

UNIVERSITY OF OSLO
Department of informatics

GeoXSLT
GML processing with XSLT and spatial
extensions

Master thesis
60 credits

Carl Fredrik Melsom Klausen

08. 11 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30838949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Abstract
This thesis claim that XSL Transformations combined with extensions can be used to

process geodata encoded as GML. The assertion is backed up by the following deliver-

ables:

• A working proof-of-concept for an XSLT based transformation of spatial data.

• Tests providing measurements of functionality and performance.

• Argumentation that shows how and why this is a viable approach by discussion and

practical examples.

The paper concludes with a confirmation on the feasibility of the approach inline with the

research objectives and findings provided by the deliverables.

ii

Acknowledgements
This thesis is submitted to the Department of Informatics at the University of Oslo as part

of the Master Degree.

There is a long list of people that I owe a lot of thanks for their support.

First, I wish to thank my thesis supervisor David Skogan at SINTEF Information and

Communication Technology, Oslo. He has shown a patience and interest in my studies far

beyond what could be expected. His guidance and inspiration has helped me time and

again.

I am grateful to Anne Lund and Stine Holm at SINTEF for their help with practical mat-

ters during the course of the thesis. Especially the support they showed when my laptop

got stolen 5 days before the deadline meant a lot to me.

I would also like to thank Knut Staring at the Department of Informatics, University of

Oslo, for introducing me to GIS systems in the first place.

A thank you also goes to my employer Tinde AS which gave me the necessary time off

and flexibility to work with my thesis while being in a fulltime job.

Finally I would like to thank my wonderful live-in girlfriend, Karine for her everlasting

patience and support during the late nights and weekends working with the thesis.

iii

Contents
1 INTRODUCTION.. 1

1.1 RESEARCH OBJECTIVES... 1
1.2 MOTIVATION ... 1
1.3 METHOD ... 2
1.4 EXPECTED RESEARCH CONTRIBUTIONS... 3
1.5 LIMITATIONS ... 4
1.6 STRUCTURE OF THESIS.. 4

2 THEORETICAL FOUNDATIONS ... 6

2.1 RELATED TECHNOLOGIES.. 6
2.1.1 XML Schema.. 6
2.1.2 Geography Markup Language... 6
2.1.3 Web Feature Service.. 9
2.1.4 XPath ... 10
2.1.5 Extensible Stylesheet Language Transformations (XSLT)... 12
2.1.6 EXSLT.. 15

2.2 PROCESSING GEOGRAPHIC DATA... 15
2.2.1 Sources of geographic data ... 15
2.2.2 Accessing WFS .. 17
2.2.3 Processing WFS results ... 19

2.3 PRIOR STUDIES.. 23
2.4 CHAPTER SUMMARY.. 26

3 SUPPORTED FUNCTIONALITY... 27

3.1 OPERATIONS FOR TESTING SPATIAL RELATIONS ON GENERIC GEOGRAPHIC OBJECTS................... 27
3.2 OPERATIONS THAT SUPPORT SPATIAL ANALYSIS ON GENERIC GEOGRAPHIC OBJECTS.................. 32
3.3 INTERFACE INTEGRATION.. 34
3.4 CHAPTER SUMMARY.. 35

4 IMPLEMENTATION OF SUPPORTED FUNCTIONALITY 36

4.1 DIVISION OF LEVELS.. 36
4.2 ACCESS TO EXSLT FUNCTIONS FROM XSLT.. 37
4.3 IMPLEMENTATION OF FRONT-END/LEVEL 1 .. 38
4.4 ARCHITECTURE OF IMPLEMENTATION CLASSES/LEVEL 2... 41
4.5 IMPLEMENTATION OF THE LEVEL 3 CLASSES... 44

4.5.1 Cost of use ... 44
4.5.2 Service interfaces... 44
4.5.3 Creation of JTS Geometries from node lists. ... 44
4.5.4 Serialization... 48
4.5.5 Basic performance optimization .. 50
4.5.6 Possibilities for improvement. ... 50

4.6 CHAPTER SUMMARY.. 51

5 TESTING.. 52

5.1.1 Validation of correct functioning... 52
5.1.2 Measurement of performance .. 53
5.1.3 Selection of tests on constructed data.. 55
5.1.4 Tests on real data .. 58
5.1.5 Testing basic performance optimization.. 63
5.1.6 Test platform.. 63

5.2 CHAPTER SUMMARY.. 63

6 FINDINGS.. 64

iv

6.1 FINDINGS FROM TESTS WITH CONSTRUCTED DATA..64
6.1.1 Total execution time predicate operations...64
6.1.2 Total execution time analysis operations...66
6.1.3 Division of Total Time To Complete between the different operations..................................67
6.1.4 Summary of findings from tests with constructed data ..72

6.2 FINDINGS FROM TESTS WITH REAL DATA...74
6.2.1 Base-line approach..74
6.2.2 Tests of basic performance optimization ...76

6.3 CHAPTER SUMMARY ...77

7 DISCUSSION ...78

7.1 THE SUITABILITY OF XSLT WITH EXTENSIONS FOR PROCESSING GEODATA................................79
7.2 PERFORMANCE; LIMITATIONS AND POSSIBILITIES...80

7.2.1 Performance of singular functions...80
7.2.2 Execution performance in practical contexts...84

7.3 FLEXIBILITY ..91
7.3.1 Integration/Extension of functionality ...92
7.3.2 Ideas for improving flexibility..92

7.4 CONSEQUENCES FOR DEVELOPMENT...94
7.4.1 Less surrounding complexity ...94
7.4.2 Code readability ..95
7.4.3 Reuse..95
7.4.4 Possibilities for extension ..96
7.4.5 Possibilities for implementation on other platforms..97

7.5 PRACTICAL APPLICATION ..97

8 CONCLUSION...105

8.1 CLAIMED RESULTS ..105
8.2 MAJOR CONTRIBUTIONS..107
8.3 FUTURE WORK...107

9 APPENDIX...109

9.1 SAMPLE OF CONSTRUCTED TEST DATA..109
9.2 SAMPLE OF REAL DATA...110
9.3 SVG/GENERALIZATION STYLESHEET..111

10 REFERENCES...114

v

List of figures
Figure 2.1 Workflow between client and WFS server (Vretanos 2005)............................10
Figure 2.2 The conceptual workflow of an XSLT transformation.13
Figure 2.4 Accessing geographic data through WFS ..16
Figure 2.5 Visualization of data returned from the query in Table 2.1218
Figure 2.6 illustration of buffer scenario ...21
Figure 2.7 Sequence diagram showing the need for a possibility to calculate a buffer

surrounding selected features of the GML...22
Figure 3.1 ...34
Figure 4.1 Dependency diagram for implemented front-end architecture.........................40
Figure 4.2 Level 1 wrapping of operations..41
Figure 4.3 Using a level 3 class to build JTS geometries ..42
Figure 4.4 Execution of calculations on JTS geometry objects...43
Figure 4.5 Level 2 class utilizing the level 3 architecture for serializing JTS Geometry to

Xalan compatible format by calling the “encode” method of the GMLFactory class.
..43

Figure 4.6 Class diagram of GMLUtilities ..45
Figure 4.7 Class diagram of SubHandlerFactory...46
Figure 4.8 SubHandler super class and SubHandlerLinestring ...46
Figure 4.9 Class diagram GMLFactory ...48
Figure 5.1 Visualization of crosses test on line strings with 30 vertices each...................57
Figure 5.2 Visualization of two intersects tests performed on polygons with 5 and 41

vertices ...58
Figure 5.3 A visualization of the Tana data set, with the bounding boxes of test cases 4-10

engraved...59
Figure 5.4 A visualization of the Tana data set with bounding boxes 3-1 engraved.........60
Figure 6.1 Total execution time for crosses on line string as the number of vertices

increases...64
Figure 6.3 Variation of digits on crosses operation on points. Figure 6.4 Variation of

digits on intersects operation on points..65
Figure 6.5 Relation between number of holes in a polygon and the time needed for

executing the “intersects” predicate operation...65
Figure 6.6 and 6.7 Correlation between number of vertices and total operation time for

union operations on line strings and polygons...66
Figure 6.8 Variations of digits and holes for union operations on polygons.....................67
Figure 6.9 Variations of holes for union operations on polygons......................................67
Figure 6.10 Variation in relative time spent on JTS construction for predicates on line

strings...68
Figure 6.11 Variation in relative time spent on JTS construction for analysis’ on line

strings...68
Figure 6.13 Construction time relative to serialization time for points, variation of digits

..69
Figure 6.14 Polygons; relation between construction and calculation phases in predicate

operations as the number of vertices is increased..70
Figure 6.15 Polygons; relation between construction, calculation, and serialization phases

as the number of vertices is increased..71

vi

Figure 6.16 Polygons; relative cost of construction in predicate operations with variance
of digits ..71

Figure 6.17 Polygons; relative cost of construction and serialization with variance of
digits...72

Figure 6.18 Polygons; relative cost of construction in predicate operations with variance
of holes...72

Figure 6.19 Polygons; relative cost of construction and serialization in analysis operations
with variance of holes. ...72

Figure 6.20 Performance times for tests 1-4 on Tana data. ...74
Figure 6.21 Performance times for tests 5-7 on Tana data. ...74
Figure 6.22 Performance times for tests 8-10 on Tana data. ...75
Figure 6.23 Performance increase when using “Geometry Cache” on Tana data76
Figure 7.2 Relation between features (buildings + roads) and processing time for Tana

data, cases 3-6 ..88
Figure 7.3 WMS (Geoserver) visualization of Tana data set 4..99
Figure 7.4 SVG visualization of Tana data set for case 4, simplified with a distance

tolerance of 20 m ...103
Figure 7.5 Close-up, subset of figure 7.4...104

vii

List of tables
Table 2.1 Example of an entity represented by both geometric and non-geometric features

..7
Table 2.2 Example of Point geometry encoded as GML...8
Table 2.3 Example of LineString geometry encoded as GML ..8
Table 2.4 Example of Polygon consisting of LinearRing(s) encoded as GML...................8
Table 2.5 Example of absolute location path...11
Table 2.6 Example of relative location path ..11
Table 2.7 XPath functions grouped by data types (Clark 1999; Holzner 2001)................12
Table 2.8 Simple stylesheet with explanations..13
Table 2.9 Simple XML document ...14
Table 2.10 Transformation result...14
Table 2.11 Standard XSLT Functions (Holzner 2001)..14
Table 2.12 Initial WFS query to be posted ..17
Table 2.13 GML Return from Geoserver WFS query ...18
Table 2.14 ..25
Table 3.1 ..28
Table 3.2 ..28
Table 3.3 ..28
Table 3.4 ..28
Table 3.5 ..29
Table 3.6 ..29
Table 3.7 ..29
Table 3.8 ..29
Table 3.9 ..30
Table 3.10 ..30
Table 3.11 ..30
Table 3.12 ..30
Table 3.13 ..31
Table 3.14 ..31
Table 3.15 ..31
Table 3.16 ..31
Table 3.17 ..31
Table 3.18 ..31
Table 3.19 ..32
Table 3.20 ..32
Table 3.21 ..32
Table 3.22 ..32
Table 3.23 ..33
Table 3.24 ..33
Table 3.25 ..33
Table 3.26 ..33
Table 3.27 ..33
Table 3.28 ..33
Table 3.29 ..34
Table 3.30 ..34

viii

Table 3.31 ..34
Table 3.32 ..34
Table 3.33 ..35
Table 3.34 ..35
Table 4.1 Example of namespace declaration for standard extensions.38
Table 4.2 Example of how the a java class is tied into the “geo” namespace38
Table 4.3 Xalan conversion of XSLT types to Java objects ..38
Table 4.4 Example of operation “wrapping” in front-end class ..41
Table 4.5 Displays Xalan accepted Java types and their corresponding XSLT type.43
Table 5.1 Test cases with constructed data..57
Table 5.2 Subsets of the Tana data ..59
Table 5.3 Main template used for the practical tests with the Tana data...........................61
Table 5.4 Divide and Conquer recursion implemented in XSLT to union a large amount

of line string segments without causing stack overflow. ...62
Table 6.1 Vertices processed pr millisecond, ..65
Table 6.2 Changes in ratio between Time To complete and number of holes...................66
Table 6.3 Predicate performance on line strings..72
Table 6.4 Analysis operations on line strings ..73
Table 6.5 Predicate operations on points ...73
Table 6.6 Construction/Serialization for points ...73
Table 6.7 Predicate operations on polygons ..73
Table 6.8 Analysis operations on polygons ...74
Table 7.1 Maximum values for the time to complete for all test cases performed on the

constructed data as described in chapter 5 and 6. Times are in milliseconds............81
Table 7.2 Time needed to complete test cases 1-4 on Tana data as defined in 5.1.4 and

reported in 6.2. Time measured in seconds..86
Table 7.3 Tana test cases 5 and 6 with findings ..88
Table 7.4 Improvements in performance time for the cached approach compared with

original (non cached) approach..91
Table 7.5 A minimal subset representing content and structure of data used in the

generalization process..100
Table 7.6 Calling the unionRoads template and storing the resulting multi line GML

element variable “roadUnion”. ..100
Table 7.7 Performing Douglas Peucker simplification on the union of roads.................101
Table 7.8 Implementation of simplification extension function in a level 2 class.101
Table 7.9 Calculating the 20 meter “buffer-area” to surround the simplified union of

roads...101
Table 7.10 Applying transformation to SVG for the generated components102
Table 8.1 Overhead for analysis operations...105
Table 8.2 Overhead for predicate operations...105
Table 8.3 Construction vs. Serialization for points..106

1

1 Introduction
In this thesis I claim that XSL Transformations combined with extensions can be used to

process geodata encoded as GML. The assertion is backed up by the following deliver-

ables:

• A working proof-of-concept for an XSLT based transformation of spatial data.

• Tests providing measurements of functionality and performance.

• Argumentation that shows how and why this is a viable approach by discussion and

practical examples.

The paper concludes with a confirmation on the feasibility of the approach inline with the

research objectives and findings provided by the deliverables.

1.1 Research objectives

 Through research and prototyping, the following research questions are under focus.

1. Can the XSLT language in combination with extensions be used for proc-

essing geodata?

2. What limitations on factors such as performance, flexibility, and scalabil-

ity will this approach imply?

3. How will the use of this approach have an effect on code readability, ease

of use, and the development of geospatial applications?

1.2 Motivation

We see an increasing trend of using web services and XML throughout the Internet. The

standardization of workflows and data formats as facilitated by the use of this approach

provides possibilities for the development and integration of different systems through

open standards for communication and functionality. The GIS community embraces the

use of web services in the transport and manipulation of geodata with the Web Feature

Server (WFS) and Web Map Server (WMS) specifications. Data encoded as Geography

Markup Language (GML) can be downloaded on demand from various sources. How-

ever, it may be necessary to do relatively complicated work to integrate the data or to per-

form generic spatial operations. Unfortunately, there is no guarantee that the necessary

spatial operations are available on all platforms. Often there is a need to use external GIS

2

tools to do the spatial operations manually. In other, non-spatial settings, the transforma-

tion and formatting of XML based data is made easier by the use of XSL Transformations

(XSLT). XSLT is a declarative XML based template language dedicated to the integra-

tion and manipulation of XML based data. The motivation for this thesis is the simplifica-

tion and standardization gained by applying the XSLT model of processing to geodata by

integrating spatial capabilities into the language. The main advantages of this approach

are:

• The relative simplicity of XML processing with XSLT compared to generic func-

tional and object-oriented languages.

• Platform independence

• Changes to the templates can be performed without recompiling or altering the

whole application.

• Standardized interface to spatial operations

By applying XSLT to the GML transformation process, an approach already used in

many other systems based on web services can be used to simplify the work with spatial

data. It is believed that easy access to spatial functionality directly available from within

XSL templates will lower the threshold for using geodata in existing and new applications

and has a potential for incurring a more widespread use.

1.3 Method

In the article "Software Engineering Research versus Software Development" (Marcos

2005) Esperanza Marcos points out how engineering research differs from other research

in that its aims are to find out how to do things or to create new objects. This thesis over-

laps with both Marcos' point of view and the more traditional research in that it proposes

to create new objects and methods to implement an existing model of technology on a

different field from what it is commonly used for today. Hence, the method chosen for

this approach both has to provide a framework for the creation of new concepts, objects

and methods along with the evaluation of existing practice. In regard of the traditional

research methods, this thesis will use qualitative methods of research to evaluate current

3

programming practices and experiences of GIS systems by the analysis of previous stud-

ies, code and architectures. Qualitative methods are used to evaluate certain parameters of

success, such as the simplification of code, usability of framework, flexibility, and the

degree of separation of concerns achieved. Quantitative empirical methods are used for

the evaluation of other parameters of success, such as the evaluation of performance,

scalability and standards conformance. Marcos introduces the term creative research

methods as methods for those sciences that "...require a high level of creativity as op-

posed to observation or experimentation" and "These methods are based on such charac-

teristics as imagination, premonition, visualization and the like...". By acknowledge of the

creative component in the architectural design process for the experimental prototype

used in this thesis, Marco's parallels between software development and the scientific

method used in Software Engineering (SE) design are made available. The SE method is

based on Bunge's general model as presented in Scientific Research (Bunge 1967) Basing

the prototype development on a generally sound scientific model is done to bring more

quality to the process and to assure results available for evaluation. Based on this reason-

ing, the following steps in the approach have been identified:

• Identification of research objectives.

• Definition of criteria for success

• Prototyping/implementation

• Evaluation of implementation

• Discussion of findings in view of previous studies

• Conclusion

Each step is intended to be executed in iteration with the steps before and after to include

the knowledge accumulated through each step. A continuous study of related studies and

material is performed along each step.

1.4 Expected research contributions

The planned results of this thesis are:

• A proof of concept for an XSLT based transformation of spatial data in

Geographic Markup Language (GML)

• A set of requirements for the development of spatial extensions to

4

(E)XSLT

• Measurements and evaluations of performance

• A conclusion on the viability of the idea and ideas for future work.

1.5 Limitations

This thesis does not aim to produce a fully working processing environment for GML, but

to evaluate the feasibility of the approach through a combination of theoretical reasoning

and partial practical experimentation. Hence, only a subset of the proposed features will

be implemented. Due to the readily available resources for the processing of geodata on

the Java platform in Java Topology Suite (JTS) and Geotools, the implementation will be

done in Java.

1.6 Structure of thesis

Theoretical foundations

This thesis' theoretical foundations are organized as three sections. Section XML Schema

presents technology related to the implementation of the GeoXSLT framework and ex-

amples. Section 2.2.1 gives a walk-through of a geospatial workflow and shows how spa-

tial XSLT can be of use. Section 2.3 outlines a series of previous studies of relevance to

the research done.

Supported functionality

Chapter 3 presents the functionality to be supported and explains the motivation and rela-

tion to community standards defined by the Open Geospatial Consortium.

Implementation of core functionality

Chapter 4 gives a detailed explanation of the motivations and design of the implemented

architecture in the GeoXSLT framework.

Testing

Chapter 5 introduces the tests designed to validate correct functioning and technical and

practical performance.

5

Findings

Chapter 6 presents the findings from execution of the tests defined in Chapter 5.

Discussion

Chapter 7 discusses the findings and experience from the work with the GeoXSLT

framework in view of the research questions and previous research.

Conclusion

Chapter 8 concludes with the viability of spatial XSLT, lists the major contributions

made, and outlines future work.

6

2 Theoretical foundations
This chapter will start off by giving a walkthrough of related technologies in 2.1. In sec-

tion 2.2 a description of a scenario where geospatial data is processed is used to show the

motivation for why spatial extensions for XSLT are needed. The chapter is rounded off

with a rundown of previous research in 2.3and a chapter summary in 2.4.

2.1 Related technologies

This section presents the technologies and concepts involved in XSL based template

processing of GML

2.1.1 XML Schema

The XML format can be adapted to many different uses by defining rules for its composi-

tion and data allowed. XML Schema is a language for creating such rules (Biron, Perma-

nente et al. 2004; Fallside and Walmsley 2004; Thompson, Beech et al. 2004). The Open

Geospatial Consortium (OGC) has used the Schema language to define the format of the

Geography Markup Language (GML), a format tailored for encoding geographic data

(OpenGeoSpatial 2002). A complete primer on XML Schema is provided in (Fallside and

Walmsley 2004).

2.1.2 Geography Markup Language

This section will provide a quick background on what GML 2.1.2 is and explain the core

features. Finally, a short explanation on the future of GML as defined in GML 3.0 is

given.

The Geography Markup Language (GML) is an XML format for representing entities in

the real world, such as trees, buildings, and roads. Entities are represented as features that

can describe both geometric and non-geometric properties. As an example, a building can

have features representing the location (geometric) and the building-type (non-

geometric). GML is designed to support the encoding of both types of features, where

non-geometric features can be associated through integration with other XML schemas.

Table 2.1 below lists the GML representation of a building. The location is represented as

7

a geometric point feature, while type, status, number and other properties are represented

as non-geometric features.

<gml:featureMember>
 <topp:bulroad fid="bulroad.2545">
 <topp:the_geom>
 <gml:Point srsName="http://www.opengis.net/gml/srs/epsg.xml#32633">
 <gml:coordinates xmlns:gml="http://www.opengis.net/gml" decimal="." cs="," ts=" ">
 357080,7766653
 </gml:coordinates>
 </gml:Point>
 </topp:the_geom>
 <topp:type>Outhouse</topp:type>
 <topp:status>2</topp:status>
 <topp:number>192574250</topp:number>
 <topp:started>10101</topp:started>
 <topp:updated>19940210</topp:updated>
 </topp:bulroad>
</gml:featureMember>

Table 2.1 Example of an entity represented by both geometric and non-geometric
features

Structure

The structure of a GML document is very flexible. Generally, it consists of a series of

Features representing the real-world entities. The features are children of a FeatureCol-

lection which hence works as a container. One of the things that make the GML format so

flexible is that each Feature also is a FeatureCollection. In this way, an entity can be rep-

resented by aggregations of other features. As an example, one can think of a park with

trees, green areas, water, and roads. While each of these is an independent entity repre-

sented as a feature, the park can be defined as Feature/FeatureCollection consisting of all

the trees, roads etc. GML also has support for defining other relations between different

features through the use of XLinks.

Geometric features supported

The GML 2.1.2 schemas provide a method of encoding what the Open Geospatial Con-

sortium (OGC) defines as simple features (Ryden 2005). With simple, OGC means

“…features whose geometric properties are restricted to ‘simple’ geometries for which

coordinates are defined in two dimensions and the delineation of a curve is subject to lin-

ear interpolation” (Cox, Cuthbert et al. 2002). In short, this means that GML 2.1.2 mainly

focuses on representing geometric features in two dimensions. The following is a list of

the OGC simple geometry classes:

• Point

8

• LineString

• LinearRing

• Polygon

• MultiPoint

• MultiLineString

• MultiPolygon

• MultiGeometry

Based on sampled data, we provide examples of the first four geometries below while the

complete schema definitions for all the geometries can be found in (OpenGeoSpatial

2002). Multi geometries are simply feature collections consisting of one to many basic

geometric features.

