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Abstract

This thesis claim that XSL Transformations combimnéth extensions can be used to
process geodata encoded as GML. The assertiorckedbaip by the following deliver-
ables:

» A working proof-of-concept for an XSLT based sformation of spatial data.

* Tests providing measurements of functionality padormance.

» Argumentation that shows how and why this is abla approach by discussion and
practical examples.

The paper concludes with a confirmation on theilgl#ty of the approach inline with the

research objectives and findings provided by tHeelables.
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1 Introduction

In this thesis | claim that XSL Transformations d¢oned with extensions can be used to
process geodata encoded as GML. The assertiorckedbaip by the following deliver-
ables:

» A working proof-of-concept for an XSLT based sformation of spatial data.

* Tests providing measurements of functionality padormance.

» Argumentation that shows how and why this is @bla approach by discussion and
practical examples.

The paper concludes with a confirmation on theilgl#ty of the approach inline with the

research objectives and findings provided by tHeel@ables.

1.1 Research objectives

Through research and prototyping, the followingearch questions are under focus.
1. Can the XSLT language in combination with extensibe used for proc-
essing geodata?
2. What limitations on factors such as performanaxifflility, and scalabil-
ity will this approach imply?
3. How will the use of this approach have an effectode readability, ease

of use, and the development of geospatial appticat

1.2 Motivation

We see an increasing trend of using web servicdsXalL throughout the Internet. The
standardization of workflows and data formats adlifated by the use of this approach
provides possibilities for the development and gragion of different systems through
open standards for communication and functionalitye GIS community embraces the
use of web services in the transport and maniprladi geodata with the Web Feature
Server (WFS) and Web Map Server (WMS) specificatiddata encoded as Geography
Markup Language (GML) can be downloaded on demaowh fvarious sources. How-
ever, it may be necessary to do relatively comf@davork to integrate the data or to per-
form generic spatial operations. Unfortunately,réhis no guarantee that the necessary
spatial operations are available on all platfor@fen there is a need to use external GIS
1



tools to do the spatial operations manually. Iregtimon-spatial settings, the transforma-
tion and formatting of XML based data is made gdsyethe use of XSL Transformations
(XSLT). XSLT is a declarative XML based templatedaage dedicated to the integra-
tion and manipulation of XML based data. The mdtosafor this thesis is the simplifica-
tion and standardization gained by applying the X&todel of processing to geodata by
integrating spatial capabilities into the langua@kee main advantages of this approach
are:

* The relative simplicity of XML processing with XSLdompared to generic func-
tional and object-oriented languages.

* Platform independence

* Changes to the templates can be performed withedmpiling or altering the
whole application.

» Standardized interface to spatial operations

By applying XSLT to the GML transformation process) approach already used in
many other systems based on web services can Heaisenplify the work with spatial
data. It is believed that easy access to spatmtionality directly available from within
XSL templates will lower the threshold for usingpdata in existing and new applications

and has a potential for incurring a more widespresal

1.3 Method

In the article "Software Engineering Research \&rSoftware Development" (Marcos
2005) Esperanza Marcos points out how engineegsgarch differs from other research
in that its aims are to find out how to do thingdmcreate new objects. This thesis over-
laps with both Marcos' point of view and the mawalitional research in that it proposes
to create new objects and methods to implementxetireg model of technology on a
different field from what it is commonly used farday. Hence, the method chosen for
this approach both has to provide a framework lierdreation of new concepts, objects
and methods along with the evaluation of existingcpce. In regard of the traditional
research methods, this thesis will use qualitatneghods of research to evaluate current

2



programming practices and experiences of GIS systgnthe analysis of previous stud-
ies, code and architectures. Qualitative methoelsised to evaluate certain parameters of
success, such as the simplification of code, usalaf framework, flexibility, and the
degree of separation of concerns achieved. Quawgitampirical methods are used for
the evaluation of other parameters of success, aacthe evaluation of performance,
scalability and standards conformance. Marcos dhites the term creative research
methods as methods for those sciences that ".ireequhigh level of creativity as op-
posed to observation or experimentation” and "Thesthods are based on such charac-
teristics as imagination, premonition, visualizatand the like...". By acknowledge of the
creative component in the architectural design gsscfor the experimental prototype
used in this thesis, Marco's parallels betweerwsoét development and the scientific
method used in Software Engineering (SE) desigmeée available. The SE method is
based on Bunge's general model as presented intiici®Research (Bunge 1967) Basing
the prototype development on a generally sounchsiiemodel is done to bring more
guality to the process and to assure results dlaifar evaluation. Based on this reason-
ing, the following steps in the approach have hdentified:

* Identification of research objectives.

* Definition of criteria for success

* Prototyping/implementation

* Evaluation of implementation

* Discussion of findings in view of previous stuslie

* Conclusion
Each step is intended to be executed in iteratibim tve steps before and after to include
the knowledge accumulated through each step. Aragois study of related studies and

material is performed along each step.

1.4 Expected research contributions

The planned results of this thesis are:
* A proof of concept for an XSLT based transformatof spatial data in
Geographic Markup Language (GML)

* A set of requirements for the development of ighaitensions to
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(E)XSLT
* Measurements and evaluations of performance

* A conclusion on the viability of the idea andagdor future work.

1.5 Limitations

This thesis does not aim to produce a fully workingcessing environment for GML, but
to evaluate the feasibility of the approach throagtombination of theoretical reasoning
and partial practical experimentation. Hence, anlsubset of the proposed features will
be implemented. Due to the readily available reseaifor the processing of geodata on
the Java platform in Java Topology Suite (JTS) @erdtools, the implementation will be

done in Java.
1.6 Structure of thesis

Theoretical foundations

This thesis' theoretical foundations are organeethree sections. Section XML Schema
presents technology related to the implementatioth® GeoXSLT framework and ex-
amples. Section 2.2.1 gives a walk-through of asgatal workflow and shows how spa-
tial XSLT can be of use. Section 2.3 outlines aeseof previous studies of relevance to
the research done.

Supported functionality

Chapter 3 presents the functionality to be supdaated explains the motivation and rela-

tion to community standards defined by the Openspatial Consortium.

Implementation of core functionality

Chapter 4 gives a detailed explanation of the natitms and design of the implemented

architecture in the GeoXSLT framework.

Testing

Chapter 5 introduces the tests designed to validatect functioning and technical and

practical performance.



Findings
Chapter 6 presents the findings from executiomeftéests defined in Chapter 5.
Discussion

Chapter 7 discusses the findings and experienama flee work with the GeoXSLT

framework in view of the research questions andiptss research.

Conclusion

Chapter 8 concludes with the viability of spatiaBIXT, lists the major contributions

made, and outlines future work.



2 Theoretical foundations

This chapter will start off by giving a walkthrougif related technologies in 2.1. In sec-
tion 2.2 a description of a scenario where geoabd#ita is processed is used to show the
motivation for why spatial extensions for XSLT areeded. The chapter is rounded off
with a rundown of previous research in 2.3and @t@rssummary in 2.4.

2.1 Related technologies

This section presents the technologies and condeptdved in XSL based template

processing of GML

2.1.1 XML Schema

The XML format can be adapted to many differentsusg defining rules for its composi-

tion and data allowed. XML Schema is a languagecfeating such rules (Biron, Perma-
nente et al. 2004; Fallside and Walmsley 2004; Tisonn, Beech et al. 2004). The Open
Geospatial Consortium (OGC) has used the Schengadge to define the format of the
Geography Markup Language (GML), a format tailofed encoding geographic data

(OpenGeoSpatial 2002). A complete primer on XML &nuh is provided in (Fallside and

Walmsley 2004).

2.1.2 Geography Markup Language

This section will provide a quick background on WML 2.1.2 is and explain the core
features. Finally, a short explanation on the fitaf GML as defined in GML 3.0 is
given.

The Geography Markup Language (GML) is an XML fotrfa representing entities in
the real world, such as trees, buildings, and roadsties are representedfaaturesthat
can describe both geometric and non-geometric ptiepeAs an example, a building can
have features representing the location (geometaicyl the building-type (non-
geometric). GML is designed to support the encodihdpoth types of features, where
non-geometric features can be associated througgration with other XML schemas.

Table 2.1 below lists the GML representation oudding. The location is represented as



a geometrigoint feature, while type, status, number and other gntags are represented

as non-geometric features.

<gml:featureMember>
<topp:bulroad fid="bulroad.2545">
<topp:the_geom>
<gml:Point srsName="http://www.opengis.net/gml/srs/epsg.xml#32633">
<gml:coordinates xmlns:gml="http://www.opengis.net/gml" decimal="." cs="," ts=" ">
357080,7766653
</gml:coordinates>
</gml:Point>
</topp:the_geom>
<topp:type>Outhouse</topp:type>
<topp:status>2</topp:status>
<topp:number>192574250</topp:number>
<topp:started>10101</topp:started>
<topp:updated>19940210</topp:updated>
</topp:bulroad>
</gml:featureMember>

Table 2.1 Example of an entity represented by botlgeometric and non-geometric
features

Structure

The structure of a GML document is very flexiblesr@rally, it consists of a series of
Featuresrepresenting the real-world entities. The feataeschildren of &eatureCol-
lectionwhich hence works as a container. One of the thihgt make the GML format so
flexible is that each Feature also is a FeatureCodin. In this way, an entity can be rep-
resented by aggregations of other features. Asxample, one can think of a park with
trees, green areas, water, and roads. While eatitesé is an independent entity repre-
sented as a feature, the park can be defined asréfaatureCollection consisting of all
the trees, roads etc. GML also has support fonaefiother relations between different
features through the use of XLinks.

Geometric features supported

The GML 2.1.2 schemas provide a method of encodihgt the Open Geospatial Con-
sortium (OGC) defines asimple featuregRyden 2005). With simple, OGC means
“...features whose geometric properties are restritte‘'simple’ geometries for which
coordinates are defined in two dimensions and éhl@ehtion of a curve is subject to lin-
ear interpolation” (Cox, Cuthbert et al. 2002) shrort, this means that GML 2.1.2 mainly
focuses on representing geometric features in twienkions. The following is a list of
the OGC simple geometry classes:

* Point



* LineString

* LinearRing

* Polygon

* MultiPoint

e MultiLineString

* MultiPolygon

* MultiGeometry
Based on sampled data, we provide examples oirdtddur geometries below while the
complete schema definitions for all the geometdaa be found in (OpenGeoSpatial
2002). Multi geometries are simply feature colleet consisting of one to many basic

geometric features.

<gml:Point srsName="http://www.opengis.net/gml/srs/epsg.xm|#32633">
<gml:coordinates xmlns:gml="http://www.opengis.net/gml" decimal="." cs="," ts=" ">
357080,7766653
</gml:coordinates>
</gml:Point>

Table 2.2 Example of Point geometry encoded as GML

<gml:LineString>
<gml:coordinates xmlns:gml="http://www.opengis.net/gml" decimal="." cs="," ts=" ">
357015,7766698  357127,7766654  357205,7766613 357286,7766585 357364,7766577
357389,7766583 357406,7766595 357488,7766710 357498,7766735 357502,7766771
</gml:coordinates>
</gml:LineString>

Table 2.3 Example of LineString geometry encoded aSML

<gml:Polygon>
<gml:outerBoundarylIs>
<gml:LinearRing>
<gml:coordinates decimal="." cs="," ts=" ">
80,340 160,340 160,280 80,280 80,340
</gml:coordinates>
</gml:LinearRing>
</gml:outerBoundaryIs>
<gml:innerBoundaryls>
<gml:LinearRing>
<gml:coordinates decimal="." cs="," ts=" ">
100,330 130,330 130,290 100,330 90,290 130,290 130,290 100,330
</gml:coordinates>
</gml:LinearRing>
<gml:LinearRing>
<gml:coordinates decimal="." cs="," ts=" ">
150,335 150,320 140,335 150,335
</gml:coordinates>
</gml:LinearRing>
</gml:innerBoundaryIs>
</gml:Polygon>

Table 2.4 Example of Polygon consisting of LinearRig(s) encoded as GML



GML 3.0
According to (Lake 2004) GML 3.0 is almost entirélsgckwards compatible with GML

2.1.2. The main difference with the two versionshist GML 3.0 has a larger feature set
with support for more geometries, dynamic featutesee-dimensional objects, and de-
fault styling to mention some. This thesis has fathon GML 2.1.2 due to its simpler
nature and more widespread use. The backward cdmipapf GML 3.0 indicates that

the prototype developed at least should work ombaet of the geometric features defined

without any changes.

2.1.3 Web Feature Service
This section describes Web Feature Services instefrdefinitions and interaction work-

flow.
Web services are a collection of standardized pat¢éoand methods for communication
between applications across the Internet over HTCRbrera, Kurt et al. 2004). With the
Web Feature Service (WFS) specification (Vretan@@52 OGC has defined web service
interfaces for access and manipulation of geograghta. The operations available are
(Vretanos 2005):

* Create feature

» Delete feature

» Update feature

* Lock feature

* Get and query features based on geometric and @eomjric constraints.
GML is used as the language for encoding queriesrasults of the transactions per-
formed. The use of GML for “transport” enables W&&vers to provide an abstraction
level independent of the internal data sourcess fiakes data stored in formats such as
Shape, SOSI or other proprietary or country spesiindards available as GML over the
WEFS interfaces. This allows users to “..combines asd manage geodata — the feature

information behind a map image — from differentrses..” (Vretanos 2005).



WES Interaction workflow

Transaction request

!
WFS_TransactionResponse document
Koo i

Figure 2.1 Workflow between client and WFS server\(retanos 2005)

Figure 2.1 describes the flow in a WFS interactiéinst, the client issues a “getCapabili-
ties” request, which result in a WFS_Capabilitiesuiment containing the features avail-
able on the server. Based on this, the client sanei a request for the description of a
given feature type. To this the WFES returns an X8thema containing descriptions of
the feature. The client can now issue operationtherfeature(s) according to operations
available on the WFS. Section 2.2.2 goes into ndetail around WFS interaction with a
walkthrough of a WFS filter query.

The above has described WFS as a set of interfacegierying and manipulating geo-
spatial data. It should also be mentioned that ®@&defined a corresponding Web Map
Server (WMS) specification, which deals with theualization and presentation of the

geospatial data (Beaujardiere 2006).

2.1.4 XPath

XPath is a language for identifying parts of XMLadmnents, designed to be used in
XSLT and XPointer (Clark and DeRose 1999; DeRosestdal. 2002). In XSLT the lan-
guage is used to match and select particular parttse source tree for copying into the
result document or further processing by the tetepiales (Harold and Means 2002).

XPath expressions can be grouped into locationspgdmeral expressions, and functions.
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Location paths

Location paths are powerful tools to identify asehodes in a document and consist of a
series oflocation stepswvhere each step is separated by a “/” char. Taer@éwo distinct
types of location paths, relative and absolute. fifeetypes are distinguished on how the

series of location steps is specified.

Location steps

A location step is always a selection of nodestiredato thecontext node (Clark and
DeRose 1999)For absolute location paths the first locatiorpstises the source tree’s
root node as context node (Bray, Paoli et al. 20B&)ative paths consist of location
steps that start with the node currently being @ssed asontext node.

For each location step the identified set of natesused as the context node for the next
step. Absolute location paths are also calledt location paths(Harold and Means
2002).

| /rootelement/feature |

Table 2.5 Example of absolute location path

| Feature |

Table 2.6 Example of relative location path
The examples in Table 2.5 and Table 2.6 are lotcadaihs that apply to the XML docu-

ment listed in Table 2.9. The relative path in Babl6 would only return nodes if called
from within a “rootelement” context.
In addition to the node selection, each step costan axis and an optional predicate test
expressed witlgeneral expressiofidarold and Means 2002).
The axis specifies the direction of which to peridhe node selection and can be along
one of a comprehensive set of axes as definedlark@nd DeRose 1999). Only a small
subset is presented below:
* AncestorAll nodes that are parents of the context node.
* Preceding-siblindAll nodes that precede the context node and sharsame par-
ent in reverse document order (Harold and Mean2)200
» Descendanill descendants of the context node, but not th&teod node itself
(Harold and Means 2002)

Examples of various different location paths caridumd throughout the thesis.
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XPath functions

XPath provides several functions that can be ussghrately or as part of gen-
eral/predicate expressions in location paths. Tmetfons can be grouped by the data

types they operate on:

Boolean Number Node-set String
Boolean() Ceiling() Count() Concat()
False() Floor() Id() Contains()
Lang() Number() Last() Normalize-space()
Not() Round() Local-name() Starts-with()
True() Sum() Name() String()
Namespace-uri() String-length()
Position() Substring()
Substring-after()
Substring-before()
Translage()

Table 2.7 XPath functions grouped by data types (@fk 1999; Holzner 2001)

The functionality provided by the XPath functionakas working with XPath more effi-
cient. As an example, the “count()” function makgsossible to bring the size of a given
node-set into a predicate expression. Detailedaggbions and examples of all standard
functions can be found in (Holzner 2001; Harold &whns 2002).

2.1.5 Extensible Stylesheet Language Transformations (XSLT)

This section gives a presentation of the XML baX&i T language with a focus on the
areas most relevant to this thesis.

XSLT is a functional programming language for theedfication of how one XML
document should be converted into another documBEmbugh common, the output

document does not necessarily need to be an XMurdeaot.

Basic workflow

The transformation rules specified for how a docoishould be converted are enclosed
within templaterules (Clark 1999) and saved instylesheetEach template has a “match”
attribute. This attribute contains a pattern tlasntifies the source node or nodes to
which the rule applies (Clark 1999). The patterdesined with a language called XPath
which is described further down. With a set of téatgrules saved in a stylesheet and an
XML source to apply the rules on, an XSLT Processaneeded to perform the actual

transformation.
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Source XML XSL Templates Result

Source Tree
Result Tree

XSLT Processor

Figure 2.2 The conceptual workflow of an XSLT transormation.
The XSLT processor works by parsing both the soarue stylesheet into separate tree
structures. The source tree is then searched fiesthat fit some template’s match pat-
tern. Templates matched are then executed. TaBlbe2ow lists an example of a very
simple XSLT stylesheet used to process the XML abl& 2.9. The transformation result
is available in Table 2.10.

<?xml version="1.0" encoding="UTF-8"?>
<!—ROQT element, defining language version, namespaces and prefixes >
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" >

<!—TOPLEVEL element defining output type and encoding of genereated result-->
<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>

<!—Template rule with an intuitive match attribute -->
<xsl:template match="/rootelement/feature">
<anotherRootElement><!— Element created by this template -->
<anotherfeature><!— Element created by this template -->

<!— Instructing the processor to output the text-value of the current node.
As this template rule only matches the “feature” node of the “rootelement”,
this value will be the text-value of the feature node -->
<xsl:value-of select="."/>

</anotherfeature>
</anotherRootElement>
</xsl:template>
</xsl:stylesheet>

Table 2.8 Simple stylesheet with explanations
The basic stylesheet in Table 2.8 defines one t@plle that matches the “feature”
child of the “rootelement” node. The remaining flandocumented in the example.
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<?xml version="1.0" encoding="UTF-8"?>
<rootelement>

<feature>Featurevalue</feature>
</rootelement>

Table 2.9 Simple XML document

<?xml version="1.0" encoding="UTF-8"?>
<anotherRootElement>

<anotherfeature>Featurevalue</anotherfeature>
</anotherRootElement>

Table 2.10 Transformation result

Only the very basic workflow and principles of XSlhks been presented here. A com-
plete listing of elements and features is availahl¢Clark 1999; Harold and Means
2002). A comprehensive introduction to XSLT is dfale in (Holzner 2001). The thesis

does also contain a set of template examples gingacomplexity.

XSLT Elements

XSLT defines 37 elements, which can be organizetingee overlapping categories; root,
top-level, and instruction elements. (Harold andak&®2002). Detailed explanations of
the categories and elements can be found in (Al2899; Harold and Means 2002). This
section will present one useful instruction eleméme “xsl:element”. A common use of

XSLT is to generate new XML documents based on mgrgnd formatting a combina-

tion of other sources. When generating new doctisnémere will often be a need to cre-
ate new XML elements as well. While XSLT suppolts tise of literal result elements,

using the “xsl:element” allows us to determine iile& element’s name at runtime.

XSLT Functions

While the XPath operations are focused on the naddsvalues of those, XSLT provides
additional functions with a more general applicatiExamples of commonly used func-
tions are the “document()” and “current()” functeorrhe “document()” function allows
loading external XML documents during processinige Tcurrent()” function is of prac-
tical use in loops etc, where it represents theecimode being processed. (As opposed
to the context node in location paths which istre¢ato the location path).

Current() Document() | Element-available() Format-number() Function-available()
Generate-id() Key() System-property() Unparsed-entity()

Table 2.11 Standard XSLT Functions (Holzner 2001)
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2.1.6 EXSLT

XSLT defines two mechanisms for extending the ba&lragrovided by the processor
(Clark 1999; Leung 2004). XSLT Templates may contBXSLT functions and ele-
ments. These mechanisms allow developers to profudctionality implemented in
some other language, e.g. Java, to be accessedhimtemplates during transformation

runtime.

EXSLT Functions

EXSLT Functions provide access to the externaltianality in a pattern similar to that
of XSLT/XPath functions. As such, EXSLT functionancbe used as part of location
paths/predicates and to return generated noddcsetention some. The XSLT standard
does not define any specific EXSLT functions, butcenmunity effort to standardize
common functionality is available at (EXSLT.ORG 800

EXSLT Elements

EXSLT elements generally provide more flexibilityan what is possible with EXSLT
functions. One reason for this is that the extelarajuage has access to more information
about the parameters and context passed than wleatailable for EXSLT functions.
Still, using extension elements in the templatesn@e cumbersome and complicated
than with extension functions. The familiarity antkegration of extension functions with
XPath/XSLT functions is also something that shdaddconsidered.

