates created by the super class is passed as a parameter. For the more complex elements 

such as Polygons and Multi-versions of the basic elements, a much more custom overrid-

ing of the super class’ constructor has been created. In the case of polygons which consist 

of a mandatory outer ring and zero to many “holes”, alternatives to the “gmlSearch” 

method are used to detect and build representations of the subelements. The polygon 

SubHandler extension then assembles these sub-geometries into a polygon which is re-

turned to the original gmlSearch method call and further up to the level 2 class initiating 

the build. The approach is similar for the other complex geometries, with inner calls to 

the build the simple geometries for final assembly into the complex geometry.  
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4.5.4 Serialization 

In the context of this thesis, serialization is defined as the process of converting/encoding 

JTS geometry objects to a GML compliant node structure compatible with Xalan. 

After the level 2 class has executed its operations on the JTS geometry object, in the cases 

where the result is a new JTS geometry object, it needs to be “serialized” into a format 

accepted by Xalan. Table 4.5 Displays Xalan accepted Java types and their corresponding 

XSLT type. While Chapter 3 defines the possible return values from operations imple-

mented.  

Functions returning String, Double or Boolean values can be passed directly and con-

verted internally by Xalan, but the majority of the analysis operations, such as union and 

buffer, need conversion to Node objects before the return is passed on to the XSLT proc-

ess. In the same way as building JTS objects incur a time penalty, the conversion to Node 

also comes at a cost. The process is initiated by a call to GMLUtilities’ corresponding 

output handler; GMLFactory’s “encodeNode” method.  

 

Figure 4.9 Class diagram GMLFactory 

The encodeNode method accepts a JTS geometry as parameter and then delegates the en-

coding to internal methods after determining the geometry type by using introspection. In 
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the same way as the sub handlers for parsing incoming GML nodes from Xalan use Co-

ordinateFactory to detect and build simple geometries based on the enclosed coordinates 

for final assembly into final geometry objects, the encoding handler for each geometry 

uses a simpler encode method private to GMLFactory to create a coordinate node with the 

coordinates as text and cs/ts/decimal values from internal configuration as attributes. 

Simpler because all data that is needed is readily available by calling the encapsulating 

methods of the JTS geometry object. There is no need to execute any complex searches 

for elements as when parsing incoming GML elements. When the coordinate object is 

returned to the encode method calling it, the enclosing nodes representing it are not cre-

ated from scratch but rather from clones of skeleton prototype versions with the correct 

namespace and prefix preset. This has been done to make it easier for later changes to the 

elements and integration with external resources, for example by using a factory pattern 

or injection of control without having to alter the method bodies.  

Wrapping.  

The encoded geometry nodes are always enclosed within a straight forward “TheGeome-

try” element. There are two reasons for this. First, when the return from one operation is 

re-used as input for a second operation, - for example a buffer called on the results of a 

union, not using a wrapper makes the node list sent to the level 2 method only contain the 

children of the geometry element, hence only the coordinate element or sub-geometries 

are available for the gmlSearch method. Second, in regular GML files, each feature usu-

ally has the GML properties enclosed within an element named such as “TheGeometry”, 

or “_geom”. This wrapping of the resulting GML makes the output more manageable. At 

the same time, there is no problem to omit the “TheGeometry” element by using XPath 

on the returned data to only select the children of the “TheGeometry” element for inclu-

sion in some other scheme. The name of this wrapper should of course be configurable to 

allow for easy change and to suit the usage needs of the situation. It could possibly bene-

fit of being of configuration through schema parsing, so that the “wrapper” is automati-

cally created with an element name matching the schema. 

Parts of the application logic/division of responsibilities around handler based parsing of 

GML node lists have been inspired by the design of the SAX parsing/handling for GML 

in Geotools written by Rob Hranac. Amongst several projects utilizing this parser-logic is 
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the popular WFS/WMS server Geoserver, something which can be regarded as an indica-

tion that this approach works quite well. 

4.5.5 Basic performance optimization 

The development of the GeoXSLT system has been focused on creating a proof-of-

concept implementation to show that XSLT with extensions can be used for processing 

geodata. A limited amount of work has been done to create mechanisms for general per-

formance optimization. While various approaches to optimization are discussed in Chap-

ter 7, a simplistic caching prototype has been implemented as part of the level 3 classes. 

The motivation and application of the mechanism are discussed in Section 7.2.2 while 

this section will focus on the implementation.  

The caching has been implemented as a “Geometry Cache”, which is an object storing 

previously constructed geo objects. When a new GML node is detected during the previ-

ously described “gmlSearch”, a check with the Geometry Cache is done before eventual 

construction is begun. If it turns out that the GML node has been processed earlier, the 

previously constructed geo object is returned. This way, a significant portion of the con-

struction phase is saved for GML nodes that are used repeatedly during XSLT transfor-

mation.  In practice, the implementation of the Geometry Cache is a simple object with 

accessors for a Hash Map containing the geo objects. The fact that all Java objects have a 

distinct hashcode unique within the application runtime is used to distinguish the node 

lists passed from Xalan (Sun 2004). When a geo object is created, the hashcode from the 

original node list passed from Xalan is used as the hash key. As a consequence, the re-

quest for the creation of a geo object only has to pass its node list (as received from 

Xalan) hashcode to the Geometry Cache for the immediate return of a pre-existing JTS 

Geometry representation. 

4.5.6 Possibilities for improvement. 

There are several areas of the implementation which can presumably benefit greatly from 

specific improvements. The improvements can be said to revolve around three axes: func-

tionality / runtime versatility (schema parsing/validation and automatic configuration of 

handlers according to the schema), speed (feature caching, faster search and construction 

algorithms), and quality of the program architecture (better division of classes, injection 

of control, extraction of interfaces, cleanup of code).  
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4.6 Chapter summary 

This chapter has presented the architecture, components, and workflow of the system for 

supporting spatial extensions in XSLT. A description of EXSLT integration with Java 

with regard to this implementation has been used to show how the implementation relates 

to the transformation process. Reasoning behind the design has been explained as well as 

weaknesses and areas ripe for improvement. 
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5 Testing 
The testing of this implementation aims to produce experience and statistical data to help 

answer the research objectives as defined in 1.1. Tests on constructed data have been de-

signed to validate the correct functioning of the system, as described in research objective 

1. Further performance tests and operations on real data are described to uncover aspects 

around flexibility and performance inline with research objective 2.  The experiences with 

implementing the tests forms the basis for further discussion of research objective 3. Tests 

of the performance optimization introduced in Section 4.5.5 is covered in Section 5.1.5. 

5.1.1 Validation of correct functioning. 

To be of any practical use it is important that the calculations and returned data can be 

trusted. Research objective 1; can the XSLT language in combination with extensions be 

used for the processing of geodata, needs a combination of both quantitative and qualita-

tive observations to be answered. Quantitative for evaluation of whether the implementa-

tion works as expected, -indicating that it is technically viable, qualitative with regard to 

practical evaluation of general use. The implementation has been validated by creating 

test cases for selected operations where the results are compared with the returned data of 

a third-party tool. Martin Davis at Vivid Solutions, the creators of JTS, has created a 

powerful visualization tool for testing the JTS library. The tool, called Testbuilder, ac-

cepts 1-2 geometries encoded as Well Known Text (WKT) which are then drawn on a 

canvas (Davis 2004). Both the predicate and analysis operations available in JTS can then 

be executed. WKT is a format for defining spatial geometries as strings of text and was 

specifically defined to make it possible to load spatial data into spatially enabled data-

bases. The format was defined by the OpenGIS Consortium “Simple Features for SQL” 

specification (Ryden 2005) and is also a part of the ISO "SQL/MM Part: 3 Spatial" 

(Stolze 2003). As there is a mapping between the spatial objects represented between 

GML and WKT, generating test data for either is simply a matter of encoding the same 

coordinates within each of the two encapsulating formats. The validation of this imple-

mentation has been achieved by generating various test data for execution both in Test-

builder and in an XSLT context. The results from both predicate and analysis operations 
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have then been compared and the data from Testbuilder have been considered authorita-

tive to which the XSLT generated result must adhere for the test to be valid. 

5.1.2 Measurement of performance 

To answer the research objective “What limitations on factors such as performance, flexi-

bility and scalability will this approach imply?” there is a need to provide data on how the 

implementation’s performance varies with changing amounts of data input. Before meas-

uring the performance of the implementation, it is in place to provide a definition of how 

performance can be interpreted and which aspects that are covered here. In (Steve Wilson 

2000) performance is defined as a collection of the following factors: 

• Computational Performance 
o Deals with the optimization of  algorithms to use as few instructions as 

possible, 
• RAM footprint 

o Optimization of memory usage 
• Startup time 

o How to minimize time to bootstrap an application 
• Scalability 

o How does an application handle large loads 
• Perceived performance 

o How does the user experience execution time. 

While all of these aspects are of universal interest, the aspects of performance under focus 

in this report are scalability and perceived performance. Computational performance and 

RAM footprint have not been deemed necessary to develop a working prototype.  Later 

work could focus on designing and implementing changes to provide optimization for 

these aspects of the performance definition. A more detailed explanation of how the scal-

ability and performed performance results are perceived is provided in chapter 6, 7.2 and 

7.2.2 where the findings are presented and discussed. When measuring the scalability and 

perceived performance, the focus has as been on observing the time cost of the bridging 

between geometry objects and nodes/node lists as introduced in chapter 4. Therefore, it is 

vital to keep tabs on several steps in the process. Watches has been placed on total execu-

tion time for the EXSLT function call as a whole, the building of each geometry object 

involved in the operation, execution time for the JTS operation, and encod-

ing/serialization back to a Xalan compatible node. 

The log4J logging toolkit (Log4j Community) was first considered for saving the test re-

sults, but due to the (at least as understood by the author) limitation to only log text 
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strings at singular points of time there was a problem. The test process has a defined need 

to log information on start, stop, context and operation performed, in addition to details 

on number of vertices, length and precision. With log4J output to single strings, logging 

seemed cumbersome when everything would have to be either aggregated in long text 

strings or spread across several entries. s each operation generates several events, using 

logger based on log4J would hence imply a need to create relatively complex handling for 

post processing of the generated log files with thousands of entries. Instead of doing this, 

a simple system inspired by log4J but with support for the required logging of multiple 

fields associated with each event, has been created as part of the testing framework of this 

thesis’ implementation. The logger works like a very simple and crude version of log4J, 

but instead of logging formatted text strings to file or database handles, an “event factory” 

is used to create objects of an “Event” class. An event is created with a timestamp repre-

senting the start time. The creation of a logging event is the last operation done before the 

operation to be logged is to take place. After completion of the operation the event is 

stopped by setting a second timestamp. After the timer is stopped, each data field to be 

associated with the event is set through encapsulation methods in the object before the 

event finally is appended to a log object accessible through a static method of the event 

factory. Accessible in a static context to ensure thread safety and to keep the log and 

event objects accessible with as little time overhead as possible. The log object maintains 

a list of events as an ArrayList which is serialized to a MySQL database when a certain 

size has been reached or the log is finalized through its shutdown hook (Sun 2004). In 

practice, it is only serialized after all tests have executed. Log entries stored in MySQL 

are then accessible for analysis with e.g. Microsoft Excel through ODBC. Because nested 

events are logged; all build, JTS execution and serialization events are sub parts of a call 

to an extension function, the time spent logging data for the sub parts will accumulate and 

increase the time spent executing the parent event. As the times presented are not 100% 

accurate due to external factors such as operating system and machine ware, the accumu-

lations of time spent logging are ignored because the data nonetheless provides the neces-

sary indications on tendencies and relative data for comparison. 
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5.1.3 Selection of tests on constructed data 

Due to the extensive amount of work to create usable test-cases for possible operations 

and data types, the testing had to be limited to a small number of operations performed on 

a relatively small amount of constructed data. Testing the workings and performance of 

the JTS library itself has been considered secondary. The focal point of all testing per-

formed has been to validate the correct functioning of the implementation as a whole, and 

at the same time to measure how different kinds of data influence the bridging when con-

verting between node lists, JTS geometries, and back to nodes for return to Xalan. It is 

important to note that JTS performance has been measured in the test cases implemented, 

but the results from those operations cannot necessarily be projected onto assumptions 

about other JTS operations as their internal calculations may or may not induce signifi-

cantly different execution times. 

Test data has been generated for variances of the simple geometry types line strings, 

points and polygons. The reason why complex versions of geometries have been left out 

is that these generally may be regarded as aggregations of the simple ones and hence not 

prioritized here. All tests on constructed data have been designed to be performed without 

the performance optimization introduced in Section 4.5.5. Each operation measured has 

been performed on two distinct geometries of same type, but with differences in posi-

tions. See Figure 5.1 for a visualization of test geometries. 

Operations selected for testing 

Only a subset of the functions defined in chapter 3 has been tested, this section presents 

which operations that have been chosen for testing with the different geometry objects. 