<gml:Point srsName="http://www.opengis.net/gml/srs/epsg.xml#32633">
 <gml:coordinates xmlns:gml="http://www.opengis.net/gml" decimal="." cs="," ts=" ">
 357080,7766653
 </gml:coordinates>
</gml:Point>

Table 2.2 Example of Point geometry encoded as GML

<gml:LineString>
 <gml:coordinates xmlns:gml="http://www.opengis.net/gml" decimal="." cs="," ts=" ">
 357015,7766698 357127,7766654 357205,7766613 357286,7766585 357364,7766577
357389,7766583 357406,7766595 357488,7766710 357498,7766735 357502,7766771
 </gml:coordinates>
</gml:LineString>

Table 2.3 Example of LineString geometry encoded as GML

<gml:Polygon>
 <gml:outerBoundaryIs>
 <gml:LinearRing>
 <gml:coordinates decimal="." cs="," ts=" ">
 80,340 160,340 160,280 80,280 80,340
 </gml:coordinates>
 </gml:LinearRing>
 </gml:outerBoundaryIs>
 <gml:innerBoundaryIs>
 <gml:LinearRing>
 <gml:coordinates decimal="." cs="," ts=" ">
 100,330 130,330 130,290 100,330 90,290 130,290 130,290 100,330
 </gml:coordinates>
 </gml:LinearRing>
 <gml:LinearRing>
 <gml:coordinates decimal="." cs="," ts=" ">
 150,335 150,320 140,335 150,335
 </gml:coordinates>
 </gml:LinearRing>
 </gml:innerBoundaryIs>
</gml:Polygon>

Table 2.4 Example of Polygon consisting of LinearRing(s) encoded as GML

9

GML 3.0

According to (Lake 2004) GML 3.0 is almost entirely backwards compatible with GML

2.1.2. The main difference with the two versions is that GML 3.0 has a larger feature set

with support for more geometries, dynamic features, three-dimensional objects, and de-

fault styling to mention some. This thesis has focused on GML 2.1.2 due to its simpler

nature and more widespread use. The backward compatibility of GML 3.0 indicates that

the prototype developed at least should work on a subset of the geometric features defined

without any changes.

2.1.3 Web Feature Service
This section describes Web Feature Services in terms of definitions and interaction work-

flow.

Web services are a collection of standardized protocols and methods for communication

between applications across the Internet over HTTP. (Cabrera, Kurt et al. 2004). With the

Web Feature Service (WFS) specification (Vretanos 2005) OGC has defined web service

interfaces for access and manipulation of geographic data. The operations available are

(Vretanos 2005):

• Create feature

• Delete feature

• Update feature

• Lock feature

• Get and query features based on geometric and non-geometric constraints.

GML is used as the language for encoding queries and results of the transactions per-

formed. The use of GML for “transport” enables WFS servers to provide an abstraction

level independent of the internal data sources. This makes data stored in formats such as

Shape, SOSI or other proprietary or country specific standards available as GML over the

WFS interfaces. This allows users to “..combine, use and manage geodata – the feature

information behind a map image – from different sources..” (Vretanos 2005).

10

WFS Interaction workflow

Figure 2.1 Workflow between client and WFS server (Vretanos 2005)

Figure 2.1 describes the flow in a WFS interaction. First, the client issues a “getCapabili-

ties” request, which result in a WFS_Capabilities document containing the features avail-

able on the server. Based on this, the client can issue a request for the description of a

given feature type. To this the WFS returns an XML schema containing descriptions of

the feature. The client can now issue operations on the feature(s) according to operations

available on the WFS. Section 2.2.2 goes into more detail around WFS interaction with a

walkthrough of a WFS filter query.

The above has described WFS as a set of interfaces for querying and manipulating geo-

spatial data. It should also be mentioned that OGC has defined a corresponding Web Map

Server (WMS) specification, which deals with the visualization and presentation of the

geospatial data (Beaujardiere 2006).

2.1.4 XPath

XPath is a language for identifying parts of XML documents, designed to be used in

XSLT and XPointer (Clark and DeRose 1999; DeRose, Jr. et al. 2002). In XSLT the lan-

guage is used to match and select particular parts of the source tree for copying into the

result document or further processing by the template rules (Harold and Means 2002).

XPath expressions can be grouped into location paths, general expressions, and functions.

11

Location paths

Location paths are powerful tools to identify a set of nodes in a document and consist of a

series of location steps where each step is separated by a “/” char. There are two distinct

types of location paths, relative and absolute. The two types are distinguished on how the

series of location steps is specified.

Location steps

A location step is always a selection of nodes relative to the context node (Clark and

DeRose 1999). For absolute location paths the first location step uses the source tree’s

root node as context node (Bray, Paoli et al. 2006). Relative paths consist of location

steps that start with the node currently being processed as context node.

For each location step the identified set of nodes are used as the context node for the next

step. Absolute location paths are also called root location paths (Harold and Means

2002).

/rootelement/feature

Table 2.5 Example of absolute location path
Feature

Table 2.6 Example of relative location path

The examples in Table 2.5 and Table 2.6 are location paths that apply to the XML docu-

ment listed in Table 2.9. The relative path in Table 2.6 would only return nodes if called

from within a “rootelement” context.

In addition to the node selection, each step contains an axis and an optional predicate test

expressed with general expressions(Harold and Means 2002).

The axis specifies the direction of which to perform the node selection and can be along

one of a comprehensive set of axes as defined in (Clark and DeRose 1999). Only a small

subset is presented below:

• Ancestor All nodes that are parents of the context node.

• Preceding-sibling All nodes that precede the context node and share the same par-

ent in reverse document order (Harold and Means 2002)

• Descendant All descendants of the context node, but not the context node itself

(Harold and Means 2002)

Examples of various different location paths can be found throughout the thesis.

12

XPath functions

XPath provides several functions that can be used separately or as part of gen-

eral/predicate expressions in location paths. The functions can be grouped by the data

types they operate on:

Boolean Number Node-set String
Boolean() Ceiling() Count() Concat()
False() Floor() Id() Contains()
Lang() Number() Last() Normalize-space()
Not() Round() Local-name() Starts-with()
True() Sum() Name() String()
 Namespace-uri() String-length()
 Position() Substring()
 Substring-after()
 Substring-before()
 Translage()

Table 2.7 XPath functions grouped by data types (Clark 1999; Holzner 2001)

The functionality provided by the XPath functions makes working with XPath more effi-

cient. As an example, the “count()” function makes it possible to bring the size of a given

node-set into a predicate expression. Detailed explanations and examples of all standard

functions can be found in (Holzner 2001; Harold and Means 2002).

2.1.5 Extensible Stylesheet Language Transformations (XSLT)

This section gives a presentation of the XML based XSLT language with a focus on the

areas most relevant to this thesis.

XSLT is a functional programming language for the specification of how one XML

document should be converted into another document. Though common, the output

document does not necessarily need to be an XML document.

Basic workflow

The transformation rules specified for how a document should be converted are enclosed

within template rules (Clark 1999) and saved in a stylesheet. Each template has a “match”

attribute. This attribute contains a pattern that identifies the source node or nodes to

which the rule applies (Clark 1999). The pattern is defined with a language called XPath

which is described further down. With a set of template rules saved in a stylesheet and an

XML source to apply the rules on, an XSLT Processor is needed to perform the actual

transformation.

13

Figure 2.2 The conceptual workflow of an XSLT transformation.

The XSLT processor works by parsing both the source and stylesheet into separate tree

structures. The source tree is then searched for nodes that fit some template’s match pat-

tern. Templates matched are then executed. Table 2.8 below lists an example of a very

simple XSLT stylesheet used to process the XML in Table 2.9. The transformation result

is available in Table 2.10.

<?xml version="1.0" encoding="UTF-8"?>
<!—ROOT element, defining language version, namespaces and prefixes �

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!—TOPLEVEL element defining output type and encoding of genereated result-->

 <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>

 <!—Template rule with an intuitive match attribute -->
 <xsl:template match="/rootelement/feature">
 <anotherRootElement><!— Element created by this template -->
 <anotherfeature><!— Element created by this template -->

 <!— Instructing the processor to output the text-value of the current node.
 As this template rule only matches the “feature” node of the “rootelement”,
 this value will be the text-value of the feature node -->
 <xsl:value-of select="."/>

 </anotherfeature>
 </anotherRootElement>
 </xsl:template>
</xsl:stylesheet>

Table 2.8 Simple stylesheet with explanations

The basic stylesheet in Table 2.8 defines one template rule that matches the “feature”

child of the “rootelement” node. The remaining flow is documented in the example.

14

<?xml version="1.0" encoding="UTF-8"?>
<rootelement>
 <feature>Featurevalue</feature>
</rootelement>

Table 2.9 Simple XML document

<?xml version="1.0" encoding="UTF-8"?>
<anotherRootElement>
 <anotherfeature>Featurevalue</anotherfeature>
</anotherRootElement>

Table 2.10 Transformation result

Only the very basic workflow and principles of XSLT has been presented here. A com-

plete listing of elements and features is available in (Clark 1999; Harold and Means

2002). A comprehensive introduction to XSLT is available in (Holzner 2001). The thesis

does also contain a set of template examples of varying complexity.

XSLT Elements

XSLT defines 37 elements, which can be organized in three overlapping categories; root,

top-level, and instruction elements. (Harold and Means 2002). Detailed explanations of

the categories and elements can be found in (Clark 1999; Harold and Means 2002). This

section will present one useful instruction element, the “xsl:element”. A common use of

XSLT is to generate new XML documents based on merging and formatting a combina-

tion of other sources. When generating new documents, there will often be a need to cre-

ate new XML elements as well. While XSLT supports the use of literal result elements,

using the “xsl:element” allows us to determine the new element’s name at runtime.

XSLT Functions

While the XPath operations are focused on the nodes and values of those, XSLT provides

additional functions with a more general application. Examples of commonly used func-

tions are the “document()” and “current()” functions. The “document()” function allows

loading external XML documents during processing. The “current()” function is of prac-

tical use in loops etc, where it represents the current node being processed. (As opposed

to the context node in location paths which is relative to the location path).

Operation
Current() Document() Element-available() Format-number() Function-available()

Generate-id() Key() System-property() Unparsed-entity()

Table 2.11 Standard XSLT Functions (Holzner 2001)

15

2.1.6 EXSLT

XSLT defines two mechanisms for extending the behavior provided by the processor

(Clark 1999; Leung 2004). XSLT Templates may contain EXSLT functions and ele-

ments. These mechanisms allow developers to provide functionality implemented in

some other language, e.g. Java, to be accessed from the templates during transformation

runtime.

EXSLT Functions

EXSLT Functions provide access to the external functionality in a pattern similar to that

of XSLT/XPath functions. As such, EXSLT functions can be used as part of location

paths/predicates and to return generated node sets to mention some. The XSLT standard

does not define any specific EXSLT functions, but a community effort to standardize

common functionality is available at (EXSLT.ORG 2006).

EXSLT Elements

EXSLT elements generally provide more flexibility than what is possible with EXSLT

functions. One reason for this is that the external language has access to more information

about the parameters and context passed than what is available for EXSLT functions.

Still, using extension elements in the templates is more cumbersome and complicated

than with extension functions. The familiarity and integration of extension functions with

XPath/XSLT functions is also something that should be considered.

2.2 Processing geographic data

As the introduction described the basic motivation for researching the use of EXSLT with

geo data represented as GML, this section will give a top-level view of the current work-

flow and introduce the challenges of processing GML in a case based setting.

2.2.1 Sources of geographic data

Geographic data has been collected for a long time and is today represented on a host of

formats and in many different systems without a common standard. Some systems are

open, others closed. Data is also represented with different resolution levels, which makes

it very difficult to integrate data from different sources. There are quite a few challenges

related to this diversity, and both previous and ongoing research is working to address the

16

problems with accessing geographic data across different sources, formats, and resolu-

tions. The Open Geospatial Community (OGC) represents one such effort, and has ad-

dressed the need for a common standard for the encoding, transmission and query of geo-

spatial data through the development of specifications. For the representation of geo-

graphic data, the Geographic Markup Language (GML) has been developed. This allows

for the encoding of both geographic features as well as other information related to the

objects. GML (as of version 3.0) is very flexible and allows for custom tailoring of the

format at both domain and application levels without breaking the standard. Section XX

will go into further detail about GML and its features. For the transmission and query of

spatial data, the Web Feature Service (WFS) has been developed. This specification pre-

sents a standard interface for querying and transmitting data encoded as GML over the

Internet by using the HTTP protocol and dedicated WFS servers following a web services

pattern.

Figure 2.3 Accessing geographic data through WFS

Figure 2.3 illustrates how servers implementing the WFS standard make many sorts of

spatial data available through common interfaces and connections. Output is encoded as

GML. Clients and other applications can find available servers with relevant data by que-

rying a Web Registry Service (WRS)/OGC Catalog Service, which describes available

service offers (Lake 2004). The client/application can then through the standard interface

17

both execute operations and download data as defined in the WFS standard directly from

the WFS server. While there are many possibilities in the various interactions available

with WFS, this thesis focuses on operations performed on the data received.

2.2.2 Accessing WFS

To give a better explanation of WFS, this section provides a walk-through of a WFS

query. Geoserver, the WFS implementation used is an open source OGC compliant

WFS/WMS server (Owens 2006). Geoserver uses the publicly available TIGER dataset

(U.S. Census Bureau 2005) as test data and this is also used for the example. The dataset

provides a broad array of real-life data from the U.S. and makes it easier to keep in sync

with practical applications of researched concepts and ideas.

In a WFS request, the mandatory initial task is to define the area of focus and which fea-

tures inside the area that are of interest. When posting these data to the server, it will do a

search based on the request and return the data encoded as GML.

Table 2.12 Initial WFS query to be posted

<wfs:GetFeature service="WFS" version="1.0.0"

outputFormat="GML2"

xmlns:topp="http://www.openplans.org/topp"

xmlns:wfs="http://www.opengis.net/wfs"

xmlns:ogc="http://www.opengis.net/ogc"

xmlns:gml="http://www.opengis.net/gml"

xmlns:xsi="

http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.opengis.net/wfs

http://schemas.opengis.net/wfs/1.0.0/WFS-basic.xsd">

<wfs:Query typeName="tiger:tiger_roads">

 <ogc:Filter>

 <ogc:BBOX>

 <ogc:PropertyName>the_geom</ogc:PropertyName>

 <gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">

 <gml:coordinates>

 -73.966331198449,40.78195219458531 -73.96139758516432,40.78442509210824

 </gml:coordinates>

 </gml:Box>

 </ogc:BBOX>

 </ogc:Filter>

18

</wfs:Query>

Table 2.12 is an example of a WFS-request posted to Geoserver to get all the roads in a

given area from the tiger data-set. A visualization of the area is provided in Figure 2.4

Figure 2.4 Visualization of data returned from the query in Table 2.12

Figure 2.4 visualizes the result of the query in Table 2.12. The returned data is a represen-

tation of the 85th St Transverse along with a rendering of the lake to provide some con-

text.

Table 2.13 GML Return from Geoserver WFS query

<wfs:FeatureCollection

xsi:schemaLocation="http://www.census.gov

http://localhost:8080/geoserver/wfs/DescribeFeatureType?

typeName=tiger:tiger_roads

http://www.opengis.net/wfs http://localhost:8080

/geoserver/schemas/wfs/1.0.0/WFS-basic.xsd">

<gml:boundedBy>

<gml:Box

srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">

<gml:coordinates decimal="." cs="," ts=" ">

-73.96738,40.781319 -73.962847,40.78438

</gml:coordinates>

</gml:Box>

</gml:boundedBy>

<gml:featureMember>

19

<tiger:tiger_roads fid="tiger_roads.7752">

<tiger:the_geom>

<gml:MultiLineString

srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">

<gml:lineStringMember>

<gml:LineString>

<gml:coordinates decimal="." cs="," ts=" ">

-73.96738,40.78438

-73.964179,40.783234

-73.962847,40.781319

</gml:coordinates>

</gml:LineString>

</gml:lineStringMember>

</gml:MultiLineString>

</tiger:the_geom>

<tiger:CFCC>A41</tiger:CFCC>

<tiger:NAME>85th St Transverse</tiger:NAME>

</tiger:tiger_roads>

</gml:featureMember>

</wfs:FeatureCollection>

As is shown in the previous visualization and the GML listed in Table 2.13, the correct

road is returned along with the available non-geographic properties. In the case of this

specific road it amounts to a code (A41) and the name of the road (85th St Transverse).

2.2.3 Processing WFS results

Assuming the user wants to create a buffer around the received data to use in a new WFS

query, there are mainly two approaches. He can either use a DOM/SAX parser to repre-

sent the data received for direct programmatic manipulation, or it can use the template

based XSLT approach. Neither of the two have any native support for dealing with spatial

data. This makes it difficult and complicated to do any operations on or with the geo-

graphic data. As an example, say that the previous result from the WFS server returned

two roads, and that the user wants to know if and where they cross each-other. Perform-

ing this conceivably simple act would take quite a lot of effort, and what if the user

needed to do more complicated operations, such as generalization or distance calcula-

tions? One could try combinations of different queries based on the returned data from the

20

WFS, but this might again be made difficult by such simple things as using multiple data

sources and still having to deal with the details in the data format. There is a need for

utilities to do operations on downloaded geographic data inside an XSLT context. An in-

teractive approach has several good toolkits, such as Udig (Refractions Research 2006)

and JUMP (JUMP 2006), but these are mostly used as standalone desktop applications.

For the programmatic approach, there are several libraries available. Amongst them is the

Java Topology Suite (Davis 2006), (Davis 2003). This is a very popular library used by

numerous other projects to work with geospatial data. But, even though it has all the spa-

tial functionality needed, the programmer still has to create application logic and func-

tionality for the instantiation of the correct JTS objects to match the corresponding GML

elements. This demands a rather intimate knowledge of both JTS and GML, is time con-

suming, and may result in overly complex systems with high coupling. As touched briefly

in section 1.2, XSLT has been successfully used in other settings where the transforma-

tion of XML data to some other format is needed. XSLT is designed as a declarative lan-

guage such as SQL, allowing the developer to focus on what should be done instead of

the implementation details. One of the positive things about the XSLT approach is the

pattern-matching ideology defined in the Processing-Model (Clark 1999). Instead of the

traditional procedural dataflow, each template declares a pattern of data it matches. When

running the stylesheet, data applied is matched with each template which in turn is exe-

cuted if the match is a success. This allows for very flexible templates that can be used in

different contexts. Additionally, being XML itself, it is completely independent of the

platform and language deploying it, and can be used on a wide array of systems without

ever changing the stylesheet itself. If XSLT could be extended to support standard spatial

operations, it would probably not only standardize a lot of work with GML in applica-

tions, but also lower the bar for working with and including spatial data for everyone to

use. If doing spatial queries on WFS and then operate on the data could be just as easy as

working with ordinary web services and XSLT with functions, axis, and elements, it is

tempting to assume that its use would be more widespread and spatial functionality find

its way into many more applications. Another scenario is the need to lookup and merge

data from two separate datasets or layers. An example of this can be taken from the tiger

dataset available with the 1.3.1 distribution of GeoServer. In addition to the aforemen-

tioned road layer, the set has a layer representing points of interest (poi) in Manhattan.

21

Say that we were developing a website or application for tourists that want a list of attrac-

tions along the road they are heading (or any given road for that sake). To achieve this

with the WFS based data source, it would then be necessary to first get the coordinates of

the road strip and then do a search within the proximity of the road along its length.

Figure 2.5 illustration of buffer
scenario

Figure 2.5 illustrates the concept.

The tourist walks down a road

strip, and

landmarks 1,2, and 3 are of interest

because they are within a given

zone/proximity along the road.

Landmark 4 is too far away and is

not of interest. The key here is to

compute the bounding box of the

buffer zone and then do a new

search within the landmark data.

With plain vanilla XSL, this

bounding box calculation would

imply some rather ugly code, -if possible at all. The intuitive approach would be to use

XSL or DOM manipulation to extract the bounding box of the road, and then use JTS or

some other geospatial functionality directly for the calculation of the bounding box of the

buffer zone, and then issue a new request to the landmark web service. The returned data

would then have to go through another XSLT process or DOM manipulation for extrac-

tion and formatting of the landmarks into a list. What is needed, is a way to calculate the

buffer zone's bounding box on the fly from within the initial XSLT process, so that cor-

rect requests for landmarks can be done from within XSL by way of a "document()" call

or some other extension function and then integrated into the generated list. The proposed

conceptual flow can be illustrated by the sequence diagram below.

22

Figure 2.6 Sequence diagram showing the need for a possibility to calculate a buffer surrounding selected fea-

tures of the GML.

In the diagram the application makes the initial request to the Roads WS. This can be

achieved either by sending coordinates received from the Global Positioning System or

such (searching for roads containing the given coordinates), or by sending the feature-id

of the road (typically selected by the user in a previous window) to identify it for the

WFS. The returned GML is then sent through an XSL transformation where the road's

buffer zone is computed using the buffer operator (see Chapter 3 for details on the buffer

operator). The returned string containing the bounding box from the buffer operator is

then concatenated to a “getFeatures” request to the landmarks WFS using the “docu-

ment()” function of XSLT for acquirement, or eventually some other wrapper function for

external HTTP access. The returned GML can be formatted using the existing XSLT

process and returned as formatted data to the application. With formatted data it is here

meant anything from plain text to HTML, PDF or SVG. An alternative to using the pro-

posed extensions for buffer operations is to implement it directly in XSLT. Although such

operations probably can be implemented in XSL to a certain degree, there are several ar-

guments not to:

• XSLT is a language specifically designed for dealing with XML, not with the im-

plementation of geospatial calculations. As mentioned in section 1.2, the main

motivation of moving GML processing from the generic programming languages

to XSLT is to simplify the workflow, allowing developers to concentrate on the

23

task at hand instead of the implementation details of geospatial standards. Imple-

menting the calculations in directly in XSL is kind of the opposite, where the

functionality is most easily implemented in Java or another programming lan-

guage. XSLT code with a procedural workflow containing many conditionals and

parameters easily gets ugly, incomprehensible, and difficult to maintain.

• Encapsulating geospatial function as EXSLT calls follows the pattern of existing

XSLT functions for operations on strings and node sets. This thesis presents a

suggestion for the mapping between a standardized set of spatial features defined

in the OGC Simple Features Specification (SFS) and an EXSLT function set. This

could possibly form a basis for potential inclusion in the standard XSLT functions

available at a later time.

• When the spatial functionality is integrated only through interfaces and function

calls, it is easier to combine different and specialized implementations without al-

tering the XSLT template. Implementations of the spatial operations following in-

terfaces based on the SFS and made available as standardized EXSLT functions

allows for easier optimization of performance completely independent of XSL

code. External vendors or open source projects can then create different libraries

of functions following the same common interfaces but with different properties

regarding performance and support for underlying elements and data sources.

XSLT developers can then "upgrade" their libraries without touching the XSLT

code.

2.3 Prior studies

There has not been done a large amount of research around the use of XSLT in a geospa-

tial context. This section discusses findings of relevance and ideas from other studies with

a focus on template based processing and query of XML Spatial queries and XML. To

define the set of functionality to be supported it is necessary to evaluate the experiences

from previous studies in combination with practical knowledge and analysis of the poten-

tial fields for use. As mentioned in the motivation, there is an intuitive interest in basing

the functionality on the operations as defined in (Ryden 2005) and (Vretanos 2005) as

these are the community accepted standards supported in various degrees by many pro-

24

jects and applications, open source and commercial alike (MySQL; Refractions Research;

Davis 2003; Directions Staff 2003; Oracle 2005; ESRII 2006; Owens 2006; Schulz 2006).

In (Corcoles and Gonzalez 2004), it is investigated how geographic referenced data en-

coded as GML can be queried in the Geospatial web, integrating spatial and non-spatial

resources in a web context. Their research is of relevance as both the context and opera-

tions they discuss coincide with the motivational points of this thesis. A more detailed

study on the language they have designed is presented in (Córcoles and González 2001).