2.2 Processing geographic data

As the introduction described the basic motivatmmresearching the use of EXSLT with
geo data represented as GML, this section will gitep-level view of the current work-

flow and introduce the challenges of processing GiVia case based setting.

2.2.1 Sources of geographic data

Geographic data has been collected for a long &éintkis today represented on a host of

formats and in many different systems without a iwmn standard. Some systems are

open, others closed. Data is also representeddiffdrent resolution levels, which makes

it very difficult to integrate data from differesburces. There are quite a few challenges

related to this diversity, and both previous andaing research is working to address the
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problems with accessing geographic data acrossreliff sources, formats, and resolu-
tions. The Open Geospatial Community (OGC) repissene such effort, and has ad-
dressed the need for a common standard for thedamdransmission and query of geo-
spatial data through the development of specificati For the representation of geo-
graphic data, the Geographic Markup Language (GMils been developed. This allows
for the encoding of both geographic features as agebther information related to the
objects. GML (as of version 3.0) is very flexibledaallows for custom tailoring of the

format at both domain and application levels withbreaking the standard. Section XX
will go into further detail about GML and its fea#s. For the transmission and query of
spatial data, the Web Feature Service (WFS) has teeeloped. This specification pre-
sents a standard interface for querying and tratisgiidata encoded as GML over the
Internet by using the HTTP protocol and dedicatdéS/¢ervers following a web services

pattern.
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Figure 2.3 Accessing geographic data through WFS
Figure 2.3 illustrates how servers implementing WES standard make many sorts of

spatial data available through common interfaces amnections. Output is encoded as
GML. Clients and other applications can find avalgaservers with relevant data by que-
rying a Web Registry Service (WRS)/OGC Catalog Bervwhich describes available

service offers (Lake 2004). The client/applicataan then through the standard interface
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both execute operations and download data as deifinihe WFS standard directly from
the WFS server. While there are many possibilitiethe various interactions available

with WES, this thesis focuses on operations peréarion the data received.

2.2.2 Accessing WFS

To give a better explanation of WFES, this sectioavigles a walk-through of a WFS
guery. Geoserver, the WFS implementation used io@en source OGC compliant
WFS/WMS server (Owens 2006). Geoserver uses thicjyubvailable TIGER dataset
(U.S. Census Bureau 2005) as test data and thlsasused for the example. The dataset
provides a broad array of real-life data from th&.Land makes it easier to keep in sync
with practical applications of researched conceptsideas.

In a WFS request, the mandatory initial task igdééine the area of focus and which fea-
tures inside the area that are of interest. Wheatinmpthese data to the server, it will do a
search based on the request and return the daidexhas GML.

Table 2.12 Initial WFS query to be posted

<wfs:GetFeature service="WFS" version="1.0.0"
outputFormat="GML2"
xmlns:topp="http://www.openplans.org/topp"
xmlns:wfs="http://www.opengis.net/wfs"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:gml="http://www.opengis.net/gml"
xmins:xsi="
http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.opengis.net/wfs
http://schemas.opengis.net/wfs/1.0.0/WFS-basic.xsd">
<wfs:Query typeName="tiger:tiger_roads">
<ogc:Filter>

<ogc:BBOX>

<ogc:PropertyName>the_geom</ogc:PropertyName>

<gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">

<gml:coordinates>
-73.966331198449,40.78195219458531 -73.96139758516432,40.78442509210824
</gml:coordinates>
</gml:Box>
</ogc:BBOX>

</ogc:Filter>
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</wfs:Query>

Table 2.12 is an example of a WFS-request posté&gketuserver to get all the roads in a
given area from the tiger data-set. A visualizatbthe area is provided in Figure 2.4

Figure 2.4 Visualization of data returned from thequery in Table 2.12

Figure 2.4 visualizes the result of the query ibl€&2.12. The returned data is a represen-
tation of the 8% St Transverse along with a rendering of the lakprovide some con-
text.

Table 2.13 GML Return from Geoserver WFS query

<wfs:FeatureCollection
xsi:schemalocation="http://www.census.gov
http://localhost:8080/geoserver/wfs/DescribeFeatureType?
typeName=tiger:tiger_roads

http://www.opengis.net/wfs http://localhost:8080
/geoserver/schemas/wfs/1.0.0/WFS-basic.xsd">
<gml:boundedBy>

<gml:Box
srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<gml:coordinates decimal="." cs="," ts=" ">
-73.96738,40.781319 -73.962847,40.78438
</gml:coordinates>

</gml:Box>

</gml:boundedBy>

<gml:featureMember>
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<tiger:tiger_roads fid="tiger_roads.7752">
<tiger:the_geom>

<gml:MultiLineString
srsName="http://www.opengis.net/gml/srs/epsg.xml|#4326" >
<gml:lineStringMember>

<gml:LineString>

<gml:coordinates decimal="." cs="," ts=" ">
-73.96738,40.78438

-73.964179,40.783234

-73.962847,40.781319

</gml:coordinates>

</gml:LineString>

</gml:lineStringMember>
</gml:MultiLineString>

</tiger:the_geom>
<tiger:CFCC>A41</tiger:CFCC>
<tiger:NAME>85th St Transverse</tiger:NAME>
</tiger:tiger_roads>

</gml:featureMember>
</wfs:FeatureCollection>

As is shown in the previous visualization and thdldisted in Table 2.13, the correct
road is returned along with the available non-gaplgic properties. In the case of this

specific road it amounts to a code (A41) and theenaf the road (85th St Transverse).

2.2.3 Processing WFS results

Assuming the user wants to create a buffer aronededceived data to use in a new WFS
qguery, there are mainly two approaches. He carreithke a DOM/SAX parser to repre-
sent the data received for direct programmatic madation, or it can use the template
based XSLT approach. Neither of the two have amy@&aupport for dealing with spatial
data. This makes it difficult and complicated to @y operations on or with the geo-
graphic data. As an example, say that the preuviesslt from the WFS server returned
two roads, and that the user wants to know if ahdre they cross each-other. Perform-
ing this conceivably simple act would take quitdotof effort, and what if the user
needed to do more complicated operations, sucheasrglization or distance calcula-
tions? One could try combinations of different geeibased on the returned data from the
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WEFS, but this might again be made difficult by ssahnple things as using multiple data
sources and still having to deal with the detailghe data format. There is a need for
utilities to do operations on downloaded geogralaita inside an XSLT context. An in-
teractive approach has several good toolkits, sischidig (Refractions Research 2006)
and JUMP (JUMP 2006), but these are mostly usestaaslalone desktop applications.
For the programmatic approach, there are sevéralries available. Amongst them is the
Java Topology Suite (Davis 2006), (Davis 2003).sTikia very popular library used by
numerous other projects to work with geospatiaa dBut, even though it has all the spa-
tial functionality needed, the programmer still Hascreate application logic and func-
tionality for the instantiation of the correct JoBjects to match the corresponding GML
elements. This demands a rather intimate knowleddmth JTS and GML, is time con-
suming, and may result in overly complex systenthk Wigh coupling. As touched briefly
in section 1.2, XSLT has been successfully useather settings where the transforma-
tion of XML data to some other format is neededLX$s designed as a declarative lan-
guage such as SQL, allowing the developer to farusvhat should be done instead of
the implementation details. One of the positivangisi about the XSLT approach is the
pattern-matching ideology defined in the Processitoglel (Clark 1999). Instead of the
traditional procedural dataflow, each template alesd a pattern of data it matches. When
running the stylesheet, data applied is matchell ®aich template which in turn is exe-
cuted if the match is a success. This allows foy ¥lexible templates that can be used in
different contexts. Additionally, being XML itselft is completely independent of the
platform and language deploying it, and can be wsed wide array of systems without
ever changing the stylesheet itself. If XSLT cob&lextended to support standard spatial
operations, it would probably not only standardizéot of work with GML in applica-
tions, but also lower the bar for working with aindluding spatial data for everyone to
use. If doing spatial queries on WFS and then ¢pena the data could be just as easy as
working with ordinary web services and XSLT withnfitions, axis, and elements, it is
tempting to assume that its use would be more widesl and spatial functionality find
its way into many more applications. Another scenar the need to lookup and merge
data from two separate datasets or layers. An ebeaaiphis can be taken from the tiger
dataset available with the 1.3.1 distribution ofoGerver. In addition to the aforemen-

tioned road layer, the set has a layer represeipngts of interest (poi) in Manhattan.
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Say that we were developing a website or applindto tourists that want a list of attrac-
tions along the road they are heading (or any gread for that sake). To achieve this
with the WFS based data source, it would then loessary to first get the coordinates of
the road strip and then do a search within theipribx of the road along its length.

Bufferzone [ Area of
Interest . . .
tourist _—— Figure 2.5 illustration of buffer

scenario

Figure 2.5 illustrates the concept.

Landmark 1 The tourist walks down a road

strip, and
&fd'l- landmarks 1,2, and 3 are of interest
il because they are within a given

zone/proximity along the road.
Landmark 4 is too far away and is
not of interest. The key here is to

compute the bounding box of the

buffer zone and then do a new
search within the landmark data.
With plain vanilla XSL, this

bounding box calculation would
imply some rather ugly code, -if possible at alheTintuitive approach would be to use
XSL or DOM manipulation to extract the bounding befxthe road, and then use JTS or
some other geospatial functionality directly foe talculation of the bounding box of the
buffer zone, and then issue a new request to titerlark web service. The returned data
would then have to go through another XSLT proc@s®OM manipulation for extrac-
tion and formatting of the landmarks into a listh&Vis needed, is a way to calculate the
buffer zone's bounding box on the fly from withhretinitial XSLT process, so that cor-
rect requests for landmarks can be done from wiX8h by way of a "document()" call
or some other extension function and then intedrat® the generated list. The proposed
conceptual flow can be illustrated by the sequeliagram below.
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Figure 2.6 Sequence diagram showing the need forpmssibility to calculate a buffer surrounding seleted fea-
tures of the GML.

In the diagram the application makes the initigluest to the Roads WS. This can be
achieved either by sending coordinates receivenh fitte Global Positioning System or
such (searching for roads containing the given dioates), or by sending the feature-id
of the road (typically selected by the user in aviggus window) to identify it for the
WES. The returned GML is then sent through an X@ngformation where the road's
buffer zone is computed using the buffer operagee (Chapter 3 for details on the buffer
operator). The returned string containing the bamdox from the buffer operator is
then concatenated to a “getFeatures” request tdatidmarks WFS using the “docu-
ment()” function of XSLT for acquirement, or eveally some other wrapper function for
external HTTP access. The returned GML can be fiietiausing the existing XSLT
process and returned as formatted data to thecagiph. With formatted data it is here
meant anything from plain text to HTML, PDF or SV&n alternative to using the pro-
posed extensions for buffer operations is to imglenit directly in XSLT. Although such
operations probably can be implemented in XSL temain degree, there are several ar-
guments not to:
* XSLT is a language specifically designed for depinth XML, not with the im-
plementation of geospatial calculatior&s mentioned in section 1.2, the main
motivation of moving GML processing from the gesgrrogramming languages

to XSLT is to simplify the workflow, allowing devapers to concentrate on the
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task at hand instead of the implementation detdilgeospatial standards. Imple-
menting the calculations in directly in XSL is kired the opposite, where the
functionality is most easily implemented in Javaamother programming lan-
guage. XSLT code with a procedural workflow contagnmany conditionals and
parameters easily gets ugly, incomprehensible dé#fidult to maintain.
Encapsulating geospatial function as EXSLT calllowes the pattern of existing
XSLT functions for operations on strings and noes.Shis thesis presents a
suggestion for the mapping between a standardieedfspatial features defined
in the OGC Simple Features Specification (SFS)am&XSLT function set. This
could possibly form a basis for potential inclusinrthe standard XSLT functions
available at a later time.

When the spatial functionality is integrated orttyough interfaces and function
calls, it is easier to combine different and spbeze implementations without al-
tering the XSLT templatémplementations of the spatial operations following
terfaces based on the SFS and made available refasd&ed EXSLT functions
allows for easier optimization of performance coetglly independent of XSL
code. External vendors or open source projectstoam create different libraries
of functions following the same common interfaces Wwith different properties
regarding performance and support for underlyingmeints and data sources.
XSLT developers can then "upgrade” their librangthout touching the XSLT

code.

2.3 Prior studies

There has not been done a large amount of resaevahd the use of XSLT in a geospa-

tial context. This section discusses findings ¢évance and ideas from other studies with

a focus on template based processing and queryMif Zpatial queries and XML. To

define the set of functionality to be supportedihecessary to evaluate the experiences

from previous studies in combination with practikabwledge and analysis of the poten-

tial fields for use. As mentioned in the motivatidhere is an intuitive interest in basing

the functionality on the operations as definedRyden 2005) and (Vretanos 2005) as

these are the community accepted standards sugpartearious degrees by many pro-

23



jects and applications, open source and commealika (MySQL; Refractions Research;
Davis 2003; Directions Staff 2003; Oracle 2005; HSRO06; Owens 2006; Schulz 2006).
In (Corcoles and Gonzalez 2004), it is investigated/ geographic referenced data en-
coded as GML can be queried in the Geospatial webgrating spatial and non-spatial
resources in a web context. Their research islef/aace as both the context and opera-
tions they discuss coincide with the motivationalngs of this thesis. A more detailed
study on the language they have designed is pexsémt(Cdrcoles and Gonzalez 2001).
While they focus on query construction and how apper can be used to bridge the spa-
tial queries to a defined RDBMS by converting tatsgd SQL queries, it is clear that an
XSLT process could be used as the mediator in tbheegs presented in (Corcoles and
Gonzalez 2004). XSLT is suitable because it wasgded to create templates for data
transformation from one or more sources and datdefsdanto an output of choice and
simultaneously extracting data of interest thropgth declarations with XPath. (Provost;
W3C; Clark 1999; Holzner 2001). A common use is gea@eration of HTML/XHTML
based on transforming and querying XML from separadurces of data, such as web
services. (Corcoles and Gonzalez 2004) lists thmpemative operators “cross”, "over-
lap”, and "touch” together with “area” and “lengtfdr analysis. These can all be found
in the Simple Features Specification (Ryden 20@8}isn 2.1.1.1-2.1.1.3. Having estab-
lished that XSLT has the potential to fit into adiaor role of the model in the Simple
Features Specification and that the available gaeatescribed match those of defined in
it, it is interesting to note that substituting thieapper for bridging queries to the RDBMS
with the EXSLT functionality introduced in 2.1 aB® should be possible as the opera-
tions available seem to overlap, - both implembaetgeometry operations of the Simple
Features Specification (Ryden 2005). A possibleaathge of using the EXSLT approach
in addition to the motivations mentioned in sectiois that while the RDBMS wrapper in
(Corcoles and Gonzalez 2004) relates to a singuldimited number of databases di-
rectly available to the mediator process, the EX@pproach as introduced in this thesis
is based on WFS. WFS is available over HTTP aslaseevice and allows for easier in-
tegration of multiple data sources without beingeatelent of proprietary database driv-
ers, syntax, and frameworks (Vretanos 2005). Wiln (Corcoles and Gonzalez 2004)
and (Corcoles and Gonzalez 2001) support the $pptdmies defined in (Vretanos 2005),
they are both dependent of a wrapper to transtetetieries into syntax compatible with
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the RDBMS currently used. The need to implementrapper from scratch as done in
(Corcoles and Gonzalez 2001; Corcoles and Gon24164) to accommodate the query
language is indicated as a complicating factor athb(Vatsavai 2002) and (Warnill,
Soon-Young et al. 2004) and is not in line with YWES scenario which is the context of
this thesis. In (Vatsavai 2002) Vatsavai discusisesise of XQuery for spatial queries on
GML using the language GML-QL, which is an extensad XQuery. XQuery is a do-
main-specific language for querying XML documentsl deatures a very powerful syn-
tax for accessing and filtering the different pgBsundage 2004; Fernandez, Malhotra et
al. 2006). It is not a competitor to XPath, whistused in XSLT, but a more complicated
alternative with a larger set of functionality amgrocedural workflow that complements
XPath/XSLT for the settings where that is needeQury seems to be most commonly
used in connection with database queries at the Gfmwriting. While (Vatsavai 2002)
has a focus on spatial queries using XQuery irtiogldo returned data from a database
system, the nature of XQuery is so close to thaX®fT/XPath that the operations and
syntax used is of relevance. Vatsavai has explicitiosen to support the features as de-
fined in (Vretanos 2005), but with an adaptationfitothe operational calls into the
XQuery syntax. While (Vretanos 2005) defines operat as methods on spatial objects
called with dot-notation, the examples in (Vatsa2@0d2) use operations implemented as
function calls where the geometries are passedaasmeters. This is a syntax that
matches the XSLT functions generally available @nehsy to understand both in relation
to (Vretanos 2005) and (Ryden 2005). Section 3esgoto further detail around integra-

tion of query interface.

Table 2.14

Operation definition in specification [2]

geometryA.operation(geometryB)

Operation example call in [18]

operation(geometryA,geometryB)

Vatsavai does not go into details around the implaiation of the given functionality

and has a perspective of using a database systendats source. Still, it seems viable

that a library built to support these operationXBLT could also be used in an XQuery

context as the operations work on the already etedadata. In (Warnill, Soon-Young et
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al. 2004) the authors discuss a similar extensfofQuery to support queries on moving
objects. Whether to use XSLT/Xpath or XQuery wotlidn be a matter of which sce-
nario one is working in. A discussion of when tae UsSLT/Xpath or XQuery can be
found in (Brundage 2004; Fernandez, Malhotra e2@06).

2.4 Chapter summary

This chapter has presented a view on how Web Fe8&@nvers are sources of geographic
data. Further it described the need to processneduGML data locally, and how XSLT

fits into the workflow. It also discussed guidebnfr the implementation of necessary
spatial functionality and in the review of previogsearch it showed how extension of

XQuery has been used to implement spatial fundlityna
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3 Supported functionality

As the previous research in 2.3 outlines a syrttak ¢an be used with external functions
for access from XSLT, this section will present dperations suggested for implementa-
tion and the motivation for their use.

The OpenGIS Filter Encoding Implementation Speation (FEIS) and the OpenGIS
Simple Features Specification (SFS) define a sepatial operators for comparison and
analysis. While these are a required componenuefigs to WFS servers, they are also
used in other OGC web services such as GazettdeWah Registry Services (Vretanos
2005). By supporting these operations we ensurethieae is a common set of analysis
and comparison operations shared between WFS quaereelocal operations from within
on the loaded data set. Aside from the good pmadicstandard compliance, this makes
both general usage and implementation easier. Sufgyahese operations also contrib-
utes to make the XSLT approach fit into the OGClkftow. What follows is a presenta-
tion of the spatial operators from the two speatiens that apply to generic geographic
objects with comments on why and how they can besefin a XSLT/template context
and an API specification of their use from XSLT.c&en 3.1 presents the comparison
operations, while 3.2 details the analysis openati®@ection 3.3 defines and exemplifies
the interface determined used for the integratietwwben EXSLT and calls to the frame-
work implemented the spatial operations.

The SFS additionally defines operations specifitheodifferent geometric types. While it
is possible to implement these with the framewarkedoped here, doing so is outside of

the scope of this thesis.

3.1 Operations for testing spatial relations on generic geo-
graphic objects

These operators enable the user to test for théityabf certain fundamental spatial con-

ditions, and return either true or false. In additio being used on
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WES servers today, they are also supported on asgabwith spatial capabilities such as
PostGIS, MySQL and Oracle. In other words they @ven to be of vital importance

and should have a natural place in any system mlesifpr work with geographic data.

Equals

Equals(anotherGeometry:Geometry):Integer - Retdrif§RUE) if this
Geometry is 'spatially equal’ to anotherGeometRyden 2005)

This operation is used to compare one geometriecobp another. In a
template context, this can be very useful. Onetaexample is the need for
removal of duplicate geometries when merging dédsem multiple WFS

gueries.

Table 3.1

Param types #Params  Return value
Nodes containing GML adher-2 True | false
ent geometry elements

Table 3.2

<xsl:variable name="example" select="geo:equals(elem1,elem2)" />

Disjoint

Disjoint(anotherGeometry:Geometry):Integer- Retutnd RUE) if this

Geometry is 'spatially disjoint' from anotherGeorye{Ryden 2005)

This operation is used to check if two objectsng way cover parts of the

same area (a.Disjoint(b) a b). In a practical ajpion this can be used in a

check of uniqueness of coverage. For example, wioeking with

georeferenced real-estate data, checks on disgsisitoan be used to detect if someone

has built something on someone else's propergyhtiuse is not built

on property a, it is disjoint to property a.

Param types #Params  Return value
Nodes containing GML adher-2 True | false
ent geometry elements

Table 3.3

| <xsl:variable name="example" select="geo:disjoint(elem1,elem2)" />

Table 3.4
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Intersects

Intersects(anotherGeometry:Geometry):Integer- Retur (TRUE) if this

Geometry 'spatially intersects' anotherGeometrydgh 2005)

Intersects corresponds to the intersect operattvaditional set theory applied

on geographic objects. A practical use of the s#ets operator is to check if an area at

least partly covers another area.

Param types #Params  Return value
Nodes containing GML adher-2 True | false
ent geometry elements

Table 3.5

<xsl:variable name="example" select="geo:disjoint(elem1i,elem2)" />

Table 3.6

Touches

<

fouc-hes(anotherGeometry:Geometry):Integer- Retr@RRUE) if this

Geometry 'spatially touches' anotherGeometry. (R\ZQRO5).

According to the SFS, this operation applies t@atigraphic objects except

for points. Hence it can be used for operation$ aschecking if the boundaries of any
two given roads touch. This again can be useddrcttimputation of road-descriptions; if

two roads touch each other, it could be possibtrdses from one road to the other.