Line Strings 

For predicate operations on line strings, the “crosses” operation (3.1) has been selected 

for measurements of total time to complete. The crosses operation is very central in many 

real-life operations such as e.g. testing whether two roads cross each other. For analysis 

operations on line strings, the “union” operation (3.2) has been selected for measurements 

of total time to complete. The tests and experiments performed Chapter 6, 7.2.2, and 7.5 

feature examples of the practical value of this operation.  
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Points 

The “equals” operation (3.1) has been used to test predicate operations on points. For 

analysis operations, only a dummy call to the bridge has been used. The dummy call 

builds a JTS geometry based on the point which is then immediately serialized back to a 

GML node without any JTS calculation is executed. This is because relevant analysis op-

erations available for execution on points typically will return other data types than 

points. As such it has been deemed more interesting to only focus on measuring the per-

formance of the bridge when building and serializing the exact same point. Serialization 

of polygons and line strings are performed and measured in the other test cases.  

Polygons 

For polygons the “intersects” operation (3.1) has been used to test the total time to com-

plete for predicate functionality on polygons. For analysis the “union” (3.2) operation has 

been used for testing. 

Parameters tested 

This section introduces the test parameters used with the tested operations and geome-

tries, and explain the reasoning behind the choices made. Examples of parameter varia-

tion and visualizations of test data are provided. 

The parameters to be tested with different factors of variance have been chosen because it 

is assumed that they represent factors that will have an impact on operation execution.   

Below is a list of the parameters used: 

• Vertices. Increasing the number of vertices in a geometry may have an effect on 

all phases of the execution process, as it introduces both more complexity and a 

larger amount of data to process. 

• Digits. While increasing the number of digits does not necessarily have an impact 

on precision levels, it has an impact on the total size of data necessary to represent 

the geometry.  

• Holes. This parameter only have an effect on polygons, where the holes represent 

both increased complexity and more data with extra processing requirements. 
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Testcase Parameter 
Line Strings      
Vertices 3 30 300   
Points      
Digits 2 3 4 5 6 
Polygons      
Vertices 5 41 401   
Holes 0 1 10 40  
Digits 2 3 4 5 6 

Table 5.1 Test cases with constructed data 

Table 5.1 lists the variations of parameters in the tests performed. Parameter values are 

based what is assumed to be variations with relevance to real-life data.  

To reflect the variance of complexity in the exe-

cution time for JTS’ calculations no lines created 

are straight. This is so that internal calculation 

simplification of vertices should be kept to a 

minimum. The wave shape is also considered to 

make the test cases more realistic in comparison 

to straight lines.  

Figure 5.1 Visualization of crosses test on line 
strings with 30 vertices each. 

All lines are sinus curves, and polygons are built as functions of sinus/cosines. This gives 

for predictable patterns which is visually easy to validate using Testbuilder. All test data 

has been generated with scripts written in Perl and encoded in both GML and WKT ver-

sions for easier validation. For each test case, two geometries with equal properties but 

different values have been created. For example, with the “crosses” test, one horizontal 

and one vertical line has been generated for each change in the test parameters, while the 

“intersects” test is designed to be executed on two polygons. Each test case has been re-

peated 100 times, while the whole test process is controlled and performed by JUnit. 
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Figure 5.2 Visualization of two intersects tests performed on polygons with 5 and 41 
vertices 

Samples of test data are available in the appendix. 

5.1.4 Tests on real data 

The tests and samples described so far have all been specifically constructed to validate a 

given case inline with objectives to gather data on performance and scalability for iso-

lated extension functions. To answer the research objectives defined in chapter 1, there is 

a need for a set of more qualitative experiences with scenarios closer to what can be ex-

pected in a real-life setting. To provide a reality check for comparison with the samples 

and the research objective, a composite test on sampled data has been designed. Data 

from Tana, a small village in Northern Norway, consisting of buildings and road stubs has 

been made available by the Norwegian Mapping Authorities and used for the purpose of 

real-life test scenarios in the work with this thesis. Buildings are represented as points and 

road stubs as line strings. The data consists of 9848 points and 2418 line strings.  The data 

has been divided into ten smaller subsets to enable testing of how the system performs 

with a varying number of features and complexity. Table 5.2 lists the different subsets 

created and details on the number of features and share data size. 
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Case Roads Buildings Size (kb) 
1 3 24 16 

2 16 108 61 

3 25 214 116 

4 56 450 244 

5 201 1 132 643 

6 425 2 145 1 242 

7 787 4 701 2 641 

8 1 690 8 163 4 773 

9 2 243 9 452 5 692 

10 2 418 9 848 5 985 

Table 5.2 Subsets of the Tana data 

The visualizations of the Tana data sets below show roads as grey lines, and buildings as 
red dots. 
 

 

Figure 5.3 A visualization of the Tana data set, with the bounding boxes of test cases 
4-10 engraved 

The test have been designed to both validate the results of the constructed samples with 

greater variance in the data sets, to gain experience with real samples, and evaluate some 
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of the possibilities made available with spatially enabled XSLT. 

 

Figure 5.4 A visualization of the Tana data set with bounding boxes 3-1 engraved 

The task defined for this test, is to find and count all buildings situated within 20 meters 

from any road. Easy as it sounds, this is a rather complex task demanding the chaining of 

several geo operations to be achieved. The two templates used are shown in the listings 

below. 

<xsl:template match="/"> 

 <xsl:message>Starting...</xsl:message> 

                 

Buildings:  

<xsl:value-of select="count(wfs:FeatureCollection/gml:featureMember[topp:bulroad])"/> 

 

Roads:      

<xsl:value-of select="count(wfs:FeatureCollection/gml:featureMember[topp:Road])"/> 

  

 <xsl:message>Features counted...</xsl:message> 

 

 <xsl:variable name="roadUnion"> 

    <xsl:call-template name="unionRoads"> 

     <xsl:with-param name="roads"  

        select="wfs:FeatureCollection/gml:featureMember[topp:Road]/topp:Road/topp:the_geom/*"/> 

    </xsl:call-template> 

  </xsl:variable> 
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 <xsl:message>Road union created</xsl:message> 

 

 <xsl:variable name="roadBuffer" 

                     select="spatial:buffer(xalan:nodeset($roadUnion)//gml:MultiLineString,20)"/> 

 

 <xsl:message>Road buffer created</xsl:message> 

                

 Number of buildings within 20 meters from the road: 

 <xsl:value-of select="count(wfs:FeatureCollection/gml:featureMember[ 

                              (descendant::topp:bulroad/topp:the_geom/gml:Point) and 

                              (spatial:within( 

                                        descendant::topp:bulroad/topp:the_geom/gml:Point, 

                                        $roadBuffer/gml:*[position() = 1] 

                                       ) 

                               ) 

                                                                    ] 

                       )"/> 

</xsl:template> 

Table 5.3 Main template used for the practical tests with the Tana data 
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<xsl:template name="unionRoads"> 

  <xsl:param name="roads"/> 

 

  <xsl:variable name="roadCount" select="count($roads)"/> 

   

  <xsl:choose> 

    <xsl:when test="$roadCount = 1"> 

      <xsl:copy-of select="$roads"/> 

    </xsl:when> 

    <xsl:otherwise> 

      <xsl:variable name="fiftypercent" select="floor($roadCount div 2)"/> 

 

      <xsl:variable name="left">       

        <xsl:call-template name="unionRoads"> 

         <xsl:with-param name="roads" select="$roads[position() &lt;= $fiftypercent]"/> 

        </xsl:call-template> 

      </xsl:variable> 

 

      <xsl:variable name="right"> 

             <xsl:call-template name="unionRoads"> 

    <xsl:with-param name="roads" select="$roads[position() &gt; $fiftypercent]"/> 

  </xsl:call-template> 

      </xsl:variable> 

    

    <xsl:copy-of select="spatial:union( 

                                                       xalan:nodeset($left)//*[(local-name() = 'MultiLineString')  

                                                                                           or  

                                                                                          (local-name() = 'LineString') 

                                                                                        ] 

                                                       , 

                                                       xalan:nodeset($right)//*[(local-name() = 'MultiLineString') 

                                                                                             or  

                                                                                             (local-name() = 'LineString') 

                                                                                           ] 

                                                    ) 

      "/> 

     

     </xsl:otherwise> 

    </xsl:choose> 

</xsl:template> 

Table 5.4 Divide and Conquer recursion implemented in XSLT to union a large 
amount of line string segments without causing stack overflow. 

First, all the road stubs are unioned into one multi line string which is stored in a variable. 

To avoid trouble with stack overflow, a classical divide and conquer recursion strategy 
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inspired by (Sedgewick 2002; Novatchev and Tyszko 2006 ) has been applied with the 

“unionRoads” template. The resulting union of roads is then used in a buffer operation, 

creating a multi polygon centered on the road.  The number of buildings within the road 

buffer is then matched by the XPath statement enclosed in a count function, matching all 

building representations having a point property which is within the road buffer. Note the 

use of standard extension function “xalan:nodeset” which converts result tree fragments 

(Apache Xalan Community 2005) from executed templates to be used in a node list con-

text.  

As the set of data is quite large (ca 6 MB), just its share size indicates that it is ill suited 

for use in a web context with regard for acceptable user waiting time caused by both 

processing and network transmission (Nielsen 1994; Nah 2004). Reducing the bounding 

box will result in both a smaller amount of data to transfer and less features to process. By 

scoping the set down to various smaller sizes represented by smaller bounding boxes we 

try to evaluate the performance and find the threshold for when the extended XSLT ap-

proach can be feasible in an interactive web/networked context as well as practical limits. 

The data has been imported into Geoserver and extracted as WFS calls to assure realistic 

formats and full schema compliance.  See appendix for samples of data. 

 

5.1.5 Testing basic performance optimization 

The tests with real data have been repeated with the Geometry Cache introduced in Sec-

tion 4.5.5 applied, measuring and comparing the performance gain with that of the base 

implementation. 

5.1.6 Test platform 
The tests have been performed by executing a JUnit test case from within the NetBeans 

5.5 beta 2 IDE on Windows XP. The hardware used was a Lenovo T60p laptop, with 

1GB of RAM and an Intel Centrino Duo processor running at 2 GHz. 

5.2 Chapter summary 

This chapter has presented the different aspects under focus and scenarios designed to test 

them. Examples/visualizations of both tests and data sets have been given. The material 

created has been tested and forms the source of the findings presented in chapter 6.  
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P ol y gon: Tot a l  ope r a t ion t i me  i nt e r se c t s ope r a t i on
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6 Findings 
This chapter presents the findings from the tests defined in chapter 5. First, the average 

performance times for the different operations and geometries on constructed data are 

presented in 6.1.1, 6.1.2, and 6.1.3. Summaries of all findings from tests with constructed 

data are presented in 6.1.4.  

The results from practical tests performed on real data from the Tana data set (introduced 

in 5.1.4) are presented in 6.2.1. The tests have been performed using both the base line 

and optimized approaches as presented in Sections 4.5.5, 5.1.4, and 5.1.5. 

6.1 Findings from tests with constructed data 

The aim of the test process with constructed data has been to uncover correlations be-

tween the different parameters and changes in the time needed for execution of the exten-

sion functions. The following is a presentation of findings found to be of significance, and 

a walkthrough of their indications. 

Unless noted, all times are in milliseconds. TTC is short for “time to complete operation”. 

Results from the tests can be used for uncovering strengths and possible bottlenecks. 

6.1.1 Total execution time predicate operations 

 

Figure 6.1 Total execution time for crosses 
on line string as the number of vertices in-
creases 

Results from measurements of total 

time spent for predicate operations 

on line strings and polygons indi-

cate that the number of vertices has 

an impact on time needed for processing; the 

time increases as the amount of vertices 

grows. Still, Table 6.1 shows a higher effi-
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Figure 6.2 Total execution time for intersects on polygon 
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ciency at higher volumes of vertices. This contributes to the impression that the Ge-

oXSLT framework scales reasonably well.  

The ratio between the number of vertices and time to complete (vertices/ttc) clearly 

shows an increase of efficiency in the number of vertices processed pr unit of time as the 

number of vertices pr call increases up to 400 vertices in Table 6.1.  

This can be an indication of the initial start-up cost for start-

ing the conversion process from node list to JTS Geometry, 

and that the overhead of using the bridge for JTS construc-

tion gets less significant as the amount of vertices in-

creases.  

 

Variation of digits/coordinate length 
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Figure 6.3 Variation of digits on crosses operation on points. Figure 6.4 Variation of digits on intersects opera-
tion on points. 

The results based on tests with the crosses and intersects operations indicate that the 

number of digits have a negligible effect on the total time for the execution of predicate 

operations. 

Variation of holes in polygons 

The results from running the “intersect” 

predicate operation on polygons with a 

varying number of holes indicate that holes 

are complex and expensive to process. 

Figure 6.5 Relation between number of holes in a 
polygon and the time needed for executing the “inter-
sects” predicate operation. 