While they focus on query construction and how a wrapper can be used to bridge the spa-

tial queries to a defined RDBMS by converting to spatial SQL queries, it is clear that an

XSLT process could be used as the mediator in the process presented in (Corcoles and

Gonzalez 2004). XSLT is suitable because it was designed to create templates for data

transformation from one or more sources and data models into an output of choice and

simultaneously extracting data of interest through path declarations with XPath. (Provost;

W3C; Clark 1999; Holzner 2001). A common use is the generation of HTML/XHTML

based on transforming and querying XML from separate sources of data, such as web

services. (Corcoles and Gonzalez 2004) lists the comparative operators “cross”, ”over-

lap”, and ”touch” together with “area” and “length” for analysis. These can all be found

in the Simple Features Specification (Ryden 2005) section 2.1.1.1-2.1.1.3. Having estab-

lished that XSLT has the potential to fit into a mediator role of the model in the Simple

Features Specification and that the available queries described match those of defined in

it, it is interesting to note that substituting the wrapper for bridging queries to the RDBMS

with the EXSLT functionality introduced in 2.1 and 3.2 should be possible as the opera-

tions available seem to overlap, - both implement the geometry operations of the Simple

Features Specification (Ryden 2005). A possible advantage of using the EXSLT approach

in addition to the motivations mentioned in section 2 is that while the RDBMS wrapper in

(Corcoles and Gonzalez 2004) relates to a singular or limited number of databases di-

rectly available to the mediator process, the EXSLT approach as introduced in this thesis

is based on WFS. WFS is available over HTTP as a web service and allows for easier in-

tegration of multiple data sources without being dependent of proprietary database driv-

ers, syntax, and frameworks (Vretanos 2005). While both (Corcoles and Gonzalez 2004)

and (Córcoles and González 2001) support the spatial queries defined in (Vretanos 2005),

they are both dependent of a wrapper to translate the queries into syntax compatible with

25

the RDBMS currently used. The need to implement a wrapper from scratch as done in

(Córcoles and González 2001; Corcoles and Gonzalez 2004) to accommodate the query

language is indicated as a complicating factor in both (Vatsavai 2002) and (Warnill,

Soon-Young et al. 2004) and is not in line with the WFS scenario which is the context of

this thesis. In (Vatsavai 2002) Vatsavai discusses the use of XQuery for spatial queries on

GML using the language GML-QL, which is an extension of XQuery. XQuery is a do-

main-specific language for querying XML documents and features a very powerful syn-

tax for accessing and filtering the different parts (Brundage 2004; Fernández, Malhotra et

al. 2006). It is not a competitor to XPath, which is used in XSLT, but a more complicated

alternative with a larger set of functionality and a procedural workflow that complements

XPath/XSLT for the settings where that is needed. XQuery seems to be most commonly

used in connection with database queries at the time of writing. While (Vatsavai 2002)

has a focus on spatial queries using XQuery in relation to returned data from a database

system, the nature of XQuery is so close to that of XSLT/XPath that the operations and

syntax used is of relevance. Vatsavai has explicitly chosen to support the features as de-

fined in (Vretanos 2005), but with an adaptation to fit the operational calls into the

XQuery syntax. While (Vretanos 2005) defines operations as methods on spatial objects

called with dot-notation, the examples in (Vatsavai 2002) use operations implemented as

function calls where the geometries are passed as parameters. This is a syntax that

matches the XSLT functions generally available and is easy to understand both in relation

to (Vretanos 2005) and (Ryden 2005). Section 3.3 goes into further detail around integra-

tion of query interface.

Table 2.14

Operation definition in specification [2]

geometryA.operation(geometryB)

Operation example call in [18]

operation(geometryA,geometryB)

Vatsavai does not go into details around the implementation of the given functionality

and has a perspective of using a database system as a data source. Still, it seems viable

that a library built to support these operations in XSLT could also be used in an XQuery

context as the operations work on the already extracted data. In (Warnill, Soon-Young et

26

al. 2004) the authors discuss a similar extension of XQuery to support queries on moving

objects. Whether to use XSLT/Xpath or XQuery would then be a matter of which sce-

nario one is working in. A discussion of when to use XSLT/Xpath or XQuery can be

found in (Brundage 2004; Fernández, Malhotra et al. 2006).

2.4 Chapter summary

This chapter has presented a view on how Web Feature Servers are sources of geographic

data. Further it described the need to process returned GML data locally, and how XSLT

fits into the workflow. It also discussed guidelines for the implementation of necessary

spatial functionality and in the review of previous research it showed how extension of

XQuery has been used to implement spatial functionality.

27

3 Supported functionality
As the previous research in 2.3 outlines a syntax that can be used with external functions

for access from XSLT, this section will present the operations suggested for implementa-

tion and the motivation for their use.

 The OpenGIS Filter Encoding Implementation Specification (FEIS) and the OpenGIS

Simple Features Specification (SFS) define a set of spatial operators for comparison and

analysis. While these are a required component of queries to WFS servers, they are also

used in other OGC web services such as Gazetteer and Web Registry Services (Vretanos

2005). By supporting these operations we ensure that there is a common set of analysis

and comparison operations shared between WFS queries and local operations from within

on the loaded data set. Aside from the good practice of standard compliance, this makes

both general usage and implementation easier. Support for these operations also contrib-

utes to make the XSLT approach fit into the OGC workflow. What follows is a presenta-

tion of the spatial operators from the two specifications that apply to generic geographic

objects with comments on why and how they can be of use in a XSLT/template context

and an API specification of their use from XSLT. Section 3.1 presents the comparison

operations, while 3.2 details the analysis operations. Section 3.3 defines and exemplifies

the interface determined used for the integration between EXSLT and calls to the frame-

work implemented the spatial operations.

The SFS additionally defines operations specific to the different geometric types. While it

is possible to implement these with the framework developed here, doing so is outside of

the scope of this thesis.

3.1 Operations for testing spatial relations on generic geo-

graphic objects

These operators enable the user to test for the validity of certain fundamental spatial con-

ditions, and return either true or false. In addition to being used on

28

WFS servers today, they are also supported on databases with spatial capabilities such as

PostGIS, MySQL and Oracle. In other words they are proven to be of vital importance

and should have a natural place in any system designed for work with geographic data.

Equals

Equals(anotherGeometry:Geometry):Integer - Returns 1 (TRUE) if this

Geometry is 'spatially equal' to anotherGeometry. (Ryden 2005)

This operation is used to compare one geometric object to another. In a

template context, this can be very useful. One practical example is the need for

removal of duplicate geometries when merging datasets from multiple WFS

queries.

Table 3.1

Param types #Params Return value
Nodes containing GML adher-
ent geometry elements

2 True | false

Table 3.2

<xsl:variable name="example" select="geo:equals(elem1,elem2)" />

Disjoint

Disjoint(anotherGeometry:Geometry):Integer- Returns 1 (TRUE) if this

Geometry is 'spatially disjoint' from anotherGeometry. (Ryden 2005)

This operation is used to check if two objects in any way cover parts of the

same area (a.Disjoint(b) a b). In a practical application this can be used in a

check of uniqueness of coverage. For example, when working with

georeferenced real-estate data, checks on disjointness can be used to detect if someone

has built something on someone else's property. If a house is not built

on property a, it is disjoint to property a.

Param types #Params Return value
Nodes containing GML adher-
ent geometry elements

2 True | false

Table 3.3

<xsl:variable name="example" select="geo:disjoint(elem1,elem2)" />

Table 3.4

29

Intersects

Intersects(anotherGeometry:Geometry):Integer- Returns 1 (TRUE) if this

Geometry 'spatially intersects' anotherGeometry. (Ryden 2005)

Intersects corresponds to the intersect operator of traditional set theory applied

on geographic objects. A practical use of the intersects operator is to check if an area at

least partly covers another area.

Param types #Params Return value
Nodes containing GML adher-
ent geometry elements

2 True | false

Table 3.5

<xsl:variable name="example" select="geo:disjoint(elem1,elem2)" />

Table 3.6

Touches

Touches(anotherGeometry:Geometry):Integer- Returns 1 (TRUE) if this

Geometry 'spatially touches' anotherGeometry. (Ryden 2005).

According to the SFS, this operation applies to all geographic objects except

for points. Hence it can be used for operations such as checking if the boundaries of any

two given roads touch. This again can be used in the computation of road-descriptions; if

two roads touch each other, it could be possible to cross from one road to the other.

Param types #Params Return value
Nodes containing GML adher-
ent geometry elements

2 True | false

Table 3.7

<xsl:variable name="example" select="geo:touches(elem1,elem2)" />

Table 3.8

30

Crosses

Crosses(anotherGeometry:Geometry):Integer- Returns 1 (TRUE) if this

Geometry 'spatially crosses' anotherGeometry. (Ryden 2005)

Corresponds to intersects, but for use with lines and points relative to lines and areas.

Param types #Params Return value
Nodes containing GML adher-
ent geometry elements

2 True | false

Table 3.9

<xsl:variable name="example" select="geo:crosses(elem1,elem2)" />

Table 3.10

Within

Within(anotherGeometry:Geometry):Integer - Returns 1 (TRUE) if this

Geometry is 'spatially within' anotherGeometry. (Ryden 2005)

This operator checks whether a geometry is situated within the area of another geometry.

For example, it can be used to check if a house is within a given administrative district.

Param types #Params Return value
Nodes containing GML adher-
ent geometry elements

2 True | false

Table 3.11

<xsl:variable name="example" select="geo:within(elem1,elem2)" />

Table 3.12

Contains

Contains(anotherGeometry:Geometry):Integer - Returns 1 (TRUE) if this

Geometry 'spatially contains' anotherGeometry. (Ryden 2005)

31

Corresponds to the within operator, but check if a given geometry has another geometry

within its area.

Param types #Params Return value
Nodes containing GML adher-
ent geometry elements

2 True | false

Table 3.13

<xsl:variable name="example" select="geo:contains(elem1,elem2)" />

Table 3.14

Overlaps

Overlaps(anotherGeometry:Geometry):Integer - Returns 1 (TRUE) if this

Geometry 'spatially overlaps' anotherGeometry. (Ryden 2005)

Param types #Params Return value
Nodes containing GML adher-
ent geometry elements

2 True | false

Table 3.15

<xsl:variable name="example" select="geo:overlaps(elem1,elem2)" />

Table 3.16

Relate

Relate(anotherGeometry:Geometry,

intersectionPatternMatrix:String):Integer- Returns 1 (TRUE) if this Geometry is spatially

related to anotherGeometry, by testing for intersections between the Interior, Boundary

and Exterior of the two geometries as specified by the values in the intersectionPattern-

Matrix. (Ryden 2005).

Not a part of the FEIS.

Param types #Params Return value
Nodes containing GML adher-
ent geometry elements

2 True | false

Table 3.17

<xsl:variable name="example" select="geo:relate(elem1,elem2)" />

Table 3.18

32

3.2 Operations that support spatial analysis on generic geo-

graphic objects

In addition to the spatial test operators, there is a need to manipulate geographic data. To

support this, there is a need to support the methods for spatial analysis as defined in the

SFS. This section gives a listing of the required methods with brief comments on their

practical use.

Distance

Distance(anotherGeometry:Geometry):Double - Returns the shortest

distance between any two points in the two geometries as calculated in the

spatial reference system of this Geometry. (Ryden 2005).

The distance method is designed to calculate the distance between two objects.

This can be used in a practical application such as measuring the distance between two

buildings, ships, or landmarks.

Param types #Params Return value
Nodes containing GML adher-
ent geometry elements

2 XSLT Number

Table 3.19

<xsl:variable name="example" select="geo:distance(elem1,elem2)" />

Table 3.20

Buffer

Buffer(distance:Double):Geometry - Returns a geometry that represents all
points whose distance from this Geometry is less than or equal to distance.

Calculations are in the Spatial Reference System of this Geometry.

(Ryden 2005).

Param types #Params Return value
Node containing GML adher-
ent geometry elements

1 XSLT Node set

Table 3.21

<xsl:variable name="example" select="geo:buffer(elem1,elem2)" />

Table 3.22

33

Convex hull

ConvexHull():Geometry - Returns a geometry that represents the convex

hull of this Geometry. (Ryden 2005).

Param types #Params Return value
Nodes containing GML adher-
ent geometry elements

2 XSLT Node set

Table 3.23

<xsl:variable name="example" select="geo:convexhull(elem1,elem2)" />

Table 3.24

Intersection

Intersection(anotherGeometry:Geometry):Geometry - Returns a geome-

try that represents the point set intersection of this Geometry with

anotherGeometry. (Ryden 2005).

Param types #Params Return value
Nodes containing GML adher-
ent geometry elements

2 XSLT Node set

Table 3.25

<xsl:variable name="example" select="geo:intersection(elem1,elem2)" />

Table 3.26

Union

Union(anotherGeometry:Geometry):Geometry - Returns a geometry that

represents the point set union of this Geometry with anotherGeometry.

(Ryden 2005)

Param types #Params Return value
Nodes containing GML adher-
ent geometry elements

2 XSLT Node set

Table 3.27

<xsl:variable name="example" select="geo:union(elem1,elem2)" />

Table 3.28

Difference

34

Difference(anotherGeometry:Geometry):Geometry - Returns a geometry that represents

the point set difference of this Geometry with anotherGeometry. (Ryden 2005)

Param types #Params Return value
Nodes containing GML adher-
ent geometry elements

2 XSLT Node set

Table 3.29

<xsl:variable name="example" select="geo:difference(elem1,elem2)" />

Table 3.30

Symmetric difference

Figure 3.1

SymDifference(anotherGeometry:Geometry):Geometry - Returns a

geometry that represents the point set symmetric difference of this

geometry with another geometry. (Ryden 2005)

Param types #Params Return value
Nodes containing GML adher-
ent geometry elements

2 XSLT Node set

Table 3.31

<xsl:variable name="example" select="geo:symmetricdifference(elem1,elem2)" />

Table 3.32

3.3 Interface integration

The interface provided to the developers of XSL templates must be powerful

enough to be of practical use, yet it must adhere to the language standards and general

usage patterns for XSL. This section defines how the spatial functionality in focus can be

available for XSLT as an API resembling regular functionality. The XSLT 1.0 specifica-

tion allows for two kinds of extensions to XSL; functions and elements (Clark 1999).

While both of these are described in Section 2.1, we have favored extension-functions for

integration of the defined spatial functionality. Extension elements do provide the flexi-

bility and functionality needed, but an approach using functions to make the operations

available resembles the more well-known XSLT functions and fundamental XPath syntax

better. More details around the use of functions versus elements are presented in 0 where

the use of extension elements for configuration is discussed. It is also assumed that it will

be easier to start adopting the interface when the user can build upon concepts and pat-

terns with which he or she has experience.

35

Table 3.33

Operation definition in specification [2]

geometryA.operation(geometryB)

Operation example call in [18]

operation(geometryA,geometryB)

As discussed more closely in the next section, the operations to be made

available can be split between the ones returning boolean values and the ones returning

new geometric elements.

Table 3.34

1. Regular XSLT Function for string concatenation:

<xsl:variable name="strings" select="concat(string1,string2)" />

2. Proposed EXSLT function for union operations

<xsl:variable name="areas" select="geo:union(area1,area2)" />

3.4 Chapter summary

This chapter has presented the operations that the framework should support and the rea-

soning for why they should be supported. Further, a definition and explanation for the

syntax used in the EXSLT calls has been given. While the functions described have been

limited to standard operations of the Simple Feature Specification, operations for gener-

alization/simplification and other spatial calculations are of relevance. Although the im-

plementation of these has not been the main focus of the work with the thesis, the frame-

work developed supports many operations through the functionality available in the Java

Topology Suite (JTS) (Davis 2003; Davis 2006). JTS is used as an underlying framework

for geospatial calculations, and is discussed further in chapter 4. Section 7.3 also presents

and discusses an experimental implementation of the Douglas Peucker simplification al-

gorithm.

36

4 Implementation of supported

functionality
This chapter presents the design and implementation of GeoXSLT, a system supporting

the defined extension functions. A top-down view of the architecture and the ideas behind

the division of functionality is given in 4.1. To provide the necessary understanding of

how extension calls from XSLT are integrated with the implementation, section 4.2 out-

lines how function calls in XSLT can be mapped to Java classes. Sections 4.3-4.5 give a

detailed explanation of the various system levels outlined in 4.1.

4.1 Division of levels

Based on similarities with standard XSLT functions, examples

from the Simple Features Specification (Ryden 2005), and the

work of Vatsavai (Vatsavai 2002), Chapter 3 defined the func-

tionality and syntax to be supported. The aim of this EXSLT

implementation is hence to support the given operations within

a context of easy use and adaptation, while at the same time

keeping the door open for later performance improvements in

the underlying framework.

A focus has also been placed on making it very simple to integrate other operations which

can operate on pre-made geometry objects. The simplicity of general use and integration

of new functionality is sought done with a division of the system into three different lev-

els. There is no need to do any changes to existing Java code to start using it, as long as

the jar/class files are available on the classpath. Figure 4.1 illustrates the division of

levels. As indicated by the figure, operations called from the XSL templates relate to the

level 1 classes. An overview of the contents for each level is presented below:

• Level 1, Front-end. The general idea is that front-end classes support given

operations by implementing interfaces defining method signatures and return

values. No calculations are to occur at this level. Front-end classes are designed

to act as wrappers, passing the request on to an implementing level 2 class for

processing. By doing this, functionality implemented across several level 2

Figure 4.1: System
levels

37

classes can be accessed through a singular class/interface. This allows for the

grouping of operations by functionality under a relevant namespace, without hav-

ing to change the underlying class model(s). In the thesis’ implementation, a sin-

gular namespace has been created for the practical combination of comparison

operations; called predicates, and for analysis operations. This matches the opera-

tion definitions in 3.1 and 3.2.

• Level 2, Implementation. The implementation classes are the units where the cal-

culations are performed. The experience with the development done shows that

these classes usually implement operations at a high level, as external libraries

have been used for the calculations and level 3 classes handle all data conversion.

With this in mind, the level 2 classes can be thought of as implementing the logic

of the operation.

• Level 3, Handlers and factories. The level 3 classes are the workhorses of this

framework and are exclusively used by the implementation classes at level 2.

They provide functionality to convert data structures from the XSLT process into

objects that support the operations performed in the implementation classes at

level 2. Further, they provide functionality for conversion of the resulting data

from analysis operations back into a format acceptable for return to the XSLT

process. As of now, conversion between GML node structures and geometry ob-

jects of the Java Topology suite are supported.

4.2 Access to EXSLT functions from XSLT

This section gives a rundown on how extension functionality is available from XSLT

templates. A special focus is on how the functionality of the implemented framework can

be accessed.

To use extension functionality; EXSLT, in XSLT, the general approach is to define a

namespace representing the specific group of extensions in the root element of the

stylesheet (Clark 1999; Apache Xalan Community 2005; EXSLT.ORG 2006). Standard

extensions, such as those defined by exslt.org are defined by a URI to a resource available

on the web. The API documentation is usually available at the address for reference.

38

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:math="http://exslt.org/math">

Table 4.1 Example of namespace declaration for standard extensions.

Standard extensions are defined by the community (EXSLT.ORG 2006) and very often

implemented as an internal part of the XSLT processor. The processor used here, Xalan

(Apache Xalan Community 2005), supports many of them. A complete listing of sup-

ported extensions is available online (Apache Xalan Community 2005). In the case of ex-

tensions that are not handled automatically based on an http based URI, the Java class or

package name (Apache Xalan Community 2005) has to be defined in the namespace dec-

laration of the stylesheet. This is the case with the extension framework of this thesis.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:geo="xalan://package[.classname]"
 >

Table 4.2 Example of how the a java class is tied into the “geo” namespace

In Table 4.2 an example of how Java functionality not handled automatically is made

available from XSLT stylesheets processed with Xalan is listed. For all templates con-

tained in the stylesheet, defining the "geo" namespace, the methods of the class "class-

name" are available as functions. Each of the operations implemented in this thesis has an

example of an XSLT function call in 3.1 and 3.2. In the case of community-wide accep-

tance for the set of spatial extensions, a similar http based namespace mapping in Xalan

as for the exslt.org functions could of course be integrated.

4.3 Implementation of Front-end/Level 1

This section gives a presentation of the level 1 architecture introduced.

The front-end classes make out the interface between the extension call from XSLT and

the Java framework. When a call is made, Xalan automatically converts the XSLT types

to Java objects as listed in Table 4.3.

Table 4.3 Xalan conversion of XSLT types to Java objects

39

XSLT Type Java Type
Node Set Org.w3c.dom.NodeList

String Java.lang.String

Boolean Java.lang.Boolean

Number Java.lang.Double

Result Tree Fragment Org.w3c.doc.NodeList

Methods in the front-end classes therefore need to use the parameter signatures as listed

above. For practical reasons, the functionality defined in chapter 3 is accessible through

one front-end class, but there is no reason why it cannot be split based on another group-

ing.

40

Figure 4.1 Dependency diagram for implemented front-end architecture

The diagram in Figure 4.1 displays the relations between the front-end class “SFSOpera-

tions” and the underlying level 2 classes which implement the logic. Note the implemen-

41

tation to interfaces representing the operation definitions in chapter 3. The front-end class

only has references to the underlying classes, and uses them to pass on the request.

 public Node buffer(NodeList n1, double distance) {
 return ao.buffer(n1,distance);
 }

Table 4.4 Example of operation “wrapping” in front-end class

In the listing above, “ao” is a reference to the “AnalysisOperations” class as displayed in

Figure 4.1 Dependency diagram for implemented front-end architecture. The result from

the implementing level-2 class is returned directly to the XSLT process after processing.

In an XSLT context wrapping of calls to the implementing class means that all geo-

graphic functionality used for a given template can be accessed through one convenient

namespace/prefix instead of declaring multiple namespaces. Additionally, developers are

free to change between different underlying level 2 classes implementing the same inter-

faces by either altering level-1 source code or using injection of control (IoC) (Harrop and

Machacek 2005) through Spring (Spring Community 2006) or similar frameworks. All

this can be done without worrying about anything else than the simple instantiation of

level 2 classes with zero parameter constructors.

4.4 Architecture of implementation classes/level 2

This section explains the workflow and architecture of the level 2 classes.

While the front end classes represent the operations available to the XSLT process, the

input is only passed as parameters to the classes in level 2 as described in section 4.3.

Figure 4.2 Level 1 wrapping of operations

Figure 4.2 above gives an example of how a call to the SFS operation "buffer" propagates

from the XSLT template/process to the defined level 1 interfacing front-end (green). The

42

front-end passes the parameters on to the implementation in the level 2 class Analy-

sisOperations (yellow). Figure 4.3 shows how the level 2 class then uses the level 3 class

GMLUtilities to construct a JTS Geometry from the GML NodeList initially passed from

Xalan.

Figure 4.3 Using a level 3 class to build JTS geometries

The implementation developed in this thesis uses Java Topology Suite (JTS) (Davis 2006)

as the main engine for geographic calculations. Generalizing out the building of JTS Ge-

ometry objects (Davis 2003) to level 3 classes as shown in Figure 4.3, the main area of

concern for level 2 classes and their methods is to call methods corresponding to the ex-

pected calculations on the pre-made geometry objects and evaluate the results. This

makes it relatively straight-forward to implement operations in level 2, and may inspire

developers to integrate new functionality by using the building blocks available in the

level 3 architecture. In the scope of the thesis the utility operations of level 3 make it eas-

ier to create JTS objects without unnecessary obfuscation and code redundancy. In a

wider scope, it may open up for approaches inline with the Factory Pattern [28], allowing

use of alternate libraries to JTS depending on the need and situation to generate the nec-

essary geometrical representations.