Param types #Params  Return value
Nodes containing GML adher-2 True | false
ent geometry elements

Table 3.7

| <xsl:variable name="example" select="geo:touches(elem1,elem2)" />

Table 3.8
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Crosses

_-l-f--

Crosses(anotherGeometry:Geometry):Integer- Retir(lGRUE) if this
Geometry 'spatially crosses' anotherGeometry. (RZ{}$5)

Corresponds to intersects, but for use with limes goints relative to lines and areas.

Param types #Params  Return value
Nodes containing GML adher-2 True | false
ent geometry elements

Table 3.9

<xsl:variable name="example" select="geo:crosses(elem1i,elem2)" />

Table 3.10

Within

Within(anotherGeometry:Geometry):Integer - Retut(3RUE) if this
Geometry is 'spatially within' anotherGeometry. By 2005)
This operator checks whether a geometry is situattdn the area of another geometry.

For example, it can be used to check if a housgtign a given administrative district.

Param types #Params  Return value
Nodes containing GML adher-2 True | false
ent geometry elements

Table 3.11

<xsl:variable name="example" select="geo:within(elem1,elem2)" />

Table 3.12

Contains
Contains(anotherGeometry:Geometry):Integer - Refur{TRUE) if this
Geometry 'spatially contains' anotherGeometry. @ya005)
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Corresponds to the within operator, but check giveen geometry has another geometry

within its area.

Param types #Params  Return value
Nodes containing GML adher-2 True | false
ent geometry elements

Table 3.13
<xsl:variable name="example" select="geo:contains(elem1,elem2)" />

Table 3.14

Overlaps

Overlaps(anotherGeometry:Geometry):Integer - ResurfTRUE) if this
Geometry 'spatially overlaps' anotherGeometry. @ya005)

Param types #Params  Return value
Nodes containing GML adher-2 True | false
ent geometry elements

Table 3.15
<xsl:variable name="example" select="geo:overlaps(elem1,elem2)" />

Table 3.16

Relate
Relate(anotherGeometry:Geometry,
intersectionPatternMatrix:String):Integer- Returtig TRUE) if this Geometry is spatially

related to anotherGeometry, by testing for intetimes between the Interior, Boundary

and Exterior of the two geometries as specifiedngyvalues in the intersectionPattern-
Matrix. (Ryden 2005).
Not a part of the FEIS.

Param types #Params  Return value
Nodes containing GML adher-2 True | false
ent geometry elements
Table 3.17

| <xsl:variable name="example" select="geo:relate(elem1,elem2)" />
Table 3.18
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3.2 Operations that support spatial analysis on generic geo-
graphic objects

In addition to the spatial test operators, there iieed to manipulate geographic data. To
support this, there is a need to support the mestihamdspatial analysis as defined in the
SFES. This section gives a listing of the requireethnds with brief comments on their

practical use.

Distance

Distance(anotherGeometry:Geometry):Double - Rettinesshortest

distance between any two points in the two geoa®e#sis calculated in the

spatial reference system of this Geometry. (Ry@é&s)2

The distance method is designed to calculate Startie between two objects.

This can be used in a practical application sucimaasuring the distance between two

buildings, ships, or landmarks.

Param types #Params  Return value
Nodes containing GML adhef-2 XSLT Number
ent geometry elements

Table 3.19
<xsl:variable name="example" select="geo:distance(elem1,elem2)" />

Table 3.20

Buffer

Buffer(distance:Double):Geometry - Returns a geoyrtbtat represents all
points whose distance from this Geometry is less tn equal to distance.

Calculations are in the Spatial Reference Systethi®iGeometry.
(Ryden 2005).

Param types #Params  Return value
Node containing GML adher-1 XSLT Node set
ent geometry elements
Table 3.21

| <xsl:variable name="example" select="geo:buffer(elem1,elem2)" />
Table 3.22
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Convex hull

ConvexHull( ):Geometry - Returns a geometry thptesents the convex | /
hull of this Geometry. (Ryden 2005).

Param types #Params  Return value
Nodes containing GML adher-2 XSLT Node set
ent geometry elements

Table 3.23

<xsl:variable name="example" select="geo:convexhull(elem1,elem2)" />

Table 3.24

Intersection

Intersection(anotherGeometry:Geometry):GeometrnetuRis a geome-
try that represents the point set intersectiorhed Geometry with
anotherGeometry. (Ryden 2005).

Param types #Params  Return value
Nodes containing GML adher-2 XSLT Node set
ent geometry elements

Table 3.25

<xsl:variable name="example" select="geo:intersection(elem1l,elem2)" />

Table 3.26

Union

Union(anotherGeometry:Geometry):Geometry - Retargeometry that

represents the point set union of this Geometrly antotherGeometry.

(Ryden 2005)

Param types #Params  Return value
Nodes containing GML adher-2 XSLT Node set
ent geometry elements

Table 3.27

<xsl:variable name="example" select="geo:union(elem1,elem2)" />

Table 3.28

Difference
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Difference(anotherGeometry:Geometry):Geometry -uRst a geometry that represents

the point set difference of this Geometry with hadBeometry. (Ryden 2005)

Param types #Params  Return value
Nodes containing GML adher-2 XSLT Node set
ent geometry elements
Table 3.29
| <xsl:variable name="example" select="geo:difference(elem1,elem2)" />
Table 3.30

Symmetric difference

Figure 3.1

SymDifference(anotherGeometry:Geometry):GeomeRgturns a

geometry that represents the point set symmetfierdnce of this

geometry with another geometry. (Ryden 2005)

Param types #Params  Return value
Nodes containing GML adher-2 XSLT Node set
ent geometry elements

Table 3.31

<xsl:variable name="example" select="geo:symmetricdifference(elem1,elem2)" />

Table 3.32

3.3 Interface integration

The interface provided to the developers of XSLpktes must be powerful

enough to be of practical use, yet it must adherthé language standards and general
usage patterns for XSL. This section defines havsibatial functionality in focus can be
available for XSLT as an API resembling regulardiimnality. The XSLT 1.0 specifica-
tion allows for two kinds of extensions to XSL; fitions and elements (Clark 1999).
While both of these are described in Section 26 hewe favored extensidanctionsfor
integration of the defined spatial functionalityxténsion elements do provide the flexi-
bility and functionality needed, but an approacimgdunctions to make the operations
available resembles the more well-known XSLT fumresi and fundamental XPath syntax
better. More details around the use of functionsw® elements are presented in 0 where
the use of extension elements for configuratiotissussed. It is also assumed that it will
be easier to start adopting the interface wherudee can build upon concepts and pat-

terns with which he or she has experience.
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Table 3.33

Operation definition in specification [2]

geometryA.operation(geometryB)

Operation example call in [18]
operation(geometryA,geometryB)

As discussed more closely in the next sectionpffexations to be made
available can be split between the ones returnogedan values and the ones returning

new geometric elements.

Table 3.34

1. Regular XSLT Function for string concatenation:

<xsl:variable name="strings" select="concat(string1,string2)" />

2. Proposed EXSLT function for union operations

<xsl:variable name="areas" select="geo:union(areal,area2)" />

3.4 Chapter summary

This chapter has presented the operations thdtaheework should support and the rea-
soning for why they should be supported. Furthedefnition and explanation for the
syntax used in the EXSLT calls has been given. #thié functions described have been
limited to standard operations of the Simple Featpecification, operations for gener-
alization/simplification and other spatial calcudats are of relevance. Although the im-
plementation of these has not been the main fottlseeovork with the thesis, the frame-
work developed supports many operations throughuhetionality available in the Java
Topology Suite (JTS) (Davis 2003; Davis 2006). 9 8sed as an underlying framework
for geospatial calculations, and is discussed éurithh chapter 4. Section 7.3 also presents
and discusses an experimental implementation obDtheglas Peucker simplification al-
gorithm.
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4 Implementation of supported

functionality

This chapter presents the design and implementafiddeoXSLT, a system supporting
the defined extension functions. A top-down vievttd architecture and the ideas behind
the division of functionality is given in 4.1. Taqvide the necessary understanding of
how extension calls from XSLT are integrated whie implementation, section 4.2 out-
lines how function calls in XSLT can be mappeddwalclasses. Sections 4.3-4.5 give a

detailed explanation of the various system levattireed in 4.1.

4.1 Division of levels

Based on similarities with standard XSLT functioegamples
from the Simple Features Specification (Ryden 20@&H the @

work of Vatsavai (Vatsavai 2002), Chapter 3 defitieel func-

Level 1, Front-end J

tionality and syntax to be supported. The aim o 88XSLT [

Leved 2, Implamentations J

implementation is hence to support the given opmratwithin

Level 3, Handlers and Faciosies ]

a context of easy use and adaptation, while ats#me time
keeping the door open for later performance impmosets in  Figure 4.1: System
the underlying framework. levels
A focus has also been placed on making it very Ertgintegrate other operations which
can operate on pre-made geometry objects. The isitgypf general use and integration
of new functionality is sought done with a divisiohthe system into three different lev-
els. There is no need to do any changes to exidamg code to start using it, as long as
the jar/class files are available on the classpiipure 4.1 illustrates the division of
levels. As indicated by the figure, operationseadifrom the XSL templates relate to the
level 1 classes. An overview of the contents fahdavel is presented below:

* Level 1, Front-end The general idea is that front-end classes suipgigen
operations by implementing interfaces defining rodtlsignatures and return
values. No calculations are to occur at this leirebnt-end classes are designed
to act as wrappers, passing the request on to plenmenting level 2 class for

processing By doing this, functionality implemented acrossvesal level 2
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classes can be accessed through a singular ctesisloe. This allows for the
grouping of operations by functionality under sx@nt namespace, without hav-
ing to change the underlying class model(s). Inthi@sis’ implementation, a sin-
gular namespace has been created for the pracbaabination of comparison
operations; called predicates, and for analysisatjpes. This matches the opera-
tion definitions in 3.1 and 3.2.

* Level 2, ImplementatiorThe implementation classes are the units wherealh
culations are performed. The experience with theeld@ment done shows that
these classes usually implement operations at la leigel, as external libraries
have been used for the calculations and level sekhandle all data conversion.
With this in mind, the level 2 classes can be thug as implementing thiegic
of the operation.

» Level 3, Handlers and factorieShe level 3 classes are the workhorses of this
framework and are exclusively used by the implesugom classes at level 2.
They provide functionality to convert data struesifrom the XSLT process into
objects that support the operations performed enithplementation classes at
level 2. Further, they provide functionality forro@rsion of the resulting data
from analysis operations back into a format acdaptéor return to the XSLT
process. As of now, conversion between GML nodg&ctires and geometry ob-

jects of the Java Topology suite are supported.

4.2 Access to EXSLT functions from XSLT

This section gives a rundown on how extension fonelity is available from XSLT
templates. A special focus is on how the functibypaif the implemented framework can
be accessed.

To use extension functionality; EXSLT, in XSLT, tlgeneral approach is to define a
namespace representing the specific group of ertensn the root element of the
stylesheet (Clark 1999; Apache Xalan Community 2@8SLT.ORG 2006). Standard
extensions, such as those defined by exslt.orgefieed by a URI to a resource available

on the web. The APl documentation is usually atéelat the address for reference.
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<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlIns:math="http://exslt.org/math">

Table 4.1 Example of namespace declaration for stdard extensions.

Standard extensions are defined by the communi§s(H.ORG 2006) and very often
implemented as an internal part of the XSLT prooesBhe processor used here, Xalan
(Apache Xalan Community 2005), supports many ofrth& complete listing of sup-
ported extensions is available online (Apache X&ammunity 2005). In the case of ex-
tensions that are not handled automatically baseanohttp based URI, the Java class or
package name (Apache Xalan Community 2005) has tefined in the namespace dec-

laration of the stylesheet. This is the case Withdéxtension framework of this thesis.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlIns:geo="xalan://packagel[.classname]"
>

Table 4.2 Example of how the a java class is tiedtb the “geo” namespace

In Table 4.2 an example of how Java functionality handled automatically is made
available from XSLT stylesheets processed with Xatalisted. For all templates con-
tained in the stylesheet, defining the "geo" naraespthe methods of the class "class-
name" are available as functions. Each of the dlp@iimplemented in this thesis has an
example of an XSLT function call in 3.1 and 3.2tte case of community-wide accep-
tance for the set of spatial extensions, a sinhitgy based namespace mapping in Xalan

as for the exslt.org functions could of courseriiegrated.

4.3 Implementation of Front-end/Level 1

This section gives a presentation of the levelchiggcture introduced.
The front-end classes make out the interface betvlee extension call from XSLT and
the Java framework. When a call is made, Xalanraatizally converts the XSLT types

to Java objects as listed in Table 4.3.

Table 4.3 Xalan conversion of XSLT types to Java objéx
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XSLT Type Java Type

Node Set Org.w3c.dom.NodelList
String Java.lang.String
Boolean Java.lang.Boolean
Number Java.lang.Double
Result Tree Fragment | Org.w3c.doc.Nodelist

Methods in the front-end classes therefore neagséothe parameter signatures as listed
above. For practical reasons, the functionalityrasf in chapter 3 is accessible through

one front-end class, but there is no reason whgnnhot be split based on another group-
ing.
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SFSOperations

{ From frontend }

Aftributes

Operations

public SFSOperations( )

public double distance( ModeList n1, NodeList n2 )
public Node buffer{ ModeList n1, double distance )
public NodeList convexHull{ MadeList nl )

public NodeList intersection{ NodeList n1, Nodelist n2 )
public Node union{ ModeList n1, Modelist n2 )

public NodeList difference( ModeList n1, ModsList n2 )
public NodeList symDifference( NodeList n1, Nodelist n2 )
public boolean contains( Modelist nl, Modelist n2 )
public boolean coveredBy( Nodelist n1, NodeList n2 )
public boolean covers{ ModeList n1, ModeList n2 )
public boolean crosses( Nodelist nl, Nodelist n2 )
public boolean disjoint{ NodeList n1, Modelist n2 )
public boolean equals{ NodeList n1, Nodelist n2 )
public boolean intersects( ModeList n1, ModeList n2 )
public boolean overlaps({ Nodelist n1, Nodelist n2 )
public boolean touches( Nodelist nl1, NodeList n2 )
public boolean within{ ModeList n1, Nodelist n2 )

public double length{ NodeList n1 )

public Node dummyReturn( ModelList nl )

11 X po
a0 /
¥ N
AnalysisOperations o PredicateOperations
{ From level2 } / A { From level2 }
Atiributes .' i Attributes
. . . Cperations 1 \ Operations
public AnalysisOperations( ) X public Predicate Operations{ )
public double distance( NodeList n1, NodeList n2 ) i public boolean equals( NodeList n1, NodeList n2 )
public Node buffer( NodeList n1, double distance ) ; _ public boolzan crosses( ModeList n1, NodeList n2 )
public Node dummyReturn( Modelist n1 ) \ public boolean overlaps( NodeList n1, NodeList n2 )
public MNodsList convexHull( Nodelist n1 ) ! \ public boolzan disjoint( NodeList n1, NadeList n2 )
public ModeList intersection( ModeList n1, NodeList n2 ) f \ public boolean intersects{ NodeList n1, NodeList n2 )
public Mode union( ModeList n1, NodeList n2 ) d i public boolzan touches( ModeList n1, NodeList n2 )
public Nodelist difference( NodeList n1, Nodelist n2 ) \ public hoolean within{ NodeList n1, NodeList n2 )
public NodsList symDifference( NodelList n1, Nodelist n2 ) A public boolzan contains{ Modelist n1, Nodelist n2 )
public GMLUtilities getUtilities( ) i ' | public boolean covers( NodeList n1, ModeList n2 )
public void setUtilities{ GMLUtilities val ) ! | public boolzan coveredBy( ModeList n1, Nodalist n2 )
public GMLFactary getGf{ ) \ I
public void setGf{ GMLFactary val ) |
| |
| |
| ) |
| v
[ SFSPredicates
v { From interfaces }
SFSAnalysis Attributes
{ From interfaces } Cperations
T public boolean contains( NodeList n1, NodeList n2 )
= public boolean coveredBy( NodeList n1, Nodelist n2 )
perations
public double distance{ NodelList n1, NodelList n2 ) piliies baaiers Sover gt LiNodc Lo 11
public Node buffei{ NodeLis nf, double distance ) public boolean crosses( NodeList n1, Nodelist n2)
public NodeList convexHulll NodeList n1 ] public boolean disjoint{ NodeList n1, NodeList n2 )
public Nodelist intersection( NodeList nf, Nodelist n2) piifilagakan c.equefs{ NorECid ’_ﬂ' Nodel it ’?EJ
il Mote. wrion( Nodet st nt Nodstist i3] public boolean intersects( NodeList n1, NodeList n2 )
public Nedelist difference( NodeList n1, Nodelist n2 ) publicibooleaniicuetiapeiioosl =] NogeListne |
public Nodelist symDifference( NodeList n1, NodeList n2 ) Bl sonican gl iadecisi e ooy
public boolean within{ NodeList ni, Nodelist n2)

Figure 4.1 Dependency diagram for implemented frorend architecture
The diagram in Figure 4.1 displays the relationsvben the front-end class “SFSOpera-

tions” and the underlying level 2 classes whichlangent the logic. Note the implemen-
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tation to interfaces representing the operatiomdefns in chapter 3. The front-end class

only has references to the underlying classesuaad them to pass on the request.

public Node buffer(NodeList n1, double distance) {
return ao.buffer(n1,distance);

s

Table 4.4 Example of operation “wrapping” in front-end class

In the listing above, “ao0” is a reference to then&ysisOperations” class as displayed in
Figure 4.1 Dependency diagram for implemented feortt architecture. The result from
the implementing level-2 class is returned diretdlfthe XSLT process after processing.
In an XSLT context wrapping of calls to the implertieg class means that all geo-
graphic functionality used for a given template t@naccessed through one convenient
namespace/prefix instead of declaring multiple repaees. Additionally, developers are
free to change between different underlying levelaadses implementing the same inter-
faces by either altering level-1 source code angigijection of control (I10C) (Harrop and
Machacek 2005) through Spring (Spring Community&0&r similar frameworks. All
this can be done without worrying about anythingeethan the simple instantiation of

level 2 classes with zero parameter constructors.

4.4 Architecture of implementation classes/level 2

This section explains the workflow and architectofréhe level 2 classes.
While the front end classes represent the opeatmailable to the XSLT process, the

input is only passed as parameters to the clasdesel 2 as described in section 4.3.

Level 1 Level 2

XsL | SFEGEcratlnns } Analysls
Transtormation 1 Oparations

o 1 T

bufterhodelist xpah.[:@:r..c-la;ms'-1an¢e:

¥
buffer{Modelist xpath,Double distance)

Figure 4.2 Level 1 wrapping of operations

Figure 4.2 above gives an example of how a calhedSFS operation "buffer" propagates

from the XSLT template/process to the defined ldveéiterfacing front-end (green). The
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front-end passes the parameters on to the implati@mtin the level 2 class Analy-
sisOperations (yellow). Figure 4.3 shows how thell@ class then uses the level 3 class

GMLUtilities to construct a JTS Geometry from th#G NodeList initially passed from

Xalan.
Level 2 Level 3
Analysis GMLUtilities |
Operations
—r = ]I
: |
i
1
—r |
butfer{NodeList xpath, Double dstance) )=
B

rmlSearchiMNodelist xpath)

JTS Genr.rre_!_ry_ e

Figure 4.3 Using a level 3 class to build JTS geotnes

The implementation developed in this thesis usea Japology Suite (JTS) (Davis 2006)
as the main engine for geographic calculations.e@dizing out the building of JTS Ge-
ometry objects (Davis 2003) to level 3 classeshasva in Figure 4.3, the main area of
concern for level 2 classes and their methods atiomethods corresponding to the ex-
pected calculations on the pre-made geometry abjant evaluate the results. This
makes it relatively straight-forward to implememeoations in level 2, and may inspire
developers to integrate new functionality by usthg building blocks available in the
level 3 architecture. In the scope of the thesesutility operations of level 3 make it eas-
ier to create JTS objects without unnecessary chfis and code redundancy. In a
wider scope, it may open up for approaches inlirte thhe Factory Pattern [28], allowing
use of alternate libraries to JTS depending omtexl and situation to generate the nec-

essary geometrical representations.
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Level 2
Analysis JTS
QOperations Geomelr

RO . g
| ]

buffer(distanca)

JTE Geometry

Figure 4.4 Execution of calculations on JTS geomstrobjects
When the calculated result for return to the XSlLdgess is something else than the
types automatically converted by Xalan, the dataimsby a level 3 class for conversion
to a Xalan compatible type. In the current systenly calculations that return JTS ge-
ometries need result conversion. Table 4.5 TaleDésplays Xalan accepted Java types
and their corresponding XSLT type. lists XSL dataets and Java mappings as accepted
by Xalan. Only the subset that are of relevancéhi® implementation is shown. The
process of converting a JTS geometry to a Xalanpetilple data type is termed "JTS se-
rialization”.

Leveli || Level2z || Level 3 :

XSL [SFSOperations ||| [ Analysis [ GMLFactory_
Tramsformetion Dperations h

I
I
s

I~ AN 1
encodel /TS Geometry) |

M

| Mode geametry
il

!
I
I
I
I

S

e |
<K

,

Figure 4.5 Level 2 class utilizing the level 3 argtecture for serializing JTS Geome-
try to Xalan compatible format by calling the “encade” method of the GMLFactory
class.

Java Types XSLT Type
org.w3c.dom.traversal.Node (and subclasses) Node-Set
org.w3c.dom.traversal.NodelList

Java.lang.Double, int, double Number
Java.lang.Boolean, Boolean Boolean

Table 4.5 Displays Xalan accepted Java types andetin corresponding XSLT type.
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4.5 Implementation of the level 3 classes

This section describes the core of the frameworlspatial support in XSLT.