Table 6.1 Vertices processed pr millisecond, 

 efficiency increases as amount of vertices grows 

Vertices Vertices pr 
ms 

5 12,10376978 

41 95,38568048 

401 274,0568579 

Polygon: Total operat ion t ime intersects operation
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The holes were all of equal size, with a diameter of 20 and 10 vertices. Table 6.2 lists the 

ratio between the number of holes and total execution time (holes/ttc) as the amount of 

holes increases.  

Holes Holes/TTC 
1 2,286898036 
10 5,704172347 
40 4,037835243 

Table 6.2 Changes in ratio between Time To complete and number of holes 

Based on both the table and figure, it seems that increasing the number of holes reduces 

the efficiency pr hole. Figure 6.18 shows how most of the time spent for predicate opera-

tions involving polygons with holes is used by actions on the geometry object. This may 

be interpreted as that the geometric complexity of polygons with many holes demands 

more resources for predicate calculations than the build process of creating the JTS ge-

ometry it self.  

6.1.2 Total execution time analysis operations 

Analysis operations seem to be generally more expensive than predicate operations. This 

is intuitive, as the category of operations demands more accurate results than true/false, 

and often involve the extra step of outputting and serializing a result geometry.  

Variation of vertices 

 

Figure 6.6 and 6.7 Correlation between number of vertices and total operation time for union operations on line 
strings and polygons 

Execution times for analysis operations as represented by the union operation on line 

strings and polygons generally follow the same pattern as for predicates, but with a higher 

cost. In the graphs above the vertices have been varied between 5 and 401.  
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Variation of digits  

Observations indicate that the number of digits have a relatively small impact on the time 

cost for union operations on polygons. This adheres to the results from tests of predicate 

operations with variations of digits.  

Polygon: Total operation time union operation
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Figure 6.8 Variations of digits and holes for union operations on polygons 

Variation of holes 

Polygon: Total operat ion t ime union operation
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Figure 6.9 Variations of holes for union operations on polygons 

Polygons with holes are expensive to process, as originally shown by the predicate obser-

vations. 

6.1.3 Division of Total Time To Complete between the different opera-

tions 

The graphs in this section show how time spent is divided between construction, calcula-

tion, and serialization phases. The graphs represent the most interesting findings because 

they give indications on the cost of integrating spatial functionality with XSLT relative to 

the overall time and calculations performed. As such, they make up the foundation for 

deciding where performance optimization can be applied with the most effect. The find-

ings here need to be viewed inline with the total time spent on each operation. For exam-

ple, for points, the relative time spent for constructing and serializing is large, but the total 
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time of the whole operation is significantly smaller than for that of line strings and poly-

gons. 

Line Strings 
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Figure 6.10 Variation in relative time spent on JTS construction for predicates on line strings 

Figure 6.11 Variation in relative time spent on JTS construction for analysis’ on line strings 

For predicate operations on line strings, the time cost of XSLT integration is generally 

around 20%. For analysis operations, the time to serialize the results back to a node for 

use in the XSL process causes the time cost to increase more. Increases in the number of 

vertices gives for substantially longer time needed to serialize the result, seeming to stabi-

lize at around 25% of ttc for serialization and 10% for construction. In total, the results 

indicate a time cost of ca 20%-35% for the integration of analysis operations on line 

strings with XSLT, depending on the number of vertices involved. 

Points 

The indication that the start-up cost is high 

relative to the calculation done on the JTS 

Geometry is confirmed when the division of 

time between construction and calculation is 

presented here. The cost for construction can 

be expected to be between 70-80% for predi-

cate operations on points, regardless of vari-

ance in digits. The high relative cost should 

be seen in view of the short total time spent 

for point operations compared to operations on other geometries. Section 6.1.1 and 6.1.2 

provide comparisons and visualization of measured time. As an example, the average to-

tal time for performing the crosses operation on points with 6 digits is ca 0.04 ms, while it 
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Figure 6.12 Variation of digits, relative cost of 
construction for points in predicate operations 
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for polygons is ca 0.29 milliseconds. Much of this difference can probably be explained 

by a minimum time needed for starting up the process for building the JTS geometry. 

When the JTS calculation time is so small, the build time becomes more significant. 

No operations have been executed as part of the test cases which gives an analysis opera-

tion on two points with point return. As the next best thing a dummy operation which just 

builds geometries based on point input for immediate serialization is used to provide the 

following ratios between JTS build and JTS serialization for points. 

Point: JTS Construction vs Serialization
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Figure 6.13 Construction time relative to serialization time for points, variation of digits 

The results indicate that for points, serialization is clearly more expensive than construc-

tion with regard to time cost, but as with the results of relative times for predicate opera-

tions on points, it is important to keep in mind the short total time compared to that of 

other geometries. 
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Polygons  

Polygon: Predicates
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Figure 6.14 Polygons; relation between construction and calculation phases in predicate operations as the num-
ber of vertices is increased. 
 
This section presents the relative times of the construction, calculation, and serialization 

phases for polygon geometries.  

According to these results, the relative time cost for constructing JTS geometries is not 

stable with regard for variations in vertices. 
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While the cost is relatively stable around 20% for line strings, it increases from 10% - 

40% for polygons as the number of vertices is increased. This may be due to a more com-

plex build process when the parsed coordinates are passed to the JTS Geometry factory 

while the calculation phase has more constant time consumption.   Analysis operations on 

complex polygons are something that could probably benefit from more detailed research 

to uncover possible bottlenecks in polygon creation. 
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Figure 6.15 Polygons; relation between construction, calculation, and serialization phases as the number of verti-
ces is increased 

The pattern found in the construction phase is similar in the time required for serializa-

tion. At the 401 vertices observation of Figure 6.1 above, the total required time is at its 

worst with the construction and serialization phases when combined representing ca 75% 

of the time cost for performed operations.   
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Figure 6.16 Polygons; relative cost of construction in predicate operations with variance of digits 
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Figure 6.17 Polygons; relative cost of construction and serialization with variance of digits 

The time cost for predicate operations on polygons is relatively high but stable at around 

40% relative to the total time to complete. This is significantly more expensive than the 

20% for line strings, but logical, as the construction process for polygons is more compli-

cated than that of line strings. The serialization in an analysis perspective is also stable, 

and levels off at around ca 30% as shown in Figure 6.17. The total time cost averages out 

at 60% in total relative to the ttc for the integration of analysis operations on polygons in 

an XSLT context. 
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Figure 6.18 Polygons; relative cost of construction in predicate operations with variance of holes. 

Figure 6.19 Polygons; relative cost of construction and serialization in analysis operations with variance of holes. 

As observed in the diagrams for operation running time, the processing of holes in a 

polygon is expensive with regard to time cost. These observations of time as divided be-

tween calculations and construction/serialization confirm that indication. The evident de-

cline in relative construction time as the number of holes increases attests how the con-

struction/serialization processes become less important factors in the ttc as the number of 

holes increases. 

6.1.4 Summary of findings from tests with constructed data 

Parameter TTC Construction Calculation 
Vertices    

3 0.66 24.66% 75.34% 

30 0.57 19.88% 80.12% 

300 2.73 22.47% 77.53% 

Table 6.3 Predicate performance on line strings 
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Parameter TTC Construction Calculation Serialization 
Vertices 

3 2.82 10.80% 87.42% 1.78% 

30 2.21 7.16% 84.81% 8.03% 

300 3.62 12.87% 61.78% 25.35% 

Table 6.4 Analysis operations on line strings 

Parameter TTC Construction Calculation 
Vertices 

2 0.04 67.06% 32.94% 

3 0.04 65.47% 34.53% 

4 0.05 40.83% 59.17% 

5 0.04 78.76% 21.24% 

6 0.04 82.26% 17.74% 

Table 6.5 Predicate operations on points 

Parameter TTC Construction Serialization 
Vertices 

2 0.05 24.64% 75.36% 

3 0.05 20.83% 79.17% 

4 0.07 15.62% 84.38% 

5 0.04 32.33% 67.67% 

6 0.03 41.60% 58.40% 

Table 6.6 Construction/Serialization for points 

 
Parameter TTC Construction Calculation 
Vertices 

5 0.41 7.96% 92.04% 

41 0.43 33.39% 66.61% 

401 1.46 59.77% 40.23% 

Digits 

2 0.25 40.57% 59.43% 

3 0.26 41.14% 58.86% 

4 0.26 43.11% 56.89% 

5 0.34 47.63% 52.37% 

6 0.29 45.71% 54.29% 

Holes 

0 0.29 63.22% 36.78% 

1 0.44 47.49% 52.51% 

10 1.75 29.29% 70.71% 

40 9.91 19.73% 80.27% 

Table 6.7 Predicate operations on polygons 
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Parameter TTC Construction Calculation Serialization 
Vertices  

5 0.30 12.38% 78.34% 6.09% 

41 0.53 27.75% 51.73% 27.05% 

401 2.30 33.37% 31.32% 61.12% 

Digits  

2 0.42 21.91% 55.82% 40.95% 

3 0.44 21.76% 57.27% 40.25% 

4 0.45 23.34% 54.62% 41.71% 

5 0.45 27.58% 50.67% 41.78% 

6 0.46 25.52% 51.15% 43.48% 

Holes  

0 2.86 11.13% 85.29% 35.55% 

1 2.20 14.53% 79.16% 28.20% 

10 3.58 16.48% 72.22% 22.12% 

40 13.98 14.33% 76.27% 13.88% 

Table 6.8 Analysis operations on polygons 

6.2 Findings from tests with real data 

This section presents the results of the tests performed on the Tana data set.  

The baseline approach presented first, uses the implementation of the operations as tested 

with the constructed data and hence processes everything straight forward. The Optimized 

approach takes advantage of caching geometry objects which are used many times, and as 

such saving most of the overhead used to construct the JTS geometry repeatedly. 

The description of the tests done can be found in Sections 5.1.4 and 5.1.5. 

6.2.1 Base-line approach 
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Figure 6.20 Performance times for tests 1-4 on Tana data. 

Figure 6.21 Performance times for tests 5-7 on Tana data. 
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Testcases 8-10 on Tanadata
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Figure 6.22 Performance times for tests 8-10 on Tana data. 

The practical test of counting houses within 20 meters from the road has been executed 

on all ten scenarios. Note that the results are shown in seconds as opposed to milliseconds 

used on the diagrams covering results on isolated operations for constructed data. See 

5.1.4 for descriptions of the test, scenario details and visualizations of the Tana data. The 

results show that using a non-optimized approach, things start to slow down somewhere 

between case 4 and 5 with an ever increasing time cost as the data set gets larger.  It is 

important to be aware that the data sets given by the different bounding boxes are not lin-

ear in growth. The discussion around performance thresholds can be found in chapter 7.  

To understand the reasons behind the growth, it is necessary to analyze the stylesheet de-

fined in 5.1.4 and the spatial extensions used in view of the test results from singular op-

erations on constructed data. As earlier mentioned, the templates use a recursive approach 

to union all roads into one multi line string which is then used to construct a buffer repre-

senting the 20 meter zone as explained in Section 5.1.4. A major source of time consump-

tion is the repeated use of the “within” function as shown in Table 5.3. The within func-

tion is used to check if a point (building) is within the 20 meter zone (buffer) of the road. 

Each time the function is called, the same buffer variable needs to be converted to a geo 

object using the GeoXSLT framework. No efficiency is gained by reusing geometries. 

The within function is called up to 9848 times depending on the number of buildings 

(points) in the data set with large polygons representing the buffer (Table 5.2 presents the 

different test cases). This shows that the baseline implementation of the GeoXSLT 

framework has a weakness when it comes to repeated use of geometries. 
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6.2.2 Tests of basic performance optimization 

A through optimization of the JTS construction process has been outside the scope of this 

thesis. This section presents tests with the “Geometry Cache” mechanism as presented in 

Sections 4.5.5 and 5.1.5. The Geometry Cache minimizes the time needed for repeated 

construction of geometries already used by keeping ready built geo objects at hand. This 

section presents the findings from running the tests with Tana data (Table 5.2 presents the 

different test cases).  

Visualizations of execution times and performance increase relative to the base line ap-

proach are shown in Figure 6.23.  

 

Figure 6.23 Performance increase when using “Geometry Cache” on Tana data 

In general, the test cases gain a 60 % performance increase by using the Geometry Cache. 
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6.3 Chapter summary 

This chapter has presented the results of the tests defined in chapter 5 and provides an 

overview of performance and how the bridging between JTS and the XSLT process af-

fects it. Further it has shown experiences with real data, and how a simple caching 

mechanism can be used to increase performance significantly. 
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7 Discussion 
This chapter discusses the research objectives in view of the findings and previous re-

search.  The research objectives are answered as follows: 

Research Objective 1 

To answer research objective 1, section 7.1 presents a line of arguments concluding with 

the general suitability of XSLT with Extensions for the processing of GML. 

