
Exploiting nonlinear propagation in echo sounders and sonar
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Mainstream sonars transmit and receive signals at the same frequency. As water is a nonlinear medium, a prop-

agating signal generates harmonics at multiples of the transmitted frequency. For sonar applications, energy

transferred to higher harmonics is seen as a disturbance. To satisfy requirements for calibration of echo sounders

in fishery research, input power has to be limited to avoid energy loss to harmonics generation. Can these harmon-

ics be used in sonar imaging? The frequency dependency of target echos, and the different spatial distribution

of higher harmonics can contribute to additional information on detected targets in fish classification, ocean

bathymetry, or bottom classification. Our starting point was the sonar equation adapted for the second harmonic.

We have simulated nonlinear propagation of sound in water, and obtained estimates of received pressure levels

of harmonics for a calibration sphere, or a fish as reflector. These pressure profiles were used in the sonar equa-

tion to compare harmonics to fundamental signal budget. Our results show that a 200 kHz thermal noise limited

echo sounder, with a range of 800 m will reach around 300 m for the second harmonic. This means the second

harmonic is useful in many applications.

1 Introduction

Non-linear propagation of ultrasound was identified many

years ago as a phenomenon that potentially may be utilized

for acoustic imaging improvement. Already in 1965, Berk-

tay [1] mentioned several possible uses of non-linearity in

underwater imaging applications. When transmitting two

simultaneous waves with slightly different frequencies, the-

ory [2] predicts that due to non-linearity, secondary waves

are generated at frequencies around the sum as well as the

difference of the two transmitted frequencies. This property

is used by parametric sonars.

In acoustic medical imaging, non-linear scattering from con-

trast agents was first used to enhance some imaging features.

Then second harmonics generated by non-linear propaga-

tion in tissue without contrast agent were found to increase

image quality, giving birth to the tissue harmonic imaging

mode (THI) [3]. Duck [4] gave a good review explaining

why the second harmonic used in THI has properties bene-

ficial for image quality.

Non-linear propagation as it naturally occurs when sound

propagates in water, is in sonar applications mainly consid-

ered as a disturbance that perturbs target strength evalua-

tion [5]. However, a question that naturally occurs is: “Can

non-linear propagation be made use of in sonar application

in a similar manner as in tissue harmonic medical imag-

ing?”. Experimental proofs were presented already in 1980

[6] but since then, little has been published on second har-

monic imaging in underwater acoustic imaging.

We have applied the widely accepted definition of the sonar

budget equation [7] to the simulated second harmonic gen-

erated during non-linear propagation in water. The resulting

sonar budget equation predicts that this second harmonic

may be used in sonar imaging, just like the fundamental

waves at the transmit frequencies. Given that benefits of THI

in medical imaging are valid also in underwater imaging, it

is expected that second harmonic imaging would give rise

to enhanced directivity, and reduced sidelobes compared to

fundamental imaging.

In this paper, each term of the sonar equation have been

adapted to the second harmonic to generate a sonar equa-

tion for propagation in the non-linear regime. We have run

numerical simulations in order to compare the range limits

for the second harmonic and for the fundamental.

2 Sonar equation overview

2.1 Equation for target detection

The derivation of the sonar budget equations follows the pre-

sentation in [7]. When assuming isotropic noise as pertur-

bation source for target detection, the model equation is:

SL − 2TL + TS = NL − DI + DT. (1)

It characterizes the case of the monostatic sonar. The mean-

ing and definitions of the terms in Eq. (1) are summarized in

Table 1 which is reproduced from [7].

2.2 Directivity index – DI

In the case of a signal as a perfectly coherent unidirectional

plane wave, and an isotropic noise, the array gain of the

transducer (AG) is the directivity index. This assumption

will be valid in our case since at reception, the signal re-

ceived is in its far field, and can be considered as a plane

wave; and at transmission after 1 m, the wave generated by

the piston can be considered plane.
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Parameter Reference Definition

Source level SL
1m from source on its

acoustic axis
10 log

intensity of source
reference intensity∗

Transmission

loss
TL

1m from source and

at target or receiver
10 log

signal intensity at 1 m
signal intensity at target or receiver

Target

strength
TS

1m from acoustic

center of target
10 log

echo intensity at 1 m from target
incident intensity

Noise level NL
at hydrophone loca-

tion
10 log

noise intensity
reference intensity∗

Receiving di-

rectivity index
DI

at hydrophone termi-

nals
10 log

noise power generated by an equivalent nondirectional hydrophone
noise power generated by actual hydrophone

Detection

threshold
DT

at hydrophone termi-

nals
10 log

signal power to just perform a certain function
noise power at hydrophone terminals

*The reference intensity is that of a plane wave of rms pressure 1 µPa.

Table 1: Definitions of terms used in the sonar equation (reproduced from [7]).