43

Figure 4.4 Execution of calculations on JTS geometry objects

When the calculated result for return to the XSLT process is something else than the

types automatically converted by Xalan, the data is run by a level 3 class for conversion

to a Xalan compatible type. In the current system, only calculations that return JTS ge-

ometries need result conversion. Table 4.5 Table 4.5 Displays Xalan accepted Java types

and their corresponding XSLT type. lists XSL data types and Java mappings as accepted

by Xalan. Only the subset that are of relevance to this implementation is shown. The

process of converting a JTS geometry to a Xalan compatible data type is termed "JTS se-

rialization".

Figure 4.5 Level 2 class utilizing the level 3 architecture for serializing JTS Geome-
try to Xalan compatible format by calling the “encode” method of the GMLFactory
class.

Java Types XSLT Type
org.w3c.dom.traversal.Node (and subclasses)
org.w3c.dom.traversal.NodeList

Node-Set

Java.lang.Double, int, double Number

Java.lang.Boolean, Boolean Boolean

Table 4.5 Displays Xalan accepted Java types and their corresponding XSLT type.

44

4.5 Implementation of the level 3 classes

This section describes the core of the framework for spatial support in XSLT.

While the front-end classes in this model act as wrappers and the level 2 classes define

logic expressed on existing objects, the major trunk of development has been centered on

level 3. Level 3 creates as a bridge between nodes from the XSLT process and the per-

formed geo-operations. The functionality developed in level 3 for detecting geometries

and building JTS geo-objects from node lists provided by Xalan is crucial to allow for the

integration of any spatial operation defined in Chapter 3. Additionally, the library for “se-

rializing” the geo-objects into node objects as required by Xalan is necessary for all spa-

tial operations that are to return anything else than numeric or Boolean values.

4.5.1 Cost of use

All the conversion does come at a cost, as such the bridge provided by the level 3 classes

can be regarded as a performance penalty induced by the need for data conversion to sup-

port the easier and more accessible geo-functionality provided in the XSLT context. It is

important to be aware that this implementation is not designed particularly with speed in

mind, but as a proof of concept. Even so, as later sections will go into further detail on,

there are several changes that can be applied for quick wins with regard for the speed op-

timizing of parsing and serialization.

4.5.2 Service interfaces

Inline with the layered and loosely coupled architecture of the whole implementation, the

level 3 classes communicate with level 2 through only two operations; one for building

JTS geometry objects, and another for serializing them.

4.5.3 Creation of JTS Geometries from node lists.

What follows is an overview of the workflow for the build process of geometry objects

based on the node lists passed on from Xalan.

45

Figure 4.6 Class diagram of GMLUtilities

Detection of geometry representations

The level 3 class “GMLUtilities” receives a call to the “gmlSearch” method with a list of

nodes (org.w3c.dom.NodeList). The list is then iterated and each node is checked by run-

ning it through the “isGML” Boolean method. The isGML method in this implementation

simply checks whether the namespace is “http://www.opengis.net/gml” and then if the

element’s local name/tag name is among the defined names in a local collection of valid

GML element names. Whilst this can be a relatively naïve approach for detection of GML

elements, there should not be any significant problems to extend it for use of actual

schema validation. The reason it was not done in this case is that it was not deemed nec-

essary for a proof-of-concept implementation and would also have a significant effect on

execution speed.

46

Construction of geometry objects

If a node is found to be a GML node, it is sent to the “create” method of “SubHandlerFac-

tory”.

Figure 4.7 Class diagram of SubHandlerFactory

The factory implementation has a line of handlers extending a “SubHandler” super class

and specialized for each GML type supported. The modular design allows for the integra-

tion of better and faster handlers as developed and needed.

Figure 4.8 SubHandler super class and SubHandlerLinestring

The current “SubHandler” super class provides an instance of the GMLUtilities class, the

CoordinateFactory, and the JTS library ”com.vividsolutions.jts.geom.GeometryFactory”.

Figure 4.8 displays an illustrative example of the relation between the SubHandler,

GMLUtilities and the specialization class for handling line string geometries.

47

The shared constructor of the super class initializes the common precision model (pro-

vided by the implementation’s static and dedicated configuration class) and other plumb-

ing. Additionally, it executes a search for the node containing the coordinates enclosed as

a child of the GML node passed to it. The search for the element containing the coordi-

nates is not implemented locally in the SubHandler, but is performed by a “node search”

method of the GMLUtilities class, taking a node list and a target name as parameters.

The reasoning behind this is that it allows for later optimization, without having to change

the handler classes. Currently the node search is only a shallow iterative check for node

names matching the target. The coordinate node found is then sent to the CoordinateFac-

tory which configures itself based on the attributes Comma Separation (CS), Tuple Sepa-

ration (TS), and decimal character of the coordinate node as allowed by the GML 2.1.2

specification, Section 4.3.1 (Cox, Cuthbert et al. 2002) (OpenGeoSpatial 2002). Each

vertex found is passed to the “com.vividsolutions.jts.geom.Coordinate” (Davis 2004)

constructor and the generated coordinate object is then stored in a list structure for return

after the reading is complete.

Specialized coordinate parsing in sub handlers

 The specialization done in the different extensions of SubHandler varies depending on

the complexity of the JTS object to be built. For handlers representing the simpler geome-

tries point, line, and linear ring, the only extension done is to call the corresponding fac-

tory creation method of the JTS GeometryFactory class. The list structure with coordi-

nates created by the super class is passed as a parameter. For the more complex elements

such as Polygons and Multi-versions of the basic elements, a much more custom overrid-

ing of the super class’ constructor has been created. In the case of polygons which consist

of a mandatory outer ring and zero to many “holes”, alternatives to the “gmlSearch”

method are used to detect and build representations of the subelements. The polygon

SubHandler extension then assembles these sub-geometries into a polygon which is re-

turned to the original gmlSearch method call and further up to the level 2 class initiating

the build. The approach is similar for the other complex geometries, with inner calls to

the build the simple geometries for final assembly into the complex geometry.

48

4.5.4 Serialization

In the context of this thesis, serialization is defined as the process of converting/encoding

JTS geometry objects to a GML compliant node structure compatible with Xalan.

After the level 2 class has executed its operations on the JTS geometry object, in the cases

where the result is a new JTS geometry object, it needs to be “serialized” into a format

accepted by Xalan. Table 4.5 Displays Xalan accepted Java types and their corresponding

XSLT type. While Chapter 3 defines the possible return values from operations imple-

mented.

Functions returning String, Double or Boolean values can be passed directly and con-

verted internally by Xalan, but the majority of the analysis operations, such as union and

buffer, need conversion to Node objects before the return is passed on to the XSLT proc-

ess. In the same way as building JTS objects incur a time penalty, the conversion to Node

also comes at a cost. The process is initiated by a call to GMLUtilities’ corresponding

output handler; GMLFactory’s “encodeNode” method.

Figure 4.9 Class diagram GMLFactory

The encodeNode method accepts a JTS geometry as parameter and then delegates the en-

coding to internal methods after determining the geometry type by using introspection. In

49

the same way as the sub handlers for parsing incoming GML nodes from Xalan use Co-

ordinateFactory to detect and build simple geometries based on the enclosed coordinates

for final assembly into final geometry objects, the encoding handler for each geometry

uses a simpler encode method private to GMLFactory to create a coordinate node with the

coordinates as text and cs/ts/decimal values from internal configuration as attributes.

Simpler because all data that is needed is readily available by calling the encapsulating

methods of the JTS geometry object. There is no need to execute any complex searches

for elements as when parsing incoming GML elements. When the coordinate object is

returned to the encode method calling it, the enclosing nodes representing it are not cre-

ated from scratch but rather from clones of skeleton prototype versions with the correct

namespace and prefix preset. This has been done to make it easier for later changes to the

elements and integration with external resources, for example by using a factory pattern

or injection of control without having to alter the method bodies.

Wrapping.

The encoded geometry nodes are always enclosed within a straight forward “TheGeome-

try” element. There are two reasons for this. First, when the return from one operation is

re-used as input for a second operation, - for example a buffer called on the results of a

union, not using a wrapper makes the node list sent to the level 2 method only contain the

children of the geometry element, hence only the coordinate element or sub-geometries

are available for the gmlSearch method. Second, in regular GML files, each feature usu-

ally has the GML properties enclosed within an element named such as “TheGeometry”,

or “_geom”. This wrapping of the resulting GML makes the output more manageable. At

the same time, there is no problem to omit the “TheGeometry” element by using XPath

on the returned data to only select the children of the “TheGeometry” element for inclu-

sion in some other scheme. The name of this wrapper should of course be configurable to

allow for easy change and to suit the usage needs of the situation. It could possibly bene-

fit of being of configuration through schema parsing, so that the “wrapper” is automati-

cally created with an element name matching the schema.

Parts of the application logic/division of responsibilities around handler based parsing of

GML node lists have been inspired by the design of the SAX parsing/handling for GML

in Geotools written by Rob Hranac. Amongst several projects utilizing this parser-logic is

50

the popular WFS/WMS server Geoserver, something which can be regarded as an indica-

tion that this approach works quite well.

4.5.5 Basic performance optimization

The development of the GeoXSLT system has been focused on creating a proof-of-

concept implementation to show that XSLT with extensions can be used for processing

geodata. A limited amount of work has been done to create mechanisms for general per-

formance optimization. While various approaches to optimization are discussed in Chap-

ter 7, a simplistic caching prototype has been implemented as part of the level 3 classes.

The motivation and application of the mechanism are discussed in Section 7.2.2 while

this section will focus on the implementation.

The caching has been implemented as a “Geometry Cache”, which is an object storing

previously constructed geo objects. When a new GML node is detected during the previ-

ously described “gmlSearch”, a check with the Geometry Cache is done before eventual

construction is begun. If it turns out that the GML node has been processed earlier, the

previously constructed geo object is returned. This way, a significant portion of the con-

struction phase is saved for GML nodes that are used repeatedly during XSLT transfor-

mation. In practice, the implementation of the Geometry Cache is a simple object with

accessors for a Hash Map containing the geo objects. The fact that all Java objects have a

distinct hashcode unique within the application runtime is used to distinguish the node

lists passed from Xalan (Sun 2004). When a geo object is created, the hashcode from the

original node list passed from Xalan is used as the hash key. As a consequence, the re-

quest for the creation of a geo object only has to pass its node list (as received from

Xalan) hashcode to the Geometry Cache for the immediate return of a pre-existing JTS

Geometry representation.

4.5.6 Possibilities for improvement.

There are several areas of the implementation which can presumably benefit greatly from

specific improvements. The improvements can be said to revolve around three axes: func-

tionality / runtime versatility (schema parsing/validation and automatic configuration of

handlers according to the schema), speed (feature caching, faster search and construction

algorithms), and quality of the program architecture (better division of classes, injection

of control, extraction of interfaces, cleanup of code).

51

4.6 Chapter summary

This chapter has presented the architecture, components, and workflow of the system for

supporting spatial extensions in XSLT. A description of EXSLT integration with Java

with regard to this implementation has been used to show how the implementation relates

to the transformation process. Reasoning behind the design has been explained as well as

weaknesses and areas ripe for improvement.

52

5 Testing
The testing of this implementation aims to produce experience and statistical data to help

answer the research objectives as defined in 1.1. Tests on constructed data have been de-

signed to validate the correct functioning of the system, as described in research objective

1. Further performance tests and operations on real data are described to uncover aspects

around flexibility and performance inline with research objective 2. The experiences with

implementing the tests forms the basis for further discussion of research objective 3. Tests

of the performance optimization introduced in Section 4.5.5 is covered in Section 5.1.5.

5.1.1 Validation of correct functioning.

To be of any practical use it is important that the calculations and returned data can be

trusted. Research objective 1; can the XSLT language in combination with extensions be

used for the processing of geodata, needs a combination of both quantitative and qualita-

tive observations to be answered. Quantitative for evaluation of whether the implementa-

tion works as expected, -indicating that it is technically viable, qualitative with regard to

practical evaluation of general use. The implementation has been validated by creating

test cases for selected operations where the results are compared with the returned data of

a third-party tool. Martin Davis at Vivid Solutions, the creators of JTS, has created a

powerful visualization tool for testing the JTS library. The tool, called Testbuilder, ac-

cepts 1-2 geometries encoded as Well Known Text (WKT) which are then drawn on a

canvas (Davis 2004). Both the predicate and analysis operations available in JTS can then

be executed. WKT is a format for defining spatial geometries as strings of text and was

specifically defined to make it possible to load spatial data into spatially enabled data-

bases. The format was defined by the OpenGIS Consortium “Simple Features for SQL”

specification (Ryden 2005) and is also a part of the ISO "SQL/MM Part: 3 Spatial"

(Stolze 2003). As there is a mapping between the spatial objects represented between

GML and WKT, generating test data for either is simply a matter of encoding the same

coordinates within each of the two encapsulating formats. The validation of this imple-

mentation has been achieved by generating various test data for execution both in Test-

builder and in an XSLT context. The results from both predicate and analysis operations

53

have then been compared and the data from Testbuilder have been considered authorita-

tive to which the XSLT generated result must adhere for the test to be valid.

5.1.2 Measurement of performance

To answer the research objective “What limitations on factors such as performance, flexi-

bility and scalability will this approach imply?” there is a need to provide data on how the

implementation’s performance varies with changing amounts of data input. Before meas-

uring the performance of the implementation, it is in place to provide a definition of how

performance can be interpreted and which aspects that are covered here. In (Steve Wilson

2000) performance is defined as a collection of the following factors:

• Computational Performance
o Deals with the optimization of algorithms to use as few instructions as

possible,
• RAM footprint

o Optimization of memory usage
• Startup time

o How to minimize time to bootstrap an application
• Scalability

o How does an application handle large loads
• Perceived performance

o How does the user experience execution time.

While all of these aspects are of universal interest, the aspects of performance under focus

in this report are scalability and perceived performance. Computational performance and

RAM footprint have not been deemed necessary to develop a working prototype. Later

work could focus on designing and implementing changes to provide optimization for

these aspects of the performance definition. A more detailed explanation of how the scal-

ability and performed performance results are perceived is provided in chapter 6, 7.2 and

7.2.2 where the findings are presented and discussed. When measuring the scalability and

perceived performance, the focus has as been on observing the time cost of the bridging

between geometry objects and nodes/node lists as introduced in chapter 4. Therefore, it is

vital to keep tabs on several steps in the process. Watches has been placed on total execu-

tion time for the EXSLT function call as a whole, the building of each geometry object

involved in the operation, execution time for the JTS operation, and encod-

ing/serialization back to a Xalan compatible node.

The log4J logging toolkit (Log4j Community) was first considered for saving the test re-

sults, but due to the (at least as understood by the author) limitation to only log text

54

strings at singular points of time there was a problem. The test process has a defined need

to log information on start, stop, context and operation performed, in addition to details

on number of vertices, length and precision. With log4J output to single strings, logging

seemed cumbersome when everything would have to be either aggregated in long text

strings or spread across several entries. s each operation generates several events, using

logger based on log4J would hence imply a need to create relatively complex handling for

post processing of the generated log files with thousands of entries. Instead of doing this,

a simple system inspired by log4J but with support for the required logging of multiple

fields associated with each event, has been created as part of the testing framework of this

thesis’ implementation. The logger works like a very simple and crude version of log4J,

but instead of logging formatted text strings to file or database handles, an “event factory”

is used to create objects of an “Event” class. An event is created with a timestamp repre-

senting the start time. The creation of a logging event is the last operation done before the

operation to be logged is to take place. After completion of the operation the event is

stopped by setting a second timestamp. After the timer is stopped, each data field to be

associated with the event is set through encapsulation methods in the object before the

event finally is appended to a log object accessible through a static method of the event

factory. Accessible in a static context to ensure thread safety and to keep the log and

event objects accessible with as little time overhead as possible. The log object maintains

a list of events as an ArrayList which is serialized to a MySQL database when a certain

size has been reached or the log is finalized through its shutdown hook (Sun 2004). In

practice, it is only serialized after all tests have executed. Log entries stored in MySQL

are then accessible for analysis with e.g. Microsoft Excel through ODBC. Because nested

events are logged; all build, JTS execution and serialization events are sub parts of a call

to an extension function, the time spent logging data for the sub parts will accumulate and

increase the time spent executing the parent event. As the times presented are not 100%

accurate due to external factors such as operating system and machine ware, the accumu-

lations of time spent logging are ignored because the data nonetheless provides the neces-

sary indications on tendencies and relative data for comparison.

55

5.1.3 Selection of tests on constructed data

Due to the extensive amount of work to create usable test-cases for possible operations

and data types, the testing had to be limited to a small number of operations performed on

a relatively small amount of constructed data. Testing the workings and performance of

the JTS library itself has been considered secondary. The focal point of all testing per-

formed has been to validate the correct functioning of the implementation as a whole, and

at the same time to measure how different kinds of data influence the bridging when con-

verting between node lists, JTS geometries, and back to nodes for return to Xalan. It is

important to note that JTS performance has been measured in the test cases implemented,

but the results from those operations cannot necessarily be projected onto assumptions

about other JTS operations as their internal calculations may or may not induce signifi-

cantly different execution times.

Test data has been generated for variances of the simple geometry types line strings,

points and polygons. The reason why complex versions of geometries have been left out

is that these generally may be regarded as aggregations of the simple ones and hence not

prioritized here. All tests on constructed data have been designed to be performed without

the performance optimization introduced in Section 4.5.5. Each operation measured has

been performed on two distinct geometries of same type, but with differences in posi-

tions. See Figure 5.1 for a visualization of test geometries.

Operations selected for testing

Only a subset of the functions defined in chapter 3 has been tested, this section presents

which operations that have been chosen for testing with the different geometry objects.

Line Strings

For predicate operations on line strings, the “crosses” operation (3.1) has been selected

for measurements of total time to complete. The crosses operation is very central in many

real-life operations such as e.g. testing whether two roads cross each other. For analysis

operations on line strings, the “union” operation (3.2) has been selected for measurements

of total time to complete. The tests and experiments performed Chapter 6, 7.2.2, and 7.5

feature examples of the practical value of this operation.

56

Points

The “equals” operation (3.1) has been used to test predicate operations on points. For

analysis operations, only a dummy call to the bridge has been used. The dummy call

builds a JTS geometry based on the point which is then immediately serialized back to a

GML node without any JTS calculation is executed. This is because relevant analysis op-

erations available for execution on points typically will return other data types than

points. As such it has been deemed more interesting to only focus on measuring the per-

formance of the bridge when building and serializing the exact same point. Serialization

of polygons and line strings are performed and measured in the other test cases.

Polygons

For polygons the “intersects” operation (3.1) has been used to test the total time to com-

plete for predicate functionality on polygons. For analysis the “union” (3.2) operation has

been used for testing.

Parameters tested

This section introduces the test parameters used with the tested operations and geome-

tries, and explain the reasoning behind the choices made. Examples of parameter varia-

tion and visualizations of test data are provided.

The parameters to be tested with different factors of variance have been chosen because it

is assumed that they represent factors that will have an impact on operation execution.

Below is a list of the parameters used:

• Vertices. Increasing the number of vertices in a geometry may have an effect on

all phases of the execution process, as it introduces both more complexity and a

larger amount of data to process.

• Digits. While increasing the number of digits does not necessarily have an impact

on precision levels, it has an impact on the total size of data necessary to represent

the geometry.

• Holes. This parameter only have an effect on polygons, where the holes represent

both increased complexity and more data with extra processing requirements.

57

Testcase Parameter
Line Strings
Vertices 3 30 300
Points
Digits 2 3 4 5 6
Polygons
Vertices 5 41 401
Holes 0 1 10 40
Digits 2 3 4 5 6

Table 5.1 Test cases with constructed data

Table 5.1 lists the variations of parameters in the tests performed. Parameter values are

based what is assumed to be variations with relevance to real-life data.

To reflect the variance of complexity in the exe-

cution time for JTS’ calculations no lines created

are straight. This is so that internal calculation

simplification of vertices should be kept to a

minimum. The wave shape is also considered to

make the test cases more realistic in comparison

to straight lines.

Figure 5.1 Visualization of crosses test on line
strings with 30 vertices each.

All lines are sinus curves, and polygons are built as functions of sinus/cosines. This gives

for predictable patterns which is visually easy to validate using Testbuilder. All test data

has been generated with scripts written in Perl and encoded in both GML and WKT ver-

sions for easier validation. For each test case, two geometries with equal properties but

different values have been created. For example, with the “crosses” test, one horizontal

and one vertical line has been generated for each change in the test parameters, while the

“intersects” test is designed to be executed on two polygons. Each test case has been re-

peated 100 times, while the whole test process is controlled and performed by JUnit.

58

Figure 5.2 Visualization of two intersects tests performed on polygons with 5 and 41
vertices

Samples of test data are available in the appendix.

5.1.4 Tests on real data

The tests and samples described so far have all been specifically constructed to validate a

given case inline with objectives to gather data on performance and scalability for iso-

lated extension functions. To answer the research objectives defined in chapter 1, there is

a need for a set of more qualitative experiences with scenarios closer to what can be ex-

pected in a real-life setting. To provide a reality check for comparison with the samples

and the research objective, a composite test on sampled data has been designed. Data

from Tana, a small village in Northern Norway, consisting of buildings and road stubs has

been made available by the Norwegian Mapping Authorities and used for the purpose of

real-life test scenarios in the work with this thesis. Buildings are represented as points and

road stubs as line strings. The data consists of 9848 points and 2418 line strings. The data

has been divided into ten smaller subsets to enable testing of how the system performs

with a varying number of features and complexity. Table 5.2 lists the different subsets

created and details on the number of features and share data size.

59

Case Roads Buildings Size (kb)
1 3 24 16

2 16 108 61

3 25 214 116

4 56 450 244

5 201 1 132 643

6 425 2 145 1 242

7 787 4 701 2 641

8 1 690 8 163 4 773

9 2 243 9 452 5 692

10 2 418 9 848 5 985

Table 5.2 Subsets of the Tana data

The visualizations of the Tana data sets below show roads as grey lines, and buildings as
red dots.

Figure 5.3 A visualization of the Tana data set, with the bounding boxes of test cases
4-10 engraved

The test have been designed to both validate the results of the constructed samples with

greater variance in the data sets, to gain experience with real samples, and evaluate some

60

of the possibilities made available with spatially enabled XSLT.

Figure 5.4 A visualization of the Tana data set with bounding boxes 3-1 engraved

The task defined for this test, is to find and count all buildings situated within 20 meters

from any road. Easy as it sounds, this is a rather complex task demanding the chaining of

several geo operations to be achieved. The two templates used are shown in the listings

below.