While the front-end classes in this model act aappers and the level 2 classes define
logic expressed on existing objects, the majorkmindevelopment has been centered on
level 3. Level 3 creates as a bridge between nfydes the XSLT process and the per-
formed geo-operations. The functionality developedevel 3 for detecting geometries
and building JTS geo-objects from node lists preditdy Xalan is crucial to allow for the
integration of any spatial operation defined in @tea 3. Additionally, the library for “se-
rializing” the geo-objects into node objects asuiegf by Xalan is necessary for all spa-
tial operations that are to return anything elssthumeric or Boolean values.

45.1 Cost of use

All the conversion does come at a cost, as suchridge provided by the level 3 classes
can be regarded as a performance penalty inducétehyeed for data conversion to sup-
port the easier and more accessible geo-functiynaovided in the XSLT context. It is
important to be aware that this implementationas designed particularly with speed in
mind, but as a proof of concept. Even so, as kdetions will go into further detail on,
there are several changes that can be appliedifok giins with regard for the speed op-

timizing of parsing and serialization.

45.2 Service interfaces

Inline with the layered and loosely coupled ardttitee of the whole implementation, the
level 3 classes communicate with level 2 througly dwo operations; one for building
JTS geometry objects, and another for serializiegrt.

45.3 Creation of JTS Geometries from node lists.

What follows is an overview of the workflow for thoiild process of geometry objects

based on the node lists passed on from Xalan.

44



GML Utilities

{ Frominternal }

Attibutes
private String GML MNAMESPACE = "http dwww.opengis.netigml”

private String COORD MAME = "coord"

private String COORDINATES MAME ="coordinates”

private String X MAME ="x"

private String ¥ MAME = "™

private String £ MAME ="Z"

prwate Collection SUE GEOMETREY TYPES = new java.util. VBctDmava util.Arrays. asLlstfnew Strlnqﬂ {" DuterEIDundanr

public GMLUtilities( )

public Geometry amiSearchi NodeList nl )

public Geometry[D.*] gmiSearchMulti{ ModeList nl )

public Geometry subGmiSearch{ ModeList nl, String target )
public Geometry[0.*] subGmlSearchMultii ModeList nl, String target )
public Mode nodeSearchi ModeList nl, String target )
private boolean isGML{ Node n )

private boolean isSubGMLI Mode n)

publicvoid getModeType( )

publicint hashCodel )

publicwoid getGeometry( )

public void getSimpleMame( )

public void startsWith( String Uinnamed )

public vaid hasChildModes( )

public vaid getChildModes( )

Figure 4.6 Class diagram of GMLUItilities

Detection of geometry representations

The level 3 class “GMLUTtilities” receives a call tiwe “gmiISearch” method with a list of

nodes (org.w3c.dom.NodeList). The list is thenated and each node is checked by run-

ning it through the “isGML” Boolean method. The MG method in this implementation

simply checks whether the namespace_is “http://vopengis.net/gniland then if the

element’s local name/tag name is among the defiragdes in a local collection of valid

GML element names. Whilst this can be a relativelive approach for detection of GML

elements, there should not be any significant mmisl to extend it for use of actual

schema validation. The reason it was not doneishdhse is that it was not deemed nec-

essary for a proof-of-concept implementation andild@lso have a significant effect on

execution speed.
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Construction of geometry objects

If a node is found to be a GML node, it is senth® “create” method of “SubHandlerFac-

tory”.

SubHandlerFa
{ From subhand|

ctory
ers }

Alibutes

private Collection BASE GEOMETREY TYPES = new java.util.Vector{java.util.Arrays.aslistinew

public SubHandlerFactory( )

Cpeations

public SubHandler createf Mode n)

Figure 4.7 Class diagram of SubHandlerFactory
The factory implementation has a line of handlettem®ding a “SubHandler” super class

and specialized for each GML type supported. Thdutawy design allows for the integra-

tion of better and faster handlers as developecharded.

SubHandlerLineString

Attributes

Operations
package SubHandlerLineString({ Node n )

public Geometry getGeomestry( )

SubHandler

Attributes
private String COORD_NAME = "coordinates”

package ArrayList coordinates
package GeomnetryFactary gf
package PrecisionModel pm

COperations

public SubHandler( Mode n)
public SubHandler( )
public Geometry getGeometry( )

utilities

GMLUtilities

{ From internal }

Figure 4.8 SubHandler super class and SubHandlerLiestring
The current “SubHandler” super class provides ataimce of the GMLUtilities class, the

CoordinateFactory, and the JTS library "com.vividsons.jts.geom.GeometryFactory”.

Figure 4.8 displays an illustrative example of ttedation between the SubHandler,

GMLUtilities and the specialization class for handlline string geometries.
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The shared constructor of the super class inigalithe common precision model (pro-
vided by the implementation’s static and dedicatedfiguration class) and other plumb-
ing. Additionally, it executes a search for the @@dntaining the coordinates enclosed as
a child of the GML node passed to it. The searchttfe element containing the coordi-
nates is not implemented locally in the SubHandiet,is performed by a “node search”
method of the GMLUtilities class, taking a nodd Bsid a target name as parameters.
The reasoning behind this is that it allows foefaiptimization, without having to change
the handler classes. Currently the node searchlysaoshallow iterative check for node
names matching the target. The coordinate nodedf@mithen sent to the CoordinateFac-
tory which configures itself based on the attrisuBomma Separation (CS), Tuple Sepa-
ration (TS), and decimal character of the coordinaide as allowed by the GML 2.1.2
specification, Section 4.3.1 (Cox, Cuthbert et24102) (OpenGeoSpatial 2002). Each
vertex found is passed to the “com.vividsolutiassgeom.Coordinate” (Davis 2004)
constructor and the generated coordinate objdbeis stored in a list structure for return

after the reading is complete.

Specialized coordinate parsing in sub handlers

The specialization done in the different extensioh SubHandler varies depending on
the complexity of the JTS object to be built. Fantlers representing the simpler geome-
tries point, line, and linear ring, the only extiemsdone is to call the corresponding fac-
tory creation method of the JTS GeometryFactorgsldhe list structure with coordi-
nates created by the super class is passed aaragiar. For the more complex elements
such as Polygons and Multi-versions of the bagmehts, a much more custom overrid-
ing of the super class’ constructor has been aleftehe case of polygons which consist
of a mandatory outer ring and zero to many “holedternatives to the “gmlSearch”
method are used to detect and build representatibriie subelements. The polygon
SubHandler extension then assembles these sub-gjeesmato a polygon which is re-
turned to the original gmlSearch method call amthir up to the level 2 class initiating
the build. The approach is similar for the othemptex geometries, with inner calls to

the build the simple geometries for final asseniily the complex geometry.
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45.4 Serialization

In the context of this thesis, serialization isidedl as the process of converting/encoding
JTS geometry objects to a GML compliant node stimectompatible with Xalan.

After the level 2 class has executed its operatmthe JTS geometry object, in the cases
where the result is a new JTS geometry objecteéds to be “serialized” into a format
accepted by Xalan. Table 4.5 Displays Xalan accepéwa types and their corresponding
XSLT type. While Chapter 3 defines the possiblemmetvalues from operations imple-

mented.

Functions returning String, Double or Boolean valean be passed directly and con-
verted internally by Xalan, but the majority of tAealysis operations, such as union and
buffer, need conversion to Node objects before¢han is passed on to the XSLT proc-
ess. In the same way as building JTS objects iad¢ime penalty, the conversion to Node
also comes at a cost. The process is initiated bgllato GMLUtilities’ corresponding

output handler; GMLFactory’s “encodeNode” method.

GMLFactory

{ Fiom output ]

AFROLTES
package DocumentBuilderf actary documentBuilderF actory

package DocumeniBuilder documentSuilder
package Document factary

package Hashbdap elemeniPiotetypes
package String docHS

package chai G5 =°7

package char TS=""

package chal DECIMAL =

Desvahons
public GMLFactord §

public ModeLiml encade Geameliv.g )

public Mode encodeNode Geometry g )

public Mode encodeNode] Geamety g, SWing < stegory, Biing operaticn )
palvate Node encodel Polygan p )

private Node encode{ Line3ting Is )

piivate Node encadel MuliLineSteang mix)

pibvate Node sncode] MultiPolygon mp )

peivate Node encodef Fointp )

pitvate Node encode] Coordinate conrdsiD, ). char o5, charis )

Figure 4.9 Class diagram GMLFactory
The encodeNode method accepts a JTS geometryangtar and then delegates the en-

coding to internal methods after determining thengetry type by using introspection. In
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the same way as the sub handlers for parsing imgp@ML nodes from Xalan use Co-
ordinateFactory to detect and build simple georegtbiased on the enclosed coordinates
for final assembly into final geometry objects, #@coding handler for each geometry
uses a simpler encode method private to GMLFadtocyeate a coordinate node with the
coordinates as text and cs/ts/decimal values frot@arnal configuration as attributes.
Simpler because all data that is needed is readéylable by calling the encapsulating
methods of the JTS geometry object. There is nd te@xecute any complex searches
for elements as when parsing incoming GML elemewthken the coordinate object is
returned to the encode method calling it, the esictpnodes representing it are not cre-
ated from scratch but rather from clones of skelgimtotype versions with the correct
namespace and prefix preset. This has been danake it easier for later changes to the
elements and integration with external resourc@sekample by using a factory pattern

or injection of control without having to alter theethod bodies.

Wrapping.

The encoded geometry nodes are always enclosehwitstraight forward “TheGeome-

try” element. There are two reasons for this. Findten the return from one operation is
re-used as input for a second operation, - for gtara buffer called on the results of a
union, not using a wrapper makes the node listteethte level 2 method only contain the
children of the geometry element, hence only therdioate element or sub-geometries
are available for the gmlSearch method. Secondegnlar GML files, each feature usu-
ally has the GML properties enclosed within an eéletmamed such as “TheGeometry”,
or “_geom”. This wrapping of the resulting GML makihe output more manageable. At
the same time, there is no problem to omit the Gd&ametry” element by using XPath

on the returned data to only select the childrethef“TheGeometry” element for inclu-

sion in some other scheme. The name of this wragpmsld of course be configurable to
allow for easy change and to suit the usage nefettie gituation. It could possibly bene-
fit of being of configuration through schema pagsiso that the “wrapper” is automati-

cally created with an element name matching therseh

Parts of the application logic/division of respdniliies around handler based parsing of
GML node lists have been inspired by the desigthefSAX parsing/handling for GML

in Geotools written by Rob Hranac. Amongst sevprajects utilizing this parser-logic is
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the popular WFS/WMS server Geoserver, somethinghvban be regarded as an indica-

tion that this approach works quite well.

4.5.5 Basic performance optimization

The development of the GeoXSLT system has beensé&stwn creating a proof-of-
concept implementation to show that XSLT with esiens can be used for processing
geodata. A limited amount of work has been doneréate mechanisms for general per-
formance optimization. While various approachespbmization are discussed in Chap-
ter 7, a simplistic caching prototype has been @amanted as part of the level 3 classes.
The motivation and application of the mechanism diseussed in Section 7.2.2 while
this section will focus on the implementation.

The caching has been implemented as a “GeometrgegCawhich is an object storing
previously constructed geo objects. When a new Giddle is detected during the previ-
ously described “gmiSearch”, a check with the Geaoyn€ache is done before eventual
construction is begun. If it turns out that the GMade has been processed earlier, the
previously constructed geo object is returned. Tay, a significant portion of the con-
struction phase is saved for GML nodes that are vspeatedly during XSLT transfor-
mation. In practice, the implementation of the @etry Cache is a simple object with
accessors for a Hash Map containing the geo objébtsfact that all Java objects have a
distinct hashcode unique within the applicationtime is used to distinguish the node
lists passed from Xalan (Sun 2004). When a geocbigecreated, the hashcode from the
original node list passed from Xalan is used ashthgh key. As a consequence, the re-
guest for the creation of a geo object only hapdes its node list (as received from
Xalan) hashcode to the Geometry Cache for the inateedeturn of a pre-existing JTS
Geometry representation.

4.5.6 Possibilities for improvement.

There are several areas of the implementation wtachpresumably benefit greatly from
specific improvements. The improvements can beteaidvolve around three axes: func-
tionality / runtime versatility (schema parsingidation and automatic configuration of
handlers according to the schema), speed (feahntarg, faster search and construction
algorithms), and quality of the program architeet(ietter division of classes, injection

of control, extraction of interfaces, cleanup oflep
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4.6 Chapter summary

This chapter has presented the architecture, coemp®nand workflow of the system for
supporting spatial extensions in XSLT. A descriptiof EXSLT integration with Java
with regard to this implementation has been useshtw how the implementation relates
to the transformation process. Reasoning behindi¢sgn has been explained as well as

weaknesses and areas ripe for improvement.
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5 Testing

The testing of this implementation aims to prodexperience and statistical data to help
answer the research objectives as defined in kdtsTon constructed data have been de-
signed to validate the correct functioning of tlgstem, as described in research objective
1. Further performance tests and operations ondiaal are described to uncover aspects
around flexibility and performance inline with reseh objective 2. The experiences with
implementing the tests forms the basis for furtfiscussion of research objective 3. Tests
of the performance optimization introduced in Smat#.5.5 is covered in Section 5.1.5.

5.1.1 Validation of correct functioning.

To be of any practical use it is important that taéculations and returned data can be
trusted. Research objective 1; can the XSLT languagombination with extensions be
used for the processing of geodata, needs a cotidnna both quantitative and qualita-
tive observations to be answered. Quantitativeef@uation of whether the implementa-
tion works as expected, -indicating that it is t@chlly viable, qualitative with regard to
practical evaluation of general use. The implenmeriahas been validated by creating
test cases for selected operations where the sem@tcompared with the returned data of
a third-party tool. Martin Davis at Vivid Solutionthe creators of JTS, has created a
powerful visualization tool for testing the JTSréby. The tool, called Testbuilder, ac-
cepts 1-2 geometries encoded as Well Known Text TY\MKhich are then drawn on a
canvas (Davis 2004). Both the predicate and arsabserations available in JTS can then
be executed. WKT is a format for defining spatiabgnetries as strings of text and was
specifically defined to make it possible to loadtsd data into spatially enabled data-
bases. The format was defined by the OpenGIS CtuasofSimple Features for SQL”
specification (Ryden 2005) and is also a part & BO "SQL/MM Part: 3 Spatial"
(Stolze 2003). As there is a mapping between tladisdpobjects represented between
GML and WKT, generating test data for either is @yna matter of encoding the same
coordinates within each of the two encapsulatingnéds. The validation of this imple-
mentation has been achieved by generating vargsisdata for execution both in Test-

builder and in an XSLT context. The results fromhbpredicate and analysis operations
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have then been compared and the data from Testbuiltie been considered authorita-

tive to which the XSLT generated result must adlier¢he test to be valid.

5.1.2 Measurement of performance

To answer the research objective “What limitationdactors such as performance, flexi-
bility and scalability will this approach imply?here is a need to provide data on how the
implementation’s performance varies with changingants of data input. Before meas-
uring the performance of the implementation, migplace to provide a definition of how
performance can be interpreted and which aspeatsatk covered here. In (Steve Wilson
2000) performance is defined as a collection offtilewing factors:

* Computational Performance
o0 Deals with the optimization of algorithms to usefaw instructions as
possible,
* RAM footprint
o Optimization of memory usage
e Startup time
o0 How to minimize time to bootstrap an application

» Scalability
o0 How does an application handle large loads
* Perceived performance
o0 How does the user experience execution time.

While all of these aspects are of universal intetbge aspects of performance under focus
in this report are scalability and perceived parfance. Computational performance and
RAM footprint have not been deemed necessary teldpva working prototype. Later
work could focus on designing and implementing ¢jesnto provide optimization for
these aspects of the performance definition. A ndetailed explanation of how the scal-
ability and performed performance results are peeceis provided in chapter 6, 7.2 and
7.2.2 where the findings are presented and disdu¥gken measuring the scalability and
perceived performance, the focus has as been @rvahg the time cost of the bridging
between geometry objects and nodes/node listdrasliced in chapter 4. Therefore, it is
vital to keep tabs on several steps in the proddssches has been placed on total execu-
tion time for the EXSLT function call as a wholbgetbuilding of each geometry object
involved in the operation, execution time for th&SJ operation, and encod-
ing/serialization back to a Xalan compatible node.

The log4J logging toolkit (Log4j Community) wassfirconsidered for saving the test re-

sults, but due to the (at least as understood byatlthor) limitation to only log text
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strings at singular points of time there was a [@wb The test process has a defined need
to log information on start, stop, context and agien performed, in addition to details
on number of vertices, length and precision. Watgl) output to single strings, logging
seemed cumbersome when everything would have teitber aggregated in long text
strings or spread across several entries. s eaglatan generates several events, using
logger based on log4J would hence imply a needeate relatively complex handling for
post processing of the generated log files withuamds of entries. Instead of doing this,
a simple system inspired by log4J but with suppartthe required logging of multiple
fields associated with each event, has been createdrt of the testing framework of this
thesis’ implementation. The logger works like aywsimple and crude version of log4J,
but instead of logging formatted text strings te br database handles, an “event factory”
is used to create objects of an “Event” class. »eneis created with a timestamp repre-
senting the start time. The creation of a loggimgne is the last operation done before the
operation to be logged is to take place. After cletign of the operation the event is
stopped by setting a second timestamp. After thertiis stopped, each data field to be
associated with the event is set through encapsnlatethods in the object before the
event finally is appended to a log object accesdsibtough a static method of the event
factory. Accessible in a static context to ensitmedd safety and to keep the log and
event objects accessible with as little time ovachas possible. The log object maintains
a list of events as an ArrayList which is seriatize a MySQL database when a certain
size has been reached or the log is finalized tirats shutdown hook (Sun 2004). In
practice, it is only serialized after all tests @axecuted. Log entries stored in MySQL
are then accessible for analysis with e.g. MicroBatel through ODBC. Because nested
events are logged; all build, JTS execution antlssation events are sub parts of a call
to an extension function, the time spent loggin@dar the sub parts will accumulate and
increase the time spent executing the parent exeanthe times presented are not 100%
accurate due to external factors such as opersysigm and machine ware, the accumu-
lations of time spent logging are ignored becabseadaita nonetheless provides the neces-

sary indications on tendencies and relative datadmparison.
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5.1.3 Selection of tests on constructed data

Due to the extensive amount of work to create @s#ddt-cases for possible operations
and data types, the testing had to be limitedgmall number of operations performed on
a relatively small amount of constructed data. ifgsthe workings and performance of
the JTS library itself has been considered secgnddre focal point of all testing per-
formed has been to validate the correct functiomihtphe implementation as a whole, and
at the same time to measure how different kind$atd influence the bridging when con-
verting between node lists, JTS geometries, an#é ttacodes for return to Xalan. It is
important to note that JTS performance has beersuned in the test cases implemented,
but the results from those operations cannot nadgs®e projected onto assumptions
about other JTS operations as their internal calmrs may or may not induce signifi-
cantly different execution times.

Test data has been generated for variances ofiniy@esgeometry types line strings,
points and polygons. The reason why complex vessairgeometries have been left out
is that these generally may be regarded as aggregaif the simple ones and hence not
prioritized here. All tests on constructed dataehbgen designed to be performed without
the performance optimization introduced in Secdos.5. Each operation measured has
been performed on two distinct geometries of saype,tbut with differences in posi-

tions. See Figure 5.1 for a visualization of teshmgetries.

Operations selected for testing

Only a subset of the functions defined in chapt®a8 been tested, this section presents

which operations that have been chosen for testitigthe different geometry objects.

Line Strings

For predicate operations on line strings, the “®es8 operation (3.1) has been selected
for measurements of total time to complete. Thes®e operation is very central in many

real-life operations such as e.g. testing whetWer roads cross each other. For analysis
operations on line strings, the “union” operatiB2) has been selected for measurements
of total time to complete. The tests and experisig@erformed Chapter 6, 7.2.2, and 7.5

feature examples of the practical value of thisrapen.
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Points

The “equals” operation (3.1) has been used to pe=tiicate operations on points. For
analysis operations, only a dummy call to the kwidgs been used. The dummy call
builds a JTS geometry based on the point whichea immediately serialized back to a
GML node without any JTS calculation is executekisTs because relevant analysis op-
erations available for execution on points typicalill return other data types than

points. As such it has been deemed more interesiiogly focus on measuring the per-
formance of the bridge when building and seriaizine exact same point. Serialization
of polygons and line strings are performed and oreaisin the other test cases.

Polygons

For polygons the “intersects” operation (3.1) hasrbused to test the total time to com-
plete for predicate functionality on polygons. lmalysis the “union” (3.2) operation has

been used for testing.

Parameters tested

This section introduces the test parameters us#d tive tested operations and geome-
tries, and explain the reasoning behind the chacade. Examples of parameter varia-
tion and visualizations of test data are provided.

The parameters to be tested with different facbdrgariance have been chosen because it
is assumed that they represent factors that wié lzan impact on operation execution.
Below is a list of the parameters used:

* Vertices.Increasing the number of vertices in a geometry hmve an effect on
all phases of the execution process, as it intresllooth more complexity and a
larger amount of data to process.

» Digits. While increasing the number of digits does notesearily have an impact
on precision levels, it has an impact on the teizé of data necessary to represent
the geometry.

* Holes.This parameter only have an effect on polygongreltthe holes represent

both increased complexity and more data with gxtogessing requirements
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Line Strings

Vertices 3| 30| 300

Points

Digits 213 4 5 6
Polygons

Vertices 5| 41| 401

Holes 0|1 10 40
Digits 2|3 4 5 6

Table 5.1 Test cases with constructed data

Table 5.1 lists the variations of parameters intdss performed. Parameter values are

based what is assumed to be variations with ret/émreal-life data.

To reflect the variance of complexity in the exe-
cution time for JTS’ calculations no lines created
are straight. This is so that internal calculation
simplification of vertices should be kept to a
minimum. The wave shape is also considered to
make the test cases more realistic in comparison
to straight lines.

Figure 5.1 Visualization of crosses test on line
strings with 30 vertices each.