In our case, the receiver is the same as the transmitter; a

circular piston. Therefore, it has axial symmetry. For an

array/aperture steered in the direction of the signal we have:

AG = DI = 10 log
4π

2π
∫ π/2

−π/2
b(θ) cos(θ)dθ

, (2)

where b(θ) is the beam pattern of the aperture.

For a circular piston of radius R, the beam pattern is:

b(θ) =

(

2J1[(2Rπ/λ) sin(θ)]

(2Rπ/λ) sin(θ)

)2

, (3)

where J1 is the Bessel function of order one, and λ is the

wavelength of the signal. Eq. (3) combined with Eq. (2)

give the directivity index

DI = 10 log

(

(

2Rπ

λ

)2
)

. (4)

2.3 Source Level – SL

The source level is simply found by calculating the ratio be-

tween the intensity at 1 m, and the reference intensity (1µPa

rms). The equations become:

I1m =
p2

1m

ρc
=

p2

1m

2ρc
, and Iref =

p2

ref

ρc
=

1µPa2

ρc
, (5)

giving

SL = 10 log

(

I1m

Iref

)

= 10 log

(

p2

1m

1µPa2

)

. (6)

This method is valid for the second harmonic if the bulk of

the energy transferred from the fundamental to the second

harmonic happens over a short propagation distance (much

less than one meter). This is the case in our simulations.

If, after one meter, the second harmonic is still building up,

p
1m should not be used to calculate the SL. Instead, an

equivalent level should be calculated.

2.4 Transmission Loss – TL

In order to compute transmission losses, non linear propaga-

tion is simulated taking in account diffraction, and damping

in water. For each harmonic, transmission losses are com-

puted as follows:

TL = 10 log(p2

1m/p2

r), (7)

pr: reflected pressure at target,

p1m: pressure at 1 m.

2.5 Target Strength – TS

In our simulations, two types of reflector have been used.

The first type is a perfect sphere, and the second is a fish. In

the first case, a sphere of radius a that reflects all the incident

energy that reaches it, is considered. This is a typical cali-

bration sphere. For such a reflector, incident plane wave en-

ergy is the product of the incident intensity by the area built

by the projection of the sphere onto the wave plane. The

reflected wave is spherical and its energy spreads over 4π
steradians. The formula for the reflected intensity without

attenuation at a distance r from the sphere center (acoustic

center) is:

Ir =
πa2Ii

4πr2
, Ii: incident intensity. (8)

Hence the formula for the TS:

TS = 10 log
Ir

Ii

∣

∣

∣

r=1 m
= 10 log

a2

4(1 m)2
. (9)

In the second case, the target strength formula is based on

empirical measurements [7] exhibiting a large dependence

on the size of the fish:

TS = 19.1 logL − 0.9 logF − 62, (10)

L: size of fish in cm, F : frequency.



Eqs. (9), and (10) are the expressions for the TS that will be

used in the simulations. These expressions are valid when

sound diffraction by target is negligible compared to reflec-

tion. This can be translated for the sphere into inequality

ka > 10, where k = 2π/λ is the received pulse wavenum-

ber, and λ its wavelength, and by L >> λ for the fish.

2.6 Detection threshold – DT

For the case of an active sonar where the target processor is

a cross-correlator, the detection threshold is defined as [7]:

DT = 10 log
d

2τ
, (11)

d: detection index, τ : pulse duration.

In the simulation, the detection index d will characterize a

detection probability of 50% and a false alarm probability of

0.01%. Fig. 12.7 in [7] was used to determine d.

2.7 Noise Level – NL

Ambient noise level seems to be very variable. It depends on

the depth at which the receiver is placed, on the state of the

sea, on the wind speed, on the shipping traffic, and if the sea

is deep or shallow. In our case, the noise generated for the

frequency range of interest is mainly due to thermal noise

originating in the molecular motion of the sea. The chosen

model valid for frequencies above 100 kHz is:

NL = −15 + 20 log(F/1 kHz), (12)

F : frequency of considered wave.

Note that NL−DI is constant with frequency (see Eq. (4)).

DT being independent of frequency, the quantity NL −

DI + DT will be equal for fundamental and second har-

monic.

3 Nonlinear propagation simulations to

estimate the sonar equation parameters

3.1 Method and parameters

Simulations were carried out using our implementation of

an angular spectrum method to solve Burgers’ equation [8].

The angular spectrum method operates in the frequency do-

main and consists of two substeps. The first is a nonlinear

step which involves Burgers’ equation and takes care of cou-

pling between the harmonics. In the second step, diffraction

and absorption in the linear domain are taken care of for all

harmonics. In this way a number of harmonics are propa-

gated in the direction of propagation.