<xsl:template match="/">

 <xsl:message>Starting...</xsl:message>

Buildings:

<xsl:value-of select="count(wfs:FeatureCollection/gml:featureMember[topp:bulroad])"/>

Roads:

<xsl:value-of select="count(wfs:FeatureCollection/gml:featureMember[topp:Road])"/>

 <xsl:message>Features counted...</xsl:message>

 <xsl:variable name="roadUnion">

 <xsl:call-template name="unionRoads">

 <xsl:with-param name="roads"

 select="wfs:FeatureCollection/gml:featureMember[topp:Road]/topp:Road/topp:the_geom/*"/>

 </xsl:call-template>

 </xsl:variable>

61

 <xsl:message>Road union created</xsl:message>

 <xsl:variable name="roadBuffer"

 select="spatial:buffer(xalan:nodeset($roadUnion)//gml:MultiLineString,20)"/>

 <xsl:message>Road buffer created</xsl:message>

 Number of buildings within 20 meters from the road:

 <xsl:value-of select="count(wfs:FeatureCollection/gml:featureMember[

 (descendant::topp:bulroad/topp:the_geom/gml:Point) and

 (spatial:within(

 descendant::topp:bulroad/topp:the_geom/gml:Point,

 $roadBuffer/gml:*[position() = 1]

)

)

]

)"/>

</xsl:template>

Table 5.3 Main template used for the practical tests with the Tana data

62

<xsl:template name="unionRoads">

 <xsl:param name="roads"/>

 <xsl:variable name="roadCount" select="count($roads)"/>

 <xsl:choose>

 <xsl:when test="$roadCount = 1">

 <xsl:copy-of select="$roads"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:variable name="fiftypercent" select="floor($roadCount div 2)"/>

 <xsl:variable name="left">

 <xsl:call-template name="unionRoads">

 <xsl:with-param name="roads" select="$roads[position() <= $fiftypercent]"/>

 </xsl:call-template>

 </xsl:variable>

 <xsl:variable name="right">

 <xsl:call-template name="unionRoads">

 <xsl:with-param name="roads" select="$roads[position() > $fiftypercent]"/>

 </xsl:call-template>

 </xsl:variable>

 <xsl:copy-of select="spatial:union(

 xalan:nodeset($left)//*[(local-name() = 'MultiLineString')

 or

 (local-name() = 'LineString')

]

 ,

 xalan:nodeset($right)//*[(local-name() = 'MultiLineString')

 or

 (local-name() = 'LineString')

]

)

 "/>

 </xsl:otherwise>

 </xsl:choose>

</xsl:template>

Table 5.4 Divide and Conquer recursion implemented in XSLT to union a large
amount of line string segments without causing stack overflow.

First, all the road stubs are unioned into one multi line string which is stored in a variable.

To avoid trouble with stack overflow, a classical divide and conquer recursion strategy

63

inspired by (Sedgewick 2002; Novatchev and Tyszko 2006) has been applied with the

“unionRoads” template. The resulting union of roads is then used in a buffer operation,

creating a multi polygon centered on the road. The number of buildings within the road

buffer is then matched by the XPath statement enclosed in a count function, matching all

building representations having a point property which is within the road buffer. Note the

use of standard extension function “xalan:nodeset” which converts result tree fragments

(Apache Xalan Community 2005) from executed templates to be used in a node list con-

text.

As the set of data is quite large (ca 6 MB), just its share size indicates that it is ill suited

for use in a web context with regard for acceptable user waiting time caused by both

processing and network transmission (Nielsen 1994; Nah 2004). Reducing the bounding

box will result in both a smaller amount of data to transfer and less features to process. By

scoping the set down to various smaller sizes represented by smaller bounding boxes we

try to evaluate the performance and find the threshold for when the extended XSLT ap-

proach can be feasible in an interactive web/networked context as well as practical limits.

The data has been imported into Geoserver and extracted as WFS calls to assure realistic

formats and full schema compliance. See appendix for samples of data.

5.1.5 Testing basic performance optimization

The tests with real data have been repeated with the Geometry Cache introduced in Sec-

tion 4.5.5 applied, measuring and comparing the performance gain with that of the base

implementation.

5.1.6 Test platform
The tests have been performed by executing a JUnit test case from within the NetBeans

5.5 beta 2 IDE on Windows XP. The hardware used was a Lenovo T60p laptop, with

1GB of RAM and an Intel Centrino Duo processor running at 2 GHz.

5.2 Chapter summary

This chapter has presented the different aspects under focus and scenarios designed to test

them. Examples/visualizations of both tests and data sets have been given. The material

created has been tested and forms the source of the findings presented in chapter 6.

64

P ol y gon: Tot a l ope r a t ion t i me i nt e r se c t s ope r a t i on

0

0,5

1

1,5

2

Vert ices

Avg TTC 0,41309444 0,42983391 1,46320002

5 41 401

6 Findings
This chapter presents the findings from the tests defined in chapter 5. First, the average

performance times for the different operations and geometries on constructed data are

presented in 6.1.1, 6.1.2, and 6.1.3. Summaries of all findings from tests with constructed

data are presented in 6.1.4.

The results from practical tests performed on real data from the Tana data set (introduced

in 5.1.4) are presented in 6.2.1. The tests have been performed using both the base line

and optimized approaches as presented in Sections 4.5.5, 5.1.4, and 5.1.5.

6.1 Findings from tests with constructed data

The aim of the test process with constructed data has been to uncover correlations be-

tween the different parameters and changes in the time needed for execution of the exten-

sion functions. The following is a presentation of findings found to be of significance, and

a walkthrough of their indications.

Unless noted, all times are in milliseconds. TTC is short for “time to complete operation”.

Results from the tests can be used for uncovering strengths and possible bottlenecks.

6.1.1 Total execution time predicate operations

Figure 6.1 Total execution time for crosses
on line string as the number of vertices in-
creases

Results from measurements of total

time spent for predicate operations

on line strings and polygons indi-

cate that the number of vertices has

an impact on time needed for processing; the

time increases as the amount of vertices

grows. Still, Table 6.1 shows a higher effi-

Line St r ing : To t al o perat ion t ime cro sses op erat io n

0

0,5

1

1,5

2

2,5

3

Vert ices

Avg TTC 0,66427164 0,57176534 2,72643867

5 41 401

Figure 6.2 Total execution time for intersects on polygon
as the number of vertices increases.

65

ciency at higher volumes of vertices. This contributes to the impression that the Ge-

oXSLT framework scales reasonably well.

The ratio between the number of vertices and time to complete (vertices/ttc) clearly

shows an increase of efficiency in the number of vertices processed pr unit of time as the

number of vertices pr call increases up to 400 vertices in Table 6.1.

This can be an indication of the initial start-up cost for start-

ing the conversion process from node list to JTS Geometry,

and that the overhead of using the bridge for JTS construc-

tion gets less significant as the amount of vertices in-

creases.

Variation of digits/coordinate length

Point : Total operation t ime crosses operat ion

0

0,02

0,04

0,06

Digits

Avg TTC 0,04096 0,042531 0,051554 0,039544 0,044296

2 3 4 5 6

Polygon: Total operation time intersects operation

0

0,1

0,2

0,3

0,4

Digits

T
im

e

Avg TTC 0,24997 0,25851 0,26146 0,33507 0,28635

2 3 4 5 6

Figure 6.3 Variation of digits on crosses operation on points. Figure 6.4 Variation of digits on intersects opera-
tion on points.

The results based on tests with the crosses and intersects operations indicate that the

number of digits have a negligible effect on the total time for the execution of predicate

operations.

Variation of holes in polygons

The results from running the “intersect”

predicate operation on polygons with a

varying number of holes indicate that holes

are complex and expensive to process.

Figure 6.5 Relation between number of holes in a
polygon and the time needed for executing the “inter-
sects” predicate operation.

Table 6.1 Vertices processed pr millisecond,

 efficiency increases as amount of vertices grows

Vertices Vertices pr
ms

5 12,10376978

41 95,38568048

401 274,0568579

Polygon: Total operat ion t ime intersects operation

0

5

10

15

Holes

Avg TTC 0,289439 0,437274 1,753103 9,906298

0 1 10 40

66

The holes were all of equal size, with a diameter of 20 and 10 vertices. Table 6.2 lists the

ratio between the number of holes and total execution time (holes/ttc) as the amount of

holes increases.

Holes Holes/TTC
1 2,286898036
10 5,704172347
40 4,037835243

Table 6.2 Changes in ratio between Time To complete and number of holes

Based on both the table and figure, it seems that increasing the number of holes reduces

the efficiency pr hole. Figure 6.18 shows how most of the time spent for predicate opera-

tions involving polygons with holes is used by actions on the geometry object. This may

be interpreted as that the geometric complexity of polygons with many holes demands

more resources for predicate calculations than the build process of creating the JTS ge-

ometry it self.

6.1.2 Total execution time analysis operations

Analysis operations seem to be generally more expensive than predicate operations. This

is intuitive, as the category of operations demands more accurate results than true/false,

and often involve the extra step of outputting and serializing a result geometry.

Variation of vertices

Figure 6.6 and 6.7 Correlation between number of vertices and total operation time for union operations on line
strings and polygons

Execution times for analysis operations as represented by the union operation on line

strings and polygons generally follow the same pattern as for predicates, but with a higher

cost. In the graphs above the vertices have been varied between 5 and 401.

Polygon: Total operation time union operation

0

0,5

1

1,5

2

2,5

Vertices

T
im

e

Avg TTC 0,30377883 0,52753914 2,29832567

5 41 401

Line String: Total operation time union operation

0

0,5

1

1,5

2

2,5

3

3,5

4

Vertices

T
im

e

Avg TTC 2,82308504 2,21208287 3,61952981

5 41 401

67

Variation of digits

Observations indicate that the number of digits have a relatively small impact on the time

cost for union operations on polygons. This adheres to the results from tests of predicate

operations with variations of digits.

Polygon: Total operation time union operation

0
0,05

0,1
0,15

0,2
0,25

0,3
0,35

0,4
0,45

0,5

Digits

T
im

e

Avg TTC 0,41859 0,44202 0,44941 0,45164 0,46381

2 3 4 5 6

Figure 6.8 Variations of digits and holes for union operations on polygons

Variation of holes

Polygon: Total operat ion t ime union operation

0

5

10

15

Holes

Avg TTC 2,861297 2,197645 3,583827 13,97679

0 1 10 40

Figure 6.9 Variations of holes for union operations on polygons

Polygons with holes are expensive to process, as originally shown by the predicate obser-

vations.

6.1.3 Division of Total Time To Complete between the different opera-

tions

The graphs in this section show how time spent is divided between construction, calcula-

tion, and serialization phases. The graphs represent the most interesting findings because

they give indications on the cost of integrating spatial functionality with XSLT relative to

the overall time and calculations performed. As such, they make up the foundation for

deciding where performance optimization can be applied with the most effect. The find-

ings here need to be viewed inline with the total time spent on each operation. For exam-

ple, for points, the relative time spent for constructing and serializing is large, but the total

68

time of the whole operation is significantly smaller than for that of line strings and poly-

gons.

Line Strings

Line String: Predicates

0 %

20 %

40 %

60 %

80 %

100 %

5 41 401

Vertices

S
ha

re
 o

f t
im

e
sp

en
t

JTS Contruction JTS Execution

Line String: Analysis

0 %

20 %

40 %

60 %

80 %

100 %

5 41 401

Vertices

S
ha

re
 o

f t
im

e
sp

en
t

JTS Contruction JTS Execution JTS Serialization

Figure 6.10 Variation in relative time spent on JTS construction for predicates on line strings

Figure 6.11 Variation in relative time spent on JTS construction for analysis’ on line strings

For predicate operations on line strings, the time cost of XSLT integration is generally

around 20%. For analysis operations, the time to serialize the results back to a node for

use in the XSL process causes the time cost to increase more. Increases in the number of

vertices gives for substantially longer time needed to serialize the result, seeming to stabi-

lize at around 25% of ttc for serialization and 10% for construction. In total, the results

indicate a time cost of ca 20%-35% for the integration of analysis operations on line

strings with XSLT, depending on the number of vertices involved.

Points

The indication that the start-up cost is high

relative to the calculation done on the JTS

Geometry is confirmed when the division of

time between construction and calculation is

presented here. The cost for construction can

be expected to be between 70-80% for predi-

cate operations on points, regardless of vari-

ance in digits. The high relative cost should

be seen in view of the short total time spent

for point operations compared to operations on other geometries. Section 6.1.1 and 6.1.2

provide comparisons and visualization of measured time. As an example, the average to-

tal time for performing the crosses operation on points with 6 digits is ca 0.04 ms, while it

Point: Predicates

0 %

20 %

40 %

60 %

80 %

100 %

2 3 4 5 6

Digits

S
ha

re
 o

f t
im

e
sp

en
t

JTS Construction JTS Execution

Figure 6.12 Variation of digits, relative cost of
construction for points in predicate operations

69

for polygons is ca 0.29 milliseconds. Much of this difference can probably be explained

by a minimum time needed for starting up the process for building the JTS geometry.

When the JTS calculation time is so small, the build time becomes more significant.

No operations have been executed as part of the test cases which gives an analysis opera-

tion on two points with point return. As the next best thing a dummy operation which just

builds geometries based on point input for immediate serialization is used to provide the

following ratios between JTS build and JTS serialization for points.

Point: JTS Construction vs Serialization

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

2 3 4 5 6

Digits

S
h

ar
e

o
f

ti
m

e
sp

en
t

JTS Serialization

JTS Construction

Figure 6.13 Construction time relative to serialization time for points, variation of digits

The results indicate that for points, serialization is clearly more expensive than construc-

tion with regard to time cost, but as with the results of relative times for predicate opera-

tions on points, it is important to keep in mind the short total time compared to that of

other geometries.

70

Polygons

Polygon: Predicates

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

5 41 401

Vertices

S
ha

re
 o

f t
im

e
sp

en
t

JTS Construction JTS Execution

Figure 6.14 Polygons; relation between construction and calculation phases in predicate operations as the num-
ber of vertices is increased.

This section presents the relative times of the construction, calculation, and serialization

phases for polygon geometries.

According to these results, the relative time cost for constructing JTS geometries is not

stable with regard for variations in vertices.

71

While the cost is relatively stable around 20% for line strings, it increases from 10% -

40% for polygons as the number of vertices is increased. This may be due to a more com-

plex build process when the parsed coordinates are passed to the JTS Geometry factory

while the calculation phase has more constant time consumption. Analysis operations on

complex polygons are something that could probably benefit from more detailed research

to uncover possible bottlenecks in polygon creation.

Polygon: Analysis

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

5 41 401

Vertices

S
h

ar
e

o
f

ti
m

e
sp

en
t

JTS Construction JTS Execution JTS Serialization

Figure 6.15 Polygons; relation between construction, calculation, and serialization phases as the number of verti-
ces is increased

The pattern found in the construction phase is similar in the time required for serializa-

tion. At the 401 vertices observation of Figure 6.1 above, the total required time is at its

worst with the construction and serialization phases when combined representing ca 75%

of the time cost for performed operations.

Polygon: Predicates

0 %

20 %

40 %

60 %

80 %

100 %

2 3 4 5 6

Digits

S
h

ar
e

o
f

ti
m

e
sp

en
t

JTS Execution

JTS Construction

Polygon: Analysis

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

2 3 4 5 6

Digits

S
h

ar
e

o
f

ti
m

e
sp

en
t

JTS Serialization

JTS Execution

JTS Construction

Figure 6.16 Polygons; relative cost of construction in predicate operations with variance of digits

72

Figure 6.17 Polygons; relative cost of construction and serialization with variance of digits

The time cost for predicate operations on polygons is relatively high but stable at around

40% relative to the total time to complete. This is significantly more expensive than the

20% for line strings, but logical, as the construction process for polygons is more compli-

cated than that of line strings. The serialization in an analysis perspective is also stable,

and levels off at around ca 30% as shown in Figure 6.17. The total time cost averages out

at 60% in total relative to the ttc for the integration of analysis operations on polygons in

an XSLT context.

Polygon: Predicates

0 %

20 %

40 %

60 %

80 %

100 %

0 1 10 40

Holes

S
ha

re
 o

f t
im

e
sp

en
t

JTS Construction JTS Execution

Polygon: Analysis

0 %

20 %

40 %

60 %

80 %

100 %

0 1 10 40

Holes

S
ha

re
 o

f t
im

e
sp

en
t

JTS Construction JTS Execution JTS Serialization

Figure 6.18 Polygons; relative cost of construction in predicate operations with variance of holes.

Figure 6.19 Polygons; relative cost of construction and serialization in analysis operations with variance of holes.

As observed in the diagrams for operation running time, the processing of holes in a

polygon is expensive with regard to time cost. These observations of time as divided be-

tween calculations and construction/serialization confirm that indication. The evident de-

cline in relative construction time as the number of holes increases attests how the con-

struction/serialization processes become less important factors in the ttc as the number of

holes increases.

6.1.4 Summary of findings from tests with constructed data

Parameter TTC Construction Calculation
Vertices

3 0.66 24.66% 75.34%

30 0.57 19.88% 80.12%

300 2.73 22.47% 77.53%

Table 6.3 Predicate performance on line strings

73

Parameter TTC Construction Calculation Serialization
Vertices

3 2.82 10.80% 87.42% 1.78%

30 2.21 7.16% 84.81% 8.03%

300 3.62 12.87% 61.78% 25.35%

Table 6.4 Analysis operations on line strings

Parameter TTC Construction Calculation
Vertices

2 0.04 67.06% 32.94%

3 0.04 65.47% 34.53%

4 0.05 40.83% 59.17%

5 0.04 78.76% 21.24%

6 0.04 82.26% 17.74%

Table 6.5 Predicate operations on points

Parameter TTC Construction Serialization
Vertices

2 0.05 24.64% 75.36%

3 0.05 20.83% 79.17%

4 0.07 15.62% 84.38%

5 0.04 32.33% 67.67%

6 0.03 41.60% 58.40%

Table 6.6 Construction/Serialization for points

Parameter TTC Construction Calculation
Vertices

5 0.41 7.96% 92.04%

41 0.43 33.39% 66.61%

401 1.46 59.77% 40.23%

Digits

2 0.25 40.57% 59.43%

3 0.26 41.14% 58.86%

4 0.26 43.11% 56.89%

5 0.34 47.63% 52.37%

6 0.29 45.71% 54.29%

Holes

0 0.29 63.22% 36.78%

1 0.44 47.49% 52.51%

10 1.75 29.29% 70.71%

40 9.91 19.73% 80.27%

Table 6.7 Predicate operations on polygons

74

Parameter TTC Construction Calculation Serialization
Vertices

5 0.30 12.38% 78.34% 6.09%

41 0.53 27.75% 51.73% 27.05%

401 2.30 33.37% 31.32% 61.12%

Digits

2 0.42 21.91% 55.82% 40.95%

3 0.44 21.76% 57.27% 40.25%

4 0.45 23.34% 54.62% 41.71%

5 0.45 27.58% 50.67% 41.78%

6 0.46 25.52% 51.15% 43.48%

Holes

0 2.86 11.13% 85.29% 35.55%

1 2.20 14.53% 79.16% 28.20%

10 3.58 16.48% 72.22% 22.12%

40 13.98 14.33% 76.27% 13.88%

Table 6.8 Analysis operations on polygons

6.2 Findings from tests with real data

This section presents the results of the tests performed on the Tana data set.

The baseline approach presented first, uses the implementation of the operations as tested

with the constructed data and hence processes everything straight forward. The Optimized

approach takes advantage of caching geometry objects which are used many times, and as

such saving most of the overhead used to construct the JTS geometry repeatedly.

The description of the tests done can be found in Sections 5.1.4 and 5.1.5.

6.2.1 Base-line approach

Testcases 1-4 on Tanadata

0

0,5

1

1,5

2

2,5

3

3,5

4

T est case

TTC 0,38228406 0,61725666 1,04517055 3,40762751

1 2 3 4

Testcases 5-7 on Tanadata

0

100

200

300

400

Te st c a se

TTC 20,6205054 76,11586026 350,4856028

5 6 7

Figure 6.20 Performance times for tests 1-4 on Tana data.

Figure 6.21 Performance times for tests 5-7 on Tana data.

75

Testcases 8-10 on Tanadata

0

500

1000

1500

2000

2500

3000

3500

Testcase

T
im

e
(s

ec
o

n
d

s)

TTC 1517,498954 2553,139759 3183,991375

8 9 10

Figure 6.22 Performance times for tests 8-10 on Tana data.

The practical test of counting houses within 20 meters from the road has been executed

on all ten scenarios. Note that the results are shown in seconds as opposed to milliseconds

used on the diagrams covering results on isolated operations for constructed data. See

5.1.4 for descriptions of the test, scenario details and visualizations of the Tana data. The

results show that using a non-optimized approach, things start to slow down somewhere

between case 4 and 5 with an ever increasing time cost as the data set gets larger. It is

important to be aware that the data sets given by the different bounding boxes are not lin-

ear in growth. The discussion around performance thresholds can be found in chapter 7.

To understand the reasons behind the growth, it is necessary to analyze the stylesheet de-

fined in 5.1.4 and the spatial extensions used in view of the test results from singular op-

erations on constructed data. As earlier mentioned, the templates use a recursive approach

to union all roads into one multi line string which is then used to construct a buffer repre-

senting the 20 meter zone as explained in Section 5.1.4. A major source of time consump-

tion is the repeated use of the “within” function as shown in Table 5.3. The within func-

tion is used to check if a point (building) is within the 20 meter zone (buffer) of the road.

Each time the function is called, the same buffer variable needs to be converted to a geo

object using the GeoXSLT framework. No efficiency is gained by reusing geometries.

The within function is called up to 9848 times depending on the number of buildings

(points) in the data set with large polygons representing the buffer (Table 5.2 presents the

different test cases). This shows that the baseline implementation of the GeoXSLT

framework has a weakness when it comes to repeated use of geometries.

76

6.2.2 Tests of basic performance optimization

A through optimization of the JTS construction process has been outside the scope of this

thesis. This section presents tests with the “Geometry Cache” mechanism as presented in

Sections 4.5.5 and 5.1.5. The Geometry Cache minimizes the time needed for repeated

construction of geometries already used by keeping ready built geo objects at hand. This

section presents the findings from running the tests with Tana data (Table 5.2 presents the

different test cases).

Visualizations of execution times and performance increase relative to the base line ap-

proach are shown in Figure 6.23.

Figure 6.23 Performance increase when using “Geometry Cache” on Tana data

In general, the test cases gain a 60 % performance increase by using the Geometry Cache.

0

200

400

T
im

e
(s

ec
o

n
d

s)
T T C Geometr y Cache

T T C Or i gi nal

Testcase

Testcases 5-7 on Tanadata

TTC Geometry Cache 5,80561 22,6301 101,115

TTC Original 20,6205 76,1159 350,486

5 6 70

2

4

T
im

e
(s

ec
o

n
d

s)

T T C Cached Geomet r y

T T C Or i gi nal

Testcase

Testcases 1-4 on Tanadata

TTC Cached
Geometry

0,33123 0,33924 0,45777 1,0684

TTC Original 0,38228 0,61726 1,04517 3,40763

1 2 3 4

0

2000

4000

T
im

e
(s

ec
o

n
d

s)

T T C Geomet r y Cache

T T C Or i gi nal

Testcase

Testcases 8-10 on Tanadata

TTC Geometry Cache 461,17 798,752 1037,23

TTC Original 1517,5 2553,14 3183,99

8 9 10

77

6.3 Chapter summary

This chapter has presented the results of the tests defined in chapter 5 and provides an

overview of performance and how the bridging between JTS and the XSLT process af-

fects it. Further it has shown experiences with real data, and how a simple caching

mechanism can be used to increase performance significantly.

78

7 Discussion
This chapter discusses the research objectives in view of the findings and previous re-

search. The research objectives are answered as follows:

Research Objective 1

To answer research objective 1, section 7.1 presents a line of arguments concluding with

the general suitability of XSLT with Extensions for the processing of GML.

Research Objective 2

Performance

Section 7.2 gives a discussion on the general performance issues and aspects, before de-

tailing on the various phases of constructing, calculating, and serializing geometry repre-

sentations in an XSLT context.