Research Objective 2 

Performance 

Section 7.2 gives a discussion on the general performance issues and aspects, before de-

tailing on the various phases of constructing, calculating, and serializing geometry repre-

sentations in an XSLT context.  

Flexibility 

As an example on the flexibility and feasibility of the system implemented, section 7.3 

features argumentation and references to practical examples on why and how generaliza-

tion/simplification can be performed with XSLT, shedding a new view to the conclusions 

of previous research. The demonstration around integration of simplification operations in 

Section 7.5 also shows the ease with which new functionality can be integrated. It also 

presents suggestions for new enhancements opening up to even more power for the trans-

formation process. 

Research Objective 3 

Section 7.4 gives a walkthrough of the simplification of the development process 

achieved by bringing spatial functionality to XSLT. 

 

The chapter is ended with a walkthrough of a practical application of the GeoXSLT 

framework where the features discussed are demonstrated in Section 7.5. 
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7.1 The suitability of XSLT with extensions for processing Geo-

data 

Research objective 1 places a focus on the possibility of using XSLT with extensions as a 

medium for processing geospatial data. The experiment done here is based on the as-

sumption that data is of an XML format with at least the geo part of features encoded 

inline with the GML schema (herein the Simple Feature Specification) as specified by 

Open Geo Spatial/ISO (Ryden 2005).  Research objective 1 as defined in 1.1 is hence in-

terpreted as a question regarding the technical possibility of processing GML and per-

forming spatial operations on the data from within the XSLT process. As GML is a XML 

format (Cox, Cuthbert et al. 2002; OpenGeoSpatial 2002; Lake 2004), and XSLT is a 

stylesheet language for XML (Clark 1999), there is no technical reason why XSLT cannot 

work with GML. Non-spatially aware processing of GML with XSLT has also been 

documented possible by other research papers (Harrie L. 2003). General extension of 

XSLT is defined by W3, and support for developing such extensions is provided in major 

processors.  The integration of spatial functionality through extensions of the XSLT lan-

guage has previously been introduced by Lehto and Sarjakoski (Lehto and Sarjakoski 

2005) as a field open for more research. Harrie and Johansson refute the use of 

XSLT/extensions for geospatial operations due to the inherent lack of “object interaction” 

in XSLT (Harrie L. 2003). While the re-iteration capabilities of XSLT are not as evident 

as those of e.g. XQuery, Object interaction and contra indications on the lack of such in 

practice are discussed with closer detail in 6.3.1. In general, the system created as part of 

this thesis provides an implementation of XSLT extensions for certain geospatial func-

tions implemented in Java. The implementation has been tested with subsequent interest-

ing findings confirming that technically, it is very possible to extend XSLT with spatial 

capabilities. A certain time overhead for conversion of data between the stylesheet and 

processing extensions must be expected, but as discussed in 6.2 and 6.4.2, the cost can be 

acceptable and in some cases outweighed by the potential performance gained by less 

wait for network transmission time. These findings give a clear indication that XSLT with 

extensions certainly can be used with success for transforming and processing spatial data 

encoded as GML. 
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7.2 Performance; Limitations and possibilities 

This section evaluates the findings from developing and testing the extension framework. 

Section 7.2.1 discusses the performance of singular operations and how the total time is 

divided between the different phases of the extension functions. It also presents some as-

pects of the construction process that do need improvements. Section 7.2.2 focuses on the 

performance in practical settings with real data. Findings are interpreted and discussed in 

view of view of different perspectives on time. This section also discusses enhancements 

to improve general performance of the implemented system, and evaluates the significant 

effect of the “Geometry Cache” introduced in Section 4.5.5. 

7.2.1 Performance of singular functions 

The findings from measuring the performance and workings of specific extension func-

tions in chapter 6 provide clear indications that there is a given overhead for the two-way 

conversion of data between XSLT and JTS. This section attempts to identify and analyze 

the reasons for the overhead cost to open up for further improvements and patterns of use. 

The processing time of an extension function is made up of two or three phases depend-

ing on the return type of the operation. The construction phase, where JTS geometry ob-

jects are created from node lists; the calculation phase, where calculations on the JTS ob-

jects are executed; and the serialization phase, where results from the calculation are con-

verted to node lists for return to Xalan.  

Construction phase 

In a predicate context where the result is a Boolean value without need for serialization, 

the construction phase consumes ca 20% of the total execution time for line strings and 

55-88% for points. For polygons, the cost is relatively stable at 40%-50% for geometries 

without holes, and varies between 10%-60% for polygons with holes. As operations on 

polygons with holes generally seem to take the most time to complete, we will focus 

them.  

Predicate operations   Polygon Line String Point 
 Vertices 1.46320002 2.72643867   
 Digits 0.28635205  0.04429613 
 Holes 9.9062982   
Analysis operations      
 Vertices 2.29832567 3.61952981   
 Digits 0.46381313  0.03397368 
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 Holes 13.97678751   
     

Table 7.1 Maximum values for the time to complete for all test cases performed on 
the constructed data as described in chapter 5 and 6. Times are in milliseconds. 

Table 7.1 shows the maximum recorded values for all test cases on constructed data. De-

tails, visualizations, and parameter values are available in chapter 6, which presents the 

findings of the tests specified in chapter 5. 

Polygons 

For polygons with holes, it is interesting to 

note that the fluctuation is very visible as 

shown in Figure 6.19 Polygons; relative cost of con-

struction and serialization in analysis operations with vari-

ance of holes. In the diagram one can clearly 

see that the time cost of the construction 

phase decreases relative to the calculation 

(JTS Execution) phase as the number of 

holes increases. This is interesting as the holes used in the polygons are identical; it is 

only the number of instances that is increased. In other words, increasing the number of 

holes in a polygon seems to be more expensive with regard to the calculation phase than 

the construction phase. The results from chapter 6 indicate that in general, operations on 

polygons with holes require the longest time to execute (build, calculation, and serializa-

tion combined). This is also shown in Table 7.1. While optimizing the calculations of JTS 

has been outside the scope of this thesis, it is of interest to understand the reasons behind 

the costs of constructing the JTS geometry object. By such an understanding one is able 

to provide input for improvements of the build process. The observation that the construc-

tion phase is relative to the calculation phase more expensive for smaller amounts of 

holes brings us to the impression of a start-up cost for geometry parsing that does not 

scale down very well for polygons with holes in particular. The build phase is imple-

mented in the level 3 classes which are documented in 4.5. As documented with closer 

details in 4.5, the construction phase is organized as a loop iterating through the children 

of the node list as received from Xalan. The first node found to be a GML node is then 

Figure 7.1: Polygons with 40 holes 
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sent to a “SubHandlerFactory” for delegation of the correct handler. What makes the 

polygon handler differ from other handlers is that while points and line strings can extract 

the coordinate string for direct parsing, the polygon handler has to execute two additional 

searches within its own node list. The first search is for the singular “outer boundary”, 

and the second for a possible series of “inner boundaries”; holes. For each linear ring 

found in the outer boundary or inner boundaries a sub handling equally expensive as for 

the line strings or points has to be executed. This means that for polygons, the construc-

tion phase involves two searches and the creation of minimum one basic geometry in-

stance (linear ring for the outer boundary) in addition to the processing in common with 

other simple geometries. On top of this, a validation and possible rebuild of the outer and 

inner rings is done to bridge between the difference between JTS and eventual confor-

mance with the polygon definition of ISO 19107 (ISO/TC211 2003) in the data. ISO 

19107 defines polygons to have counter clockwise outer rings and clockwise holes. This 

is understood to be necessary for some algorithms and bearing calculations where it is 

necessary to know the up and down of a polygon. The GML specification references the 

ISO 19107 and states that it should be conformant . The SFS-SQL specification (ISO 

19125-2) (Ryden 2005) enforces no rule on this. In JTS this “normal form” is defined in-

versely, with outer ring clockwise and holes counter clockwise (Davis 2003) (Köbben 

2005). While I have not timed the cost of this validation/rebuild process, it could be worth 

investigating how expensive it is with regard to time, and if polygon parsing in the con-

struction phase should assume that the coordinate sequences of outer and inner rings are 

provided in a valid/conformant state for JTS normal form. It is possible to convert JTS 

polygons to JTS normal form with the provided normalize method (Davis 2003; Davis 

2004), but as noted in (Köbben 2005) and in Javadocs, it returns rings in a CW-CCW 

fashion, - which is the opposite of the ISO standard. The maintainer of JTS seems reluc-

tant to change this according to (Köbben 2005). The other possible area of high cost in 

the polygon build process is the mentioned searches executed to find the linear rings of 

inner and outer borders. As the two searches are executed on the same node list, - which 

has already been iterated (shallowly) by the original search detecting the polygon, it could 

very well be that time and resources could be saved if either the original search was able 

to do a deep search, or at least that the two searches executed in the polygon handler were 

combined into one. By doing this we can assure that none of the nodes in the list are read 
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more than once, and also avoid the possible start-up overhead of initiating three searches 

instead of one. The issues around rationalizing the number of searches for sub geometries 

are also of relevance for the performance of multi geometries, as these are made up of a 

number of basic geometries as “members” of the complex geometry in the same way as a 

polygon has “children” that define its multiple geometric properties. 

Possibilities of improvement for the construction phase 

Coordinate parsing 

The parsing of pure coordinate strings is common for all geometries and is a field that 

also has areas for improvement. While use of the “nodeSearch” function to find the coor-

dinate node is explained in 4.5, it is quite similar in logic to the various gmlSearch meth-

ods used with polygons as described in Chapter 3. This implies that also this method 

could be marginalized by allowing the original iteration of the node list to detect the node 

element containing the coordinate string. 

Generalization and use of static types 

During testing, a relatively high spread in the sampled observations was detected. This 

can to a certain degree be explained with the not ideal test-platform which was vulnerable 

for among many things Windows’ up and down prioritizing of threads while running 

(several non related utilities were running on the computer at the time of testing). But also 

the fact that the code has several redundant class instances local to the various handlers. 

This can possibly result in a poorer runtime performance with more variance in execution 

times. A major improvement, both with regard to the execution speed and memory use 

would be to do a refactoring process of the handlers and generalize out common class in-

stances and to a certain degree place them in static contexts. Another advantage of this 

would of course be the general improvement in code quality and readability. 

Calculation phase 

The calculation phase consists of calling the corresponding methods on the generated JTS 

object of the extension function called. Performance measured relative to the other phases 

is available in section 6.1.3. In this thesis, no optimizations or changes to the JTS meth-

ods have been implemented. Even so, it should be of no problem to use various function-

ality of for calculation optimization by calling or setting those properties from the level 2 
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classes were the calculation methods are called. The technical and developer references of 

JTS both mention several approaches for increased performance (Davis 2003; Davis 

2006). 

Serialization phase 

The serialization of JTS objects to Node objects compatible with Xalan is a straight-

forward process documented in 4.5.4. Findings from serialization of line strings, points, 

and polygons in Chapter 6 indicate that as the series of coordinates or complexity of the 

geometry to serialize increases, the time needed for serialization increases as well. This 

correlation between data to output and required time to serialize, does not necessary 

match the precision level or number of vertices in the calculation; as it is the complexity 

of the resulting geometry that gives the size of the result to serialize. But, if e.g. the preci-

sion level or number of digits is high, it will make the impact of a large and complex re-

sult geometry more powerful. The implementation does have shallow prototypes of node 

objects representing various geometry objects for quicker serialization by cloning instead 

of building them from the ground up. But this collection could be more elaborate. With 

shallow it is here meant that the prototypes to a very little degree are singular node ele-

ments with namespace, prefix and name set. The encoding process has to clone each 

node, insert eventual values (such as coordinates in a coordinate node), and then attach 

the nodes together. By having deeper prototypes; nodes which have all the components 

required ready available instead of being singular entities, the time required to assemble 

the serialized nodes can be reduced by an unknown margin. This would probably be of 

most benefit to those cases were the serialization phase is large relative to the other 

phases. Such cases are serialization of points and larger polygon and line strings.  

7.2.2 Execution performance in practical contexts 

The implemented system for enabling spatial transformations is assumed to be used as a 

component in applications working in mainly two distinct perspectives. One is the inter-

active perspective defined to be a setting where someone or something to a certain degree 

expects immediate response to operation calls. Examples are standalone applications or 

browser based clients accessing data directly, and server applications such as web ser-

vices using the library to provide some kind of middleware data transformation or proc-

essing for external applications, such as in (Lehto and Sarjakoski 2005). (Nielsen 1994; 
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Nah 2004) are some of the many papers providing guidelines and categorizations of toler-

able waiting time. A presentation of the categorization as adopted in this thesis is pre-

sented in section 6.2.2.1 below. The other perspective represents typical batch operations, 

where the tasks are regarded as jobs to be executed independently of users or processes 

waiting for the results right then. In the batch context, immediate response seems to be of 

generally less importance, with the main focus set on throughput capabilities, job schedul-

ing, possibilities of handling larger amounts of data, and performance gains by running 

several jobs (processes) in parallel to mention some. 