In order to obtain the pressure field at a depth r, following

Christopher and Parker [9], the radial extent of the simula-

tion was set to T = 4.5 tan θ · r, where θ = 9◦ represents

the opening angle of the calculated field at depth r. Such

a value of T ensures no perturbation from source replica.

The number of radial samples was set to N = 2T/λ where

λ is the wavelength. The propagation step size in depth dr
was set to 5 mm. The diffraction step was computed in the

frequency domain using the ray theory-updated frequency

sampled convolution (RFSC) [9]. Attenuation is applied at

each step for all harmonics using the formula:

pn(m + 1) = pn(m) · exp[−α · (n · F0/106)2 · dr], (13)

where pn(m) is the pressure of the nth harmonic at depth

m · dr, α is the attenuation coefficient in Np/MHz2/m, and

F0 is the fundamental frequency of the wave. The nonlinear

substep is given by Christopher and Parker [10], but since

we work with the real amplitude or one-sided spectrum [11],

we have used twice the constant in the nonlinear substep

(Eq. (3) in [10]). In all simulations using the angular spec-

trum method, 50 harmonics were used.

The simulations are done when a circular piston is used as

source and receiver, and the reflector is a calibration sphere

or a fish. The water density and sound speed are assumed to

be constant. The parameters of the simulation are summed

up in Table 2. Simulations are based on a Simrad ES200-7C

transducer, and a EK60 echo sounder. Non-linear propaga-

tion is simulated to a depth of r0 = 10 m. At deeper depths

than this, the amplitude is low enough to allow linear prop-

agation of the remaining fundamental and the accumulated

second harmonic. The formula used to simulate linear prop-

agation at range r is shown in Eq. (14)

pn(r) = pn(r0)
r0

r
exp[−α · (n ·F0/106)2 · (r− r0)]. (14)

Parameter Value

Source radius, R 31.5 mm

Target radius, a 38.1 mm

Frequency, F0 200 kHz

Pulse duration, τ 0.1 ms

Input RMS pressure, p
0

580 kPa

Water density, ρ 998 kg/m3

Sound speed, c 1479 m/s

Nonlinearity coefficient, β 3.49

Fish size, L 25 cm

Attenuation, α 0.025 Np/MHz2/m

Detection index, d 15

Table 2: Parameters used in simulation.

3.2 Results

Sphere as a reflector

In the first case of the spherical reflector, the simulations are

run using the ASA [9, 10] (Angular Spectrum Approach)

assuming axial symmetry (Hankel transform was used).



Figs. 1 and 2 show the axial pressure profiles, and the trans-

mission budget for the the fundamental and the second har-

monic to a depth of 3 km. The round and square markers at

the top are the source levels (SL) for fundamental and sec-

ond harmonic, the horizontal line at the bottom corresponds

to NL − DI + DT , and the decreasing curves correspond

to SL − 2TL + TS. Table 3 sums up the computed values

in dB.
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Figure 1: Axial profiles for first and second harmonics.

Figure 2: Sonar equation transmission budget plots in the

case of a spherical reflector.

SL TS DI DT NL TL
1st harm. 226.3 −34.4 28.6 48.8 31.0 98.0

2nd harm. 218.1 −34.4 34.6 48.8 37.0 174.1

Table 3: Computed values using the ASA.

The noise level (NL) and the directivity index (DI) both in-

crease by the same amount (6 dB) between the fundamental

and the second harmonic. This explains why NL−DI+DT
is constant for fundamental and second harmonic.

Fish as reflector

In the case where the target is a fish, the same simulations

are run. The axial pressure profile is the same as shown in

Fig. 1. Fig. 3 shows the sonar equation transmission budget

in this case. The round and square markers at the top are the

source levels (SL) for fundamental and second harmonic,

the horizontal line at the bottom corresponds to NL−DI +
DT , and the decreasing curves correspond to SL − 2TL +
TS.

Figure 3: Sonar equation transmission budget plots in the

case of a fish as a reflector

The only difference in the computed values from Table 3, is

the target strength that dropped from −34.4 dB to −40.1 dB

for the fundamental frequency and −40.3 dB for the second

harmonic.

4 Summary

With the given simulation parameters, if the fundamental

frequencies are used, they can detect a spherical reflector

and a fish down to approximately 960 m and 800 m respec-

tively. If instead the second harmonic that is accumulated

during propagation in the non-linear regime is utilized for

detection, the simulations predict a spherical reflector and

a fish to be detectable at 400 m and 340 m respectively.

These estimates indicate that second harmonic can be used

for target detection providing the range is down-graded ac-

cordingly when compared to fundamental imaging. Imaging

using second harmonic, in turn, offers better resolution and

lower sidelobe levels.

Combination of fundamental and second harmonic imaging

seems also possible in ranges below 340 m, giving target

echos at two widely separated frequencies. This should help

in target recognition as discussed by Korneliussen and Ona

[12].
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