Flexibility

As an example on the flexibility and feasibility of the system implemented, section 7.3

features argumentation and references to practical examples on why and how generaliza-

tion/simplification can be performed with XSLT, shedding a new view to the conclusions

of previous research. The demonstration around integration of simplification operations in

Section 7.5 also shows the ease with which new functionality can be integrated. It also

presents suggestions for new enhancements opening up to even more power for the trans-

formation process.

Research Objective 3

Section 7.4 gives a walkthrough of the simplification of the development process

achieved by bringing spatial functionality to XSLT.

The chapter is ended with a walkthrough of a practical application of the GeoXSLT

framework where the features discussed are demonstrated in Section 7.5.

79

7.1 The suitability of XSLT with extensions for processing Geo-

data

Research objective 1 places a focus on the possibility of using XSLT with extensions as a

medium for processing geospatial data. The experiment done here is based on the as-

sumption that data is of an XML format with at least the geo part of features encoded

inline with the GML schema (herein the Simple Feature Specification) as specified by

Open Geo Spatial/ISO (Ryden 2005). Research objective 1 as defined in 1.1 is hence in-

terpreted as a question regarding the technical possibility of processing GML and per-

forming spatial operations on the data from within the XSLT process. As GML is a XML

format (Cox, Cuthbert et al. 2002; OpenGeoSpatial 2002; Lake 2004), and XSLT is a

stylesheet language for XML (Clark 1999), there is no technical reason why XSLT cannot

work with GML. Non-spatially aware processing of GML with XSLT has also been

documented possible by other research papers (Harrie L. 2003). General extension of

XSLT is defined by W3, and support for developing such extensions is provided in major

processors. The integration of spatial functionality through extensions of the XSLT lan-

guage has previously been introduced by Lehto and Sarjakoski (Lehto and Sarjakoski

2005) as a field open for more research. Harrie and Johansson refute the use of

XSLT/extensions for geospatial operations due to the inherent lack of “object interaction”

in XSLT (Harrie L. 2003). While the re-iteration capabilities of XSLT are not as evident

as those of e.g. XQuery, Object interaction and contra indications on the lack of such in

practice are discussed with closer detail in 6.3.1. In general, the system created as part of

this thesis provides an implementation of XSLT extensions for certain geospatial func-

tions implemented in Java. The implementation has been tested with subsequent interest-

ing findings confirming that technically, it is very possible to extend XSLT with spatial

capabilities. A certain time overhead for conversion of data between the stylesheet and

processing extensions must be expected, but as discussed in 6.2 and 6.4.2, the cost can be

acceptable and in some cases outweighed by the potential performance gained by less

wait for network transmission time. These findings give a clear indication that XSLT with

extensions certainly can be used with success for transforming and processing spatial data

encoded as GML.

80

7.2 Performance; Limitations and possibilities

This section evaluates the findings from developing and testing the extension framework.

Section 7.2.1 discusses the performance of singular operations and how the total time is

divided between the different phases of the extension functions. It also presents some as-

pects of the construction process that do need improvements. Section 7.2.2 focuses on the

performance in practical settings with real data. Findings are interpreted and discussed in

view of view of different perspectives on time. This section also discusses enhancements

to improve general performance of the implemented system, and evaluates the significant

effect of the “Geometry Cache” introduced in Section 4.5.5.

7.2.1 Performance of singular functions

The findings from measuring the performance and workings of specific extension func-

tions in chapter 6 provide clear indications that there is a given overhead for the two-way

conversion of data between XSLT and JTS. This section attempts to identify and analyze

the reasons for the overhead cost to open up for further improvements and patterns of use.

The processing time of an extension function is made up of two or three phases depend-

ing on the return type of the operation. The construction phase, where JTS geometry ob-

jects are created from node lists; the calculation phase, where calculations on the JTS ob-

jects are executed; and the serialization phase, where results from the calculation are con-

verted to node lists for return to Xalan.

Construction phase

In a predicate context where the result is a Boolean value without need for serialization,

the construction phase consumes ca 20% of the total execution time for line strings and

55-88% for points. For polygons, the cost is relatively stable at 40%-50% for geometries

without holes, and varies between 10%-60% for polygons with holes. As operations on

polygons with holes generally seem to take the most time to complete, we will focus

them.

Predicate operations Polygon Line String Point
 Vertices 1.46320002 2.72643867
 Digits 0.28635205 0.04429613
 Holes 9.9062982
Analysis operations
 Vertices 2.29832567 3.61952981
 Digits 0.46381313 0.03397368

81

 Holes 13.97678751

Table 7.1 Maximum values for the time to complete for all test cases performed on
the constructed data as described in chapter 5 and 6. Times are in milliseconds.

Table 7.1 shows the maximum recorded values for all test cases on constructed data. De-

tails, visualizations, and parameter values are available in chapter 6, which presents the

findings of the tests specified in chapter 5.

Polygons

For polygons with holes, it is interesting to

note that the fluctuation is very visible as

shown in Figure 6.19 Polygons; relative cost of con-

struction and serialization in analysis operations with vari-

ance of holes. In the diagram one can clearly

see that the time cost of the construction

phase decreases relative to the calculation

(JTS Execution) phase as the number of

holes increases. This is interesting as the holes used in the polygons are identical; it is

only the number of instances that is increased. In other words, increasing the number of

holes in a polygon seems to be more expensive with regard to the calculation phase than

the construction phase. The results from chapter 6 indicate that in general, operations on

polygons with holes require the longest time to execute (build, calculation, and serializa-

tion combined). This is also shown in Table 7.1. While optimizing the calculations of JTS

has been outside the scope of this thesis, it is of interest to understand the reasons behind

the costs of constructing the JTS geometry object. By such an understanding one is able

to provide input for improvements of the build process. The observation that the construc-

tion phase is relative to the calculation phase more expensive for smaller amounts of

holes brings us to the impression of a start-up cost for geometry parsing that does not

scale down very well for polygons with holes in particular. The build phase is imple-

mented in the level 3 classes which are documented in 4.5. As documented with closer

details in 4.5, the construction phase is organized as a loop iterating through the children

of the node list as received from Xalan. The first node found to be a GML node is then

Figure 7.1: Polygons with 40 holes

82

sent to a “SubHandlerFactory” for delegation of the correct handler. What makes the

polygon handler differ from other handlers is that while points and line strings can extract

the coordinate string for direct parsing, the polygon handler has to execute two additional

searches within its own node list. The first search is for the singular “outer boundary”,

and the second for a possible series of “inner boundaries”; holes. For each linear ring

found in the outer boundary or inner boundaries a sub handling equally expensive as for

the line strings or points has to be executed. This means that for polygons, the construc-

tion phase involves two searches and the creation of minimum one basic geometry in-

stance (linear ring for the outer boundary) in addition to the processing in common with

other simple geometries. On top of this, a validation and possible rebuild of the outer and

inner rings is done to bridge between the difference between JTS and eventual confor-

mance with the polygon definition of ISO 19107 (ISO/TC211 2003) in the data. ISO

19107 defines polygons to have counter clockwise outer rings and clockwise holes. This

is understood to be necessary for some algorithms and bearing calculations where it is

necessary to know the up and down of a polygon. The GML specification references the

ISO 19107 and states that it should be conformant . The SFS-SQL specification (ISO

19125-2) (Ryden 2005) enforces no rule on this. In JTS this “normal form” is defined in-

versely, with outer ring clockwise and holes counter clockwise (Davis 2003) (Köbben

2005). While I have not timed the cost of this validation/rebuild process, it could be worth

investigating how expensive it is with regard to time, and if polygon parsing in the con-

struction phase should assume that the coordinate sequences of outer and inner rings are

provided in a valid/conformant state for JTS normal form. It is possible to convert JTS

polygons to JTS normal form with the provided normalize method (Davis 2003; Davis

2004), but as noted in (Köbben 2005) and in Javadocs, it returns rings in a CW-CCW

fashion, - which is the opposite of the ISO standard. The maintainer of JTS seems reluc-

tant to change this according to (Köbben 2005). The other possible area of high cost in

the polygon build process is the mentioned searches executed to find the linear rings of

inner and outer borders. As the two searches are executed on the same node list, - which

has already been iterated (shallowly) by the original search detecting the polygon, it could

very well be that time and resources could be saved if either the original search was able

to do a deep search, or at least that the two searches executed in the polygon handler were

combined into one. By doing this we can assure that none of the nodes in the list are read

83

more than once, and also avoid the possible start-up overhead of initiating three searches

instead of one. The issues around rationalizing the number of searches for sub geometries

are also of relevance for the performance of multi geometries, as these are made up of a

number of basic geometries as “members” of the complex geometry in the same way as a

polygon has “children” that define its multiple geometric properties.

Possibilities of improvement for the construction phase

Coordinate parsing

The parsing of pure coordinate strings is common for all geometries and is a field that

also has areas for improvement. While use of the “nodeSearch” function to find the coor-

dinate node is explained in 4.5, it is quite similar in logic to the various gmlSearch meth-

ods used with polygons as described in Chapter 3. This implies that also this method

could be marginalized by allowing the original iteration of the node list to detect the node

element containing the coordinate string.

Generalization and use of static types

During testing, a relatively high spread in the sampled observations was detected. This

can to a certain degree be explained with the not ideal test-platform which was vulnerable

for among many things Windows’ up and down prioritizing of threads while running

(several non related utilities were running on the computer at the time of testing). But also

the fact that the code has several redundant class instances local to the various handlers.

This can possibly result in a poorer runtime performance with more variance in execution

times. A major improvement, both with regard to the execution speed and memory use

would be to do a refactoring process of the handlers and generalize out common class in-

stances and to a certain degree place them in static contexts. Another advantage of this

would of course be the general improvement in code quality and readability.

Calculation phase

The calculation phase consists of calling the corresponding methods on the generated JTS

object of the extension function called. Performance measured relative to the other phases

is available in section 6.1.3. In this thesis, no optimizations or changes to the JTS meth-

ods have been implemented. Even so, it should be of no problem to use various function-

ality of for calculation optimization by calling or setting those properties from the level 2

84

classes were the calculation methods are called. The technical and developer references of

JTS both mention several approaches for increased performance (Davis 2003; Davis

2006).

Serialization phase

The serialization of JTS objects to Node objects compatible with Xalan is a straight-

forward process documented in 4.5.4. Findings from serialization of line strings, points,

and polygons in Chapter 6 indicate that as the series of coordinates or complexity of the

geometry to serialize increases, the time needed for serialization increases as well. This

correlation between data to output and required time to serialize, does not necessary

match the precision level or number of vertices in the calculation; as it is the complexity

of the resulting geometry that gives the size of the result to serialize. But, if e.g. the preci-

sion level or number of digits is high, it will make the impact of a large and complex re-

sult geometry more powerful. The implementation does have shallow prototypes of node

objects representing various geometry objects for quicker serialization by cloning instead

of building them from the ground up. But this collection could be more elaborate. With

shallow it is here meant that the prototypes to a very little degree are singular node ele-

ments with namespace, prefix and name set. The encoding process has to clone each

node, insert eventual values (such as coordinates in a coordinate node), and then attach

the nodes together. By having deeper prototypes; nodes which have all the components

required ready available instead of being singular entities, the time required to assemble

the serialized nodes can be reduced by an unknown margin. This would probably be of

most benefit to those cases were the serialization phase is large relative to the other

phases. Such cases are serialization of points and larger polygon and line strings.

7.2.2 Execution performance in practical contexts

The implemented system for enabling spatial transformations is assumed to be used as a

component in applications working in mainly two distinct perspectives. One is the inter-

active perspective defined to be a setting where someone or something to a certain degree

expects immediate response to operation calls. Examples are standalone applications or

browser based clients accessing data directly, and server applications such as web ser-

vices using the library to provide some kind of middleware data transformation or proc-

essing for external applications, such as in (Lehto and Sarjakoski 2005). (Nielsen 1994;

85

Nah 2004) are some of the many papers providing guidelines and categorizations of toler-

able waiting time. A presentation of the categorization as adopted in this thesis is pre-

sented in section 6.2.2.1 below. The other perspective represents typical batch operations,

where the tasks are regarded as jobs to be executed independently of users or processes

waiting for the results right then. In the batch context, immediate response seems to be of

generally less importance, with the main focus set on throughput capabilities, job schedul-

ing, possibilities of handling larger amounts of data, and performance gains by running

several jobs (processes) in parallel to mention some.

Acceptable waiting time for interactive contexts

According to (Nielsen 1994), basic advice on response times for interactive applications

has been more or less unchanged within the last thirty years. In (Nielsen 1994) Nielsen

has set out limits that operations within an interactive context should adhere to provide an

optimal user experience regardless of the application implementation. Below are the lim-

its as interpreted in this thesis:

Instantaneous: 0.1 second. This limit specifies the max time an operation can take while

still giving an impression of instantaneous reaction. Such response is expected for e.g.

displaying letters on the screen as one’s typing in a word processor or visual response

when clicking on GUI components. If the operation takes more time than 0.1 second the

user will notice that the computer is working on something.

Noticeable: 1.0 second. This is the max time noticeable operations can take without the

user sensing the system as “sluggish”. If an operation needs more than 1 second to com-

plete, it should provide some kind of indication that it is working. (Cursor shaped as a

time glass is suggested by Nielsen).

Tolerable: 10-15seconds. For general contexts, if an operation needs more than 10 sec-

onds to complete, the user should get an indication of the remaining time before the task

is completed. Still, in (Nielsen 1994; Nah 2004) it is observed that in a web-context, users

can accept up to 15 seconds for a page to download, as web users have “been trained to

endure so much suffering that it may be acceptable to increase the limit value to 15 s”

(Nielsen 1994).

The interpretations in 6.2.1.2 review the findings in view of these categorizations and dis-

cuss how the implemented library fits into each of them.

86

Interpretation of findings with regard to waiting t ime in an interactive context

All total execution times used in these discussions are based on findings from the tests

performed on the Tana data-set in 5.2 and with the cache prototype enabled. The cache

was used because it yields considerably higher performance than the original/underlying

implementation. See Sections 4.5.5, 5.1.5, 6.2.2, and the section about caching below for

details on execution times and discussion of the cache prototype.

Transformations within instantaneous time

Given a realistic scenario with an application utilizing the library, the stylesheet would

probably be loaded and ready for execution. Still, the job fetching the geospatial data

(GML) to be processed typically needs to load it from sources situated on externally, such

as WFS servers. Just fetching the data would in many cases probably imply a waiting

time of more than the maximum of 0.1 seconds to be within the “instantaneous” limit de-

fined in 6.2.1.1 regardless of how data is processed locally. Disregarding this, it is here

assumed that the GML has already been loaded, e.g. by accessing it through a local cache,

or that the application thanks to its spatial capabilities (as mentioned in 1.2) is re-iterating

on data available from previous calls during its session.

The findings indicate that the relatively complicated transformation (as of the transitive

template use) used in the Tana data-set cannot transform much data within 0.1 seconds.

Case Time to complete

1 0,33122813
2 0,339242278
3 0,457767119
4 1,06840199

Table 7.2 Time needed to complete test cases 1-4 on Tana data as defined in 5.1.4
and reported in 6.2. Time measured in seconds.

Table 7.2 shows that for the smallest subset tested, consisting of 3 road stubs and 24

buildings encoded in a 16 kb file (see 4.7.4 for details on test) time was exceeded with

more than 300% relative to the 0.1 second limit. Among the possible interpretations of

this result is the indication of XSLT as not being an ideal approach for instantaneous

transformations of data, but also that the cost of using the extensions is too high, or that

the test executed is too complicated. To find out more about the smallest possible time the

specific transformation can be executed on the Tana data using the test equipment (see

87

4.7.5), two cases with even smaller subsets have been created. These tests have only been

tested using the cache-optimized implementation.

Case Area Roads Buildings Size (kb) Time to complete

0.1 1 1 2 0,049887346
0.2 1 7 5 0,055344185

Table 7.1 Extra small subsets of Tana data to probe for minimum possible execution
time on operations defined in 5.1.4

These findings indicate that the implementation has a relatively low capacity for the

amount of features/size of data-set that can

be processed instantaneously.

Figure 7.1 Visualization of test case 0.2.

But, as it seemingly is possible to achieve

the performance with a minimum of features

processed there are approaches that can pos-

sibly circumvent the challenge to a certain

degree. One alternative is implementing an incremental transformation process; process-

ing and rendering only smaller bits of the feature-set to provide a stream of updates,

somewhat like how Google Earth renders and displays satellite and aerial photos as they

are received in the client. This would probably incur a performance loss with regard to

total processing time, due to the increased time overhead for the multiple transformations

and renderings.

Possibilities for transformations within noticeable time

While it does not seem that the possibilities for instantaneous transformations are optimal,

the feature capacity is quite larger when operations can occur within a 1 second time

frame. Findings from the Tana data-set indicate that the complex transformations tested

can be executed within 1 second for data sets a little smaller than case 4 (4.7.4).

88

Figure 7.2 Visualization of Tana data, test-case 4

As the figure above shows, data sets of similar size as case 4 of the Tana data are large

enough to be of practical use in contexts such as web mapping etc.

Possibilities for transformations within tolerable time

For transformations within a timeframe of 10-15 seconds, relatively large amounts of fea-

tures can be processed. In the Tana data-set, cases 5 and 6 are performed within a time-

frame in the vicinity of the limits for tolerable time.

Case Area Roads Buildings Size (kb) Time to

complete
5 201 1 132 643 5,805609651
6 425 2 145 1 242 22,63007589

Table 7.3 Tana test cases 5 and 6 with findings

Figure 7.2 Relation between fea-
tures (buildings + roads) and proc-
essing time for Tana data, cases 3-6

The diagram to the left is used to il-

lustrate the approximation on the

89

likely amount of features the implementation will be capable of processing within the tol-

erable waiting time. 12.5 seconds has been chosen as the intersection point, as this is be-

tween the two suggested limits (10-15) in 0 and should allow for some flexibility consid-

ering the estimation’s accuracy. The intersection along the Features axis occurs at ca 1948

features. As the average ratio between road and building features of test-case 5 and 6 is

1:5.33944981 we can estimate that within a tolerable time, the implementation can trans-

form a dataset of ca 307 roads and ca 1536 buildings with the relatively complex tem-

plates.

Processing time vs. Transmission time

In (Lehto and Sarjakoski 2005) the authors have created a system which is using WFS as

data source and produce SVG visualizations of generalized data which are then rasterized

to PNG. The conversion of GML returned from WFS to SVG is achieved with XSLT

using extensions to support the generalization operation. While they do not go into im-

plementation details, and do not report on specific experience with the extensions, they

identify two bottlenecks.

1. The request and transmission of data returned from the WFS takes 30-50%

of total processing time

2. Rasterization of SVG to PNG 34-54% of total processing time

In addition, as they are working with mobile terminals, they observe that transmission of

generated PNG files take almost four times of that spent for generating the image (with

PNG files varying between 85-133kb). (Lehto and Sarjakoski 2005) This indicates that

for an application using WFS to get geospatial data for visualization, the time induced by

using XSLT to transform the data will be of minor importance relative to re-

quest/transmission of source data and rasterizing. In a mobile context, the processing

time will in anyway be dwarfed by the transmission time of the result to the client given

the file sizes as presented by (Lehto and Sarjakoski 2005). These findings are inline with

the results from testing done with the Tana data: GML files get relatively large and re-

quire quite some time to download, thus it may be the amount of data to transfer that is

the main limiting factor of the transformation process, not the XSLT process itself.

90

Interpretation of findings with regard to a batch context

In a batch context, the performance speed is also of importance, but along with other pa-

rameters, it is of equal relevance to consider the capabilities of handling larger sets of data

than what is possible in an interactive context. The implemented library has successfully

been tested with up to 12266 features in test case 10 of the Tana data. While this did

work, special care had to be placed in the design of the templates. It seems that straight-

forward recursion results in stack-overflow errors at relatively shallow depths (ca 1000)

for Xalan based implementations. A “divide-and-conquer” approach to recursion solved

this.

Enhancements for the improvement of general performance

This section gives a walk-through of different approaches to optimize the speed of con-

struction and serialization phases. While the issues discussed in 0 and 0 focused on weak-

nesses and possible improvements in the existing implementation, the points below intro-

duce ideas and features independent of the existing code base.

Caching

An approach with seemingly great potential for performance improvement is to cache the

parsed geometry objects. The idea presented here is based on the observation that con-

structing JTS geometries is an expensive process. In many cases an operation is executed

on the same feature (geometry) many times. Such is the example with the Tana-data. To

count how many buildings that are situated within 20 meters from the road, each building

(point) is checked for presence within a polygon representing a 20 meter distance buffer

from the road. The check results in the same polygon node list representation being sent

to the “within” extension operation with each and every point. An early prototype of the

cache approach has been implemented and tested with the Tana data. See Sections 4.5.5

and 5.1.5, and 6.2.2 for implementation details and test results. Using the cache seems to

yield higher performance even for very small sets of features. While the overhead of re-

parsing the same polygon several times is relatively low compared to the cache approach

with regard to total execution time for very small datasets, the time saved by using cached

versions of the polygon is close to 50% already by test case 2. (See Chapter 5 for details

on the various test cases of the Tana data). Table 7.4 below shows the percentage wise

91

improvement in execution time for each test case of the Tana data when using the cached

approach.

Whilst performance gains have already been demonstrated

with the prototype, there is a need to test this further and

check for potentially faster lookups than what is done in the

prototype. It should also be done some research into a more

exhaustive use of the approach, as it today is only used on

multi geometries and line strings. Interesting perspectives

would be to check for possibilities on caching whole opera-

tions, to save both construction and calculation time. Of course, the caching of serialized

geometry object would also be of interest to research closer. It is important to keep all

such functionality open for easy customization and configuration by the users. This is dis-

cussed further in 7.3.2.

Indexing

An interesting alternative or compliment to caching parsed geometries and results of op-

erations is to keep a full or partial index table with references to all features in the GML

being processed. An identified bottleneck in the implemented approach is the search and

construction process of geometry objects. By having an index of all features, a quick

look-up based on the node list hash code (always provided for all Java objects, (Sun

2004)) would eliminate any iteration on node lists during execution. The table could up-

date its pointers from pointing to “raw” node data to parsed versions of the geometry ob-

jects as they get parsed. More advanced implementations in e.g. web contexts, could re-

tain the cached objects in a static index class, so that multiple transformation sessions can

benefit of the cached objects instantaneously.

7.3 Flexibility

With regard to research objective 2, this section discusses aspects around the possibilities

and limitations of flexibility to the transformation process implied by using GeoXSLT.

Test case Improvement
1 13,36%

2 45,04%

3 56,20%

4 68,65%

5 71,85%

6 70,27%

7 71,15%

8 69,61%

9 68,71%

10 67,42%

Table 7.4 Improvements in performance time for the cached approach compared
with original (non cached) approach.

92

7.3.1 Integration/Extension of functionality

The modular design of the GeoXSLT framework was created with openness for integra-

tion of additional spatial functionality in mind. That is why the architecture as presented

in Section 4.1 is divided into front-end (level 1), implementation (level 2), and handlers

and factories (level 3) levels. The core functions of converting back and forth between

geospatial objects and XSLT is contained in level 3 and accessible to implementations of

geo operations in level 2 through a small interface. As long as the geospatial (JTS) objects

created by GeoXSLT support the operations desired, implementing spatial functionality

can be achieved in just a few steps. In general, it is just a matter of defining the interface

in level 1 and a straight forward implementation of logic in level 2. The rest is handled by

the GeoXSLT framework. The practical application presented in Section 7.5 includes a

thorough example of the simplicity with which GeoXSLT can be extended with addi-

tional spatial functionality. Although GeoXSLT was designed and tested with

Xalan/XSLT, the use of node lists as parameters opens up for use in pure Java applica-

tions as well.