All lines are sinus curves, and polygons are laslfunctions of sinus/cosines. This gives

for predictable patterns which is visually easyw#atidate using Testbuilder. All test data
has been generated with scripts written in Perlemobded in both GML and WKT ver-

sions for easier validation. For each test case,geometries with equal properties but

different values have been created. For examplin the “crosses” test, one horizontal

and one vertical line has been generated for elaghge in the test parameters, while the

“intersects” test is designed to be executed ongulggons. Each test case has been re-

peated 100 times, while the whole test processnsralled and performed by JUnit.
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L L] ]

41 verfices

41 vertices

5 vertices 5 vertices

Figure 5.2 Visualization of two intersects tests pormed on polygons with 5 and 41
vertices

Samples of test data are available in the appendix.

5.1.4 Tests on real data

The tests and samples described so far have alldpifically constructed to validate a
given case inline with objectives to gather dataperformance and scalability for iso-
lated extension functions. To answer the resedbgdctives defined in chapter 1, there is
a need for a set of more qualitative experiencels sgenarios closer to what can be ex-
pected in a real-life setting. To provide a reatibeck for comparison with the samples
and the research objective, a composite test ompledntdata has been designed. Data
from Tana, a small village in Northern Norway, dstiag of buildings and road stubs has
been made available by the Norwegian Mapping Adutiksrand used for the purpose of
real-life test scenarios in the work with this tise8uildings are represented as points and
road stubs as line strings. The data consists48 §8ints and 2418 line strings. The data
has been divided into ten smaller subsets to ertabteng of how the system performs
with a varying number of features and complexitgblE 5.2 lists the different subsets
created and details on the number of features laaue slata size.
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Case Roads Buildings Size (kb)

1 3 24 16

2 16 108 61

3 25 214 116
4 56 450 244

5 201 1132 643
6 425 2 145 1242
7 787 4 701 2 641
8 1 690 8 163 4773
9 2243 9452 5 692
10 2418 9 848 5 985

Table 5.2 Subsets of the Tana data

The visualizations of the Tana data sets below stoads as grey lines, and buildings as
red dots.

Figure 5.3 A visualization of the Tana data set, \h the bounding boxes of test cases
4-10 engraved

The test have been designed to both validate thétseof the constructed samples with

greater variance in the data sets, to gain expsianth real samples, and evaluate some

59



of the possibilities made available with  spatiallyenabled  XSLT.

Figure 5.4 A visualization of the Tana data set wit bounding boxes 3-1 engraved

The task defined for this test, is to find and doalhbuildings situated within 20 meters
from any road. Easy as it sounds, this is a ratberplex task demanding the chaining of
several geo operations to be achieved. The twolsgegppused are shown in the listings
below.

<xsl:template match="/">

<xsl:message>Starting...</xsl:message>

Buildings:

<xsl:value-of select="count(wfs:FeatureCollection/gml:featureMember[topp:bulroad])"/>

Roads:

<xsl:value-of select="count(wfs:FeatureCollection/gml:featureMember[topp:Road])"/>

<xsl:message>Features counted...</xsl:message>

<xsl:variable name="roadUnion" >
<xsl:call-template name="unionRoads">
<xsl:with-param name="roads"
select="wfs:FeatureCollection/gml:featureMember[topp:Road]/topp:Road/topp:the_geom/*"/>
</xsl:call-template>

</xsl:variable>
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<xsl:message>Road union created</xsl:message>

<xsl:variable name="roadBuffer"

select="spatial:buffer(xalan:nodeset($roadUnion)//gml:MultiLineString,20)"/>

<xsl:message>Road buffer created</xsl:message>

Number of buildings within 20 meters from the road:
<xsl:value-of select="count(wfs:FeatureCollection/gml:featureMember[
(descendant::topp:bulroad/topp:the_geom/gml:Point) and
(spatial:within(
descendant::topp:bulroad/topp:the_geom/gml:Point,
$roadBuffer/gml: *[position() = 1]
)

)"/ >

</xsl:template>

Table 5.3 Main template used for the practical testwith the Tana data
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<xsl:template nhame="unionRoads">

<xsl:param name="roads"/>

<xsl:variable name="roadCount" select="count($roads)"/>

<xsl:choose>
<xsl:when test="$roadCount = 1">
<xsl:copy-of select="$roads"/>
</xsl:when>
<xsl:otherwise>
<xsl:variable name="fiftypercent" select="floor($roadCount div 2)"/>

<xsl:variable name="left">
<xsl:call-template nhame="unionRoads">
<xsl:with-param name="roads" select="$roads[position() &lt;= $fiftypercent]"/>
</xsl:call-template>

</xsl:variable>

<xsl:variable name="right">
<xsl:call-template name="unionRoads">
<xsl:with-param name="roads" select="$roads[position() &gt; $fiftypercent]"/>
</xsl:call-template>

</xsl:variable>

<xsl:copy-of select="spatial:union(
xalan:nodeset($left)//*[(local-name() = 'MultiLineString')
or
(local-name() = 'LineString")

]

7

xalan:nodeset($right)//*[(local-name() = 'MultiLineString")
or
(local-name() = 'LineString")

]

||/>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

Table 5.4 Divide and Conquer recursion implementedn XSLT to union a large
amount of line string segments without causing st&overflow.

First, all the road stubs are unioned into one inink string which is stored in a variable.

To avoid trouble with stack overflow, a classicatide and conquer recursion strategy
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inspired by (Sedgewick 2002; Novatchev and Tysz8062) has been applied with the
“unionRoads” template. The resulting union of ro&lshen used in a buffer operation,
creating a multi polygon centered on the road. fimmber of buildings within the road
buffer is then matched by the XPath statement sedian a count function, matching all
building representations having a point propertyciwhs within the road buffer. Note the
use of standard extension function “xalan:nodegdtith converts result tree fragments
(Apache Xalan Community 2005) from executed tengsldad be used in a node list con-
text.

As the set of data is quite large (ca 6 MB), jistshare size indicates that it is ill suited
for use in a web context with regard for acceptalder waiting time caused by both
processing and network transmission (Nielsen 19&41 2004). Reducing the bounding
box will result in both a smaller amount of dataremsfer and less features to process. By
scoping the set down to various smaller sizes sgmted by smaller bounding boxes we
try to evaluate the performance and find the thokesfor when the extended XSLT ap-
proach can be feasible in an interactive web/ndtagbcontext as well as practical limits.
The data has been imported into Geoserver andotadias WFS calls to assure realistic

formats and full schema compliance. See appemdigadmples of data.

5.1.5 Testing basic performance optimization

The tests with real data have been repeated wétlGgometry Cache introduced in Sec-
tion 4.5.5 applied, measuring and comparing théop@ance gain with that of the base

implementation.

5.1.6 Test platform
The tests have been performed by executing a lektitcase from within the NetBeans

5.5 beta 2 IDE on Windows XP. The hardware used avagnovo T60p laptop, with
1GB of RAM and an Intel Centrino Duo processor fagrat 2 GHz.

5.2 Chapter summary

This chapter has presented the different aspedsrdacus and scenarios designed to test
them. Examples/visualizations of both tests and dats have been given. The material

created has been tested and forms the source fiftlregs presented in chapter 6.
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6 Findings

This chapter presents the findings from the testséd in chapter 5. First, the average
performance times for the different operations gedmetries on constructed data are
presented in 6.1.1, 6.1.2, and 6.1.3. Summaried &ihdings from tests with constructed
data are presented in 6.1.4.

The results from practical tests performed on dadh from the Tana data set (introduced
in 5.1.4) are presented in 6.2.1. The tests haea performed using both the base line

and optimized approaches as presented in Sectibris 8.1.4, and 5.1.5.

6.1 Findings from tests with constructed data

The aim of the test process with constructed dakabeen to uncover correlations be-
tween the different parameters and changes innferieeded for execution of the exten-
sion functions. The following is a presentatiorfinflings found to be of significance, and
a walkthrough of their indications.

Unless noted, all times are in milliseconds. TTGhert for “time to complete operation”.

Results from the tests can be used for uncovetmeggths and possible bottlenecks.

6.1.1 Total execution time predicate operations

Line String: Total operation time crosses operation

Figure 6.1 Total execution time for crosses
on line string as the number of vertices in-
creases

3

2,5
2

I

1

Results from measurements of total

time spent for predicate operations

05

0 on line strings and polygons indi-

5 41 401

0,66427164 0,57176534

Vertices

Avg TTC 2,72643867

cate that the number of vertices has

Figure 6.2 Total execution time for intersects on dggon
as the number of vertices increases.

an impact on time needed for processing; the

Polygon: Total operationtime intersects operation

time increases as the amount of vertic

grows. Sitill, Table 6.1 shows a higher effi-
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ciency at higher volumes of vertices. This contr@suto the impression that the Ge-
0XSLT framework scales reasonably well.

The ratio between the number of vertices and timedmplete (vertices/ttc) clearly
shows an increase of efficiency in the number ofi&es processed pr unit of time as the

number of vertices pr call increases up to 400icestin Table 6.1.

Vertices Vertices pr This can be an indication of the initial start-gstfor start-
ms : : .

5 1210376978 ing the conversion process from node list to JT8rGary,

21 9538568048 and that the overhead of using the bridge for Ja@isstruc-

401 274,0568579 tion gets less significant as the amount of vestice

Table 6.1 Vertices processed pr millisecond, creases.

efficiency increases as amount of vertices grows

Variation of digits/coordinate length

Point: Total operation time crosses operation Polygon: Total operation time intersects operation
0,06 0,4
0.04 . AM 0,3 A ’—__‘_/\
Q
I £ 0,2
0,02 =
0,1 A
0 0
2 3 4 5 6 2 3 4 5 6
‘Avg TTC | 0,04096 |0,042531| 0,051554 |0,039544 |0,044296 —&— Avg TTC | 0,24997 | 0,25851 | 0,26146 | 0,33507 | 0,28635
Digits Digits

Figure 6.3 Variation of digits on crosses operatiomn points. Figure 6.4 Variation of digits on intesects opera-
tion on points.

The results based on tests with the crosses ardsétts operations indicate that the
number of digits have a negligible effect on th@ltéime for the execution of predicate

operations.

Variation of holes in polygons

Polygon: Total operationtime intersects operation

The results from running the “intersect

15
predicate operation on polygons with 0 _
varying number of holes indicate that hole i 5 J/
are complex and expensive to process. o8 : 5 n
‘—Q—Avg TTC | 0,289439 | 0,437274 | 1753103 |9,906298

Figure 6.5 Relation between number of holes in a Holes
polygon and the time needed for executing the “inte
sects” predicate operation.
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The holes were all of equal size, with a diamete&t@and 10 vertices. Table 6.2 lists the
ratio between the number of holes and total exeouime (holes/ttc) as the amount of

holes increases.

Holes Holes/TTC
1 2,286898036
10 5,704172347
40 4,037835243

Table 6.2 Changes in ratio between Time To completend number of holes

Based on both the table and figure, it seems tiweasing the number of holes reduces
the efficiency pr hole. Figure 6.18 shows how naighe time spent for predicate opera-
tions involving polygons with holes is used by ant on the geometry object. This may
be interpreted as that the geometric complexitpafgons with many holes demands
more resources for predicate calculations tharbthlel process of creating the JTS ge-

ometry it self.

6.1.2 Total execution time analysis operations

Analysis operations seem to be generally more esiperthan predicate operations. This
is intuitive, as the category of operations demamdse accurate results than true/false,

and often involve the extra step of outputting aadalizing a result geometry.

Variation of vertices

Line String: Total operation time union operation Polygon: Total operation time union operation

4 2,5

35 _»
. /
3
25 \
o ' T o— ® 15
E 2 £
= =
N 1 /
1
05
05 —
0 0
5 a1 401 5 41 401
Avg TTC 2,82308504 2,21208287 3,61952981 —e—Avg TTC 0,30377883 052753914 2,29832567

Vertices Vertices

Figure 6.6 and 6.7 Correlation between number of véces and total operation time for union operatiors on line
strings and polygons

Execution times for analysis operations as reptesehy the union operation on line
strings and polygons generally follow the samegpatas for predicates, but with a higher

cost. In the graphs above the vertices have besedvaetween 5 and 401.
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Variation of digits

Observations indicate that the number of digitsehavelatively small impact on the time
cost for union operations on polygons. This adh&vdbe results from tests of predicate

operations with variations of digits.

Polygon: Total operation time union operation

05
0,45 - ./.___.—0———0
0,4
0,35
<} 0,3
€ 0,25 1
= 0,2
0,15 1
0,1
0,05
0
2 3 4 5 6
—&— Avg TTC | 0,41859 | 0,44202 | 0,44941 | 0,45164 | 0,46381

Digits

Figure 6.8 Variations of digits and holes for unioroperations on polygons

Variation of holes

Polygon: Total operation time union operation

. /
i 5 /
—

0 1 10 40

—e— Avg TTC | 2,861297 | 2,197645 | 3,583827 | 13,97679

Holes

Figure 6.9 Variations of holes for union operationn polygons

Polygons with holes are expensive to process,igsally shown by the predicate obser-

vations.

6.1.3 Division of Total Time To Complete between the different opera-

tions

The graphs in this section show how time spentvsied between construction, calcula-
tion, and serialization phases. The graphs reptésemmost interesting findings because
they give indications on the cost of integratingtsgd functionality with XSLT relative to
the overall time and calculations performed. Ashsubey make up the foundation for
deciding where performance optimization can beiaegphith the most effect. The find-
ings here need to be viewed inline with the tataktspent on each operation. For exam-

ple, for points, the relative time spent for consting and serializing is large, but the total
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time of the whole operation is significantly smallean for that of line strings and poly-

gons.
Line Strings
Line String: Predicates Line String: Analysis
= 100 % - 2 100%
[ 7
&  80% g 80%
2 60% g2 60w
5 40% 5 40%
[ I
2 20% | | 5 20%
2 0% : o 0% ‘ ‘
5 41 401 5 41 401
Vertices Vertices
‘D JTS Contruction @ JTS Execution ‘ ‘DJTS Contruction @ JTS Execution O JTS Serialization

Figure 6.10 Variation in relative time spent on JTSonstruction for predicates on line strings

Figure 6.11 Variation in relative time spent on JTSonstruction for analysis’ on line strings

For predicate operations on line strings, the toust of XSLT integration is generally
around 20%. For analysis operations, the time t@lsze the results back to a node for
use in the XSL process causes the time cost teasermore. Increases in the number of
vertices gives for substantially longer time neettegerialize the result, seeming to stabi-
lize at around 25% of ttc for serialization and 1696 construction. In total, the results
indicate a time cost of ca 20%-35% for the inteagratof analysis operations on line

strings with XSLT, depending on the number of \easiinvolved.

Points

The indication that the start-up cost is high

relative to the calculation done on the J° Point: Predicates

100 %
80 %
60 %
40 %
20 %
0% -+

Geometry is confirmed when the division «

time between construction and calculation

Share of time spent

presented here. The cost for construction ¢

be expected to be between 70-80% for pre L e 0
cate operations on points, regardless of vi [B7S Construction BITS Execution |

ance in digits. The high relative cost shol Figure 6.12 variation of digits, relative cost of
. . . construction for points in predicate operation:
be seen in view of the short total time spein
for point operations compared to operations onroge@metries. Section 6.1.1 and 6.1.2
provide comparisons and visualization of measurad.tAs an example, the average to-

tal time for performing the crosses operation omgsowith 6 digits is ca 0.04 ms, while it
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for polygons is ca 0.29 milliseconds. Much of tHiference can probably be explained
by a minimum timeneeded for starting up the process for building IM& geometry.
When the JTS calculation time is so small, thedbtithe becomes more significant.

No operations have been executed as part of thedasss which gives an analysis opera-
tion on two points with point return. As the nexsbthing a dummy operation which just
builds geometries based on point input for immedsarialization is used to provide the

following ratios between JTS build and JTS seralan for points.

Point: JTS Construction vs Serialization

100 % A

90 %

80 %

70 % 4

60 %

@JTS Serialization
B JTS Construction

50 %

40 %

Share of time spent

30 % 1

20 %

10 % 4

0%

2 3 4 5 6
Digits

Figure 6.13 Construction time relative to serializéion time for points, variation of digits

The results indicate that for points, serializatiorlearly more expensive than construc-
tion with regard to time cost, but as with the fesof relative times for predicate opera-
tions on points, it is important to keep in mine tshort total time compared to that of

other geometries.
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Polygons

Polygon: Predicates

100 % -
90 %
80 %
70 % +
60 % -
50 %
40 %
30 % A
20 % +
10 % A
0%

Share of time spent

5 41 401

Vertices

‘DJTS Construction @JTS Execution ‘

Figure 6.14 Polygons; relation between constructioand calculation phases in predicate operations akse num-
ber of vertices is increased.

This section presents the relative times of thestantion, calculation, and serialization
phases for polygon geometries.
According to these results, the relative time dostconstructing JTS geometries is not

stable with regard for variations in vertices.
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While the cost is relatively stable around 20% lfoe strings, it increases from 10% -

40% for polygons as the number of vertices is iaseel. This may be due to a more com-
plex build process when the parsed coordinatepaseed to the JTS Geometry factory
while the calculation phase has more constant tiomsumption. Analysis operations on
complex polygons are something that could probablyefit from more detailed research

to uncover possible bottlenecks in polygon creation

Polygon: Analysis

100 %
90 % -
80 % -
70 %
60 % -

50 %
40 % -
30 % -
20 %
10 % A
0%

Share of time spent

5 41 401

Vertices

‘D JTS Construction m JTS Execution O JTS Serialization ‘

Figure 6.15 Polygons; relation between constructigrecalculation, and serialization phases as the nureb of verti-
ces is increased

The pattern found in the construction phase islamin the time required for serializa-
tion. At the 401 vertices observation mjure 6.1above, the total required time is at its
worst with the construction and serialization plsaséen combined representing ca 75%
of the time cost for performed operations.

Polygon: Predicates Polygon: Analysis

100 % 100 9%

90 %

80 % 80 %

70%

60% BJTS Serialization
509% B TS Execution
40% BJTS Construction

30%

Share of time spent
h

Share of time spent

20% 20%

10%

0% 0%

Figure 6.16 Polygons; relative cost of constructioim predicate operations with variance of digits
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Figure 6.17 Polygons; relative cost of constructioand serialization with variance of digits

The time cost for predicate operations on polygsnelatively high but stable at around

40% relative to the total time to complete. Thisignificantly more expensive than the

20% for line strings, but logical, as the constiawtprocess for polygons is more compli-

cated than that of line strings. The serializafioran analysis perspective is also stable,
and levels off at around ca 30% as shown in Figut&. The total time cost averages out
at 60% in total relative to the ttc for the inteigya of analysis operations on polygons in
an XSLT context.

Polygon: Predicates Polygon: Analysis

100 % 100 %
80 % 80 % A
60 % 60 % A
40 % 40 % A
20 % 20 % A
0% + T T T 1 0% T T T
0 1 10 40 0 1 10 40

Holes Holes

Share of time spent
Share of time spent

‘DJTS Construction BJTS Execution ‘ ‘DJTS Construction BJTS Execution OJTS Serialization

Figure 6.18 Polygons; relative cost of constructioin predicate operations with variance of holes.

Figure 6.19 Polygons; relative cost of constructioand serialization in analysis operations with vaiénce of holes.

As observed in the diagrams for operation runninget the processing of holes in a
polygon is expensive with regard to time cost. Ehelgservations of time as divided be-
tween calculations and construction/serializationficm that indication. The evident de-

cline in relative construction time as the numbkehales increases attests how the con-
struction/serialization processes become less ifapbfactors in the ttc as the number of

holes increases.

6.1.4 Summary of findings from tests with constructed data

Parameter TTC Construction Calculation
Vertices

3 0.66 24.66% 75.34%

30 0.57 19.88% 80.12%

300 2.73 22.47% 77.53%

Table 6.3 Predicate performance on line strings
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Parameter TTC | Construction | Calculation | Serialization

Vertices
3 2.82 10.80% 87.42% 1.78%
30 221 [ 7.16% 84.81% 8.03%
300 3.62 12.87% 61.78% 25.35%
Table 6.4 Analysis operations on line strings
Vertices
2 0.04 |67.06% 32.94%
3 0.04 | 65.47% 34.53%
4 0.05 [ 40.83% 59.17%
5 0.04 | 78.76% 21.24%
6 0.04 [82.26% 17.74%
Table 6.5 Predicate operations on points
Vertices
2 0.05 [ 24.64% 75.36%
3 0.05 |20.83% 79.17%
4 0.07 [ 15.62% 84.38%
5 0.04 [32.33% 67.67%
6 0.03 [ 41.60% 58.40%
Table 6.6 Construction/Serialization for points
Parameter TTC Construction Calculation
Vertices
5 0.41 7.96% 92.04%
41 0.43 33.39% 66.61%
401 1.46 59.77% 40.23%
| Digits
2 0.25 40.57% 59.43%
3 0.26 41.14% 58.86%
4 0.26 43.11% 56.89%
5 0.34 47.63% 52.37%
6 0.29 45.71% 54.29%
Holes
0 0.29 63.22% 36.78%
1 0.44 47.49% 52.51%
10 1.75 29.29% 70.71%
40 9.91 19.73% 80.27%

Table 6.7 Predicate operations on polygons




Parameter TTC Construction Calculation Serialization

Vertices
5 0.30 12.38% 78.34% 6.09%
41 0.53 27.75% 51.73% 27.05%
401 2.30 33.37% 31.32% 61.12%
| Digits
2 0.42 21.91% 55.82% 40.95%
3 0.44 21.76% 57.27% 40.25%
4 0.45 23.34% 54.62% 41.71%
5 0.45 27.58% 50.67% 41.78%
6 0.46 25.52% 51.15% 43.48%
Holes
0 2.86 11.13% 85.29% 35.55%
1 2.20 14.53% 79.16% 28.20%
10 3.58 16.48% 72.22% 22.12%
40 13.98 | 14.33% 76.27% 13.88%

Table 6.8 Analysis operations on polygons

6.2 Findings from tests with real data

This section presents the results of the test®pedd on the Tana data set.