Acceptable waiting time for interactive contexts 

According to (Nielsen 1994), basic advice on response times for interactive applications 

has been more or less unchanged within the last thirty years. In (Nielsen 1994) Nielsen 

has set out limits that operations within an interactive context should adhere to provide an 

optimal user experience regardless of the application implementation. Below are the lim-

its as interpreted in this thesis: 

Instantaneous: 0.1 second. This limit specifies the max time an operation can take while 

still giving an impression of instantaneous reaction. Such response is expected for e.g. 

displaying letters on the screen as one’s typing in a word processor or visual response 

when clicking on GUI components. If the operation takes more time than 0.1 second the 

user will notice that the computer is working on something. 

Noticeable: 1.0 second. This is the max time noticeable operations can take without the 

user sensing the system as “sluggish”. If an operation needs more than 1 second to com-

plete, it should provide some kind of indication that it is working. (Cursor shaped as a 

time glass is suggested by Nielsen). 

Tolerable: 10-15seconds. For general contexts, if an operation needs more than 10 sec-

onds to complete, the user should get an indication of the remaining time before the task 

is completed. Still, in (Nielsen 1994; Nah 2004) it is observed that in a web-context, users 

can accept up to 15 seconds for a page to download, as web users have “been trained to 

endure so much suffering that it may be acceptable to increase the limit value to 15 s” 

(Nielsen 1994). 

The interpretations in 6.2.1.2 review the findings in view of these categorizations and dis-

cuss how the implemented library fits into each of them. 
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Interpretation of findings with regard to waiting t ime in an interactive context 

All total execution times used in these discussions are based on findings from the tests 

performed on the Tana data-set in 5.2 and with the cache prototype enabled. The cache 

was used because it yields considerably higher performance than the original/underlying 

implementation. See Sections 4.5.5, 5.1.5, 6.2.2, and the section about caching below for 

details on execution times and discussion of the cache prototype. 

Transformations within instantaneous time  

Given a realistic scenario with an application utilizing the library, the stylesheet would 

probably be loaded and ready for execution. Still, the job fetching the geospatial data 

(GML) to be processed typically needs to load it from sources situated on externally, such 

as WFS servers. Just fetching the data would in many cases probably imply a waiting 

time of more than the maximum of 0.1 seconds to be within the “instantaneous” limit de-

fined in 6.2.1.1 regardless of how data is processed locally. Disregarding this, it is here 

assumed that the GML has already been loaded, e.g. by accessing it through a local cache, 

or that the application thanks to its spatial capabilities (as mentioned in 1.2) is re-iterating 

on data available from previous calls during its session.  

The findings indicate that the relatively complicated transformation (as of the transitive 

template use) used in the Tana data-set cannot transform much data within 0.1 seconds.  

Case Time to complete 

1 0,33122813 
2 0,339242278 
3 0,457767119 
4 1,06840199 

Table 7.2 Time needed to complete test cases 1-4 on Tana data as defined in 5.1.4 
and reported in 6.2. Time measured in seconds. 

Table 7.2 shows that for the smallest subset tested, consisting of 3 road stubs and 24 

buildings encoded in a 16 kb file (see 4.7.4 for details on test) time was exceeded with 

more than 300% relative to the 0.1 second limit. Among the possible interpretations of 

this result is the indication of XSLT as not being an ideal approach for instantaneous 

transformations of data, but also that the cost of using the extensions is too high, or that 

the test executed is too complicated. To find out more about the smallest possible time the 

specific transformation can be executed on the Tana data using the test equipment (see 
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4.7.5), two cases with even smaller subsets have been created. These tests have only been 

tested using the cache-optimized implementation. 

 

Case Area Roads Buildings Size (kb) Time to complete 

0.1  1 1 2 0,049887346 
0.2  1 7 5 0,055344185 

Table 7.1 Extra small subsets of Tana data to probe for minimum possible execution 
time on operations defined in 5.1.4 

These findings indicate that the implementation has a relatively low capacity for the 

amount of features/size of data-set that can 

be processed instantaneously.  

Figure 7.1 Visualization of test case 0.2. 

But, as it seemingly is possible to achieve 

the performance with a minimum of features 

processed there are approaches that can pos-

sibly circumvent the challenge to a certain 

degree. One alternative is implementing an incremental transformation process; process-

ing and rendering only smaller bits of the feature-set to provide a stream of updates, 

somewhat like how Google Earth renders and displays satellite and aerial photos as they 

are received in the client. This would probably incur a performance loss with regard to 

total processing time, due to the increased time overhead for the multiple transformations 

and renderings. 

Possibilities for transformations within noticeable time  

While it does not seem that the possibilities for instantaneous transformations are optimal, 

the feature capacity is quite larger when operations can occur within a 1 second time 

frame. Findings from the Tana data-set indicate that the complex transformations tested 

can be executed within 1 second for data sets a little smaller than case 4 (4.7.4).  



  
  

88 

 

Figure 7.2 Visualization of Tana data, test-case 4 

As the figure above shows, data sets of similar size as case 4 of the Tana data are large 

enough to be of practical use in contexts such as web mapping etc. 

Possibilities for transformations within tolerable time 

For transformations within a timeframe of 10-15 seconds, relatively large amounts of fea-

tures can be processed. In the Tana data-set, cases 5 and 6 are performed within a time-

frame in the vicinity of the limits for tolerable time.  

 
 
Case Area Roads Buildings Size (kb) Time to 

complete 
5  201 1 132 643 5,805609651 
6  425 2 145 1 242 22,63007589 

Table 7.3 Tana test cases 5 and 6 with findings 

 

Figure 7.2 Relation between fea-
tures (buildings + roads) and proc-
essing time for Tana data, cases 3-6 

The diagram to the left is used to il-

lustrate the approximation on the 
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likely amount of features the implementation will be capable of processing within the tol-

erable waiting time. 12.5 seconds has been chosen as the intersection point, as this is be-

tween the two suggested limits (10-15) in 0 and should allow for some flexibility consid-

ering the estimation’s accuracy. The intersection along the Features axis occurs at ca 1948 

features. As the average ratio between road and building features of test-case 5 and 6 is 

1:5.33944981 we can estimate that within a tolerable time, the implementation can trans-

form a dataset of ca 307 roads and ca 1536 buildings with the relatively complex tem-

plates. 

Processing time vs. Transmission time 

In (Lehto and Sarjakoski 2005) the authors have created a system which is using WFS as 

data source and produce SVG visualizations of generalized data which are then rasterized 

to PNG.  The conversion of GML returned from WFS to SVG is achieved with XSLT 

using extensions to support the generalization operation. While they do not go into im-

plementation details, and do not report on specific experience with the extensions, they 

identify two bottlenecks.  

1. The request and transmission of data returned from the WFS takes 30-50% 

of total processing time 

2. Rasterization of SVG to PNG 34-54% of total processing time 

In addition, as they are working with mobile terminals, they observe that transmission of 

generated PNG files take almost four times of that spent for generating the image (with 

PNG files varying between 85-133kb). (Lehto and Sarjakoski 2005) This indicates that 

for an application using WFS to get geospatial data for visualization, the time induced by 

using XSLT to transform the data will be of minor importance relative to re-

quest/transmission of source data and rasterizing.  In a mobile context, the processing 

time will in anyway be dwarfed by the transmission time of the result to the client given 

the file sizes as presented by (Lehto and Sarjakoski 2005). These findings are inline with 

the results from testing done with the Tana data: GML files get relatively large and re-

quire quite some time to download, thus it may be the amount of data to transfer that is 

the main limiting factor of the transformation process, not the XSLT process itself. 
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Interpretation of findings with regard to a batch context 

In a batch context, the performance speed is also of importance, but along with other pa-

rameters, it is of equal relevance to consider the capabilities of handling larger sets of data 

than what is possible in an interactive context. The implemented library has successfully 

been tested with up to 12266 features in test case 10 of the Tana data. While this did 

work, special care had to be placed in the design of the templates. It seems that straight-

forward recursion results in stack-overflow errors at relatively shallow depths (ca 1000) 

for Xalan based implementations. A “divide-and-conquer” approach to recursion solved 

this. 

Enhancements for the improvement of general performance 

This section gives a walk-through of different approaches to optimize the speed of con-

struction and serialization phases. While the issues discussed in 0 and 0 focused on weak-

nesses and possible improvements in the existing implementation, the points below intro-

duce ideas and features independent of the existing code base.  

Caching 

An approach with seemingly great potential for performance improvement is to cache the 

parsed geometry objects. The idea presented here is based on the observation that con-

structing JTS geometries is an expensive process. In many cases an operation is executed 

on the same feature (geometry) many times. Such is the example with the Tana-data. To 

count how many buildings that are situated within 20 meters from the road, each building 

(point) is checked for presence within a polygon representing a 20 meter distance buffer 

from the road. The check results in the same polygon node list representation being sent 

to the “within” extension operation with each and every point. An early prototype of the 

cache approach has been implemented and tested with the Tana data. See Sections 4.5.5 

and 5.1.5, and 6.2.2 for implementation details and test results. Using the cache seems to 

yield higher performance even for very small sets of features. While the overhead of re-

parsing the same polygon several times is relatively low compared to the cache approach 

with regard to total execution time for very small datasets, the time saved by using cached 

versions of the polygon is close to 50% already by test case 2.  (See Chapter 5 for details 

on the various test cases of the Tana data). Table 7.4 below shows the percentage wise 
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improvement in execution time for each test case of the Tana data when using the cached 

approach.   

Whilst performance gains have already been demonstrated 

with the prototype, there is a need to test this further and 

check for potentially faster lookups than what is done in the 

prototype. It should also be done some research into a more 

exhaustive use of the approach, as it today is only used on 

multi geometries and line strings. Interesting perspectives 

would be to check for possibilities on caching whole opera-

tions, to save both construction and calculation time. Of course, the caching of serialized 

geometry object would also be of interest to research closer. It is important to keep all 

such functionality open for easy customization and configuration by the users. This is dis-

cussed further in 7.3.2. 

Indexing 

An interesting alternative or compliment to caching parsed geometries and results of op-

erations is to keep a full or partial index table with references to all features in the GML 

being processed. An identified bottleneck in the implemented approach is the search and 

construction process of geometry objects. By having an index of all features, a quick 

look-up based on the node list hash code  (always provided for all Java objects, (Sun 

2004)) would eliminate any iteration on node lists during execution. The table could up-

date its pointers from pointing to “raw” node data to parsed versions of the geometry ob-

jects as they get parsed. More advanced implementations in e.g. web contexts, could re-

tain the cached objects in a static index class, so that multiple transformation sessions can 

benefit of the cached objects instantaneously.  

7.3 Flexibility 

With regard to research objective 2, this section discusses aspects around the possibilities 

and limitations of flexibility to the transformation process implied by using GeoXSLT. 

Test case Improvement 
1 13,36% 

2 45,04% 

3 56,20% 

4 68,65% 

5 71,85% 

6 70,27% 

7 71,15% 

8 69,61% 

9 68,71% 

10 67,42% 

Table 7.4 Improvements in performance time for the cached approach compared 
with original (non cached) approach. 
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7.3.1 Integration/Extension of functionality 

The modular design of the GeoXSLT framework was created with openness for integra-

tion of additional spatial functionality in mind. That is why the architecture as presented 

in Section 4.1 is divided into front-end (level 1), implementation (level 2), and handlers 

and factories (level 3) levels. The core functions of converting back and forth between 

geospatial objects and XSLT is contained in level 3 and accessible to implementations of 

geo operations in level 2 through a small interface. As long as the geospatial (JTS) objects 

created by GeoXSLT support the operations desired, implementing spatial functionality 

can be achieved in just a few steps. In general, it is just a matter of defining the interface 

in level 1 and a straight forward implementation of logic in level 2. The rest is handled by 

the GeoXSLT framework. The practical application presented in Section 7.5 includes a 

thorough example of the simplicity with which GeoXSLT can be extended with addi-

tional spatial functionality. Although GeoXSLT was designed and tested with 

Xalan/XSLT, the use of node lists as parameters opens up for use in pure Java applica-

tions as well.  

7.3.2 Ideas for improving flexibility 

Configuration  

The configuration alternatives of the GeoXSLT implementation are in the current version 

hard coded in a static configuration class and set directly in various classes. This is not 

inline with the idea of enabling independence from the underlying software implementa-

tion. There are several approaches to solve this. While the implementation today only 

uses extension functions which are mapped to the corresponding methods, the XSLT 

specification also allows for the use of extension elements. These are as implied by the 

name distinct elements contained within an extension namespace. The specification de-

fines them as “…The element extension mechanism allows namespaces to be designated 

as extension namespaces. When a namespace is designated as an extension namespace 

and an element with a name from that namespace occurs in a template, then the element is 

treated as an instruction rather than as a literal result element. The namespace determines 

the semantics of the instruction” (Clark 1999). In other words, the extension elements can 

be used to pass initial instructions to the processor/framework with configurations of pre-

cision models, validation levels, and more. Additionally, the interaction between exten-
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sion elements and the Java implementation avails more context information than ditto for 

function extensions. For example, Xalan allows access to both the XSL processor context 

(org.apache.xalan.extensions.XSLProcessorContext) and the extension element 

(org.apache.xalan.templates.ElemExtensionCall) from the Java handler of the extension. 