7.3.2 Ideas for improving flexibility

Configuration

The configuration alternatives of the GeoXSLT implementation are in the current version

hard coded in a static configuration class and set directly in various classes. This is not

inline with the idea of enabling independence from the underlying software implementa-

tion. There are several approaches to solve this. While the implementation today only

uses extension functions which are mapped to the corresponding methods, the XSLT

specification also allows for the use of extension elements. These are as implied by the

name distinct elements contained within an extension namespace. The specification de-

fines them as “…The element extension mechanism allows namespaces to be designated

as extension namespaces. When a namespace is designated as an extension namespace

and an element with a name from that namespace occurs in a template, then the element is

treated as an instruction rather than as a literal result element. The namespace determines

the semantics of the instruction” (Clark 1999). In other words, the extension elements can

be used to pass initial instructions to the processor/framework with configurations of pre-

cision models, validation levels, and more. Additionally, the interaction between exten-

93

sion elements and the Java implementation avails more context information than ditto for

function extensions. For example, Xalan allows access to both the XSL processor context

(org.apache.xalan.extensions.XSLProcessorContext) and the extension element

(org.apache.xalan.templates.ElemExtensionCall) from the Java handler of the extension.

These objects give the handler access to the complete stylesheet, XML sources (very in-

teresting with regard for indexing) and more (Apache Xalan Community 2005). While

this approach certainly is of interest for more research, there is a need to be aware of a

limitation. An important performance factor is the support of compiled stylesheets; tran-

slets or XSLTC (Apache Xalan Community 2005). The XSLTC XSL processor translates

stylesheets into Java class files which then can be used repeatedly for transformation with

high performance. The Xalan XSLTC processor does not support the use of extension

elements. Another and maybe more viable approach is to use a framework such as Spring

for configuration. Spring provides what is called “Injection of Control” which allows Java

classes implementing the bean interface to be configured with XML files and hence be

configured during runtime (Harrop and Machacek 2005). Implementing this should not

give any difficulties, only minor changes to the Configuration class and a general clean-

up of code.

Geographic axes

There is already a large set of axes available in XPath (Holzner 2001). These axes are

very powerful for the specification of filters and various stylesheets in this thesis apply

them in relatively complex queries. Still, in a context of spatial data, there is a need to

orientate in a geometric perspective. There should be a possibility of defining a pattern

matching elements along a given vector. With this functionality, one could do a search for

all elements (or special elements) at e.g. 90 degrees of the current element. Implementing

this can be done in many different ways, but this thesis suggests an EXSLT function us-

ing the extension bridge provided here. By getting the coordinates of the center-point for

each geometry object, calculating the angle between two points is very much possible.

JTS (and others) also provide the necessary means for calculations between different

SRS/EPSG. It is also of interest to note that JTS provides a “bearing” method which can

be used to calculate in which way different features point. The JTS “distance” method is

also of relevance, especially with regard for cases where one need to add non-geographic

94

features to a map, such as labels, signs, and text to be placed at certain distances from the

targeted feature.

Spatial document function in XSLT

A powerful feature of the XSLT language is the “document(URI)” function (Clark 1999;

Holzner 2001). For transformations on non-spatial XML this function can be used to in-

teract with external resources during transformation. This way, transformations can be

performed on a minimal source tree and incrementally load external resources as needed.

Usually, the document function is used on local files or URLs accessible over HTTP

GET. When used in a GML context, there is a challenge with the complex query/filter

format used during interaction with WFS servers. Table 2.12 lists a typical WFS query.

What is needed is a document(URI) function which can take a payload containing the

query/filter that is sent to the URI with the HTTP POST method. By such, the document

function could be used to fetch features as needed during runtime achieving the same ad-

vantages as for non-spatial XML. As an example one could use data from one WFS

source for the initial source tree and select some of the features based on calculations with

the GeoXSLT framework. For the selection one could then fetch other details from a sec-

ond WFS. Everything performed from within the same XSLT template and transforma-

tion.

7.4 Consequences for development

This section provides an answer to research objective 3, and argues how the integration of

spatial functionality made possible by the implementation created will have a positive ef-

fect on practical development with spatial data.

7.4.1 Less surrounding complexity

The work with creating and performing all the test cases has shown the simplicity of

processing spatial data with the implemented GeoXSLT framework. While other ap-

proaches require the user to setup and configure various supporting toolkits just to start

working on the data, experience shows that this approach allows loading and processing

spatial data without any changes to the existing code underlying the transformation. This

means that one can use any XSLT processor supported by the framework and start proc-

essing GML with spatial functionality without changing a thing. This allows the devel-

95

oper to focus on using the spatial functionality, instead of implementing or integrating it.

All that is necessary is to provide the jar file containing the spatial extension frame work

on the classpath. This allows for easy integration into existing systems, e.g. web applica-

tions with JSTL (Sun 2006) based JSP pages, where spatial transformations now can be

performed with minimal code without having any impact on other parts of the application.

7.4.2 Code readability

When compared with general programming languages, XSLT is a simpler language with

focus on the flow and transformation of data. Previous research and Chapter 3 defined the

need for syntax on the spatial functionality that follows the same patterns as those native

to XSLT. By such, the simplicity already inherent in XSLT is conserved, and usage of the

extensions intuitive for developers. The implementation of the framework supporting the

spatial operations succeeded in achieving this, as demonstrated in the stylesheets used for

testing both constructed and real data in Chapter 6. The result is that standard spatial

functionality as defined in Chapter 3 integrates fully with the standard XSLT used in the

templates without obfuscating the code readability. Additionally, the simple syntax of the

operations defined is intuitive and easy to use. The extensions open up for different ap-

proaches to the creation of XSLT templates, and it is up to the developer whether to pack

much functionality into a singular XPath statement, or to focus on readability by spread-

ing the logic across several operations or templates. The spatial functions work just as

well with any approach.

An issue that one should be aware of is the challenges associated with “re-processing” the

output of templates already ran inside the current XSLT process. The output from tem-

plates is represented as result-tree fragments, which only supports string operations (Clark

1999). While this is discussed with more detail in Section 7.5, it is not specifically related

to geospatial data, and as showed, solving it by converting the fragments to node sets is

not a problem.

7.4.3 Reuse

Application level

The Model-View-Controller (MVC) pattern defines an approach to programming where

96

application and business logic represented by the “model” is kept separate from the pres-

entation/user interface, represented by the “view”. A “controller” mediates the interaction

between the two components (Buschmann, Meunier et al. 1996).

With regard to development patterns focusing on the separation between presentation and

application logic, XSLT can be a viable approach to generate the views used for presenta-

tion. This is assuming that the underlying data model can be represented as XML. While

MVC have several benefits, such as support for multiple views of the same model and

“pluggable” views and controllers (Buschmann, Meunier et al. 1996), an acknowledged

liability is the intimate connection between view and controller (Buschmann, Meunier et

al. 1996). When using XSLT for processing geospatial data, the controller has to accom-

modate the handling of spatial operations, hence tightening the connection between the

view (XSLT template) and the controller. This makes generalization of the application

code in the controller more difficult, obfuscates the controller implementation, and com-

plicates the use of different views of the same model/using the same view on multiple

controllers.

By introducing spatial functionality to the XSLT process, we have made it easier to de-

couple the XSLT view from the controller and model. The increased decoupling can

make it easier to reuse both the XSL template and support better code generalization in

the controller. The increased level of distinction between the view and controller, may

also make it easier for developers to focus on the task at hand: Developers of views can

concentrate on creating the view without interfering with the controller or other applica-

tion level code.

Template level

Code reuse is well supported at the template level of XSLT. By developing general tem-

plates for handling various features, cartographic and non-cartographic alike, specific

transformations can be a matter of just applying the templates desired.

7.4.4 Possibilities for extension

Integrating custom or missing functionality into the framework has been an important

goal in the design of the implementation done. Chapter 4 discusses the aspects around

design and implementation with regard for integration; while Section 7.5 presents an ex-

ample of how custom spatial operations can be integrated using the construction and seri-

97

alization facilities provided by the framework. The working prototype and demonstration

in Section 7.5 give weight to the claim that the modular architecture supports extensions

with new functionality quite well.

7.4.5 Possibilities for implementation on other platforms

Libraries similar to Java Topology Suite with full or partial support for SFS are available

for most popular platforms of development. Only a few are mentioned here. While these

support the calculations needed, the amount of work needed to implement the bridged as

done for JTS is unknown.

• Perl and C/C++: GDAL/OGR. C API and Perl modules (

http://www.remotesensing.org/gdal/ogr/ + http://search.cpan.org/~sderle/Geo-
GDAL-0.11/)

• .NET: “nettopologysuite”; port of JTS. May also be able to C API. (
http://code.google.com/p/nettopologysuite/)

7.5 Practical application

This section walks through an example of use by applying the GeoXSLT framework to a

practical task.

In (Harrie L. 2003) Harrie and Johansson describe a method for real-time generalization

and visualization of GML data. While XSLT is used for generation of the SVG file (visu-

alization), a separate Java program is used to perform the integration and generalization

of data. During this process there is a defined need to have an interaction between the dif-

ferent geometry representations involved. (Harrie L. 2003) provides several examples of

scenarios requiring this feature, terming it “interaction between objects”:

• Solve spatial conflicts (e.g. making sure symbols representing one feature do not

cover other features)

• Integrate service data such as icons/arrows etc with cartographic data

• Aggregation of objects

Harrie and Johansson chose not to use XSLT for the generalization of data because

“...XSLT transformations only treat one object at a time, it is not possible to implement

methods which involve interactions between objects”. (Harrie L. 2003). This thesis is not

going to claim that placing the generalization and integration of data in a separate Java

98

program is wrong by any means. Still, it is important to provide argumentation for why it

may actually be possible to perform the generalization and integration in an XSLT con-

text and still be achieving object interaction. By using XSLT to perform the generaliza-

tion process, the extra step of running the data through the extra Java program before us-

ing XSLT for SVG visualization can be saved. Containing the process within XSLT does

also facilitate the possibility for developing a more general (Java) system underneath,

with better possibilities for code/class generalization and re-use, deploying custom XSLT

templates for specific cases.

Example

As the arguments for using XSLT are of significance, there is a need to understand how it

can be implemented. By demonstrating how interactions between objects are possible in

XSLT and a description of relevant functionality available in JTS (which with relative

ease can be integrated into the level 2 classes), this thesis attempts to inspire further re-

search on XSLT based generalization. The demonstration is based on test case 4 of the

Tana data. First, the roads are simplified using the DouglasPeucker algorithm (Sedgewick

2002; Novatchev and Tyszko 2006) to showcase simple generalization. Then, based on

interaction with the simplified geometry object representing the roads, a buffer indicating

the 20 meter area used in the test cases with the Tana data (5.1.4 and 6.2) is created. This

is to showcase that XSLT can interact with results from previously called templates

within the XSLT process, and hence makes object interaction possible. Everything is

visualized as SVG using the transformation process itself, and buildings within the 20

meter buffer are given a distinct coloring. As a frame of reference, the original visualiza-

tion of data set 4 from Tana is shown in Figure 7.3.

99

Figure 7.3 WMS (Geoserver) visualization of Tana data set 4

In Figure 7.3 no simplifications or alterations have been made. The GML data represent-

ing the features is passed on to a relatively simple XSLT stylesheet utilizing the JTS

bridge created as a part of the thesis. Table 7.5 below lists a very small subset of the GML

data representing the feature set. The GML has been extracted directly from a Geoserver

WFS instance and is shown to provide an understanding of the transformation flow.

<?xml version="1.0" encoding="UTF-8"?>

<wfs:FeatureCollection

xmlns:wfs="http://www.opengis.net/wfs" xmlns:topp="http://www.openplans.org/topp"

xmlns:gml="http://www.opengis.net/gml" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.openplans.org/topp

http://localhost:8080/geoserver/wfs/DescribeFeatureType?typeName=topp:bulroad,topp:Road
http://www.opengis.net/wfs http://localhost:8080/geoserver/schemas/wfs/1.0.0/WFS-basic.xsd">

 <gml:boundedBy>

 <gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#32633">

 <gml:coordinates xmlns:gml="http://www.opengis.net/gml" decimal="." cs="," ts=" ">356145,7766050

357617,7767139

 </gml:coordinates>

 </gml:Box>

 </gml:boundedBy>

 <gml:featureMember>

 <topp:bulroad fid="bulroad.674">

 <topp:the_geom>

 <gml:Point srsName="http://www.opengis.net/gml/srs/epsg.xml#32633">

 <gml:coordinates xmlns:gml="http://www.opengis.net/gml" decimal="." cs="," ts=" ">

 357403,7766898

 </gml:coordinates>

 </gml:Point>

 </topp:the_geom>
 <topp:type>Residential</topp:type>

100

 <topp:status>2</topp:status>

 <topp:number>192563771</topp:number>

 <topp:started>10101</topp:started>

 <topp:updated>20001120</topp:updated>

 </topp:bulroad>

 </gml:featureMember>

 <gml:featureMember>

 <topp:Road fid="Road.854">

 <topp:the_geom>
 <gml:MultiLineString srsName="http://www.opengis.net/gml/srs/epsg.xml#32633">

 <gml:lineStringMember>

 <gml:LineString>

 <gml:coordinates xmlns:gml="http://www.opengis.net/gml" decimal="." cs="," ts=" ">

 356709,7766479 356756,7766427

 </gml:coordinates>

 </gml:LineString>

 </gml:lineStringMember>

 </gml:MultiLineString>

 </topp:the_geom>
 <topp:type>Municipal</topp:type>

 <topp:roadNumber>5076</topp:roadNumber>

 <topp:roadClass>V</topp:roadClass>

 <topp:date>19980714</topp:date>

 </topp:Road>

 </gml:featureMember>

Table 7.5 A minimal subset representing content and structure of data used in the
generalization process

As mentioned earlier, the Tana data-set is made up of many small lengths of line strings

representing roads. During a generalization process, one can choose between the ap-

proaches of simplifying the line strings one by one, maintaining full control and keeping

non cartographic feature data associated (see Table 7.5 for examples of non-cartographic

feature data; “roadNumber”, “type” etc), or to union all the lengths into one multi line

string which then is simplified. In this case the latter approach has been chosen, as only

the generalization aspect is of direct relevance to the demonstration. The union of all the

road segments is done using the same template as listed in Table 5.4 and stored in a vari-

able.

<xsl:variable name="roadUnion">

 <xsl:call-template name="unionRoads">

 <xsl:with-param name="roads"

 select="wfs:FeatureCollection/gml:featureMember[topp:Road]/topp:Road/topp:the_geom/*" />
 </xsl:call-template>

</xsl:variable>

Table 7.6 Calling the unionRoads template and storing the resulting multi line GML
element variable “roadUnion”.

The “roadUnion” variable does at this point contain a result tree fragment, which accord-

ing to (Clark 1999) cannot support any other operations as those available for string val-

ues. This is probably the main reason why Harrie (Harrie L. 2003) concludes that interac-

tions between [processed] objects are not possible within XSLT. While it is correct ac-

cording to the plain vanilla XSLT specification, in practice Xalan provides handling to

work around the problem. Xalan provides a built-in extension function called “nodeset”.

101

When passed a result tree fragment, it returns an equivalent set of nodes. This approach is

applied in the demonstration when simplification is performed on the “roadUnion” vari-

able.

 <xsl:variable name="roadSimplified" select="exp:simplify(xalan:nodeset($roadUnion)//gml:MultiLineString,20)" />

Table 7.7 Performing Douglas Peucker simplification on the union of roads.

As is listed in Table 7.7, the result tree fragment of the “roadUnion” variable is converted

to a node set and passed on to an extension function mapped to the Douglas Peucker sim-

plification algorithm. The number, “20” denotes the tolerance threshold for vertex dis-

tance used in the simplification. The “exp” namespace prefix denotes the experimental

group of functions containing the simplify function.

public Node simplify(NodeList n1,double distanceTolerance) {

 Geometry g1 = utilities.gmlSearch(n1);

 Geometry result = DouglasPeuckerSimplifier.simplify(g1,distanceTolerance);

 return gf.encodeNode(result);

 }

Table 7.8 Implementation of simplification extension function in a level 2 class.

Table 7.8 lists the experimental implementation of the simplification algorithm. Note how

the thesis’ implemented framework reduces bidirectional conversion between nodes and

JTS geometry objects to a simple method call. While this is an experimental implementa-

tion of simplification functionality without any performance evaluations, it does show-

case the ease with which additional functionality can be integrated almost in a plug-in

fashion without any detailed knowledge of GML processing or JTS. No change to the

framework or other level 2 classes was necessary for this “plug-in” of simplification func-

tionality. The “DouglasPeuckerSimplifier” class is a part of the

“com.vividsolutions.jts.simplify” package available with JTS.

After returning from the simplify call, the now simplified union of roads is stored in the

“roadSimplified” XSLT variable. To calculate the area surrounding the road with 20 me-

ters, a buffer is created. The resulting multi polygon is stored in a “roadBuffer” variable.

<xsl:variable name="roadBuffer" select="gis:buffer($roadSimplified//gml:MultiLineString,20)" />

Table 7.9 Calculating the 20 meter “buffer-area” to surround the simplified union of
roads.

102

GML representing the simplified version of the road and the buffer surrounding it are

now in place. All that is left is to transform the GML into SVG with distinct coloring of

the different components.

<!—

Draw the outer border of the multi polygon representing the 20 m area (buffer) outside the simplified union of roads

 -->

<xsl:apply-templates select="$roadBuffer//gml:outerBoundaryIs" />

<!—Draw the inner border of the multi polygon (inside part of the buffer; fill++) -->

<xsl:apply-templates select="$roadBuffer//gml:innerBoundaryIs" />

<!—Draw the simplified union of roads on top of the buffer -->
<xsl:apply-templates select="$roadSimplified//gml:LineString" />

<!—Draw all the points representing houses WITHIN the 20 meter buffer -->

<xsl:apply-templates select="wfs:FeatureCollection/gml:featureMember[

 (descendant::topp:bulroad) and

 (gis:within(

 descendant::topp:bulroad/topp:the_geom/gml:Point,

 $roadBuffer/gml:*[position() = 1]

)

)
]" mode="inside"/>

<!—Draw all the points representing houses OUTSIDE the 20 meter buffer -->

<xsl:apply-templates select="wfs:FeatureCollection/gml:featureMember[

 (descendant::topp:bulroad) and

 (not(gis:within(

 descendant::topp:bulroad/topp:the_geom/gml:Point,

 $roadBuffer/gml:*[position() = 1]

))
)

]" mode="outside"/>

Table 7.10 Applying transformation to SVG for the generated components

Table 7.10 lists the XSL used to render the GML in SVG. Note how houses are rendered

in two sets, depending on a check for their existence within the buffer zone defined by the

“roadBuffer” variable. This demonstrates that it is very well possible to place non-

cartographic data with care for not covering important cartographic details. E.g. in the

case of placing arrows or labels in a map, the “within” check (or any other relevant SFS

function) used in the table could be used to validate the position. For recalculation of la-

bel positioning etc, one can use “distance” and the “compass”/“bearing” functionality as

defined in 7.3.2.

While generalization/simplification has not been tested in detail with regard to perform-

ance and multiple algorithms within this thesis, the walk-through presented above gives a

clear indication that generalization can very well be achieved within in an XSLT perspec-

tive, and that the “interaction” argument of (Harrie L. 2003) is not necessarily a problem.

The rest of the stylesheet, performing the transformation from GML to SVG, is available

in the appendix.

103

Figure 7.4 SVG visualization of Tana data set for case 4, simplified with a distance
tolerance of 20 m

Figure 7.4 shows the final result of the walk-through. The generated rendering is in no

way optimized with regard to the available possibilities of SVG. The simplified road is

rendered yellow, the buffer area grey with dark borders. Houses outside the buffer are

colored green, while those within the buffer are red.

104

Figure 7.5 Close-up, subset of figure 7.4

105

8 Conclusion
This chapter summarizes the research in view of the research objectives before a short

presentation of the major contributions and an outline of further work is provided.

8.1 Claimed results

Processing geospatial data with XSLT

The work with this thesis shows that it is technically possible to process and transform

geospatial data encoded as GML with XSL templates and extensions. The experience

with the developed GeoXSLT framework indicates that spatial operations possible with

libraries such as the Java Topology Suite can be integrated into the XSLT process once

the GML representations are converted to geo objects. The prototype does just that.

Performance

Tests done with real data shows that in an interactive context, spatial XSLT transforma-

tions of data can be performed with success within the different limits of time as set forth

by the usability community. While the transformations achievable within instant time are

limited, chances are that these limitations would also apply to other approaches. For sce-

narios occurring within a timeframe of tolerable time, relatively complex transformations

can be applied on data sets so large that network transmission time and other factors ex-

ternal to the transformation become issues. In a batch perspective, tests involving rela-

tively complex transformations on data sets consisting of more than 11 000 features have

shown that with considerate use of recursion, the approach proposed in this thesis can

handle large amounts of data.

Geometry Construction Serialization
Line String 10-12% 2-25%

Polygon 12-27% 6-61%

Table 8.1 Overhead for analysis operations

Geometry Construction
Line String 20-25%

Polygon 8-64%

Point 40-82%

Table 8.2 Overhead for predicate operations

106

Geometry Construction Serialization
Point 15-42% 58-85%

Table 8.3 Construction vs. Serialization for points

With regard for the time overhead necessary for conversion back and forth between the

transformation process and the spatial extensions, the experience from design and devel-

opment of the prototype shows that the integration of spatial functionality in an XSLT

process can be divided into three phases The phases are: construction of spatial objects

from node sets, spatial calculations, and serialization of the results back to a node struc-

ture compatible with the XSLT process. The overhead implied by the integration of spa-

tial capabilities with XSLT consists of the construction and serialization phases.

Tables 8.1 and 8.2 present indications on the percentage wise overhead imposed by the

GeoXSLT framework for analysis and predicate operations. Note that the high overhead

for operations on points is caused by the very fast point calculations; the total time to

complete operations on points is significantly smaller than for any other geometry. See

Section 6.1.4 for a complete summary on performance measured.

Table 8.3 presents findings from running a “dummy” test on points without any calcula-

tions; consisting of only the construction and serialization phases. It indicates that seriali-

zation is more expensive than the construction phase.

Tests and findings in this thesis indicate that the cost of making geospatial operations

available to XSLT is significant. Nonetheless, other factors such as possibilities for

shorter workflow and reduced network traffic should be counted in. This thesis has also

shown that significant performance gains are achievable by the implementation of differ-

ent optimization mechanisms. The simple caching described in Sections 4.5.5, 5.1.5, and

6.2.2 improved overall performance by 60%.

Flexibility

The approach described and tested in this thesis provides sufficient flexibility for many

uses and scenarios. This is because the combination of flexibility inherent in XSLT with

the complete integration of spatial extensions provided by the prototype results in a work-

ing platform for transformation and processing spatial data. Additionally, the modular

architecture of the framework created allows for easy integration of new functionality and

operations.