The baseline approach presented first, uses thiementation of the operations as tested
with the constructed data and hence processestbwaytraight forward. The Optimized
approach takes advantage of caching geometry shjduth are used many times, and as
such saving most of the overhead used to congtraciTS geometry repeatedly.

The description of the tests done can be founcoti@ns 5.1.4 and 5.1.5.

6.2.1 Base-line approach

Testcases 1-4 on Tanadata
Testcases 5-7 on Tanadata

4
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Figure 6.20 Performance times for tests 1-4 on Tardata.

Figure 6.21 Performance times for tests 5-7 on Tardata.
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Testcases 8-10 on Tanadata
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Figure 6.22 Performance times for tests 8-10 on Tardata.

The practical test of counting houses within 20ersefrom the road has been executed
on all ten scenarios. Note that the results aresho seconds as opposed to milliseconds
used on the diagrams covering results on isolapsiations for constructed data. See
5.1.4 for descriptions of the test, scenario detaid visualizations of the Tana data. The
results show that using a non-optimized approduhgs start to slow down somewhere
between case 4 and 5 with an ever increasing tose as the data set gets larger. 1t is
important to be aware that the data sets giveméylifferent bounding boxes are not lin-
ear in growth. The discussion around performancestiolds can be found in chapter 7.
To understand the reasons behind the growthnécessary to analyze the stylesheet de-
fined in 5.1.4 and the spatial extensions usedaw wf the test results from singular op-
erations on constructed data. As earlier mentiotiedtemplates use a recursive approach
to union all roads into one multi line string whishthen used to construct a buffer repre-
senting the 20 meter zone as explained in Sectibd.5A major source of time consump-
tion is the repeated use of the “within” functiom shown in Table 5.3. The within func-
tion is used to check if a point (building) is witlthe 20 meter zone (buffer) of the road.
Each time the function is called, the same bufgaiable needs to be converted to a geo
object using the GeoXSLT framework. No efficiensygained by reusing geometries.
The within function is called up to 9848 times dagieg on the number of buildings
(points) in the data set with large polygons repnéiag the buffer (Table 5.2 presents the
different test cases). This shows that the basehm@ementation of the GeoXSLT

framework has a weakness when it comes to repeatedf geometries.
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6.2.2 Tests of basic performance optimization

A through optimization of the JTS construction @s& has been outside the scope of this
thesis. This section presents tests with the “Gégn@@ache” mechanism as presented in
Sections 4.5.5 and 5.1.5. The Geometry Cache n#esnihe time needed for repeated

construction of geometries already used by keemagy built geo objects at hand. This

section presents the findings from running thestesth Tana data (Table 5.2 presents the
different test cases).

Visualizations of execution times and performanu&aease relative to the base line ap-

proach are shown in Figure 6.23.

Testcases 1-4 on Tanadata Testcases 5-7 on Tanadata
4+
m 400
g E 2 ) S
£ 9 £ S 200
o Fg
o N 7 e LA - . - TTC Geometry Cache
1 2 3 4
B TTC Cached | 0,33123 0,33924| 0,45777| 1,0684 B TTC Georetry Cache | 580561 22,6301 | 101,115
Geometry @ TTC Original 20,6205 | 76,1159 | 350,486
@ TTC Original | 0,382280,61726 | 1,04517| 3,40763 Testcase

Testcase

Testcases 8-10 on Tanadata
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Figure 6.23 Performance increase when using “GeonrgtCache” on Tana data
In general, the test cases gain a 60 % performacoease by using the Geometry Cache.
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6.3 Chapter summary

This chapter has presented the results of the desiised in chapter 5 and provides an
overview of performance and how the bridging betwd€&€S and the XSLT process af-
fects it. Further it has shown experiences with dsta, and how a simple caching

mechanism can be used to increase performancédicigniy.
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7 Discussion

This chapter discusses the research objectiveseim of the findings and previous re-

search. The research objectives are answeredl@s<p

Research Objective 1

To answer research objective 1, section 7.1 presehihe of arguments concluding with

the general suitability of XSLT with Extensions tbe processing of GML.
Research Objective 2

Performance

Section 7.2 gives a discussion on the general pedoce issues and aspects, before de-
tailing on the various phases of constructing, Waking, and serializing geometry repre-

sentations in an XSLT context.

Flexibility

As an example on the flexibility and feasibility tife system implemented, section 7.3
features argumentation and references to praciaahples on why and how generaliza-
tion/simplification can be performed with XSLT, sligng a new view to the conclusions
of previous research. The demonstration aroungiaten of simplification operations in
Section 7.5 also shows the ease with which newtilbmality can be integrated. It also
presents suggestions for new enhancements opepitgaven more power for the trans-

formation process.

Research Objective 3

Section 7.4 gives a walkthrough of the simplifioatiof the development process

achieved by bringing spatial functionality to XSLT.

The chapter is ended with a walkthrough of a pcattapplication of the GeoXSLT
framework where the features discussed are denadedtin Section 7.5.
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7.1 The suitability of XSLT with extensions for processing Geo-
data

Research objective 1 places a focus on the pasgibilusing XSLT with extensions as a
medium for processing geospatial data. The expetirdene here is based on the as-
sumption that data is of an XML format with at le#flse geo part of features encoded
inline with the GML schema (herein the Simple Feat8pecification) as specified by
Open Geo Spatial/ISO (Ryden 2005). Research agettas defined in 1.1 is hence in-
terpreted as a question regarding the technicadilpibsy of processing GML and per-
forming spatial operations on the data from witthie XSLT process. As GML is a XML
format (Cox, Cuthbert et al. 2002; OpenGeoSpati¥l22 Lake 2004), and XSLT is a
stylesheet language for XML (Clark 1999), theraagechnical reason why XSLT cannot
work with GML. Non-spatially aware processing of GMvith XSLT has also been
documented possible by other research papers €HarrR003). General extension of
XSLT is defined by W3, and support for developingls extensions is provided in major
processors. The integration of spatial functidgahrough extensions of the XSLT lan-
guage has previously been introduced by Lehto afhi®ski (Lehto and Sarjakoski
2005) as a field open for more research. Harrie adodansson refute the use of
XSLT/extensions for geospatial operations due éoitherent lack of “object interaction”
in XSLT (Harrie L. 2003). While the re-iterationp=bilities of XSLT are not as evident
as those of e.g. XQuery, Object interaction andreoimdications on the lack of such in
practice are discussed with closer detalil in 6.Bigeneral, the system created as part of
this thesis provides an implementation of XSLT asgtens for certain geospatial func-
tions implemented in Java. The implementation leenliested with subsequent interest-
ing findings confirming that technically, it is wepossible to extend XSLT with spatial
capabilities. A certain time overhead for convensad data between the stylesheet and
processing extensions must be expected, but assdisd in 6.2 and 6.4.2, the cost can be
acceptable and in some cases outweighed by that@btperformance gained by less
wait for network transmission time. These findirgi)ge a clear indication that XSLT with
extensions certainly can be used with successdosforming and processing spatial data
encoded as GML.
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7.2 Performance; Limitations and possibilities

This section evaluates the findings from develognd testing the extension framework.
Section 7.2.1 discusses the performance of singylarations and how the total time is
divided between the different phases of the extenginctions. It also presents some as-
pects of the construction process that do needavgmnents. Section 7.2.2 focuses on the
performance in practical settings with real daiadikgs are interpreted and discussed in
view of view of different perspectives on time. Jlsiection also discusses enhancements
to improve general performance of the implementestiesn, and evaluates the significant

effect of the “Geometry Cache” introduced in Satto5.5.

7.2.1 Performance of singular functions

The findings from measuring the performance andkimgs of specific extension func-

tions in chapter 6 provide clear indications tlegré is a given overhead for the two-way
conversion of data between XSLT and JTS. This @edcttempts to identify and analyze

the reasons for the overhead cost to open up forduimprovements and patterns of use.
The processing time of an extension function is eénagl of two or three phases depend-
ing on the return type of the operation. The camsion phase, where JTS geometry ob-
jects are created from node lists; the calculaplbase, where calculations on the JTS ob-
jects are executed; and the serialization phaseremesults from the calculation are con-

verted to node lists for return to Xalan.

Construction phase

In a predicate context where the result is a Bookedue without need for serialization,
the construction phase consumes ca 20% of the égtadution time for line strings and
55-88% for points. For polygons, the cost is rgkti stable at 40%-50% for geometries
without holes, and varies between 10%-60% for pmiggwith holes. As operations on

polygons with holes generally seem to take the niost to complete, we will focus

them.

Predicate operations Polygon Line String Point
Vertices 1.46320002 2.72643867
Digits 0.28635205 0.04429613
Holes 9.9062982

Analysis operations
Vertices 2.29832567 3.61952981
Digits 0.46381313 0.03397368
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Holes 13.97678751

Table 7.1 Maximum values for the time to completedr all test cases performed on
the constructed data as described in chapter 5 arél Times are in milliseconds.

Table 7.1 shows the maximum recorded values faeatlcases on constructed data. De-
tails, visualizations, and parameter values arélabla in chapter 6, which presents the

findings of the tests specified in chapter 5.

Polygons

For polygons with holes, it is interesting 1

0 0000 GO P @

note that the fluctuation is very visible ¢

shown inFigure 6.19 Polygons; relative cost of cor

struction and serialization in analysis operatiaith vari-

OO TE 0B

ance of holesIn the diagram one can clearl

/

see that the time cost of the constructic..
phase decreases relative to the calculatinn
(JTS Execution) phase as the number F9ure 7.1: Polygons with 40 holes
holes increases. This is interesting as the hadesl in the polygons are identical; it is
only the number of instances that is increaseabther words, increasing the number of
holes in a polygon seems to be more expensiveneghard to the calculation phase than
the construction phase. The results from chapiadig@ate that in general, operations on
polygons with holes require the longest time tocexe (build, calculation, and serializa-
tion combined). This is also shown in Table 7.1.i/bptimizing the calculations of JTS
has been outside the scope of this thesis, it istefest to understand the reasons behind
the costs of constructing the JTS geometry obfgtsuch an understanding one is able
to provide input for improvements of the build peses. The observation that the construc-
tion phase is relative to the calculation phaseematpensive for smaller amounts of
holes brings us to the impression of a start-ug tasgeometry parsing that does not
scale down very well for polygons with holes in tmardar. The build phase is imple-
mented in the level 3 classes which are documentdd5. As documented with closer
details in 4.5, the construction phase is organased loop iterating through the children
of the node list as received from Xalan. The firatle found to be a GML node is then
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sent to a “SubHandlerFactory” for delegation of ttwerect handler. What makes the
polygon handler differ from other handlers is thaile points and line strings can extract
the coordinate string for direct parsing, the polydnandler has to execute two additional
searches within its own node list. The first seasclfor the singular “outer boundary”,
and the second for a possible series of “inner Bades”; holes. For each linear ring
found in the outer boundary or inner boundariestalgndling equally expensive as for
the line strings or points has to be executed. Weans that for polygons, the construc-
tion phase involves two searches and the creatianimmum one basic geometry in-
stance (linear ring for the outer boundary) in &ddito the processing in common with
other simple geometries. On top of this, a val@atnd possible rebuild of the outer and
inner rings is done to bridge between the diffeeehetween JTS and eventual confor-
mance with the polygon definition of ISO 19107 (I$0211 2003) in the data. 1SO
19107 defines polygons to have counter clockwideratngs and clockwise holes. This
is understood to be necessary for some algorithmisba@aring calculations where it is
necessary to know the up and down of a polygon.GRi specification references the
ISO 19107 and states that it should be conformadrtie. SFS-SQL specification (ISO
19125-2) (Ryden 2005) enforces no rule on thislTI8 this “normal form” is defined in-
versely, with outer ring clockwise and holes courgi®ckwise (Davis 2003) (K6bben
2005). While I have not timed the cost of this @ation/rebuild process, it could be worth
investigating how expensive it is with regard tméi and if polygon parsing in the con-
struction phase should assume that the coordirafgesces of outer and inner rings are
provided in a valid/conformant state for JTS norrmaim. It is possible to convert JTS
polygons to JTS normal form with the provided ndizeamethod (Davis 2003; Davis
2004), but as noted in (Kébben 2005) and in Jawadibaeturns rings in a CW-CCW
fashion, - which is the opposite of the ISO stadddahe maintainer of JTS seems reluc-
tant to change this according to (Kébben 2005). dtmer possible area of high cost in
the polygon build process is the mentioned searekesuted to find the linear rings of
inner and outer borders. As the two searches areuéxd on the same node list, - which
has already been iterated (shallowly) by the oabgearch detecting the polygon, it could
very well be that time and resources could be s#veither the original search was able
to do a deep search, or at least that the two Isesuexecuted in the polygon handler were
combined into one. By doing this we can assurernbat of the nodes in the list are read
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more than once, and also avoid the possible spadverhead of initiating three searches
instead of one. The issues around rationalizinghtireber of searches for sub geometries
are also of relevance for the performance of ngdbmetries, as these are made up of a
number of basic geometries as “members” of the ¢exngeometry in the same way as a

polygon has “children” that define its multiple geetric properties.
Possibilities of improvement for the construction phase

Coordinate parsing

The parsing of pure coordinate strings is commanafbgeometries and is a field that
also has areas for improvement. While use of tloel&Search” function to find the coor-
dinate node is explained in 4.5, it is quite simitalogic to the various gmiSearch meth-
ods used with polygons as described in Chapterh& implies that also this method
could be marginalized by allowing the original &gon of the node list to detect the node

element containing the coordinate string.

Generalization and use of static types
During testing, a relatively high spread in the pbad observations was detected. This

can to a certain degree be explained with thedueslitest-platform which was vulnerable
for among many things Windows’ up and down prianitg of threads while running

(several non related utilities were running oncbmputer at the time of testing). But also
the fact that the code has several redundant clatmces local to the various handlers.
This can possibly result in a poorer runtime perf@ance with more variance in execution
times. A major improvement, both with regard to thecution speed and memory use
would be to do a refactoring process of the hasdi@d generalize out common class in-
stances and to a certain degree place them i staitexts. Another advantage of this

would of course be the general improvement in apgsity and readability.

Calculation phase

The calculation phase consists of calling the spoeding methods on the generated JTS

object of the extension function called. Perforneanmeasured relative to the other phases

is available in section 6.1.3. In this thesis, pbdiraizations or changes to the JTS meth-

ods have been implemented. Even so, it should Ine @iroblem to use various function-

ality of for calculation optimization by calling setting those properties from the level 2
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classes were the calculation methods are calleglt8dhnical and developer references of
JTS both mention several approaches for increasefbrmance (Davis 2003; Davis
2006).

Serialization phase

The serialization of JTS objects to Node objectsygatible with Xalan is a straight-
forward process documented in 4.5.4. Findings femmalization of line strings, points,
and polygons in Chapter 6 indicate that as theeseri coordinates or complexity of the
geometry to serialize increases, the time neededdalization increases as well. This
correlation between data to output and requireck tim serialize, does not necessary
match the precision level or number of verticeshia calculation; as it is the complexity
of the resulting geometry that gives the size efrisult to serialize. But, if e.g. the preci-
sion level or number of digits is high, it will makhe impact of a large and complex re-
sult geometry more powerful. The implementationsdbave shallow prototypes of node
objects representing various geometry objects fackgr serialization by cloning instead
of building them from the ground up. But this cotien could be more elaborate. With
shallow it is here meant that the prototypes tegy Vittle degree are singular node ele-
ments with namespace, prefix and name set. Thedeng@rocess has to clone each
node, insert eventual values (such as coordinat@sdoordinate node), and then attach
the nodes together. By having deeper prototypedesiavhich have all the components
required ready available instead of being singatdities, the time required to assemble
the serialized nodes can be reduced by an unknoargim This would probably be of
most benefit to those cases were the serializgtltase is large relative to the other

phases. Such cases are serialization of pointtasager polygon and line strings.

7.2.2 Execution performance in practical contexts

The implemented system for enabling spatial transétions is assumed to be used as a
component in applications working in mainly twotdist perspectives. One is the inter-
active perspective defined to be a setting wheneesme or something to a certain degree
expects immediate response to operation calls. Blemrare standalone applications or
browser based clients accessing data directly,sander applications such as web ser-
vices using the library to provide some kind of di@vare data transformation or proc-

essing for external applications, such as in (Ledrtd Sarjakoski 2005). (Nielsen 1994;
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Nah 2004) are some of the many papers providindgedjues and categorizations of toler-
able waiting time. A presentation of the categdrimaas adopted in this thesis is pre-
sented in section 6.2.2.1 below. The other perspeepresents typical batch operations,
where the tasks are regarded as jobs to be exerutependently of users or processes
waiting for the results right then. In the batcmtext, immediate response seems to be of
generally less importance, with the main focusosethroughput capabilities, job schedul-
ing, possibilities of handling larger amounts otajaand performance gains by running

several jobs (processes) in parallel to mentionesom

Acceptable waiting time for interactive contexts

According to (Nielsen 1994), basic advice on respotimes for interactive applications
has been more or less unchanged within the lasy tyears. In (Nielsen 1994) Nielsen
has set out limits that operations within an intévee context should adhere to provide an
optimal user experience regardless of the apptindathplementation. Below are the lim-
its as interpreted in this thesis:

Instantaneous: 0.1 secondrhis limit specifies the max time an operation take while
still giving an impression of instantaneous reattiBuch response is expected for e.g.
displaying letters on the screen as one’s typing iord processor or visual response
when clicking on GUI components. If the operatiakes more time than 0.1 second the
user will notice that the computer is working omshing.

Noticeable: 1.0 secondThis is the max time noticeable operations cae takhout the
user sensing the system as “sluggish”. If an omerateeds more than 1 second to com-
plete, it should provide some kind of indicatiorattht is working. (Cursor shaped as a
time glass is suggested by Nielsen).

Tolerable: 10-15secondsk-or general contexts, if an operation needs mae ft® sec-
onds to complete, the user should get an indicatfahe remaining time before the task
is completed. Still, in (Nielsen 1994; Nah 2004isibbserved that in a web-context, users
can accept up to 15 seconds for a page to downésadieb users have “been trained to
endure so much suffering that it may be acceptabiacrease the limit value to 15 s”
(Nielsen 1994).

The interpretations in 6.2.1.2 review the findimgyiew of these categorizations and dis-

cuss how the implemented library fits into eachheim.
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Interpretation of findings with regard to waiting t ime in an interactive context

All total execution times used in these discussiares based on findings from the tests
performed on the Tana data-set in 5.2 and withcttelhe prototype enabled. The cache
was used because it yields considerably higheoprence than the original/underlying

implementation. See Sections 4.5.5, 5.1.5, 6.2@,the section about caching below for
details on execution times and discussion of tiotb&grototype.

Transformations within instantaneous time

Given a realistic scenario with an applicationizitilg the library, the stylesheet would
probably be loaded and ready for execution. Stk job fetching the geospatial data
(GML) to be processed typically needs to loadatrfrsources situated on externally, such
as WFS servers. Just fetching the data would inyntaises probably imply a waiting
time of more than the maximum of 0.1 seconds twitiein the “instantaneous” limit de-
fined in 6.2.1.1 regardless of how data is proaddseally. Disregarding this, it is here
assumed that the GML has already been loadedyearcessing it through a local cache,
or that the application thanks to its spatial c@pes (as mentioned in 1.2) is re-iterating
on data available from previous calls during itsssen.

The findings indicate that the relatively complexdittransformation (as of the transitive

template use) used in the Tana data-set cannafdram much data within 0.1 seconds.

Case Timeto complete

1 0,33122813
2 0,339242278
3 0,457767119
4 1,06840199

Table 7.2 Time needed to complete test cases 1-4 Tena data as defined in 5.1.4
and reported in 6.2. Time measured in seconds.

Table 7.2 shows that for the smallest subset testausisting of 3 road stubs and 24
buildings encoded in a 16 kb file (see 4.7.4 foade on test) time was exceeded with
more than 300% relative to the 0.1 second limit.ofsgn the possible interpretations of
this result is the indication of XSLT as not beiag ideal approach for instantaneous
transformations of data, but also that the cosismig the extensions is too high, or that
the test executed is too complicated. To find oaterabout the smallest possible time the

specific transformation can be executed on the Tata using the test equipment (see
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4.7.5), two cases with even smaller subsets hage beated. These tests have only been

tested using the cache-optimized implementation.

Case Area Roads Buildings Size (kb) Time to complete
0.1 1 1 2 0,049887346

0.2 1 7 5 0,055344185

Table 7.1 Extra small subsets of Tana data to prob®r minimum possible execution
time on operations defined in 5.1.4

These findings indicate that the implementation haselatively low capacity for the

amount of features/size of data-set that can

be processed instantaneously.

Figure 7.1 Visualization of test case 0.2.
But, as it seemingly is possible to achieve
the performance with a minimum of features

processed there are approaches that can pos-

sibly circumvent the challenge to a certain

degree. One alternative is implementing an incréadgéransformation process; process-
ing and rendering only smaller bits of the featseg-to provide a stream of updates,
somewhat like how Google Earth renders and dispdaysllite and aerial photos as they
are received in the client. This would probablyuna performance loss with regard to
total processing time, due to the increased timextmad for the multiple transformations

and renderings.

Possihilities for transformations within noticeable time

While it does not seem that the possibilities fmtantaneous transformations are optimal,
the feature capacity is quite larger when operatioan occur within a 1 second time
frame. Findings from the Tana data-set indicaté¢ tth@ complex transformations tested

can be executed within 1 second for data setfedinaller than case 4 (4.7.4).
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Figure 7.2 Visualization of Tana data, test-case 4
As the figure above shows, data sets of similag az case 4 of the Tana data are large
enough to be of practical use in contexts suchedsmapping etc.