These objects give the handler access to the complete stylesheet, XML sources (very in-

teresting with regard for indexing) and more (Apache Xalan Community 2005). While 

this approach certainly is of interest for more research, there is a need to be aware of a 

limitation. An important performance factor is the support of compiled stylesheets; tran-

slets or XSLTC (Apache Xalan Community 2005). The XSLTC XSL processor translates 

stylesheets into Java class files which then can be used repeatedly for transformation with 

high performance. The Xalan XSLTC processor does not support the use of extension 

elements. Another and maybe more viable approach is to use a framework such as Spring 

for configuration. Spring provides what is called “Injection of Control” which allows Java 

classes implementing the bean interface to be configured with XML files and hence be 

configured during runtime (Harrop and Machacek 2005). Implementing this should not 

give any difficulties, only minor changes to the Configuration class and a general clean-

up of code. 

Geographic axes 

There is already a large set of axes available in XPath (Holzner 2001). These axes are 

very powerful for the specification of filters and various stylesheets in this thesis apply 

them in relatively complex queries. Still, in a context of spatial data, there is a need to 

orientate in a geometric perspective. There should be a possibility of defining a pattern 

matching elements along a given vector. With this functionality, one could do a search for 

all elements (or special elements) at e.g. 90 degrees of the current element. Implementing 

this can be done in many different ways, but this thesis suggests an EXSLT function us-

ing the extension bridge provided here. By getting the coordinates of the center-point for 

each geometry object, calculating the angle between two points is very much possible. 

JTS (and others) also provide the necessary means for calculations between different 

SRS/EPSG. It is also of interest to note that JTS provides a “bearing” method which can 

be used to calculate in which way different features point. The JTS “distance” method is 

also of relevance, especially with regard for cases where one need to add non-geographic 
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features to a map, such as labels, signs, and text to be placed at certain distances from the 

targeted feature. 

Spatial document function in XSLT 

A powerful feature of the XSLT language is the “document(URI)” function (Clark 1999; 

Holzner 2001). For transformations on non-spatial XML this function can be used to in-

teract with external resources during transformation. This way, transformations can be 

performed on a minimal source tree and incrementally load external resources as needed. 

Usually, the document function is used on local files or URLs accessible over HTTP 

GET. When used in a GML context, there is a challenge with the complex query/filter 

format used during interaction with WFS servers. Table 2.12 lists a typical WFS query. 

What is needed is a document(URI) function which can take a payload containing the 

query/filter that is sent to the URI with the HTTP POST method. By such, the document 

function could be used to fetch features as needed during runtime achieving the same ad-

vantages as for non-spatial XML. As an example one could use data from one WFS 

source for the initial source tree and select some of the features based on calculations with 

the GeoXSLT framework. For the selection one could then fetch other details from a sec-

ond WFS. Everything performed from within the same XSLT template and transforma-

tion. 

7.4 Consequences for development 

This section provides an answer to research objective 3, and argues how the integration of 

spatial functionality made possible by the implementation created will have a positive ef-

fect on practical development with spatial data. 

7.4.1 Less surrounding complexity 

The work with creating and performing all the test cases has shown the simplicity of 

processing spatial data with the implemented GeoXSLT framework. While other ap-

proaches require the user to setup and configure various supporting toolkits just to start 

working on the data, experience shows that this approach allows loading and processing 

spatial data without any changes to the existing code underlying the transformation. This 

means that one can use any XSLT processor supported by the framework and start proc-

essing GML with spatial functionality without changing a thing. This allows the devel-
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oper to focus on using the spatial functionality, instead of implementing or integrating it. 

All that is necessary is to provide the jar file containing the spatial extension frame work 

on the classpath.  This allows for easy integration into existing systems, e.g. web applica-

tions with JSTL (Sun 2006) based JSP pages, where spatial transformations now can be 

performed with minimal code without having any impact on other parts of the application.  

7.4.2 Code readability 

When compared with general programming languages, XSLT is a simpler language with 

focus on the flow and transformation of data. Previous research and Chapter 3 defined the 

need for syntax on the spatial functionality that follows the same patterns as those native 

to XSLT. By such, the simplicity already inherent in XSLT is conserved, and usage of the 

extensions intuitive for developers. The implementation of the framework supporting the 

spatial operations succeeded in achieving this, as demonstrated in the stylesheets used for 

testing both constructed and real data in Chapter 6. The result is that standard spatial 

functionality as defined in Chapter 3 integrates fully with the standard XSLT used in the 

templates without obfuscating the code readability. Additionally, the simple syntax of the 

operations defined is intuitive and easy to use. The extensions open up for different ap-

proaches to the creation of XSLT templates, and it is up to the developer whether to pack 

much functionality into a singular XPath statement, or to focus on readability by spread-

ing the logic across several operations or templates. The spatial functions work just as 

well with any approach.  

An issue that one should be aware of is the challenges associated with “re-processing” the 

output of templates already ran inside the current XSLT process. The output from tem-

plates is represented as result-tree fragments, which only supports string operations (Clark 

1999). While this is discussed with more detail in Section 7.5, it is not specifically related 

to geospatial data, and as showed, solving it by converting the fragments to node sets is 

not a problem. 

7.4.3 Reuse 

Application level 

The Model-View-Controller (MVC) pattern defines an approach to programming where 
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application and business logic represented by the “model” is kept separate from the pres-

entation/user interface, represented by the “view”. A “controller” mediates the interaction 

between the two components (Buschmann, Meunier et al. 1996). 

With regard to development patterns focusing on the separation between presentation and 

application logic, XSLT can be a viable approach to generate the views used for presenta-

tion. This is assuming that the underlying data model can be represented as XML. While 

MVC have several benefits, such as support for multiple views of the same model and 

“pluggable” views and controllers (Buschmann, Meunier et al. 1996), an acknowledged 

liability is the intimate connection between view and controller (Buschmann, Meunier et 

al. 1996). When using XSLT for processing geospatial data, the controller has to accom-

modate the handling of spatial operations, hence tightening the connection between the 

view (XSLT template) and the controller.  This makes generalization of the application 

code in the controller more difficult, obfuscates the controller implementation, and com-

plicates the use of different views of the same model/using the same view on multiple 

controllers.   

By introducing spatial functionality to the XSLT process, we have made it easier to de-

couple the XSLT view from the controller and model. The increased decoupling can 

make it easier to reuse both the XSL template and support better code generalization in 

the controller. The increased level of distinction between the view and controller, may 

also make it easier for developers to focus on the task at hand: Developers of views can 

concentrate on creating the view without interfering with the controller or other applica-

tion level code.  

Template level 

Code reuse is well supported at the template level of XSLT. By developing general tem-

plates for handling various features, cartographic and non-cartographic alike, specific 

transformations can be a matter of just applying the templates desired. 

7.4.4 Possibilities for extension 

Integrating custom or missing functionality into the framework has been an important 

goal in the design of the implementation done. Chapter 4 discusses the aspects around 

design and implementation with regard for integration; while Section 7.5 presents an ex-

ample of how custom spatial operations can be integrated using the construction and seri-
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alization facilities provided by the framework. The working prototype and demonstration 

in Section 7.5 give weight to the claim that the modular architecture supports extensions 

with new functionality quite well. 

7.4.5 Possibilities for implementation on other platforms 

Libraries similar to Java Topology Suite with full or partial support for SFS are available 

for most popular platforms of development. Only a few are mentioned here. While these 

support the calculations needed, the amount of work needed to implement the bridged as 

done for JTS is unknown. 

 
• Perl and C/C++: GDAL/OGR. C API and Perl modules ( 

http://www.remotesensing.org/gdal/ogr/ + http://search.cpan.org/~sderle/Geo-
GDAL-0.11/) 

• .NET: “nettopologysuite”; port of JTS. May also be able to C API. ( 
http://code.google.com/p/nettopologysuite/) 

 
 

7.5 Practical application 

This section walks through an example of use by applying the GeoXSLT framework to a 

practical task. 

In (Harrie L. 2003) Harrie and Johansson describe a method for real-time generalization 

and visualization of GML data. While XSLT is used for generation of the SVG file (visu-

alization), a separate Java program is used to perform the integration and generalization 

of data. During this process there is a defined need to have an interaction between the dif-

ferent geometry representations involved. (Harrie L. 2003) provides several examples of 

scenarios requiring this feature, terming it “interaction between objects”: 

• Solve spatial conflicts (e.g. making sure symbols representing one feature do not 

cover other features) 

• Integrate service data such as icons/arrows etc with cartographic data 

• Aggregation of objects 

Harrie and Johansson chose not to use XSLT for the generalization of data because 

“...XSLT transformations only treat one object at a time, it is not possible to implement 

methods which involve interactions between objects”. (Harrie L. 2003).  This thesis is not 

going to claim that placing the generalization and integration of data in a separate Java 
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program is wrong by any means. Still, it is important to provide argumentation for why it 

may actually be possible to perform the generalization and integration in an XSLT con-

text and still be achieving object interaction. By using XSLT to perform the generaliza-

tion process, the extra step of running the data through the extra Java program before us-

ing XSLT for SVG visualization can be saved. Containing the process within XSLT does 

also facilitate the possibility for developing a more general (Java) system underneath, 

with better possibilities for code/class generalization and re-use, deploying custom XSLT 

templates for specific cases.  

Example 

As the arguments for using XSLT are of significance, there is a need to understand how it 

can be implemented. By demonstrating how interactions between objects are possible in 

XSLT and a description of relevant functionality available in JTS (which with relative 

ease can be integrated into the level 2 classes), this thesis attempts to inspire further re-

search on XSLT based generalization. The demonstration is based on test case 4 of the 

Tana data. First, the roads are simplified using the DouglasPeucker algorithm (Sedgewick 

2002; Novatchev and Tyszko 2006 ) to showcase simple generalization. Then, based on 

interaction with the simplified geometry object representing the roads, a buffer indicating 

the 20 meter area used in the test cases with the Tana data (5.1.4 and 6.2) is created. This 

is to showcase that XSLT can interact with results from previously called templates 

within the XSLT process, and hence makes object interaction possible. Everything is 

visualized as SVG using the transformation process itself, and buildings within the 20 

meter buffer are given a distinct coloring.  As a frame of reference, the original visualiza-

tion of data set 4 from Tana is shown in Figure 7.3.  
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Figure 7.3 WMS (Geoserver) visualization of Tana data set 4 

In Figure 7.3 no simplifications or alterations have been made. The GML data represent-

ing the features is passed on to a relatively simple XSLT stylesheet utilizing the JTS 

bridge created as a part of the thesis. Table 7.5 below lists a very small subset of the GML 

data representing the feature set. The GML has been extracted directly from a Geoserver 

WFS instance and is shown to provide an understanding of the transformation flow. 

<?xml version="1.0" encoding="UTF-8"?> 

<wfs:FeatureCollection  

xmlns:wfs="http://www.opengis.net/wfs" xmlns:topp="http://www.openplans.org/topp" 

xmlns:gml="http://www.opengis.net/gml" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="http://www.openplans.org/topp 

http://localhost:8080/geoserver/wfs/DescribeFeatureType?typeName=topp:bulroad,topp:Road 
http://www.opengis.net/wfs http://localhost:8080/geoserver/schemas/wfs/1.0.0/WFS-basic.xsd"> 

 

  <gml:boundedBy> 

    <gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#32633"> 

      <gml:coordinates xmlns:gml="http://www.opengis.net/gml" decimal="." cs="," ts=" ">356145,7766050 

357617,7767139 

      </gml:coordinates> 

     </gml:Box>  

    </gml:boundedBy> 

     
    <gml:featureMember> 

        <topp:bulroad fid="bulroad.674"> 

          <topp:the_geom> 

            <gml:Point srsName="http://www.opengis.net/gml/srs/epsg.xml#32633"> 

  <gml:coordinates xmlns:gml="http://www.opengis.net/gml" decimal="." cs="," ts=" "> 

                    357403,7766898 

                </gml:coordinates> 

             </gml:Point> 

          </topp:the_geom> 
            <topp:type>Residential</topp:type> 
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            <topp:status>2</topp:status> 

            <topp:number>192563771</topp:number> 

            <topp:started>10101</topp:started> 

            <topp:updated>20001120</topp:updated> 

    </topp:bulroad> 

  </gml:featureMember> 

  <gml:featureMember> 

    <topp:Road fid="Road.854"> 

      <topp:the_geom> 
        <gml:MultiLineString srsName="http://www.opengis.net/gml/srs/epsg.xml#32633"> 

          <gml:lineStringMember> 

            <gml:LineString> 

              <gml:coordinates xmlns:gml="http://www.opengis.net/gml" decimal="." cs="," ts=" "> 

                 356709,7766479 356756,7766427 

              </gml:coordinates> 

             </gml:LineString> 

          </gml:lineStringMember> 

         </gml:MultiLineString> 

       </topp:the_geom> 
       <topp:type>Municipal</topp:type> 

       <topp:roadNumber>5076</topp:roadNumber> 

       <topp:roadClass>V</topp:roadClass> 

       <topp:date>19980714</topp:date> 

     </topp:Road> 

   </gml:featureMember> 

Table 7.5 A minimal subset representing content and structure of data used in the 
generalization process 

As mentioned earlier, the Tana data-set is made up of many small lengths of line strings 

representing roads. During a generalization process, one can choose between the ap-

proaches of simplifying the line strings one by one, maintaining full control and keeping 

non cartographic feature data associated (see Table 7.5 for examples of non-cartographic 

feature data; “roadNumber”, “type” etc), or to union all the lengths into one multi line 

string which then is simplified. In this case the latter approach has been chosen, as only 

the generalization aspect is of direct relevance to the demonstration. The union of all the 

road segments is done using the same template as listed in Table 5.4 and stored in a vari-

able. 