The combination of a well integrated set of extension operations for the XSLT language

with a modular and extensible supporting framework results in a flexible platform that

107

can be customized to support transformation of geospatial data in a multitude of scenar-

ios. Examples of this are given in the tests with real data (Sections 5.1.4, 5.1.5, 6.2.1,

6.2.2) and the practical application described in Section 7.5. The examples and argumen-

tation presented have shown that spatial operations can be combined, chained, and used in

XPath expressions. Likewise, simple extensions of the standard functionality provided

have been showcased to illustrate the modular architecture. An approach to the “object-

interaction” necessary for generalization/simplification operations (Harrie L. 2003) has

also been demonstrated to work.

Development facilitation

The experience with practical applications and tests of the prototype shows that it is easy

to start developing templates when no special measures or configuration need to be done

for utilization of the spatial functionality. The developer’s focus can as such be concen-

trated on expressing the logic with traditional XSLT and the simple API defined. The im-

pression from using the prototype so far is that the threshold for development of geospa-

tial applications is lowered allowing for more time and resources to be spent on creativity.

8.2 Major contributions

The contributions of this thesis are

• A working prototype for easy integration of spatial functionality in transformation

of geodata encoded as GML.

• An exslt.org style API which is closely mapped to the Simple Feature Specifica-

tion.

• Experience and examples from practical work with XSLT transformations of

GML using the spatial extensions.

8.3 Future work

The future work with the GeoXSLT framework should look into the suggested improve-

ments of Chapter 7. In addition some other possibilities are listed below.

Automatic mapping of function calls

Many Level 2 implementations of operations defined in the Simple Feature Specification

follow a very similar pattern. This opens up for the idea of a facility providing automatic

mapping of JTS functionality with XSLT based on the Java introspection. With such a

108

facility on would, ideally, just have to call the spatial extension function from XSLT and

have the operation automatically executed.

Performance optimization

The overhead of using GeoXSLT is significant. More research should be done to improve

the performance.

Spatial libraries

The current implementation of GeoXSLT depends on Java Topology Suite (JTS) for spa-

tial calculations. It would be of interest to se how other libraries available could be used.

An idea is to create support for other libraries using a plug-in approach. There are several

databases that support the Simple Features Specification.

Other platforms

GeoXSLT needs to be available on other platforms than Java. Section 7.4.5 lists possible

alternatives to Java Topology Suite for use in other platforms.

Release of GeoXSLT source code

GeoXSLT is released under a GPL license to be of use for everyone and open up for con-

tributions to further development.

The source code is available at http://www.svisj.no/fredrik/geoxslt

109

9 Appendix

9.1 Sample of constructed test data

<?xml version="1.0"?>
<testdata xmlns:gml="http://www.opengis.net/gml">
<!--

HORIZONTAL LINE:
PARAMS:
$VAR1 = {
 'vertices' => 3,
 'ybuf' => 6,
 'step' => 2,
 'xmulti' => 1,
 'ymulti' => 1,
 'x' => '0.11',
 'xbuf' => 10,
 'decimals' => 2
 };
WKT:
LINESTRING(10.11 6.03,12.11 6.50,14.11 6.86,)

VERTICAL LINE:
PARAMS:
$VAR1 = {
 'x' => 0,
 'y' => '4.11',
 'vertices' => 3,
 'step' => 2,
 'ybuf' => 0,
 'xmulti' => 1,
 'ymulti' => 1,
 'xbuf' => 12,
 'decimals' => 2
 };
WKT:
LINESTRING(12.86 4.11,13.00 6.11,12.90 8.11,)

-->

<gml:featureMember>
 <dummy_line fid="horizontal_1">
 <TheGeometry>
 <gml:LineString>
 <gml:coordinates decimal="." cs=" " ts=",">10.11 6.03,12.11
6.50,14.11 6.86,</gml:coordinates>
 </gml:LineString>
 </TheGeometry>
 </dummy_line>
</gml:featureMember>

<gml:featureMember>
 <dummy_line fid="vertical_1">
 <TheGeometry>
 <gml:LineString>
 <gml:coordinates decimal="." cs=" " ts=",">12.86 4.11,13.00
6.11,12.90 8.11,</gml:coordinates>
 </gml:LineString>
 </TheGeometry>

110

 </dummy_line>
</gml:featureMember>

</testdata>

9.2 Sample of real data

This is a minimal sample of the Tana data set to illustrate the structure and composition.
<?xml version="1.0" encoding="UTF-8"?>
<wfs:FeatureCollection xmlns:wfs="http://www.opengis.net/wfs"
xmlns:topp="http://www.openplans.org/topp" xmlns:gml="http://www.opengis.net/gml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.openplans.org/topp
http://localhost:8080/geoserver/wfs/DescribeFeatureType?typeName=topp:bulroad,topp:Road
http://www.opengis.net/wfs http://localhost:8080/geoserver/schemas/wfs/1.0.0/WFS-basic.xsd">
 <gml:boundedBy>
 <gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#32633">

 <gml:coordinates xmlns:gml="http://www.opengis.net/gml" decimal="." cs=","
ts=" ">357015,7766577 357502,7766771</gml:coordinates>
 </gml:Box>
 </gml:boundedBy>
 <gml:featureMember>
 <topp:bulroad fid="bulroad.2545">
 <topp:the_geom>
 <gml:Point srsNa-
me="http://www.opengis.net/gml/srs/epsg.xml#32633">
 <gml:coordinates xmlns:gml="http://www.opengis.net/gml"
decimal="." cs="," ts=" ">357080,7766653</gml:coordinates>
 </gml:Point>
 </topp:the_geom>
 <topp:type>Outhouse</topp:type>
 <topp:status>2</topp:status>
 <topp:number>192574250</topp:number>
 <topp:started>10101</topp:started>
 <topp:updated>19940210</topp:updated>
 </topp:bulroad>
 </gml:featureMember>
 <gml:featureMember>
 <topp:Road fid="Road.907">
 <topp:the_geom>
 <gml:MultiLineString srsNa-
me="http://www.opengis.net/gml/srs/epsg.xml#32633">
 <gml:lineStringMember>
 <gml:LineString>
 <gml:coordinates
xmlns:gml="http://www.opengis.net/gml" decimal="." cs="," ts=" ">357015,7766698 357127,7766654
357205,7766613 357286,7766585 357364,7766577 357389,7766583 357406,7766595 357488,7766710
357498,7766735 357502,7766771</gml:coordinates>
 </gml:LineString>
 </gml:lineStringMember>
 </gml:MultiLineString>
 </topp:the_geom>
 <topp:type>Municipal</topp:type>
 <topp:roadNumber>5088</topp:roadNumber>
 <topp:roadClass>V</topp:roadClass>
 <topp:date>19980714</topp:date>
 </topp:Road>
 </gml:featureMember>
</wfs:FeatureCollection>

111

9.3 SVG/Generalization stylesheet

For the sake of readability, the complete file is available at

http://www.svisj.no/fredrik/geoxslt

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:wfs="http://www.opengis.net/wfs" xmlns:gml="http://www.opengis.net/gml"
xmlns:topp="http://www.openplans.org/topp" xmlns:svg="http://www.w3.org/2000/svg"
xmlns:exslt="http://exslt.org/common" xmlns:xalan="http://xml.apache.org/xalan"
xmlns:exp="xalan://frontend.ExperimentalOperations" xmlns:gis="xalan://frontend.SFSOperations" ex-
clude-result-prefixes="wfs gml topp svg exslt xalan exp gis">
 <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes" doctype-public="-
//W3C//DTD SVG 1.1//EN" doctype-system="http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-flat-
20030114.dtd" />
 <xsl:template match="/">
 <svg xmlns="http://www.w3.org/2000/svg" width="100%" height="100%">
 <g transform="rotate(180, 500,500) scale(-1 1) translate(-1000 0)">

 <xsl:element name="svg" namespace="http://www.w3.org/2000/svg">

 <xsl:attribute name="width">1000</xsl:attribute>
 <xsl:attribute name="height">1000</xsl:attribute>

 <xsl:variable name="bbcoords">
 <xsl:value-of select="wfs:FeatureCollection/gml:boundedBy/gml:Box/gml:coordinates"/>
 </xsl:variable>

 <xsl:variable name="bbMin" select="substring-before($bbcoords,' ')" />
 <xsl:variable name="bbMax" select="substring-after($bbcoords,' ')" />

 <xsl:variable name="vb_x" select="substring-before($bbMin,',')" />
 <xsl:variable name="vb_y" select="substring-after($bbMin,',')" />

 <xsl:variable name="vb_width" select="substring-before($bbMax,',') - $vb_x" />
 <xsl:variable name="vb_height" select="substring-after($bbMax,',') - $vb_y" />
 <xsl:attribute name="viewBox"><xsl:value-of select="concat($vb_x,' ',$vb_y,' ',$vb_width,'
',$vb_height)"/></xsl:attribute>

 <xsl:element name="g" namespace="http://www.w3.org/2000/svg">

 <xsl:variable name="roadUnion">
 <xsl:call-template name="unionRoads">
 <xsl:with-param name="roads" se-
lect="wfs:FeatureCollection/gml:featureMember[topp:Road]/topp:Road/topp:the_geom/*" />
 </xsl:call-template>
 </xsl:variable>
 <xsl:message>Road union created</xsl:message>

 <xsl:variable name="roadSimplified" se-
lect="exp:simplify(xalan:nodeset($roadUnion)//gml:MultiLineString,10)" />

 <xsl:variable name="roadBuffer" se-
lect="gis:buffer($roadSimplified//gml:MultiLineString,20)" />

 <xsl:apply-templates select="$roadBuffer//gml:outerBoundaryIs" />
 <xsl:apply-templates select="$roadBuffer//gml:innerBoundaryIs" />
 <xsl:apply-templates select="$roadSimplified//gml:LineString" />

112

 <xsl:apply-templates se-
lect="wfs:FeatureCollection/gml:featureMember[(descendant::topp:bulroad/topp:the_geom/gml:Point)
and (gis:within(descendant::topp:bulroad/topp:the_geom/gml:Point,$roadBuffer/gml:*[position() = 1]))]"
mode="inside"/>
 <xsl:apply-templates se-
lect="wfs:FeatureCollection/gml:featureMember[(descendant::topp:bulroad) and
(not(gis:within(descendant::topp:bulroad/topp:the_geom/gml:Point,$roadBuffer/gml:*[position() =
1])))]" mode="outside"/>

 </xsl:element>
 </xsl:element>
 </g>
 </svg>

 </xsl:template>

 <xsl:template match="topp:bulroad" mode="inside">
 <xsl:variable name="gmlcoords" select="topp:the_geom//gml:coordinates"/>
 <circle cx="{substring-before($gmlcoords,',')}" cy="{substring-after($gmlcoords,',')}" r="1"
style="stroke:red; stroke-width:1; fill:red" xmlns="http://www.w3.org/2000/svg"/>
 </xsl:template>

 <xsl:template match="topp:bulroad" mode="outside">
 <xsl:variable name="gmlcoords" select="topp:the_geom//gml:coordinates"/>
 <circle cx="{substring-before($gmlcoords,',')}" cy="{substring-after($gmlcoords,',')}" r="1"
style="stroke:green; stroke-width:1; fill:green" xmlns="http://www.w3.org/2000/svg"/>

 </xsl:template>

 <xsl:template match="topp:Road">
 <xsl:variable name="gmlcoords" select="topp:the_geom//gml:coordinates"/>
 <polyline points="{$gmlcoords}" style="stroke:black; stroke-width:4;fill:none;"
xmlns="http://www.w3.org/2000/svg" />
 <polyline points="{$gmlcoords}" style="stroke:yellow; stroke-width:1;fill:none;"
xmlns="http://www.w3.org/2000/svg" />
 </xsl:template>

 <xsl:template match="gml:LineString">
 <xsl:variable name="gmlcoords" select=".//gml:coordinates"/>
 <!-- <polyline points="{$gmlcoords}" style="stroke:black; stroke-width:4;fill:none;"
xmlns="http://www.w3.org/2000/svg" /> -->
 <polyline points="{$gmlcoords}" style="stroke:yellow; stroke-width:1;fill:none;"
xmlns="http://www.w3.org/2000/svg" />
 </xsl:template>

 <xsl:template match="gml:outerBoundaryIs">
 <xsl:variable name="gmlcoords" select=".//gml:coordinates"/>
 <polyline points="{$gmlcoords}" style="stroke:black; stroke-width:1;fill:#BBBBBB;"
xmlns="http://www.w3.org/2000/svg" />
 </xsl:template>

 <xsl:template match="gml:innerBoundaryIs">
 <xsl:variable name="gmlcoords" select=".//gml:coordinates"/>
 <polyline points="{$gmlcoords}" style="stroke:black; stroke-width:1;fill:white;"
xmlns="http://www.w3.org/2000/svg" />
 </xsl:template>

 <xsl:template name="unionRoads">
 <xsl:param name="roads"/>
 <xsl:variable name="roadCount" select="count($roads)" />

 <xsl:choose>
 <xsl:when test="$roadCount = 1"><xsl:copy-of select="$roads" /></xsl:when>
 <xsl:otherwise>
 <xsl:variable name="fiftypercent" select="floor($roadCount div 2)" />

113

 <xsl:variable name="left">
 <xsl:call-template name="unionRoads">
 <xsl:with-param name="roads" select="$roads[position() <= $fiftypercent]" />
 </xsl:call-template>
 </xsl:variable>
 <xsl:variable name="right">
 <xsl:call-template name="unionRoads">
 <xsl:with-param name="roads" select="$roads[position() > $fiftypercent]" />
 </xsl:call-template>
 </xsl:variable>
 <xsl:copy-of select="gis:union(xalan:nodeset($left)//*[(local-name() = 'MultiLineString') or
(local-name() = 'LineString')],xalan:nodeset($right)//*[(local-name() = 'MultiLineString') or (local-name()
= 'LineString')])" />

 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

</xsl:stylesheet>

114

10 References
Apache Xalan Community. (2005). "Xalan Extensions Library." from
http://xml.apache.org/xalan-j/extensionslib.html.

Apache Xalan Community. (2005). "Xalan Project website." from
http://xalan.apache.org/.

Apache Xalan Community. (2005). "XSLTC." from http://xml.apache.org/xalan-
j/extensions_xsltc.html.

Beaujardiere, J. d. l. (2006). OpenGIS® Web Map Server Implementation Specification
1.3.0.from http://portal.opengeospatial.org/files/?artifact_id=14416.

Biron, P. V., K. Permanente, et al. (2004). W3C Recommendation: XML Schema Part 2:
Datatypes Second Edition.from http://www.w3.org/TR/2004/REC-xmlschema-2-
20041028/datatypes.html.

Bray, T., J. Paoli, et al. (2006). W3C Recommendation: Extensible Markup Language
(XML) 1.0 (Fourth Edition), W3C.from http://www.w3.org/TR/2006/REC-xml-
20060816.

Brundage, M. (2004). XQuery: The XML Query Language, Addison Wesley Profes-
sional. 0-321-16581-0.

Bunge, M. (1967). Scientific Research, Springer, Berlin 2.

Buschmann, F., R. Meunier, et al. (1996). A System of patterns, John Wiley & Sons. 0-
471-95869-7.

Cabrera, L. F., C. Kurt, et al. (2004). Whitepaper: An Introduction to the Web Services
Architecture and Its Specifications. Web Services Technical Articles, Microsoft.from
http://msdn.microsoft.com/webservices/webservices/understanding/advancedwebservices/
default.aspx?pull=/library/en-us/dnwebsrv/html/introwsa.asp.

Clark, J. (1999). XSL Transformations (XSLT) Version 1.0.from
http://www.w3.org/TR/xslt

Clark, J. and S. DeRose (1999). W3C Recommendation: XML Path Language (XPath)
Version 1.0, W3.from http://www.w3.org/TR/1999/REC-xpath-19991116

Corcoles, J. E. and P. Gonzalez (2004). Integrating GML Resources and Other Web Re-
sources. Proceedings of the Database and Expert Systems Applications, 15th International
Workshop on (DEXA'04) - Volume 00, IEEE Computer Society.

115

Córcoles, J. E. and P. González (2001). A specification of a spatial query language over
GML. Proceedings of the 9th ACM international symposium on Advances in geographic
information systems. Atlanta, Georgia, USA, ACM Press.

Cox, S., A. Cuthbert, et al., Eds. (2002). OpenGIS® Geography Markup Language
(GML) Implementation Specification version 2.1.2, Open GIS Consortium Inc.

Davis, M. (2003). JTS Topology Suite, Technical Specifications, Vivid Solu-
tions.http://www.vividsolutions.com/JTS/bin/JTS%20Technical%20Specs.pdf.

Davis, M. (2004). JTS Javadoc, from
http://www.vividsolutions.com/JTS/javadoc/index.html.

Davis, M. (2004). "TestBuilder Demonstration/Screenshots." from
http://www.vividsolutions.com/JTS/screenShots.htm.

Davis, M. (2006). "Java Topology Suite Website." from
http://www.vividsolutions.com/JTS/JTSHome.htm.

DeRose, S., R. D. Jr., et al. (2002). W3C Working Draft: XML Pointer Language
(XPointer) W3C.from http://www.w3.org/TR/xptr/.

Directions Staff (2003). Microsoft SQL Server: Future Plans for Supporting Spatial Data.
Directions Magazine.

ESRII. (2006, August 17 2006). "Interoperability and Standards;OGC Support." 2006,
from http://www.esri.com/software/standards/ogc-support.html.

EXSLT.ORG. (2006). "EXSLT Community Website." Retrieved October 10, 2006,
from http://www.exslt.org/.

Fallside, D. C. and P. Walmsley (2004). W3C Recommendation: XML Schema Part 0:
Primer Second Edition, W3C.from http://www.w3.org/TR/2004/REC-xmlschema-0-
20041028/.

Fernández, M., A. Malhotra, et al., Eds. (2006). XQuery 1.0 and XPath 2.0 Data Model
(XDM), W3C Candidate Recommendation 11 July 2006, W3.

Harold, E. R. and W. S. Means (2002). XML in a Nutshell. Sebastopol, O'Reilly & Asso-
ciates. 0-596-00292-0.

Harrie L., M. J. (2003). Real-time data generalisation and integration using Java. Geofo-
rum Perspectiv.

Harrop, R. and J. Machacek (2005). Pro Spring, APress. 1-59059-461-4.

Holzner, S. (2001). Inside XSLT, Que. 0-7357-1136-4.

116

ISO/TC211 (2003). ISO 19107, ISO
https://committees.standards.org.au/COMMITTEES/IT-

004/PRIVATE/I0028/ISO%2019107%20.pdf.

JUMP (2006). Whitepaper: JUMP Unified Mapping Platform - Overview, JUMP.from
http://www.jump-project.org/project.php?PID=JUMP&SID=OVER.

Köbben, B. (2005). [jts-devel] CW-CCW rule in JTS Normalize() function. J.-d. m. list.

Lake, R. (2004). GML, Geography Markup Language. Foundation for the geoweb, Wiley.
0-470-87154-7.

Lehto, L. and L. T. Sarjakoski (2005). "Real-Time generalization of XML-encoded spa-
tial data for the Web and mobile devices." International Journal of Geographical Informa-
tion Science 19(8-9): 957-973.

Leung, T. W. (2004). Professional XML Development with Apache Tools, Wiley Pub-
lishing. 0-7645-4355-5.

Log4j Community. "Log4j Website and documentation." from
http://logging.apache.org/log4j/docs/.

Marcos, E. (2005). "Software engineering research versus software development." ACM
SIGSOFT Software Engineering Notes 30(4): 1-7.

MySQL. "Introduction to MySQL Spatial Support." Retrieved July 1, 2006, from
http://dev.mysql.com/doc/refman/5.0/en/gis-introduction.html.

Nah, F. F. H. (2004). "A study on tolerable waiting time: how long are Web users willing
to wait?" Behaviour and Information Technology 23: 153-163.

Nielsen, J. (1994). 5.5 Feedback. Usability Engineering. San Francisco, Morgan Kauf-
mann.

Novatchev, D. and S. Tyszko. (2006). "Two-stage recursive algorithms in XSLT." Re-
trieved September, 2006, from http://topxml.com/xsl/articles/recurse/.

OpenGeoSpatial (2002). GML 2.1.2 Schemas, from
http://schemas.opengis.net/gml/2.1.2/.

Oracle (2005). Whitepaper: Oracle Locator: Location-Enabling Every Oracle Database.,
Ora-
cle.http://www.oracle.com/technology/products/spatial/pdf/10gr2_collateral/locator_twp_
10gr2.pdf.

Owens, B. (2006, August 26 2006). "What is Geoserver." Retrieved November 1, 2006,
from http://docs.codehaus.org/display/GEOS/What+is+Geoserver.

117

Provost, W. "Whitepaper: Intetgrating Web Sevices with XSLT." Retrieved July, 2006,
from http://www.xml.com/pub/a/ws/2003/09/30/integrating.html.

Refractions Research Chapter 4. Using PostGIS; GIS Objects. PostGIS Manual for ver-
sion 1.1.3. P. R. R. f. d. a. packaging), Refractions Research.

Refractions Research. (2006). "UDig Website." Retrieved August 10, 2006, from
http://udig.refractions.net/confluence/display/UDIG/Home.

Ryden, K., Ed. (2005). OpenGIS® Implementation Specification for Geographic informa-
tion - Simple feature access - Part 1:Common architecture.

Ryden, K., Ed. (2005). OpenGIS® Implementation Specification for Geographic informa-
tion - Simple feature access - Part 2: SQL option, Open Geospatial Consortium Inc.

Schulz, R. (2006). "GeoTools." Retrieved July 1, 2006, from
http://docs.codehaus.org/display/GEOTOOLS/History.

Sedgewick, R. (2002). Divide and Conquer. Algorithms in Java, Addison-Wesley Profi-
essional.

Spring Community. (2006). "Spring Framework Community website." from
http://www.springframework.org/.

Steve Wilson, J. K. (2000). Java Platform Performance: Strategies and Tactics, Addison-
Wesley. 0201709694.

Stolze, K. (2003). SQL/MM Spatial: The Standard to Manage Spatial Data in Relational
Database Systems. 10th Conference on Database Systems for Business, Technology and
Web.

Sun (2004). addShutdownHook(java.lang.Thread). JavaTM 2 Platform Standard Ed. 5.0
Javadocs, Sun.from
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Runtime.html#addShutdownHook(java.l
ang.Thread).

Sun (2004). Object.hashCode(). JavaTM 2 Platform Standard Ed. 5.0, Javadoc, from
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#hashCode().

Sun (2006). JavaServer Pages Standard Tag Library, Sun.from
http://java.sun.com/products/jsp/jstl/.

Thompson, H. S., D. Beech, et al. (2004). W3C Recommendation: XML Schema Part 1:
Structures Second Edition, W3C.from http://www.w3.org/TR/2004/REC-xmlschema-1-
20041028/structures.html.

U.S. Census Bureau (2005). TIGER/Line® Technical Documentation, U.S. Census Bu-
reau.

118

Vatsavai, R. R. (2002). GML-QL: A Spatial Query Language Specification for GML,
Department of Computer Science and Engineering , University of Minnesota.

Vretanos, P., Ed. (2005). Web Feature Service (WFS) Implementation Specification,
OpenGIS.

Vretanos, P. A., Ed. (2005). OpenGIS® Filter Encoding Implementation Specification,
Open Geospatial Consortium Inc.

W3C. "What is XSL?" Retrieved July, 2006, from
http://www.w3.org/Style/XSL/WhatIsXSL.html.

Warnill, C., P. Soon-Young, et al. (2004). An Extension of XQuery for Moving Objects
over GML. Proceedings of the International Conference on Information Technology:
Coding and Computing (ITCC'04) Volume 2 - Volume 2, IEEE Computer Society.