Possibilities for transformations within tolerable time

For transformations within a timeframe of 10-15m®wts, relatively large amounts of fea-
tures can be processed. In the Tana data-set, Gam®d 6 are performed within a time-

frame in the vicinity of the limits for tolerablarte.

Case Area Roads Buildings Size (kb) Time to
complete

5 201 1132 643 5,80560965]

6 425 2 145 1242 22,63007589

Table 7.3 Tana test cases 5 and 6 with findings

Transformation time

Figure 7.2 Relation between fea-
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likely amount of features the implementation widl bapable of processing within the tol-
erable waiting time. 12.5 seconds has been chasémeantersection point, as this is be-
tween the two suggested limits (10-15) in 0 ancukhallow for some flexibility consid-
ering the estimation’s accuracy. The intersectiongthe Features axis occurs at ca 1948
features. As the average ratio between road ardibgifeatures of test-case 5 and 6 is
1:5.33944981 we can estimate that within a toleraibhe, the implementation can trans-
form a dataset of ca 307 roads and ca 1536 bugdwith the relatively complex tem-

plates.

Processing time vs. Transmission time

In (Lehto and Sarjakoski 2005) the authors havatetka system which is using WFS as
data source and produce SVG visualizations of géimed data which are then rasterized
to PNG. The conversion of GML returned from WFSSMG is achieved with XSLT
using extensions to support the generalizationatmer. While they do not go into im-
plementation details, and do not report on speefiperience with the extensions, they
identify two bottlenecks.

1. The request and transmission of data returned thenWFS takes 30-50%

of total processing time

2. Rasterization of SVG to PNG 34-54% of total prooagsime
In addition, as they are working with mobile terais) they observe that transmission of
generated PNG files take almost four times of #pEnt for generating the image (with
PNG files varying between 85-133kb). (Lehto andjgkaski 2005) This indicates that
for an application using WFS to get geospatial d@ataisualization, the time induced by
using XSLT to transform the data will be of minomgortance relative to re-
guest/transmission of source data and rasterizimya mobile context, the processing
time will in anyway be dwarfed by the transmisstone of the result to the client given
the file sizes as presented by (Lehto and Sarjakki¥}5). These findings are inline with
the results from testing done with the Tana datslLGiles get relatively large and re-
quire quite some time to download, thus it may lee amount of data to transfer that is

the main limiting factor of the transformation pess, not the XSLT process itself.
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Interpretation of findings with regard to a batch context

In a batch context, the performance speed is dlsnmortance, but along with other pa-
rameters, it is of equal relevance to considectpabilities of handling larger sets of data
than what is possible in an interactive contexte Thplemented library has successfully
been tested with up to 12266 features in test ¢@sef the Tana data. While this did
work, special care had to be placed in the desigheotemplates. It seems that straight-
forward recursion results in stack-overflow erratselatively shallow depths (ca 1000)
for Xalan based implementations. A “divide-and-coeij approach to recursion solved
this.

Enhancements for the improvement of general performance

This section gives a walk-through of different aygmhes to optimize the speed of con-
struction and serialization phases. While the issliscussed in 0 and O focused on weak-
nesses and possible improvements in the existipieimentation, the points below intro-

duce ideas and features independent of the existidg base.

Caching

An approach with seemingly great potential for perfance improvement is to cache the
parsed geometry objects. The idea presented hdrased on the observation that con-
structing JTS geometries is an expensive procesvahy cases an operation is executed
on the same feature (geometry) many times. Sutlieiexample with the Tana-data. To
count how many buildings that are situated witidn2eters from the road, each building
(point) is checked for presence within a polygopresenting a 20 meter distance buffer
from the road. The check results in the same polygmle list representation being sent
to the “within” extension operation with each ana®y point. An early prototype of the
cache approach has been implemented and testedheiffiana data. See Sections 4.5.5
and 5.1.5, and 6.2.2 for implementation details t@stl results. Using the cache seems to
yield higher performance even for very small sdtfeatures. While the overhead of re-
parsing the same polygon several times is relatilel compared to the cache approach
with regard to total execution time for very snddkasets, the time saved by using cached
versions of the polygon is close to 50% alreadydsy case 2. (See Chapter 5 for details
on the various test cases of the Tana data). T&lldelow shows the percentage wise

90



improvement in execution time for each test casth@fTana data when using the cached

approach.

Whilst performance gains have already been denaiesir
1 13,36% . . .
> 45.04% with the prototype, there is a need to test thisher and
3 56,20% check for potentially faster lookups than whatase in the
4 68,65% .
5 71 850/2 prototype. It should also be done some researchaimhore
6 70,27% exhaustive use of the approach, as it today is nsgd on
7 71,15% . . . . . .
8 69,61% multi geometries and line strings. Interesting pecsives
9 68,71% would be to check for possibilities on caching vehopera-
10 67,42%

Table 7.4 Improvements in performance time for thecached approach compared
with original (non cached) approach.

tions, to save both construction and calculatiareti Of course, the caching of serialized
geometry object would also be of interest to redeatoser. It is important to keep all
such functionality open for easy customization eodfiguration by the users. This is dis-

cussed further in 7.3.2.

Indexing

An interesting alternative or compliment to cachpaysed geometries and results of op-
erations is to keep a full or partial index tablghweferences to all features in the GML
being processed. An identified bottleneck in thelemented approach is the search and
construction process of geometry objects. By hawngindex of all features, a quick
look-up based on the node list hash code (alwagsiged for all Java objects, (Sun
2004)) would eliminate any iteration on node lidtging execution. The table could up-
date its pointers from pointing to “raw” node d&tgparsed versions of the geometry ob-
jects as they get parsed. More advanced implememsain e.g. web contexts, could re-
tain the cached objects in a static index classhaomultiple transformation sessions can

benefit of the cached objects instantaneously.

7.3 Flexibility

With regard to research objective 2, this sectimcubsses aspects around the possibilities

and limitations of flexibility to the transformatigprocess implied by using GeoXSLT.
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7.3.1 Integration/Extension of functionality

The modular design of the GeoXSLT framework wasig@ with openness for integra-
tion of additional spatial functionality in mindhat is why the architecture as presented
in Section 4.1 is divided intbront-end (level 1)implementation (level 2andhandlers
and factories (level 3levels. The core functions of converting back éorth between
geospatial objects and XSLT is contained in levah@ accessible to implementations of
geo operations in level 2 through a small interf&slong as the geospatial (JTS) objects
created by GeoXSLT support the operations desinglementing spatial functionality
can be achieved in just a few steps. In genera,just a matter of defining the interface
in level 1 and a straight forward implementatioriagfic in level 2. The rest is handled by
the GeoXSLT framework. The practical applicatioeganted in Section 7.5 includes a
thorough example of the simplicity with which GedXIScan be extended with addi-
tional spatial functionality. Although GeoXSLT wadesigned and tested with
Xalan/XSLT, the use of node lists as parametera®pgp for use in pure Java applica-

tions as well.
7.3.2 ldeas for improving flexibility

Configuration

The configuration alternatives of the GeoXSLT inmpéntation are in the current version
hard coded in a static configuration class anddgettly in various classes. This is not
inline with the idea of enabling independence fribi underlying software implementa-
tion. There are several approaches to solve thisleWhe implementation today only
uses extensiofunctionswhich are mapped to the corresponding methods X®leT
specification also allows for the use of extensstements These are as implied by the
name distinct elements contained within an extensi@amespace. The specification de-
fines them as “...The element extension mechanisowalhamespaces to be designated
asextension namespace When a namespace is designated as an extersimspace
and an element with a name from that namespacesitca template, then the element is
treated as an instruction rather than as a litesallt element. The namespace determines
the semantics of the instruction” (Clark 1999)other words, the extension elements can
be used to pass initial instructions to the promeégamework with configurations of pre-

cision models, validation levels, and more. Additithy, the interaction between exten-
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sion elements and the Java implementation availe mantext information than ditto for
function extensions. For example, Xalan allows asde both the XSL processor context

(org.apache.xalan.extensions.XSLProcessorContegind the extension element

(org.apache.xalan.templates.ElemExtension@adim the Java handler of the extension.

These objects give the handler access to the ctengpidesheet, XML sources (very in-
teresting with regard for indexing) and more (Apactalan Community 2005). While
this approach certainly is of interest for moreesgsh, there is a need to be aware of a
limitation. An important performance factor is thepport of compiled stylesheets; tran-
slets or XSLTC (Apache Xalan Community 2005). THeLXC XSL processor translates
stylesheets into Java class files which then camskd repeatedly for transformation with
high performance. The Xalan XSLTC processor dodssnpport the use of extension
elements. Another and maybe more viable approatthuse a framework such as Spring
for configuration. Spring provides what is callddjéction of Control” which allows Java
classes implementing the bean interface to be gargd with XML files and hence be
configured during runtime (Harrop and Machacek 20@®plementing this should not
give any difficulties, only minor changes to then@iguration class and a general clean-

up of code.

Geographic axes

There is already a large set of axes available PatK (Holzner 2001). These axes are
very powerful for the specification of filters amarious stylesheets in this thesis apply
them in relatively complex queries. Still, in a text of spatial data, there is a need to
orientate in a geometric perspective. There shbelé@ possibility of defining a pattern
matching elements along a given vector. With tairscfionality, one could do a search for
all elements (or special elements) at e.g. 90 @sgoéthe current element. Implementing
this can be done in many different ways, but thests suggests an EXSLT function us-
ing the extension bridge provided here. By gettimg coordinates of the center-point for
each geometry object, calculating the angle betweenpoints is very much possible.
JTS (and others) also provide the necessary meansafculations between different
SRS/EPSG. It is also of interest to note that Jidviges a “bearing” method which can
be used to calculate in which way different feagypeint. The JTS “distance” method is

also of relevance, especially with regard for cagleere one need to add non-geographic

93



features to a map, such as labels, signs, andaéee placed at certain distances from the

targeted feature.

Spatial document function in XSLT

A powerful feature of the XSLT language is the “doent(URI)” function (Clark 1999;
Holzner 2001). For transformations on non-spatislilthis function can be used to in-
teract with external resources during transfornmatichis way, transformations can be
performed on a minimal source tree and incremsgni@dld external resources as needed.
Usually, the document function is used on localsfior URLs accessible over HTTP
GET. When used in a GML context, there is a chgkanith the complex queryf/filter
format used during interaction with WES serverdl@®.12 lists a typical WFS query.
What is needed is a document(URI) function whiah teéke a payload containing the
queryffilter that is sent to the URI with the HTP®ST method. By such, the document
function could be used to fetch features as neddadg runtime achieving the same ad-
vantages as for non-spatial XML. As an exampleaméd use data from one WFS
source for the initial source tree and select sofiike features based on calculations with
the GeoXSLT framework. For the selection one cadluéh fetch other details from a sec-
ond WFS. Everything performed from within the saX&.T template and transforma-

tion.

7.4 Consequences for development

This section provides an answer to research olge8tiand argues how the integration of
spatial functionality made possible by the impletagan created will have a positive ef-

fect on practical development with spatial data.

7.4.1 Less surrounding complexity

The work with creating and performing all the teases has shown the simplicity of
processing spatial data with the implemented GedX&amework. While other ap-

proaches require the user to setup and configuieugasupporting toolkits just to start
working on the data, experience shows that thisaggh allows loading and processing
spatial data without any changes to the existirdeaanderlying the transformation. This
means that one can use any XSLT processor suppoytdte framework and start proc-
essing GML with spatial functionality without chang a thing. This allows the devel-
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oper to focus on using the spatial functionalibgtéad of implementing or integrating it.
All that is necessary is to provide the jar filentaining the spatial extension frame work
on the classpath. This allows for easy integrainbo existing systems, e.g. web applica-
tions with JSTL (Sun 2006) based JSP pages, wipattaktransformations now can be

performed with minimal code without having any irapan other parts of the application.

7.4.2 Code readability

When compared with general programming languag&4,TXs a simpler language with
focus on the flow and transformation of data. Ryasiresearch and Chapter 3 defined the
need for syntax on the spatial functionality thatdws the same patterns as those native
to XSLT. By such, the simplicity already inherent{SLT is conserved, and usage of the
extensions intuitive for developers. The implemgataof the framework supporting the
spatial operations succeeded in achieving thideasonstrated in the stylesheets used for
testing both constructed and real data in Chaptérh@ result is that standard spatial
functionality as defined in Chapter 3 integrate$yfwith the standard XSLT used in the
templates without obfuscating the code readabifgditionally, the simple syntax of the
operations defined is intuitive and easy to uses &ktensions open up for different ap-
proaches to the creation of XSLT templates, amglup to the developer whether to pack
much functionality into a singular XPath statememtfo focus on readability by spread-
ing the logic across several operations or templalbe spatial functions work just as
well with any approach.

An issue that one should be aware of is the chgdlemssociated with “re-processing” the
output of templates already ran inside the curdBILT process. The output from tem-
plates is represented as result-tree fragmentshwdrily supports string operations (Clark
1999). While this is discussed with more detaibection 7.5, it is not specifically related
to geospatial data, and as showed, solving it Imwexding the fragments to node sets is

not a problem.
7.4.3 Reuse
Application level

The Model-View-Controller (MVC) pattern defines approach to programming where
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application and business logic represented byriedel” is kept separate from the pres-
entation/user interface, represented by the “viéwwcontroller” mediates the interaction
between the two components (Buschmann, Meunidr £986).

With regard to development patterns focusing orstiyaration between presentation and
application logic, XSLT can be a viable approaclyeaerate the views used for presenta-
tion. This is assuming that the underlying data eh@dn be represented as XML. While
MVC have several benefits, such as support for iplaltviews of the same model and
“pluggable” views and controllers (Buschmann, Meuret al. 1996), an acknowledged
liability is the intimate connection between viemdacontroller (Buschmann, Meunier et
al. 1996). When using XSLT for processing geospdtda, the controller has to accom-
modate the handling of spatial operations, herglgening the connection between the
view (XSLT template) and the controller. This malgeneralization of the application
code in the controller more difficult, obfuscatbe tontroller implementation, and com-
plicates the use of different views of the same ehoding the same view on multiple
controllers.

By introducing spatial functionality to the XSLTquess, we have made it easier to de-
couple the XSLT view from the controller and mod€he increased decoupling can
make it easier to reuse both the XSL template apgpat better code generalization in
the controller. The increased level of distinctinetween the view and controller, may
also make it easier for developers to focus ondkk at hand: Developers of views can
concentrate on creating the view without interfg@rimith the controller or other applica-

tion level code.

Template level

Code reuse is well supported at the template lev&ISLT. By developing general tem-
plates for handling various features, cartogra@md non-cartographic alike, specific
transformations can be a matter of just applyiregtémplates desired.

7.4.4 Possibilities for extension

Integrating custom or missing functionality intcetframework has been an important
goal in the design of the implementation done. @&rap discusses the aspects around
design and implementation with regard for integmatiwhile Section 7.5 presents an ex-

ample of how custom spatial operations can be liated using the construction and seri-
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alization facilities provided by the framework. Twerking prototype and demonstration
in Section 7.5 give weight to the claim that thedwlar architecture supports extensions

with new functionality quite well.

7.4.5 Possibilities for implementation on other platforms

Libraries similar to Java Topology Suite with fall partial support for SFS are available
for most popular platforms of development. Onlyea fare mentioned here. While these
support the calculations needed, the amount of wedded to implement the bridged as

done for JTS is unknown.

e Perl and C/C++. GDAL/OGR. C APl and Perl modules (
http://www.remotesensing.org/gdal/ogrA+  http://search.cpan.org/~sderle/Geo-
GDAL-0.11)

* .NET: *“nettopologysuite”; port of JTS. May also bable to C APl (
http://code.google.com/p/nettopologysuite/

7.5 Practical application

This section walks through an example of use byyappthe GeoXSLT framework to a
practical task.
In (Harrie L. 2003) Harrie and Johansson descrilbgethod for real-time generalization
and visualization of GML data. While XSLT is usext eneration of the SVG file (visu-
alization), a separate Java program is used tomerthe integration and generalization
of data. During this process there is a definediriednave an interaction between the dif-
ferent geometry representations involved. (Harri@03) provides several examples of
scenarios requiring this feature, terming it “ilsietion between objects”:

» Solve spatial conflicts (e.g. making sure symbelsreésenting one feature do not

cover other features)

* Integrate service data such as icons/arrows etcaattographic data

» Aggregation of objects
Harrie and Johansson chose not to use XSLT forgtheeralization of data because
“...XSLT transformations only treat one object aimae, it is not possible to implement
methods which involve interactions between objedtdarrie L. 2003). This thesis is not

going to claim that placing the generalization ameégration of data in a separate Java
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program is wrong by any means. Still, it is impotteo provide argumentation for why it
may actually be possible to perform the generatimaénd integration in an XSLT con-
text and still be achieving object interaction. &sing XSLT to perform the generaliza-
tion process, the extra step of running the datautyh the extra Java program before us-
ing XSLT for SVG visualization can be saved. Comitag the process within XSLT does
also facilitate the possibility for developing a mayeneral (Java) system underneath,
with better possibilities for code/class generdimaand re-use, deploying custom XSLT

templates for specific cases.

Example

As the arguments for using XSLT are of significartbere is a need to understand how it
can be implemented. By demonstrating how interastioetween objects are possible in
XSLT and a description of relevant functionalityadable in JTS (which with relative
ease can be integrated into the level 2 clasdas)thesis attempts to inspire further re-
search on XSLT based generalization. The demoiwstrég based on test case 4 of the
Tana data. First, the roads are simplified usimgRbuglasPeucker algorithm (Sedgewick
2002; Novatchev and Tyszko 2006 ) to showcase sigpheralization. Themased on
interaction with the simplified geometry object regenting the roads buffer indicating
the 20 meter area used in the test cases withdha @ata (5.1.4 and 6.2) is created. This
is to showcase that XSLT can interact with resiiten previously called templates
within the XSLT process, and hence makes objedraction possible. Everything is
visualized as SVG using the transformation processsf, and buildings within the 20
meter buffer are given a distinct coloring. Aganie of reference, the original visualiza-

tion of data set 4 from Tana is shown in Figure 7.3
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Figure 7.3 WMS (Geoserver) visualization of Tana da set 4

In Figure 7.3 no simplifications or alterations Baween made. The GML data represent-
ing the features is passed on to a relatively SmfBLT stylesheet utilizing the JTS
bridge created as a part of the thesis. Table éldnblists a very small subset of the GML
data representing the feature set. The GML has bgteacted directly from a Geoserver
WEFS instance and is shown to provide an understgrafithe transformation flow.

<?xml version="1.0" encoding="UTF-8"?>
<wfs:FeatureCollection

xmlns:wfs="http://www.opengis.net/wfs" xmlIns:topp="http://www.openplans.org/topp"

xmlIns:gml="http://www.opengis.net/gml" xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.openplans.org/topp

http://localhost:8080/geoserver/wfs/DescribeFeatureType?typeName=topp:bulroad,topp:Road
http://www.opengis.net/wfs http://localhost:8080/geoserver/schemas/wfs/1.0.0/WFS-basic.xsd">

<gml:boundedBy>
<gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#32633">
<gml:coordinates xmins:gml="http://www.opengis.net/gml" decimal="." cs="," ts=" ">356145,7766050
357617,7767139
</gml:coordinates>

</gml:Box>
</gml:boundedBy>

<gml:featureMember>
<topp:bulroad fid="bulroad.674">
<topp:the_geom>

<gml:Point srsName="http://www.opengis.net/gml/srs/epsg.xml#32633">

<gml:coordinates xmins:gml="http://www.opengis.net/gml" decimal="." cs="," ts="">
357403,7766898

</gml:coordinates>
</gml:Point>
</topp:the_geom>
<topp:type>Residential</topp:type>
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<topp:status>2</topp:status>
<topp:number>192563771</topp:number>
<topp:started>10101</topp:started>
<topp:updated>20001120</topp:updated>
</topp:bulroad>
</gml:featureMember>

<gml:featureMember>
<topp:Road fid="Road.854">
<topp:the_geom>
<gml:MultiLineString srsName="http://www.opengis.net/gml/srs/epsg.xml#32633" >
<gml:lineStringMember>
<gml:LineString>
<gml:coordinates xmlns:gml="http://www.opengis.net/gml" decimal="." cs="," ts=" ">
356709,7766479 356756,7766427
</gml:coordinates>
</gml:LineString>
</gml:lineStringMember>
</gml:MultiLineString>
</topp:the_geom>
<topp:type>Municipal</topp:type>
<topp:roadNumber>5076</topp:roadNumber>
<topp:roadClass>V</topp:roadClass>
<topp:date>19980714</topp:date>
</topp:Road>
</gml:featureMember>

Table 7.5 A minimal subset representing content andtructure of data used in the
generalization process

As mentioned earlier, the Tana data-set is madef mpany small lengths of line strings
representing roads. During a generalization procese can choose between the ap-
proaches of simplifying the line strings one by omaintaining full control and keeping
non cartographic feature data associated (see Tablor examples of non-cartographic
feature data; “roadNumber”, “type” etc), or to umiall the lengths into one multi line
string which then is simplified. In this case tladtér approach has been chosen, as only
the generalization aspect is of direct relevanciéodemonstration. The union of all the
road segments is done using the same templatstad in Table 5.4 and stored in a vari-

able.

<xsl:variable name="roadUnion">
<xsl:call-template name="unionRoads" >
<xsl:with-param name="roads"
select="wfs:FeatureCollection/gml:featureMember[topp:Road]/topp:Road/topp:the_geom/*" />
</xsl:call-template>
</xsl:variable>

Table 7.6 Calling the unionRoads template and stamg the resulting multi line GML
element variable “roadUnion”.