<xsl:variable name="roadUnion"> 

      <xsl:call-template name="unionRoads"> 

         <xsl:with-param name="roads"  

                               select="wfs:FeatureCollection/gml:featureMember[topp:Road]/topp:Road/topp:the_geom/*" /> 
      </xsl:call-template> 

</xsl:variable> 

Table 7.6 Calling the unionRoads template and storing the resulting multi line GML 
element variable “roadUnion”. 

The “roadUnion” variable does at this point contain a result tree fragment, which accord-

ing to (Clark 1999) cannot support any other operations as those available for string val-

ues. This is probably the main reason why Harrie (Harrie L. 2003) concludes that interac-

tions between [processed] objects are not possible within XSLT. While it is correct ac-

cording to the plain vanilla XSLT specification, in practice Xalan provides handling to 

work around the problem.  Xalan provides a built-in extension function called “nodeset”. 
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When passed a result tree fragment, it returns an equivalent set of nodes. This approach is 

applied in the demonstration when simplification is performed on the “roadUnion” vari-

able. 

 

  <xsl:variable name="roadSimplified" select="exp:simplify(xalan:nodeset($roadUnion)//gml:MultiLineString,20)" />                    

Table 7.7 Performing Douglas Peucker simplification on the union of roads. 

As is listed in Table 7.7, the result tree fragment of the “roadUnion” variable is converted 

to a node set and passed on to an extension function mapped to the Douglas Peucker sim-

plification algorithm. The number, “20” denotes the tolerance threshold for vertex dis-

tance used in the simplification. The “exp” namespace prefix denotes the experimental 

group of functions containing the simplify function.  

 

public Node simplify(NodeList n1,double distanceTolerance) { 

        Geometry g1 = utilities.gmlSearch(n1); 

        Geometry result = DouglasPeuckerSimplifier.simplify(g1,distanceTolerance); 

        return gf.encodeNode(result); 

    } 

Table 7.8 Implementation of simplification extension function in a level 2 class. 

Table 7.8 lists the experimental implementation of the simplification algorithm. Note how 

the thesis’ implemented framework reduces bidirectional conversion between nodes and 

JTS geometry objects to a simple method call. While this is an experimental implementa-

tion of simplification functionality without any performance evaluations, it does show-

case the ease with which additional functionality can be integrated almost in a plug-in 

fashion without any detailed knowledge of GML processing or JTS. No change to the 

framework or other level 2 classes was necessary for this “plug-in” of simplification func-

tionality. The “DouglasPeuckerSimplifier” class is a part of the 

“com.vividsolutions.jts.simplify” package available with JTS.  

After returning from the simplify call, the now simplified union of roads is stored in the 

“roadSimplified” XSLT variable. To calculate the area surrounding the road with 20 me-

ters, a buffer is created. The resulting multi polygon is stored in a “roadBuffer” variable. 

<xsl:variable name="roadBuffer" select="gis:buffer($roadSimplified//gml:MultiLineString,20)" /> 

Table 7.9 Calculating the 20 meter “buffer-area” to surround the simplified union of 
roads. 
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GML representing the simplified version of the road and the buffer surrounding it are 

now in place. All that is left is to transform the GML into SVG with distinct coloring of 

the different components. 

<!— 

Draw the outer border of the multi polygon representing the 20 m area (buffer) outside the simplified union of roads 

 --> 

<xsl:apply-templates select="$roadBuffer//gml:outerBoundaryIs" /> 

 

<!—Draw the inner border of the multi polygon (inside part of the buffer; fill++) --> 

<xsl:apply-templates select="$roadBuffer//gml:innerBoundaryIs" /> 

 

<!—Draw the simplified union of roads on top of the buffer --> 
<xsl:apply-templates select="$roadSimplified//gml:LineString" /> 

 

<!—Draw all the points representing houses WITHIN the 20 meter buffer -->                                                 

<xsl:apply-templates select="wfs:FeatureCollection/gml:featureMember[ 

           (descendant::topp:bulroad) and  

           (gis:within( 

                            descendant::topp:bulroad/topp:the_geom/gml:Point, 

                            $roadBuffer/gml:*[position() = 1] 

                           ) 

            ) 
                                                                                                          ]" mode="inside"/> 

 

<!—Draw all the points representing houses OUTSIDE the 20 meter buffer -->                                                 

<xsl:apply-templates select="wfs:FeatureCollection/gml:featureMember[ 

           (descendant::topp:bulroad) and  

           (not(gis:within( 

                            descendant::topp:bulroad/topp:the_geom/gml:Point, 

                            $roadBuffer/gml:*[position() = 1] 

                           )) 
            ) 

                                                                                                          ]" mode="outside"/> 

 

Table 7.10 Applying transformation to SVG for the generated components 

Table 7.10 lists the XSL used to render the GML in SVG. Note how houses are rendered 

in two sets, depending on a check for their existence within the buffer zone defined by the 

“roadBuffer” variable. This demonstrates that it is very well possible to place non-

cartographic data with care for not covering important cartographic details. E.g. in the 

case of placing arrows or labels in a map, the “within” check (or any other relevant SFS 

function) used in the table could be used to validate the position. For recalculation of la-

bel positioning etc, one can use “distance” and the “compass”/“bearing” functionality as 

defined in 7.3.2. 

While generalization/simplification has not been tested in detail with regard to perform-

ance and multiple algorithms within this thesis, the walk-through presented above gives a 

clear indication that generalization can very well be achieved within in an XSLT perspec-

tive, and that the “interaction” argument of (Harrie L. 2003) is not necessarily a problem. 

The rest of the stylesheet, performing the transformation from GML to SVG, is available 

in the appendix. 
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Figure 7.4 SVG visualization of Tana data set for case 4, simplified with a distance 
tolerance of 20 m 

Figure 7.4 shows the final result of the walk-through. The generated rendering is in no 

way optimized with regard to the available possibilities of SVG. The simplified road is 

rendered yellow, the buffer area grey with dark borders. Houses outside the buffer are 

colored green, while those within the buffer are red. 
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Figure 7.5 Close-up, subset of figure 7.4 
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8 Conclusion 
This chapter summarizes the research in view of the research objectives before a short 

presentation of the major contributions and an outline of further work is provided. 

8.1 Claimed results 

Processing geospatial data with XSLT  

The work with this thesis shows that it is technically possible to process and transform 

geospatial data encoded as GML with XSL templates and extensions. The experience 

with the developed GeoXSLT framework indicates that spatial operations possible with 

libraries such as the Java Topology Suite can be integrated into the XSLT process once 

the GML representations are converted to geo objects. The prototype does just that.  

Performance 

Tests done with real data shows that in an interactive context, spatial XSLT transforma-

tions of data can be performed with success within the different limits of time as set forth 

by the usability community. While the transformations achievable within instant time are 

limited, chances are that these limitations would also apply to other approaches. For sce-

narios occurring within a timeframe of tolerable time, relatively complex transformations 

can be applied on data sets so large that network transmission time and other factors ex-

ternal to the transformation become issues. In a batch perspective, tests involving rela-

tively complex transformations on data sets consisting of more than 11 000 features have 

shown that with considerate use of recursion, the approach proposed in this thesis can 

handle large amounts of data.  

Geometry Construction Serialization 
Line String 10-12% 2-25% 

Polygon 12-27% 6-61% 

Table 8.1 Overhead for analysis operations 

Geometry Construction 
Line String 20-25% 

Polygon 8-64% 

Point 40-82% 

Table 8.2 Overhead for predicate operations 
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Geometry Construction Serialization 
Point 15-42% 58-85% 

Table 8.3 Construction vs. Serialization for points 

With regard for the time overhead necessary for conversion back and forth between the 

transformation process and the spatial extensions, the experience from design and devel-

opment of the prototype shows that the integration of spatial functionality in an XSLT 

process can be divided into three phases The phases are: construction of spatial objects 

from node sets, spatial calculations, and serialization of the results back to a node struc-

ture compatible with the XSLT process. The overhead implied by the integration of spa-

tial capabilities with XSLT consists of the construction and serialization phases.  

Tables 8.1 and 8.2 present indications on the percentage wise overhead imposed by the 

GeoXSLT framework for analysis and predicate operations. Note that the high overhead 

for operations on points is caused by the very fast point calculations; the total time to 

complete operations on points is significantly smaller than for any other geometry. See 

Section 6.1.4 for a complete summary on performance measured. 

Table 8.3 presents findings from running a “dummy” test on points without any calcula-

tions; consisting of only the construction and serialization phases. It indicates that seriali-

zation is more expensive than the construction phase. 

Tests and findings in this thesis indicate that the cost of making geospatial operations 

available to XSLT is significant. Nonetheless, other factors such as possibilities for 

shorter workflow and reduced network traffic should be counted in. This thesis has also 

shown that significant performance gains are achievable by the implementation of differ-

ent optimization mechanisms. The simple caching described in Sections 4.5.5, 5.1.5, and 

6.2.2 improved overall performance by 60%.  

Flexibility 

The approach described and tested in this thesis provides sufficient flexibility for many 

uses and scenarios. This is because the combination of flexibility inherent in XSLT with 

the complete integration of spatial extensions provided by the prototype results in a work-

ing platform for transformation and processing spatial data. Additionally, the modular 

architecture of the framework created allows for easy integration of new functionality and 

operations.  

The combination of a well integrated set of extension operations for the XSLT language 

with a modular and extensible supporting framework results in a flexible platform that 
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can be customized to support transformation of geospatial data in a multitude of scenar-

ios. Examples of this are given in the tests with real data (Sections 5.1.4, 5.1.5, 6.2.1, 

6.2.2) and the practical application described in Section 7.5. The examples and argumen-

tation presented have shown that spatial operations can be combined, chained, and used in 

XPath expressions. Likewise, simple extensions of the standard functionality provided 

have been showcased to illustrate the modular architecture. An approach to the “object-

interaction” necessary for generalization/simplification operations (Harrie L. 2003) has 

also been demonstrated to work. 

Development facilitation 

The experience with practical applications and tests of the prototype shows that it is easy 

to start developing templates when no special measures or configuration need to be done 

for utilization of the spatial functionality. The developer’s focus can as such be concen-

trated on expressing the logic with traditional XSLT and the simple API defined. The im-

pression from using the prototype so far is that the threshold for development of geospa-

tial applications is lowered allowing for more time and resources to be spent on creativity. 

8.2 Major contributions 

The contributions of this thesis are 

• A working prototype for easy integration of spatial functionality in transformation 

of geodata encoded as GML. 

• An exslt.org style API which is closely mapped to the Simple Feature Specifica-

tion. 

• Experience and examples from practical work with XSLT transformations of 

GML using the spatial extensions. 

8.3 Future work 

The future work with the GeoXSLT framework should look into the suggested improve-

ments of Chapter 7. In addition some other possibilities are listed below. 

Automatic mapping of function calls 

Many Level 2 implementations of operations defined in the Simple Feature Specification 

follow a very similar pattern. This opens up for the idea of a facility providing automatic 

mapping of JTS functionality with XSLT based on the Java introspection. With such a 
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facility on would, ideally, just have to call the spatial extension function from XSLT and 

have the operation automatically executed.  

Performance optimization 

The overhead of using GeoXSLT is significant. More research should be done to improve 

the performance. 

Spatial libraries 

The current implementation of GeoXSLT depends on Java Topology Suite (JTS) for spa-

tial calculations. It would be of interest to se how other libraries available could be used. 

An idea is to create support for other libraries using a plug-in approach. There are several 

databases that support the Simple Features Specification.  