The “roadUnion” variable does at this point contairesult tree fragment, which accord-
ing to (Clark 1999) cannot support any other openatas those available for string val-
ues. This is probably the main reason why Harriarfid L. 2003) concludes that interac-
tions between [processed] objects are not possilthen XSLT. While it is correct ac-

cording to the plain vanilla XSLT specification, jpmactice Xalan provides handling to
work around the problem. Xalan provides a builextension function called “nodeset”.
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When passed a result tree fragment, it returngjaivalent set of nodes. This approach is
applied in the demonstration when simplificatiorpesformed on the “roadUnion” vari-

able.

<xsl:variable name="roadSimplified" select="exp:simplify(xalan:nodeset($roadUnion)//gml:MultiLineString,20)" />

Table 7.7 Performing Douglas Peucker simplificatioron the union of roads.

As is listed in Table 7.7, the result tree fragmafiihe “roadUnion” variable is converted
to a node set and passed on to an extension fanoiépped to the Douglas Peucker sim-
plification algorithm. The number, “20” denotes ttederance threshold for vertex dis-
tance used in the simplification. The “exp” namesparefix denotes the experimental

group of functions containing the simplify function

public Node simplify(NodeList n1,double distanceTolerance) {
Geometry g1 = utilities.gmlSearch(n1);
Geometry result = DouglasPeuckerSimplifier.simplify(g1,distanceTolerance);
return gf.encodeNode(result);

3

Table 7.8 Implementation of simplification extensia function in a level 2 class.

Table 7.8 lists the experimental implementatiothef simplification algorithm. Note how
the thesis’ implemented framework reduces bidiosei conversion between nodes and
JTS geometry objects to a simple method call. While is an experimental implementa-
tion of simplification functionality without any p@rmance evaluations, it does show-
case the ease with which additional functionaliy de integrated almost in a plug-in
fashion without any detailed knowledge of GML presieg or JTS. No change to the
framework or other level 2 classes was necessahi®“plug-in” of simplification func-
tionality. The  “DouglasPeuckerSimplifier” class isa part of the
“com.vividsolutions.jts.simplify” package availablgth JTS.

After returning from the simplify call, the now satified union of roads is stored in the
“roadSimplified” XSLT variable. To calculate theear surrounding the road with 20 me-

ters, a buffer is created. The resulting multi goly is stored in a “roadBuffer” variable.

<xsl:variable name="roadBuffer" select="gis:buffer($roadSimplified//gml:MultiLineString,20)" /> |

Table 7.9 Calculating the 20 meter “buffer-area” tosurround the simplified union of
roads.
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GML representing the simplified version of the roaad the buffer surrounding it are
now in place. All that is left is to transform tBML into SVG with distinct coloring of

the different components.

<l—

Draw the outer border of the multi polygon representing the 20 m area (buffer) outside the simplified union of roads
-->

<xsl:apply-templates select="¢$roadBuffer//gml:outerBoundaryIs" />

<!—Draw the inner border of the multi polygon (inside part of the buffer; fill++) -->
<xsl:apply-templates select="$roadBuffer//gml:innerBoundaryls" />

<!—Draw the simplified union of roads on top of the buffer -->
<xsl:apply-templates select="¢$roadSimplified//gml:LineString" />

<!—Draw all the points representing houses WITHIN the 20 meter buffer -->
<xsl:apply-templates select="wfs:FeatureCollection/gml:featureMember[
(descendant::topp:bulroad) and
(gis:within(
descendant::topp:bulroad/topp:the_geom/gml:Point,
$roadBuffer/gml: *[position() = 1]
)

1" mode="inside"/>

<!—Draw all the points representing houses OUTSIDE the 20 meter buffer -->
<xsl:apply-templates select="wfs:FeatureCollection/gml:featureMember[
(descendant::topp:bulroad) and
(not(gis:within(
descendant::topp:bulroad/topp:the_geom/gml:Point,
$roadBuffer/gml:*[position() = 1]
)

1" mode="outside"/>

Table 7.10 Applying transformation to SVG for the generated components

Table 7.10 lists the XSL used to render the GMISWG. Note how houses are rendered
in two sets, depending on a check for their extstanithin the buffer zone defined by the
“roadBuffer” variable. This demonstrates that ituery well possible to place non-
cartographic data with care for not covering impottcartographic details. E.g. in the
case of placing arrows or labels in a map, theHhinftcheck (or any other relevant SFS
function) used in the table could be used to védidae position. For recalculation of la-
bel positioning etc, one can use “distance” and‘tlenpass”/“bearing” functionality as
defined in 7.3.2.

While generalization/simplification has not beestéel in detail with regard to perform-
ance and multiple algorithms within this thesig walk-through presented above gives a
clear indication that generalization can very vbelachieved within in an XSLT perspec-
tive, and that the “interaction” argument of (Harki. 2003) is not necessarily a problem.
The rest of the stylesheet, performing the tramsédion from GML to SVG, is available

in the appendix.
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Figure 7.4 SVG visualization of Tana data set forase 4, simplified with a distance
tolerance of 20 m

Figure 7.4 shows the final result of the walk-ttgbuThe generated rendering is in no
way optimized with regard to the available posgibd of SVG. The simplified road is
rendered yellow, the buffer area grey with darkdeos. Houses outside the buffer are
colored green, while those within the buffer are re
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Figure 7.5 Close-up, subset of figure 7.4
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8 Conclusion

This chapter summarizes the research in view ofrélsearch objectives before a short

presentation of the major contributions and animitbf further work is provided.

8.1 Claimed results

Processing geospatial data with XSLT

The work with this thesis shows that it is techltyjcaossible to process and transform
geospatial data encoded as GML with XSL template$ extensions. The experience
with the developed GeoXSLT framework indicates thdtial operations possible with
libraries such as the Java Topology Suite can tegyiated into the XSLT process once
the GML representations are converted to geo ahjétte prototype does just that.
Performance

Tests done with real data shows that in an inteaciontext, spatial XSLT transforma-
tions of data can be performed with success withendifferent limits of time as set forth
by the usability community. While the transformasoachievable withimstant timeare
limited, chances are that these limitations woust apply to other approaches. For sce-
narios occurring within a timeframe tflerable time relatively complex transformations
can be applied on data sets so large that netwanisrnission time and other factors ex-
ternal to the transformation become issues. Intehbperspective, tests involving rela-
tively complex transformations on data sets comgstf more than 11 000 features have
shown that with considerate use of recursion, fhy@a@ach proposed in this thesis can

handle large amounts of data.

Geometry Construction Serialization
Line String 10-12% 2-25%
Polygon 12-27% 6-61%

Table 8.1 Overhead for analysis operations

Line String 20-25%
Polygon 8-64%
Point 40-82%

Table 8.2 Overhead for predicate operations
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Geometry Construction Serialization
Point 15-42% 58-85%

Table 8.3 Construction vs. Serialization for points

With regard for the time overhead necessary fovemion back and forth between the
transformation process and the spatial extensibesexperience from design and devel-
opment of the prototype shows that the integratibispatial functionality in an XSLT
process can be divided into three phases The plaasesonstruction of spatial objects
from node sets, spatial calculations, and seri@imeof the results back to a node struc-
ture compatible with the XSLT process. The overheaalied by the integration of spa-
tial capabilities with XSLT consists of the consttion and serialization phases.

Tables 8.1 and 8.2 present indications on the p&age wise overhead imposed by the
GeoXSLT framework for analysis and predicate openat Note that the high overhead
for operations on points is caused by the verygasit calculations; the total time to
complete operations on points is significantly deraghan for any other geometry. See
Section 6.1.4 for a complete summary on performameasured.

Table 8.3 presents findings from running a “dumnggt on points without any calcula-
tions; consisting of only the construction and aeration phases. It indicates that seriali-
zation is more expensive than the constructiong@has

Tests and findings in this thesis indicate that ¢bst of making geospatial operations
available to XSLT is significant. Nonetheless, otliactors such as possibilities for
shorter workflow and reduced network traffic shobkl counted in. This thesis has also
shown that significant performance gains are aclkvby the implementation of differ-
ent optimization mechanisms. The simple cachingmi®sd in Sections 4.5.5, 5.1.5, and
6.2.2 improved overall performance by 60%.

Flexibility

The approach described and tested in this theeMdas sufficient flexibility for many
uses and scenarios. This is because the combinattibexibility inherent in XSLT with
the complete integration of spatial extensions jgled by the prototype results in a work-
ing platform for transformation and processing mpadata. Additionally, the modular
architecture of the framework created allows f@yaategration of new functionality and
operations.

The combination of a well integrated set of extenperations for the XSLT language

with a modular and extensible supporting framewasults in a flexible platform that
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can be customized to support transformation of g@ted data in a multitude of scenar-
ios. Examples of this are given in the tests wéhl data (Sections 5.1.4, 5.1.5, 6.2.1,
6.2.2) and the practical application describedant®n 7.5. The examples and argumen-
tation presented have shown that spatial operatande combined, chained, and used in
XPath expressions. Likewise, simple extensionshef standard functionality provided
have been showcased to illustrate the modular teathre. An approach to the “object-
interaction” necessary for generalization/simpéifion operations (Harrie L. 2003) has
also been demonstrated to work.

Development facilitation

The experience with practical applications andste$tthe prototype shows that it is easy
to start developing templates when no special nteasur configuration need to be done
for utilization of the spatial functionality. Theedeloper’s focus can as such be concen-
trated on expressing the logic with traditional XS&nd the simple API defined. The im-
pression from using the prototype so far is thatttireshold for development of geospa-

tial applications is lowered allowing for more tiraad resources to be spent on creativity.

8.2 Major contributions

The contributions of this thesis are
* A working prototype for easy integration of spafiactionality in transformation
of geodata encoded as GML.
* An exslt.org style APl which is closely mapped he Simple Feature Specifica-
tion.
* Experience and examples from practical work withLXSransformations of

GML using the spatial extensions.

8.3 Future work

The future work with the GeoXSLT framework shoubek into the suggested improve-
ments of Chapter 7. In addition some other possédslare listed below.

Automatic mapping of function calls

Many Level 2 implementations of operations definethe Simple Feature Specification
follow a very similar pattern. This opens up foe tldea of a facility providing automatic

mapping of JTS functionality with XSLT based on theva introspection. With such a
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facility on would, ideally, just have to call thpatial extension function from XSLT and

have the operation automatically executed.

Performance optimization

The overhead of using GeoXSLT is significant. Magsearch should be done to improve

the performance.

Spatial libraries

The current implementation of GeoXSLT depends ata Jaopology Suite (JTS) for spa-
tial calculations. It would be of interest to senhother libraries available could be used.
An idea is to create support for other librariemgs plug-in approach. There are several

databases that support the Simple Features Sgeitific

Other platforms

GeoXSLT needs to be available on other platfornas thava. Section 7.4.5 lists possible

alternatives to Java Topology Suite for use in oftatforms.

Release of GeoXSLT source code

GeoXSLT is released under a GPL license to be efaseveryone and open up for con-
tributions to further development.

The source code is available at http://www.svigfnedrik/geoxslt
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9 Appendix

9.1 Sample of constructed test data

<?xml version="1.0"?>

<testdata xmIns:gml="http://www.opengis.net/gml">
<!--

HORIZONTAL LINE:

PARAMS:

$VARL = {
'vertices' => 3,
'vbuf' => 6,
'step' => 2,

'xmulti' => 1,
'vmulti' => 1,
'x'=>"'0.11",
'xbuf' => 10,
'decimals' => 2
3
WKT:
LINESTRING(10.11 6.03,12.11 6.50,14.11 6.86,)

VERTICAL LINE:

PARAMS:

$VAR1 = {
'X'=> 0,
y'=>"4.11",
'vertices' => 3,
'step' => 2,
'vbuf' => 0,
'xmulti' => 1,
'ymulti' => 1,
'xbuf' => 12,
'decimals' => 2

3
WKT:
LINESTRING(12.86 4.11,13.00 6.11,12.90 8.11,)

-->

<gml:featureMember>
<dummy_line fid="horizontal_1">
<TheGeometry>
<gml:LineString>
<gml:coordinates decimal="." cs="" ts=",">10.11 6.03,12.11
6.50,14.11 6.86,</gml:coordinates>
</gml:LineString>
</TheGeometry>
</dummy_line>
</gml:featureMember>

<gml:featureMember>
<dummy_line fid="vertical_1">
<TheGeometry>
<gml:LineString>
<gml:coordinates decimal="." cs="" ts=",">12.86 4.11,13.00
6.11,12.90 8.11,</gml:coordinates>
</gml:LineString>
</TheGeometry>
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</dummy_line>
</gml:featureMember>

</testdata>

9.2 Sample of real data

This is a minimal sample of the Tana data setustiiate the structure and composition.
<?xml version="1.0" encoding="UTF-8"?>
<wfs:FeatureCollection xmlns:wfs="http://www.opengis.net/wfs"
xmlins:topp="http://www.openplans.org/topp" xmlIns:gml="http://www.opengis.net/gml"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.openplans.org/topp
http://localhost:8080/geoserver/wfs/DescribeFeatureType?typeName=topp:bulroad,topp:Road
http://www.opengis.net/wfs http://localhost:8080/geoserver/schemas/wfs/1.0.0/WFS-basic.xsd" >
<gml:boundedBy>
<gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#32633">
<gml:coordinates xmlns:gml="http://www.opengis.net/gml" decimal="." cs=","
ts="">357015,7766577 357502,7766771</gml:coordinates>
</gml:Box>
</gml:boundedBy>
<gml:featureMember>
<topp:bulroad fid="bulroad.2545">
<topp:the_geom>
<gml:Point srsNa-
me="http://www.opengis.net/gml/srs/epsg.xml#32633">
<gml:coordinates xmIns:gml="http://www.opengis.net/gml"
decimal="." cs="," ts=" ">357080,7766653</gml:coordinates>
</gml:Point>
</topp:the_geom>
<topp:type>Outhouse</topp:type>
<topp:status>2</topp:status>
<topp:number>192574250</topp:number>
<topp:started>10101</topp:started>
<topp:updated>19940210</topp:updated>
</topp:bulroad>
</gml:featureMember>
<gml:featureMember>
<topp:Road fid="Road.907">
<topp:the_geom>
<gml:MultiLineString srsNa-
me="http://www.opengis.net/gml/srs/epsg.xml#32633">
<gml:lineStringMember>
<gml:LineString>
<gml:coordinates
xmlins:gml="http://www.opengis.net/gml" decimal="." cs="," ts=" ">357015,7766698 357127,7766654
357205,7766613 357286,7766585 357364,7766577 357389,7766583 357406,7766595 357488,7766710
357498,7766735 357502,7766771</gml:coordinates>
</gml:LineString>
</gml:lineStringMember>
</gml:MultiLineString>
</topp:the_geom>
<topp:type>Municipal</topp:type>
<topp:roadNumber>5088</topp:roadNumber>
<topp:roadClass>V</topp:roadClass>
<topp:date>19980714</topp:date>
</topp:Road>
</gml:featureMember>
</wfs:FeatureCollection>
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9.3 SVG/Generalization stylesheet

For the sake of readability, the complete filevaikble at

http://www.svisj.no/fredrik/geoxslt

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlIns:wfs="http://www.opengis.net/wfs" xmlns:gml="http://www.opengis.net/gml"
xmlins:topp="http://www.openplans.org/topp" xmlins:svg="http://www.w3.0rg/2000/svg"
xmilns:exslt="http://exslt.org/common" xmlins:xalan="http://xml.apache.org/xalan"
xmlins:exp="xalan://frontend.ExperimentalOperations" xmlins:gis="xalan://frontend.SFSOperations" ex-
clude-result-prefixes="wfs gml topp svg exslt xalan exp gis">

<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes" doctype-public="-
//W3C//DTD SVG 1.1//EN" doctype-system="http://www.w3.0org/Graphics/SVG/1.1/DTD/svg11-flat-
20030114.dtd" />

<xsl:template match="/">

<svg xmlns="http://www.w3.0rg/2000/svg" width="100%" height="100%">
<g transform="rotate(180, 500,500) scale(-1 1) translate(-1000 0)">

<xsl:element name="svg" namespace="http://www.w3.0rg/2000/svg">

<xsl:attribute name="width">1000</xsl:attribute>
<xsl:attribute name="height">1000</xsl:attribute>

<xsl:variable name="bbcoords">
<xsl:value-of select="wfs:FeatureCollection/gml:boundedBy/gml:Box/gml:coordinates"/>
</xsl:variable>

<xsl:variable name="bbMin" select="substring-before($bbcoords,' ')" />
<xsl:variable name="bbMax" select="substring-after($bbcoords,"' ')" />

<xsl:variable name="vb_x" select="substring-before($bbMin,',")" />
<xsl:variable name="vb_y" select="substring-after($bbMin,"',")" />

<xsl:variable name="vb_width" select="substring-before($bbMax,",") - $vb_x" />

<xsl:variable name="vb_height" select="substring-after($bbMax,",") - $vb_y" />

<xsl:attribute name="viewBox"><xsl:value-of select="concat($vb_x,' ',$vb_y,"' ',$vb_width,’
', $vb_height)"/></xsl:attribute>

<xsl:element name="g" namespace="http://www.w3.0rg/2000/svg">

<xsl:variable name="roadUnion">
<xsl:call-template name="unionRoads">
<xsl:with-param name="roads" se-
lect="wfs:FeatureCollection/gml:featureMember[topp:Road]/topp:Road/topp:the_geom/*" />
</xsl:call-template>
</xsl:variable>
<xsl:message>Road union created</xsl:message>

<xsl:variable name="roadSimplified" se-
lect="exp:simplify(xalan:nodeset($roadUnion)//gml:MultiLineString,10)" />

<xsl:variable name="roadBuffer" se-
lect="gis:buffer($roadSimplified//gml:MultiLineString,20)" />

<xsl:apply-templates select="$roadBuffer//gml:outerBoundaryIs" />
<xsl:apply-templates select="$roadBuffer//gml:innerBoundarylIs" />
<xsl:apply-templates select="¢$roadSimplified//gml:LineString" />
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<xsl:apply-templates se-
lect="wfs:FeatureCollection/gml:featureMember[(descendant::topp:bulroad/topp:the_geom/gml:Point)
and (gis:within(descendant::topp:bulroad/topp:the_geom/gml:Point,$roadBuffer/gml:*[position() = 1]))]"
mode="inside"/>

<xsl:apply-templates se-
lect="wfs:FeatureCollection/gml:featureMember[(descendant: :topp:bulroad) and
(not(gis:within(descendant::topp:bulroad/topp:the_geom/gml:Point,$roadBuffer/gml:*[position() =
1DNI" mode="outside"/>

</xsl:element>
</xsl:element>
</g>
</svg>

</xsl:template>

<xsl:template match="topp:bulroad" mode="inside">
<xsl:variable name="gmlcoords" select="topp:the_geom//gml:coordinates"/>
<circle cx="{substring-before($gmicoords,',')}" cy="{substring-after($gmicoords,',")}" r="1"
style="stroke:red; stroke-width:1; fill:red" xmlns="http://www.w3.0rg/2000/svg"/>
</xsl:template>

<xsl:template match="topp:bulroad" mode="outside">
<xsl:variable name="gmlcoords" select="topp:the_geom//gml:coordinates"/>
<circle cx="{substring-before($gmlcoords,',")}" cy="{substring-after($gmicoords,',")}" r="1"
style="stroke:green; stroke-width:1; fill:green" xmIns="http://www.w3.0rg/2000/svg"/>

</xsl:template>

<xsl:template match="topp:Road">
<xsl:variable name="gmlcoords" select="topp:the_geom//gml:coordinates"/>
<polyline points="{$gmlcoords}" style="stroke:black; stroke-width:4;fill:none;"
xmlns="http://www.w3.0rg/2000/svg" />
<polyline points="{$gmlcoords}" style="stroke:yellow; stroke-width:1;fill:none;"
xmlIns="http://www.w3.0rg/2000/svg" />
</xsl:template>

<xsl:template match="gml:LineString">
<xsl:variable name="gmlcoords" select=".//gml:coordinates"/>
<!l-- <polyline points="{$gmlcoords}" style="stroke:black; stroke-width:4;fill:none;"
xmlns="http://www.w3.0rg/2000/svg" /> -—>
<polyline points="{$gmlcoords}" style="stroke:yellow; stroke-width:1;fill:none;"
xmlns="http://www.w3.0rg/2000/svg" />
</xsl:template>

<xsl:template match="gml:outerBoundarylIs">
<xsl:variable name="gmlcoords" select=".//gml:coordinates"/>
<polyline points="{$gmlcoords}" style="stroke:black; stroke-width:1;fill: #BBBBBB;"
xmlns="http://www.w3.0rg/2000/svg" />
</xsl:template>

<xsl:template match="gml:innerBoundaryIs">
<xsl:variable name="gmlcoords" select=".//gml:coordinates"/>
<polyline points="{$gmlcoords}" style="stroke:black; stroke-width:1;fill:white;"
xmlns="http://www.w3.0rg/2000/svg" />
</xsl:template>

<xsl:template name="unionRoads">
<xsl:param name="roads"/>
<xsl:variable name="roadCount" select="count($roads)" />

<xsl:choose>
<xsl:when test="¢$roadCount = 1"><xsl:copy-of select="$roads" /></xsl:when>
<xsl:otherwise>
<xsl:variable name="fiftypercent" select="floor($roadCount div 2)" />
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<xsl:variable name="left">
<xsl:call-template hame="unionRoads">
<xsl:with-param name="roads" select="$roads[position() &lt;= $fiftypercent]" />
</xsl:call-template>
</xsl:variable>
<xsl:variable name="right">
<xsl:call-template name="unionRoads">
<xsl:with-param name="roads" select="$roads[position() &gt; $fiftypercent]" />
</xsl:call-template>
</xsl:variable>
<xsl:copy-of select="gis:union(xalan:nodeset($left)//*[(local-name() = 'MultiLineString') or
(local-name() = 'LineString')],xalan:nodeset($right)//*[(local-name() = 'MultiLineString') or (local-name()
= 'LineString")])" />

</xsl:otherwise>
</xsl:choose>
</xsl:template>

</xsl:stylesheet>
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