Other platforms 

GeoXSLT needs to be available on other platforms than Java. Section 7.4.5 lists possible 

alternatives to Java Topology Suite for use in other platforms. 

Release of GeoXSLT source code 

GeoXSLT is released under a GPL license to be of use for everyone and open up for con-

tributions to further development. 

The source code is available at http://www.svisj.no/fredrik/geoxslt 
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9 Appendix 

9.1 Sample of constructed test data 

<?xml version="1.0"?> 
<testdata xmlns:gml="http://www.opengis.net/gml"> 
<!--  
 
HORIZONTAL LINE:  
PARAMS: 
$VAR1 = { 
          'vertices' => 3, 
          'ybuf' => 6, 
          'step' => 2, 
          'xmulti' => 1, 
          'ymulti' => 1, 
          'x' => '0.11', 
          'xbuf' => 10, 
          'decimals' => 2 
        }; 
WKT: 
LINESTRING(10.11 6.03,12.11 6.50,14.11 6.86,) 
 
VERTICAL LINE: 
PARAMS: 
$VAR1 = { 
          'x' => 0, 
          'y' => '4.11', 
          'vertices' => 3, 
          'step' => 2, 
          'ybuf' => 0, 
          'xmulti' => 1, 
          'ymulti' => 1, 
          'xbuf' => 12, 
          'decimals' => 2 
        }; 
WKT: 
LINESTRING(12.86 4.11,13.00 6.11,12.90 8.11,) 
 
--> 
 

<gml:featureMember> 
 <dummy_line fid="horizontal_1"> 
  <TheGeometry> 
   <gml:LineString> 
    <gml:coordinates decimal="." cs=" " ts=",">10.11 6.03,12.11 
6.50,14.11 6.86,</gml:coordinates> 
   </gml:LineString> 
  </TheGeometry> 
 </dummy_line> 
</gml:featureMember> 
 
 
<gml:featureMember> 
 <dummy_line fid="vertical_1"> 
  <TheGeometry> 
   <gml:LineString> 
    <gml:coordinates decimal="." cs=" " ts=",">12.86 4.11,13.00 
6.11,12.90 8.11,</gml:coordinates> 
   </gml:LineString> 
  </TheGeometry> 
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 </dummy_line> 
</gml:featureMember> 
 
</testdata> 

9.2 Sample of real data 

This is a minimal sample of the Tana data set to illustrate the structure and composition.  
<?xml version="1.0" encoding="UTF-8"?> 
<wfs:FeatureCollection xmlns:wfs="http://www.opengis.net/wfs" 
xmlns:topp="http://www.openplans.org/topp" xmlns:gml="http://www.opengis.net/gml" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://www.openplans.org/topp 
http://localhost:8080/geoserver/wfs/DescribeFeatureType?typeName=topp:bulroad,topp:Road 
http://www.opengis.net/wfs http://localhost:8080/geoserver/schemas/wfs/1.0.0/WFS-basic.xsd"> 
 <gml:boundedBy> 
  <gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#32633"> 

   <gml:coordinates xmlns:gml="http://www.opengis.net/gml" decimal="." cs="," 
ts=" ">357015,7766577 357502,7766771</gml:coordinates> 
  </gml:Box> 
 </gml:boundedBy> 
 <gml:featureMember> 
  <topp:bulroad fid="bulroad.2545"> 
   <topp:the_geom> 
    <gml:Point srsNa-
me="http://www.opengis.net/gml/srs/epsg.xml#32633"> 
     <gml:coordinates xmlns:gml="http://www.opengis.net/gml" 
decimal="." cs="," ts=" ">357080,7766653</gml:coordinates> 
    </gml:Point> 
   </topp:the_geom> 
   <topp:type>Outhouse</topp:type> 
   <topp:status>2</topp:status> 
   <topp:number>192574250</topp:number> 
   <topp:started>10101</topp:started> 
   <topp:updated>19940210</topp:updated> 
  </topp:bulroad> 
 </gml:featureMember> 
 <gml:featureMember> 
  <topp:Road fid="Road.907"> 
   <topp:the_geom> 
    <gml:MultiLineString srsNa-
me="http://www.opengis.net/gml/srs/epsg.xml#32633"> 
     <gml:lineStringMember> 
      <gml:LineString> 
       <gml:coordinates 
xmlns:gml="http://www.opengis.net/gml" decimal="." cs="," ts=" ">357015,7766698 357127,7766654 
357205,7766613 357286,7766585 357364,7766577 357389,7766583 357406,7766595 357488,7766710 
357498,7766735 357502,7766771</gml:coordinates> 
      </gml:LineString> 
     </gml:lineStringMember> 
    </gml:MultiLineString> 
   </topp:the_geom> 
   <topp:type>Municipal</topp:type> 
   <topp:roadNumber>5088</topp:roadNumber> 
   <topp:roadClass>V</topp:roadClass> 
   <topp:date>19980714</topp:date> 
  </topp:Road> 
 </gml:featureMember> 
</wfs:FeatureCollection> 
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9.3 SVG/Generalization stylesheet 

For the sake of readability, the complete file is available at 

http://www.svisj.no/fredrik/geoxslt 

 
<?xml version="1.0" encoding="UTF-8"?> 
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
xmlns:wfs="http://www.opengis.net/wfs" xmlns:gml="http://www.opengis.net/gml" 
xmlns:topp="http://www.openplans.org/topp"  xmlns:svg="http://www.w3.org/2000/svg" 
xmlns:exslt="http://exslt.org/common" xmlns:xalan="http://xml.apache.org/xalan" 
xmlns:exp="xalan://frontend.ExperimentalOperations" xmlns:gis="xalan://frontend.SFSOperations" ex-
clude-result-prefixes="wfs gml topp svg exslt xalan exp gis"> 
    <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes" doctype-public="-
//W3C//DTD SVG 1.1//EN" doctype-system="http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-flat-
20030114.dtd" /> 
    <xsl:template match="/"> 
        <svg xmlns="http://www.w3.org/2000/svg" width="100%" height="100%"> 
            <g transform="rotate(180, 500,500) scale(-1 1) translate(-1000 0)"> 
                 

                <xsl:element name="svg" namespace="http://www.w3.org/2000/svg"> 
                     
                    <xsl:attribute name="width">1000</xsl:attribute> 
                    <xsl:attribute name="height">1000</xsl:attribute> 
                     
                     
                    <xsl:variable name="bbcoords"> 
                        <xsl:value-of select="wfs:FeatureCollection/gml:boundedBy/gml:Box/gml:coordinates"/> 
                    </xsl:variable> 
                     
                     
                    <xsl:variable name="bbMin" select="substring-before($bbcoords,' ')" /> 
                    <xsl:variable name="bbMax" select="substring-after($bbcoords,' ')" /> 
                     
                    <xsl:variable name="vb_x" select="substring-before($bbMin,',')" /> 
                    <xsl:variable name="vb_y" select="substring-after($bbMin,',')" /> 
                     
                    <xsl:variable name="vb_width" select="substring-before($bbMax,',') - $vb_x" /> 
                    <xsl:variable name="vb_height" select="substring-after($bbMax,',') - $vb_y" /> 
                    <xsl:attribute name="viewBox"><xsl:value-of select="concat($vb_x,' ',$vb_y,' ',$vb_width,' 
',$vb_height)"/></xsl:attribute>  
                     
                    <xsl:element name="g" namespace="http://www.w3.org/2000/svg"> 
                         
                         
                         
                        <xsl:variable name="roadUnion"> 
                            <xsl:call-template name="unionRoads"> 
                                <xsl:with-param name="roads" se-
lect="wfs:FeatureCollection/gml:featureMember[topp:Road]/topp:Road/topp:the_geom/*" /> 
                            </xsl:call-template> 
                        </xsl:variable> 
                        <xsl:message>Road union created</xsl:message> 
                         
                        <xsl:variable name="roadSimplified" se-
lect="exp:simplify(xalan:nodeset($roadUnion)//gml:MultiLineString,10)" />                     
                         
                        <xsl:variable name="roadBuffer" se-
lect="gis:buffer($roadSimplified//gml:MultiLineString,20)" /> 
                         
                         
                        <xsl:apply-templates select="$roadBuffer//gml:outerBoundaryIs" /> 
                        <xsl:apply-templates select="$roadBuffer//gml:innerBoundaryIs" /> 
                        <xsl:apply-templates select="$roadSimplified//gml:LineString" /> 
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                        <xsl:apply-templates se-
lect="wfs:FeatureCollection/gml:featureMember[(descendant::topp:bulroad/topp:the_geom/gml:Point) 
and (gis:within(descendant::topp:bulroad/topp:the_geom/gml:Point,$roadBuffer/gml:*[position() = 1]))]" 
mode="inside"/> 
                        <xsl:apply-templates se-
lect="wfs:FeatureCollection/gml:featureMember[(descendant::topp:bulroad) and 
(not(gis:within(descendant::topp:bulroad/topp:the_geom/gml:Point,$roadBuffer/gml:*[position() = 
1])))]" mode="outside"/> 
                         
                    </xsl:element> 
                </xsl:element> 
            </g> 
        </svg> 
         
    </xsl:template> 
     
     
    <xsl:template match="topp:bulroad" mode="inside"> 
        <xsl:variable name="gmlcoords" select="topp:the_geom//gml:coordinates"/> 
        <circle cx="{substring-before($gmlcoords,',')}" cy="{substring-after($gmlcoords,',')}" r="1" 
style="stroke:red; stroke-width:1; fill:red" xmlns="http://www.w3.org/2000/svg"/>    
    </xsl:template> 
     

    <xsl:template match="topp:bulroad" mode="outside"> 
        <xsl:variable name="gmlcoords" select="topp:the_geom//gml:coordinates"/> 
        <circle cx="{substring-before($gmlcoords,',')}" cy="{substring-after($gmlcoords,',')}" r="1" 
style="stroke:green; stroke-width:1; fill:green" xmlns="http://www.w3.org/2000/svg"/>  
  
    </xsl:template> 
     
    <xsl:template match="topp:Road"> 
        <xsl:variable name="gmlcoords" select="topp:the_geom//gml:coordinates"/> 
        <polyline points="{$gmlcoords}" style="stroke:black; stroke-width:4;fill:none;" 
xmlns="http://www.w3.org/2000/svg" />    
        <polyline points="{$gmlcoords}" style="stroke:yellow; stroke-width:1;fill:none;" 
xmlns="http://www.w3.org/2000/svg" />            
    </xsl:template> 
     
    <xsl:template match="gml:LineString"> 
        <xsl:variable name="gmlcoords" select=".//gml:coordinates"/> 
        <!-- <polyline points="{$gmlcoords}" style="stroke:black; stroke-width:4;fill:none;" 
xmlns="http://www.w3.org/2000/svg" />    --> 
        <polyline points="{$gmlcoords}" style="stroke:yellow; stroke-width:1;fill:none;" 
xmlns="http://www.w3.org/2000/svg" />            
    </xsl:template> 
     
    <xsl:template match="gml:outerBoundaryIs"> 
        <xsl:variable name="gmlcoords" select=".//gml:coordinates"/>         
        <polyline points="{$gmlcoords}" style="stroke:black; stroke-width:1;fill:#BBBBBB;" 
xmlns="http://www.w3.org/2000/svg" />            
    </xsl:template> 
     
    <xsl:template match="gml:innerBoundaryIs"> 
        <xsl:variable name="gmlcoords" select=".//gml:coordinates"/>         
        <polyline points="{$gmlcoords}" style="stroke:black; stroke-width:1;fill:white;" 
xmlns="http://www.w3.org/2000/svg" />            
    </xsl:template> 
     
     
    <xsl:template name="unionRoads"> 
        <xsl:param name="roads"/> 
        <xsl:variable name="roadCount" select="count($roads)" /> 
         
        <xsl:choose> 
            <xsl:when test="$roadCount = 1"><xsl:copy-of select="$roads" /></xsl:when> 
            <xsl:otherwise> 
                <xsl:variable name="fiftypercent" select="floor($roadCount div 2)" /> 
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                <xsl:variable name="left"> 
                    <xsl:call-template name="unionRoads"> 
                        <xsl:with-param name="roads" select="$roads[position() &lt;= $fiftypercent]" /> 
                    </xsl:call-template> 
                </xsl:variable> 
                <xsl:variable name="right"> 
                    <xsl:call-template name="unionRoads"> 
                        <xsl:with-param name="roads" select="$roads[position() &gt; $fiftypercent]" /> 
                    </xsl:call-template> 
                </xsl:variable> 
                <xsl:copy-of select="gis:union(xalan:nodeset($left)//*[(local-name() = 'MultiLineString') or 
(local-name() = 'LineString')],xalan:nodeset($right)//*[(local-name() = 'MultiLineString') or (local-name() 
= 'LineString')])" /> 
                 
            </xsl:otherwise> 
        </xsl:choose> 
    </xsl:template> 
     
</xsl:stylesheet> 
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